xref: /openbmc/linux/mm/hugetlb.c (revision e0ec90ee7e6f6cbaa6d59ffb48d2a7af5e80e61d)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 int hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 
49 __initdata LIST_HEAD(huge_boot_pages);
50 
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	if (spool->min_hpages != -1) {		/* minimum size accounting */
149 		if (delta > spool->rsv_hpages) {
150 			/*
151 			 * Asking for more reserves than those already taken on
152 			 * behalf of subpool.  Return difference.
153 			 */
154 			ret = delta - spool->rsv_hpages;
155 			spool->rsv_hpages = 0;
156 		} else {
157 			ret = 0;	/* reserves already accounted for */
158 			spool->rsv_hpages -= delta;
159 		}
160 	}
161 
162 unlock_ret:
163 	spin_unlock(&spool->lock);
164 	return ret;
165 }
166 
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 				       long delta)
175 {
176 	long ret = delta;
177 
178 	if (!spool)
179 		return delta;
180 
181 	spin_lock(&spool->lock);
182 
183 	if (spool->max_hpages != -1)		/* maximum size accounting */
184 		spool->used_hpages -= delta;
185 
186 	if (spool->min_hpages != -1) {		/* minimum size accounting */
187 		if (spool->rsv_hpages + delta <= spool->min_hpages)
188 			ret = 0;
189 		else
190 			ret = spool->rsv_hpages + delta - spool->min_hpages;
191 
192 		spool->rsv_hpages += delta;
193 		if (spool->rsv_hpages > spool->min_hpages)
194 			spool->rsv_hpages = spool->min_hpages;
195 	}
196 
197 	/*
198 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 	 * quota reference, free it now.
200 	 */
201 	unlock_or_release_subpool(spool);
202 
203 	return ret;
204 }
205 
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208 	return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210 
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213 	return subpool_inode(file_inode(vma->vm_file));
214 }
215 
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236 	struct list_head link;
237 	long from;
238 	long to;
239 };
240 
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257 	struct list_head *head = &resv->regions;
258 	struct file_region *rg, *nrg, *trg;
259 	long add = 0;
260 
261 	spin_lock(&resv->lock);
262 	/* Locate the region we are either in or before. */
263 	list_for_each_entry(rg, head, link)
264 		if (f <= rg->to)
265 			break;
266 
267 	/*
268 	 * If no region exists which can be expanded to include the
269 	 * specified range, the list must have been modified by an
270 	 * interleving call to region_del().  Pull a region descriptor
271 	 * from the cache and use it for this range.
272 	 */
273 	if (&rg->link == head || t < rg->from) {
274 		VM_BUG_ON(resv->region_cache_count <= 0);
275 
276 		resv->region_cache_count--;
277 		nrg = list_first_entry(&resv->region_cache, struct file_region,
278 					link);
279 		list_del(&nrg->link);
280 
281 		nrg->from = f;
282 		nrg->to = t;
283 		list_add(&nrg->link, rg->link.prev);
284 
285 		add += t - f;
286 		goto out_locked;
287 	}
288 
289 	/* Round our left edge to the current segment if it encloses us. */
290 	if (f > rg->from)
291 		f = rg->from;
292 
293 	/* Check for and consume any regions we now overlap with. */
294 	nrg = rg;
295 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 		if (&rg->link == head)
297 			break;
298 		if (rg->from > t)
299 			break;
300 
301 		/* If this area reaches higher then extend our area to
302 		 * include it completely.  If this is not the first area
303 		 * which we intend to reuse, free it. */
304 		if (rg->to > t)
305 			t = rg->to;
306 		if (rg != nrg) {
307 			/* Decrement return value by the deleted range.
308 			 * Another range will span this area so that by
309 			 * end of routine add will be >= zero
310 			 */
311 			add -= (rg->to - rg->from);
312 			list_del(&rg->link);
313 			kfree(rg);
314 		}
315 	}
316 
317 	add += (nrg->from - f);		/* Added to beginning of region */
318 	nrg->from = f;
319 	add += t - nrg->to;		/* Added to end of region */
320 	nrg->to = t;
321 
322 out_locked:
323 	resv->adds_in_progress--;
324 	spin_unlock(&resv->lock);
325 	VM_BUG_ON(add < 0);
326 	return add;
327 }
328 
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353 	struct list_head *head = &resv->regions;
354 	struct file_region *rg, *nrg = NULL;
355 	long chg = 0;
356 
357 retry:
358 	spin_lock(&resv->lock);
359 retry_locked:
360 	resv->adds_in_progress++;
361 
362 	/*
363 	 * Check for sufficient descriptors in the cache to accommodate
364 	 * the number of in progress add operations.
365 	 */
366 	if (resv->adds_in_progress > resv->region_cache_count) {
367 		struct file_region *trg;
368 
369 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 		/* Must drop lock to allocate a new descriptor. */
371 		resv->adds_in_progress--;
372 		spin_unlock(&resv->lock);
373 
374 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 		if (!trg)
376 			return -ENOMEM;
377 
378 		spin_lock(&resv->lock);
379 		list_add(&trg->link, &resv->region_cache);
380 		resv->region_cache_count++;
381 		goto retry_locked;
382 	}
383 
384 	/* Locate the region we are before or in. */
385 	list_for_each_entry(rg, head, link)
386 		if (f <= rg->to)
387 			break;
388 
389 	/* If we are below the current region then a new region is required.
390 	 * Subtle, allocate a new region at the position but make it zero
391 	 * size such that we can guarantee to record the reservation. */
392 	if (&rg->link == head || t < rg->from) {
393 		if (!nrg) {
394 			resv->adds_in_progress--;
395 			spin_unlock(&resv->lock);
396 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397 			if (!nrg)
398 				return -ENOMEM;
399 
400 			nrg->from = f;
401 			nrg->to   = f;
402 			INIT_LIST_HEAD(&nrg->link);
403 			goto retry;
404 		}
405 
406 		list_add(&nrg->link, rg->link.prev);
407 		chg = t - f;
408 		goto out_nrg;
409 	}
410 
411 	/* Round our left edge to the current segment if it encloses us. */
412 	if (f > rg->from)
413 		f = rg->from;
414 	chg = t - f;
415 
416 	/* Check for and consume any regions we now overlap with. */
417 	list_for_each_entry(rg, rg->link.prev, link) {
418 		if (&rg->link == head)
419 			break;
420 		if (rg->from > t)
421 			goto out;
422 
423 		/* We overlap with this area, if it extends further than
424 		 * us then we must extend ourselves.  Account for its
425 		 * existing reservation. */
426 		if (rg->to > t) {
427 			chg += rg->to - t;
428 			t = rg->to;
429 		}
430 		chg -= rg->to - rg->from;
431 	}
432 
433 out:
434 	spin_unlock(&resv->lock);
435 	/*  We already know we raced and no longer need the new region */
436 	kfree(nrg);
437 	return chg;
438 out_nrg:
439 	spin_unlock(&resv->lock);
440 	return chg;
441 }
442 
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456 	spin_lock(&resv->lock);
457 	VM_BUG_ON(!resv->region_cache_count);
458 	resv->adds_in_progress--;
459 	spin_unlock(&resv->lock);
460 }
461 
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478 	struct list_head *head = &resv->regions;
479 	struct file_region *rg, *trg;
480 	struct file_region *nrg = NULL;
481 	long del = 0;
482 
483 retry:
484 	spin_lock(&resv->lock);
485 	list_for_each_entry_safe(rg, trg, head, link) {
486 		if (rg->to <= f)
487 			continue;
488 		if (rg->from >= t)
489 			break;
490 
491 		if (f > rg->from && t < rg->to) { /* Must split region */
492 			/*
493 			 * Check for an entry in the cache before dropping
494 			 * lock and attempting allocation.
495 			 */
496 			if (!nrg &&
497 			    resv->region_cache_count > resv->adds_in_progress) {
498 				nrg = list_first_entry(&resv->region_cache,
499 							struct file_region,
500 							link);
501 				list_del(&nrg->link);
502 				resv->region_cache_count--;
503 			}
504 
505 			if (!nrg) {
506 				spin_unlock(&resv->lock);
507 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508 				if (!nrg)
509 					return -ENOMEM;
510 				goto retry;
511 			}
512 
513 			del += t - f;
514 
515 			/* New entry for end of split region */
516 			nrg->from = t;
517 			nrg->to = rg->to;
518 			INIT_LIST_HEAD(&nrg->link);
519 
520 			/* Original entry is trimmed */
521 			rg->to = f;
522 
523 			list_add(&nrg->link, &rg->link);
524 			nrg = NULL;
525 			break;
526 		}
527 
528 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529 			del += rg->to - rg->from;
530 			list_del(&rg->link);
531 			kfree(rg);
532 			continue;
533 		}
534 
535 		if (f <= rg->from) {	/* Trim beginning of region */
536 			del += t - rg->from;
537 			rg->from = t;
538 		} else {		/* Trim end of region */
539 			del += rg->to - f;
540 			rg->to = f;
541 		}
542 	}
543 
544 	spin_unlock(&resv->lock);
545 	kfree(nrg);
546 	return del;
547 }
548 
549 /*
550  * A rare out of memory error was encountered which prevented removal of
551  * the reserve map region for a page.  The huge page itself was free'ed
552  * and removed from the page cache.  This routine will adjust the subpool
553  * usage count, and the global reserve count if needed.  By incrementing
554  * these counts, the reserve map entry which could not be deleted will
555  * appear as a "reserved" entry instead of simply dangling with incorrect
556  * counts.
557  */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560 	struct hugepage_subpool *spool = subpool_inode(inode);
561 	long rsv_adjust;
562 
563 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564 	if (restore_reserve && rsv_adjust) {
565 		struct hstate *h = hstate_inode(inode);
566 
567 		hugetlb_acct_memory(h, 1);
568 	}
569 }
570 
571 /*
572  * Count and return the number of huge pages in the reserve map
573  * that intersect with the range [f, t).
574  */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577 	struct list_head *head = &resv->regions;
578 	struct file_region *rg;
579 	long chg = 0;
580 
581 	spin_lock(&resv->lock);
582 	/* Locate each segment we overlap with, and count that overlap. */
583 	list_for_each_entry(rg, head, link) {
584 		long seg_from;
585 		long seg_to;
586 
587 		if (rg->to <= f)
588 			continue;
589 		if (rg->from >= t)
590 			break;
591 
592 		seg_from = max(rg->from, f);
593 		seg_to = min(rg->to, t);
594 
595 		chg += seg_to - seg_from;
596 	}
597 	spin_unlock(&resv->lock);
598 
599 	return chg;
600 }
601 
602 /*
603  * Convert the address within this vma to the page offset within
604  * the mapping, in pagecache page units; huge pages here.
605  */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607 			struct vm_area_struct *vma, unsigned long address)
608 {
609 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
610 			(vma->vm_pgoff >> huge_page_order(h));
611 }
612 
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614 				     unsigned long address)
615 {
616 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618 
619 /*
620  * Return the size of the pages allocated when backing a VMA. In the majority
621  * cases this will be same size as used by the page table entries.
622  */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625 	struct hstate *hstate;
626 
627 	if (!is_vm_hugetlb_page(vma))
628 		return PAGE_SIZE;
629 
630 	hstate = hstate_vma(vma);
631 
632 	return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635 
636 /*
637  * Return the page size being used by the MMU to back a VMA. In the majority
638  * of cases, the page size used by the kernel matches the MMU size. On
639  * architectures where it differs, an architecture-specific version of this
640  * function is required.
641  */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645 	return vma_kernel_pagesize(vma);
646 }
647 #endif
648 
649 /*
650  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
651  * bits of the reservation map pointer, which are always clear due to
652  * alignment.
653  */
654 #define HPAGE_RESV_OWNER    (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657 
658 /*
659  * These helpers are used to track how many pages are reserved for
660  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661  * is guaranteed to have their future faults succeed.
662  *
663  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664  * the reserve counters are updated with the hugetlb_lock held. It is safe
665  * to reset the VMA at fork() time as it is not in use yet and there is no
666  * chance of the global counters getting corrupted as a result of the values.
667  *
668  * The private mapping reservation is represented in a subtly different
669  * manner to a shared mapping.  A shared mapping has a region map associated
670  * with the underlying file, this region map represents the backing file
671  * pages which have ever had a reservation assigned which this persists even
672  * after the page is instantiated.  A private mapping has a region map
673  * associated with the original mmap which is attached to all VMAs which
674  * reference it, this region map represents those offsets which have consumed
675  * reservation ie. where pages have been instantiated.
676  */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679 	return (unsigned long)vma->vm_private_data;
680 }
681 
682 static void set_vma_private_data(struct vm_area_struct *vma,
683 							unsigned long value)
684 {
685 	vma->vm_private_data = (void *)value;
686 }
687 
688 struct resv_map *resv_map_alloc(void)
689 {
690 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692 
693 	if (!resv_map || !rg) {
694 		kfree(resv_map);
695 		kfree(rg);
696 		return NULL;
697 	}
698 
699 	kref_init(&resv_map->refs);
700 	spin_lock_init(&resv_map->lock);
701 	INIT_LIST_HEAD(&resv_map->regions);
702 
703 	resv_map->adds_in_progress = 0;
704 
705 	INIT_LIST_HEAD(&resv_map->region_cache);
706 	list_add(&rg->link, &resv_map->region_cache);
707 	resv_map->region_cache_count = 1;
708 
709 	return resv_map;
710 }
711 
712 void resv_map_release(struct kref *ref)
713 {
714 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 	struct list_head *head = &resv_map->region_cache;
716 	struct file_region *rg, *trg;
717 
718 	/* Clear out any active regions before we release the map. */
719 	region_del(resv_map, 0, LONG_MAX);
720 
721 	/* ... and any entries left in the cache */
722 	list_for_each_entry_safe(rg, trg, head, link) {
723 		list_del(&rg->link);
724 		kfree(rg);
725 	}
726 
727 	VM_BUG_ON(resv_map->adds_in_progress);
728 
729 	kfree(resv_map);
730 }
731 
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734 	return inode->i_mapping->private_data;
735 }
736 
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 	if (vma->vm_flags & VM_MAYSHARE) {
741 		struct address_space *mapping = vma->vm_file->f_mapping;
742 		struct inode *inode = mapping->host;
743 
744 		return inode_resv_map(inode);
745 
746 	} else {
747 		return (struct resv_map *)(get_vma_private_data(vma) &
748 							~HPAGE_RESV_MASK);
749 	}
750 }
751 
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756 
757 	set_vma_private_data(vma, (get_vma_private_data(vma) &
758 				HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760 
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 
766 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768 
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 
773 	return (get_vma_private_data(vma) & flag) != 0;
774 }
775 
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 	if (!(vma->vm_flags & VM_MAYSHARE))
781 		vma->vm_private_data = (void *)0;
782 }
783 
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787 	if (vma->vm_flags & VM_NORESERVE) {
788 		/*
789 		 * This address is already reserved by other process(chg == 0),
790 		 * so, we should decrement reserved count. Without decrementing,
791 		 * reserve count remains after releasing inode, because this
792 		 * allocated page will go into page cache and is regarded as
793 		 * coming from reserved pool in releasing step.  Currently, we
794 		 * don't have any other solution to deal with this situation
795 		 * properly, so add work-around here.
796 		 */
797 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798 			return true;
799 		else
800 			return false;
801 	}
802 
803 	/* Shared mappings always use reserves */
804 	if (vma->vm_flags & VM_MAYSHARE) {
805 		/*
806 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
807 		 * be a region map for all pages.  The only situation where
808 		 * there is no region map is if a hole was punched via
809 		 * fallocate.  In this case, there really are no reverves to
810 		 * use.  This situation is indicated if chg != 0.
811 		 */
812 		if (chg)
813 			return false;
814 		else
815 			return true;
816 	}
817 
818 	/*
819 	 * Only the process that called mmap() has reserves for
820 	 * private mappings.
821 	 */
822 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823 		return true;
824 
825 	return false;
826 }
827 
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830 	int nid = page_to_nid(page);
831 	list_move(&page->lru, &h->hugepage_freelists[nid]);
832 	h->free_huge_pages++;
833 	h->free_huge_pages_node[nid]++;
834 }
835 
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838 	struct page *page;
839 
840 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841 		if (!is_migrate_isolate_page(page))
842 			break;
843 	/*
844 	 * if 'non-isolated free hugepage' not found on the list,
845 	 * the allocation fails.
846 	 */
847 	if (&h->hugepage_freelists[nid] == &page->lru)
848 		return NULL;
849 	list_move(&page->lru, &h->hugepage_activelist);
850 	set_page_refcounted(page);
851 	h->free_huge_pages--;
852 	h->free_huge_pages_node[nid]--;
853 	return page;
854 }
855 
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860 		return GFP_HIGHUSER_MOVABLE;
861 	else
862 		return GFP_HIGHUSER;
863 }
864 
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866 				struct vm_area_struct *vma,
867 				unsigned long address, int avoid_reserve,
868 				long chg)
869 {
870 	struct page *page = NULL;
871 	struct mempolicy *mpol;
872 	nodemask_t *nodemask;
873 	struct zonelist *zonelist;
874 	struct zone *zone;
875 	struct zoneref *z;
876 	unsigned int cpuset_mems_cookie;
877 
878 	/*
879 	 * A child process with MAP_PRIVATE mappings created by their parent
880 	 * have no page reserves. This check ensures that reservations are
881 	 * not "stolen". The child may still get SIGKILLed
882 	 */
883 	if (!vma_has_reserves(vma, chg) &&
884 			h->free_huge_pages - h->resv_huge_pages == 0)
885 		goto err;
886 
887 	/* If reserves cannot be used, ensure enough pages are in the pool */
888 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889 		goto err;
890 
891 retry_cpuset:
892 	cpuset_mems_cookie = read_mems_allowed_begin();
893 	zonelist = huge_zonelist(vma, address,
894 					htlb_alloc_mask(h), &mpol, &nodemask);
895 
896 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
897 						MAX_NR_ZONES - 1, nodemask) {
898 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
900 			if (page) {
901 				if (avoid_reserve)
902 					break;
903 				if (!vma_has_reserves(vma, chg))
904 					break;
905 
906 				SetPagePrivate(page);
907 				h->resv_huge_pages--;
908 				break;
909 			}
910 		}
911 	}
912 
913 	mpol_cond_put(mpol);
914 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915 		goto retry_cpuset;
916 	return page;
917 
918 err:
919 	return NULL;
920 }
921 
922 /*
923  * common helper functions for hstate_next_node_to_{alloc|free}.
924  * We may have allocated or freed a huge page based on a different
925  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926  * be outside of *nodes_allowed.  Ensure that we use an allowed
927  * node for alloc or free.
928  */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931 	nid = next_node(nid, *nodes_allowed);
932 	if (nid == MAX_NUMNODES)
933 		nid = first_node(*nodes_allowed);
934 	VM_BUG_ON(nid >= MAX_NUMNODES);
935 
936 	return nid;
937 }
938 
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941 	if (!node_isset(nid, *nodes_allowed))
942 		nid = next_node_allowed(nid, nodes_allowed);
943 	return nid;
944 }
945 
946 /*
947  * returns the previously saved node ["this node"] from which to
948  * allocate a persistent huge page for the pool and advance the
949  * next node from which to allocate, handling wrap at end of node
950  * mask.
951  */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953 					nodemask_t *nodes_allowed)
954 {
955 	int nid;
956 
957 	VM_BUG_ON(!nodes_allowed);
958 
959 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961 
962 	return nid;
963 }
964 
965 /*
966  * helper for free_pool_huge_page() - return the previously saved
967  * node ["this node"] from which to free a huge page.  Advance the
968  * next node id whether or not we find a free huge page to free so
969  * that the next attempt to free addresses the next node.
970  */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973 	int nid;
974 
975 	VM_BUG_ON(!nodes_allowed);
976 
977 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979 
980 	return nid;
981 }
982 
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
984 	for (nr_nodes = nodes_weight(*mask);				\
985 		nr_nodes > 0 &&						\
986 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
987 		nr_nodes--)
988 
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
990 	for (nr_nodes = nodes_weight(*mask);				\
991 		nr_nodes > 0 &&						\
992 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
993 		nr_nodes--)
994 
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997 					unsigned long order)
998 {
999 	int i;
1000 	int nr_pages = 1 << order;
1001 	struct page *p = page + 1;
1002 
1003 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004 		__ClearPageTail(p);
1005 		set_page_refcounted(p);
1006 		p->first_page = NULL;
1007 	}
1008 
1009 	set_compound_order(page, 0);
1010 	__ClearPageHead(page);
1011 }
1012 
1013 static void free_gigantic_page(struct page *page, unsigned order)
1014 {
1015 	free_contig_range(page_to_pfn(page), 1 << order);
1016 }
1017 
1018 static int __alloc_gigantic_page(unsigned long start_pfn,
1019 				unsigned long nr_pages)
1020 {
1021 	unsigned long end_pfn = start_pfn + nr_pages;
1022 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1023 }
1024 
1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1026 				unsigned long nr_pages)
1027 {
1028 	unsigned long i, end_pfn = start_pfn + nr_pages;
1029 	struct page *page;
1030 
1031 	for (i = start_pfn; i < end_pfn; i++) {
1032 		if (!pfn_valid(i))
1033 			return false;
1034 
1035 		page = pfn_to_page(i);
1036 
1037 		if (PageReserved(page))
1038 			return false;
1039 
1040 		if (page_count(page) > 0)
1041 			return false;
1042 
1043 		if (PageHuge(page))
1044 			return false;
1045 	}
1046 
1047 	return true;
1048 }
1049 
1050 static bool zone_spans_last_pfn(const struct zone *zone,
1051 			unsigned long start_pfn, unsigned long nr_pages)
1052 {
1053 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1054 	return zone_spans_pfn(zone, last_pfn);
1055 }
1056 
1057 static struct page *alloc_gigantic_page(int nid, unsigned order)
1058 {
1059 	unsigned long nr_pages = 1 << order;
1060 	unsigned long ret, pfn, flags;
1061 	struct zone *z;
1062 
1063 	z = NODE_DATA(nid)->node_zones;
1064 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1065 		spin_lock_irqsave(&z->lock, flags);
1066 
1067 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1068 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1069 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1070 				/*
1071 				 * We release the zone lock here because
1072 				 * alloc_contig_range() will also lock the zone
1073 				 * at some point. If there's an allocation
1074 				 * spinning on this lock, it may win the race
1075 				 * and cause alloc_contig_range() to fail...
1076 				 */
1077 				spin_unlock_irqrestore(&z->lock, flags);
1078 				ret = __alloc_gigantic_page(pfn, nr_pages);
1079 				if (!ret)
1080 					return pfn_to_page(pfn);
1081 				spin_lock_irqsave(&z->lock, flags);
1082 			}
1083 			pfn += nr_pages;
1084 		}
1085 
1086 		spin_unlock_irqrestore(&z->lock, flags);
1087 	}
1088 
1089 	return NULL;
1090 }
1091 
1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1094 
1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1096 {
1097 	struct page *page;
1098 
1099 	page = alloc_gigantic_page(nid, huge_page_order(h));
1100 	if (page) {
1101 		prep_compound_gigantic_page(page, huge_page_order(h));
1102 		prep_new_huge_page(h, page, nid);
1103 	}
1104 
1105 	return page;
1106 }
1107 
1108 static int alloc_fresh_gigantic_page(struct hstate *h,
1109 				nodemask_t *nodes_allowed)
1110 {
1111 	struct page *page = NULL;
1112 	int nr_nodes, node;
1113 
1114 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1115 		page = alloc_fresh_gigantic_page_node(h, node);
1116 		if (page)
1117 			return 1;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static inline bool gigantic_page_supported(void) { return true; }
1124 #else
1125 static inline bool gigantic_page_supported(void) { return false; }
1126 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1127 static inline void destroy_compound_gigantic_page(struct page *page,
1128 						unsigned long order) { }
1129 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1130 					nodemask_t *nodes_allowed) { return 0; }
1131 #endif
1132 
1133 static void update_and_free_page(struct hstate *h, struct page *page)
1134 {
1135 	int i;
1136 
1137 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1138 		return;
1139 
1140 	h->nr_huge_pages--;
1141 	h->nr_huge_pages_node[page_to_nid(page)]--;
1142 	for (i = 0; i < pages_per_huge_page(h); i++) {
1143 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1144 				1 << PG_referenced | 1 << PG_dirty |
1145 				1 << PG_active | 1 << PG_private |
1146 				1 << PG_writeback);
1147 	}
1148 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1149 	set_compound_page_dtor(page, NULL);
1150 	set_page_refcounted(page);
1151 	if (hstate_is_gigantic(h)) {
1152 		destroy_compound_gigantic_page(page, huge_page_order(h));
1153 		free_gigantic_page(page, huge_page_order(h));
1154 	} else {
1155 		__free_pages(page, huge_page_order(h));
1156 	}
1157 }
1158 
1159 struct hstate *size_to_hstate(unsigned long size)
1160 {
1161 	struct hstate *h;
1162 
1163 	for_each_hstate(h) {
1164 		if (huge_page_size(h) == size)
1165 			return h;
1166 	}
1167 	return NULL;
1168 }
1169 
1170 /*
1171  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1172  * to hstate->hugepage_activelist.)
1173  *
1174  * This function can be called for tail pages, but never returns true for them.
1175  */
1176 bool page_huge_active(struct page *page)
1177 {
1178 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1179 	return PageHead(page) && PagePrivate(&page[1]);
1180 }
1181 
1182 /* never called for tail page */
1183 static void set_page_huge_active(struct page *page)
1184 {
1185 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1186 	SetPagePrivate(&page[1]);
1187 }
1188 
1189 static void clear_page_huge_active(struct page *page)
1190 {
1191 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1192 	ClearPagePrivate(&page[1]);
1193 }
1194 
1195 void free_huge_page(struct page *page)
1196 {
1197 	/*
1198 	 * Can't pass hstate in here because it is called from the
1199 	 * compound page destructor.
1200 	 */
1201 	struct hstate *h = page_hstate(page);
1202 	int nid = page_to_nid(page);
1203 	struct hugepage_subpool *spool =
1204 		(struct hugepage_subpool *)page_private(page);
1205 	bool restore_reserve;
1206 
1207 	set_page_private(page, 0);
1208 	page->mapping = NULL;
1209 	BUG_ON(page_count(page));
1210 	BUG_ON(page_mapcount(page));
1211 	restore_reserve = PagePrivate(page);
1212 	ClearPagePrivate(page);
1213 
1214 	/*
1215 	 * A return code of zero implies that the subpool will be under its
1216 	 * minimum size if the reservation is not restored after page is free.
1217 	 * Therefore, force restore_reserve operation.
1218 	 */
1219 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1220 		restore_reserve = true;
1221 
1222 	spin_lock(&hugetlb_lock);
1223 	clear_page_huge_active(page);
1224 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1225 				     pages_per_huge_page(h), page);
1226 	if (restore_reserve)
1227 		h->resv_huge_pages++;
1228 
1229 	if (h->surplus_huge_pages_node[nid]) {
1230 		/* remove the page from active list */
1231 		list_del(&page->lru);
1232 		update_and_free_page(h, page);
1233 		h->surplus_huge_pages--;
1234 		h->surplus_huge_pages_node[nid]--;
1235 	} else {
1236 		arch_clear_hugepage_flags(page);
1237 		enqueue_huge_page(h, page);
1238 	}
1239 	spin_unlock(&hugetlb_lock);
1240 }
1241 
1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243 {
1244 	INIT_LIST_HEAD(&page->lru);
1245 	set_compound_page_dtor(page, free_huge_page);
1246 	spin_lock(&hugetlb_lock);
1247 	set_hugetlb_cgroup(page, NULL);
1248 	h->nr_huge_pages++;
1249 	h->nr_huge_pages_node[nid]++;
1250 	spin_unlock(&hugetlb_lock);
1251 	put_page(page); /* free it into the hugepage allocator */
1252 }
1253 
1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 {
1256 	int i;
1257 	int nr_pages = 1 << order;
1258 	struct page *p = page + 1;
1259 
1260 	/* we rely on prep_new_huge_page to set the destructor */
1261 	set_compound_order(page, order);
1262 	__SetPageHead(page);
1263 	__ClearPageReserved(page);
1264 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265 		/*
1266 		 * For gigantic hugepages allocated through bootmem at
1267 		 * boot, it's safer to be consistent with the not-gigantic
1268 		 * hugepages and clear the PG_reserved bit from all tail pages
1269 		 * too.  Otherwse drivers using get_user_pages() to access tail
1270 		 * pages may get the reference counting wrong if they see
1271 		 * PG_reserved set on a tail page (despite the head page not
1272 		 * having PG_reserved set).  Enforcing this consistency between
1273 		 * head and tail pages allows drivers to optimize away a check
1274 		 * on the head page when they need know if put_page() is needed
1275 		 * after get_user_pages().
1276 		 */
1277 		__ClearPageReserved(p);
1278 		set_page_count(p, 0);
1279 		p->first_page = page;
1280 		/* Make sure p->first_page is always valid for PageTail() */
1281 		smp_wmb();
1282 		__SetPageTail(p);
1283 	}
1284 }
1285 
1286 /*
1287  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1288  * transparent huge pages.  See the PageTransHuge() documentation for more
1289  * details.
1290  */
1291 int PageHuge(struct page *page)
1292 {
1293 	if (!PageCompound(page))
1294 		return 0;
1295 
1296 	page = compound_head(page);
1297 	return get_compound_page_dtor(page) == free_huge_page;
1298 }
1299 EXPORT_SYMBOL_GPL(PageHuge);
1300 
1301 /*
1302  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1303  * normal or transparent huge pages.
1304  */
1305 int PageHeadHuge(struct page *page_head)
1306 {
1307 	if (!PageHead(page_head))
1308 		return 0;
1309 
1310 	return get_compound_page_dtor(page_head) == free_huge_page;
1311 }
1312 
1313 pgoff_t __basepage_index(struct page *page)
1314 {
1315 	struct page *page_head = compound_head(page);
1316 	pgoff_t index = page_index(page_head);
1317 	unsigned long compound_idx;
1318 
1319 	if (!PageHuge(page_head))
1320 		return page_index(page);
1321 
1322 	if (compound_order(page_head) >= MAX_ORDER)
1323 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1324 	else
1325 		compound_idx = page - page_head;
1326 
1327 	return (index << compound_order(page_head)) + compound_idx;
1328 }
1329 
1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1331 {
1332 	struct page *page;
1333 
1334 	page = __alloc_pages_node(nid,
1335 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336 						__GFP_REPEAT|__GFP_NOWARN,
1337 		huge_page_order(h));
1338 	if (page) {
1339 		prep_new_huge_page(h, page, nid);
1340 	}
1341 
1342 	return page;
1343 }
1344 
1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1346 {
1347 	struct page *page;
1348 	int nr_nodes, node;
1349 	int ret = 0;
1350 
1351 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1352 		page = alloc_fresh_huge_page_node(h, node);
1353 		if (page) {
1354 			ret = 1;
1355 			break;
1356 		}
1357 	}
1358 
1359 	if (ret)
1360 		count_vm_event(HTLB_BUDDY_PGALLOC);
1361 	else
1362 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363 
1364 	return ret;
1365 }
1366 
1367 /*
1368  * Free huge page from pool from next node to free.
1369  * Attempt to keep persistent huge pages more or less
1370  * balanced over allowed nodes.
1371  * Called with hugetlb_lock locked.
1372  */
1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1374 							 bool acct_surplus)
1375 {
1376 	int nr_nodes, node;
1377 	int ret = 0;
1378 
1379 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380 		/*
1381 		 * If we're returning unused surplus pages, only examine
1382 		 * nodes with surplus pages.
1383 		 */
1384 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1385 		    !list_empty(&h->hugepage_freelists[node])) {
1386 			struct page *page =
1387 				list_entry(h->hugepage_freelists[node].next,
1388 					  struct page, lru);
1389 			list_del(&page->lru);
1390 			h->free_huge_pages--;
1391 			h->free_huge_pages_node[node]--;
1392 			if (acct_surplus) {
1393 				h->surplus_huge_pages--;
1394 				h->surplus_huge_pages_node[node]--;
1395 			}
1396 			update_and_free_page(h, page);
1397 			ret = 1;
1398 			break;
1399 		}
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 /*
1406  * Dissolve a given free hugepage into free buddy pages. This function does
1407  * nothing for in-use (including surplus) hugepages.
1408  */
1409 static void dissolve_free_huge_page(struct page *page)
1410 {
1411 	spin_lock(&hugetlb_lock);
1412 	if (PageHuge(page) && !page_count(page)) {
1413 		struct hstate *h = page_hstate(page);
1414 		int nid = page_to_nid(page);
1415 		list_del(&page->lru);
1416 		h->free_huge_pages--;
1417 		h->free_huge_pages_node[nid]--;
1418 		update_and_free_page(h, page);
1419 	}
1420 	spin_unlock(&hugetlb_lock);
1421 }
1422 
1423 /*
1424  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1425  * make specified memory blocks removable from the system.
1426  * Note that start_pfn should aligned with (minimum) hugepage size.
1427  */
1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1429 {
1430 	unsigned long pfn;
1431 
1432 	if (!hugepages_supported())
1433 		return;
1434 
1435 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1436 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437 		dissolve_free_huge_page(pfn_to_page(pfn));
1438 }
1439 
1440 /*
1441  * There are 3 ways this can get called:
1442  * 1. With vma+addr: we use the VMA's memory policy
1443  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1444  *    page from any node, and let the buddy allocator itself figure
1445  *    it out.
1446  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1447  *    strictly from 'nid'
1448  */
1449 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1450 		struct vm_area_struct *vma, unsigned long addr, int nid)
1451 {
1452 	int order = huge_page_order(h);
1453 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1454 	unsigned int cpuset_mems_cookie;
1455 
1456 	/*
1457 	 * We need a VMA to get a memory policy.  If we do not
1458 	 * have one, we use the 'nid' argument.
1459 	 *
1460 	 * The mempolicy stuff below has some non-inlined bits
1461 	 * and calls ->vm_ops.  That makes it hard to optimize at
1462 	 * compile-time, even when NUMA is off and it does
1463 	 * nothing.  This helps the compiler optimize it out.
1464 	 */
1465 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1466 		/*
1467 		 * If a specific node is requested, make sure to
1468 		 * get memory from there, but only when a node
1469 		 * is explicitly specified.
1470 		 */
1471 		if (nid != NUMA_NO_NODE)
1472 			gfp |= __GFP_THISNODE;
1473 		/*
1474 		 * Make sure to call something that can handle
1475 		 * nid=NUMA_NO_NODE
1476 		 */
1477 		return alloc_pages_node(nid, gfp, order);
1478 	}
1479 
1480 	/*
1481 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1482 	 * allocate a huge page with it.  We will only reach this
1483 	 * when CONFIG_NUMA=y.
1484 	 */
1485 	do {
1486 		struct page *page;
1487 		struct mempolicy *mpol;
1488 		struct zonelist *zl;
1489 		nodemask_t *nodemask;
1490 
1491 		cpuset_mems_cookie = read_mems_allowed_begin();
1492 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1493 		mpol_cond_put(mpol);
1494 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1495 		if (page)
1496 			return page;
1497 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1498 
1499 	return NULL;
1500 }
1501 
1502 /*
1503  * There are two ways to allocate a huge page:
1504  * 1. When you have a VMA and an address (like a fault)
1505  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1506  *
1507  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1508  * this case which signifies that the allocation should be done with
1509  * respect for the VMA's memory policy.
1510  *
1511  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1512  * implies that memory policies will not be taken in to account.
1513  */
1514 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1515 		struct vm_area_struct *vma, unsigned long addr, int nid)
1516 {
1517 	struct page *page;
1518 	unsigned int r_nid;
1519 
1520 	if (hstate_is_gigantic(h))
1521 		return NULL;
1522 
1523 	/*
1524 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1525 	 * This makes sure the caller is picking _one_ of the modes with which
1526 	 * we can call this function, not both.
1527 	 */
1528 	if (vma || (addr != -1)) {
1529 		VM_WARN_ON_ONCE(addr == -1);
1530 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1531 	}
1532 	/*
1533 	 * Assume we will successfully allocate the surplus page to
1534 	 * prevent racing processes from causing the surplus to exceed
1535 	 * overcommit
1536 	 *
1537 	 * This however introduces a different race, where a process B
1538 	 * tries to grow the static hugepage pool while alloc_pages() is
1539 	 * called by process A. B will only examine the per-node
1540 	 * counters in determining if surplus huge pages can be
1541 	 * converted to normal huge pages in adjust_pool_surplus(). A
1542 	 * won't be able to increment the per-node counter, until the
1543 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1544 	 * no more huge pages can be converted from surplus to normal
1545 	 * state (and doesn't try to convert again). Thus, we have a
1546 	 * case where a surplus huge page exists, the pool is grown, and
1547 	 * the surplus huge page still exists after, even though it
1548 	 * should just have been converted to a normal huge page. This
1549 	 * does not leak memory, though, as the hugepage will be freed
1550 	 * once it is out of use. It also does not allow the counters to
1551 	 * go out of whack in adjust_pool_surplus() as we don't modify
1552 	 * the node values until we've gotten the hugepage and only the
1553 	 * per-node value is checked there.
1554 	 */
1555 	spin_lock(&hugetlb_lock);
1556 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1557 		spin_unlock(&hugetlb_lock);
1558 		return NULL;
1559 	} else {
1560 		h->nr_huge_pages++;
1561 		h->surplus_huge_pages++;
1562 	}
1563 	spin_unlock(&hugetlb_lock);
1564 
1565 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1566 
1567 	spin_lock(&hugetlb_lock);
1568 	if (page) {
1569 		INIT_LIST_HEAD(&page->lru);
1570 		r_nid = page_to_nid(page);
1571 		set_compound_page_dtor(page, free_huge_page);
1572 		set_hugetlb_cgroup(page, NULL);
1573 		/*
1574 		 * We incremented the global counters already
1575 		 */
1576 		h->nr_huge_pages_node[r_nid]++;
1577 		h->surplus_huge_pages_node[r_nid]++;
1578 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1579 	} else {
1580 		h->nr_huge_pages--;
1581 		h->surplus_huge_pages--;
1582 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1583 	}
1584 	spin_unlock(&hugetlb_lock);
1585 
1586 	return page;
1587 }
1588 
1589 /*
1590  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1591  * NUMA_NO_NODE, which means that it may be allocated
1592  * anywhere.
1593  */
1594 static
1595 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1596 {
1597 	unsigned long addr = -1;
1598 
1599 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1600 }
1601 
1602 /*
1603  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1604  */
1605 static
1606 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1607 		struct vm_area_struct *vma, unsigned long addr)
1608 {
1609 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1610 }
1611 
1612 /*
1613  * This allocation function is useful in the context where vma is irrelevant.
1614  * E.g. soft-offlining uses this function because it only cares physical
1615  * address of error page.
1616  */
1617 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1618 {
1619 	struct page *page = NULL;
1620 
1621 	spin_lock(&hugetlb_lock);
1622 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1623 		page = dequeue_huge_page_node(h, nid);
1624 	spin_unlock(&hugetlb_lock);
1625 
1626 	if (!page)
1627 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1628 
1629 	return page;
1630 }
1631 
1632 /*
1633  * Increase the hugetlb pool such that it can accommodate a reservation
1634  * of size 'delta'.
1635  */
1636 static int gather_surplus_pages(struct hstate *h, int delta)
1637 {
1638 	struct list_head surplus_list;
1639 	struct page *page, *tmp;
1640 	int ret, i;
1641 	int needed, allocated;
1642 	bool alloc_ok = true;
1643 
1644 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1645 	if (needed <= 0) {
1646 		h->resv_huge_pages += delta;
1647 		return 0;
1648 	}
1649 
1650 	allocated = 0;
1651 	INIT_LIST_HEAD(&surplus_list);
1652 
1653 	ret = -ENOMEM;
1654 retry:
1655 	spin_unlock(&hugetlb_lock);
1656 	for (i = 0; i < needed; i++) {
1657 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1658 		if (!page) {
1659 			alloc_ok = false;
1660 			break;
1661 		}
1662 		list_add(&page->lru, &surplus_list);
1663 	}
1664 	allocated += i;
1665 
1666 	/*
1667 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1668 	 * because either resv_huge_pages or free_huge_pages may have changed.
1669 	 */
1670 	spin_lock(&hugetlb_lock);
1671 	needed = (h->resv_huge_pages + delta) -
1672 			(h->free_huge_pages + allocated);
1673 	if (needed > 0) {
1674 		if (alloc_ok)
1675 			goto retry;
1676 		/*
1677 		 * We were not able to allocate enough pages to
1678 		 * satisfy the entire reservation so we free what
1679 		 * we've allocated so far.
1680 		 */
1681 		goto free;
1682 	}
1683 	/*
1684 	 * The surplus_list now contains _at_least_ the number of extra pages
1685 	 * needed to accommodate the reservation.  Add the appropriate number
1686 	 * of pages to the hugetlb pool and free the extras back to the buddy
1687 	 * allocator.  Commit the entire reservation here to prevent another
1688 	 * process from stealing the pages as they are added to the pool but
1689 	 * before they are reserved.
1690 	 */
1691 	needed += allocated;
1692 	h->resv_huge_pages += delta;
1693 	ret = 0;
1694 
1695 	/* Free the needed pages to the hugetlb pool */
1696 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1697 		if ((--needed) < 0)
1698 			break;
1699 		/*
1700 		 * This page is now managed by the hugetlb allocator and has
1701 		 * no users -- drop the buddy allocator's reference.
1702 		 */
1703 		put_page_testzero(page);
1704 		VM_BUG_ON_PAGE(page_count(page), page);
1705 		enqueue_huge_page(h, page);
1706 	}
1707 free:
1708 	spin_unlock(&hugetlb_lock);
1709 
1710 	/* Free unnecessary surplus pages to the buddy allocator */
1711 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1712 		put_page(page);
1713 	spin_lock(&hugetlb_lock);
1714 
1715 	return ret;
1716 }
1717 
1718 /*
1719  * When releasing a hugetlb pool reservation, any surplus pages that were
1720  * allocated to satisfy the reservation must be explicitly freed if they were
1721  * never used.
1722  * Called with hugetlb_lock held.
1723  */
1724 static void return_unused_surplus_pages(struct hstate *h,
1725 					unsigned long unused_resv_pages)
1726 {
1727 	unsigned long nr_pages;
1728 
1729 	/* Uncommit the reservation */
1730 	h->resv_huge_pages -= unused_resv_pages;
1731 
1732 	/* Cannot return gigantic pages currently */
1733 	if (hstate_is_gigantic(h))
1734 		return;
1735 
1736 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1737 
1738 	/*
1739 	 * We want to release as many surplus pages as possible, spread
1740 	 * evenly across all nodes with memory. Iterate across these nodes
1741 	 * until we can no longer free unreserved surplus pages. This occurs
1742 	 * when the nodes with surplus pages have no free pages.
1743 	 * free_pool_huge_page() will balance the the freed pages across the
1744 	 * on-line nodes with memory and will handle the hstate accounting.
1745 	 */
1746 	while (nr_pages--) {
1747 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1748 			break;
1749 		cond_resched_lock(&hugetlb_lock);
1750 	}
1751 }
1752 
1753 
1754 /*
1755  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1756  * are used by the huge page allocation routines to manage reservations.
1757  *
1758  * vma_needs_reservation is called to determine if the huge page at addr
1759  * within the vma has an associated reservation.  If a reservation is
1760  * needed, the value 1 is returned.  The caller is then responsible for
1761  * managing the global reservation and subpool usage counts.  After
1762  * the huge page has been allocated, vma_commit_reservation is called
1763  * to add the page to the reservation map.  If the page allocation fails,
1764  * the reservation must be ended instead of committed.  vma_end_reservation
1765  * is called in such cases.
1766  *
1767  * In the normal case, vma_commit_reservation returns the same value
1768  * as the preceding vma_needs_reservation call.  The only time this
1769  * is not the case is if a reserve map was changed between calls.  It
1770  * is the responsibility of the caller to notice the difference and
1771  * take appropriate action.
1772  */
1773 enum vma_resv_mode {
1774 	VMA_NEEDS_RESV,
1775 	VMA_COMMIT_RESV,
1776 	VMA_END_RESV,
1777 };
1778 static long __vma_reservation_common(struct hstate *h,
1779 				struct vm_area_struct *vma, unsigned long addr,
1780 				enum vma_resv_mode mode)
1781 {
1782 	struct resv_map *resv;
1783 	pgoff_t idx;
1784 	long ret;
1785 
1786 	resv = vma_resv_map(vma);
1787 	if (!resv)
1788 		return 1;
1789 
1790 	idx = vma_hugecache_offset(h, vma, addr);
1791 	switch (mode) {
1792 	case VMA_NEEDS_RESV:
1793 		ret = region_chg(resv, idx, idx + 1);
1794 		break;
1795 	case VMA_COMMIT_RESV:
1796 		ret = region_add(resv, idx, idx + 1);
1797 		break;
1798 	case VMA_END_RESV:
1799 		region_abort(resv, idx, idx + 1);
1800 		ret = 0;
1801 		break;
1802 	default:
1803 		BUG();
1804 	}
1805 
1806 	if (vma->vm_flags & VM_MAYSHARE)
1807 		return ret;
1808 	else
1809 		return ret < 0 ? ret : 0;
1810 }
1811 
1812 static long vma_needs_reservation(struct hstate *h,
1813 			struct vm_area_struct *vma, unsigned long addr)
1814 {
1815 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1816 }
1817 
1818 static long vma_commit_reservation(struct hstate *h,
1819 			struct vm_area_struct *vma, unsigned long addr)
1820 {
1821 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1822 }
1823 
1824 static void vma_end_reservation(struct hstate *h,
1825 			struct vm_area_struct *vma, unsigned long addr)
1826 {
1827 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1828 }
1829 
1830 struct page *alloc_huge_page(struct vm_area_struct *vma,
1831 				    unsigned long addr, int avoid_reserve)
1832 {
1833 	struct hugepage_subpool *spool = subpool_vma(vma);
1834 	struct hstate *h = hstate_vma(vma);
1835 	struct page *page;
1836 	long map_chg, map_commit;
1837 	long gbl_chg;
1838 	int ret, idx;
1839 	struct hugetlb_cgroup *h_cg;
1840 
1841 	idx = hstate_index(h);
1842 	/*
1843 	 * Examine the region/reserve map to determine if the process
1844 	 * has a reservation for the page to be allocated.  A return
1845 	 * code of zero indicates a reservation exists (no change).
1846 	 */
1847 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1848 	if (map_chg < 0)
1849 		return ERR_PTR(-ENOMEM);
1850 
1851 	/*
1852 	 * Processes that did not create the mapping will have no
1853 	 * reserves as indicated by the region/reserve map. Check
1854 	 * that the allocation will not exceed the subpool limit.
1855 	 * Allocations for MAP_NORESERVE mappings also need to be
1856 	 * checked against any subpool limit.
1857 	 */
1858 	if (map_chg || avoid_reserve) {
1859 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1860 		if (gbl_chg < 0) {
1861 			vma_end_reservation(h, vma, addr);
1862 			return ERR_PTR(-ENOSPC);
1863 		}
1864 
1865 		/*
1866 		 * Even though there was no reservation in the region/reserve
1867 		 * map, there could be reservations associated with the
1868 		 * subpool that can be used.  This would be indicated if the
1869 		 * return value of hugepage_subpool_get_pages() is zero.
1870 		 * However, if avoid_reserve is specified we still avoid even
1871 		 * the subpool reservations.
1872 		 */
1873 		if (avoid_reserve)
1874 			gbl_chg = 1;
1875 	}
1876 
1877 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1878 	if (ret)
1879 		goto out_subpool_put;
1880 
1881 	spin_lock(&hugetlb_lock);
1882 	/*
1883 	 * glb_chg is passed to indicate whether or not a page must be taken
1884 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1885 	 * a reservation exists for the allocation.
1886 	 */
1887 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1888 	if (!page) {
1889 		spin_unlock(&hugetlb_lock);
1890 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1891 		if (!page)
1892 			goto out_uncharge_cgroup;
1893 
1894 		spin_lock(&hugetlb_lock);
1895 		list_move(&page->lru, &h->hugepage_activelist);
1896 		/* Fall through */
1897 	}
1898 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1899 	spin_unlock(&hugetlb_lock);
1900 
1901 	set_page_private(page, (unsigned long)spool);
1902 
1903 	map_commit = vma_commit_reservation(h, vma, addr);
1904 	if (unlikely(map_chg > map_commit)) {
1905 		/*
1906 		 * The page was added to the reservation map between
1907 		 * vma_needs_reservation and vma_commit_reservation.
1908 		 * This indicates a race with hugetlb_reserve_pages.
1909 		 * Adjust for the subpool count incremented above AND
1910 		 * in hugetlb_reserve_pages for the same page.  Also,
1911 		 * the reservation count added in hugetlb_reserve_pages
1912 		 * no longer applies.
1913 		 */
1914 		long rsv_adjust;
1915 
1916 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1917 		hugetlb_acct_memory(h, -rsv_adjust);
1918 	}
1919 	return page;
1920 
1921 out_uncharge_cgroup:
1922 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1923 out_subpool_put:
1924 	if (map_chg || avoid_reserve)
1925 		hugepage_subpool_put_pages(spool, 1);
1926 	vma_end_reservation(h, vma, addr);
1927 	return ERR_PTR(-ENOSPC);
1928 }
1929 
1930 /*
1931  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1932  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1933  * where no ERR_VALUE is expected to be returned.
1934  */
1935 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1936 				unsigned long addr, int avoid_reserve)
1937 {
1938 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1939 	if (IS_ERR(page))
1940 		page = NULL;
1941 	return page;
1942 }
1943 
1944 int __weak alloc_bootmem_huge_page(struct hstate *h)
1945 {
1946 	struct huge_bootmem_page *m;
1947 	int nr_nodes, node;
1948 
1949 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1950 		void *addr;
1951 
1952 		addr = memblock_virt_alloc_try_nid_nopanic(
1953 				huge_page_size(h), huge_page_size(h),
1954 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1955 		if (addr) {
1956 			/*
1957 			 * Use the beginning of the huge page to store the
1958 			 * huge_bootmem_page struct (until gather_bootmem
1959 			 * puts them into the mem_map).
1960 			 */
1961 			m = addr;
1962 			goto found;
1963 		}
1964 	}
1965 	return 0;
1966 
1967 found:
1968 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1969 	/* Put them into a private list first because mem_map is not up yet */
1970 	list_add(&m->list, &huge_boot_pages);
1971 	m->hstate = h;
1972 	return 1;
1973 }
1974 
1975 static void __init prep_compound_huge_page(struct page *page, int order)
1976 {
1977 	if (unlikely(order > (MAX_ORDER - 1)))
1978 		prep_compound_gigantic_page(page, order);
1979 	else
1980 		prep_compound_page(page, order);
1981 }
1982 
1983 /* Put bootmem huge pages into the standard lists after mem_map is up */
1984 static void __init gather_bootmem_prealloc(void)
1985 {
1986 	struct huge_bootmem_page *m;
1987 
1988 	list_for_each_entry(m, &huge_boot_pages, list) {
1989 		struct hstate *h = m->hstate;
1990 		struct page *page;
1991 
1992 #ifdef CONFIG_HIGHMEM
1993 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1994 		memblock_free_late(__pa(m),
1995 				   sizeof(struct huge_bootmem_page));
1996 #else
1997 		page = virt_to_page(m);
1998 #endif
1999 		WARN_ON(page_count(page) != 1);
2000 		prep_compound_huge_page(page, h->order);
2001 		WARN_ON(PageReserved(page));
2002 		prep_new_huge_page(h, page, page_to_nid(page));
2003 		/*
2004 		 * If we had gigantic hugepages allocated at boot time, we need
2005 		 * to restore the 'stolen' pages to totalram_pages in order to
2006 		 * fix confusing memory reports from free(1) and another
2007 		 * side-effects, like CommitLimit going negative.
2008 		 */
2009 		if (hstate_is_gigantic(h))
2010 			adjust_managed_page_count(page, 1 << h->order);
2011 	}
2012 }
2013 
2014 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2015 {
2016 	unsigned long i;
2017 
2018 	for (i = 0; i < h->max_huge_pages; ++i) {
2019 		if (hstate_is_gigantic(h)) {
2020 			if (!alloc_bootmem_huge_page(h))
2021 				break;
2022 		} else if (!alloc_fresh_huge_page(h,
2023 					 &node_states[N_MEMORY]))
2024 			break;
2025 	}
2026 	h->max_huge_pages = i;
2027 }
2028 
2029 static void __init hugetlb_init_hstates(void)
2030 {
2031 	struct hstate *h;
2032 
2033 	for_each_hstate(h) {
2034 		if (minimum_order > huge_page_order(h))
2035 			minimum_order = huge_page_order(h);
2036 
2037 		/* oversize hugepages were init'ed in early boot */
2038 		if (!hstate_is_gigantic(h))
2039 			hugetlb_hstate_alloc_pages(h);
2040 	}
2041 	VM_BUG_ON(minimum_order == UINT_MAX);
2042 }
2043 
2044 static char * __init memfmt(char *buf, unsigned long n)
2045 {
2046 	if (n >= (1UL << 30))
2047 		sprintf(buf, "%lu GB", n >> 30);
2048 	else if (n >= (1UL << 20))
2049 		sprintf(buf, "%lu MB", n >> 20);
2050 	else
2051 		sprintf(buf, "%lu KB", n >> 10);
2052 	return buf;
2053 }
2054 
2055 static void __init report_hugepages(void)
2056 {
2057 	struct hstate *h;
2058 
2059 	for_each_hstate(h) {
2060 		char buf[32];
2061 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2062 			memfmt(buf, huge_page_size(h)),
2063 			h->free_huge_pages);
2064 	}
2065 }
2066 
2067 #ifdef CONFIG_HIGHMEM
2068 static void try_to_free_low(struct hstate *h, unsigned long count,
2069 						nodemask_t *nodes_allowed)
2070 {
2071 	int i;
2072 
2073 	if (hstate_is_gigantic(h))
2074 		return;
2075 
2076 	for_each_node_mask(i, *nodes_allowed) {
2077 		struct page *page, *next;
2078 		struct list_head *freel = &h->hugepage_freelists[i];
2079 		list_for_each_entry_safe(page, next, freel, lru) {
2080 			if (count >= h->nr_huge_pages)
2081 				return;
2082 			if (PageHighMem(page))
2083 				continue;
2084 			list_del(&page->lru);
2085 			update_and_free_page(h, page);
2086 			h->free_huge_pages--;
2087 			h->free_huge_pages_node[page_to_nid(page)]--;
2088 		}
2089 	}
2090 }
2091 #else
2092 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2093 						nodemask_t *nodes_allowed)
2094 {
2095 }
2096 #endif
2097 
2098 /*
2099  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2100  * balanced by operating on them in a round-robin fashion.
2101  * Returns 1 if an adjustment was made.
2102  */
2103 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2104 				int delta)
2105 {
2106 	int nr_nodes, node;
2107 
2108 	VM_BUG_ON(delta != -1 && delta != 1);
2109 
2110 	if (delta < 0) {
2111 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2112 			if (h->surplus_huge_pages_node[node])
2113 				goto found;
2114 		}
2115 	} else {
2116 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2117 			if (h->surplus_huge_pages_node[node] <
2118 					h->nr_huge_pages_node[node])
2119 				goto found;
2120 		}
2121 	}
2122 	return 0;
2123 
2124 found:
2125 	h->surplus_huge_pages += delta;
2126 	h->surplus_huge_pages_node[node] += delta;
2127 	return 1;
2128 }
2129 
2130 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2131 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2132 						nodemask_t *nodes_allowed)
2133 {
2134 	unsigned long min_count, ret;
2135 
2136 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2137 		return h->max_huge_pages;
2138 
2139 	/*
2140 	 * Increase the pool size
2141 	 * First take pages out of surplus state.  Then make up the
2142 	 * remaining difference by allocating fresh huge pages.
2143 	 *
2144 	 * We might race with alloc_buddy_huge_page() here and be unable
2145 	 * to convert a surplus huge page to a normal huge page. That is
2146 	 * not critical, though, it just means the overall size of the
2147 	 * pool might be one hugepage larger than it needs to be, but
2148 	 * within all the constraints specified by the sysctls.
2149 	 */
2150 	spin_lock(&hugetlb_lock);
2151 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2152 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2153 			break;
2154 	}
2155 
2156 	while (count > persistent_huge_pages(h)) {
2157 		/*
2158 		 * If this allocation races such that we no longer need the
2159 		 * page, free_huge_page will handle it by freeing the page
2160 		 * and reducing the surplus.
2161 		 */
2162 		spin_unlock(&hugetlb_lock);
2163 		if (hstate_is_gigantic(h))
2164 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2165 		else
2166 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2167 		spin_lock(&hugetlb_lock);
2168 		if (!ret)
2169 			goto out;
2170 
2171 		/* Bail for signals. Probably ctrl-c from user */
2172 		if (signal_pending(current))
2173 			goto out;
2174 	}
2175 
2176 	/*
2177 	 * Decrease the pool size
2178 	 * First return free pages to the buddy allocator (being careful
2179 	 * to keep enough around to satisfy reservations).  Then place
2180 	 * pages into surplus state as needed so the pool will shrink
2181 	 * to the desired size as pages become free.
2182 	 *
2183 	 * By placing pages into the surplus state independent of the
2184 	 * overcommit value, we are allowing the surplus pool size to
2185 	 * exceed overcommit. There are few sane options here. Since
2186 	 * alloc_buddy_huge_page() is checking the global counter,
2187 	 * though, we'll note that we're not allowed to exceed surplus
2188 	 * and won't grow the pool anywhere else. Not until one of the
2189 	 * sysctls are changed, or the surplus pages go out of use.
2190 	 */
2191 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2192 	min_count = max(count, min_count);
2193 	try_to_free_low(h, min_count, nodes_allowed);
2194 	while (min_count < persistent_huge_pages(h)) {
2195 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2196 			break;
2197 		cond_resched_lock(&hugetlb_lock);
2198 	}
2199 	while (count < persistent_huge_pages(h)) {
2200 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2201 			break;
2202 	}
2203 out:
2204 	ret = persistent_huge_pages(h);
2205 	spin_unlock(&hugetlb_lock);
2206 	return ret;
2207 }
2208 
2209 #define HSTATE_ATTR_RO(_name) \
2210 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2211 
2212 #define HSTATE_ATTR(_name) \
2213 	static struct kobj_attribute _name##_attr = \
2214 		__ATTR(_name, 0644, _name##_show, _name##_store)
2215 
2216 static struct kobject *hugepages_kobj;
2217 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2218 
2219 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2220 
2221 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2222 {
2223 	int i;
2224 
2225 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2226 		if (hstate_kobjs[i] == kobj) {
2227 			if (nidp)
2228 				*nidp = NUMA_NO_NODE;
2229 			return &hstates[i];
2230 		}
2231 
2232 	return kobj_to_node_hstate(kobj, nidp);
2233 }
2234 
2235 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2236 					struct kobj_attribute *attr, char *buf)
2237 {
2238 	struct hstate *h;
2239 	unsigned long nr_huge_pages;
2240 	int nid;
2241 
2242 	h = kobj_to_hstate(kobj, &nid);
2243 	if (nid == NUMA_NO_NODE)
2244 		nr_huge_pages = h->nr_huge_pages;
2245 	else
2246 		nr_huge_pages = h->nr_huge_pages_node[nid];
2247 
2248 	return sprintf(buf, "%lu\n", nr_huge_pages);
2249 }
2250 
2251 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2252 					   struct hstate *h, int nid,
2253 					   unsigned long count, size_t len)
2254 {
2255 	int err;
2256 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2257 
2258 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2259 		err = -EINVAL;
2260 		goto out;
2261 	}
2262 
2263 	if (nid == NUMA_NO_NODE) {
2264 		/*
2265 		 * global hstate attribute
2266 		 */
2267 		if (!(obey_mempolicy &&
2268 				init_nodemask_of_mempolicy(nodes_allowed))) {
2269 			NODEMASK_FREE(nodes_allowed);
2270 			nodes_allowed = &node_states[N_MEMORY];
2271 		}
2272 	} else if (nodes_allowed) {
2273 		/*
2274 		 * per node hstate attribute: adjust count to global,
2275 		 * but restrict alloc/free to the specified node.
2276 		 */
2277 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2278 		init_nodemask_of_node(nodes_allowed, nid);
2279 	} else
2280 		nodes_allowed = &node_states[N_MEMORY];
2281 
2282 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2283 
2284 	if (nodes_allowed != &node_states[N_MEMORY])
2285 		NODEMASK_FREE(nodes_allowed);
2286 
2287 	return len;
2288 out:
2289 	NODEMASK_FREE(nodes_allowed);
2290 	return err;
2291 }
2292 
2293 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2294 					 struct kobject *kobj, const char *buf,
2295 					 size_t len)
2296 {
2297 	struct hstate *h;
2298 	unsigned long count;
2299 	int nid;
2300 	int err;
2301 
2302 	err = kstrtoul(buf, 10, &count);
2303 	if (err)
2304 		return err;
2305 
2306 	h = kobj_to_hstate(kobj, &nid);
2307 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2308 }
2309 
2310 static ssize_t nr_hugepages_show(struct kobject *kobj,
2311 				       struct kobj_attribute *attr, char *buf)
2312 {
2313 	return nr_hugepages_show_common(kobj, attr, buf);
2314 }
2315 
2316 static ssize_t nr_hugepages_store(struct kobject *kobj,
2317 	       struct kobj_attribute *attr, const char *buf, size_t len)
2318 {
2319 	return nr_hugepages_store_common(false, kobj, buf, len);
2320 }
2321 HSTATE_ATTR(nr_hugepages);
2322 
2323 #ifdef CONFIG_NUMA
2324 
2325 /*
2326  * hstate attribute for optionally mempolicy-based constraint on persistent
2327  * huge page alloc/free.
2328  */
2329 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2330 				       struct kobj_attribute *attr, char *buf)
2331 {
2332 	return nr_hugepages_show_common(kobj, attr, buf);
2333 }
2334 
2335 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2336 	       struct kobj_attribute *attr, const char *buf, size_t len)
2337 {
2338 	return nr_hugepages_store_common(true, kobj, buf, len);
2339 }
2340 HSTATE_ATTR(nr_hugepages_mempolicy);
2341 #endif
2342 
2343 
2344 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2345 					struct kobj_attribute *attr, char *buf)
2346 {
2347 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2348 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2349 }
2350 
2351 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2352 		struct kobj_attribute *attr, const char *buf, size_t count)
2353 {
2354 	int err;
2355 	unsigned long input;
2356 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2357 
2358 	if (hstate_is_gigantic(h))
2359 		return -EINVAL;
2360 
2361 	err = kstrtoul(buf, 10, &input);
2362 	if (err)
2363 		return err;
2364 
2365 	spin_lock(&hugetlb_lock);
2366 	h->nr_overcommit_huge_pages = input;
2367 	spin_unlock(&hugetlb_lock);
2368 
2369 	return count;
2370 }
2371 HSTATE_ATTR(nr_overcommit_hugepages);
2372 
2373 static ssize_t free_hugepages_show(struct kobject *kobj,
2374 					struct kobj_attribute *attr, char *buf)
2375 {
2376 	struct hstate *h;
2377 	unsigned long free_huge_pages;
2378 	int nid;
2379 
2380 	h = kobj_to_hstate(kobj, &nid);
2381 	if (nid == NUMA_NO_NODE)
2382 		free_huge_pages = h->free_huge_pages;
2383 	else
2384 		free_huge_pages = h->free_huge_pages_node[nid];
2385 
2386 	return sprintf(buf, "%lu\n", free_huge_pages);
2387 }
2388 HSTATE_ATTR_RO(free_hugepages);
2389 
2390 static ssize_t resv_hugepages_show(struct kobject *kobj,
2391 					struct kobj_attribute *attr, char *buf)
2392 {
2393 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2394 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2395 }
2396 HSTATE_ATTR_RO(resv_hugepages);
2397 
2398 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2399 					struct kobj_attribute *attr, char *buf)
2400 {
2401 	struct hstate *h;
2402 	unsigned long surplus_huge_pages;
2403 	int nid;
2404 
2405 	h = kobj_to_hstate(kobj, &nid);
2406 	if (nid == NUMA_NO_NODE)
2407 		surplus_huge_pages = h->surplus_huge_pages;
2408 	else
2409 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2410 
2411 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2412 }
2413 HSTATE_ATTR_RO(surplus_hugepages);
2414 
2415 static struct attribute *hstate_attrs[] = {
2416 	&nr_hugepages_attr.attr,
2417 	&nr_overcommit_hugepages_attr.attr,
2418 	&free_hugepages_attr.attr,
2419 	&resv_hugepages_attr.attr,
2420 	&surplus_hugepages_attr.attr,
2421 #ifdef CONFIG_NUMA
2422 	&nr_hugepages_mempolicy_attr.attr,
2423 #endif
2424 	NULL,
2425 };
2426 
2427 static struct attribute_group hstate_attr_group = {
2428 	.attrs = hstate_attrs,
2429 };
2430 
2431 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2432 				    struct kobject **hstate_kobjs,
2433 				    struct attribute_group *hstate_attr_group)
2434 {
2435 	int retval;
2436 	int hi = hstate_index(h);
2437 
2438 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2439 	if (!hstate_kobjs[hi])
2440 		return -ENOMEM;
2441 
2442 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2443 	if (retval)
2444 		kobject_put(hstate_kobjs[hi]);
2445 
2446 	return retval;
2447 }
2448 
2449 static void __init hugetlb_sysfs_init(void)
2450 {
2451 	struct hstate *h;
2452 	int err;
2453 
2454 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2455 	if (!hugepages_kobj)
2456 		return;
2457 
2458 	for_each_hstate(h) {
2459 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2460 					 hstate_kobjs, &hstate_attr_group);
2461 		if (err)
2462 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2463 	}
2464 }
2465 
2466 #ifdef CONFIG_NUMA
2467 
2468 /*
2469  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2470  * with node devices in node_devices[] using a parallel array.  The array
2471  * index of a node device or _hstate == node id.
2472  * This is here to avoid any static dependency of the node device driver, in
2473  * the base kernel, on the hugetlb module.
2474  */
2475 struct node_hstate {
2476 	struct kobject		*hugepages_kobj;
2477 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2478 };
2479 static struct node_hstate node_hstates[MAX_NUMNODES];
2480 
2481 /*
2482  * A subset of global hstate attributes for node devices
2483  */
2484 static struct attribute *per_node_hstate_attrs[] = {
2485 	&nr_hugepages_attr.attr,
2486 	&free_hugepages_attr.attr,
2487 	&surplus_hugepages_attr.attr,
2488 	NULL,
2489 };
2490 
2491 static struct attribute_group per_node_hstate_attr_group = {
2492 	.attrs = per_node_hstate_attrs,
2493 };
2494 
2495 /*
2496  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2497  * Returns node id via non-NULL nidp.
2498  */
2499 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2500 {
2501 	int nid;
2502 
2503 	for (nid = 0; nid < nr_node_ids; nid++) {
2504 		struct node_hstate *nhs = &node_hstates[nid];
2505 		int i;
2506 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2507 			if (nhs->hstate_kobjs[i] == kobj) {
2508 				if (nidp)
2509 					*nidp = nid;
2510 				return &hstates[i];
2511 			}
2512 	}
2513 
2514 	BUG();
2515 	return NULL;
2516 }
2517 
2518 /*
2519  * Unregister hstate attributes from a single node device.
2520  * No-op if no hstate attributes attached.
2521  */
2522 static void hugetlb_unregister_node(struct node *node)
2523 {
2524 	struct hstate *h;
2525 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2526 
2527 	if (!nhs->hugepages_kobj)
2528 		return;		/* no hstate attributes */
2529 
2530 	for_each_hstate(h) {
2531 		int idx = hstate_index(h);
2532 		if (nhs->hstate_kobjs[idx]) {
2533 			kobject_put(nhs->hstate_kobjs[idx]);
2534 			nhs->hstate_kobjs[idx] = NULL;
2535 		}
2536 	}
2537 
2538 	kobject_put(nhs->hugepages_kobj);
2539 	nhs->hugepages_kobj = NULL;
2540 }
2541 
2542 /*
2543  * hugetlb module exit:  unregister hstate attributes from node devices
2544  * that have them.
2545  */
2546 static void hugetlb_unregister_all_nodes(void)
2547 {
2548 	int nid;
2549 
2550 	/*
2551 	 * disable node device registrations.
2552 	 */
2553 	register_hugetlbfs_with_node(NULL, NULL);
2554 
2555 	/*
2556 	 * remove hstate attributes from any nodes that have them.
2557 	 */
2558 	for (nid = 0; nid < nr_node_ids; nid++)
2559 		hugetlb_unregister_node(node_devices[nid]);
2560 }
2561 
2562 /*
2563  * Register hstate attributes for a single node device.
2564  * No-op if attributes already registered.
2565  */
2566 static void hugetlb_register_node(struct node *node)
2567 {
2568 	struct hstate *h;
2569 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2570 	int err;
2571 
2572 	if (nhs->hugepages_kobj)
2573 		return;		/* already allocated */
2574 
2575 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2576 							&node->dev.kobj);
2577 	if (!nhs->hugepages_kobj)
2578 		return;
2579 
2580 	for_each_hstate(h) {
2581 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2582 						nhs->hstate_kobjs,
2583 						&per_node_hstate_attr_group);
2584 		if (err) {
2585 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2586 				h->name, node->dev.id);
2587 			hugetlb_unregister_node(node);
2588 			break;
2589 		}
2590 	}
2591 }
2592 
2593 /*
2594  * hugetlb init time:  register hstate attributes for all registered node
2595  * devices of nodes that have memory.  All on-line nodes should have
2596  * registered their associated device by this time.
2597  */
2598 static void __init hugetlb_register_all_nodes(void)
2599 {
2600 	int nid;
2601 
2602 	for_each_node_state(nid, N_MEMORY) {
2603 		struct node *node = node_devices[nid];
2604 		if (node->dev.id == nid)
2605 			hugetlb_register_node(node);
2606 	}
2607 
2608 	/*
2609 	 * Let the node device driver know we're here so it can
2610 	 * [un]register hstate attributes on node hotplug.
2611 	 */
2612 	register_hugetlbfs_with_node(hugetlb_register_node,
2613 				     hugetlb_unregister_node);
2614 }
2615 #else	/* !CONFIG_NUMA */
2616 
2617 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2618 {
2619 	BUG();
2620 	if (nidp)
2621 		*nidp = -1;
2622 	return NULL;
2623 }
2624 
2625 static void hugetlb_unregister_all_nodes(void) { }
2626 
2627 static void hugetlb_register_all_nodes(void) { }
2628 
2629 #endif
2630 
2631 static void __exit hugetlb_exit(void)
2632 {
2633 	struct hstate *h;
2634 
2635 	hugetlb_unregister_all_nodes();
2636 
2637 	for_each_hstate(h) {
2638 		kobject_put(hstate_kobjs[hstate_index(h)]);
2639 	}
2640 
2641 	kobject_put(hugepages_kobj);
2642 	kfree(hugetlb_fault_mutex_table);
2643 }
2644 module_exit(hugetlb_exit);
2645 
2646 static int __init hugetlb_init(void)
2647 {
2648 	int i;
2649 
2650 	if (!hugepages_supported())
2651 		return 0;
2652 
2653 	if (!size_to_hstate(default_hstate_size)) {
2654 		default_hstate_size = HPAGE_SIZE;
2655 		if (!size_to_hstate(default_hstate_size))
2656 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2657 	}
2658 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2659 	if (default_hstate_max_huge_pages)
2660 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2661 
2662 	hugetlb_init_hstates();
2663 	gather_bootmem_prealloc();
2664 	report_hugepages();
2665 
2666 	hugetlb_sysfs_init();
2667 	hugetlb_register_all_nodes();
2668 	hugetlb_cgroup_file_init();
2669 
2670 #ifdef CONFIG_SMP
2671 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2672 #else
2673 	num_fault_mutexes = 1;
2674 #endif
2675 	hugetlb_fault_mutex_table =
2676 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2677 	BUG_ON(!hugetlb_fault_mutex_table);
2678 
2679 	for (i = 0; i < num_fault_mutexes; i++)
2680 		mutex_init(&hugetlb_fault_mutex_table[i]);
2681 	return 0;
2682 }
2683 module_init(hugetlb_init);
2684 
2685 /* Should be called on processing a hugepagesz=... option */
2686 void __init hugetlb_add_hstate(unsigned order)
2687 {
2688 	struct hstate *h;
2689 	unsigned long i;
2690 
2691 	if (size_to_hstate(PAGE_SIZE << order)) {
2692 		pr_warning("hugepagesz= specified twice, ignoring\n");
2693 		return;
2694 	}
2695 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2696 	BUG_ON(order == 0);
2697 	h = &hstates[hugetlb_max_hstate++];
2698 	h->order = order;
2699 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2700 	h->nr_huge_pages = 0;
2701 	h->free_huge_pages = 0;
2702 	for (i = 0; i < MAX_NUMNODES; ++i)
2703 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2704 	INIT_LIST_HEAD(&h->hugepage_activelist);
2705 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2706 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2707 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2708 					huge_page_size(h)/1024);
2709 
2710 	parsed_hstate = h;
2711 }
2712 
2713 static int __init hugetlb_nrpages_setup(char *s)
2714 {
2715 	unsigned long *mhp;
2716 	static unsigned long *last_mhp;
2717 
2718 	/*
2719 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2720 	 * so this hugepages= parameter goes to the "default hstate".
2721 	 */
2722 	if (!hugetlb_max_hstate)
2723 		mhp = &default_hstate_max_huge_pages;
2724 	else
2725 		mhp = &parsed_hstate->max_huge_pages;
2726 
2727 	if (mhp == last_mhp) {
2728 		pr_warning("hugepages= specified twice without "
2729 			   "interleaving hugepagesz=, ignoring\n");
2730 		return 1;
2731 	}
2732 
2733 	if (sscanf(s, "%lu", mhp) <= 0)
2734 		*mhp = 0;
2735 
2736 	/*
2737 	 * Global state is always initialized later in hugetlb_init.
2738 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2739 	 * use the bootmem allocator.
2740 	 */
2741 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2742 		hugetlb_hstate_alloc_pages(parsed_hstate);
2743 
2744 	last_mhp = mhp;
2745 
2746 	return 1;
2747 }
2748 __setup("hugepages=", hugetlb_nrpages_setup);
2749 
2750 static int __init hugetlb_default_setup(char *s)
2751 {
2752 	default_hstate_size = memparse(s, &s);
2753 	return 1;
2754 }
2755 __setup("default_hugepagesz=", hugetlb_default_setup);
2756 
2757 static unsigned int cpuset_mems_nr(unsigned int *array)
2758 {
2759 	int node;
2760 	unsigned int nr = 0;
2761 
2762 	for_each_node_mask(node, cpuset_current_mems_allowed)
2763 		nr += array[node];
2764 
2765 	return nr;
2766 }
2767 
2768 #ifdef CONFIG_SYSCTL
2769 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2770 			 struct ctl_table *table, int write,
2771 			 void __user *buffer, size_t *length, loff_t *ppos)
2772 {
2773 	struct hstate *h = &default_hstate;
2774 	unsigned long tmp = h->max_huge_pages;
2775 	int ret;
2776 
2777 	if (!hugepages_supported())
2778 		return -ENOTSUPP;
2779 
2780 	table->data = &tmp;
2781 	table->maxlen = sizeof(unsigned long);
2782 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2783 	if (ret)
2784 		goto out;
2785 
2786 	if (write)
2787 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2788 						  NUMA_NO_NODE, tmp, *length);
2789 out:
2790 	return ret;
2791 }
2792 
2793 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2794 			  void __user *buffer, size_t *length, loff_t *ppos)
2795 {
2796 
2797 	return hugetlb_sysctl_handler_common(false, table, write,
2798 							buffer, length, ppos);
2799 }
2800 
2801 #ifdef CONFIG_NUMA
2802 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2803 			  void __user *buffer, size_t *length, loff_t *ppos)
2804 {
2805 	return hugetlb_sysctl_handler_common(true, table, write,
2806 							buffer, length, ppos);
2807 }
2808 #endif /* CONFIG_NUMA */
2809 
2810 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2811 			void __user *buffer,
2812 			size_t *length, loff_t *ppos)
2813 {
2814 	struct hstate *h = &default_hstate;
2815 	unsigned long tmp;
2816 	int ret;
2817 
2818 	if (!hugepages_supported())
2819 		return -ENOTSUPP;
2820 
2821 	tmp = h->nr_overcommit_huge_pages;
2822 
2823 	if (write && hstate_is_gigantic(h))
2824 		return -EINVAL;
2825 
2826 	table->data = &tmp;
2827 	table->maxlen = sizeof(unsigned long);
2828 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2829 	if (ret)
2830 		goto out;
2831 
2832 	if (write) {
2833 		spin_lock(&hugetlb_lock);
2834 		h->nr_overcommit_huge_pages = tmp;
2835 		spin_unlock(&hugetlb_lock);
2836 	}
2837 out:
2838 	return ret;
2839 }
2840 
2841 #endif /* CONFIG_SYSCTL */
2842 
2843 void hugetlb_report_meminfo(struct seq_file *m)
2844 {
2845 	struct hstate *h = &default_hstate;
2846 	if (!hugepages_supported())
2847 		return;
2848 	seq_printf(m,
2849 			"HugePages_Total:   %5lu\n"
2850 			"HugePages_Free:    %5lu\n"
2851 			"HugePages_Rsvd:    %5lu\n"
2852 			"HugePages_Surp:    %5lu\n"
2853 			"Hugepagesize:   %8lu kB\n",
2854 			h->nr_huge_pages,
2855 			h->free_huge_pages,
2856 			h->resv_huge_pages,
2857 			h->surplus_huge_pages,
2858 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2859 }
2860 
2861 int hugetlb_report_node_meminfo(int nid, char *buf)
2862 {
2863 	struct hstate *h = &default_hstate;
2864 	if (!hugepages_supported())
2865 		return 0;
2866 	return sprintf(buf,
2867 		"Node %d HugePages_Total: %5u\n"
2868 		"Node %d HugePages_Free:  %5u\n"
2869 		"Node %d HugePages_Surp:  %5u\n",
2870 		nid, h->nr_huge_pages_node[nid],
2871 		nid, h->free_huge_pages_node[nid],
2872 		nid, h->surplus_huge_pages_node[nid]);
2873 }
2874 
2875 void hugetlb_show_meminfo(void)
2876 {
2877 	struct hstate *h;
2878 	int nid;
2879 
2880 	if (!hugepages_supported())
2881 		return;
2882 
2883 	for_each_node_state(nid, N_MEMORY)
2884 		for_each_hstate(h)
2885 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2886 				nid,
2887 				h->nr_huge_pages_node[nid],
2888 				h->free_huge_pages_node[nid],
2889 				h->surplus_huge_pages_node[nid],
2890 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2891 }
2892 
2893 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2894 {
2895 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2896 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2897 }
2898 
2899 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2900 unsigned long hugetlb_total_pages(void)
2901 {
2902 	struct hstate *h;
2903 	unsigned long nr_total_pages = 0;
2904 
2905 	for_each_hstate(h)
2906 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2907 	return nr_total_pages;
2908 }
2909 
2910 static int hugetlb_acct_memory(struct hstate *h, long delta)
2911 {
2912 	int ret = -ENOMEM;
2913 
2914 	spin_lock(&hugetlb_lock);
2915 	/*
2916 	 * When cpuset is configured, it breaks the strict hugetlb page
2917 	 * reservation as the accounting is done on a global variable. Such
2918 	 * reservation is completely rubbish in the presence of cpuset because
2919 	 * the reservation is not checked against page availability for the
2920 	 * current cpuset. Application can still potentially OOM'ed by kernel
2921 	 * with lack of free htlb page in cpuset that the task is in.
2922 	 * Attempt to enforce strict accounting with cpuset is almost
2923 	 * impossible (or too ugly) because cpuset is too fluid that
2924 	 * task or memory node can be dynamically moved between cpusets.
2925 	 *
2926 	 * The change of semantics for shared hugetlb mapping with cpuset is
2927 	 * undesirable. However, in order to preserve some of the semantics,
2928 	 * we fall back to check against current free page availability as
2929 	 * a best attempt and hopefully to minimize the impact of changing
2930 	 * semantics that cpuset has.
2931 	 */
2932 	if (delta > 0) {
2933 		if (gather_surplus_pages(h, delta) < 0)
2934 			goto out;
2935 
2936 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2937 			return_unused_surplus_pages(h, delta);
2938 			goto out;
2939 		}
2940 	}
2941 
2942 	ret = 0;
2943 	if (delta < 0)
2944 		return_unused_surplus_pages(h, (unsigned long) -delta);
2945 
2946 out:
2947 	spin_unlock(&hugetlb_lock);
2948 	return ret;
2949 }
2950 
2951 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2952 {
2953 	struct resv_map *resv = vma_resv_map(vma);
2954 
2955 	/*
2956 	 * This new VMA should share its siblings reservation map if present.
2957 	 * The VMA will only ever have a valid reservation map pointer where
2958 	 * it is being copied for another still existing VMA.  As that VMA
2959 	 * has a reference to the reservation map it cannot disappear until
2960 	 * after this open call completes.  It is therefore safe to take a
2961 	 * new reference here without additional locking.
2962 	 */
2963 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2964 		kref_get(&resv->refs);
2965 }
2966 
2967 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2968 {
2969 	struct hstate *h = hstate_vma(vma);
2970 	struct resv_map *resv = vma_resv_map(vma);
2971 	struct hugepage_subpool *spool = subpool_vma(vma);
2972 	unsigned long reserve, start, end;
2973 	long gbl_reserve;
2974 
2975 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2976 		return;
2977 
2978 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2979 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2980 
2981 	reserve = (end - start) - region_count(resv, start, end);
2982 
2983 	kref_put(&resv->refs, resv_map_release);
2984 
2985 	if (reserve) {
2986 		/*
2987 		 * Decrement reserve counts.  The global reserve count may be
2988 		 * adjusted if the subpool has a minimum size.
2989 		 */
2990 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2991 		hugetlb_acct_memory(h, -gbl_reserve);
2992 	}
2993 }
2994 
2995 /*
2996  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2997  * handle_mm_fault() to try to instantiate regular-sized pages in the
2998  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2999  * this far.
3000  */
3001 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3002 {
3003 	BUG();
3004 	return 0;
3005 }
3006 
3007 const struct vm_operations_struct hugetlb_vm_ops = {
3008 	.fault = hugetlb_vm_op_fault,
3009 	.open = hugetlb_vm_op_open,
3010 	.close = hugetlb_vm_op_close,
3011 };
3012 
3013 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3014 				int writable)
3015 {
3016 	pte_t entry;
3017 
3018 	if (writable) {
3019 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3020 					 vma->vm_page_prot)));
3021 	} else {
3022 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3023 					   vma->vm_page_prot));
3024 	}
3025 	entry = pte_mkyoung(entry);
3026 	entry = pte_mkhuge(entry);
3027 	entry = arch_make_huge_pte(entry, vma, page, writable);
3028 
3029 	return entry;
3030 }
3031 
3032 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3033 				   unsigned long address, pte_t *ptep)
3034 {
3035 	pte_t entry;
3036 
3037 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3038 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3039 		update_mmu_cache(vma, address, ptep);
3040 }
3041 
3042 static int is_hugetlb_entry_migration(pte_t pte)
3043 {
3044 	swp_entry_t swp;
3045 
3046 	if (huge_pte_none(pte) || pte_present(pte))
3047 		return 0;
3048 	swp = pte_to_swp_entry(pte);
3049 	if (non_swap_entry(swp) && is_migration_entry(swp))
3050 		return 1;
3051 	else
3052 		return 0;
3053 }
3054 
3055 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3056 {
3057 	swp_entry_t swp;
3058 
3059 	if (huge_pte_none(pte) || pte_present(pte))
3060 		return 0;
3061 	swp = pte_to_swp_entry(pte);
3062 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3063 		return 1;
3064 	else
3065 		return 0;
3066 }
3067 
3068 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3069 			    struct vm_area_struct *vma)
3070 {
3071 	pte_t *src_pte, *dst_pte, entry;
3072 	struct page *ptepage;
3073 	unsigned long addr;
3074 	int cow;
3075 	struct hstate *h = hstate_vma(vma);
3076 	unsigned long sz = huge_page_size(h);
3077 	unsigned long mmun_start;	/* For mmu_notifiers */
3078 	unsigned long mmun_end;		/* For mmu_notifiers */
3079 	int ret = 0;
3080 
3081 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3082 
3083 	mmun_start = vma->vm_start;
3084 	mmun_end = vma->vm_end;
3085 	if (cow)
3086 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3087 
3088 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3089 		spinlock_t *src_ptl, *dst_ptl;
3090 		src_pte = huge_pte_offset(src, addr);
3091 		if (!src_pte)
3092 			continue;
3093 		dst_pte = huge_pte_alloc(dst, addr, sz);
3094 		if (!dst_pte) {
3095 			ret = -ENOMEM;
3096 			break;
3097 		}
3098 
3099 		/* If the pagetables are shared don't copy or take references */
3100 		if (dst_pte == src_pte)
3101 			continue;
3102 
3103 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3104 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3105 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3106 		entry = huge_ptep_get(src_pte);
3107 		if (huge_pte_none(entry)) { /* skip none entry */
3108 			;
3109 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3110 				    is_hugetlb_entry_hwpoisoned(entry))) {
3111 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3112 
3113 			if (is_write_migration_entry(swp_entry) && cow) {
3114 				/*
3115 				 * COW mappings require pages in both
3116 				 * parent and child to be set to read.
3117 				 */
3118 				make_migration_entry_read(&swp_entry);
3119 				entry = swp_entry_to_pte(swp_entry);
3120 				set_huge_pte_at(src, addr, src_pte, entry);
3121 			}
3122 			set_huge_pte_at(dst, addr, dst_pte, entry);
3123 		} else {
3124 			if (cow) {
3125 				huge_ptep_set_wrprotect(src, addr, src_pte);
3126 				mmu_notifier_invalidate_range(src, mmun_start,
3127 								   mmun_end);
3128 			}
3129 			entry = huge_ptep_get(src_pte);
3130 			ptepage = pte_page(entry);
3131 			get_page(ptepage);
3132 			page_dup_rmap(ptepage);
3133 			set_huge_pte_at(dst, addr, dst_pte, entry);
3134 			hugetlb_count_add(pages_per_huge_page(h), dst);
3135 		}
3136 		spin_unlock(src_ptl);
3137 		spin_unlock(dst_ptl);
3138 	}
3139 
3140 	if (cow)
3141 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3142 
3143 	return ret;
3144 }
3145 
3146 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3147 			    unsigned long start, unsigned long end,
3148 			    struct page *ref_page)
3149 {
3150 	int force_flush = 0;
3151 	struct mm_struct *mm = vma->vm_mm;
3152 	unsigned long address;
3153 	pte_t *ptep;
3154 	pte_t pte;
3155 	spinlock_t *ptl;
3156 	struct page *page;
3157 	struct hstate *h = hstate_vma(vma);
3158 	unsigned long sz = huge_page_size(h);
3159 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3160 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3161 
3162 	WARN_ON(!is_vm_hugetlb_page(vma));
3163 	BUG_ON(start & ~huge_page_mask(h));
3164 	BUG_ON(end & ~huge_page_mask(h));
3165 
3166 	tlb_start_vma(tlb, vma);
3167 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3168 	address = start;
3169 again:
3170 	for (; address < end; address += sz) {
3171 		ptep = huge_pte_offset(mm, address);
3172 		if (!ptep)
3173 			continue;
3174 
3175 		ptl = huge_pte_lock(h, mm, ptep);
3176 		if (huge_pmd_unshare(mm, &address, ptep))
3177 			goto unlock;
3178 
3179 		pte = huge_ptep_get(ptep);
3180 		if (huge_pte_none(pte))
3181 			goto unlock;
3182 
3183 		/*
3184 		 * Migrating hugepage or HWPoisoned hugepage is already
3185 		 * unmapped and its refcount is dropped, so just clear pte here.
3186 		 */
3187 		if (unlikely(!pte_present(pte))) {
3188 			huge_pte_clear(mm, address, ptep);
3189 			goto unlock;
3190 		}
3191 
3192 		page = pte_page(pte);
3193 		/*
3194 		 * If a reference page is supplied, it is because a specific
3195 		 * page is being unmapped, not a range. Ensure the page we
3196 		 * are about to unmap is the actual page of interest.
3197 		 */
3198 		if (ref_page) {
3199 			if (page != ref_page)
3200 				goto unlock;
3201 
3202 			/*
3203 			 * Mark the VMA as having unmapped its page so that
3204 			 * future faults in this VMA will fail rather than
3205 			 * looking like data was lost
3206 			 */
3207 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3208 		}
3209 
3210 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3211 		tlb_remove_tlb_entry(tlb, ptep, address);
3212 		if (huge_pte_dirty(pte))
3213 			set_page_dirty(page);
3214 
3215 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3216 		page_remove_rmap(page);
3217 		force_flush = !__tlb_remove_page(tlb, page);
3218 		if (force_flush) {
3219 			address += sz;
3220 			spin_unlock(ptl);
3221 			break;
3222 		}
3223 		/* Bail out after unmapping reference page if supplied */
3224 		if (ref_page) {
3225 			spin_unlock(ptl);
3226 			break;
3227 		}
3228 unlock:
3229 		spin_unlock(ptl);
3230 	}
3231 	/*
3232 	 * mmu_gather ran out of room to batch pages, we break out of
3233 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3234 	 * and page-free while holding it.
3235 	 */
3236 	if (force_flush) {
3237 		force_flush = 0;
3238 		tlb_flush_mmu(tlb);
3239 		if (address < end && !ref_page)
3240 			goto again;
3241 	}
3242 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3243 	tlb_end_vma(tlb, vma);
3244 }
3245 
3246 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3247 			  struct vm_area_struct *vma, unsigned long start,
3248 			  unsigned long end, struct page *ref_page)
3249 {
3250 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3251 
3252 	/*
3253 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3254 	 * test will fail on a vma being torn down, and not grab a page table
3255 	 * on its way out.  We're lucky that the flag has such an appropriate
3256 	 * name, and can in fact be safely cleared here. We could clear it
3257 	 * before the __unmap_hugepage_range above, but all that's necessary
3258 	 * is to clear it before releasing the i_mmap_rwsem. This works
3259 	 * because in the context this is called, the VMA is about to be
3260 	 * destroyed and the i_mmap_rwsem is held.
3261 	 */
3262 	vma->vm_flags &= ~VM_MAYSHARE;
3263 }
3264 
3265 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3266 			  unsigned long end, struct page *ref_page)
3267 {
3268 	struct mm_struct *mm;
3269 	struct mmu_gather tlb;
3270 
3271 	mm = vma->vm_mm;
3272 
3273 	tlb_gather_mmu(&tlb, mm, start, end);
3274 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3275 	tlb_finish_mmu(&tlb, start, end);
3276 }
3277 
3278 /*
3279  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3280  * mappping it owns the reserve page for. The intention is to unmap the page
3281  * from other VMAs and let the children be SIGKILLed if they are faulting the
3282  * same region.
3283  */
3284 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3285 			      struct page *page, unsigned long address)
3286 {
3287 	struct hstate *h = hstate_vma(vma);
3288 	struct vm_area_struct *iter_vma;
3289 	struct address_space *mapping;
3290 	pgoff_t pgoff;
3291 
3292 	/*
3293 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3294 	 * from page cache lookup which is in HPAGE_SIZE units.
3295 	 */
3296 	address = address & huge_page_mask(h);
3297 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3298 			vma->vm_pgoff;
3299 	mapping = file_inode(vma->vm_file)->i_mapping;
3300 
3301 	/*
3302 	 * Take the mapping lock for the duration of the table walk. As
3303 	 * this mapping should be shared between all the VMAs,
3304 	 * __unmap_hugepage_range() is called as the lock is already held
3305 	 */
3306 	i_mmap_lock_write(mapping);
3307 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3308 		/* Do not unmap the current VMA */
3309 		if (iter_vma == vma)
3310 			continue;
3311 
3312 		/*
3313 		 * Shared VMAs have their own reserves and do not affect
3314 		 * MAP_PRIVATE accounting but it is possible that a shared
3315 		 * VMA is using the same page so check and skip such VMAs.
3316 		 */
3317 		if (iter_vma->vm_flags & VM_MAYSHARE)
3318 			continue;
3319 
3320 		/*
3321 		 * Unmap the page from other VMAs without their own reserves.
3322 		 * They get marked to be SIGKILLed if they fault in these
3323 		 * areas. This is because a future no-page fault on this VMA
3324 		 * could insert a zeroed page instead of the data existing
3325 		 * from the time of fork. This would look like data corruption
3326 		 */
3327 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3328 			unmap_hugepage_range(iter_vma, address,
3329 					     address + huge_page_size(h), page);
3330 	}
3331 	i_mmap_unlock_write(mapping);
3332 }
3333 
3334 /*
3335  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3336  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3337  * cannot race with other handlers or page migration.
3338  * Keep the pte_same checks anyway to make transition from the mutex easier.
3339  */
3340 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3341 			unsigned long address, pte_t *ptep, pte_t pte,
3342 			struct page *pagecache_page, spinlock_t *ptl)
3343 {
3344 	struct hstate *h = hstate_vma(vma);
3345 	struct page *old_page, *new_page;
3346 	int ret = 0, outside_reserve = 0;
3347 	unsigned long mmun_start;	/* For mmu_notifiers */
3348 	unsigned long mmun_end;		/* For mmu_notifiers */
3349 
3350 	old_page = pte_page(pte);
3351 
3352 retry_avoidcopy:
3353 	/* If no-one else is actually using this page, avoid the copy
3354 	 * and just make the page writable */
3355 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3356 		page_move_anon_rmap(old_page, vma, address);
3357 		set_huge_ptep_writable(vma, address, ptep);
3358 		return 0;
3359 	}
3360 
3361 	/*
3362 	 * If the process that created a MAP_PRIVATE mapping is about to
3363 	 * perform a COW due to a shared page count, attempt to satisfy
3364 	 * the allocation without using the existing reserves. The pagecache
3365 	 * page is used to determine if the reserve at this address was
3366 	 * consumed or not. If reserves were used, a partial faulted mapping
3367 	 * at the time of fork() could consume its reserves on COW instead
3368 	 * of the full address range.
3369 	 */
3370 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3371 			old_page != pagecache_page)
3372 		outside_reserve = 1;
3373 
3374 	page_cache_get(old_page);
3375 
3376 	/*
3377 	 * Drop page table lock as buddy allocator may be called. It will
3378 	 * be acquired again before returning to the caller, as expected.
3379 	 */
3380 	spin_unlock(ptl);
3381 	new_page = alloc_huge_page(vma, address, outside_reserve);
3382 
3383 	if (IS_ERR(new_page)) {
3384 		/*
3385 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3386 		 * it is due to references held by a child and an insufficient
3387 		 * huge page pool. To guarantee the original mappers
3388 		 * reliability, unmap the page from child processes. The child
3389 		 * may get SIGKILLed if it later faults.
3390 		 */
3391 		if (outside_reserve) {
3392 			page_cache_release(old_page);
3393 			BUG_ON(huge_pte_none(pte));
3394 			unmap_ref_private(mm, vma, old_page, address);
3395 			BUG_ON(huge_pte_none(pte));
3396 			spin_lock(ptl);
3397 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3398 			if (likely(ptep &&
3399 				   pte_same(huge_ptep_get(ptep), pte)))
3400 				goto retry_avoidcopy;
3401 			/*
3402 			 * race occurs while re-acquiring page table
3403 			 * lock, and our job is done.
3404 			 */
3405 			return 0;
3406 		}
3407 
3408 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3409 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3410 		goto out_release_old;
3411 	}
3412 
3413 	/*
3414 	 * When the original hugepage is shared one, it does not have
3415 	 * anon_vma prepared.
3416 	 */
3417 	if (unlikely(anon_vma_prepare(vma))) {
3418 		ret = VM_FAULT_OOM;
3419 		goto out_release_all;
3420 	}
3421 
3422 	copy_user_huge_page(new_page, old_page, address, vma,
3423 			    pages_per_huge_page(h));
3424 	__SetPageUptodate(new_page);
3425 	set_page_huge_active(new_page);
3426 
3427 	mmun_start = address & huge_page_mask(h);
3428 	mmun_end = mmun_start + huge_page_size(h);
3429 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3430 
3431 	/*
3432 	 * Retake the page table lock to check for racing updates
3433 	 * before the page tables are altered
3434 	 */
3435 	spin_lock(ptl);
3436 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3437 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3438 		ClearPagePrivate(new_page);
3439 
3440 		/* Break COW */
3441 		huge_ptep_clear_flush(vma, address, ptep);
3442 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3443 		set_huge_pte_at(mm, address, ptep,
3444 				make_huge_pte(vma, new_page, 1));
3445 		page_remove_rmap(old_page);
3446 		hugepage_add_new_anon_rmap(new_page, vma, address);
3447 		/* Make the old page be freed below */
3448 		new_page = old_page;
3449 	}
3450 	spin_unlock(ptl);
3451 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3452 out_release_all:
3453 	page_cache_release(new_page);
3454 out_release_old:
3455 	page_cache_release(old_page);
3456 
3457 	spin_lock(ptl); /* Caller expects lock to be held */
3458 	return ret;
3459 }
3460 
3461 /* Return the pagecache page at a given address within a VMA */
3462 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3463 			struct vm_area_struct *vma, unsigned long address)
3464 {
3465 	struct address_space *mapping;
3466 	pgoff_t idx;
3467 
3468 	mapping = vma->vm_file->f_mapping;
3469 	idx = vma_hugecache_offset(h, vma, address);
3470 
3471 	return find_lock_page(mapping, idx);
3472 }
3473 
3474 /*
3475  * Return whether there is a pagecache page to back given address within VMA.
3476  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3477  */
3478 static bool hugetlbfs_pagecache_present(struct hstate *h,
3479 			struct vm_area_struct *vma, unsigned long address)
3480 {
3481 	struct address_space *mapping;
3482 	pgoff_t idx;
3483 	struct page *page;
3484 
3485 	mapping = vma->vm_file->f_mapping;
3486 	idx = vma_hugecache_offset(h, vma, address);
3487 
3488 	page = find_get_page(mapping, idx);
3489 	if (page)
3490 		put_page(page);
3491 	return page != NULL;
3492 }
3493 
3494 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3495 			   pgoff_t idx)
3496 {
3497 	struct inode *inode = mapping->host;
3498 	struct hstate *h = hstate_inode(inode);
3499 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3500 
3501 	if (err)
3502 		return err;
3503 	ClearPagePrivate(page);
3504 
3505 	spin_lock(&inode->i_lock);
3506 	inode->i_blocks += blocks_per_huge_page(h);
3507 	spin_unlock(&inode->i_lock);
3508 	return 0;
3509 }
3510 
3511 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3512 			   struct address_space *mapping, pgoff_t idx,
3513 			   unsigned long address, pte_t *ptep, unsigned int flags)
3514 {
3515 	struct hstate *h = hstate_vma(vma);
3516 	int ret = VM_FAULT_SIGBUS;
3517 	int anon_rmap = 0;
3518 	unsigned long size;
3519 	struct page *page;
3520 	pte_t new_pte;
3521 	spinlock_t *ptl;
3522 
3523 	/*
3524 	 * Currently, we are forced to kill the process in the event the
3525 	 * original mapper has unmapped pages from the child due to a failed
3526 	 * COW. Warn that such a situation has occurred as it may not be obvious
3527 	 */
3528 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3529 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
3530 			   current->pid);
3531 		return ret;
3532 	}
3533 
3534 	/*
3535 	 * Use page lock to guard against racing truncation
3536 	 * before we get page_table_lock.
3537 	 */
3538 retry:
3539 	page = find_lock_page(mapping, idx);
3540 	if (!page) {
3541 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3542 		if (idx >= size)
3543 			goto out;
3544 		page = alloc_huge_page(vma, address, 0);
3545 		if (IS_ERR(page)) {
3546 			ret = PTR_ERR(page);
3547 			if (ret == -ENOMEM)
3548 				ret = VM_FAULT_OOM;
3549 			else
3550 				ret = VM_FAULT_SIGBUS;
3551 			goto out;
3552 		}
3553 		clear_huge_page(page, address, pages_per_huge_page(h));
3554 		__SetPageUptodate(page);
3555 		set_page_huge_active(page);
3556 
3557 		if (vma->vm_flags & VM_MAYSHARE) {
3558 			int err = huge_add_to_page_cache(page, mapping, idx);
3559 			if (err) {
3560 				put_page(page);
3561 				if (err == -EEXIST)
3562 					goto retry;
3563 				goto out;
3564 			}
3565 		} else {
3566 			lock_page(page);
3567 			if (unlikely(anon_vma_prepare(vma))) {
3568 				ret = VM_FAULT_OOM;
3569 				goto backout_unlocked;
3570 			}
3571 			anon_rmap = 1;
3572 		}
3573 	} else {
3574 		/*
3575 		 * If memory error occurs between mmap() and fault, some process
3576 		 * don't have hwpoisoned swap entry for errored virtual address.
3577 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3578 		 */
3579 		if (unlikely(PageHWPoison(page))) {
3580 			ret = VM_FAULT_HWPOISON |
3581 				VM_FAULT_SET_HINDEX(hstate_index(h));
3582 			goto backout_unlocked;
3583 		}
3584 	}
3585 
3586 	/*
3587 	 * If we are going to COW a private mapping later, we examine the
3588 	 * pending reservations for this page now. This will ensure that
3589 	 * any allocations necessary to record that reservation occur outside
3590 	 * the spinlock.
3591 	 */
3592 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3593 		if (vma_needs_reservation(h, vma, address) < 0) {
3594 			ret = VM_FAULT_OOM;
3595 			goto backout_unlocked;
3596 		}
3597 		/* Just decrements count, does not deallocate */
3598 		vma_end_reservation(h, vma, address);
3599 	}
3600 
3601 	ptl = huge_pte_lockptr(h, mm, ptep);
3602 	spin_lock(ptl);
3603 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3604 	if (idx >= size)
3605 		goto backout;
3606 
3607 	ret = 0;
3608 	if (!huge_pte_none(huge_ptep_get(ptep)))
3609 		goto backout;
3610 
3611 	if (anon_rmap) {
3612 		ClearPagePrivate(page);
3613 		hugepage_add_new_anon_rmap(page, vma, address);
3614 	} else
3615 		page_dup_rmap(page);
3616 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3617 				&& (vma->vm_flags & VM_SHARED)));
3618 	set_huge_pte_at(mm, address, ptep, new_pte);
3619 
3620 	hugetlb_count_add(pages_per_huge_page(h), mm);
3621 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3622 		/* Optimization, do the COW without a second fault */
3623 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3624 	}
3625 
3626 	spin_unlock(ptl);
3627 	unlock_page(page);
3628 out:
3629 	return ret;
3630 
3631 backout:
3632 	spin_unlock(ptl);
3633 backout_unlocked:
3634 	unlock_page(page);
3635 	put_page(page);
3636 	goto out;
3637 }
3638 
3639 #ifdef CONFIG_SMP
3640 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641 			    struct vm_area_struct *vma,
3642 			    struct address_space *mapping,
3643 			    pgoff_t idx, unsigned long address)
3644 {
3645 	unsigned long key[2];
3646 	u32 hash;
3647 
3648 	if (vma->vm_flags & VM_SHARED) {
3649 		key[0] = (unsigned long) mapping;
3650 		key[1] = idx;
3651 	} else {
3652 		key[0] = (unsigned long) mm;
3653 		key[1] = address >> huge_page_shift(h);
3654 	}
3655 
3656 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3657 
3658 	return hash & (num_fault_mutexes - 1);
3659 }
3660 #else
3661 /*
3662  * For uniprocesor systems we always use a single mutex, so just
3663  * return 0 and avoid the hashing overhead.
3664  */
3665 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3666 			    struct vm_area_struct *vma,
3667 			    struct address_space *mapping,
3668 			    pgoff_t idx, unsigned long address)
3669 {
3670 	return 0;
3671 }
3672 #endif
3673 
3674 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3675 			unsigned long address, unsigned int flags)
3676 {
3677 	pte_t *ptep, entry;
3678 	spinlock_t *ptl;
3679 	int ret;
3680 	u32 hash;
3681 	pgoff_t idx;
3682 	struct page *page = NULL;
3683 	struct page *pagecache_page = NULL;
3684 	struct hstate *h = hstate_vma(vma);
3685 	struct address_space *mapping;
3686 	int need_wait_lock = 0;
3687 
3688 	address &= huge_page_mask(h);
3689 
3690 	ptep = huge_pte_offset(mm, address);
3691 	if (ptep) {
3692 		entry = huge_ptep_get(ptep);
3693 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3694 			migration_entry_wait_huge(vma, mm, ptep);
3695 			return 0;
3696 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3697 			return VM_FAULT_HWPOISON_LARGE |
3698 				VM_FAULT_SET_HINDEX(hstate_index(h));
3699 	}
3700 
3701 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3702 	if (!ptep)
3703 		return VM_FAULT_OOM;
3704 
3705 	mapping = vma->vm_file->f_mapping;
3706 	idx = vma_hugecache_offset(h, vma, address);
3707 
3708 	/*
3709 	 * Serialize hugepage allocation and instantiation, so that we don't
3710 	 * get spurious allocation failures if two CPUs race to instantiate
3711 	 * the same page in the page cache.
3712 	 */
3713 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3714 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3715 
3716 	entry = huge_ptep_get(ptep);
3717 	if (huge_pte_none(entry)) {
3718 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3719 		goto out_mutex;
3720 	}
3721 
3722 	ret = 0;
3723 
3724 	/*
3725 	 * entry could be a migration/hwpoison entry at this point, so this
3726 	 * check prevents the kernel from going below assuming that we have
3727 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3728 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3729 	 * handle it.
3730 	 */
3731 	if (!pte_present(entry))
3732 		goto out_mutex;
3733 
3734 	/*
3735 	 * If we are going to COW the mapping later, we examine the pending
3736 	 * reservations for this page now. This will ensure that any
3737 	 * allocations necessary to record that reservation occur outside the
3738 	 * spinlock. For private mappings, we also lookup the pagecache
3739 	 * page now as it is used to determine if a reservation has been
3740 	 * consumed.
3741 	 */
3742 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3743 		if (vma_needs_reservation(h, vma, address) < 0) {
3744 			ret = VM_FAULT_OOM;
3745 			goto out_mutex;
3746 		}
3747 		/* Just decrements count, does not deallocate */
3748 		vma_end_reservation(h, vma, address);
3749 
3750 		if (!(vma->vm_flags & VM_MAYSHARE))
3751 			pagecache_page = hugetlbfs_pagecache_page(h,
3752 								vma, address);
3753 	}
3754 
3755 	ptl = huge_pte_lock(h, mm, ptep);
3756 
3757 	/* Check for a racing update before calling hugetlb_cow */
3758 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3759 		goto out_ptl;
3760 
3761 	/*
3762 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3763 	 * pagecache_page, so here we need take the former one
3764 	 * when page != pagecache_page or !pagecache_page.
3765 	 */
3766 	page = pte_page(entry);
3767 	if (page != pagecache_page)
3768 		if (!trylock_page(page)) {
3769 			need_wait_lock = 1;
3770 			goto out_ptl;
3771 		}
3772 
3773 	get_page(page);
3774 
3775 	if (flags & FAULT_FLAG_WRITE) {
3776 		if (!huge_pte_write(entry)) {
3777 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3778 					pagecache_page, ptl);
3779 			goto out_put_page;
3780 		}
3781 		entry = huge_pte_mkdirty(entry);
3782 	}
3783 	entry = pte_mkyoung(entry);
3784 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3785 						flags & FAULT_FLAG_WRITE))
3786 		update_mmu_cache(vma, address, ptep);
3787 out_put_page:
3788 	if (page != pagecache_page)
3789 		unlock_page(page);
3790 	put_page(page);
3791 out_ptl:
3792 	spin_unlock(ptl);
3793 
3794 	if (pagecache_page) {
3795 		unlock_page(pagecache_page);
3796 		put_page(pagecache_page);
3797 	}
3798 out_mutex:
3799 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3800 	/*
3801 	 * Generally it's safe to hold refcount during waiting page lock. But
3802 	 * here we just wait to defer the next page fault to avoid busy loop and
3803 	 * the page is not used after unlocked before returning from the current
3804 	 * page fault. So we are safe from accessing freed page, even if we wait
3805 	 * here without taking refcount.
3806 	 */
3807 	if (need_wait_lock)
3808 		wait_on_page_locked(page);
3809 	return ret;
3810 }
3811 
3812 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3813 			 struct page **pages, struct vm_area_struct **vmas,
3814 			 unsigned long *position, unsigned long *nr_pages,
3815 			 long i, unsigned int flags)
3816 {
3817 	unsigned long pfn_offset;
3818 	unsigned long vaddr = *position;
3819 	unsigned long remainder = *nr_pages;
3820 	struct hstate *h = hstate_vma(vma);
3821 
3822 	while (vaddr < vma->vm_end && remainder) {
3823 		pte_t *pte;
3824 		spinlock_t *ptl = NULL;
3825 		int absent;
3826 		struct page *page;
3827 
3828 		/*
3829 		 * If we have a pending SIGKILL, don't keep faulting pages and
3830 		 * potentially allocating memory.
3831 		 */
3832 		if (unlikely(fatal_signal_pending(current))) {
3833 			remainder = 0;
3834 			break;
3835 		}
3836 
3837 		/*
3838 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3839 		 * each hugepage.  We have to make sure we get the
3840 		 * first, for the page indexing below to work.
3841 		 *
3842 		 * Note that page table lock is not held when pte is null.
3843 		 */
3844 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3845 		if (pte)
3846 			ptl = huge_pte_lock(h, mm, pte);
3847 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3848 
3849 		/*
3850 		 * When coredumping, it suits get_dump_page if we just return
3851 		 * an error where there's an empty slot with no huge pagecache
3852 		 * to back it.  This way, we avoid allocating a hugepage, and
3853 		 * the sparse dumpfile avoids allocating disk blocks, but its
3854 		 * huge holes still show up with zeroes where they need to be.
3855 		 */
3856 		if (absent && (flags & FOLL_DUMP) &&
3857 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3858 			if (pte)
3859 				spin_unlock(ptl);
3860 			remainder = 0;
3861 			break;
3862 		}
3863 
3864 		/*
3865 		 * We need call hugetlb_fault for both hugepages under migration
3866 		 * (in which case hugetlb_fault waits for the migration,) and
3867 		 * hwpoisoned hugepages (in which case we need to prevent the
3868 		 * caller from accessing to them.) In order to do this, we use
3869 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3870 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3871 		 * both cases, and because we can't follow correct pages
3872 		 * directly from any kind of swap entries.
3873 		 */
3874 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3875 		    ((flags & FOLL_WRITE) &&
3876 		      !huge_pte_write(huge_ptep_get(pte)))) {
3877 			int ret;
3878 
3879 			if (pte)
3880 				spin_unlock(ptl);
3881 			ret = hugetlb_fault(mm, vma, vaddr,
3882 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3883 			if (!(ret & VM_FAULT_ERROR))
3884 				continue;
3885 
3886 			remainder = 0;
3887 			break;
3888 		}
3889 
3890 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3891 		page = pte_page(huge_ptep_get(pte));
3892 same_page:
3893 		if (pages) {
3894 			pages[i] = mem_map_offset(page, pfn_offset);
3895 			get_page_foll(pages[i]);
3896 		}
3897 
3898 		if (vmas)
3899 			vmas[i] = vma;
3900 
3901 		vaddr += PAGE_SIZE;
3902 		++pfn_offset;
3903 		--remainder;
3904 		++i;
3905 		if (vaddr < vma->vm_end && remainder &&
3906 				pfn_offset < pages_per_huge_page(h)) {
3907 			/*
3908 			 * We use pfn_offset to avoid touching the pageframes
3909 			 * of this compound page.
3910 			 */
3911 			goto same_page;
3912 		}
3913 		spin_unlock(ptl);
3914 	}
3915 	*nr_pages = remainder;
3916 	*position = vaddr;
3917 
3918 	return i ? i : -EFAULT;
3919 }
3920 
3921 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3922 		unsigned long address, unsigned long end, pgprot_t newprot)
3923 {
3924 	struct mm_struct *mm = vma->vm_mm;
3925 	unsigned long start = address;
3926 	pte_t *ptep;
3927 	pte_t pte;
3928 	struct hstate *h = hstate_vma(vma);
3929 	unsigned long pages = 0;
3930 
3931 	BUG_ON(address >= end);
3932 	flush_cache_range(vma, address, end);
3933 
3934 	mmu_notifier_invalidate_range_start(mm, start, end);
3935 	i_mmap_lock_write(vma->vm_file->f_mapping);
3936 	for (; address < end; address += huge_page_size(h)) {
3937 		spinlock_t *ptl;
3938 		ptep = huge_pte_offset(mm, address);
3939 		if (!ptep)
3940 			continue;
3941 		ptl = huge_pte_lock(h, mm, ptep);
3942 		if (huge_pmd_unshare(mm, &address, ptep)) {
3943 			pages++;
3944 			spin_unlock(ptl);
3945 			continue;
3946 		}
3947 		pte = huge_ptep_get(ptep);
3948 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3949 			spin_unlock(ptl);
3950 			continue;
3951 		}
3952 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3953 			swp_entry_t entry = pte_to_swp_entry(pte);
3954 
3955 			if (is_write_migration_entry(entry)) {
3956 				pte_t newpte;
3957 
3958 				make_migration_entry_read(&entry);
3959 				newpte = swp_entry_to_pte(entry);
3960 				set_huge_pte_at(mm, address, ptep, newpte);
3961 				pages++;
3962 			}
3963 			spin_unlock(ptl);
3964 			continue;
3965 		}
3966 		if (!huge_pte_none(pte)) {
3967 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3968 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3969 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3970 			set_huge_pte_at(mm, address, ptep, pte);
3971 			pages++;
3972 		}
3973 		spin_unlock(ptl);
3974 	}
3975 	/*
3976 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3977 	 * may have cleared our pud entry and done put_page on the page table:
3978 	 * once we release i_mmap_rwsem, another task can do the final put_page
3979 	 * and that page table be reused and filled with junk.
3980 	 */
3981 	flush_tlb_range(vma, start, end);
3982 	mmu_notifier_invalidate_range(mm, start, end);
3983 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3984 	mmu_notifier_invalidate_range_end(mm, start, end);
3985 
3986 	return pages << h->order;
3987 }
3988 
3989 int hugetlb_reserve_pages(struct inode *inode,
3990 					long from, long to,
3991 					struct vm_area_struct *vma,
3992 					vm_flags_t vm_flags)
3993 {
3994 	long ret, chg;
3995 	struct hstate *h = hstate_inode(inode);
3996 	struct hugepage_subpool *spool = subpool_inode(inode);
3997 	struct resv_map *resv_map;
3998 	long gbl_reserve;
3999 
4000 	/*
4001 	 * Only apply hugepage reservation if asked. At fault time, an
4002 	 * attempt will be made for VM_NORESERVE to allocate a page
4003 	 * without using reserves
4004 	 */
4005 	if (vm_flags & VM_NORESERVE)
4006 		return 0;
4007 
4008 	/*
4009 	 * Shared mappings base their reservation on the number of pages that
4010 	 * are already allocated on behalf of the file. Private mappings need
4011 	 * to reserve the full area even if read-only as mprotect() may be
4012 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4013 	 */
4014 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4015 		resv_map = inode_resv_map(inode);
4016 
4017 		chg = region_chg(resv_map, from, to);
4018 
4019 	} else {
4020 		resv_map = resv_map_alloc();
4021 		if (!resv_map)
4022 			return -ENOMEM;
4023 
4024 		chg = to - from;
4025 
4026 		set_vma_resv_map(vma, resv_map);
4027 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4028 	}
4029 
4030 	if (chg < 0) {
4031 		ret = chg;
4032 		goto out_err;
4033 	}
4034 
4035 	/*
4036 	 * There must be enough pages in the subpool for the mapping. If
4037 	 * the subpool has a minimum size, there may be some global
4038 	 * reservations already in place (gbl_reserve).
4039 	 */
4040 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4041 	if (gbl_reserve < 0) {
4042 		ret = -ENOSPC;
4043 		goto out_err;
4044 	}
4045 
4046 	/*
4047 	 * Check enough hugepages are available for the reservation.
4048 	 * Hand the pages back to the subpool if there are not
4049 	 */
4050 	ret = hugetlb_acct_memory(h, gbl_reserve);
4051 	if (ret < 0) {
4052 		/* put back original number of pages, chg */
4053 		(void)hugepage_subpool_put_pages(spool, chg);
4054 		goto out_err;
4055 	}
4056 
4057 	/*
4058 	 * Account for the reservations made. Shared mappings record regions
4059 	 * that have reservations as they are shared by multiple VMAs.
4060 	 * When the last VMA disappears, the region map says how much
4061 	 * the reservation was and the page cache tells how much of
4062 	 * the reservation was consumed. Private mappings are per-VMA and
4063 	 * only the consumed reservations are tracked. When the VMA
4064 	 * disappears, the original reservation is the VMA size and the
4065 	 * consumed reservations are stored in the map. Hence, nothing
4066 	 * else has to be done for private mappings here
4067 	 */
4068 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4069 		long add = region_add(resv_map, from, to);
4070 
4071 		if (unlikely(chg > add)) {
4072 			/*
4073 			 * pages in this range were added to the reserve
4074 			 * map between region_chg and region_add.  This
4075 			 * indicates a race with alloc_huge_page.  Adjust
4076 			 * the subpool and reserve counts modified above
4077 			 * based on the difference.
4078 			 */
4079 			long rsv_adjust;
4080 
4081 			rsv_adjust = hugepage_subpool_put_pages(spool,
4082 								chg - add);
4083 			hugetlb_acct_memory(h, -rsv_adjust);
4084 		}
4085 	}
4086 	return 0;
4087 out_err:
4088 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4089 		region_abort(resv_map, from, to);
4090 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4091 		kref_put(&resv_map->refs, resv_map_release);
4092 	return ret;
4093 }
4094 
4095 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4096 								long freed)
4097 {
4098 	struct hstate *h = hstate_inode(inode);
4099 	struct resv_map *resv_map = inode_resv_map(inode);
4100 	long chg = 0;
4101 	struct hugepage_subpool *spool = subpool_inode(inode);
4102 	long gbl_reserve;
4103 
4104 	if (resv_map) {
4105 		chg = region_del(resv_map, start, end);
4106 		/*
4107 		 * region_del() can fail in the rare case where a region
4108 		 * must be split and another region descriptor can not be
4109 		 * allocated.  If end == LONG_MAX, it will not fail.
4110 		 */
4111 		if (chg < 0)
4112 			return chg;
4113 	}
4114 
4115 	spin_lock(&inode->i_lock);
4116 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4117 	spin_unlock(&inode->i_lock);
4118 
4119 	/*
4120 	 * If the subpool has a minimum size, the number of global
4121 	 * reservations to be released may be adjusted.
4122 	 */
4123 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4124 	hugetlb_acct_memory(h, -gbl_reserve);
4125 
4126 	return 0;
4127 }
4128 
4129 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4130 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4131 				struct vm_area_struct *vma,
4132 				unsigned long addr, pgoff_t idx)
4133 {
4134 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4135 				svma->vm_start;
4136 	unsigned long sbase = saddr & PUD_MASK;
4137 	unsigned long s_end = sbase + PUD_SIZE;
4138 
4139 	/* Allow segments to share if only one is marked locked */
4140 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
4141 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
4142 
4143 	/*
4144 	 * match the virtual addresses, permission and the alignment of the
4145 	 * page table page.
4146 	 */
4147 	if (pmd_index(addr) != pmd_index(saddr) ||
4148 	    vm_flags != svm_flags ||
4149 	    sbase < svma->vm_start || svma->vm_end < s_end)
4150 		return 0;
4151 
4152 	return saddr;
4153 }
4154 
4155 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4156 {
4157 	unsigned long base = addr & PUD_MASK;
4158 	unsigned long end = base + PUD_SIZE;
4159 
4160 	/*
4161 	 * check on proper vm_flags and page table alignment
4162 	 */
4163 	if (vma->vm_flags & VM_MAYSHARE &&
4164 	    vma->vm_start <= base && end <= vma->vm_end)
4165 		return true;
4166 	return false;
4167 }
4168 
4169 /*
4170  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4171  * and returns the corresponding pte. While this is not necessary for the
4172  * !shared pmd case because we can allocate the pmd later as well, it makes the
4173  * code much cleaner. pmd allocation is essential for the shared case because
4174  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4175  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4176  * bad pmd for sharing.
4177  */
4178 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4179 {
4180 	struct vm_area_struct *vma = find_vma(mm, addr);
4181 	struct address_space *mapping = vma->vm_file->f_mapping;
4182 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4183 			vma->vm_pgoff;
4184 	struct vm_area_struct *svma;
4185 	unsigned long saddr;
4186 	pte_t *spte = NULL;
4187 	pte_t *pte;
4188 	spinlock_t *ptl;
4189 
4190 	if (!vma_shareable(vma, addr))
4191 		return (pte_t *)pmd_alloc(mm, pud, addr);
4192 
4193 	i_mmap_lock_write(mapping);
4194 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4195 		if (svma == vma)
4196 			continue;
4197 
4198 		saddr = page_table_shareable(svma, vma, addr, idx);
4199 		if (saddr) {
4200 			spte = huge_pte_offset(svma->vm_mm, saddr);
4201 			if (spte) {
4202 				mm_inc_nr_pmds(mm);
4203 				get_page(virt_to_page(spte));
4204 				break;
4205 			}
4206 		}
4207 	}
4208 
4209 	if (!spte)
4210 		goto out;
4211 
4212 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4213 	spin_lock(ptl);
4214 	if (pud_none(*pud)) {
4215 		pud_populate(mm, pud,
4216 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4217 	} else {
4218 		put_page(virt_to_page(spte));
4219 		mm_inc_nr_pmds(mm);
4220 	}
4221 	spin_unlock(ptl);
4222 out:
4223 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4224 	i_mmap_unlock_write(mapping);
4225 	return pte;
4226 }
4227 
4228 /*
4229  * unmap huge page backed by shared pte.
4230  *
4231  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4232  * indicated by page_count > 1, unmap is achieved by clearing pud and
4233  * decrementing the ref count. If count == 1, the pte page is not shared.
4234  *
4235  * called with page table lock held.
4236  *
4237  * returns: 1 successfully unmapped a shared pte page
4238  *	    0 the underlying pte page is not shared, or it is the last user
4239  */
4240 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4241 {
4242 	pgd_t *pgd = pgd_offset(mm, *addr);
4243 	pud_t *pud = pud_offset(pgd, *addr);
4244 
4245 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4246 	if (page_count(virt_to_page(ptep)) == 1)
4247 		return 0;
4248 
4249 	pud_clear(pud);
4250 	put_page(virt_to_page(ptep));
4251 	mm_dec_nr_pmds(mm);
4252 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4253 	return 1;
4254 }
4255 #define want_pmd_share()	(1)
4256 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4257 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4258 {
4259 	return NULL;
4260 }
4261 
4262 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4263 {
4264 	return 0;
4265 }
4266 #define want_pmd_share()	(0)
4267 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4268 
4269 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4270 pte_t *huge_pte_alloc(struct mm_struct *mm,
4271 			unsigned long addr, unsigned long sz)
4272 {
4273 	pgd_t *pgd;
4274 	pud_t *pud;
4275 	pte_t *pte = NULL;
4276 
4277 	pgd = pgd_offset(mm, addr);
4278 	pud = pud_alloc(mm, pgd, addr);
4279 	if (pud) {
4280 		if (sz == PUD_SIZE) {
4281 			pte = (pte_t *)pud;
4282 		} else {
4283 			BUG_ON(sz != PMD_SIZE);
4284 			if (want_pmd_share() && pud_none(*pud))
4285 				pte = huge_pmd_share(mm, addr, pud);
4286 			else
4287 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4288 		}
4289 	}
4290 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4291 
4292 	return pte;
4293 }
4294 
4295 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4296 {
4297 	pgd_t *pgd;
4298 	pud_t *pud;
4299 	pmd_t *pmd = NULL;
4300 
4301 	pgd = pgd_offset(mm, addr);
4302 	if (pgd_present(*pgd)) {
4303 		pud = pud_offset(pgd, addr);
4304 		if (pud_present(*pud)) {
4305 			if (pud_huge(*pud))
4306 				return (pte_t *)pud;
4307 			pmd = pmd_offset(pud, addr);
4308 		}
4309 	}
4310 	return (pte_t *) pmd;
4311 }
4312 
4313 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4314 
4315 /*
4316  * These functions are overwritable if your architecture needs its own
4317  * behavior.
4318  */
4319 struct page * __weak
4320 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4321 			      int write)
4322 {
4323 	return ERR_PTR(-EINVAL);
4324 }
4325 
4326 struct page * __weak
4327 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4328 		pmd_t *pmd, int flags)
4329 {
4330 	struct page *page = NULL;
4331 	spinlock_t *ptl;
4332 retry:
4333 	ptl = pmd_lockptr(mm, pmd);
4334 	spin_lock(ptl);
4335 	/*
4336 	 * make sure that the address range covered by this pmd is not
4337 	 * unmapped from other threads.
4338 	 */
4339 	if (!pmd_huge(*pmd))
4340 		goto out;
4341 	if (pmd_present(*pmd)) {
4342 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4343 		if (flags & FOLL_GET)
4344 			get_page(page);
4345 	} else {
4346 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4347 			spin_unlock(ptl);
4348 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4349 			goto retry;
4350 		}
4351 		/*
4352 		 * hwpoisoned entry is treated as no_page_table in
4353 		 * follow_page_mask().
4354 		 */
4355 	}
4356 out:
4357 	spin_unlock(ptl);
4358 	return page;
4359 }
4360 
4361 struct page * __weak
4362 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4363 		pud_t *pud, int flags)
4364 {
4365 	if (flags & FOLL_GET)
4366 		return NULL;
4367 
4368 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4369 }
4370 
4371 #ifdef CONFIG_MEMORY_FAILURE
4372 
4373 /*
4374  * This function is called from memory failure code.
4375  * Assume the caller holds page lock of the head page.
4376  */
4377 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4378 {
4379 	struct hstate *h = page_hstate(hpage);
4380 	int nid = page_to_nid(hpage);
4381 	int ret = -EBUSY;
4382 
4383 	spin_lock(&hugetlb_lock);
4384 	/*
4385 	 * Just checking !page_huge_active is not enough, because that could be
4386 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4387 	 */
4388 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4389 		/*
4390 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4391 		 * but dangling hpage->lru can trigger list-debug warnings
4392 		 * (this happens when we call unpoison_memory() on it),
4393 		 * so let it point to itself with list_del_init().
4394 		 */
4395 		list_del_init(&hpage->lru);
4396 		set_page_refcounted(hpage);
4397 		h->free_huge_pages--;
4398 		h->free_huge_pages_node[nid]--;
4399 		ret = 0;
4400 	}
4401 	spin_unlock(&hugetlb_lock);
4402 	return ret;
4403 }
4404 #endif
4405 
4406 bool isolate_huge_page(struct page *page, struct list_head *list)
4407 {
4408 	bool ret = true;
4409 
4410 	VM_BUG_ON_PAGE(!PageHead(page), page);
4411 	spin_lock(&hugetlb_lock);
4412 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4413 		ret = false;
4414 		goto unlock;
4415 	}
4416 	clear_page_huge_active(page);
4417 	list_move_tail(&page->lru, list);
4418 unlock:
4419 	spin_unlock(&hugetlb_lock);
4420 	return ret;
4421 }
4422 
4423 void putback_active_hugepage(struct page *page)
4424 {
4425 	VM_BUG_ON_PAGE(!PageHead(page), page);
4426 	spin_lock(&hugetlb_lock);
4427 	set_page_huge_active(page);
4428 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4429 	spin_unlock(&hugetlb_lock);
4430 	put_page(page);
4431 }
4432