1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/rmap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/page-isolation.h> 26 #include <linux/jhash.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 32 #include <linux/io.h> 33 #include <linux/hugetlb.h> 34 #include <linux/hugetlb_cgroup.h> 35 #include <linux/node.h> 36 #include "internal.h" 37 38 int hugepages_treat_as_movable; 39 40 int hugetlb_max_hstate __read_mostly; 41 unsigned int default_hstate_idx; 42 struct hstate hstates[HUGE_MAX_HSTATE]; 43 /* 44 * Minimum page order among possible hugepage sizes, set to a proper value 45 * at boot time. 46 */ 47 static unsigned int minimum_order __read_mostly = UINT_MAX; 48 49 __initdata LIST_HEAD(huge_boot_pages); 50 51 /* for command line parsing */ 52 static struct hstate * __initdata parsed_hstate; 53 static unsigned long __initdata default_hstate_max_huge_pages; 54 static unsigned long __initdata default_hstate_size; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 if (spool->min_hpages != -1) { /* minimum size accounting */ 149 if (delta > spool->rsv_hpages) { 150 /* 151 * Asking for more reserves than those already taken on 152 * behalf of subpool. Return difference. 153 */ 154 ret = delta - spool->rsv_hpages; 155 spool->rsv_hpages = 0; 156 } else { 157 ret = 0; /* reserves already accounted for */ 158 spool->rsv_hpages -= delta; 159 } 160 } 161 162 unlock_ret: 163 spin_unlock(&spool->lock); 164 return ret; 165 } 166 167 /* 168 * Subpool accounting for freeing and unreserving pages. 169 * Return the number of global page reservations that must be dropped. 170 * The return value may only be different than the passed value (delta) 171 * in the case where a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return delta; 180 181 spin_lock(&spool->lock); 182 183 if (spool->max_hpages != -1) /* maximum size accounting */ 184 spool->used_hpages -= delta; 185 186 if (spool->min_hpages != -1) { /* minimum size accounting */ 187 if (spool->rsv_hpages + delta <= spool->min_hpages) 188 ret = 0; 189 else 190 ret = spool->rsv_hpages + delta - spool->min_hpages; 191 192 spool->rsv_hpages += delta; 193 if (spool->rsv_hpages > spool->min_hpages) 194 spool->rsv_hpages = spool->min_hpages; 195 } 196 197 /* 198 * If hugetlbfs_put_super couldn't free spool due to an outstanding 199 * quota reference, free it now. 200 */ 201 unlock_or_release_subpool(spool); 202 203 return ret; 204 } 205 206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 207 { 208 return HUGETLBFS_SB(inode->i_sb)->spool; 209 } 210 211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 212 { 213 return subpool_inode(file_inode(vma->vm_file)); 214 } 215 216 /* 217 * Region tracking -- allows tracking of reservations and instantiated pages 218 * across the pages in a mapping. 219 * 220 * The region data structures are embedded into a resv_map and protected 221 * by a resv_map's lock. The set of regions within the resv_map represent 222 * reservations for huge pages, or huge pages that have already been 223 * instantiated within the map. The from and to elements are huge page 224 * indicies into the associated mapping. from indicates the starting index 225 * of the region. to represents the first index past the end of the region. 226 * 227 * For example, a file region structure with from == 0 and to == 4 represents 228 * four huge pages in a mapping. It is important to note that the to element 229 * represents the first element past the end of the region. This is used in 230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 231 * 232 * Interval notation of the form [from, to) will be used to indicate that 233 * the endpoint from is inclusive and to is exclusive. 234 */ 235 struct file_region { 236 struct list_head link; 237 long from; 238 long to; 239 }; 240 241 /* 242 * Add the huge page range represented by [f, t) to the reserve 243 * map. In the normal case, existing regions will be expanded 244 * to accommodate the specified range. Sufficient regions should 245 * exist for expansion due to the previous call to region_chg 246 * with the same range. However, it is possible that region_del 247 * could have been called after region_chg and modifed the map 248 * in such a way that no region exists to be expanded. In this 249 * case, pull a region descriptor from the cache associated with 250 * the map and use that for the new range. 251 * 252 * Return the number of new huge pages added to the map. This 253 * number is greater than or equal to zero. 254 */ 255 static long region_add(struct resv_map *resv, long f, long t) 256 { 257 struct list_head *head = &resv->regions; 258 struct file_region *rg, *nrg, *trg; 259 long add = 0; 260 261 spin_lock(&resv->lock); 262 /* Locate the region we are either in or before. */ 263 list_for_each_entry(rg, head, link) 264 if (f <= rg->to) 265 break; 266 267 /* 268 * If no region exists which can be expanded to include the 269 * specified range, the list must have been modified by an 270 * interleving call to region_del(). Pull a region descriptor 271 * from the cache and use it for this range. 272 */ 273 if (&rg->link == head || t < rg->from) { 274 VM_BUG_ON(resv->region_cache_count <= 0); 275 276 resv->region_cache_count--; 277 nrg = list_first_entry(&resv->region_cache, struct file_region, 278 link); 279 list_del(&nrg->link); 280 281 nrg->from = f; 282 nrg->to = t; 283 list_add(&nrg->link, rg->link.prev); 284 285 add += t - f; 286 goto out_locked; 287 } 288 289 /* Round our left edge to the current segment if it encloses us. */ 290 if (f > rg->from) 291 f = rg->from; 292 293 /* Check for and consume any regions we now overlap with. */ 294 nrg = rg; 295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 296 if (&rg->link == head) 297 break; 298 if (rg->from > t) 299 break; 300 301 /* If this area reaches higher then extend our area to 302 * include it completely. If this is not the first area 303 * which we intend to reuse, free it. */ 304 if (rg->to > t) 305 t = rg->to; 306 if (rg != nrg) { 307 /* Decrement return value by the deleted range. 308 * Another range will span this area so that by 309 * end of routine add will be >= zero 310 */ 311 add -= (rg->to - rg->from); 312 list_del(&rg->link); 313 kfree(rg); 314 } 315 } 316 317 add += (nrg->from - f); /* Added to beginning of region */ 318 nrg->from = f; 319 add += t - nrg->to; /* Added to end of region */ 320 nrg->to = t; 321 322 out_locked: 323 resv->adds_in_progress--; 324 spin_unlock(&resv->lock); 325 VM_BUG_ON(add < 0); 326 return add; 327 } 328 329 /* 330 * Examine the existing reserve map and determine how many 331 * huge pages in the specified range [f, t) are NOT currently 332 * represented. This routine is called before a subsequent 333 * call to region_add that will actually modify the reserve 334 * map to add the specified range [f, t). region_chg does 335 * not change the number of huge pages represented by the 336 * map. However, if the existing regions in the map can not 337 * be expanded to represent the new range, a new file_region 338 * structure is added to the map as a placeholder. This is 339 * so that the subsequent region_add call will have all the 340 * regions it needs and will not fail. 341 * 342 * Upon entry, region_chg will also examine the cache of region descriptors 343 * associated with the map. If there are not enough descriptors cached, one 344 * will be allocated for the in progress add operation. 345 * 346 * Returns the number of huge pages that need to be added to the existing 347 * reservation map for the range [f, t). This number is greater or equal to 348 * zero. -ENOMEM is returned if a new file_region structure or cache entry 349 * is needed and can not be allocated. 350 */ 351 static long region_chg(struct resv_map *resv, long f, long t) 352 { 353 struct list_head *head = &resv->regions; 354 struct file_region *rg, *nrg = NULL; 355 long chg = 0; 356 357 retry: 358 spin_lock(&resv->lock); 359 retry_locked: 360 resv->adds_in_progress++; 361 362 /* 363 * Check for sufficient descriptors in the cache to accommodate 364 * the number of in progress add operations. 365 */ 366 if (resv->adds_in_progress > resv->region_cache_count) { 367 struct file_region *trg; 368 369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 370 /* Must drop lock to allocate a new descriptor. */ 371 resv->adds_in_progress--; 372 spin_unlock(&resv->lock); 373 374 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 375 if (!trg) 376 return -ENOMEM; 377 378 spin_lock(&resv->lock); 379 list_add(&trg->link, &resv->region_cache); 380 resv->region_cache_count++; 381 goto retry_locked; 382 } 383 384 /* Locate the region we are before or in. */ 385 list_for_each_entry(rg, head, link) 386 if (f <= rg->to) 387 break; 388 389 /* If we are below the current region then a new region is required. 390 * Subtle, allocate a new region at the position but make it zero 391 * size such that we can guarantee to record the reservation. */ 392 if (&rg->link == head || t < rg->from) { 393 if (!nrg) { 394 resv->adds_in_progress--; 395 spin_unlock(&resv->lock); 396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 397 if (!nrg) 398 return -ENOMEM; 399 400 nrg->from = f; 401 nrg->to = f; 402 INIT_LIST_HEAD(&nrg->link); 403 goto retry; 404 } 405 406 list_add(&nrg->link, rg->link.prev); 407 chg = t - f; 408 goto out_nrg; 409 } 410 411 /* Round our left edge to the current segment if it encloses us. */ 412 if (f > rg->from) 413 f = rg->from; 414 chg = t - f; 415 416 /* Check for and consume any regions we now overlap with. */ 417 list_for_each_entry(rg, rg->link.prev, link) { 418 if (&rg->link == head) 419 break; 420 if (rg->from > t) 421 goto out; 422 423 /* We overlap with this area, if it extends further than 424 * us then we must extend ourselves. Account for its 425 * existing reservation. */ 426 if (rg->to > t) { 427 chg += rg->to - t; 428 t = rg->to; 429 } 430 chg -= rg->to - rg->from; 431 } 432 433 out: 434 spin_unlock(&resv->lock); 435 /* We already know we raced and no longer need the new region */ 436 kfree(nrg); 437 return chg; 438 out_nrg: 439 spin_unlock(&resv->lock); 440 return chg; 441 } 442 443 /* 444 * Abort the in progress add operation. The adds_in_progress field 445 * of the resv_map keeps track of the operations in progress between 446 * calls to region_chg and region_add. Operations are sometimes 447 * aborted after the call to region_chg. In such cases, region_abort 448 * is called to decrement the adds_in_progress counter. 449 * 450 * NOTE: The range arguments [f, t) are not needed or used in this 451 * routine. They are kept to make reading the calling code easier as 452 * arguments will match the associated region_chg call. 453 */ 454 static void region_abort(struct resv_map *resv, long f, long t) 455 { 456 spin_lock(&resv->lock); 457 VM_BUG_ON(!resv->region_cache_count); 458 resv->adds_in_progress--; 459 spin_unlock(&resv->lock); 460 } 461 462 /* 463 * Delete the specified range [f, t) from the reserve map. If the 464 * t parameter is LONG_MAX, this indicates that ALL regions after f 465 * should be deleted. Locate the regions which intersect [f, t) 466 * and either trim, delete or split the existing regions. 467 * 468 * Returns the number of huge pages deleted from the reserve map. 469 * In the normal case, the return value is zero or more. In the 470 * case where a region must be split, a new region descriptor must 471 * be allocated. If the allocation fails, -ENOMEM will be returned. 472 * NOTE: If the parameter t == LONG_MAX, then we will never split 473 * a region and possibly return -ENOMEM. Callers specifying 474 * t == LONG_MAX do not need to check for -ENOMEM error. 475 */ 476 static long region_del(struct resv_map *resv, long f, long t) 477 { 478 struct list_head *head = &resv->regions; 479 struct file_region *rg, *trg; 480 struct file_region *nrg = NULL; 481 long del = 0; 482 483 retry: 484 spin_lock(&resv->lock); 485 list_for_each_entry_safe(rg, trg, head, link) { 486 if (rg->to <= f) 487 continue; 488 if (rg->from >= t) 489 break; 490 491 if (f > rg->from && t < rg->to) { /* Must split region */ 492 /* 493 * Check for an entry in the cache before dropping 494 * lock and attempting allocation. 495 */ 496 if (!nrg && 497 resv->region_cache_count > resv->adds_in_progress) { 498 nrg = list_first_entry(&resv->region_cache, 499 struct file_region, 500 link); 501 list_del(&nrg->link); 502 resv->region_cache_count--; 503 } 504 505 if (!nrg) { 506 spin_unlock(&resv->lock); 507 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 508 if (!nrg) 509 return -ENOMEM; 510 goto retry; 511 } 512 513 del += t - f; 514 515 /* New entry for end of split region */ 516 nrg->from = t; 517 nrg->to = rg->to; 518 INIT_LIST_HEAD(&nrg->link); 519 520 /* Original entry is trimmed */ 521 rg->to = f; 522 523 list_add(&nrg->link, &rg->link); 524 nrg = NULL; 525 break; 526 } 527 528 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 529 del += rg->to - rg->from; 530 list_del(&rg->link); 531 kfree(rg); 532 continue; 533 } 534 535 if (f <= rg->from) { /* Trim beginning of region */ 536 del += t - rg->from; 537 rg->from = t; 538 } else { /* Trim end of region */ 539 del += rg->to - f; 540 rg->to = f; 541 } 542 } 543 544 spin_unlock(&resv->lock); 545 kfree(nrg); 546 return del; 547 } 548 549 /* 550 * A rare out of memory error was encountered which prevented removal of 551 * the reserve map region for a page. The huge page itself was free'ed 552 * and removed from the page cache. This routine will adjust the subpool 553 * usage count, and the global reserve count if needed. By incrementing 554 * these counts, the reserve map entry which could not be deleted will 555 * appear as a "reserved" entry instead of simply dangling with incorrect 556 * counts. 557 */ 558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 559 { 560 struct hugepage_subpool *spool = subpool_inode(inode); 561 long rsv_adjust; 562 563 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 564 if (restore_reserve && rsv_adjust) { 565 struct hstate *h = hstate_inode(inode); 566 567 hugetlb_acct_memory(h, 1); 568 } 569 } 570 571 /* 572 * Count and return the number of huge pages in the reserve map 573 * that intersect with the range [f, t). 574 */ 575 static long region_count(struct resv_map *resv, long f, long t) 576 { 577 struct list_head *head = &resv->regions; 578 struct file_region *rg; 579 long chg = 0; 580 581 spin_lock(&resv->lock); 582 /* Locate each segment we overlap with, and count that overlap. */ 583 list_for_each_entry(rg, head, link) { 584 long seg_from; 585 long seg_to; 586 587 if (rg->to <= f) 588 continue; 589 if (rg->from >= t) 590 break; 591 592 seg_from = max(rg->from, f); 593 seg_to = min(rg->to, t); 594 595 chg += seg_to - seg_from; 596 } 597 spin_unlock(&resv->lock); 598 599 return chg; 600 } 601 602 /* 603 * Convert the address within this vma to the page offset within 604 * the mapping, in pagecache page units; huge pages here. 605 */ 606 static pgoff_t vma_hugecache_offset(struct hstate *h, 607 struct vm_area_struct *vma, unsigned long address) 608 { 609 return ((address - vma->vm_start) >> huge_page_shift(h)) + 610 (vma->vm_pgoff >> huge_page_order(h)); 611 } 612 613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 614 unsigned long address) 615 { 616 return vma_hugecache_offset(hstate_vma(vma), vma, address); 617 } 618 619 /* 620 * Return the size of the pages allocated when backing a VMA. In the majority 621 * cases this will be same size as used by the page table entries. 622 */ 623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 624 { 625 struct hstate *hstate; 626 627 if (!is_vm_hugetlb_page(vma)) 628 return PAGE_SIZE; 629 630 hstate = hstate_vma(vma); 631 632 return 1UL << huge_page_shift(hstate); 633 } 634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 635 636 /* 637 * Return the page size being used by the MMU to back a VMA. In the majority 638 * of cases, the page size used by the kernel matches the MMU size. On 639 * architectures where it differs, an architecture-specific version of this 640 * function is required. 641 */ 642 #ifndef vma_mmu_pagesize 643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 644 { 645 return vma_kernel_pagesize(vma); 646 } 647 #endif 648 649 /* 650 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 651 * bits of the reservation map pointer, which are always clear due to 652 * alignment. 653 */ 654 #define HPAGE_RESV_OWNER (1UL << 0) 655 #define HPAGE_RESV_UNMAPPED (1UL << 1) 656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 657 658 /* 659 * These helpers are used to track how many pages are reserved for 660 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 661 * is guaranteed to have their future faults succeed. 662 * 663 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 664 * the reserve counters are updated with the hugetlb_lock held. It is safe 665 * to reset the VMA at fork() time as it is not in use yet and there is no 666 * chance of the global counters getting corrupted as a result of the values. 667 * 668 * The private mapping reservation is represented in a subtly different 669 * manner to a shared mapping. A shared mapping has a region map associated 670 * with the underlying file, this region map represents the backing file 671 * pages which have ever had a reservation assigned which this persists even 672 * after the page is instantiated. A private mapping has a region map 673 * associated with the original mmap which is attached to all VMAs which 674 * reference it, this region map represents those offsets which have consumed 675 * reservation ie. where pages have been instantiated. 676 */ 677 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 678 { 679 return (unsigned long)vma->vm_private_data; 680 } 681 682 static void set_vma_private_data(struct vm_area_struct *vma, 683 unsigned long value) 684 { 685 vma->vm_private_data = (void *)value; 686 } 687 688 struct resv_map *resv_map_alloc(void) 689 { 690 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 691 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 692 693 if (!resv_map || !rg) { 694 kfree(resv_map); 695 kfree(rg); 696 return NULL; 697 } 698 699 kref_init(&resv_map->refs); 700 spin_lock_init(&resv_map->lock); 701 INIT_LIST_HEAD(&resv_map->regions); 702 703 resv_map->adds_in_progress = 0; 704 705 INIT_LIST_HEAD(&resv_map->region_cache); 706 list_add(&rg->link, &resv_map->region_cache); 707 resv_map->region_cache_count = 1; 708 709 return resv_map; 710 } 711 712 void resv_map_release(struct kref *ref) 713 { 714 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 715 struct list_head *head = &resv_map->region_cache; 716 struct file_region *rg, *trg; 717 718 /* Clear out any active regions before we release the map. */ 719 region_del(resv_map, 0, LONG_MAX); 720 721 /* ... and any entries left in the cache */ 722 list_for_each_entry_safe(rg, trg, head, link) { 723 list_del(&rg->link); 724 kfree(rg); 725 } 726 727 VM_BUG_ON(resv_map->adds_in_progress); 728 729 kfree(resv_map); 730 } 731 732 static inline struct resv_map *inode_resv_map(struct inode *inode) 733 { 734 return inode->i_mapping->private_data; 735 } 736 737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 738 { 739 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 740 if (vma->vm_flags & VM_MAYSHARE) { 741 struct address_space *mapping = vma->vm_file->f_mapping; 742 struct inode *inode = mapping->host; 743 744 return inode_resv_map(inode); 745 746 } else { 747 return (struct resv_map *)(get_vma_private_data(vma) & 748 ~HPAGE_RESV_MASK); 749 } 750 } 751 752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 753 { 754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 755 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 756 757 set_vma_private_data(vma, (get_vma_private_data(vma) & 758 HPAGE_RESV_MASK) | (unsigned long)map); 759 } 760 761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 762 { 763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 765 766 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 767 } 768 769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 770 { 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 772 773 return (get_vma_private_data(vma) & flag) != 0; 774 } 775 776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 778 { 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 780 if (!(vma->vm_flags & VM_MAYSHARE)) 781 vma->vm_private_data = (void *)0; 782 } 783 784 /* Returns true if the VMA has associated reserve pages */ 785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 786 { 787 if (vma->vm_flags & VM_NORESERVE) { 788 /* 789 * This address is already reserved by other process(chg == 0), 790 * so, we should decrement reserved count. Without decrementing, 791 * reserve count remains after releasing inode, because this 792 * allocated page will go into page cache and is regarded as 793 * coming from reserved pool in releasing step. Currently, we 794 * don't have any other solution to deal with this situation 795 * properly, so add work-around here. 796 */ 797 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 798 return true; 799 else 800 return false; 801 } 802 803 /* Shared mappings always use reserves */ 804 if (vma->vm_flags & VM_MAYSHARE) { 805 /* 806 * We know VM_NORESERVE is not set. Therefore, there SHOULD 807 * be a region map for all pages. The only situation where 808 * there is no region map is if a hole was punched via 809 * fallocate. In this case, there really are no reverves to 810 * use. This situation is indicated if chg != 0. 811 */ 812 if (chg) 813 return false; 814 else 815 return true; 816 } 817 818 /* 819 * Only the process that called mmap() has reserves for 820 * private mappings. 821 */ 822 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 823 return true; 824 825 return false; 826 } 827 828 static void enqueue_huge_page(struct hstate *h, struct page *page) 829 { 830 int nid = page_to_nid(page); 831 list_move(&page->lru, &h->hugepage_freelists[nid]); 832 h->free_huge_pages++; 833 h->free_huge_pages_node[nid]++; 834 } 835 836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 837 { 838 struct page *page; 839 840 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 841 if (!is_migrate_isolate_page(page)) 842 break; 843 /* 844 * if 'non-isolated free hugepage' not found on the list, 845 * the allocation fails. 846 */ 847 if (&h->hugepage_freelists[nid] == &page->lru) 848 return NULL; 849 list_move(&page->lru, &h->hugepage_activelist); 850 set_page_refcounted(page); 851 h->free_huge_pages--; 852 h->free_huge_pages_node[nid]--; 853 return page; 854 } 855 856 /* Movability of hugepages depends on migration support. */ 857 static inline gfp_t htlb_alloc_mask(struct hstate *h) 858 { 859 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 860 return GFP_HIGHUSER_MOVABLE; 861 else 862 return GFP_HIGHUSER; 863 } 864 865 static struct page *dequeue_huge_page_vma(struct hstate *h, 866 struct vm_area_struct *vma, 867 unsigned long address, int avoid_reserve, 868 long chg) 869 { 870 struct page *page = NULL; 871 struct mempolicy *mpol; 872 nodemask_t *nodemask; 873 struct zonelist *zonelist; 874 struct zone *zone; 875 struct zoneref *z; 876 unsigned int cpuset_mems_cookie; 877 878 /* 879 * A child process with MAP_PRIVATE mappings created by their parent 880 * have no page reserves. This check ensures that reservations are 881 * not "stolen". The child may still get SIGKILLed 882 */ 883 if (!vma_has_reserves(vma, chg) && 884 h->free_huge_pages - h->resv_huge_pages == 0) 885 goto err; 886 887 /* If reserves cannot be used, ensure enough pages are in the pool */ 888 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 889 goto err; 890 891 retry_cpuset: 892 cpuset_mems_cookie = read_mems_allowed_begin(); 893 zonelist = huge_zonelist(vma, address, 894 htlb_alloc_mask(h), &mpol, &nodemask); 895 896 for_each_zone_zonelist_nodemask(zone, z, zonelist, 897 MAX_NR_ZONES - 1, nodemask) { 898 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 899 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 900 if (page) { 901 if (avoid_reserve) 902 break; 903 if (!vma_has_reserves(vma, chg)) 904 break; 905 906 SetPagePrivate(page); 907 h->resv_huge_pages--; 908 break; 909 } 910 } 911 } 912 913 mpol_cond_put(mpol); 914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 915 goto retry_cpuset; 916 return page; 917 918 err: 919 return NULL; 920 } 921 922 /* 923 * common helper functions for hstate_next_node_to_{alloc|free}. 924 * We may have allocated or freed a huge page based on a different 925 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 926 * be outside of *nodes_allowed. Ensure that we use an allowed 927 * node for alloc or free. 928 */ 929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 930 { 931 nid = next_node(nid, *nodes_allowed); 932 if (nid == MAX_NUMNODES) 933 nid = first_node(*nodes_allowed); 934 VM_BUG_ON(nid >= MAX_NUMNODES); 935 936 return nid; 937 } 938 939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 940 { 941 if (!node_isset(nid, *nodes_allowed)) 942 nid = next_node_allowed(nid, nodes_allowed); 943 return nid; 944 } 945 946 /* 947 * returns the previously saved node ["this node"] from which to 948 * allocate a persistent huge page for the pool and advance the 949 * next node from which to allocate, handling wrap at end of node 950 * mask. 951 */ 952 static int hstate_next_node_to_alloc(struct hstate *h, 953 nodemask_t *nodes_allowed) 954 { 955 int nid; 956 957 VM_BUG_ON(!nodes_allowed); 958 959 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 960 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 961 962 return nid; 963 } 964 965 /* 966 * helper for free_pool_huge_page() - return the previously saved 967 * node ["this node"] from which to free a huge page. Advance the 968 * next node id whether or not we find a free huge page to free so 969 * that the next attempt to free addresses the next node. 970 */ 971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 972 { 973 int nid; 974 975 VM_BUG_ON(!nodes_allowed); 976 977 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 978 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 979 980 return nid; 981 } 982 983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 984 for (nr_nodes = nodes_weight(*mask); \ 985 nr_nodes > 0 && \ 986 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 987 nr_nodes--) 988 989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 990 for (nr_nodes = nodes_weight(*mask); \ 991 nr_nodes > 0 && \ 992 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 993 nr_nodes--) 994 995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64) 996 static void destroy_compound_gigantic_page(struct page *page, 997 unsigned long order) 998 { 999 int i; 1000 int nr_pages = 1 << order; 1001 struct page *p = page + 1; 1002 1003 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1004 __ClearPageTail(p); 1005 set_page_refcounted(p); 1006 p->first_page = NULL; 1007 } 1008 1009 set_compound_order(page, 0); 1010 __ClearPageHead(page); 1011 } 1012 1013 static void free_gigantic_page(struct page *page, unsigned order) 1014 { 1015 free_contig_range(page_to_pfn(page), 1 << order); 1016 } 1017 1018 static int __alloc_gigantic_page(unsigned long start_pfn, 1019 unsigned long nr_pages) 1020 { 1021 unsigned long end_pfn = start_pfn + nr_pages; 1022 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1023 } 1024 1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn, 1026 unsigned long nr_pages) 1027 { 1028 unsigned long i, end_pfn = start_pfn + nr_pages; 1029 struct page *page; 1030 1031 for (i = start_pfn; i < end_pfn; i++) { 1032 if (!pfn_valid(i)) 1033 return false; 1034 1035 page = pfn_to_page(i); 1036 1037 if (PageReserved(page)) 1038 return false; 1039 1040 if (page_count(page) > 0) 1041 return false; 1042 1043 if (PageHuge(page)) 1044 return false; 1045 } 1046 1047 return true; 1048 } 1049 1050 static bool zone_spans_last_pfn(const struct zone *zone, 1051 unsigned long start_pfn, unsigned long nr_pages) 1052 { 1053 unsigned long last_pfn = start_pfn + nr_pages - 1; 1054 return zone_spans_pfn(zone, last_pfn); 1055 } 1056 1057 static struct page *alloc_gigantic_page(int nid, unsigned order) 1058 { 1059 unsigned long nr_pages = 1 << order; 1060 unsigned long ret, pfn, flags; 1061 struct zone *z; 1062 1063 z = NODE_DATA(nid)->node_zones; 1064 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1065 spin_lock_irqsave(&z->lock, flags); 1066 1067 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1068 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1069 if (pfn_range_valid_gigantic(pfn, nr_pages)) { 1070 /* 1071 * We release the zone lock here because 1072 * alloc_contig_range() will also lock the zone 1073 * at some point. If there's an allocation 1074 * spinning on this lock, it may win the race 1075 * and cause alloc_contig_range() to fail... 1076 */ 1077 spin_unlock_irqrestore(&z->lock, flags); 1078 ret = __alloc_gigantic_page(pfn, nr_pages); 1079 if (!ret) 1080 return pfn_to_page(pfn); 1081 spin_lock_irqsave(&z->lock, flags); 1082 } 1083 pfn += nr_pages; 1084 } 1085 1086 spin_unlock_irqrestore(&z->lock, flags); 1087 } 1088 1089 return NULL; 1090 } 1091 1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order); 1094 1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1096 { 1097 struct page *page; 1098 1099 page = alloc_gigantic_page(nid, huge_page_order(h)); 1100 if (page) { 1101 prep_compound_gigantic_page(page, huge_page_order(h)); 1102 prep_new_huge_page(h, page, nid); 1103 } 1104 1105 return page; 1106 } 1107 1108 static int alloc_fresh_gigantic_page(struct hstate *h, 1109 nodemask_t *nodes_allowed) 1110 { 1111 struct page *page = NULL; 1112 int nr_nodes, node; 1113 1114 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1115 page = alloc_fresh_gigantic_page_node(h, node); 1116 if (page) 1117 return 1; 1118 } 1119 1120 return 0; 1121 } 1122 1123 static inline bool gigantic_page_supported(void) { return true; } 1124 #else 1125 static inline bool gigantic_page_supported(void) { return false; } 1126 static inline void free_gigantic_page(struct page *page, unsigned order) { } 1127 static inline void destroy_compound_gigantic_page(struct page *page, 1128 unsigned long order) { } 1129 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1130 nodemask_t *nodes_allowed) { return 0; } 1131 #endif 1132 1133 static void update_and_free_page(struct hstate *h, struct page *page) 1134 { 1135 int i; 1136 1137 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1138 return; 1139 1140 h->nr_huge_pages--; 1141 h->nr_huge_pages_node[page_to_nid(page)]--; 1142 for (i = 0; i < pages_per_huge_page(h); i++) { 1143 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1144 1 << PG_referenced | 1 << PG_dirty | 1145 1 << PG_active | 1 << PG_private | 1146 1 << PG_writeback); 1147 } 1148 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1149 set_compound_page_dtor(page, NULL); 1150 set_page_refcounted(page); 1151 if (hstate_is_gigantic(h)) { 1152 destroy_compound_gigantic_page(page, huge_page_order(h)); 1153 free_gigantic_page(page, huge_page_order(h)); 1154 } else { 1155 __free_pages(page, huge_page_order(h)); 1156 } 1157 } 1158 1159 struct hstate *size_to_hstate(unsigned long size) 1160 { 1161 struct hstate *h; 1162 1163 for_each_hstate(h) { 1164 if (huge_page_size(h) == size) 1165 return h; 1166 } 1167 return NULL; 1168 } 1169 1170 /* 1171 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1172 * to hstate->hugepage_activelist.) 1173 * 1174 * This function can be called for tail pages, but never returns true for them. 1175 */ 1176 bool page_huge_active(struct page *page) 1177 { 1178 VM_BUG_ON_PAGE(!PageHuge(page), page); 1179 return PageHead(page) && PagePrivate(&page[1]); 1180 } 1181 1182 /* never called for tail page */ 1183 static void set_page_huge_active(struct page *page) 1184 { 1185 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1186 SetPagePrivate(&page[1]); 1187 } 1188 1189 static void clear_page_huge_active(struct page *page) 1190 { 1191 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1192 ClearPagePrivate(&page[1]); 1193 } 1194 1195 void free_huge_page(struct page *page) 1196 { 1197 /* 1198 * Can't pass hstate in here because it is called from the 1199 * compound page destructor. 1200 */ 1201 struct hstate *h = page_hstate(page); 1202 int nid = page_to_nid(page); 1203 struct hugepage_subpool *spool = 1204 (struct hugepage_subpool *)page_private(page); 1205 bool restore_reserve; 1206 1207 set_page_private(page, 0); 1208 page->mapping = NULL; 1209 BUG_ON(page_count(page)); 1210 BUG_ON(page_mapcount(page)); 1211 restore_reserve = PagePrivate(page); 1212 ClearPagePrivate(page); 1213 1214 /* 1215 * A return code of zero implies that the subpool will be under its 1216 * minimum size if the reservation is not restored after page is free. 1217 * Therefore, force restore_reserve operation. 1218 */ 1219 if (hugepage_subpool_put_pages(spool, 1) == 0) 1220 restore_reserve = true; 1221 1222 spin_lock(&hugetlb_lock); 1223 clear_page_huge_active(page); 1224 hugetlb_cgroup_uncharge_page(hstate_index(h), 1225 pages_per_huge_page(h), page); 1226 if (restore_reserve) 1227 h->resv_huge_pages++; 1228 1229 if (h->surplus_huge_pages_node[nid]) { 1230 /* remove the page from active list */ 1231 list_del(&page->lru); 1232 update_and_free_page(h, page); 1233 h->surplus_huge_pages--; 1234 h->surplus_huge_pages_node[nid]--; 1235 } else { 1236 arch_clear_hugepage_flags(page); 1237 enqueue_huge_page(h, page); 1238 } 1239 spin_unlock(&hugetlb_lock); 1240 } 1241 1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1243 { 1244 INIT_LIST_HEAD(&page->lru); 1245 set_compound_page_dtor(page, free_huge_page); 1246 spin_lock(&hugetlb_lock); 1247 set_hugetlb_cgroup(page, NULL); 1248 h->nr_huge_pages++; 1249 h->nr_huge_pages_node[nid]++; 1250 spin_unlock(&hugetlb_lock); 1251 put_page(page); /* free it into the hugepage allocator */ 1252 } 1253 1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 1255 { 1256 int i; 1257 int nr_pages = 1 << order; 1258 struct page *p = page + 1; 1259 1260 /* we rely on prep_new_huge_page to set the destructor */ 1261 set_compound_order(page, order); 1262 __SetPageHead(page); 1263 __ClearPageReserved(page); 1264 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1265 /* 1266 * For gigantic hugepages allocated through bootmem at 1267 * boot, it's safer to be consistent with the not-gigantic 1268 * hugepages and clear the PG_reserved bit from all tail pages 1269 * too. Otherwse drivers using get_user_pages() to access tail 1270 * pages may get the reference counting wrong if they see 1271 * PG_reserved set on a tail page (despite the head page not 1272 * having PG_reserved set). Enforcing this consistency between 1273 * head and tail pages allows drivers to optimize away a check 1274 * on the head page when they need know if put_page() is needed 1275 * after get_user_pages(). 1276 */ 1277 __ClearPageReserved(p); 1278 set_page_count(p, 0); 1279 p->first_page = page; 1280 /* Make sure p->first_page is always valid for PageTail() */ 1281 smp_wmb(); 1282 __SetPageTail(p); 1283 } 1284 } 1285 1286 /* 1287 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1288 * transparent huge pages. See the PageTransHuge() documentation for more 1289 * details. 1290 */ 1291 int PageHuge(struct page *page) 1292 { 1293 if (!PageCompound(page)) 1294 return 0; 1295 1296 page = compound_head(page); 1297 return get_compound_page_dtor(page) == free_huge_page; 1298 } 1299 EXPORT_SYMBOL_GPL(PageHuge); 1300 1301 /* 1302 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1303 * normal or transparent huge pages. 1304 */ 1305 int PageHeadHuge(struct page *page_head) 1306 { 1307 if (!PageHead(page_head)) 1308 return 0; 1309 1310 return get_compound_page_dtor(page_head) == free_huge_page; 1311 } 1312 1313 pgoff_t __basepage_index(struct page *page) 1314 { 1315 struct page *page_head = compound_head(page); 1316 pgoff_t index = page_index(page_head); 1317 unsigned long compound_idx; 1318 1319 if (!PageHuge(page_head)) 1320 return page_index(page); 1321 1322 if (compound_order(page_head) >= MAX_ORDER) 1323 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1324 else 1325 compound_idx = page - page_head; 1326 1327 return (index << compound_order(page_head)) + compound_idx; 1328 } 1329 1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1331 { 1332 struct page *page; 1333 1334 page = __alloc_pages_node(nid, 1335 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1336 __GFP_REPEAT|__GFP_NOWARN, 1337 huge_page_order(h)); 1338 if (page) { 1339 prep_new_huge_page(h, page, nid); 1340 } 1341 1342 return page; 1343 } 1344 1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1346 { 1347 struct page *page; 1348 int nr_nodes, node; 1349 int ret = 0; 1350 1351 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1352 page = alloc_fresh_huge_page_node(h, node); 1353 if (page) { 1354 ret = 1; 1355 break; 1356 } 1357 } 1358 1359 if (ret) 1360 count_vm_event(HTLB_BUDDY_PGALLOC); 1361 else 1362 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1363 1364 return ret; 1365 } 1366 1367 /* 1368 * Free huge page from pool from next node to free. 1369 * Attempt to keep persistent huge pages more or less 1370 * balanced over allowed nodes. 1371 * Called with hugetlb_lock locked. 1372 */ 1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1374 bool acct_surplus) 1375 { 1376 int nr_nodes, node; 1377 int ret = 0; 1378 1379 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1380 /* 1381 * If we're returning unused surplus pages, only examine 1382 * nodes with surplus pages. 1383 */ 1384 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1385 !list_empty(&h->hugepage_freelists[node])) { 1386 struct page *page = 1387 list_entry(h->hugepage_freelists[node].next, 1388 struct page, lru); 1389 list_del(&page->lru); 1390 h->free_huge_pages--; 1391 h->free_huge_pages_node[node]--; 1392 if (acct_surplus) { 1393 h->surplus_huge_pages--; 1394 h->surplus_huge_pages_node[node]--; 1395 } 1396 update_and_free_page(h, page); 1397 ret = 1; 1398 break; 1399 } 1400 } 1401 1402 return ret; 1403 } 1404 1405 /* 1406 * Dissolve a given free hugepage into free buddy pages. This function does 1407 * nothing for in-use (including surplus) hugepages. 1408 */ 1409 static void dissolve_free_huge_page(struct page *page) 1410 { 1411 spin_lock(&hugetlb_lock); 1412 if (PageHuge(page) && !page_count(page)) { 1413 struct hstate *h = page_hstate(page); 1414 int nid = page_to_nid(page); 1415 list_del(&page->lru); 1416 h->free_huge_pages--; 1417 h->free_huge_pages_node[nid]--; 1418 update_and_free_page(h, page); 1419 } 1420 spin_unlock(&hugetlb_lock); 1421 } 1422 1423 /* 1424 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1425 * make specified memory blocks removable from the system. 1426 * Note that start_pfn should aligned with (minimum) hugepage size. 1427 */ 1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1429 { 1430 unsigned long pfn; 1431 1432 if (!hugepages_supported()) 1433 return; 1434 1435 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1436 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1437 dissolve_free_huge_page(pfn_to_page(pfn)); 1438 } 1439 1440 /* 1441 * There are 3 ways this can get called: 1442 * 1. With vma+addr: we use the VMA's memory policy 1443 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1444 * page from any node, and let the buddy allocator itself figure 1445 * it out. 1446 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1447 * strictly from 'nid' 1448 */ 1449 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1450 struct vm_area_struct *vma, unsigned long addr, int nid) 1451 { 1452 int order = huge_page_order(h); 1453 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1454 unsigned int cpuset_mems_cookie; 1455 1456 /* 1457 * We need a VMA to get a memory policy. If we do not 1458 * have one, we use the 'nid' argument. 1459 * 1460 * The mempolicy stuff below has some non-inlined bits 1461 * and calls ->vm_ops. That makes it hard to optimize at 1462 * compile-time, even when NUMA is off and it does 1463 * nothing. This helps the compiler optimize it out. 1464 */ 1465 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1466 /* 1467 * If a specific node is requested, make sure to 1468 * get memory from there, but only when a node 1469 * is explicitly specified. 1470 */ 1471 if (nid != NUMA_NO_NODE) 1472 gfp |= __GFP_THISNODE; 1473 /* 1474 * Make sure to call something that can handle 1475 * nid=NUMA_NO_NODE 1476 */ 1477 return alloc_pages_node(nid, gfp, order); 1478 } 1479 1480 /* 1481 * OK, so we have a VMA. Fetch the mempolicy and try to 1482 * allocate a huge page with it. We will only reach this 1483 * when CONFIG_NUMA=y. 1484 */ 1485 do { 1486 struct page *page; 1487 struct mempolicy *mpol; 1488 struct zonelist *zl; 1489 nodemask_t *nodemask; 1490 1491 cpuset_mems_cookie = read_mems_allowed_begin(); 1492 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1493 mpol_cond_put(mpol); 1494 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1495 if (page) 1496 return page; 1497 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1498 1499 return NULL; 1500 } 1501 1502 /* 1503 * There are two ways to allocate a huge page: 1504 * 1. When you have a VMA and an address (like a fault) 1505 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1506 * 1507 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1508 * this case which signifies that the allocation should be done with 1509 * respect for the VMA's memory policy. 1510 * 1511 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1512 * implies that memory policies will not be taken in to account. 1513 */ 1514 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1515 struct vm_area_struct *vma, unsigned long addr, int nid) 1516 { 1517 struct page *page; 1518 unsigned int r_nid; 1519 1520 if (hstate_is_gigantic(h)) 1521 return NULL; 1522 1523 /* 1524 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1525 * This makes sure the caller is picking _one_ of the modes with which 1526 * we can call this function, not both. 1527 */ 1528 if (vma || (addr != -1)) { 1529 VM_WARN_ON_ONCE(addr == -1); 1530 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1531 } 1532 /* 1533 * Assume we will successfully allocate the surplus page to 1534 * prevent racing processes from causing the surplus to exceed 1535 * overcommit 1536 * 1537 * This however introduces a different race, where a process B 1538 * tries to grow the static hugepage pool while alloc_pages() is 1539 * called by process A. B will only examine the per-node 1540 * counters in determining if surplus huge pages can be 1541 * converted to normal huge pages in adjust_pool_surplus(). A 1542 * won't be able to increment the per-node counter, until the 1543 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1544 * no more huge pages can be converted from surplus to normal 1545 * state (and doesn't try to convert again). Thus, we have a 1546 * case where a surplus huge page exists, the pool is grown, and 1547 * the surplus huge page still exists after, even though it 1548 * should just have been converted to a normal huge page. This 1549 * does not leak memory, though, as the hugepage will be freed 1550 * once it is out of use. It also does not allow the counters to 1551 * go out of whack in adjust_pool_surplus() as we don't modify 1552 * the node values until we've gotten the hugepage and only the 1553 * per-node value is checked there. 1554 */ 1555 spin_lock(&hugetlb_lock); 1556 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1557 spin_unlock(&hugetlb_lock); 1558 return NULL; 1559 } else { 1560 h->nr_huge_pages++; 1561 h->surplus_huge_pages++; 1562 } 1563 spin_unlock(&hugetlb_lock); 1564 1565 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1566 1567 spin_lock(&hugetlb_lock); 1568 if (page) { 1569 INIT_LIST_HEAD(&page->lru); 1570 r_nid = page_to_nid(page); 1571 set_compound_page_dtor(page, free_huge_page); 1572 set_hugetlb_cgroup(page, NULL); 1573 /* 1574 * We incremented the global counters already 1575 */ 1576 h->nr_huge_pages_node[r_nid]++; 1577 h->surplus_huge_pages_node[r_nid]++; 1578 __count_vm_event(HTLB_BUDDY_PGALLOC); 1579 } else { 1580 h->nr_huge_pages--; 1581 h->surplus_huge_pages--; 1582 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1583 } 1584 spin_unlock(&hugetlb_lock); 1585 1586 return page; 1587 } 1588 1589 /* 1590 * Allocate a huge page from 'nid'. Note, 'nid' may be 1591 * NUMA_NO_NODE, which means that it may be allocated 1592 * anywhere. 1593 */ 1594 static 1595 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1596 { 1597 unsigned long addr = -1; 1598 1599 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1600 } 1601 1602 /* 1603 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1604 */ 1605 static 1606 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1607 struct vm_area_struct *vma, unsigned long addr) 1608 { 1609 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1610 } 1611 1612 /* 1613 * This allocation function is useful in the context where vma is irrelevant. 1614 * E.g. soft-offlining uses this function because it only cares physical 1615 * address of error page. 1616 */ 1617 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1618 { 1619 struct page *page = NULL; 1620 1621 spin_lock(&hugetlb_lock); 1622 if (h->free_huge_pages - h->resv_huge_pages > 0) 1623 page = dequeue_huge_page_node(h, nid); 1624 spin_unlock(&hugetlb_lock); 1625 1626 if (!page) 1627 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1628 1629 return page; 1630 } 1631 1632 /* 1633 * Increase the hugetlb pool such that it can accommodate a reservation 1634 * of size 'delta'. 1635 */ 1636 static int gather_surplus_pages(struct hstate *h, int delta) 1637 { 1638 struct list_head surplus_list; 1639 struct page *page, *tmp; 1640 int ret, i; 1641 int needed, allocated; 1642 bool alloc_ok = true; 1643 1644 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1645 if (needed <= 0) { 1646 h->resv_huge_pages += delta; 1647 return 0; 1648 } 1649 1650 allocated = 0; 1651 INIT_LIST_HEAD(&surplus_list); 1652 1653 ret = -ENOMEM; 1654 retry: 1655 spin_unlock(&hugetlb_lock); 1656 for (i = 0; i < needed; i++) { 1657 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1658 if (!page) { 1659 alloc_ok = false; 1660 break; 1661 } 1662 list_add(&page->lru, &surplus_list); 1663 } 1664 allocated += i; 1665 1666 /* 1667 * After retaking hugetlb_lock, we need to recalculate 'needed' 1668 * because either resv_huge_pages or free_huge_pages may have changed. 1669 */ 1670 spin_lock(&hugetlb_lock); 1671 needed = (h->resv_huge_pages + delta) - 1672 (h->free_huge_pages + allocated); 1673 if (needed > 0) { 1674 if (alloc_ok) 1675 goto retry; 1676 /* 1677 * We were not able to allocate enough pages to 1678 * satisfy the entire reservation so we free what 1679 * we've allocated so far. 1680 */ 1681 goto free; 1682 } 1683 /* 1684 * The surplus_list now contains _at_least_ the number of extra pages 1685 * needed to accommodate the reservation. Add the appropriate number 1686 * of pages to the hugetlb pool and free the extras back to the buddy 1687 * allocator. Commit the entire reservation here to prevent another 1688 * process from stealing the pages as they are added to the pool but 1689 * before they are reserved. 1690 */ 1691 needed += allocated; 1692 h->resv_huge_pages += delta; 1693 ret = 0; 1694 1695 /* Free the needed pages to the hugetlb pool */ 1696 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1697 if ((--needed) < 0) 1698 break; 1699 /* 1700 * This page is now managed by the hugetlb allocator and has 1701 * no users -- drop the buddy allocator's reference. 1702 */ 1703 put_page_testzero(page); 1704 VM_BUG_ON_PAGE(page_count(page), page); 1705 enqueue_huge_page(h, page); 1706 } 1707 free: 1708 spin_unlock(&hugetlb_lock); 1709 1710 /* Free unnecessary surplus pages to the buddy allocator */ 1711 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1712 put_page(page); 1713 spin_lock(&hugetlb_lock); 1714 1715 return ret; 1716 } 1717 1718 /* 1719 * When releasing a hugetlb pool reservation, any surplus pages that were 1720 * allocated to satisfy the reservation must be explicitly freed if they were 1721 * never used. 1722 * Called with hugetlb_lock held. 1723 */ 1724 static void return_unused_surplus_pages(struct hstate *h, 1725 unsigned long unused_resv_pages) 1726 { 1727 unsigned long nr_pages; 1728 1729 /* Uncommit the reservation */ 1730 h->resv_huge_pages -= unused_resv_pages; 1731 1732 /* Cannot return gigantic pages currently */ 1733 if (hstate_is_gigantic(h)) 1734 return; 1735 1736 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1737 1738 /* 1739 * We want to release as many surplus pages as possible, spread 1740 * evenly across all nodes with memory. Iterate across these nodes 1741 * until we can no longer free unreserved surplus pages. This occurs 1742 * when the nodes with surplus pages have no free pages. 1743 * free_pool_huge_page() will balance the the freed pages across the 1744 * on-line nodes with memory and will handle the hstate accounting. 1745 */ 1746 while (nr_pages--) { 1747 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1748 break; 1749 cond_resched_lock(&hugetlb_lock); 1750 } 1751 } 1752 1753 1754 /* 1755 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1756 * are used by the huge page allocation routines to manage reservations. 1757 * 1758 * vma_needs_reservation is called to determine if the huge page at addr 1759 * within the vma has an associated reservation. If a reservation is 1760 * needed, the value 1 is returned. The caller is then responsible for 1761 * managing the global reservation and subpool usage counts. After 1762 * the huge page has been allocated, vma_commit_reservation is called 1763 * to add the page to the reservation map. If the page allocation fails, 1764 * the reservation must be ended instead of committed. vma_end_reservation 1765 * is called in such cases. 1766 * 1767 * In the normal case, vma_commit_reservation returns the same value 1768 * as the preceding vma_needs_reservation call. The only time this 1769 * is not the case is if a reserve map was changed between calls. It 1770 * is the responsibility of the caller to notice the difference and 1771 * take appropriate action. 1772 */ 1773 enum vma_resv_mode { 1774 VMA_NEEDS_RESV, 1775 VMA_COMMIT_RESV, 1776 VMA_END_RESV, 1777 }; 1778 static long __vma_reservation_common(struct hstate *h, 1779 struct vm_area_struct *vma, unsigned long addr, 1780 enum vma_resv_mode mode) 1781 { 1782 struct resv_map *resv; 1783 pgoff_t idx; 1784 long ret; 1785 1786 resv = vma_resv_map(vma); 1787 if (!resv) 1788 return 1; 1789 1790 idx = vma_hugecache_offset(h, vma, addr); 1791 switch (mode) { 1792 case VMA_NEEDS_RESV: 1793 ret = region_chg(resv, idx, idx + 1); 1794 break; 1795 case VMA_COMMIT_RESV: 1796 ret = region_add(resv, idx, idx + 1); 1797 break; 1798 case VMA_END_RESV: 1799 region_abort(resv, idx, idx + 1); 1800 ret = 0; 1801 break; 1802 default: 1803 BUG(); 1804 } 1805 1806 if (vma->vm_flags & VM_MAYSHARE) 1807 return ret; 1808 else 1809 return ret < 0 ? ret : 0; 1810 } 1811 1812 static long vma_needs_reservation(struct hstate *h, 1813 struct vm_area_struct *vma, unsigned long addr) 1814 { 1815 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1816 } 1817 1818 static long vma_commit_reservation(struct hstate *h, 1819 struct vm_area_struct *vma, unsigned long addr) 1820 { 1821 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1822 } 1823 1824 static void vma_end_reservation(struct hstate *h, 1825 struct vm_area_struct *vma, unsigned long addr) 1826 { 1827 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1828 } 1829 1830 struct page *alloc_huge_page(struct vm_area_struct *vma, 1831 unsigned long addr, int avoid_reserve) 1832 { 1833 struct hugepage_subpool *spool = subpool_vma(vma); 1834 struct hstate *h = hstate_vma(vma); 1835 struct page *page; 1836 long map_chg, map_commit; 1837 long gbl_chg; 1838 int ret, idx; 1839 struct hugetlb_cgroup *h_cg; 1840 1841 idx = hstate_index(h); 1842 /* 1843 * Examine the region/reserve map to determine if the process 1844 * has a reservation for the page to be allocated. A return 1845 * code of zero indicates a reservation exists (no change). 1846 */ 1847 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1848 if (map_chg < 0) 1849 return ERR_PTR(-ENOMEM); 1850 1851 /* 1852 * Processes that did not create the mapping will have no 1853 * reserves as indicated by the region/reserve map. Check 1854 * that the allocation will not exceed the subpool limit. 1855 * Allocations for MAP_NORESERVE mappings also need to be 1856 * checked against any subpool limit. 1857 */ 1858 if (map_chg || avoid_reserve) { 1859 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1860 if (gbl_chg < 0) { 1861 vma_end_reservation(h, vma, addr); 1862 return ERR_PTR(-ENOSPC); 1863 } 1864 1865 /* 1866 * Even though there was no reservation in the region/reserve 1867 * map, there could be reservations associated with the 1868 * subpool that can be used. This would be indicated if the 1869 * return value of hugepage_subpool_get_pages() is zero. 1870 * However, if avoid_reserve is specified we still avoid even 1871 * the subpool reservations. 1872 */ 1873 if (avoid_reserve) 1874 gbl_chg = 1; 1875 } 1876 1877 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1878 if (ret) 1879 goto out_subpool_put; 1880 1881 spin_lock(&hugetlb_lock); 1882 /* 1883 * glb_chg is passed to indicate whether or not a page must be taken 1884 * from the global free pool (global change). gbl_chg == 0 indicates 1885 * a reservation exists for the allocation. 1886 */ 1887 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1888 if (!page) { 1889 spin_unlock(&hugetlb_lock); 1890 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 1891 if (!page) 1892 goto out_uncharge_cgroup; 1893 1894 spin_lock(&hugetlb_lock); 1895 list_move(&page->lru, &h->hugepage_activelist); 1896 /* Fall through */ 1897 } 1898 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1899 spin_unlock(&hugetlb_lock); 1900 1901 set_page_private(page, (unsigned long)spool); 1902 1903 map_commit = vma_commit_reservation(h, vma, addr); 1904 if (unlikely(map_chg > map_commit)) { 1905 /* 1906 * The page was added to the reservation map between 1907 * vma_needs_reservation and vma_commit_reservation. 1908 * This indicates a race with hugetlb_reserve_pages. 1909 * Adjust for the subpool count incremented above AND 1910 * in hugetlb_reserve_pages for the same page. Also, 1911 * the reservation count added in hugetlb_reserve_pages 1912 * no longer applies. 1913 */ 1914 long rsv_adjust; 1915 1916 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1917 hugetlb_acct_memory(h, -rsv_adjust); 1918 } 1919 return page; 1920 1921 out_uncharge_cgroup: 1922 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1923 out_subpool_put: 1924 if (map_chg || avoid_reserve) 1925 hugepage_subpool_put_pages(spool, 1); 1926 vma_end_reservation(h, vma, addr); 1927 return ERR_PTR(-ENOSPC); 1928 } 1929 1930 /* 1931 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1932 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1933 * where no ERR_VALUE is expected to be returned. 1934 */ 1935 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1936 unsigned long addr, int avoid_reserve) 1937 { 1938 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1939 if (IS_ERR(page)) 1940 page = NULL; 1941 return page; 1942 } 1943 1944 int __weak alloc_bootmem_huge_page(struct hstate *h) 1945 { 1946 struct huge_bootmem_page *m; 1947 int nr_nodes, node; 1948 1949 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1950 void *addr; 1951 1952 addr = memblock_virt_alloc_try_nid_nopanic( 1953 huge_page_size(h), huge_page_size(h), 1954 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1955 if (addr) { 1956 /* 1957 * Use the beginning of the huge page to store the 1958 * huge_bootmem_page struct (until gather_bootmem 1959 * puts them into the mem_map). 1960 */ 1961 m = addr; 1962 goto found; 1963 } 1964 } 1965 return 0; 1966 1967 found: 1968 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 1969 /* Put them into a private list first because mem_map is not up yet */ 1970 list_add(&m->list, &huge_boot_pages); 1971 m->hstate = h; 1972 return 1; 1973 } 1974 1975 static void __init prep_compound_huge_page(struct page *page, int order) 1976 { 1977 if (unlikely(order > (MAX_ORDER - 1))) 1978 prep_compound_gigantic_page(page, order); 1979 else 1980 prep_compound_page(page, order); 1981 } 1982 1983 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1984 static void __init gather_bootmem_prealloc(void) 1985 { 1986 struct huge_bootmem_page *m; 1987 1988 list_for_each_entry(m, &huge_boot_pages, list) { 1989 struct hstate *h = m->hstate; 1990 struct page *page; 1991 1992 #ifdef CONFIG_HIGHMEM 1993 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1994 memblock_free_late(__pa(m), 1995 sizeof(struct huge_bootmem_page)); 1996 #else 1997 page = virt_to_page(m); 1998 #endif 1999 WARN_ON(page_count(page) != 1); 2000 prep_compound_huge_page(page, h->order); 2001 WARN_ON(PageReserved(page)); 2002 prep_new_huge_page(h, page, page_to_nid(page)); 2003 /* 2004 * If we had gigantic hugepages allocated at boot time, we need 2005 * to restore the 'stolen' pages to totalram_pages in order to 2006 * fix confusing memory reports from free(1) and another 2007 * side-effects, like CommitLimit going negative. 2008 */ 2009 if (hstate_is_gigantic(h)) 2010 adjust_managed_page_count(page, 1 << h->order); 2011 } 2012 } 2013 2014 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2015 { 2016 unsigned long i; 2017 2018 for (i = 0; i < h->max_huge_pages; ++i) { 2019 if (hstate_is_gigantic(h)) { 2020 if (!alloc_bootmem_huge_page(h)) 2021 break; 2022 } else if (!alloc_fresh_huge_page(h, 2023 &node_states[N_MEMORY])) 2024 break; 2025 } 2026 h->max_huge_pages = i; 2027 } 2028 2029 static void __init hugetlb_init_hstates(void) 2030 { 2031 struct hstate *h; 2032 2033 for_each_hstate(h) { 2034 if (minimum_order > huge_page_order(h)) 2035 minimum_order = huge_page_order(h); 2036 2037 /* oversize hugepages were init'ed in early boot */ 2038 if (!hstate_is_gigantic(h)) 2039 hugetlb_hstate_alloc_pages(h); 2040 } 2041 VM_BUG_ON(minimum_order == UINT_MAX); 2042 } 2043 2044 static char * __init memfmt(char *buf, unsigned long n) 2045 { 2046 if (n >= (1UL << 30)) 2047 sprintf(buf, "%lu GB", n >> 30); 2048 else if (n >= (1UL << 20)) 2049 sprintf(buf, "%lu MB", n >> 20); 2050 else 2051 sprintf(buf, "%lu KB", n >> 10); 2052 return buf; 2053 } 2054 2055 static void __init report_hugepages(void) 2056 { 2057 struct hstate *h; 2058 2059 for_each_hstate(h) { 2060 char buf[32]; 2061 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2062 memfmt(buf, huge_page_size(h)), 2063 h->free_huge_pages); 2064 } 2065 } 2066 2067 #ifdef CONFIG_HIGHMEM 2068 static void try_to_free_low(struct hstate *h, unsigned long count, 2069 nodemask_t *nodes_allowed) 2070 { 2071 int i; 2072 2073 if (hstate_is_gigantic(h)) 2074 return; 2075 2076 for_each_node_mask(i, *nodes_allowed) { 2077 struct page *page, *next; 2078 struct list_head *freel = &h->hugepage_freelists[i]; 2079 list_for_each_entry_safe(page, next, freel, lru) { 2080 if (count >= h->nr_huge_pages) 2081 return; 2082 if (PageHighMem(page)) 2083 continue; 2084 list_del(&page->lru); 2085 update_and_free_page(h, page); 2086 h->free_huge_pages--; 2087 h->free_huge_pages_node[page_to_nid(page)]--; 2088 } 2089 } 2090 } 2091 #else 2092 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2093 nodemask_t *nodes_allowed) 2094 { 2095 } 2096 #endif 2097 2098 /* 2099 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2100 * balanced by operating on them in a round-robin fashion. 2101 * Returns 1 if an adjustment was made. 2102 */ 2103 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2104 int delta) 2105 { 2106 int nr_nodes, node; 2107 2108 VM_BUG_ON(delta != -1 && delta != 1); 2109 2110 if (delta < 0) { 2111 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2112 if (h->surplus_huge_pages_node[node]) 2113 goto found; 2114 } 2115 } else { 2116 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2117 if (h->surplus_huge_pages_node[node] < 2118 h->nr_huge_pages_node[node]) 2119 goto found; 2120 } 2121 } 2122 return 0; 2123 2124 found: 2125 h->surplus_huge_pages += delta; 2126 h->surplus_huge_pages_node[node] += delta; 2127 return 1; 2128 } 2129 2130 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2131 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2132 nodemask_t *nodes_allowed) 2133 { 2134 unsigned long min_count, ret; 2135 2136 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2137 return h->max_huge_pages; 2138 2139 /* 2140 * Increase the pool size 2141 * First take pages out of surplus state. Then make up the 2142 * remaining difference by allocating fresh huge pages. 2143 * 2144 * We might race with alloc_buddy_huge_page() here and be unable 2145 * to convert a surplus huge page to a normal huge page. That is 2146 * not critical, though, it just means the overall size of the 2147 * pool might be one hugepage larger than it needs to be, but 2148 * within all the constraints specified by the sysctls. 2149 */ 2150 spin_lock(&hugetlb_lock); 2151 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2152 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2153 break; 2154 } 2155 2156 while (count > persistent_huge_pages(h)) { 2157 /* 2158 * If this allocation races such that we no longer need the 2159 * page, free_huge_page will handle it by freeing the page 2160 * and reducing the surplus. 2161 */ 2162 spin_unlock(&hugetlb_lock); 2163 if (hstate_is_gigantic(h)) 2164 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2165 else 2166 ret = alloc_fresh_huge_page(h, nodes_allowed); 2167 spin_lock(&hugetlb_lock); 2168 if (!ret) 2169 goto out; 2170 2171 /* Bail for signals. Probably ctrl-c from user */ 2172 if (signal_pending(current)) 2173 goto out; 2174 } 2175 2176 /* 2177 * Decrease the pool size 2178 * First return free pages to the buddy allocator (being careful 2179 * to keep enough around to satisfy reservations). Then place 2180 * pages into surplus state as needed so the pool will shrink 2181 * to the desired size as pages become free. 2182 * 2183 * By placing pages into the surplus state independent of the 2184 * overcommit value, we are allowing the surplus pool size to 2185 * exceed overcommit. There are few sane options here. Since 2186 * alloc_buddy_huge_page() is checking the global counter, 2187 * though, we'll note that we're not allowed to exceed surplus 2188 * and won't grow the pool anywhere else. Not until one of the 2189 * sysctls are changed, or the surplus pages go out of use. 2190 */ 2191 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2192 min_count = max(count, min_count); 2193 try_to_free_low(h, min_count, nodes_allowed); 2194 while (min_count < persistent_huge_pages(h)) { 2195 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2196 break; 2197 cond_resched_lock(&hugetlb_lock); 2198 } 2199 while (count < persistent_huge_pages(h)) { 2200 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2201 break; 2202 } 2203 out: 2204 ret = persistent_huge_pages(h); 2205 spin_unlock(&hugetlb_lock); 2206 return ret; 2207 } 2208 2209 #define HSTATE_ATTR_RO(_name) \ 2210 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2211 2212 #define HSTATE_ATTR(_name) \ 2213 static struct kobj_attribute _name##_attr = \ 2214 __ATTR(_name, 0644, _name##_show, _name##_store) 2215 2216 static struct kobject *hugepages_kobj; 2217 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2218 2219 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2220 2221 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2222 { 2223 int i; 2224 2225 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2226 if (hstate_kobjs[i] == kobj) { 2227 if (nidp) 2228 *nidp = NUMA_NO_NODE; 2229 return &hstates[i]; 2230 } 2231 2232 return kobj_to_node_hstate(kobj, nidp); 2233 } 2234 2235 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2236 struct kobj_attribute *attr, char *buf) 2237 { 2238 struct hstate *h; 2239 unsigned long nr_huge_pages; 2240 int nid; 2241 2242 h = kobj_to_hstate(kobj, &nid); 2243 if (nid == NUMA_NO_NODE) 2244 nr_huge_pages = h->nr_huge_pages; 2245 else 2246 nr_huge_pages = h->nr_huge_pages_node[nid]; 2247 2248 return sprintf(buf, "%lu\n", nr_huge_pages); 2249 } 2250 2251 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2252 struct hstate *h, int nid, 2253 unsigned long count, size_t len) 2254 { 2255 int err; 2256 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2257 2258 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2259 err = -EINVAL; 2260 goto out; 2261 } 2262 2263 if (nid == NUMA_NO_NODE) { 2264 /* 2265 * global hstate attribute 2266 */ 2267 if (!(obey_mempolicy && 2268 init_nodemask_of_mempolicy(nodes_allowed))) { 2269 NODEMASK_FREE(nodes_allowed); 2270 nodes_allowed = &node_states[N_MEMORY]; 2271 } 2272 } else if (nodes_allowed) { 2273 /* 2274 * per node hstate attribute: adjust count to global, 2275 * but restrict alloc/free to the specified node. 2276 */ 2277 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2278 init_nodemask_of_node(nodes_allowed, nid); 2279 } else 2280 nodes_allowed = &node_states[N_MEMORY]; 2281 2282 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2283 2284 if (nodes_allowed != &node_states[N_MEMORY]) 2285 NODEMASK_FREE(nodes_allowed); 2286 2287 return len; 2288 out: 2289 NODEMASK_FREE(nodes_allowed); 2290 return err; 2291 } 2292 2293 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2294 struct kobject *kobj, const char *buf, 2295 size_t len) 2296 { 2297 struct hstate *h; 2298 unsigned long count; 2299 int nid; 2300 int err; 2301 2302 err = kstrtoul(buf, 10, &count); 2303 if (err) 2304 return err; 2305 2306 h = kobj_to_hstate(kobj, &nid); 2307 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2308 } 2309 2310 static ssize_t nr_hugepages_show(struct kobject *kobj, 2311 struct kobj_attribute *attr, char *buf) 2312 { 2313 return nr_hugepages_show_common(kobj, attr, buf); 2314 } 2315 2316 static ssize_t nr_hugepages_store(struct kobject *kobj, 2317 struct kobj_attribute *attr, const char *buf, size_t len) 2318 { 2319 return nr_hugepages_store_common(false, kobj, buf, len); 2320 } 2321 HSTATE_ATTR(nr_hugepages); 2322 2323 #ifdef CONFIG_NUMA 2324 2325 /* 2326 * hstate attribute for optionally mempolicy-based constraint on persistent 2327 * huge page alloc/free. 2328 */ 2329 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2330 struct kobj_attribute *attr, char *buf) 2331 { 2332 return nr_hugepages_show_common(kobj, attr, buf); 2333 } 2334 2335 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2336 struct kobj_attribute *attr, const char *buf, size_t len) 2337 { 2338 return nr_hugepages_store_common(true, kobj, buf, len); 2339 } 2340 HSTATE_ATTR(nr_hugepages_mempolicy); 2341 #endif 2342 2343 2344 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2345 struct kobj_attribute *attr, char *buf) 2346 { 2347 struct hstate *h = kobj_to_hstate(kobj, NULL); 2348 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2349 } 2350 2351 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2352 struct kobj_attribute *attr, const char *buf, size_t count) 2353 { 2354 int err; 2355 unsigned long input; 2356 struct hstate *h = kobj_to_hstate(kobj, NULL); 2357 2358 if (hstate_is_gigantic(h)) 2359 return -EINVAL; 2360 2361 err = kstrtoul(buf, 10, &input); 2362 if (err) 2363 return err; 2364 2365 spin_lock(&hugetlb_lock); 2366 h->nr_overcommit_huge_pages = input; 2367 spin_unlock(&hugetlb_lock); 2368 2369 return count; 2370 } 2371 HSTATE_ATTR(nr_overcommit_hugepages); 2372 2373 static ssize_t free_hugepages_show(struct kobject *kobj, 2374 struct kobj_attribute *attr, char *buf) 2375 { 2376 struct hstate *h; 2377 unsigned long free_huge_pages; 2378 int nid; 2379 2380 h = kobj_to_hstate(kobj, &nid); 2381 if (nid == NUMA_NO_NODE) 2382 free_huge_pages = h->free_huge_pages; 2383 else 2384 free_huge_pages = h->free_huge_pages_node[nid]; 2385 2386 return sprintf(buf, "%lu\n", free_huge_pages); 2387 } 2388 HSTATE_ATTR_RO(free_hugepages); 2389 2390 static ssize_t resv_hugepages_show(struct kobject *kobj, 2391 struct kobj_attribute *attr, char *buf) 2392 { 2393 struct hstate *h = kobj_to_hstate(kobj, NULL); 2394 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2395 } 2396 HSTATE_ATTR_RO(resv_hugepages); 2397 2398 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2399 struct kobj_attribute *attr, char *buf) 2400 { 2401 struct hstate *h; 2402 unsigned long surplus_huge_pages; 2403 int nid; 2404 2405 h = kobj_to_hstate(kobj, &nid); 2406 if (nid == NUMA_NO_NODE) 2407 surplus_huge_pages = h->surplus_huge_pages; 2408 else 2409 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2410 2411 return sprintf(buf, "%lu\n", surplus_huge_pages); 2412 } 2413 HSTATE_ATTR_RO(surplus_hugepages); 2414 2415 static struct attribute *hstate_attrs[] = { 2416 &nr_hugepages_attr.attr, 2417 &nr_overcommit_hugepages_attr.attr, 2418 &free_hugepages_attr.attr, 2419 &resv_hugepages_attr.attr, 2420 &surplus_hugepages_attr.attr, 2421 #ifdef CONFIG_NUMA 2422 &nr_hugepages_mempolicy_attr.attr, 2423 #endif 2424 NULL, 2425 }; 2426 2427 static struct attribute_group hstate_attr_group = { 2428 .attrs = hstate_attrs, 2429 }; 2430 2431 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2432 struct kobject **hstate_kobjs, 2433 struct attribute_group *hstate_attr_group) 2434 { 2435 int retval; 2436 int hi = hstate_index(h); 2437 2438 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2439 if (!hstate_kobjs[hi]) 2440 return -ENOMEM; 2441 2442 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2443 if (retval) 2444 kobject_put(hstate_kobjs[hi]); 2445 2446 return retval; 2447 } 2448 2449 static void __init hugetlb_sysfs_init(void) 2450 { 2451 struct hstate *h; 2452 int err; 2453 2454 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2455 if (!hugepages_kobj) 2456 return; 2457 2458 for_each_hstate(h) { 2459 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2460 hstate_kobjs, &hstate_attr_group); 2461 if (err) 2462 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2463 } 2464 } 2465 2466 #ifdef CONFIG_NUMA 2467 2468 /* 2469 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2470 * with node devices in node_devices[] using a parallel array. The array 2471 * index of a node device or _hstate == node id. 2472 * This is here to avoid any static dependency of the node device driver, in 2473 * the base kernel, on the hugetlb module. 2474 */ 2475 struct node_hstate { 2476 struct kobject *hugepages_kobj; 2477 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2478 }; 2479 static struct node_hstate node_hstates[MAX_NUMNODES]; 2480 2481 /* 2482 * A subset of global hstate attributes for node devices 2483 */ 2484 static struct attribute *per_node_hstate_attrs[] = { 2485 &nr_hugepages_attr.attr, 2486 &free_hugepages_attr.attr, 2487 &surplus_hugepages_attr.attr, 2488 NULL, 2489 }; 2490 2491 static struct attribute_group per_node_hstate_attr_group = { 2492 .attrs = per_node_hstate_attrs, 2493 }; 2494 2495 /* 2496 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2497 * Returns node id via non-NULL nidp. 2498 */ 2499 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2500 { 2501 int nid; 2502 2503 for (nid = 0; nid < nr_node_ids; nid++) { 2504 struct node_hstate *nhs = &node_hstates[nid]; 2505 int i; 2506 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2507 if (nhs->hstate_kobjs[i] == kobj) { 2508 if (nidp) 2509 *nidp = nid; 2510 return &hstates[i]; 2511 } 2512 } 2513 2514 BUG(); 2515 return NULL; 2516 } 2517 2518 /* 2519 * Unregister hstate attributes from a single node device. 2520 * No-op if no hstate attributes attached. 2521 */ 2522 static void hugetlb_unregister_node(struct node *node) 2523 { 2524 struct hstate *h; 2525 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2526 2527 if (!nhs->hugepages_kobj) 2528 return; /* no hstate attributes */ 2529 2530 for_each_hstate(h) { 2531 int idx = hstate_index(h); 2532 if (nhs->hstate_kobjs[idx]) { 2533 kobject_put(nhs->hstate_kobjs[idx]); 2534 nhs->hstate_kobjs[idx] = NULL; 2535 } 2536 } 2537 2538 kobject_put(nhs->hugepages_kobj); 2539 nhs->hugepages_kobj = NULL; 2540 } 2541 2542 /* 2543 * hugetlb module exit: unregister hstate attributes from node devices 2544 * that have them. 2545 */ 2546 static void hugetlb_unregister_all_nodes(void) 2547 { 2548 int nid; 2549 2550 /* 2551 * disable node device registrations. 2552 */ 2553 register_hugetlbfs_with_node(NULL, NULL); 2554 2555 /* 2556 * remove hstate attributes from any nodes that have them. 2557 */ 2558 for (nid = 0; nid < nr_node_ids; nid++) 2559 hugetlb_unregister_node(node_devices[nid]); 2560 } 2561 2562 /* 2563 * Register hstate attributes for a single node device. 2564 * No-op if attributes already registered. 2565 */ 2566 static void hugetlb_register_node(struct node *node) 2567 { 2568 struct hstate *h; 2569 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2570 int err; 2571 2572 if (nhs->hugepages_kobj) 2573 return; /* already allocated */ 2574 2575 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2576 &node->dev.kobj); 2577 if (!nhs->hugepages_kobj) 2578 return; 2579 2580 for_each_hstate(h) { 2581 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2582 nhs->hstate_kobjs, 2583 &per_node_hstate_attr_group); 2584 if (err) { 2585 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2586 h->name, node->dev.id); 2587 hugetlb_unregister_node(node); 2588 break; 2589 } 2590 } 2591 } 2592 2593 /* 2594 * hugetlb init time: register hstate attributes for all registered node 2595 * devices of nodes that have memory. All on-line nodes should have 2596 * registered their associated device by this time. 2597 */ 2598 static void __init hugetlb_register_all_nodes(void) 2599 { 2600 int nid; 2601 2602 for_each_node_state(nid, N_MEMORY) { 2603 struct node *node = node_devices[nid]; 2604 if (node->dev.id == nid) 2605 hugetlb_register_node(node); 2606 } 2607 2608 /* 2609 * Let the node device driver know we're here so it can 2610 * [un]register hstate attributes on node hotplug. 2611 */ 2612 register_hugetlbfs_with_node(hugetlb_register_node, 2613 hugetlb_unregister_node); 2614 } 2615 #else /* !CONFIG_NUMA */ 2616 2617 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2618 { 2619 BUG(); 2620 if (nidp) 2621 *nidp = -1; 2622 return NULL; 2623 } 2624 2625 static void hugetlb_unregister_all_nodes(void) { } 2626 2627 static void hugetlb_register_all_nodes(void) { } 2628 2629 #endif 2630 2631 static void __exit hugetlb_exit(void) 2632 { 2633 struct hstate *h; 2634 2635 hugetlb_unregister_all_nodes(); 2636 2637 for_each_hstate(h) { 2638 kobject_put(hstate_kobjs[hstate_index(h)]); 2639 } 2640 2641 kobject_put(hugepages_kobj); 2642 kfree(hugetlb_fault_mutex_table); 2643 } 2644 module_exit(hugetlb_exit); 2645 2646 static int __init hugetlb_init(void) 2647 { 2648 int i; 2649 2650 if (!hugepages_supported()) 2651 return 0; 2652 2653 if (!size_to_hstate(default_hstate_size)) { 2654 default_hstate_size = HPAGE_SIZE; 2655 if (!size_to_hstate(default_hstate_size)) 2656 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2657 } 2658 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2659 if (default_hstate_max_huge_pages) 2660 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2661 2662 hugetlb_init_hstates(); 2663 gather_bootmem_prealloc(); 2664 report_hugepages(); 2665 2666 hugetlb_sysfs_init(); 2667 hugetlb_register_all_nodes(); 2668 hugetlb_cgroup_file_init(); 2669 2670 #ifdef CONFIG_SMP 2671 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2672 #else 2673 num_fault_mutexes = 1; 2674 #endif 2675 hugetlb_fault_mutex_table = 2676 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2677 BUG_ON(!hugetlb_fault_mutex_table); 2678 2679 for (i = 0; i < num_fault_mutexes; i++) 2680 mutex_init(&hugetlb_fault_mutex_table[i]); 2681 return 0; 2682 } 2683 module_init(hugetlb_init); 2684 2685 /* Should be called on processing a hugepagesz=... option */ 2686 void __init hugetlb_add_hstate(unsigned order) 2687 { 2688 struct hstate *h; 2689 unsigned long i; 2690 2691 if (size_to_hstate(PAGE_SIZE << order)) { 2692 pr_warning("hugepagesz= specified twice, ignoring\n"); 2693 return; 2694 } 2695 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2696 BUG_ON(order == 0); 2697 h = &hstates[hugetlb_max_hstate++]; 2698 h->order = order; 2699 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2700 h->nr_huge_pages = 0; 2701 h->free_huge_pages = 0; 2702 for (i = 0; i < MAX_NUMNODES; ++i) 2703 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2704 INIT_LIST_HEAD(&h->hugepage_activelist); 2705 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2706 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2707 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2708 huge_page_size(h)/1024); 2709 2710 parsed_hstate = h; 2711 } 2712 2713 static int __init hugetlb_nrpages_setup(char *s) 2714 { 2715 unsigned long *mhp; 2716 static unsigned long *last_mhp; 2717 2718 /* 2719 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2720 * so this hugepages= parameter goes to the "default hstate". 2721 */ 2722 if (!hugetlb_max_hstate) 2723 mhp = &default_hstate_max_huge_pages; 2724 else 2725 mhp = &parsed_hstate->max_huge_pages; 2726 2727 if (mhp == last_mhp) { 2728 pr_warning("hugepages= specified twice without " 2729 "interleaving hugepagesz=, ignoring\n"); 2730 return 1; 2731 } 2732 2733 if (sscanf(s, "%lu", mhp) <= 0) 2734 *mhp = 0; 2735 2736 /* 2737 * Global state is always initialized later in hugetlb_init. 2738 * But we need to allocate >= MAX_ORDER hstates here early to still 2739 * use the bootmem allocator. 2740 */ 2741 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2742 hugetlb_hstate_alloc_pages(parsed_hstate); 2743 2744 last_mhp = mhp; 2745 2746 return 1; 2747 } 2748 __setup("hugepages=", hugetlb_nrpages_setup); 2749 2750 static int __init hugetlb_default_setup(char *s) 2751 { 2752 default_hstate_size = memparse(s, &s); 2753 return 1; 2754 } 2755 __setup("default_hugepagesz=", hugetlb_default_setup); 2756 2757 static unsigned int cpuset_mems_nr(unsigned int *array) 2758 { 2759 int node; 2760 unsigned int nr = 0; 2761 2762 for_each_node_mask(node, cpuset_current_mems_allowed) 2763 nr += array[node]; 2764 2765 return nr; 2766 } 2767 2768 #ifdef CONFIG_SYSCTL 2769 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2770 struct ctl_table *table, int write, 2771 void __user *buffer, size_t *length, loff_t *ppos) 2772 { 2773 struct hstate *h = &default_hstate; 2774 unsigned long tmp = h->max_huge_pages; 2775 int ret; 2776 2777 if (!hugepages_supported()) 2778 return -ENOTSUPP; 2779 2780 table->data = &tmp; 2781 table->maxlen = sizeof(unsigned long); 2782 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2783 if (ret) 2784 goto out; 2785 2786 if (write) 2787 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2788 NUMA_NO_NODE, tmp, *length); 2789 out: 2790 return ret; 2791 } 2792 2793 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2794 void __user *buffer, size_t *length, loff_t *ppos) 2795 { 2796 2797 return hugetlb_sysctl_handler_common(false, table, write, 2798 buffer, length, ppos); 2799 } 2800 2801 #ifdef CONFIG_NUMA 2802 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2803 void __user *buffer, size_t *length, loff_t *ppos) 2804 { 2805 return hugetlb_sysctl_handler_common(true, table, write, 2806 buffer, length, ppos); 2807 } 2808 #endif /* CONFIG_NUMA */ 2809 2810 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2811 void __user *buffer, 2812 size_t *length, loff_t *ppos) 2813 { 2814 struct hstate *h = &default_hstate; 2815 unsigned long tmp; 2816 int ret; 2817 2818 if (!hugepages_supported()) 2819 return -ENOTSUPP; 2820 2821 tmp = h->nr_overcommit_huge_pages; 2822 2823 if (write && hstate_is_gigantic(h)) 2824 return -EINVAL; 2825 2826 table->data = &tmp; 2827 table->maxlen = sizeof(unsigned long); 2828 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2829 if (ret) 2830 goto out; 2831 2832 if (write) { 2833 spin_lock(&hugetlb_lock); 2834 h->nr_overcommit_huge_pages = tmp; 2835 spin_unlock(&hugetlb_lock); 2836 } 2837 out: 2838 return ret; 2839 } 2840 2841 #endif /* CONFIG_SYSCTL */ 2842 2843 void hugetlb_report_meminfo(struct seq_file *m) 2844 { 2845 struct hstate *h = &default_hstate; 2846 if (!hugepages_supported()) 2847 return; 2848 seq_printf(m, 2849 "HugePages_Total: %5lu\n" 2850 "HugePages_Free: %5lu\n" 2851 "HugePages_Rsvd: %5lu\n" 2852 "HugePages_Surp: %5lu\n" 2853 "Hugepagesize: %8lu kB\n", 2854 h->nr_huge_pages, 2855 h->free_huge_pages, 2856 h->resv_huge_pages, 2857 h->surplus_huge_pages, 2858 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2859 } 2860 2861 int hugetlb_report_node_meminfo(int nid, char *buf) 2862 { 2863 struct hstate *h = &default_hstate; 2864 if (!hugepages_supported()) 2865 return 0; 2866 return sprintf(buf, 2867 "Node %d HugePages_Total: %5u\n" 2868 "Node %d HugePages_Free: %5u\n" 2869 "Node %d HugePages_Surp: %5u\n", 2870 nid, h->nr_huge_pages_node[nid], 2871 nid, h->free_huge_pages_node[nid], 2872 nid, h->surplus_huge_pages_node[nid]); 2873 } 2874 2875 void hugetlb_show_meminfo(void) 2876 { 2877 struct hstate *h; 2878 int nid; 2879 2880 if (!hugepages_supported()) 2881 return; 2882 2883 for_each_node_state(nid, N_MEMORY) 2884 for_each_hstate(h) 2885 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2886 nid, 2887 h->nr_huge_pages_node[nid], 2888 h->free_huge_pages_node[nid], 2889 h->surplus_huge_pages_node[nid], 2890 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2891 } 2892 2893 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 2894 { 2895 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 2896 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 2897 } 2898 2899 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2900 unsigned long hugetlb_total_pages(void) 2901 { 2902 struct hstate *h; 2903 unsigned long nr_total_pages = 0; 2904 2905 for_each_hstate(h) 2906 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2907 return nr_total_pages; 2908 } 2909 2910 static int hugetlb_acct_memory(struct hstate *h, long delta) 2911 { 2912 int ret = -ENOMEM; 2913 2914 spin_lock(&hugetlb_lock); 2915 /* 2916 * When cpuset is configured, it breaks the strict hugetlb page 2917 * reservation as the accounting is done on a global variable. Such 2918 * reservation is completely rubbish in the presence of cpuset because 2919 * the reservation is not checked against page availability for the 2920 * current cpuset. Application can still potentially OOM'ed by kernel 2921 * with lack of free htlb page in cpuset that the task is in. 2922 * Attempt to enforce strict accounting with cpuset is almost 2923 * impossible (or too ugly) because cpuset is too fluid that 2924 * task or memory node can be dynamically moved between cpusets. 2925 * 2926 * The change of semantics for shared hugetlb mapping with cpuset is 2927 * undesirable. However, in order to preserve some of the semantics, 2928 * we fall back to check against current free page availability as 2929 * a best attempt and hopefully to minimize the impact of changing 2930 * semantics that cpuset has. 2931 */ 2932 if (delta > 0) { 2933 if (gather_surplus_pages(h, delta) < 0) 2934 goto out; 2935 2936 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2937 return_unused_surplus_pages(h, delta); 2938 goto out; 2939 } 2940 } 2941 2942 ret = 0; 2943 if (delta < 0) 2944 return_unused_surplus_pages(h, (unsigned long) -delta); 2945 2946 out: 2947 spin_unlock(&hugetlb_lock); 2948 return ret; 2949 } 2950 2951 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2952 { 2953 struct resv_map *resv = vma_resv_map(vma); 2954 2955 /* 2956 * This new VMA should share its siblings reservation map if present. 2957 * The VMA will only ever have a valid reservation map pointer where 2958 * it is being copied for another still existing VMA. As that VMA 2959 * has a reference to the reservation map it cannot disappear until 2960 * after this open call completes. It is therefore safe to take a 2961 * new reference here without additional locking. 2962 */ 2963 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2964 kref_get(&resv->refs); 2965 } 2966 2967 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2968 { 2969 struct hstate *h = hstate_vma(vma); 2970 struct resv_map *resv = vma_resv_map(vma); 2971 struct hugepage_subpool *spool = subpool_vma(vma); 2972 unsigned long reserve, start, end; 2973 long gbl_reserve; 2974 2975 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2976 return; 2977 2978 start = vma_hugecache_offset(h, vma, vma->vm_start); 2979 end = vma_hugecache_offset(h, vma, vma->vm_end); 2980 2981 reserve = (end - start) - region_count(resv, start, end); 2982 2983 kref_put(&resv->refs, resv_map_release); 2984 2985 if (reserve) { 2986 /* 2987 * Decrement reserve counts. The global reserve count may be 2988 * adjusted if the subpool has a minimum size. 2989 */ 2990 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 2991 hugetlb_acct_memory(h, -gbl_reserve); 2992 } 2993 } 2994 2995 /* 2996 * We cannot handle pagefaults against hugetlb pages at all. They cause 2997 * handle_mm_fault() to try to instantiate regular-sized pages in the 2998 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2999 * this far. 3000 */ 3001 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3002 { 3003 BUG(); 3004 return 0; 3005 } 3006 3007 const struct vm_operations_struct hugetlb_vm_ops = { 3008 .fault = hugetlb_vm_op_fault, 3009 .open = hugetlb_vm_op_open, 3010 .close = hugetlb_vm_op_close, 3011 }; 3012 3013 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3014 int writable) 3015 { 3016 pte_t entry; 3017 3018 if (writable) { 3019 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3020 vma->vm_page_prot))); 3021 } else { 3022 entry = huge_pte_wrprotect(mk_huge_pte(page, 3023 vma->vm_page_prot)); 3024 } 3025 entry = pte_mkyoung(entry); 3026 entry = pte_mkhuge(entry); 3027 entry = arch_make_huge_pte(entry, vma, page, writable); 3028 3029 return entry; 3030 } 3031 3032 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3033 unsigned long address, pte_t *ptep) 3034 { 3035 pte_t entry; 3036 3037 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3038 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3039 update_mmu_cache(vma, address, ptep); 3040 } 3041 3042 static int is_hugetlb_entry_migration(pte_t pte) 3043 { 3044 swp_entry_t swp; 3045 3046 if (huge_pte_none(pte) || pte_present(pte)) 3047 return 0; 3048 swp = pte_to_swp_entry(pte); 3049 if (non_swap_entry(swp) && is_migration_entry(swp)) 3050 return 1; 3051 else 3052 return 0; 3053 } 3054 3055 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3056 { 3057 swp_entry_t swp; 3058 3059 if (huge_pte_none(pte) || pte_present(pte)) 3060 return 0; 3061 swp = pte_to_swp_entry(pte); 3062 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3063 return 1; 3064 else 3065 return 0; 3066 } 3067 3068 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3069 struct vm_area_struct *vma) 3070 { 3071 pte_t *src_pte, *dst_pte, entry; 3072 struct page *ptepage; 3073 unsigned long addr; 3074 int cow; 3075 struct hstate *h = hstate_vma(vma); 3076 unsigned long sz = huge_page_size(h); 3077 unsigned long mmun_start; /* For mmu_notifiers */ 3078 unsigned long mmun_end; /* For mmu_notifiers */ 3079 int ret = 0; 3080 3081 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3082 3083 mmun_start = vma->vm_start; 3084 mmun_end = vma->vm_end; 3085 if (cow) 3086 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3087 3088 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3089 spinlock_t *src_ptl, *dst_ptl; 3090 src_pte = huge_pte_offset(src, addr); 3091 if (!src_pte) 3092 continue; 3093 dst_pte = huge_pte_alloc(dst, addr, sz); 3094 if (!dst_pte) { 3095 ret = -ENOMEM; 3096 break; 3097 } 3098 3099 /* If the pagetables are shared don't copy or take references */ 3100 if (dst_pte == src_pte) 3101 continue; 3102 3103 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3104 src_ptl = huge_pte_lockptr(h, src, src_pte); 3105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3106 entry = huge_ptep_get(src_pte); 3107 if (huge_pte_none(entry)) { /* skip none entry */ 3108 ; 3109 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3110 is_hugetlb_entry_hwpoisoned(entry))) { 3111 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3112 3113 if (is_write_migration_entry(swp_entry) && cow) { 3114 /* 3115 * COW mappings require pages in both 3116 * parent and child to be set to read. 3117 */ 3118 make_migration_entry_read(&swp_entry); 3119 entry = swp_entry_to_pte(swp_entry); 3120 set_huge_pte_at(src, addr, src_pte, entry); 3121 } 3122 set_huge_pte_at(dst, addr, dst_pte, entry); 3123 } else { 3124 if (cow) { 3125 huge_ptep_set_wrprotect(src, addr, src_pte); 3126 mmu_notifier_invalidate_range(src, mmun_start, 3127 mmun_end); 3128 } 3129 entry = huge_ptep_get(src_pte); 3130 ptepage = pte_page(entry); 3131 get_page(ptepage); 3132 page_dup_rmap(ptepage); 3133 set_huge_pte_at(dst, addr, dst_pte, entry); 3134 hugetlb_count_add(pages_per_huge_page(h), dst); 3135 } 3136 spin_unlock(src_ptl); 3137 spin_unlock(dst_ptl); 3138 } 3139 3140 if (cow) 3141 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3142 3143 return ret; 3144 } 3145 3146 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3147 unsigned long start, unsigned long end, 3148 struct page *ref_page) 3149 { 3150 int force_flush = 0; 3151 struct mm_struct *mm = vma->vm_mm; 3152 unsigned long address; 3153 pte_t *ptep; 3154 pte_t pte; 3155 spinlock_t *ptl; 3156 struct page *page; 3157 struct hstate *h = hstate_vma(vma); 3158 unsigned long sz = huge_page_size(h); 3159 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3160 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3161 3162 WARN_ON(!is_vm_hugetlb_page(vma)); 3163 BUG_ON(start & ~huge_page_mask(h)); 3164 BUG_ON(end & ~huge_page_mask(h)); 3165 3166 tlb_start_vma(tlb, vma); 3167 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3168 address = start; 3169 again: 3170 for (; address < end; address += sz) { 3171 ptep = huge_pte_offset(mm, address); 3172 if (!ptep) 3173 continue; 3174 3175 ptl = huge_pte_lock(h, mm, ptep); 3176 if (huge_pmd_unshare(mm, &address, ptep)) 3177 goto unlock; 3178 3179 pte = huge_ptep_get(ptep); 3180 if (huge_pte_none(pte)) 3181 goto unlock; 3182 3183 /* 3184 * Migrating hugepage or HWPoisoned hugepage is already 3185 * unmapped and its refcount is dropped, so just clear pte here. 3186 */ 3187 if (unlikely(!pte_present(pte))) { 3188 huge_pte_clear(mm, address, ptep); 3189 goto unlock; 3190 } 3191 3192 page = pte_page(pte); 3193 /* 3194 * If a reference page is supplied, it is because a specific 3195 * page is being unmapped, not a range. Ensure the page we 3196 * are about to unmap is the actual page of interest. 3197 */ 3198 if (ref_page) { 3199 if (page != ref_page) 3200 goto unlock; 3201 3202 /* 3203 * Mark the VMA as having unmapped its page so that 3204 * future faults in this VMA will fail rather than 3205 * looking like data was lost 3206 */ 3207 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3208 } 3209 3210 pte = huge_ptep_get_and_clear(mm, address, ptep); 3211 tlb_remove_tlb_entry(tlb, ptep, address); 3212 if (huge_pte_dirty(pte)) 3213 set_page_dirty(page); 3214 3215 hugetlb_count_sub(pages_per_huge_page(h), mm); 3216 page_remove_rmap(page); 3217 force_flush = !__tlb_remove_page(tlb, page); 3218 if (force_flush) { 3219 address += sz; 3220 spin_unlock(ptl); 3221 break; 3222 } 3223 /* Bail out after unmapping reference page if supplied */ 3224 if (ref_page) { 3225 spin_unlock(ptl); 3226 break; 3227 } 3228 unlock: 3229 spin_unlock(ptl); 3230 } 3231 /* 3232 * mmu_gather ran out of room to batch pages, we break out of 3233 * the PTE lock to avoid doing the potential expensive TLB invalidate 3234 * and page-free while holding it. 3235 */ 3236 if (force_flush) { 3237 force_flush = 0; 3238 tlb_flush_mmu(tlb); 3239 if (address < end && !ref_page) 3240 goto again; 3241 } 3242 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3243 tlb_end_vma(tlb, vma); 3244 } 3245 3246 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3247 struct vm_area_struct *vma, unsigned long start, 3248 unsigned long end, struct page *ref_page) 3249 { 3250 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3251 3252 /* 3253 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3254 * test will fail on a vma being torn down, and not grab a page table 3255 * on its way out. We're lucky that the flag has such an appropriate 3256 * name, and can in fact be safely cleared here. We could clear it 3257 * before the __unmap_hugepage_range above, but all that's necessary 3258 * is to clear it before releasing the i_mmap_rwsem. This works 3259 * because in the context this is called, the VMA is about to be 3260 * destroyed and the i_mmap_rwsem is held. 3261 */ 3262 vma->vm_flags &= ~VM_MAYSHARE; 3263 } 3264 3265 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3266 unsigned long end, struct page *ref_page) 3267 { 3268 struct mm_struct *mm; 3269 struct mmu_gather tlb; 3270 3271 mm = vma->vm_mm; 3272 3273 tlb_gather_mmu(&tlb, mm, start, end); 3274 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3275 tlb_finish_mmu(&tlb, start, end); 3276 } 3277 3278 /* 3279 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3280 * mappping it owns the reserve page for. The intention is to unmap the page 3281 * from other VMAs and let the children be SIGKILLed if they are faulting the 3282 * same region. 3283 */ 3284 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3285 struct page *page, unsigned long address) 3286 { 3287 struct hstate *h = hstate_vma(vma); 3288 struct vm_area_struct *iter_vma; 3289 struct address_space *mapping; 3290 pgoff_t pgoff; 3291 3292 /* 3293 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3294 * from page cache lookup which is in HPAGE_SIZE units. 3295 */ 3296 address = address & huge_page_mask(h); 3297 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3298 vma->vm_pgoff; 3299 mapping = file_inode(vma->vm_file)->i_mapping; 3300 3301 /* 3302 * Take the mapping lock for the duration of the table walk. As 3303 * this mapping should be shared between all the VMAs, 3304 * __unmap_hugepage_range() is called as the lock is already held 3305 */ 3306 i_mmap_lock_write(mapping); 3307 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3308 /* Do not unmap the current VMA */ 3309 if (iter_vma == vma) 3310 continue; 3311 3312 /* 3313 * Shared VMAs have their own reserves and do not affect 3314 * MAP_PRIVATE accounting but it is possible that a shared 3315 * VMA is using the same page so check and skip such VMAs. 3316 */ 3317 if (iter_vma->vm_flags & VM_MAYSHARE) 3318 continue; 3319 3320 /* 3321 * Unmap the page from other VMAs without their own reserves. 3322 * They get marked to be SIGKILLed if they fault in these 3323 * areas. This is because a future no-page fault on this VMA 3324 * could insert a zeroed page instead of the data existing 3325 * from the time of fork. This would look like data corruption 3326 */ 3327 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3328 unmap_hugepage_range(iter_vma, address, 3329 address + huge_page_size(h), page); 3330 } 3331 i_mmap_unlock_write(mapping); 3332 } 3333 3334 /* 3335 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3336 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3337 * cannot race with other handlers or page migration. 3338 * Keep the pte_same checks anyway to make transition from the mutex easier. 3339 */ 3340 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3341 unsigned long address, pte_t *ptep, pte_t pte, 3342 struct page *pagecache_page, spinlock_t *ptl) 3343 { 3344 struct hstate *h = hstate_vma(vma); 3345 struct page *old_page, *new_page; 3346 int ret = 0, outside_reserve = 0; 3347 unsigned long mmun_start; /* For mmu_notifiers */ 3348 unsigned long mmun_end; /* For mmu_notifiers */ 3349 3350 old_page = pte_page(pte); 3351 3352 retry_avoidcopy: 3353 /* If no-one else is actually using this page, avoid the copy 3354 * and just make the page writable */ 3355 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3356 page_move_anon_rmap(old_page, vma, address); 3357 set_huge_ptep_writable(vma, address, ptep); 3358 return 0; 3359 } 3360 3361 /* 3362 * If the process that created a MAP_PRIVATE mapping is about to 3363 * perform a COW due to a shared page count, attempt to satisfy 3364 * the allocation without using the existing reserves. The pagecache 3365 * page is used to determine if the reserve at this address was 3366 * consumed or not. If reserves were used, a partial faulted mapping 3367 * at the time of fork() could consume its reserves on COW instead 3368 * of the full address range. 3369 */ 3370 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3371 old_page != pagecache_page) 3372 outside_reserve = 1; 3373 3374 page_cache_get(old_page); 3375 3376 /* 3377 * Drop page table lock as buddy allocator may be called. It will 3378 * be acquired again before returning to the caller, as expected. 3379 */ 3380 spin_unlock(ptl); 3381 new_page = alloc_huge_page(vma, address, outside_reserve); 3382 3383 if (IS_ERR(new_page)) { 3384 /* 3385 * If a process owning a MAP_PRIVATE mapping fails to COW, 3386 * it is due to references held by a child and an insufficient 3387 * huge page pool. To guarantee the original mappers 3388 * reliability, unmap the page from child processes. The child 3389 * may get SIGKILLed if it later faults. 3390 */ 3391 if (outside_reserve) { 3392 page_cache_release(old_page); 3393 BUG_ON(huge_pte_none(pte)); 3394 unmap_ref_private(mm, vma, old_page, address); 3395 BUG_ON(huge_pte_none(pte)); 3396 spin_lock(ptl); 3397 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3398 if (likely(ptep && 3399 pte_same(huge_ptep_get(ptep), pte))) 3400 goto retry_avoidcopy; 3401 /* 3402 * race occurs while re-acquiring page table 3403 * lock, and our job is done. 3404 */ 3405 return 0; 3406 } 3407 3408 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3409 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3410 goto out_release_old; 3411 } 3412 3413 /* 3414 * When the original hugepage is shared one, it does not have 3415 * anon_vma prepared. 3416 */ 3417 if (unlikely(anon_vma_prepare(vma))) { 3418 ret = VM_FAULT_OOM; 3419 goto out_release_all; 3420 } 3421 3422 copy_user_huge_page(new_page, old_page, address, vma, 3423 pages_per_huge_page(h)); 3424 __SetPageUptodate(new_page); 3425 set_page_huge_active(new_page); 3426 3427 mmun_start = address & huge_page_mask(h); 3428 mmun_end = mmun_start + huge_page_size(h); 3429 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3430 3431 /* 3432 * Retake the page table lock to check for racing updates 3433 * before the page tables are altered 3434 */ 3435 spin_lock(ptl); 3436 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3437 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3438 ClearPagePrivate(new_page); 3439 3440 /* Break COW */ 3441 huge_ptep_clear_flush(vma, address, ptep); 3442 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3443 set_huge_pte_at(mm, address, ptep, 3444 make_huge_pte(vma, new_page, 1)); 3445 page_remove_rmap(old_page); 3446 hugepage_add_new_anon_rmap(new_page, vma, address); 3447 /* Make the old page be freed below */ 3448 new_page = old_page; 3449 } 3450 spin_unlock(ptl); 3451 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3452 out_release_all: 3453 page_cache_release(new_page); 3454 out_release_old: 3455 page_cache_release(old_page); 3456 3457 spin_lock(ptl); /* Caller expects lock to be held */ 3458 return ret; 3459 } 3460 3461 /* Return the pagecache page at a given address within a VMA */ 3462 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3463 struct vm_area_struct *vma, unsigned long address) 3464 { 3465 struct address_space *mapping; 3466 pgoff_t idx; 3467 3468 mapping = vma->vm_file->f_mapping; 3469 idx = vma_hugecache_offset(h, vma, address); 3470 3471 return find_lock_page(mapping, idx); 3472 } 3473 3474 /* 3475 * Return whether there is a pagecache page to back given address within VMA. 3476 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3477 */ 3478 static bool hugetlbfs_pagecache_present(struct hstate *h, 3479 struct vm_area_struct *vma, unsigned long address) 3480 { 3481 struct address_space *mapping; 3482 pgoff_t idx; 3483 struct page *page; 3484 3485 mapping = vma->vm_file->f_mapping; 3486 idx = vma_hugecache_offset(h, vma, address); 3487 3488 page = find_get_page(mapping, idx); 3489 if (page) 3490 put_page(page); 3491 return page != NULL; 3492 } 3493 3494 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3495 pgoff_t idx) 3496 { 3497 struct inode *inode = mapping->host; 3498 struct hstate *h = hstate_inode(inode); 3499 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3500 3501 if (err) 3502 return err; 3503 ClearPagePrivate(page); 3504 3505 spin_lock(&inode->i_lock); 3506 inode->i_blocks += blocks_per_huge_page(h); 3507 spin_unlock(&inode->i_lock); 3508 return 0; 3509 } 3510 3511 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3512 struct address_space *mapping, pgoff_t idx, 3513 unsigned long address, pte_t *ptep, unsigned int flags) 3514 { 3515 struct hstate *h = hstate_vma(vma); 3516 int ret = VM_FAULT_SIGBUS; 3517 int anon_rmap = 0; 3518 unsigned long size; 3519 struct page *page; 3520 pte_t new_pte; 3521 spinlock_t *ptl; 3522 3523 /* 3524 * Currently, we are forced to kill the process in the event the 3525 * original mapper has unmapped pages from the child due to a failed 3526 * COW. Warn that such a situation has occurred as it may not be obvious 3527 */ 3528 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3529 pr_warning("PID %d killed due to inadequate hugepage pool\n", 3530 current->pid); 3531 return ret; 3532 } 3533 3534 /* 3535 * Use page lock to guard against racing truncation 3536 * before we get page_table_lock. 3537 */ 3538 retry: 3539 page = find_lock_page(mapping, idx); 3540 if (!page) { 3541 size = i_size_read(mapping->host) >> huge_page_shift(h); 3542 if (idx >= size) 3543 goto out; 3544 page = alloc_huge_page(vma, address, 0); 3545 if (IS_ERR(page)) { 3546 ret = PTR_ERR(page); 3547 if (ret == -ENOMEM) 3548 ret = VM_FAULT_OOM; 3549 else 3550 ret = VM_FAULT_SIGBUS; 3551 goto out; 3552 } 3553 clear_huge_page(page, address, pages_per_huge_page(h)); 3554 __SetPageUptodate(page); 3555 set_page_huge_active(page); 3556 3557 if (vma->vm_flags & VM_MAYSHARE) { 3558 int err = huge_add_to_page_cache(page, mapping, idx); 3559 if (err) { 3560 put_page(page); 3561 if (err == -EEXIST) 3562 goto retry; 3563 goto out; 3564 } 3565 } else { 3566 lock_page(page); 3567 if (unlikely(anon_vma_prepare(vma))) { 3568 ret = VM_FAULT_OOM; 3569 goto backout_unlocked; 3570 } 3571 anon_rmap = 1; 3572 } 3573 } else { 3574 /* 3575 * If memory error occurs between mmap() and fault, some process 3576 * don't have hwpoisoned swap entry for errored virtual address. 3577 * So we need to block hugepage fault by PG_hwpoison bit check. 3578 */ 3579 if (unlikely(PageHWPoison(page))) { 3580 ret = VM_FAULT_HWPOISON | 3581 VM_FAULT_SET_HINDEX(hstate_index(h)); 3582 goto backout_unlocked; 3583 } 3584 } 3585 3586 /* 3587 * If we are going to COW a private mapping later, we examine the 3588 * pending reservations for this page now. This will ensure that 3589 * any allocations necessary to record that reservation occur outside 3590 * the spinlock. 3591 */ 3592 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3593 if (vma_needs_reservation(h, vma, address) < 0) { 3594 ret = VM_FAULT_OOM; 3595 goto backout_unlocked; 3596 } 3597 /* Just decrements count, does not deallocate */ 3598 vma_end_reservation(h, vma, address); 3599 } 3600 3601 ptl = huge_pte_lockptr(h, mm, ptep); 3602 spin_lock(ptl); 3603 size = i_size_read(mapping->host) >> huge_page_shift(h); 3604 if (idx >= size) 3605 goto backout; 3606 3607 ret = 0; 3608 if (!huge_pte_none(huge_ptep_get(ptep))) 3609 goto backout; 3610 3611 if (anon_rmap) { 3612 ClearPagePrivate(page); 3613 hugepage_add_new_anon_rmap(page, vma, address); 3614 } else 3615 page_dup_rmap(page); 3616 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3617 && (vma->vm_flags & VM_SHARED))); 3618 set_huge_pte_at(mm, address, ptep, new_pte); 3619 3620 hugetlb_count_add(pages_per_huge_page(h), mm); 3621 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3622 /* Optimization, do the COW without a second fault */ 3623 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3624 } 3625 3626 spin_unlock(ptl); 3627 unlock_page(page); 3628 out: 3629 return ret; 3630 3631 backout: 3632 spin_unlock(ptl); 3633 backout_unlocked: 3634 unlock_page(page); 3635 put_page(page); 3636 goto out; 3637 } 3638 3639 #ifdef CONFIG_SMP 3640 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3641 struct vm_area_struct *vma, 3642 struct address_space *mapping, 3643 pgoff_t idx, unsigned long address) 3644 { 3645 unsigned long key[2]; 3646 u32 hash; 3647 3648 if (vma->vm_flags & VM_SHARED) { 3649 key[0] = (unsigned long) mapping; 3650 key[1] = idx; 3651 } else { 3652 key[0] = (unsigned long) mm; 3653 key[1] = address >> huge_page_shift(h); 3654 } 3655 3656 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3657 3658 return hash & (num_fault_mutexes - 1); 3659 } 3660 #else 3661 /* 3662 * For uniprocesor systems we always use a single mutex, so just 3663 * return 0 and avoid the hashing overhead. 3664 */ 3665 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3666 struct vm_area_struct *vma, 3667 struct address_space *mapping, 3668 pgoff_t idx, unsigned long address) 3669 { 3670 return 0; 3671 } 3672 #endif 3673 3674 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3675 unsigned long address, unsigned int flags) 3676 { 3677 pte_t *ptep, entry; 3678 spinlock_t *ptl; 3679 int ret; 3680 u32 hash; 3681 pgoff_t idx; 3682 struct page *page = NULL; 3683 struct page *pagecache_page = NULL; 3684 struct hstate *h = hstate_vma(vma); 3685 struct address_space *mapping; 3686 int need_wait_lock = 0; 3687 3688 address &= huge_page_mask(h); 3689 3690 ptep = huge_pte_offset(mm, address); 3691 if (ptep) { 3692 entry = huge_ptep_get(ptep); 3693 if (unlikely(is_hugetlb_entry_migration(entry))) { 3694 migration_entry_wait_huge(vma, mm, ptep); 3695 return 0; 3696 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3697 return VM_FAULT_HWPOISON_LARGE | 3698 VM_FAULT_SET_HINDEX(hstate_index(h)); 3699 } 3700 3701 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3702 if (!ptep) 3703 return VM_FAULT_OOM; 3704 3705 mapping = vma->vm_file->f_mapping; 3706 idx = vma_hugecache_offset(h, vma, address); 3707 3708 /* 3709 * Serialize hugepage allocation and instantiation, so that we don't 3710 * get spurious allocation failures if two CPUs race to instantiate 3711 * the same page in the page cache. 3712 */ 3713 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3714 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3715 3716 entry = huge_ptep_get(ptep); 3717 if (huge_pte_none(entry)) { 3718 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3719 goto out_mutex; 3720 } 3721 3722 ret = 0; 3723 3724 /* 3725 * entry could be a migration/hwpoison entry at this point, so this 3726 * check prevents the kernel from going below assuming that we have 3727 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3728 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3729 * handle it. 3730 */ 3731 if (!pte_present(entry)) 3732 goto out_mutex; 3733 3734 /* 3735 * If we are going to COW the mapping later, we examine the pending 3736 * reservations for this page now. This will ensure that any 3737 * allocations necessary to record that reservation occur outside the 3738 * spinlock. For private mappings, we also lookup the pagecache 3739 * page now as it is used to determine if a reservation has been 3740 * consumed. 3741 */ 3742 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3743 if (vma_needs_reservation(h, vma, address) < 0) { 3744 ret = VM_FAULT_OOM; 3745 goto out_mutex; 3746 } 3747 /* Just decrements count, does not deallocate */ 3748 vma_end_reservation(h, vma, address); 3749 3750 if (!(vma->vm_flags & VM_MAYSHARE)) 3751 pagecache_page = hugetlbfs_pagecache_page(h, 3752 vma, address); 3753 } 3754 3755 ptl = huge_pte_lock(h, mm, ptep); 3756 3757 /* Check for a racing update before calling hugetlb_cow */ 3758 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3759 goto out_ptl; 3760 3761 /* 3762 * hugetlb_cow() requires page locks of pte_page(entry) and 3763 * pagecache_page, so here we need take the former one 3764 * when page != pagecache_page or !pagecache_page. 3765 */ 3766 page = pte_page(entry); 3767 if (page != pagecache_page) 3768 if (!trylock_page(page)) { 3769 need_wait_lock = 1; 3770 goto out_ptl; 3771 } 3772 3773 get_page(page); 3774 3775 if (flags & FAULT_FLAG_WRITE) { 3776 if (!huge_pte_write(entry)) { 3777 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3778 pagecache_page, ptl); 3779 goto out_put_page; 3780 } 3781 entry = huge_pte_mkdirty(entry); 3782 } 3783 entry = pte_mkyoung(entry); 3784 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3785 flags & FAULT_FLAG_WRITE)) 3786 update_mmu_cache(vma, address, ptep); 3787 out_put_page: 3788 if (page != pagecache_page) 3789 unlock_page(page); 3790 put_page(page); 3791 out_ptl: 3792 spin_unlock(ptl); 3793 3794 if (pagecache_page) { 3795 unlock_page(pagecache_page); 3796 put_page(pagecache_page); 3797 } 3798 out_mutex: 3799 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3800 /* 3801 * Generally it's safe to hold refcount during waiting page lock. But 3802 * here we just wait to defer the next page fault to avoid busy loop and 3803 * the page is not used after unlocked before returning from the current 3804 * page fault. So we are safe from accessing freed page, even if we wait 3805 * here without taking refcount. 3806 */ 3807 if (need_wait_lock) 3808 wait_on_page_locked(page); 3809 return ret; 3810 } 3811 3812 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3813 struct page **pages, struct vm_area_struct **vmas, 3814 unsigned long *position, unsigned long *nr_pages, 3815 long i, unsigned int flags) 3816 { 3817 unsigned long pfn_offset; 3818 unsigned long vaddr = *position; 3819 unsigned long remainder = *nr_pages; 3820 struct hstate *h = hstate_vma(vma); 3821 3822 while (vaddr < vma->vm_end && remainder) { 3823 pte_t *pte; 3824 spinlock_t *ptl = NULL; 3825 int absent; 3826 struct page *page; 3827 3828 /* 3829 * If we have a pending SIGKILL, don't keep faulting pages and 3830 * potentially allocating memory. 3831 */ 3832 if (unlikely(fatal_signal_pending(current))) { 3833 remainder = 0; 3834 break; 3835 } 3836 3837 /* 3838 * Some archs (sparc64, sh*) have multiple pte_ts to 3839 * each hugepage. We have to make sure we get the 3840 * first, for the page indexing below to work. 3841 * 3842 * Note that page table lock is not held when pte is null. 3843 */ 3844 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3845 if (pte) 3846 ptl = huge_pte_lock(h, mm, pte); 3847 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3848 3849 /* 3850 * When coredumping, it suits get_dump_page if we just return 3851 * an error where there's an empty slot with no huge pagecache 3852 * to back it. This way, we avoid allocating a hugepage, and 3853 * the sparse dumpfile avoids allocating disk blocks, but its 3854 * huge holes still show up with zeroes where they need to be. 3855 */ 3856 if (absent && (flags & FOLL_DUMP) && 3857 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3858 if (pte) 3859 spin_unlock(ptl); 3860 remainder = 0; 3861 break; 3862 } 3863 3864 /* 3865 * We need call hugetlb_fault for both hugepages under migration 3866 * (in which case hugetlb_fault waits for the migration,) and 3867 * hwpoisoned hugepages (in which case we need to prevent the 3868 * caller from accessing to them.) In order to do this, we use 3869 * here is_swap_pte instead of is_hugetlb_entry_migration and 3870 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3871 * both cases, and because we can't follow correct pages 3872 * directly from any kind of swap entries. 3873 */ 3874 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3875 ((flags & FOLL_WRITE) && 3876 !huge_pte_write(huge_ptep_get(pte)))) { 3877 int ret; 3878 3879 if (pte) 3880 spin_unlock(ptl); 3881 ret = hugetlb_fault(mm, vma, vaddr, 3882 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3883 if (!(ret & VM_FAULT_ERROR)) 3884 continue; 3885 3886 remainder = 0; 3887 break; 3888 } 3889 3890 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3891 page = pte_page(huge_ptep_get(pte)); 3892 same_page: 3893 if (pages) { 3894 pages[i] = mem_map_offset(page, pfn_offset); 3895 get_page_foll(pages[i]); 3896 } 3897 3898 if (vmas) 3899 vmas[i] = vma; 3900 3901 vaddr += PAGE_SIZE; 3902 ++pfn_offset; 3903 --remainder; 3904 ++i; 3905 if (vaddr < vma->vm_end && remainder && 3906 pfn_offset < pages_per_huge_page(h)) { 3907 /* 3908 * We use pfn_offset to avoid touching the pageframes 3909 * of this compound page. 3910 */ 3911 goto same_page; 3912 } 3913 spin_unlock(ptl); 3914 } 3915 *nr_pages = remainder; 3916 *position = vaddr; 3917 3918 return i ? i : -EFAULT; 3919 } 3920 3921 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3922 unsigned long address, unsigned long end, pgprot_t newprot) 3923 { 3924 struct mm_struct *mm = vma->vm_mm; 3925 unsigned long start = address; 3926 pte_t *ptep; 3927 pte_t pte; 3928 struct hstate *h = hstate_vma(vma); 3929 unsigned long pages = 0; 3930 3931 BUG_ON(address >= end); 3932 flush_cache_range(vma, address, end); 3933 3934 mmu_notifier_invalidate_range_start(mm, start, end); 3935 i_mmap_lock_write(vma->vm_file->f_mapping); 3936 for (; address < end; address += huge_page_size(h)) { 3937 spinlock_t *ptl; 3938 ptep = huge_pte_offset(mm, address); 3939 if (!ptep) 3940 continue; 3941 ptl = huge_pte_lock(h, mm, ptep); 3942 if (huge_pmd_unshare(mm, &address, ptep)) { 3943 pages++; 3944 spin_unlock(ptl); 3945 continue; 3946 } 3947 pte = huge_ptep_get(ptep); 3948 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3949 spin_unlock(ptl); 3950 continue; 3951 } 3952 if (unlikely(is_hugetlb_entry_migration(pte))) { 3953 swp_entry_t entry = pte_to_swp_entry(pte); 3954 3955 if (is_write_migration_entry(entry)) { 3956 pte_t newpte; 3957 3958 make_migration_entry_read(&entry); 3959 newpte = swp_entry_to_pte(entry); 3960 set_huge_pte_at(mm, address, ptep, newpte); 3961 pages++; 3962 } 3963 spin_unlock(ptl); 3964 continue; 3965 } 3966 if (!huge_pte_none(pte)) { 3967 pte = huge_ptep_get_and_clear(mm, address, ptep); 3968 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3969 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3970 set_huge_pte_at(mm, address, ptep, pte); 3971 pages++; 3972 } 3973 spin_unlock(ptl); 3974 } 3975 /* 3976 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 3977 * may have cleared our pud entry and done put_page on the page table: 3978 * once we release i_mmap_rwsem, another task can do the final put_page 3979 * and that page table be reused and filled with junk. 3980 */ 3981 flush_tlb_range(vma, start, end); 3982 mmu_notifier_invalidate_range(mm, start, end); 3983 i_mmap_unlock_write(vma->vm_file->f_mapping); 3984 mmu_notifier_invalidate_range_end(mm, start, end); 3985 3986 return pages << h->order; 3987 } 3988 3989 int hugetlb_reserve_pages(struct inode *inode, 3990 long from, long to, 3991 struct vm_area_struct *vma, 3992 vm_flags_t vm_flags) 3993 { 3994 long ret, chg; 3995 struct hstate *h = hstate_inode(inode); 3996 struct hugepage_subpool *spool = subpool_inode(inode); 3997 struct resv_map *resv_map; 3998 long gbl_reserve; 3999 4000 /* 4001 * Only apply hugepage reservation if asked. At fault time, an 4002 * attempt will be made for VM_NORESERVE to allocate a page 4003 * without using reserves 4004 */ 4005 if (vm_flags & VM_NORESERVE) 4006 return 0; 4007 4008 /* 4009 * Shared mappings base their reservation on the number of pages that 4010 * are already allocated on behalf of the file. Private mappings need 4011 * to reserve the full area even if read-only as mprotect() may be 4012 * called to make the mapping read-write. Assume !vma is a shm mapping 4013 */ 4014 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4015 resv_map = inode_resv_map(inode); 4016 4017 chg = region_chg(resv_map, from, to); 4018 4019 } else { 4020 resv_map = resv_map_alloc(); 4021 if (!resv_map) 4022 return -ENOMEM; 4023 4024 chg = to - from; 4025 4026 set_vma_resv_map(vma, resv_map); 4027 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4028 } 4029 4030 if (chg < 0) { 4031 ret = chg; 4032 goto out_err; 4033 } 4034 4035 /* 4036 * There must be enough pages in the subpool for the mapping. If 4037 * the subpool has a minimum size, there may be some global 4038 * reservations already in place (gbl_reserve). 4039 */ 4040 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4041 if (gbl_reserve < 0) { 4042 ret = -ENOSPC; 4043 goto out_err; 4044 } 4045 4046 /* 4047 * Check enough hugepages are available for the reservation. 4048 * Hand the pages back to the subpool if there are not 4049 */ 4050 ret = hugetlb_acct_memory(h, gbl_reserve); 4051 if (ret < 0) { 4052 /* put back original number of pages, chg */ 4053 (void)hugepage_subpool_put_pages(spool, chg); 4054 goto out_err; 4055 } 4056 4057 /* 4058 * Account for the reservations made. Shared mappings record regions 4059 * that have reservations as they are shared by multiple VMAs. 4060 * When the last VMA disappears, the region map says how much 4061 * the reservation was and the page cache tells how much of 4062 * the reservation was consumed. Private mappings are per-VMA and 4063 * only the consumed reservations are tracked. When the VMA 4064 * disappears, the original reservation is the VMA size and the 4065 * consumed reservations are stored in the map. Hence, nothing 4066 * else has to be done for private mappings here 4067 */ 4068 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4069 long add = region_add(resv_map, from, to); 4070 4071 if (unlikely(chg > add)) { 4072 /* 4073 * pages in this range were added to the reserve 4074 * map between region_chg and region_add. This 4075 * indicates a race with alloc_huge_page. Adjust 4076 * the subpool and reserve counts modified above 4077 * based on the difference. 4078 */ 4079 long rsv_adjust; 4080 4081 rsv_adjust = hugepage_subpool_put_pages(spool, 4082 chg - add); 4083 hugetlb_acct_memory(h, -rsv_adjust); 4084 } 4085 } 4086 return 0; 4087 out_err: 4088 if (!vma || vma->vm_flags & VM_MAYSHARE) 4089 region_abort(resv_map, from, to); 4090 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4091 kref_put(&resv_map->refs, resv_map_release); 4092 return ret; 4093 } 4094 4095 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4096 long freed) 4097 { 4098 struct hstate *h = hstate_inode(inode); 4099 struct resv_map *resv_map = inode_resv_map(inode); 4100 long chg = 0; 4101 struct hugepage_subpool *spool = subpool_inode(inode); 4102 long gbl_reserve; 4103 4104 if (resv_map) { 4105 chg = region_del(resv_map, start, end); 4106 /* 4107 * region_del() can fail in the rare case where a region 4108 * must be split and another region descriptor can not be 4109 * allocated. If end == LONG_MAX, it will not fail. 4110 */ 4111 if (chg < 0) 4112 return chg; 4113 } 4114 4115 spin_lock(&inode->i_lock); 4116 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4117 spin_unlock(&inode->i_lock); 4118 4119 /* 4120 * If the subpool has a minimum size, the number of global 4121 * reservations to be released may be adjusted. 4122 */ 4123 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4124 hugetlb_acct_memory(h, -gbl_reserve); 4125 4126 return 0; 4127 } 4128 4129 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4130 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4131 struct vm_area_struct *vma, 4132 unsigned long addr, pgoff_t idx) 4133 { 4134 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4135 svma->vm_start; 4136 unsigned long sbase = saddr & PUD_MASK; 4137 unsigned long s_end = sbase + PUD_SIZE; 4138 4139 /* Allow segments to share if only one is marked locked */ 4140 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 4141 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 4142 4143 /* 4144 * match the virtual addresses, permission and the alignment of the 4145 * page table page. 4146 */ 4147 if (pmd_index(addr) != pmd_index(saddr) || 4148 vm_flags != svm_flags || 4149 sbase < svma->vm_start || svma->vm_end < s_end) 4150 return 0; 4151 4152 return saddr; 4153 } 4154 4155 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4156 { 4157 unsigned long base = addr & PUD_MASK; 4158 unsigned long end = base + PUD_SIZE; 4159 4160 /* 4161 * check on proper vm_flags and page table alignment 4162 */ 4163 if (vma->vm_flags & VM_MAYSHARE && 4164 vma->vm_start <= base && end <= vma->vm_end) 4165 return true; 4166 return false; 4167 } 4168 4169 /* 4170 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4171 * and returns the corresponding pte. While this is not necessary for the 4172 * !shared pmd case because we can allocate the pmd later as well, it makes the 4173 * code much cleaner. pmd allocation is essential for the shared case because 4174 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4175 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4176 * bad pmd for sharing. 4177 */ 4178 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4179 { 4180 struct vm_area_struct *vma = find_vma(mm, addr); 4181 struct address_space *mapping = vma->vm_file->f_mapping; 4182 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4183 vma->vm_pgoff; 4184 struct vm_area_struct *svma; 4185 unsigned long saddr; 4186 pte_t *spte = NULL; 4187 pte_t *pte; 4188 spinlock_t *ptl; 4189 4190 if (!vma_shareable(vma, addr)) 4191 return (pte_t *)pmd_alloc(mm, pud, addr); 4192 4193 i_mmap_lock_write(mapping); 4194 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4195 if (svma == vma) 4196 continue; 4197 4198 saddr = page_table_shareable(svma, vma, addr, idx); 4199 if (saddr) { 4200 spte = huge_pte_offset(svma->vm_mm, saddr); 4201 if (spte) { 4202 mm_inc_nr_pmds(mm); 4203 get_page(virt_to_page(spte)); 4204 break; 4205 } 4206 } 4207 } 4208 4209 if (!spte) 4210 goto out; 4211 4212 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4213 spin_lock(ptl); 4214 if (pud_none(*pud)) { 4215 pud_populate(mm, pud, 4216 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4217 } else { 4218 put_page(virt_to_page(spte)); 4219 mm_inc_nr_pmds(mm); 4220 } 4221 spin_unlock(ptl); 4222 out: 4223 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4224 i_mmap_unlock_write(mapping); 4225 return pte; 4226 } 4227 4228 /* 4229 * unmap huge page backed by shared pte. 4230 * 4231 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4232 * indicated by page_count > 1, unmap is achieved by clearing pud and 4233 * decrementing the ref count. If count == 1, the pte page is not shared. 4234 * 4235 * called with page table lock held. 4236 * 4237 * returns: 1 successfully unmapped a shared pte page 4238 * 0 the underlying pte page is not shared, or it is the last user 4239 */ 4240 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4241 { 4242 pgd_t *pgd = pgd_offset(mm, *addr); 4243 pud_t *pud = pud_offset(pgd, *addr); 4244 4245 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4246 if (page_count(virt_to_page(ptep)) == 1) 4247 return 0; 4248 4249 pud_clear(pud); 4250 put_page(virt_to_page(ptep)); 4251 mm_dec_nr_pmds(mm); 4252 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4253 return 1; 4254 } 4255 #define want_pmd_share() (1) 4256 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4257 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4258 { 4259 return NULL; 4260 } 4261 4262 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4263 { 4264 return 0; 4265 } 4266 #define want_pmd_share() (0) 4267 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4268 4269 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4270 pte_t *huge_pte_alloc(struct mm_struct *mm, 4271 unsigned long addr, unsigned long sz) 4272 { 4273 pgd_t *pgd; 4274 pud_t *pud; 4275 pte_t *pte = NULL; 4276 4277 pgd = pgd_offset(mm, addr); 4278 pud = pud_alloc(mm, pgd, addr); 4279 if (pud) { 4280 if (sz == PUD_SIZE) { 4281 pte = (pte_t *)pud; 4282 } else { 4283 BUG_ON(sz != PMD_SIZE); 4284 if (want_pmd_share() && pud_none(*pud)) 4285 pte = huge_pmd_share(mm, addr, pud); 4286 else 4287 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4288 } 4289 } 4290 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 4291 4292 return pte; 4293 } 4294 4295 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4296 { 4297 pgd_t *pgd; 4298 pud_t *pud; 4299 pmd_t *pmd = NULL; 4300 4301 pgd = pgd_offset(mm, addr); 4302 if (pgd_present(*pgd)) { 4303 pud = pud_offset(pgd, addr); 4304 if (pud_present(*pud)) { 4305 if (pud_huge(*pud)) 4306 return (pte_t *)pud; 4307 pmd = pmd_offset(pud, addr); 4308 } 4309 } 4310 return (pte_t *) pmd; 4311 } 4312 4313 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4314 4315 /* 4316 * These functions are overwritable if your architecture needs its own 4317 * behavior. 4318 */ 4319 struct page * __weak 4320 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4321 int write) 4322 { 4323 return ERR_PTR(-EINVAL); 4324 } 4325 4326 struct page * __weak 4327 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4328 pmd_t *pmd, int flags) 4329 { 4330 struct page *page = NULL; 4331 spinlock_t *ptl; 4332 retry: 4333 ptl = pmd_lockptr(mm, pmd); 4334 spin_lock(ptl); 4335 /* 4336 * make sure that the address range covered by this pmd is not 4337 * unmapped from other threads. 4338 */ 4339 if (!pmd_huge(*pmd)) 4340 goto out; 4341 if (pmd_present(*pmd)) { 4342 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4343 if (flags & FOLL_GET) 4344 get_page(page); 4345 } else { 4346 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4347 spin_unlock(ptl); 4348 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4349 goto retry; 4350 } 4351 /* 4352 * hwpoisoned entry is treated as no_page_table in 4353 * follow_page_mask(). 4354 */ 4355 } 4356 out: 4357 spin_unlock(ptl); 4358 return page; 4359 } 4360 4361 struct page * __weak 4362 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4363 pud_t *pud, int flags) 4364 { 4365 if (flags & FOLL_GET) 4366 return NULL; 4367 4368 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4369 } 4370 4371 #ifdef CONFIG_MEMORY_FAILURE 4372 4373 /* 4374 * This function is called from memory failure code. 4375 * Assume the caller holds page lock of the head page. 4376 */ 4377 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4378 { 4379 struct hstate *h = page_hstate(hpage); 4380 int nid = page_to_nid(hpage); 4381 int ret = -EBUSY; 4382 4383 spin_lock(&hugetlb_lock); 4384 /* 4385 * Just checking !page_huge_active is not enough, because that could be 4386 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4387 */ 4388 if (!page_huge_active(hpage) && !page_count(hpage)) { 4389 /* 4390 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4391 * but dangling hpage->lru can trigger list-debug warnings 4392 * (this happens when we call unpoison_memory() on it), 4393 * so let it point to itself with list_del_init(). 4394 */ 4395 list_del_init(&hpage->lru); 4396 set_page_refcounted(hpage); 4397 h->free_huge_pages--; 4398 h->free_huge_pages_node[nid]--; 4399 ret = 0; 4400 } 4401 spin_unlock(&hugetlb_lock); 4402 return ret; 4403 } 4404 #endif 4405 4406 bool isolate_huge_page(struct page *page, struct list_head *list) 4407 { 4408 bool ret = true; 4409 4410 VM_BUG_ON_PAGE(!PageHead(page), page); 4411 spin_lock(&hugetlb_lock); 4412 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4413 ret = false; 4414 goto unlock; 4415 } 4416 clear_page_huge_active(page); 4417 list_move_tail(&page->lru, list); 4418 unlock: 4419 spin_unlock(&hugetlb_lock); 4420 return ret; 4421 } 4422 4423 void putback_active_hugepage(struct page *page) 4424 { 4425 VM_BUG_ON_PAGE(!PageHead(page), page); 4426 spin_lock(&hugetlb_lock); 4427 set_page_huge_active(page); 4428 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4429 spin_unlock(&hugetlb_lock); 4430 put_page(page); 4431 } 4432