xref: /openbmc/linux/mm/hugetlb.c (revision b65d4adbc0f0d4619f61ee9d8126bc5005b78802)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44 #include "hugetlb_vmemmap.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87 	if (spool->count)
88 		return false;
89 	if (spool->max_hpages != -1)
90 		return spool->used_hpages == 0;
91 	if (spool->min_hpages != -1)
92 		return spool->rsv_hpages == spool->min_hpages;
93 
94 	return true;
95 }
96 
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98 						unsigned long irq_flags)
99 {
100 	spin_unlock_irqrestore(&spool->lock, irq_flags);
101 
102 	/* If no pages are used, and no other handles to the subpool
103 	 * remain, give up any reservations based on minimum size and
104 	 * free the subpool */
105 	if (subpool_is_free(spool)) {
106 		if (spool->min_hpages != -1)
107 			hugetlb_acct_memory(spool->hstate,
108 						-spool->min_hpages);
109 		kfree(spool);
110 	}
111 }
112 
113 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114 						long min_hpages)
115 {
116 	struct hugepage_subpool *spool;
117 
118 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
119 	if (!spool)
120 		return NULL;
121 
122 	spin_lock_init(&spool->lock);
123 	spool->count = 1;
124 	spool->max_hpages = max_hpages;
125 	spool->hstate = h;
126 	spool->min_hpages = min_hpages;
127 
128 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129 		kfree(spool);
130 		return NULL;
131 	}
132 	spool->rsv_hpages = min_hpages;
133 
134 	return spool;
135 }
136 
137 void hugepage_put_subpool(struct hugepage_subpool *spool)
138 {
139 	unsigned long flags;
140 
141 	spin_lock_irqsave(&spool->lock, flags);
142 	BUG_ON(!spool->count);
143 	spool->count--;
144 	unlock_or_release_subpool(spool, flags);
145 }
146 
147 /*
148  * Subpool accounting for allocating and reserving pages.
149  * Return -ENOMEM if there are not enough resources to satisfy the
150  * request.  Otherwise, return the number of pages by which the
151  * global pools must be adjusted (upward).  The returned value may
152  * only be different than the passed value (delta) in the case where
153  * a subpool minimum size must be maintained.
154  */
155 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
156 				      long delta)
157 {
158 	long ret = delta;
159 
160 	if (!spool)
161 		return ret;
162 
163 	spin_lock_irq(&spool->lock);
164 
165 	if (spool->max_hpages != -1) {		/* maximum size accounting */
166 		if ((spool->used_hpages + delta) <= spool->max_hpages)
167 			spool->used_hpages += delta;
168 		else {
169 			ret = -ENOMEM;
170 			goto unlock_ret;
171 		}
172 	}
173 
174 	/* minimum size accounting */
175 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
176 		if (delta > spool->rsv_hpages) {
177 			/*
178 			 * Asking for more reserves than those already taken on
179 			 * behalf of subpool.  Return difference.
180 			 */
181 			ret = delta - spool->rsv_hpages;
182 			spool->rsv_hpages = 0;
183 		} else {
184 			ret = 0;	/* reserves already accounted for */
185 			spool->rsv_hpages -= delta;
186 		}
187 	}
188 
189 unlock_ret:
190 	spin_unlock_irq(&spool->lock);
191 	return ret;
192 }
193 
194 /*
195  * Subpool accounting for freeing and unreserving pages.
196  * Return the number of global page reservations that must be dropped.
197  * The return value may only be different than the passed value (delta)
198  * in the case where a subpool minimum size must be maintained.
199  */
200 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
201 				       long delta)
202 {
203 	long ret = delta;
204 	unsigned long flags;
205 
206 	if (!spool)
207 		return delta;
208 
209 	spin_lock_irqsave(&spool->lock, flags);
210 
211 	if (spool->max_hpages != -1)		/* maximum size accounting */
212 		spool->used_hpages -= delta;
213 
214 	 /* minimum size accounting */
215 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216 		if (spool->rsv_hpages + delta <= spool->min_hpages)
217 			ret = 0;
218 		else
219 			ret = spool->rsv_hpages + delta - spool->min_hpages;
220 
221 		spool->rsv_hpages += delta;
222 		if (spool->rsv_hpages > spool->min_hpages)
223 			spool->rsv_hpages = spool->min_hpages;
224 	}
225 
226 	/*
227 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
228 	 * quota reference, free it now.
229 	 */
230 	unlock_or_release_subpool(spool, flags);
231 
232 	return ret;
233 }
234 
235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237 	return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239 
240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242 	return subpool_inode(file_inode(vma->vm_file));
243 }
244 
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246  * it for use.
247  */
248 static struct file_region *
249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251 	struct file_region *nrg = NULL;
252 
253 	VM_BUG_ON(resv->region_cache_count <= 0);
254 
255 	resv->region_cache_count--;
256 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257 	list_del(&nrg->link);
258 
259 	nrg->from = from;
260 	nrg->to = to;
261 
262 	return nrg;
263 }
264 
265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266 					      struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269 	nrg->reservation_counter = rg->reservation_counter;
270 	nrg->css = rg->css;
271 	if (rg->css)
272 		css_get(rg->css);
273 #endif
274 }
275 
276 /* Helper that records hugetlb_cgroup uncharge info. */
277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278 						struct hstate *h,
279 						struct resv_map *resv,
280 						struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 	if (h_cg) {
284 		nrg->reservation_counter =
285 			&h_cg->rsvd_hugepage[hstate_index(h)];
286 		nrg->css = &h_cg->css;
287 		/*
288 		 * The caller will hold exactly one h_cg->css reference for the
289 		 * whole contiguous reservation region. But this area might be
290 		 * scattered when there are already some file_regions reside in
291 		 * it. As a result, many file_regions may share only one css
292 		 * reference. In order to ensure that one file_region must hold
293 		 * exactly one h_cg->css reference, we should do css_get for
294 		 * each file_region and leave the reference held by caller
295 		 * untouched.
296 		 */
297 		css_get(&h_cg->css);
298 		if (!resv->pages_per_hpage)
299 			resv->pages_per_hpage = pages_per_huge_page(h);
300 		/* pages_per_hpage should be the same for all entries in
301 		 * a resv_map.
302 		 */
303 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 	} else {
305 		nrg->reservation_counter = NULL;
306 		nrg->css = NULL;
307 	}
308 #endif
309 }
310 
311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314 	if (rg->css)
315 		css_put(rg->css);
316 #endif
317 }
318 
319 static bool has_same_uncharge_info(struct file_region *rg,
320 				   struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323 	return rg && org &&
324 	       rg->reservation_counter == org->reservation_counter &&
325 	       rg->css == org->css;
326 
327 #else
328 	return true;
329 #endif
330 }
331 
332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334 	struct file_region *nrg = NULL, *prg = NULL;
335 
336 	prg = list_prev_entry(rg, link);
337 	if (&prg->link != &resv->regions && prg->to == rg->from &&
338 	    has_same_uncharge_info(prg, rg)) {
339 		prg->to = rg->to;
340 
341 		list_del(&rg->link);
342 		put_uncharge_info(rg);
343 		kfree(rg);
344 
345 		rg = prg;
346 	}
347 
348 	nrg = list_next_entry(rg, link);
349 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350 	    has_same_uncharge_info(nrg, rg)) {
351 		nrg->from = rg->from;
352 
353 		list_del(&rg->link);
354 		put_uncharge_info(rg);
355 		kfree(rg);
356 	}
357 }
358 
359 static inline long
360 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
362 		     long *regions_needed)
363 {
364 	struct file_region *nrg;
365 
366 	if (!regions_needed) {
367 		nrg = get_file_region_entry_from_cache(map, from, to);
368 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369 		list_add(&nrg->link, rg->link.prev);
370 		coalesce_file_region(map, nrg);
371 	} else
372 		*regions_needed += 1;
373 
374 	return to - from;
375 }
376 
377 /*
378  * Must be called with resv->lock held.
379  *
380  * Calling this with regions_needed != NULL will count the number of pages
381  * to be added but will not modify the linked list. And regions_needed will
382  * indicate the number of file_regions needed in the cache to carry out to add
383  * the regions for this range.
384  */
385 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
386 				     struct hugetlb_cgroup *h_cg,
387 				     struct hstate *h, long *regions_needed)
388 {
389 	long add = 0;
390 	struct list_head *head = &resv->regions;
391 	long last_accounted_offset = f;
392 	struct file_region *rg = NULL, *trg = NULL;
393 
394 	if (regions_needed)
395 		*regions_needed = 0;
396 
397 	/* In this loop, we essentially handle an entry for the range
398 	 * [last_accounted_offset, rg->from), at every iteration, with some
399 	 * bounds checking.
400 	 */
401 	list_for_each_entry_safe(rg, trg, head, link) {
402 		/* Skip irrelevant regions that start before our range. */
403 		if (rg->from < f) {
404 			/* If this region ends after the last accounted offset,
405 			 * then we need to update last_accounted_offset.
406 			 */
407 			if (rg->to > last_accounted_offset)
408 				last_accounted_offset = rg->to;
409 			continue;
410 		}
411 
412 		/* When we find a region that starts beyond our range, we've
413 		 * finished.
414 		 */
415 		if (rg->from >= t)
416 			break;
417 
418 		/* Add an entry for last_accounted_offset -> rg->from, and
419 		 * update last_accounted_offset.
420 		 */
421 		if (rg->from > last_accounted_offset)
422 			add += hugetlb_resv_map_add(resv, rg,
423 						    last_accounted_offset,
424 						    rg->from, h, h_cg,
425 						    regions_needed);
426 
427 		last_accounted_offset = rg->to;
428 	}
429 
430 	/* Handle the case where our range extends beyond
431 	 * last_accounted_offset.
432 	 */
433 	if (last_accounted_offset < t)
434 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435 					    t, h, h_cg, regions_needed);
436 
437 	VM_BUG_ON(add < 0);
438 	return add;
439 }
440 
441 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442  */
443 static int allocate_file_region_entries(struct resv_map *resv,
444 					int regions_needed)
445 	__must_hold(&resv->lock)
446 {
447 	struct list_head allocated_regions;
448 	int to_allocate = 0, i = 0;
449 	struct file_region *trg = NULL, *rg = NULL;
450 
451 	VM_BUG_ON(regions_needed < 0);
452 
453 	INIT_LIST_HEAD(&allocated_regions);
454 
455 	/*
456 	 * Check for sufficient descriptors in the cache to accommodate
457 	 * the number of in progress add operations plus regions_needed.
458 	 *
459 	 * This is a while loop because when we drop the lock, some other call
460 	 * to region_add or region_del may have consumed some region_entries,
461 	 * so we keep looping here until we finally have enough entries for
462 	 * (adds_in_progress + regions_needed).
463 	 */
464 	while (resv->region_cache_count <
465 	       (resv->adds_in_progress + regions_needed)) {
466 		to_allocate = resv->adds_in_progress + regions_needed -
467 			      resv->region_cache_count;
468 
469 		/* At this point, we should have enough entries in the cache
470 		 * for all the existing adds_in_progress. We should only be
471 		 * needing to allocate for regions_needed.
472 		 */
473 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474 
475 		spin_unlock(&resv->lock);
476 		for (i = 0; i < to_allocate; i++) {
477 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478 			if (!trg)
479 				goto out_of_memory;
480 			list_add(&trg->link, &allocated_regions);
481 		}
482 
483 		spin_lock(&resv->lock);
484 
485 		list_splice(&allocated_regions, &resv->region_cache);
486 		resv->region_cache_count += to_allocate;
487 	}
488 
489 	return 0;
490 
491 out_of_memory:
492 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493 		list_del(&rg->link);
494 		kfree(rg);
495 	}
496 	return -ENOMEM;
497 }
498 
499 /*
500  * Add the huge page range represented by [f, t) to the reserve
501  * map.  Regions will be taken from the cache to fill in this range.
502  * Sufficient regions should exist in the cache due to the previous
503  * call to region_chg with the same range, but in some cases the cache will not
504  * have sufficient entries due to races with other code doing region_add or
505  * region_del.  The extra needed entries will be allocated.
506  *
507  * regions_needed is the out value provided by a previous call to region_chg.
508  *
509  * Return the number of new huge pages added to the map.  This number is greater
510  * than or equal to zero.  If file_region entries needed to be allocated for
511  * this operation and we were not able to allocate, it returns -ENOMEM.
512  * region_add of regions of length 1 never allocate file_regions and cannot
513  * fail; region_chg will always allocate at least 1 entry and a region_add for
514  * 1 page will only require at most 1 entry.
515  */
516 static long region_add(struct resv_map *resv, long f, long t,
517 		       long in_regions_needed, struct hstate *h,
518 		       struct hugetlb_cgroup *h_cg)
519 {
520 	long add = 0, actual_regions_needed = 0;
521 
522 	spin_lock(&resv->lock);
523 retry:
524 
525 	/* Count how many regions are actually needed to execute this add. */
526 	add_reservation_in_range(resv, f, t, NULL, NULL,
527 				 &actual_regions_needed);
528 
529 	/*
530 	 * Check for sufficient descriptors in the cache to accommodate
531 	 * this add operation. Note that actual_regions_needed may be greater
532 	 * than in_regions_needed, as the resv_map may have been modified since
533 	 * the region_chg call. In this case, we need to make sure that we
534 	 * allocate extra entries, such that we have enough for all the
535 	 * existing adds_in_progress, plus the excess needed for this
536 	 * operation.
537 	 */
538 	if (actual_regions_needed > in_regions_needed &&
539 	    resv->region_cache_count <
540 		    resv->adds_in_progress +
541 			    (actual_regions_needed - in_regions_needed)) {
542 		/* region_add operation of range 1 should never need to
543 		 * allocate file_region entries.
544 		 */
545 		VM_BUG_ON(t - f <= 1);
546 
547 		if (allocate_file_region_entries(
548 			    resv, actual_regions_needed - in_regions_needed)) {
549 			return -ENOMEM;
550 		}
551 
552 		goto retry;
553 	}
554 
555 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556 
557 	resv->adds_in_progress -= in_regions_needed;
558 
559 	spin_unlock(&resv->lock);
560 	return add;
561 }
562 
563 /*
564  * Examine the existing reserve map and determine how many
565  * huge pages in the specified range [f, t) are NOT currently
566  * represented.  This routine is called before a subsequent
567  * call to region_add that will actually modify the reserve
568  * map to add the specified range [f, t).  region_chg does
569  * not change the number of huge pages represented by the
570  * map.  A number of new file_region structures is added to the cache as a
571  * placeholder, for the subsequent region_add call to use. At least 1
572  * file_region structure is added.
573  *
574  * out_regions_needed is the number of regions added to the
575  * resv->adds_in_progress.  This value needs to be provided to a follow up call
576  * to region_add or region_abort for proper accounting.
577  *
578  * Returns the number of huge pages that need to be added to the existing
579  * reservation map for the range [f, t).  This number is greater or equal to
580  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
581  * is needed and can not be allocated.
582  */
583 static long region_chg(struct resv_map *resv, long f, long t,
584 		       long *out_regions_needed)
585 {
586 	long chg = 0;
587 
588 	spin_lock(&resv->lock);
589 
590 	/* Count how many hugepages in this range are NOT represented. */
591 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
592 				       out_regions_needed);
593 
594 	if (*out_regions_needed == 0)
595 		*out_regions_needed = 1;
596 
597 	if (allocate_file_region_entries(resv, *out_regions_needed))
598 		return -ENOMEM;
599 
600 	resv->adds_in_progress += *out_regions_needed;
601 
602 	spin_unlock(&resv->lock);
603 	return chg;
604 }
605 
606 /*
607  * Abort the in progress add operation.  The adds_in_progress field
608  * of the resv_map keeps track of the operations in progress between
609  * calls to region_chg and region_add.  Operations are sometimes
610  * aborted after the call to region_chg.  In such cases, region_abort
611  * is called to decrement the adds_in_progress counter. regions_needed
612  * is the value returned by the region_chg call, it is used to decrement
613  * the adds_in_progress counter.
614  *
615  * NOTE: The range arguments [f, t) are not needed or used in this
616  * routine.  They are kept to make reading the calling code easier as
617  * arguments will match the associated region_chg call.
618  */
619 static void region_abort(struct resv_map *resv, long f, long t,
620 			 long regions_needed)
621 {
622 	spin_lock(&resv->lock);
623 	VM_BUG_ON(!resv->region_cache_count);
624 	resv->adds_in_progress -= regions_needed;
625 	spin_unlock(&resv->lock);
626 }
627 
628 /*
629  * Delete the specified range [f, t) from the reserve map.  If the
630  * t parameter is LONG_MAX, this indicates that ALL regions after f
631  * should be deleted.  Locate the regions which intersect [f, t)
632  * and either trim, delete or split the existing regions.
633  *
634  * Returns the number of huge pages deleted from the reserve map.
635  * In the normal case, the return value is zero or more.  In the
636  * case where a region must be split, a new region descriptor must
637  * be allocated.  If the allocation fails, -ENOMEM will be returned.
638  * NOTE: If the parameter t == LONG_MAX, then we will never split
639  * a region and possibly return -ENOMEM.  Callers specifying
640  * t == LONG_MAX do not need to check for -ENOMEM error.
641  */
642 static long region_del(struct resv_map *resv, long f, long t)
643 {
644 	struct list_head *head = &resv->regions;
645 	struct file_region *rg, *trg;
646 	struct file_region *nrg = NULL;
647 	long del = 0;
648 
649 retry:
650 	spin_lock(&resv->lock);
651 	list_for_each_entry_safe(rg, trg, head, link) {
652 		/*
653 		 * Skip regions before the range to be deleted.  file_region
654 		 * ranges are normally of the form [from, to).  However, there
655 		 * may be a "placeholder" entry in the map which is of the form
656 		 * (from, to) with from == to.  Check for placeholder entries
657 		 * at the beginning of the range to be deleted.
658 		 */
659 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
660 			continue;
661 
662 		if (rg->from >= t)
663 			break;
664 
665 		if (f > rg->from && t < rg->to) { /* Must split region */
666 			/*
667 			 * Check for an entry in the cache before dropping
668 			 * lock and attempting allocation.
669 			 */
670 			if (!nrg &&
671 			    resv->region_cache_count > resv->adds_in_progress) {
672 				nrg = list_first_entry(&resv->region_cache,
673 							struct file_region,
674 							link);
675 				list_del(&nrg->link);
676 				resv->region_cache_count--;
677 			}
678 
679 			if (!nrg) {
680 				spin_unlock(&resv->lock);
681 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682 				if (!nrg)
683 					return -ENOMEM;
684 				goto retry;
685 			}
686 
687 			del += t - f;
688 			hugetlb_cgroup_uncharge_file_region(
689 				resv, rg, t - f, false);
690 
691 			/* New entry for end of split region */
692 			nrg->from = t;
693 			nrg->to = rg->to;
694 
695 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696 
697 			INIT_LIST_HEAD(&nrg->link);
698 
699 			/* Original entry is trimmed */
700 			rg->to = f;
701 
702 			list_add(&nrg->link, &rg->link);
703 			nrg = NULL;
704 			break;
705 		}
706 
707 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708 			del += rg->to - rg->from;
709 			hugetlb_cgroup_uncharge_file_region(resv, rg,
710 							    rg->to - rg->from, true);
711 			list_del(&rg->link);
712 			kfree(rg);
713 			continue;
714 		}
715 
716 		if (f <= rg->from) {	/* Trim beginning of region */
717 			hugetlb_cgroup_uncharge_file_region(resv, rg,
718 							    t - rg->from, false);
719 
720 			del += t - rg->from;
721 			rg->from = t;
722 		} else {		/* Trim end of region */
723 			hugetlb_cgroup_uncharge_file_region(resv, rg,
724 							    rg->to - f, false);
725 
726 			del += rg->to - f;
727 			rg->to = f;
728 		}
729 	}
730 
731 	spin_unlock(&resv->lock);
732 	kfree(nrg);
733 	return del;
734 }
735 
736 /*
737  * A rare out of memory error was encountered which prevented removal of
738  * the reserve map region for a page.  The huge page itself was free'ed
739  * and removed from the page cache.  This routine will adjust the subpool
740  * usage count, and the global reserve count if needed.  By incrementing
741  * these counts, the reserve map entry which could not be deleted will
742  * appear as a "reserved" entry instead of simply dangling with incorrect
743  * counts.
744  */
745 void hugetlb_fix_reserve_counts(struct inode *inode)
746 {
747 	struct hugepage_subpool *spool = subpool_inode(inode);
748 	long rsv_adjust;
749 	bool reserved = false;
750 
751 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
752 	if (rsv_adjust > 0) {
753 		struct hstate *h = hstate_inode(inode);
754 
755 		if (!hugetlb_acct_memory(h, 1))
756 			reserved = true;
757 	} else if (!rsv_adjust) {
758 		reserved = true;
759 	}
760 
761 	if (!reserved)
762 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
763 }
764 
765 /*
766  * Count and return the number of huge pages in the reserve map
767  * that intersect with the range [f, t).
768  */
769 static long region_count(struct resv_map *resv, long f, long t)
770 {
771 	struct list_head *head = &resv->regions;
772 	struct file_region *rg;
773 	long chg = 0;
774 
775 	spin_lock(&resv->lock);
776 	/* Locate each segment we overlap with, and count that overlap. */
777 	list_for_each_entry(rg, head, link) {
778 		long seg_from;
779 		long seg_to;
780 
781 		if (rg->to <= f)
782 			continue;
783 		if (rg->from >= t)
784 			break;
785 
786 		seg_from = max(rg->from, f);
787 		seg_to = min(rg->to, t);
788 
789 		chg += seg_to - seg_from;
790 	}
791 	spin_unlock(&resv->lock);
792 
793 	return chg;
794 }
795 
796 /*
797  * Convert the address within this vma to the page offset within
798  * the mapping, in pagecache page units; huge pages here.
799  */
800 static pgoff_t vma_hugecache_offset(struct hstate *h,
801 			struct vm_area_struct *vma, unsigned long address)
802 {
803 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
804 			(vma->vm_pgoff >> huge_page_order(h));
805 }
806 
807 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808 				     unsigned long address)
809 {
810 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
811 }
812 EXPORT_SYMBOL_GPL(linear_hugepage_index);
813 
814 /*
815  * Return the size of the pages allocated when backing a VMA. In the majority
816  * cases this will be same size as used by the page table entries.
817  */
818 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819 {
820 	if (vma->vm_ops && vma->vm_ops->pagesize)
821 		return vma->vm_ops->pagesize(vma);
822 	return PAGE_SIZE;
823 }
824 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
825 
826 /*
827  * Return the page size being used by the MMU to back a VMA. In the majority
828  * of cases, the page size used by the kernel matches the MMU size. On
829  * architectures where it differs, an architecture-specific 'strong'
830  * version of this symbol is required.
831  */
832 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
833 {
834 	return vma_kernel_pagesize(vma);
835 }
836 
837 /*
838  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
839  * bits of the reservation map pointer, which are always clear due to
840  * alignment.
841  */
842 #define HPAGE_RESV_OWNER    (1UL << 0)
843 #define HPAGE_RESV_UNMAPPED (1UL << 1)
844 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
845 
846 /*
847  * These helpers are used to track how many pages are reserved for
848  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849  * is guaranteed to have their future faults succeed.
850  *
851  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852  * the reserve counters are updated with the hugetlb_lock held. It is safe
853  * to reset the VMA at fork() time as it is not in use yet and there is no
854  * chance of the global counters getting corrupted as a result of the values.
855  *
856  * The private mapping reservation is represented in a subtly different
857  * manner to a shared mapping.  A shared mapping has a region map associated
858  * with the underlying file, this region map represents the backing file
859  * pages which have ever had a reservation assigned which this persists even
860  * after the page is instantiated.  A private mapping has a region map
861  * associated with the original mmap which is attached to all VMAs which
862  * reference it, this region map represents those offsets which have consumed
863  * reservation ie. where pages have been instantiated.
864  */
865 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866 {
867 	return (unsigned long)vma->vm_private_data;
868 }
869 
870 static void set_vma_private_data(struct vm_area_struct *vma,
871 							unsigned long value)
872 {
873 	vma->vm_private_data = (void *)value;
874 }
875 
876 static void
877 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878 					  struct hugetlb_cgroup *h_cg,
879 					  struct hstate *h)
880 {
881 #ifdef CONFIG_CGROUP_HUGETLB
882 	if (!h_cg || !h) {
883 		resv_map->reservation_counter = NULL;
884 		resv_map->pages_per_hpage = 0;
885 		resv_map->css = NULL;
886 	} else {
887 		resv_map->reservation_counter =
888 			&h_cg->rsvd_hugepage[hstate_index(h)];
889 		resv_map->pages_per_hpage = pages_per_huge_page(h);
890 		resv_map->css = &h_cg->css;
891 	}
892 #endif
893 }
894 
895 struct resv_map *resv_map_alloc(void)
896 {
897 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
898 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899 
900 	if (!resv_map || !rg) {
901 		kfree(resv_map);
902 		kfree(rg);
903 		return NULL;
904 	}
905 
906 	kref_init(&resv_map->refs);
907 	spin_lock_init(&resv_map->lock);
908 	INIT_LIST_HEAD(&resv_map->regions);
909 
910 	resv_map->adds_in_progress = 0;
911 	/*
912 	 * Initialize these to 0. On shared mappings, 0's here indicate these
913 	 * fields don't do cgroup accounting. On private mappings, these will be
914 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
915 	 * reservations are to be un-charged from here.
916 	 */
917 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
918 
919 	INIT_LIST_HEAD(&resv_map->region_cache);
920 	list_add(&rg->link, &resv_map->region_cache);
921 	resv_map->region_cache_count = 1;
922 
923 	return resv_map;
924 }
925 
926 void resv_map_release(struct kref *ref)
927 {
928 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
929 	struct list_head *head = &resv_map->region_cache;
930 	struct file_region *rg, *trg;
931 
932 	/* Clear out any active regions before we release the map. */
933 	region_del(resv_map, 0, LONG_MAX);
934 
935 	/* ... and any entries left in the cache */
936 	list_for_each_entry_safe(rg, trg, head, link) {
937 		list_del(&rg->link);
938 		kfree(rg);
939 	}
940 
941 	VM_BUG_ON(resv_map->adds_in_progress);
942 
943 	kfree(resv_map);
944 }
945 
946 static inline struct resv_map *inode_resv_map(struct inode *inode)
947 {
948 	/*
949 	 * At inode evict time, i_mapping may not point to the original
950 	 * address space within the inode.  This original address space
951 	 * contains the pointer to the resv_map.  So, always use the
952 	 * address space embedded within the inode.
953 	 * The VERY common case is inode->mapping == &inode->i_data but,
954 	 * this may not be true for device special inodes.
955 	 */
956 	return (struct resv_map *)(&inode->i_data)->private_data;
957 }
958 
959 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
960 {
961 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962 	if (vma->vm_flags & VM_MAYSHARE) {
963 		struct address_space *mapping = vma->vm_file->f_mapping;
964 		struct inode *inode = mapping->host;
965 
966 		return inode_resv_map(inode);
967 
968 	} else {
969 		return (struct resv_map *)(get_vma_private_data(vma) &
970 							~HPAGE_RESV_MASK);
971 	}
972 }
973 
974 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
975 {
976 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
978 
979 	set_vma_private_data(vma, (get_vma_private_data(vma) &
980 				HPAGE_RESV_MASK) | (unsigned long)map);
981 }
982 
983 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984 {
985 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
987 
988 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
989 }
990 
991 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992 {
993 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994 
995 	return (get_vma_private_data(vma) & flag) != 0;
996 }
997 
998 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
999 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000 {
1001 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1002 	if (!(vma->vm_flags & VM_MAYSHARE))
1003 		vma->vm_private_data = (void *)0;
1004 }
1005 
1006 /* Returns true if the VMA has associated reserve pages */
1007 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1008 {
1009 	if (vma->vm_flags & VM_NORESERVE) {
1010 		/*
1011 		 * This address is already reserved by other process(chg == 0),
1012 		 * so, we should decrement reserved count. Without decrementing,
1013 		 * reserve count remains after releasing inode, because this
1014 		 * allocated page will go into page cache and is regarded as
1015 		 * coming from reserved pool in releasing step.  Currently, we
1016 		 * don't have any other solution to deal with this situation
1017 		 * properly, so add work-around here.
1018 		 */
1019 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1020 			return true;
1021 		else
1022 			return false;
1023 	}
1024 
1025 	/* Shared mappings always use reserves */
1026 	if (vma->vm_flags & VM_MAYSHARE) {
1027 		/*
1028 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1029 		 * be a region map for all pages.  The only situation where
1030 		 * there is no region map is if a hole was punched via
1031 		 * fallocate.  In this case, there really are no reserves to
1032 		 * use.  This situation is indicated if chg != 0.
1033 		 */
1034 		if (chg)
1035 			return false;
1036 		else
1037 			return true;
1038 	}
1039 
1040 	/*
1041 	 * Only the process that called mmap() has reserves for
1042 	 * private mappings.
1043 	 */
1044 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045 		/*
1046 		 * Like the shared case above, a hole punch or truncate
1047 		 * could have been performed on the private mapping.
1048 		 * Examine the value of chg to determine if reserves
1049 		 * actually exist or were previously consumed.
1050 		 * Very Subtle - The value of chg comes from a previous
1051 		 * call to vma_needs_reserves().  The reserve map for
1052 		 * private mappings has different (opposite) semantics
1053 		 * than that of shared mappings.  vma_needs_reserves()
1054 		 * has already taken this difference in semantics into
1055 		 * account.  Therefore, the meaning of chg is the same
1056 		 * as in the shared case above.  Code could easily be
1057 		 * combined, but keeping it separate draws attention to
1058 		 * subtle differences.
1059 		 */
1060 		if (chg)
1061 			return false;
1062 		else
1063 			return true;
1064 	}
1065 
1066 	return false;
1067 }
1068 
1069 static void enqueue_huge_page(struct hstate *h, struct page *page)
1070 {
1071 	int nid = page_to_nid(page);
1072 
1073 	lockdep_assert_held(&hugetlb_lock);
1074 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1075 	h->free_huge_pages++;
1076 	h->free_huge_pages_node[nid]++;
1077 	SetHPageFreed(page);
1078 }
1079 
1080 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1081 {
1082 	struct page *page;
1083 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1084 
1085 	lockdep_assert_held(&hugetlb_lock);
1086 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087 		if (pin && !is_pinnable_page(page))
1088 			continue;
1089 
1090 		if (PageHWPoison(page))
1091 			continue;
1092 
1093 		list_move(&page->lru, &h->hugepage_activelist);
1094 		set_page_refcounted(page);
1095 		ClearHPageFreed(page);
1096 		h->free_huge_pages--;
1097 		h->free_huge_pages_node[nid]--;
1098 		return page;
1099 	}
1100 
1101 	return NULL;
1102 }
1103 
1104 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105 		nodemask_t *nmask)
1106 {
1107 	unsigned int cpuset_mems_cookie;
1108 	struct zonelist *zonelist;
1109 	struct zone *zone;
1110 	struct zoneref *z;
1111 	int node = NUMA_NO_NODE;
1112 
1113 	zonelist = node_zonelist(nid, gfp_mask);
1114 
1115 retry_cpuset:
1116 	cpuset_mems_cookie = read_mems_allowed_begin();
1117 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118 		struct page *page;
1119 
1120 		if (!cpuset_zone_allowed(zone, gfp_mask))
1121 			continue;
1122 		/*
1123 		 * no need to ask again on the same node. Pool is node rather than
1124 		 * zone aware
1125 		 */
1126 		if (zone_to_nid(zone) == node)
1127 			continue;
1128 		node = zone_to_nid(zone);
1129 
1130 		page = dequeue_huge_page_node_exact(h, node);
1131 		if (page)
1132 			return page;
1133 	}
1134 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135 		goto retry_cpuset;
1136 
1137 	return NULL;
1138 }
1139 
1140 static struct page *dequeue_huge_page_vma(struct hstate *h,
1141 				struct vm_area_struct *vma,
1142 				unsigned long address, int avoid_reserve,
1143 				long chg)
1144 {
1145 	struct page *page;
1146 	struct mempolicy *mpol;
1147 	gfp_t gfp_mask;
1148 	nodemask_t *nodemask;
1149 	int nid;
1150 
1151 	/*
1152 	 * A child process with MAP_PRIVATE mappings created by their parent
1153 	 * have no page reserves. This check ensures that reservations are
1154 	 * not "stolen". The child may still get SIGKILLed
1155 	 */
1156 	if (!vma_has_reserves(vma, chg) &&
1157 			h->free_huge_pages - h->resv_huge_pages == 0)
1158 		goto err;
1159 
1160 	/* If reserves cannot be used, ensure enough pages are in the pool */
1161 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1162 		goto err;
1163 
1164 	gfp_mask = htlb_alloc_mask(h);
1165 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1166 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1168 		SetHPageRestoreReserve(page);
1169 		h->resv_huge_pages--;
1170 	}
1171 
1172 	mpol_cond_put(mpol);
1173 	return page;
1174 
1175 err:
1176 	return NULL;
1177 }
1178 
1179 /*
1180  * common helper functions for hstate_next_node_to_{alloc|free}.
1181  * We may have allocated or freed a huge page based on a different
1182  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183  * be outside of *nodes_allowed.  Ensure that we use an allowed
1184  * node for alloc or free.
1185  */
1186 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187 {
1188 	nid = next_node_in(nid, *nodes_allowed);
1189 	VM_BUG_ON(nid >= MAX_NUMNODES);
1190 
1191 	return nid;
1192 }
1193 
1194 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195 {
1196 	if (!node_isset(nid, *nodes_allowed))
1197 		nid = next_node_allowed(nid, nodes_allowed);
1198 	return nid;
1199 }
1200 
1201 /*
1202  * returns the previously saved node ["this node"] from which to
1203  * allocate a persistent huge page for the pool and advance the
1204  * next node from which to allocate, handling wrap at end of node
1205  * mask.
1206  */
1207 static int hstate_next_node_to_alloc(struct hstate *h,
1208 					nodemask_t *nodes_allowed)
1209 {
1210 	int nid;
1211 
1212 	VM_BUG_ON(!nodes_allowed);
1213 
1214 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216 
1217 	return nid;
1218 }
1219 
1220 /*
1221  * helper for remove_pool_huge_page() - return the previously saved
1222  * node ["this node"] from which to free a huge page.  Advance the
1223  * next node id whether or not we find a free huge page to free so
1224  * that the next attempt to free addresses the next node.
1225  */
1226 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227 {
1228 	int nid;
1229 
1230 	VM_BUG_ON(!nodes_allowed);
1231 
1232 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234 
1235 	return nid;
1236 }
1237 
1238 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1239 	for (nr_nodes = nodes_weight(*mask);				\
1240 		nr_nodes > 0 &&						\
1241 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1242 		nr_nodes--)
1243 
1244 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1245 	for (nr_nodes = nodes_weight(*mask);				\
1246 		nr_nodes > 0 &&						\
1247 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1248 		nr_nodes--)
1249 
1250 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1251 static void destroy_compound_gigantic_page(struct page *page,
1252 					unsigned int order)
1253 {
1254 	int i;
1255 	int nr_pages = 1 << order;
1256 	struct page *p = page + 1;
1257 
1258 	atomic_set(compound_mapcount_ptr(page), 0);
1259 	atomic_set(compound_pincount_ptr(page), 0);
1260 
1261 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1262 		clear_compound_head(p);
1263 		set_page_refcounted(p);
1264 	}
1265 
1266 	set_compound_order(page, 0);
1267 	page[1].compound_nr = 0;
1268 	__ClearPageHead(page);
1269 }
1270 
1271 static void free_gigantic_page(struct page *page, unsigned int order)
1272 {
1273 	/*
1274 	 * If the page isn't allocated using the cma allocator,
1275 	 * cma_release() returns false.
1276 	 */
1277 #ifdef CONFIG_CMA
1278 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1279 		return;
1280 #endif
1281 
1282 	free_contig_range(page_to_pfn(page), 1 << order);
1283 }
1284 
1285 #ifdef CONFIG_CONTIG_ALLOC
1286 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287 		int nid, nodemask_t *nodemask)
1288 {
1289 	unsigned long nr_pages = pages_per_huge_page(h);
1290 	if (nid == NUMA_NO_NODE)
1291 		nid = numa_mem_id();
1292 
1293 #ifdef CONFIG_CMA
1294 	{
1295 		struct page *page;
1296 		int node;
1297 
1298 		if (hugetlb_cma[nid]) {
1299 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300 					huge_page_order(h), true);
1301 			if (page)
1302 				return page;
1303 		}
1304 
1305 		if (!(gfp_mask & __GFP_THISNODE)) {
1306 			for_each_node_mask(node, *nodemask) {
1307 				if (node == nid || !hugetlb_cma[node])
1308 					continue;
1309 
1310 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1311 						huge_page_order(h), true);
1312 				if (page)
1313 					return page;
1314 			}
1315 		}
1316 	}
1317 #endif
1318 
1319 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 }
1321 
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1323 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1324 #else /* !CONFIG_CONTIG_ALLOC */
1325 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326 					int nid, nodemask_t *nodemask)
1327 {
1328 	return NULL;
1329 }
1330 #endif /* CONFIG_CONTIG_ALLOC */
1331 
1332 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1333 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1334 					int nid, nodemask_t *nodemask)
1335 {
1336 	return NULL;
1337 }
1338 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1339 static inline void destroy_compound_gigantic_page(struct page *page,
1340 						unsigned int order) { }
1341 #endif
1342 
1343 /*
1344  * Remove hugetlb page from lists, and update dtor so that page appears
1345  * as just a compound page.  A reference is held on the page.
1346  *
1347  * Must be called with hugetlb lock held.
1348  */
1349 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350 							bool adjust_surplus)
1351 {
1352 	int nid = page_to_nid(page);
1353 
1354 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356 
1357 	lockdep_assert_held(&hugetlb_lock);
1358 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359 		return;
1360 
1361 	list_del(&page->lru);
1362 
1363 	if (HPageFreed(page)) {
1364 		h->free_huge_pages--;
1365 		h->free_huge_pages_node[nid]--;
1366 	}
1367 	if (adjust_surplus) {
1368 		h->surplus_huge_pages--;
1369 		h->surplus_huge_pages_node[nid]--;
1370 	}
1371 
1372 	set_page_refcounted(page);
1373 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374 
1375 	h->nr_huge_pages--;
1376 	h->nr_huge_pages_node[nid]--;
1377 }
1378 
1379 static void __update_and_free_page(struct hstate *h, struct page *page)
1380 {
1381 	int i;
1382 	struct page *subpage = page;
1383 
1384 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1385 		return;
1386 
1387 	for (i = 0; i < pages_per_huge_page(h);
1388 	     i++, subpage = mem_map_next(subpage, page, i)) {
1389 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1390 				1 << PG_referenced | 1 << PG_dirty |
1391 				1 << PG_active | 1 << PG_private |
1392 				1 << PG_writeback);
1393 	}
1394 	if (hstate_is_gigantic(h)) {
1395 		destroy_compound_gigantic_page(page, huge_page_order(h));
1396 		free_gigantic_page(page, huge_page_order(h));
1397 	} else {
1398 		__free_pages(page, huge_page_order(h));
1399 	}
1400 }
1401 
1402 /*
1403  * As update_and_free_page() can be called under any context, so we cannot
1404  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1405  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1406  * the vmemmap pages.
1407  *
1408  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1409  * freed and frees them one-by-one. As the page->mapping pointer is going
1410  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1411  * structure of a lockless linked list of huge pages to be freed.
1412  */
1413 static LLIST_HEAD(hpage_freelist);
1414 
1415 static void free_hpage_workfn(struct work_struct *work)
1416 {
1417 	struct llist_node *node;
1418 
1419 	node = llist_del_all(&hpage_freelist);
1420 
1421 	while (node) {
1422 		struct page *page;
1423 		struct hstate *h;
1424 
1425 		page = container_of((struct address_space **)node,
1426 				     struct page, mapping);
1427 		node = node->next;
1428 		page->mapping = NULL;
1429 		/*
1430 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1431 		 * is going to trigger because a previous call to
1432 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1433 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1434 		 */
1435 		h = size_to_hstate(page_size(page));
1436 
1437 		__update_and_free_page(h, page);
1438 
1439 		cond_resched();
1440 	}
1441 }
1442 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1443 
1444 static inline void flush_free_hpage_work(struct hstate *h)
1445 {
1446 	if (free_vmemmap_pages_per_hpage(h))
1447 		flush_work(&free_hpage_work);
1448 }
1449 
1450 static void update_and_free_page(struct hstate *h, struct page *page,
1451 				 bool atomic)
1452 {
1453 	if (!free_vmemmap_pages_per_hpage(h) || !atomic) {
1454 		__update_and_free_page(h, page);
1455 		return;
1456 	}
1457 
1458 	/*
1459 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1460 	 *
1461 	 * Only call schedule_work() if hpage_freelist is previously
1462 	 * empty. Otherwise, schedule_work() had been called but the workfn
1463 	 * hasn't retrieved the list yet.
1464 	 */
1465 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1466 		schedule_work(&free_hpage_work);
1467 }
1468 
1469 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1470 {
1471 	struct page *page, *t_page;
1472 
1473 	list_for_each_entry_safe(page, t_page, list, lru) {
1474 		update_and_free_page(h, page, false);
1475 		cond_resched();
1476 	}
1477 }
1478 
1479 struct hstate *size_to_hstate(unsigned long size)
1480 {
1481 	struct hstate *h;
1482 
1483 	for_each_hstate(h) {
1484 		if (huge_page_size(h) == size)
1485 			return h;
1486 	}
1487 	return NULL;
1488 }
1489 
1490 void free_huge_page(struct page *page)
1491 {
1492 	/*
1493 	 * Can't pass hstate in here because it is called from the
1494 	 * compound page destructor.
1495 	 */
1496 	struct hstate *h = page_hstate(page);
1497 	int nid = page_to_nid(page);
1498 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1499 	bool restore_reserve;
1500 	unsigned long flags;
1501 
1502 	VM_BUG_ON_PAGE(page_count(page), page);
1503 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1504 
1505 	hugetlb_set_page_subpool(page, NULL);
1506 	page->mapping = NULL;
1507 	restore_reserve = HPageRestoreReserve(page);
1508 	ClearHPageRestoreReserve(page);
1509 
1510 	/*
1511 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1512 	 * reservation.  If the page was associated with a subpool, there
1513 	 * would have been a page reserved in the subpool before allocation
1514 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1515 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1516 	 * remove the reserved page from the subpool.
1517 	 */
1518 	if (!restore_reserve) {
1519 		/*
1520 		 * A return code of zero implies that the subpool will be
1521 		 * under its minimum size if the reservation is not restored
1522 		 * after page is free.  Therefore, force restore_reserve
1523 		 * operation.
1524 		 */
1525 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1526 			restore_reserve = true;
1527 	}
1528 
1529 	spin_lock_irqsave(&hugetlb_lock, flags);
1530 	ClearHPageMigratable(page);
1531 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1532 				     pages_per_huge_page(h), page);
1533 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1534 					  pages_per_huge_page(h), page);
1535 	if (restore_reserve)
1536 		h->resv_huge_pages++;
1537 
1538 	if (HPageTemporary(page)) {
1539 		remove_hugetlb_page(h, page, false);
1540 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1541 		update_and_free_page(h, page, true);
1542 	} else if (h->surplus_huge_pages_node[nid]) {
1543 		/* remove the page from active list */
1544 		remove_hugetlb_page(h, page, true);
1545 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1546 		update_and_free_page(h, page, true);
1547 	} else {
1548 		arch_clear_hugepage_flags(page);
1549 		enqueue_huge_page(h, page);
1550 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1551 	}
1552 }
1553 
1554 /*
1555  * Must be called with the hugetlb lock held
1556  */
1557 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1558 {
1559 	lockdep_assert_held(&hugetlb_lock);
1560 	h->nr_huge_pages++;
1561 	h->nr_huge_pages_node[nid]++;
1562 }
1563 
1564 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1565 {
1566 	free_huge_page_vmemmap(h, page);
1567 	INIT_LIST_HEAD(&page->lru);
1568 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1569 	hugetlb_set_page_subpool(page, NULL);
1570 	set_hugetlb_cgroup(page, NULL);
1571 	set_hugetlb_cgroup_rsvd(page, NULL);
1572 }
1573 
1574 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1575 {
1576 	__prep_new_huge_page(h, page);
1577 	spin_lock_irq(&hugetlb_lock);
1578 	__prep_account_new_huge_page(h, nid);
1579 	spin_unlock_irq(&hugetlb_lock);
1580 }
1581 
1582 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1583 {
1584 	int i;
1585 	int nr_pages = 1 << order;
1586 	struct page *p = page + 1;
1587 
1588 	/* we rely on prep_new_huge_page to set the destructor */
1589 	set_compound_order(page, order);
1590 	__ClearPageReserved(page);
1591 	__SetPageHead(page);
1592 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1593 		/*
1594 		 * For gigantic hugepages allocated through bootmem at
1595 		 * boot, it's safer to be consistent with the not-gigantic
1596 		 * hugepages and clear the PG_reserved bit from all tail pages
1597 		 * too.  Otherwise drivers using get_user_pages() to access tail
1598 		 * pages may get the reference counting wrong if they see
1599 		 * PG_reserved set on a tail page (despite the head page not
1600 		 * having PG_reserved set).  Enforcing this consistency between
1601 		 * head and tail pages allows drivers to optimize away a check
1602 		 * on the head page when they need know if put_page() is needed
1603 		 * after get_user_pages().
1604 		 */
1605 		__ClearPageReserved(p);
1606 		set_page_count(p, 0);
1607 		set_compound_head(p, page);
1608 	}
1609 	atomic_set(compound_mapcount_ptr(page), -1);
1610 	atomic_set(compound_pincount_ptr(page), 0);
1611 }
1612 
1613 /*
1614  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1615  * transparent huge pages.  See the PageTransHuge() documentation for more
1616  * details.
1617  */
1618 int PageHuge(struct page *page)
1619 {
1620 	if (!PageCompound(page))
1621 		return 0;
1622 
1623 	page = compound_head(page);
1624 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1625 }
1626 EXPORT_SYMBOL_GPL(PageHuge);
1627 
1628 /*
1629  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1630  * normal or transparent huge pages.
1631  */
1632 int PageHeadHuge(struct page *page_head)
1633 {
1634 	if (!PageHead(page_head))
1635 		return 0;
1636 
1637 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1638 }
1639 
1640 /*
1641  * Find and lock address space (mapping) in write mode.
1642  *
1643  * Upon entry, the page is locked which means that page_mapping() is
1644  * stable.  Due to locking order, we can only trylock_write.  If we can
1645  * not get the lock, simply return NULL to caller.
1646  */
1647 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1648 {
1649 	struct address_space *mapping = page_mapping(hpage);
1650 
1651 	if (!mapping)
1652 		return mapping;
1653 
1654 	if (i_mmap_trylock_write(mapping))
1655 		return mapping;
1656 
1657 	return NULL;
1658 }
1659 
1660 pgoff_t hugetlb_basepage_index(struct page *page)
1661 {
1662 	struct page *page_head = compound_head(page);
1663 	pgoff_t index = page_index(page_head);
1664 	unsigned long compound_idx;
1665 
1666 	if (compound_order(page_head) >= MAX_ORDER)
1667 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1668 	else
1669 		compound_idx = page - page_head;
1670 
1671 	return (index << compound_order(page_head)) + compound_idx;
1672 }
1673 
1674 static struct page *alloc_buddy_huge_page(struct hstate *h,
1675 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1676 		nodemask_t *node_alloc_noretry)
1677 {
1678 	int order = huge_page_order(h);
1679 	struct page *page;
1680 	bool alloc_try_hard = true;
1681 
1682 	/*
1683 	 * By default we always try hard to allocate the page with
1684 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1685 	 * a loop (to adjust global huge page counts) and previous allocation
1686 	 * failed, do not continue to try hard on the same node.  Use the
1687 	 * node_alloc_noretry bitmap to manage this state information.
1688 	 */
1689 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1690 		alloc_try_hard = false;
1691 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1692 	if (alloc_try_hard)
1693 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1694 	if (nid == NUMA_NO_NODE)
1695 		nid = numa_mem_id();
1696 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1697 	if (page)
1698 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1699 	else
1700 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1701 
1702 	/*
1703 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1704 	 * indicates an overall state change.  Clear bit so that we resume
1705 	 * normal 'try hard' allocations.
1706 	 */
1707 	if (node_alloc_noretry && page && !alloc_try_hard)
1708 		node_clear(nid, *node_alloc_noretry);
1709 
1710 	/*
1711 	 * If we tried hard to get a page but failed, set bit so that
1712 	 * subsequent attempts will not try as hard until there is an
1713 	 * overall state change.
1714 	 */
1715 	if (node_alloc_noretry && !page && alloc_try_hard)
1716 		node_set(nid, *node_alloc_noretry);
1717 
1718 	return page;
1719 }
1720 
1721 /*
1722  * Common helper to allocate a fresh hugetlb page. All specific allocators
1723  * should use this function to get new hugetlb pages
1724  */
1725 static struct page *alloc_fresh_huge_page(struct hstate *h,
1726 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1727 		nodemask_t *node_alloc_noretry)
1728 {
1729 	struct page *page;
1730 
1731 	if (hstate_is_gigantic(h))
1732 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1733 	else
1734 		page = alloc_buddy_huge_page(h, gfp_mask,
1735 				nid, nmask, node_alloc_noretry);
1736 	if (!page)
1737 		return NULL;
1738 
1739 	if (hstate_is_gigantic(h))
1740 		prep_compound_gigantic_page(page, huge_page_order(h));
1741 	prep_new_huge_page(h, page, page_to_nid(page));
1742 
1743 	return page;
1744 }
1745 
1746 /*
1747  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1748  * manner.
1749  */
1750 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1751 				nodemask_t *node_alloc_noretry)
1752 {
1753 	struct page *page;
1754 	int nr_nodes, node;
1755 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1756 
1757 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1758 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1759 						node_alloc_noretry);
1760 		if (page)
1761 			break;
1762 	}
1763 
1764 	if (!page)
1765 		return 0;
1766 
1767 	put_page(page); /* free it into the hugepage allocator */
1768 
1769 	return 1;
1770 }
1771 
1772 /*
1773  * Remove huge page from pool from next node to free.  Attempt to keep
1774  * persistent huge pages more or less balanced over allowed nodes.
1775  * This routine only 'removes' the hugetlb page.  The caller must make
1776  * an additional call to free the page to low level allocators.
1777  * Called with hugetlb_lock locked.
1778  */
1779 static struct page *remove_pool_huge_page(struct hstate *h,
1780 						nodemask_t *nodes_allowed,
1781 						 bool acct_surplus)
1782 {
1783 	int nr_nodes, node;
1784 	struct page *page = NULL;
1785 
1786 	lockdep_assert_held(&hugetlb_lock);
1787 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1788 		/*
1789 		 * If we're returning unused surplus pages, only examine
1790 		 * nodes with surplus pages.
1791 		 */
1792 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1793 		    !list_empty(&h->hugepage_freelists[node])) {
1794 			page = list_entry(h->hugepage_freelists[node].next,
1795 					  struct page, lru);
1796 			remove_hugetlb_page(h, page, acct_surplus);
1797 			break;
1798 		}
1799 	}
1800 
1801 	return page;
1802 }
1803 
1804 /*
1805  * Dissolve a given free hugepage into free buddy pages. This function does
1806  * nothing for in-use hugepages and non-hugepages.
1807  * This function returns values like below:
1808  *
1809  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1810  *          (allocated or reserved.)
1811  *       0: successfully dissolved free hugepages or the page is not a
1812  *          hugepage (considered as already dissolved)
1813  */
1814 int dissolve_free_huge_page(struct page *page)
1815 {
1816 	int rc = -EBUSY;
1817 
1818 retry:
1819 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1820 	if (!PageHuge(page))
1821 		return 0;
1822 
1823 	spin_lock_irq(&hugetlb_lock);
1824 	if (!PageHuge(page)) {
1825 		rc = 0;
1826 		goto out;
1827 	}
1828 
1829 	if (!page_count(page)) {
1830 		struct page *head = compound_head(page);
1831 		struct hstate *h = page_hstate(head);
1832 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1833 			goto out;
1834 
1835 		/*
1836 		 * We should make sure that the page is already on the free list
1837 		 * when it is dissolved.
1838 		 */
1839 		if (unlikely(!HPageFreed(head))) {
1840 			spin_unlock_irq(&hugetlb_lock);
1841 			cond_resched();
1842 
1843 			/*
1844 			 * Theoretically, we should return -EBUSY when we
1845 			 * encounter this race. In fact, we have a chance
1846 			 * to successfully dissolve the page if we do a
1847 			 * retry. Because the race window is quite small.
1848 			 * If we seize this opportunity, it is an optimization
1849 			 * for increasing the success rate of dissolving page.
1850 			 */
1851 			goto retry;
1852 		}
1853 
1854 		/*
1855 		 * Move PageHWPoison flag from head page to the raw error page,
1856 		 * which makes any subpages rather than the error page reusable.
1857 		 */
1858 		if (PageHWPoison(head) && page != head) {
1859 			SetPageHWPoison(page);
1860 			ClearPageHWPoison(head);
1861 		}
1862 		remove_hugetlb_page(h, head, false);
1863 		h->max_huge_pages--;
1864 		spin_unlock_irq(&hugetlb_lock);
1865 		update_and_free_page(h, head, false);
1866 		return 0;
1867 	}
1868 out:
1869 	spin_unlock_irq(&hugetlb_lock);
1870 	return rc;
1871 }
1872 
1873 /*
1874  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1875  * make specified memory blocks removable from the system.
1876  * Note that this will dissolve a free gigantic hugepage completely, if any
1877  * part of it lies within the given range.
1878  * Also note that if dissolve_free_huge_page() returns with an error, all
1879  * free hugepages that were dissolved before that error are lost.
1880  */
1881 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1882 {
1883 	unsigned long pfn;
1884 	struct page *page;
1885 	int rc = 0;
1886 
1887 	if (!hugepages_supported())
1888 		return rc;
1889 
1890 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1891 		page = pfn_to_page(pfn);
1892 		rc = dissolve_free_huge_page(page);
1893 		if (rc)
1894 			break;
1895 	}
1896 
1897 	return rc;
1898 }
1899 
1900 /*
1901  * Allocates a fresh surplus page from the page allocator.
1902  */
1903 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1904 		int nid, nodemask_t *nmask)
1905 {
1906 	struct page *page = NULL;
1907 
1908 	if (hstate_is_gigantic(h))
1909 		return NULL;
1910 
1911 	spin_lock_irq(&hugetlb_lock);
1912 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1913 		goto out_unlock;
1914 	spin_unlock_irq(&hugetlb_lock);
1915 
1916 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1917 	if (!page)
1918 		return NULL;
1919 
1920 	spin_lock_irq(&hugetlb_lock);
1921 	/*
1922 	 * We could have raced with the pool size change.
1923 	 * Double check that and simply deallocate the new page
1924 	 * if we would end up overcommiting the surpluses. Abuse
1925 	 * temporary page to workaround the nasty free_huge_page
1926 	 * codeflow
1927 	 */
1928 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1929 		SetHPageTemporary(page);
1930 		spin_unlock_irq(&hugetlb_lock);
1931 		put_page(page);
1932 		return NULL;
1933 	} else {
1934 		h->surplus_huge_pages++;
1935 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1936 	}
1937 
1938 out_unlock:
1939 	spin_unlock_irq(&hugetlb_lock);
1940 
1941 	return page;
1942 }
1943 
1944 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1945 				     int nid, nodemask_t *nmask)
1946 {
1947 	struct page *page;
1948 
1949 	if (hstate_is_gigantic(h))
1950 		return NULL;
1951 
1952 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1953 	if (!page)
1954 		return NULL;
1955 
1956 	/*
1957 	 * We do not account these pages as surplus because they are only
1958 	 * temporary and will be released properly on the last reference
1959 	 */
1960 	SetHPageTemporary(page);
1961 
1962 	return page;
1963 }
1964 
1965 /*
1966  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1967  */
1968 static
1969 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1970 		struct vm_area_struct *vma, unsigned long addr)
1971 {
1972 	struct page *page;
1973 	struct mempolicy *mpol;
1974 	gfp_t gfp_mask = htlb_alloc_mask(h);
1975 	int nid;
1976 	nodemask_t *nodemask;
1977 
1978 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1979 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1980 	mpol_cond_put(mpol);
1981 
1982 	return page;
1983 }
1984 
1985 /* page migration callback function */
1986 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1987 		nodemask_t *nmask, gfp_t gfp_mask)
1988 {
1989 	spin_lock_irq(&hugetlb_lock);
1990 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1991 		struct page *page;
1992 
1993 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1994 		if (page) {
1995 			spin_unlock_irq(&hugetlb_lock);
1996 			return page;
1997 		}
1998 	}
1999 	spin_unlock_irq(&hugetlb_lock);
2000 
2001 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2002 }
2003 
2004 /* mempolicy aware migration callback */
2005 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2006 		unsigned long address)
2007 {
2008 	struct mempolicy *mpol;
2009 	nodemask_t *nodemask;
2010 	struct page *page;
2011 	gfp_t gfp_mask;
2012 	int node;
2013 
2014 	gfp_mask = htlb_alloc_mask(h);
2015 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2016 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2017 	mpol_cond_put(mpol);
2018 
2019 	return page;
2020 }
2021 
2022 /*
2023  * Increase the hugetlb pool such that it can accommodate a reservation
2024  * of size 'delta'.
2025  */
2026 static int gather_surplus_pages(struct hstate *h, long delta)
2027 	__must_hold(&hugetlb_lock)
2028 {
2029 	struct list_head surplus_list;
2030 	struct page *page, *tmp;
2031 	int ret;
2032 	long i;
2033 	long needed, allocated;
2034 	bool alloc_ok = true;
2035 
2036 	lockdep_assert_held(&hugetlb_lock);
2037 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2038 	if (needed <= 0) {
2039 		h->resv_huge_pages += delta;
2040 		return 0;
2041 	}
2042 
2043 	allocated = 0;
2044 	INIT_LIST_HEAD(&surplus_list);
2045 
2046 	ret = -ENOMEM;
2047 retry:
2048 	spin_unlock_irq(&hugetlb_lock);
2049 	for (i = 0; i < needed; i++) {
2050 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2051 				NUMA_NO_NODE, NULL);
2052 		if (!page) {
2053 			alloc_ok = false;
2054 			break;
2055 		}
2056 		list_add(&page->lru, &surplus_list);
2057 		cond_resched();
2058 	}
2059 	allocated += i;
2060 
2061 	/*
2062 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2063 	 * because either resv_huge_pages or free_huge_pages may have changed.
2064 	 */
2065 	spin_lock_irq(&hugetlb_lock);
2066 	needed = (h->resv_huge_pages + delta) -
2067 			(h->free_huge_pages + allocated);
2068 	if (needed > 0) {
2069 		if (alloc_ok)
2070 			goto retry;
2071 		/*
2072 		 * We were not able to allocate enough pages to
2073 		 * satisfy the entire reservation so we free what
2074 		 * we've allocated so far.
2075 		 */
2076 		goto free;
2077 	}
2078 	/*
2079 	 * The surplus_list now contains _at_least_ the number of extra pages
2080 	 * needed to accommodate the reservation.  Add the appropriate number
2081 	 * of pages to the hugetlb pool and free the extras back to the buddy
2082 	 * allocator.  Commit the entire reservation here to prevent another
2083 	 * process from stealing the pages as they are added to the pool but
2084 	 * before they are reserved.
2085 	 */
2086 	needed += allocated;
2087 	h->resv_huge_pages += delta;
2088 	ret = 0;
2089 
2090 	/* Free the needed pages to the hugetlb pool */
2091 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2092 		int zeroed;
2093 
2094 		if ((--needed) < 0)
2095 			break;
2096 		/*
2097 		 * This page is now managed by the hugetlb allocator and has
2098 		 * no users -- drop the buddy allocator's reference.
2099 		 */
2100 		zeroed = put_page_testzero(page);
2101 		VM_BUG_ON_PAGE(!zeroed, page);
2102 		enqueue_huge_page(h, page);
2103 	}
2104 free:
2105 	spin_unlock_irq(&hugetlb_lock);
2106 
2107 	/* Free unnecessary surplus pages to the buddy allocator */
2108 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2109 		put_page(page);
2110 	spin_lock_irq(&hugetlb_lock);
2111 
2112 	return ret;
2113 }
2114 
2115 /*
2116  * This routine has two main purposes:
2117  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2118  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2119  *    to the associated reservation map.
2120  * 2) Free any unused surplus pages that may have been allocated to satisfy
2121  *    the reservation.  As many as unused_resv_pages may be freed.
2122  */
2123 static void return_unused_surplus_pages(struct hstate *h,
2124 					unsigned long unused_resv_pages)
2125 {
2126 	unsigned long nr_pages;
2127 	struct page *page;
2128 	LIST_HEAD(page_list);
2129 
2130 	lockdep_assert_held(&hugetlb_lock);
2131 	/* Uncommit the reservation */
2132 	h->resv_huge_pages -= unused_resv_pages;
2133 
2134 	/* Cannot return gigantic pages currently */
2135 	if (hstate_is_gigantic(h))
2136 		goto out;
2137 
2138 	/*
2139 	 * Part (or even all) of the reservation could have been backed
2140 	 * by pre-allocated pages. Only free surplus pages.
2141 	 */
2142 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2143 
2144 	/*
2145 	 * We want to release as many surplus pages as possible, spread
2146 	 * evenly across all nodes with memory. Iterate across these nodes
2147 	 * until we can no longer free unreserved surplus pages. This occurs
2148 	 * when the nodes with surplus pages have no free pages.
2149 	 * remove_pool_huge_page() will balance the freed pages across the
2150 	 * on-line nodes with memory and will handle the hstate accounting.
2151 	 */
2152 	while (nr_pages--) {
2153 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2154 		if (!page)
2155 			goto out;
2156 
2157 		list_add(&page->lru, &page_list);
2158 	}
2159 
2160 out:
2161 	spin_unlock_irq(&hugetlb_lock);
2162 	update_and_free_pages_bulk(h, &page_list);
2163 	spin_lock_irq(&hugetlb_lock);
2164 }
2165 
2166 
2167 /*
2168  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2169  * are used by the huge page allocation routines to manage reservations.
2170  *
2171  * vma_needs_reservation is called to determine if the huge page at addr
2172  * within the vma has an associated reservation.  If a reservation is
2173  * needed, the value 1 is returned.  The caller is then responsible for
2174  * managing the global reservation and subpool usage counts.  After
2175  * the huge page has been allocated, vma_commit_reservation is called
2176  * to add the page to the reservation map.  If the page allocation fails,
2177  * the reservation must be ended instead of committed.  vma_end_reservation
2178  * is called in such cases.
2179  *
2180  * In the normal case, vma_commit_reservation returns the same value
2181  * as the preceding vma_needs_reservation call.  The only time this
2182  * is not the case is if a reserve map was changed between calls.  It
2183  * is the responsibility of the caller to notice the difference and
2184  * take appropriate action.
2185  *
2186  * vma_add_reservation is used in error paths where a reservation must
2187  * be restored when a newly allocated huge page must be freed.  It is
2188  * to be called after calling vma_needs_reservation to determine if a
2189  * reservation exists.
2190  *
2191  * vma_del_reservation is used in error paths where an entry in the reserve
2192  * map was created during huge page allocation and must be removed.  It is to
2193  * be called after calling vma_needs_reservation to determine if a reservation
2194  * exists.
2195  */
2196 enum vma_resv_mode {
2197 	VMA_NEEDS_RESV,
2198 	VMA_COMMIT_RESV,
2199 	VMA_END_RESV,
2200 	VMA_ADD_RESV,
2201 	VMA_DEL_RESV,
2202 };
2203 static long __vma_reservation_common(struct hstate *h,
2204 				struct vm_area_struct *vma, unsigned long addr,
2205 				enum vma_resv_mode mode)
2206 {
2207 	struct resv_map *resv;
2208 	pgoff_t idx;
2209 	long ret;
2210 	long dummy_out_regions_needed;
2211 
2212 	resv = vma_resv_map(vma);
2213 	if (!resv)
2214 		return 1;
2215 
2216 	idx = vma_hugecache_offset(h, vma, addr);
2217 	switch (mode) {
2218 	case VMA_NEEDS_RESV:
2219 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2220 		/* We assume that vma_reservation_* routines always operate on
2221 		 * 1 page, and that adding to resv map a 1 page entry can only
2222 		 * ever require 1 region.
2223 		 */
2224 		VM_BUG_ON(dummy_out_regions_needed != 1);
2225 		break;
2226 	case VMA_COMMIT_RESV:
2227 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2228 		/* region_add calls of range 1 should never fail. */
2229 		VM_BUG_ON(ret < 0);
2230 		break;
2231 	case VMA_END_RESV:
2232 		region_abort(resv, idx, idx + 1, 1);
2233 		ret = 0;
2234 		break;
2235 	case VMA_ADD_RESV:
2236 		if (vma->vm_flags & VM_MAYSHARE) {
2237 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2238 			/* region_add calls of range 1 should never fail. */
2239 			VM_BUG_ON(ret < 0);
2240 		} else {
2241 			region_abort(resv, idx, idx + 1, 1);
2242 			ret = region_del(resv, idx, idx + 1);
2243 		}
2244 		break;
2245 	case VMA_DEL_RESV:
2246 		if (vma->vm_flags & VM_MAYSHARE) {
2247 			region_abort(resv, idx, idx + 1, 1);
2248 			ret = region_del(resv, idx, idx + 1);
2249 		} else {
2250 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2251 			/* region_add calls of range 1 should never fail. */
2252 			VM_BUG_ON(ret < 0);
2253 		}
2254 		break;
2255 	default:
2256 		BUG();
2257 	}
2258 
2259 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2260 		return ret;
2261 	/*
2262 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2263 	 *
2264 	 * In most cases, reserves always exist for private mappings.
2265 	 * However, a file associated with mapping could have been
2266 	 * hole punched or truncated after reserves were consumed.
2267 	 * As subsequent fault on such a range will not use reserves.
2268 	 * Subtle - The reserve map for private mappings has the
2269 	 * opposite meaning than that of shared mappings.  If NO
2270 	 * entry is in the reserve map, it means a reservation exists.
2271 	 * If an entry exists in the reserve map, it means the
2272 	 * reservation has already been consumed.  As a result, the
2273 	 * return value of this routine is the opposite of the
2274 	 * value returned from reserve map manipulation routines above.
2275 	 */
2276 	if (ret > 0)
2277 		return 0;
2278 	if (ret == 0)
2279 		return 1;
2280 	return ret;
2281 }
2282 
2283 static long vma_needs_reservation(struct hstate *h,
2284 			struct vm_area_struct *vma, unsigned long addr)
2285 {
2286 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2287 }
2288 
2289 static long vma_commit_reservation(struct hstate *h,
2290 			struct vm_area_struct *vma, unsigned long addr)
2291 {
2292 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2293 }
2294 
2295 static void vma_end_reservation(struct hstate *h,
2296 			struct vm_area_struct *vma, unsigned long addr)
2297 {
2298 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2299 }
2300 
2301 static long vma_add_reservation(struct hstate *h,
2302 			struct vm_area_struct *vma, unsigned long addr)
2303 {
2304 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2305 }
2306 
2307 static long vma_del_reservation(struct hstate *h,
2308 			struct vm_area_struct *vma, unsigned long addr)
2309 {
2310 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2311 }
2312 
2313 /*
2314  * This routine is called to restore reservation information on error paths.
2315  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2316  * the hugetlb mutex should remain held when calling this routine.
2317  *
2318  * It handles two specific cases:
2319  * 1) A reservation was in place and the page consumed the reservation.
2320  *    HPageRestoreReserve is set in the page.
2321  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2322  *    not set.  However, alloc_huge_page always updates the reserve map.
2323  *
2324  * In case 1, free_huge_page later in the error path will increment the
2325  * global reserve count.  But, free_huge_page does not have enough context
2326  * to adjust the reservation map.  This case deals primarily with private
2327  * mappings.  Adjust the reserve map here to be consistent with global
2328  * reserve count adjustments to be made by free_huge_page.  Make sure the
2329  * reserve map indicates there is a reservation present.
2330  *
2331  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2332  */
2333 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2334 			unsigned long address, struct page *page)
2335 {
2336 	long rc = vma_needs_reservation(h, vma, address);
2337 
2338 	if (HPageRestoreReserve(page)) {
2339 		if (unlikely(rc < 0))
2340 			/*
2341 			 * Rare out of memory condition in reserve map
2342 			 * manipulation.  Clear HPageRestoreReserve so that
2343 			 * global reserve count will not be incremented
2344 			 * by free_huge_page.  This will make it appear
2345 			 * as though the reservation for this page was
2346 			 * consumed.  This may prevent the task from
2347 			 * faulting in the page at a later time.  This
2348 			 * is better than inconsistent global huge page
2349 			 * accounting of reserve counts.
2350 			 */
2351 			ClearHPageRestoreReserve(page);
2352 		else if (rc)
2353 			(void)vma_add_reservation(h, vma, address);
2354 		else
2355 			vma_end_reservation(h, vma, address);
2356 	} else {
2357 		if (!rc) {
2358 			/*
2359 			 * This indicates there is an entry in the reserve map
2360 			 * added by alloc_huge_page.  We know it was added
2361 			 * before the alloc_huge_page call, otherwise
2362 			 * HPageRestoreReserve would be set on the page.
2363 			 * Remove the entry so that a subsequent allocation
2364 			 * does not consume a reservation.
2365 			 */
2366 			rc = vma_del_reservation(h, vma, address);
2367 			if (rc < 0)
2368 				/*
2369 				 * VERY rare out of memory condition.  Since
2370 				 * we can not delete the entry, set
2371 				 * HPageRestoreReserve so that the reserve
2372 				 * count will be incremented when the page
2373 				 * is freed.  This reserve will be consumed
2374 				 * on a subsequent allocation.
2375 				 */
2376 				SetHPageRestoreReserve(page);
2377 		} else if (rc < 0) {
2378 			/*
2379 			 * Rare out of memory condition from
2380 			 * vma_needs_reservation call.  Memory allocation is
2381 			 * only attempted if a new entry is needed.  Therefore,
2382 			 * this implies there is not an entry in the
2383 			 * reserve map.
2384 			 *
2385 			 * For shared mappings, no entry in the map indicates
2386 			 * no reservation.  We are done.
2387 			 */
2388 			if (!(vma->vm_flags & VM_MAYSHARE))
2389 				/*
2390 				 * For private mappings, no entry indicates
2391 				 * a reservation is present.  Since we can
2392 				 * not add an entry, set SetHPageRestoreReserve
2393 				 * on the page so reserve count will be
2394 				 * incremented when freed.  This reserve will
2395 				 * be consumed on a subsequent allocation.
2396 				 */
2397 				SetHPageRestoreReserve(page);
2398 		} else
2399 			/*
2400 			 * No reservation present, do nothing
2401 			 */
2402 			 vma_end_reservation(h, vma, address);
2403 	}
2404 }
2405 
2406 /*
2407  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2408  * @h: struct hstate old page belongs to
2409  * @old_page: Old page to dissolve
2410  * @list: List to isolate the page in case we need to
2411  * Returns 0 on success, otherwise negated error.
2412  */
2413 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2414 					struct list_head *list)
2415 {
2416 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2417 	int nid = page_to_nid(old_page);
2418 	struct page *new_page;
2419 	int ret = 0;
2420 
2421 	/*
2422 	 * Before dissolving the page, we need to allocate a new one for the
2423 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2424 	 * by doing everything but actually updating counters and adding to
2425 	 * the pool.  This simplifies and let us do most of the processing
2426 	 * under the lock.
2427 	 */
2428 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2429 	if (!new_page)
2430 		return -ENOMEM;
2431 	__prep_new_huge_page(h, new_page);
2432 
2433 retry:
2434 	spin_lock_irq(&hugetlb_lock);
2435 	if (!PageHuge(old_page)) {
2436 		/*
2437 		 * Freed from under us. Drop new_page too.
2438 		 */
2439 		goto free_new;
2440 	} else if (page_count(old_page)) {
2441 		/*
2442 		 * Someone has grabbed the page, try to isolate it here.
2443 		 * Fail with -EBUSY if not possible.
2444 		 */
2445 		spin_unlock_irq(&hugetlb_lock);
2446 		if (!isolate_huge_page(old_page, list))
2447 			ret = -EBUSY;
2448 		spin_lock_irq(&hugetlb_lock);
2449 		goto free_new;
2450 	} else if (!HPageFreed(old_page)) {
2451 		/*
2452 		 * Page's refcount is 0 but it has not been enqueued in the
2453 		 * freelist yet. Race window is small, so we can succeed here if
2454 		 * we retry.
2455 		 */
2456 		spin_unlock_irq(&hugetlb_lock);
2457 		cond_resched();
2458 		goto retry;
2459 	} else {
2460 		/*
2461 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2462 		 * the freelist and decrease the counters. These will be
2463 		 * incremented again when calling __prep_account_new_huge_page()
2464 		 * and enqueue_huge_page() for new_page. The counters will remain
2465 		 * stable since this happens under the lock.
2466 		 */
2467 		remove_hugetlb_page(h, old_page, false);
2468 
2469 		/*
2470 		 * Reference count trick is needed because allocator gives us
2471 		 * referenced page but the pool requires pages with 0 refcount.
2472 		 */
2473 		__prep_account_new_huge_page(h, nid);
2474 		page_ref_dec(new_page);
2475 		enqueue_huge_page(h, new_page);
2476 
2477 		/*
2478 		 * Pages have been replaced, we can safely free the old one.
2479 		 */
2480 		spin_unlock_irq(&hugetlb_lock);
2481 		update_and_free_page(h, old_page, false);
2482 	}
2483 
2484 	return ret;
2485 
2486 free_new:
2487 	spin_unlock_irq(&hugetlb_lock);
2488 	update_and_free_page(h, new_page, false);
2489 
2490 	return ret;
2491 }
2492 
2493 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2494 {
2495 	struct hstate *h;
2496 	struct page *head;
2497 	int ret = -EBUSY;
2498 
2499 	/*
2500 	 * The page might have been dissolved from under our feet, so make sure
2501 	 * to carefully check the state under the lock.
2502 	 * Return success when racing as if we dissolved the page ourselves.
2503 	 */
2504 	spin_lock_irq(&hugetlb_lock);
2505 	if (PageHuge(page)) {
2506 		head = compound_head(page);
2507 		h = page_hstate(head);
2508 	} else {
2509 		spin_unlock_irq(&hugetlb_lock);
2510 		return 0;
2511 	}
2512 	spin_unlock_irq(&hugetlb_lock);
2513 
2514 	/*
2515 	 * Fence off gigantic pages as there is a cyclic dependency between
2516 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2517 	 * of bailing out right away without further retrying.
2518 	 */
2519 	if (hstate_is_gigantic(h))
2520 		return -ENOMEM;
2521 
2522 	if (page_count(head) && isolate_huge_page(head, list))
2523 		ret = 0;
2524 	else if (!page_count(head))
2525 		ret = alloc_and_dissolve_huge_page(h, head, list);
2526 
2527 	return ret;
2528 }
2529 
2530 struct page *alloc_huge_page(struct vm_area_struct *vma,
2531 				    unsigned long addr, int avoid_reserve)
2532 {
2533 	struct hugepage_subpool *spool = subpool_vma(vma);
2534 	struct hstate *h = hstate_vma(vma);
2535 	struct page *page;
2536 	long map_chg, map_commit;
2537 	long gbl_chg;
2538 	int ret, idx;
2539 	struct hugetlb_cgroup *h_cg;
2540 	bool deferred_reserve;
2541 
2542 	idx = hstate_index(h);
2543 	/*
2544 	 * Examine the region/reserve map to determine if the process
2545 	 * has a reservation for the page to be allocated.  A return
2546 	 * code of zero indicates a reservation exists (no change).
2547 	 */
2548 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2549 	if (map_chg < 0)
2550 		return ERR_PTR(-ENOMEM);
2551 
2552 	/*
2553 	 * Processes that did not create the mapping will have no
2554 	 * reserves as indicated by the region/reserve map. Check
2555 	 * that the allocation will not exceed the subpool limit.
2556 	 * Allocations for MAP_NORESERVE mappings also need to be
2557 	 * checked against any subpool limit.
2558 	 */
2559 	if (map_chg || avoid_reserve) {
2560 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2561 		if (gbl_chg < 0) {
2562 			vma_end_reservation(h, vma, addr);
2563 			return ERR_PTR(-ENOSPC);
2564 		}
2565 
2566 		/*
2567 		 * Even though there was no reservation in the region/reserve
2568 		 * map, there could be reservations associated with the
2569 		 * subpool that can be used.  This would be indicated if the
2570 		 * return value of hugepage_subpool_get_pages() is zero.
2571 		 * However, if avoid_reserve is specified we still avoid even
2572 		 * the subpool reservations.
2573 		 */
2574 		if (avoid_reserve)
2575 			gbl_chg = 1;
2576 	}
2577 
2578 	/* If this allocation is not consuming a reservation, charge it now.
2579 	 */
2580 	deferred_reserve = map_chg || avoid_reserve;
2581 	if (deferred_reserve) {
2582 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2583 			idx, pages_per_huge_page(h), &h_cg);
2584 		if (ret)
2585 			goto out_subpool_put;
2586 	}
2587 
2588 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2589 	if (ret)
2590 		goto out_uncharge_cgroup_reservation;
2591 
2592 	spin_lock_irq(&hugetlb_lock);
2593 	/*
2594 	 * glb_chg is passed to indicate whether or not a page must be taken
2595 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2596 	 * a reservation exists for the allocation.
2597 	 */
2598 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2599 	if (!page) {
2600 		spin_unlock_irq(&hugetlb_lock);
2601 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2602 		if (!page)
2603 			goto out_uncharge_cgroup;
2604 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2605 			SetHPageRestoreReserve(page);
2606 			h->resv_huge_pages--;
2607 		}
2608 		spin_lock_irq(&hugetlb_lock);
2609 		list_add(&page->lru, &h->hugepage_activelist);
2610 		/* Fall through */
2611 	}
2612 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2613 	/* If allocation is not consuming a reservation, also store the
2614 	 * hugetlb_cgroup pointer on the page.
2615 	 */
2616 	if (deferred_reserve) {
2617 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2618 						  h_cg, page);
2619 	}
2620 
2621 	spin_unlock_irq(&hugetlb_lock);
2622 
2623 	hugetlb_set_page_subpool(page, spool);
2624 
2625 	map_commit = vma_commit_reservation(h, vma, addr);
2626 	if (unlikely(map_chg > map_commit)) {
2627 		/*
2628 		 * The page was added to the reservation map between
2629 		 * vma_needs_reservation and vma_commit_reservation.
2630 		 * This indicates a race with hugetlb_reserve_pages.
2631 		 * Adjust for the subpool count incremented above AND
2632 		 * in hugetlb_reserve_pages for the same page.  Also,
2633 		 * the reservation count added in hugetlb_reserve_pages
2634 		 * no longer applies.
2635 		 */
2636 		long rsv_adjust;
2637 
2638 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2639 		hugetlb_acct_memory(h, -rsv_adjust);
2640 		if (deferred_reserve)
2641 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2642 					pages_per_huge_page(h), page);
2643 	}
2644 	return page;
2645 
2646 out_uncharge_cgroup:
2647 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2648 out_uncharge_cgroup_reservation:
2649 	if (deferred_reserve)
2650 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2651 						    h_cg);
2652 out_subpool_put:
2653 	if (map_chg || avoid_reserve)
2654 		hugepage_subpool_put_pages(spool, 1);
2655 	vma_end_reservation(h, vma, addr);
2656 	return ERR_PTR(-ENOSPC);
2657 }
2658 
2659 int alloc_bootmem_huge_page(struct hstate *h)
2660 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2661 int __alloc_bootmem_huge_page(struct hstate *h)
2662 {
2663 	struct huge_bootmem_page *m;
2664 	int nr_nodes, node;
2665 
2666 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2667 		void *addr;
2668 
2669 		addr = memblock_alloc_try_nid_raw(
2670 				huge_page_size(h), huge_page_size(h),
2671 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2672 		if (addr) {
2673 			/*
2674 			 * Use the beginning of the huge page to store the
2675 			 * huge_bootmem_page struct (until gather_bootmem
2676 			 * puts them into the mem_map).
2677 			 */
2678 			m = addr;
2679 			goto found;
2680 		}
2681 	}
2682 	return 0;
2683 
2684 found:
2685 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2686 	/* Put them into a private list first because mem_map is not up yet */
2687 	INIT_LIST_HEAD(&m->list);
2688 	list_add(&m->list, &huge_boot_pages);
2689 	m->hstate = h;
2690 	return 1;
2691 }
2692 
2693 static void __init prep_compound_huge_page(struct page *page,
2694 		unsigned int order)
2695 {
2696 	if (unlikely(order > (MAX_ORDER - 1)))
2697 		prep_compound_gigantic_page(page, order);
2698 	else
2699 		prep_compound_page(page, order);
2700 }
2701 
2702 /* Put bootmem huge pages into the standard lists after mem_map is up */
2703 static void __init gather_bootmem_prealloc(void)
2704 {
2705 	struct huge_bootmem_page *m;
2706 
2707 	list_for_each_entry(m, &huge_boot_pages, list) {
2708 		struct page *page = virt_to_page(m);
2709 		struct hstate *h = m->hstate;
2710 
2711 		WARN_ON(page_count(page) != 1);
2712 		prep_compound_huge_page(page, huge_page_order(h));
2713 		WARN_ON(PageReserved(page));
2714 		prep_new_huge_page(h, page, page_to_nid(page));
2715 		put_page(page); /* free it into the hugepage allocator */
2716 
2717 		/*
2718 		 * If we had gigantic hugepages allocated at boot time, we need
2719 		 * to restore the 'stolen' pages to totalram_pages in order to
2720 		 * fix confusing memory reports from free(1) and another
2721 		 * side-effects, like CommitLimit going negative.
2722 		 */
2723 		if (hstate_is_gigantic(h))
2724 			adjust_managed_page_count(page, pages_per_huge_page(h));
2725 		cond_resched();
2726 	}
2727 }
2728 
2729 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2730 {
2731 	unsigned long i;
2732 	nodemask_t *node_alloc_noretry;
2733 
2734 	if (!hstate_is_gigantic(h)) {
2735 		/*
2736 		 * Bit mask controlling how hard we retry per-node allocations.
2737 		 * Ignore errors as lower level routines can deal with
2738 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2739 		 * time, we are likely in bigger trouble.
2740 		 */
2741 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2742 						GFP_KERNEL);
2743 	} else {
2744 		/* allocations done at boot time */
2745 		node_alloc_noretry = NULL;
2746 	}
2747 
2748 	/* bit mask controlling how hard we retry per-node allocations */
2749 	if (node_alloc_noretry)
2750 		nodes_clear(*node_alloc_noretry);
2751 
2752 	for (i = 0; i < h->max_huge_pages; ++i) {
2753 		if (hstate_is_gigantic(h)) {
2754 			if (hugetlb_cma_size) {
2755 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2756 				goto free;
2757 			}
2758 			if (!alloc_bootmem_huge_page(h))
2759 				break;
2760 		} else if (!alloc_pool_huge_page(h,
2761 					 &node_states[N_MEMORY],
2762 					 node_alloc_noretry))
2763 			break;
2764 		cond_resched();
2765 	}
2766 	if (i < h->max_huge_pages) {
2767 		char buf[32];
2768 
2769 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2770 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2771 			h->max_huge_pages, buf, i);
2772 		h->max_huge_pages = i;
2773 	}
2774 free:
2775 	kfree(node_alloc_noretry);
2776 }
2777 
2778 static void __init hugetlb_init_hstates(void)
2779 {
2780 	struct hstate *h;
2781 
2782 	for_each_hstate(h) {
2783 		if (minimum_order > huge_page_order(h))
2784 			minimum_order = huge_page_order(h);
2785 
2786 		/* oversize hugepages were init'ed in early boot */
2787 		if (!hstate_is_gigantic(h))
2788 			hugetlb_hstate_alloc_pages(h);
2789 	}
2790 	VM_BUG_ON(minimum_order == UINT_MAX);
2791 }
2792 
2793 static void __init report_hugepages(void)
2794 {
2795 	struct hstate *h;
2796 
2797 	for_each_hstate(h) {
2798 		char buf[32];
2799 
2800 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2801 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2802 			buf, h->free_huge_pages);
2803 	}
2804 }
2805 
2806 #ifdef CONFIG_HIGHMEM
2807 static void try_to_free_low(struct hstate *h, unsigned long count,
2808 						nodemask_t *nodes_allowed)
2809 {
2810 	int i;
2811 	LIST_HEAD(page_list);
2812 
2813 	lockdep_assert_held(&hugetlb_lock);
2814 	if (hstate_is_gigantic(h))
2815 		return;
2816 
2817 	/*
2818 	 * Collect pages to be freed on a list, and free after dropping lock
2819 	 */
2820 	for_each_node_mask(i, *nodes_allowed) {
2821 		struct page *page, *next;
2822 		struct list_head *freel = &h->hugepage_freelists[i];
2823 		list_for_each_entry_safe(page, next, freel, lru) {
2824 			if (count >= h->nr_huge_pages)
2825 				goto out;
2826 			if (PageHighMem(page))
2827 				continue;
2828 			remove_hugetlb_page(h, page, false);
2829 			list_add(&page->lru, &page_list);
2830 		}
2831 	}
2832 
2833 out:
2834 	spin_unlock_irq(&hugetlb_lock);
2835 	update_and_free_pages_bulk(h, &page_list);
2836 	spin_lock_irq(&hugetlb_lock);
2837 }
2838 #else
2839 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2840 						nodemask_t *nodes_allowed)
2841 {
2842 }
2843 #endif
2844 
2845 /*
2846  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2847  * balanced by operating on them in a round-robin fashion.
2848  * Returns 1 if an adjustment was made.
2849  */
2850 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2851 				int delta)
2852 {
2853 	int nr_nodes, node;
2854 
2855 	lockdep_assert_held(&hugetlb_lock);
2856 	VM_BUG_ON(delta != -1 && delta != 1);
2857 
2858 	if (delta < 0) {
2859 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2860 			if (h->surplus_huge_pages_node[node])
2861 				goto found;
2862 		}
2863 	} else {
2864 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2865 			if (h->surplus_huge_pages_node[node] <
2866 					h->nr_huge_pages_node[node])
2867 				goto found;
2868 		}
2869 	}
2870 	return 0;
2871 
2872 found:
2873 	h->surplus_huge_pages += delta;
2874 	h->surplus_huge_pages_node[node] += delta;
2875 	return 1;
2876 }
2877 
2878 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2879 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2880 			      nodemask_t *nodes_allowed)
2881 {
2882 	unsigned long min_count, ret;
2883 	struct page *page;
2884 	LIST_HEAD(page_list);
2885 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2886 
2887 	/*
2888 	 * Bit mask controlling how hard we retry per-node allocations.
2889 	 * If we can not allocate the bit mask, do not attempt to allocate
2890 	 * the requested huge pages.
2891 	 */
2892 	if (node_alloc_noretry)
2893 		nodes_clear(*node_alloc_noretry);
2894 	else
2895 		return -ENOMEM;
2896 
2897 	/*
2898 	 * resize_lock mutex prevents concurrent adjustments to number of
2899 	 * pages in hstate via the proc/sysfs interfaces.
2900 	 */
2901 	mutex_lock(&h->resize_lock);
2902 	flush_free_hpage_work(h);
2903 	spin_lock_irq(&hugetlb_lock);
2904 
2905 	/*
2906 	 * Check for a node specific request.
2907 	 * Changing node specific huge page count may require a corresponding
2908 	 * change to the global count.  In any case, the passed node mask
2909 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2910 	 */
2911 	if (nid != NUMA_NO_NODE) {
2912 		unsigned long old_count = count;
2913 
2914 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2915 		/*
2916 		 * User may have specified a large count value which caused the
2917 		 * above calculation to overflow.  In this case, they wanted
2918 		 * to allocate as many huge pages as possible.  Set count to
2919 		 * largest possible value to align with their intention.
2920 		 */
2921 		if (count < old_count)
2922 			count = ULONG_MAX;
2923 	}
2924 
2925 	/*
2926 	 * Gigantic pages runtime allocation depend on the capability for large
2927 	 * page range allocation.
2928 	 * If the system does not provide this feature, return an error when
2929 	 * the user tries to allocate gigantic pages but let the user free the
2930 	 * boottime allocated gigantic pages.
2931 	 */
2932 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2933 		if (count > persistent_huge_pages(h)) {
2934 			spin_unlock_irq(&hugetlb_lock);
2935 			mutex_unlock(&h->resize_lock);
2936 			NODEMASK_FREE(node_alloc_noretry);
2937 			return -EINVAL;
2938 		}
2939 		/* Fall through to decrease pool */
2940 	}
2941 
2942 	/*
2943 	 * Increase the pool size
2944 	 * First take pages out of surplus state.  Then make up the
2945 	 * remaining difference by allocating fresh huge pages.
2946 	 *
2947 	 * We might race with alloc_surplus_huge_page() here and be unable
2948 	 * to convert a surplus huge page to a normal huge page. That is
2949 	 * not critical, though, it just means the overall size of the
2950 	 * pool might be one hugepage larger than it needs to be, but
2951 	 * within all the constraints specified by the sysctls.
2952 	 */
2953 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2954 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2955 			break;
2956 	}
2957 
2958 	while (count > persistent_huge_pages(h)) {
2959 		/*
2960 		 * If this allocation races such that we no longer need the
2961 		 * page, free_huge_page will handle it by freeing the page
2962 		 * and reducing the surplus.
2963 		 */
2964 		spin_unlock_irq(&hugetlb_lock);
2965 
2966 		/* yield cpu to avoid soft lockup */
2967 		cond_resched();
2968 
2969 		ret = alloc_pool_huge_page(h, nodes_allowed,
2970 						node_alloc_noretry);
2971 		spin_lock_irq(&hugetlb_lock);
2972 		if (!ret)
2973 			goto out;
2974 
2975 		/* Bail for signals. Probably ctrl-c from user */
2976 		if (signal_pending(current))
2977 			goto out;
2978 	}
2979 
2980 	/*
2981 	 * Decrease the pool size
2982 	 * First return free pages to the buddy allocator (being careful
2983 	 * to keep enough around to satisfy reservations).  Then place
2984 	 * pages into surplus state as needed so the pool will shrink
2985 	 * to the desired size as pages become free.
2986 	 *
2987 	 * By placing pages into the surplus state independent of the
2988 	 * overcommit value, we are allowing the surplus pool size to
2989 	 * exceed overcommit. There are few sane options here. Since
2990 	 * alloc_surplus_huge_page() is checking the global counter,
2991 	 * though, we'll note that we're not allowed to exceed surplus
2992 	 * and won't grow the pool anywhere else. Not until one of the
2993 	 * sysctls are changed, or the surplus pages go out of use.
2994 	 */
2995 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2996 	min_count = max(count, min_count);
2997 	try_to_free_low(h, min_count, nodes_allowed);
2998 
2999 	/*
3000 	 * Collect pages to be removed on list without dropping lock
3001 	 */
3002 	while (min_count < persistent_huge_pages(h)) {
3003 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3004 		if (!page)
3005 			break;
3006 
3007 		list_add(&page->lru, &page_list);
3008 	}
3009 	/* free the pages after dropping lock */
3010 	spin_unlock_irq(&hugetlb_lock);
3011 	update_and_free_pages_bulk(h, &page_list);
3012 	flush_free_hpage_work(h);
3013 	spin_lock_irq(&hugetlb_lock);
3014 
3015 	while (count < persistent_huge_pages(h)) {
3016 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3017 			break;
3018 	}
3019 out:
3020 	h->max_huge_pages = persistent_huge_pages(h);
3021 	spin_unlock_irq(&hugetlb_lock);
3022 	mutex_unlock(&h->resize_lock);
3023 
3024 	NODEMASK_FREE(node_alloc_noretry);
3025 
3026 	return 0;
3027 }
3028 
3029 #define HSTATE_ATTR_RO(_name) \
3030 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3031 
3032 #define HSTATE_ATTR(_name) \
3033 	static struct kobj_attribute _name##_attr = \
3034 		__ATTR(_name, 0644, _name##_show, _name##_store)
3035 
3036 static struct kobject *hugepages_kobj;
3037 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3038 
3039 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3040 
3041 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3042 {
3043 	int i;
3044 
3045 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3046 		if (hstate_kobjs[i] == kobj) {
3047 			if (nidp)
3048 				*nidp = NUMA_NO_NODE;
3049 			return &hstates[i];
3050 		}
3051 
3052 	return kobj_to_node_hstate(kobj, nidp);
3053 }
3054 
3055 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3056 					struct kobj_attribute *attr, char *buf)
3057 {
3058 	struct hstate *h;
3059 	unsigned long nr_huge_pages;
3060 	int nid;
3061 
3062 	h = kobj_to_hstate(kobj, &nid);
3063 	if (nid == NUMA_NO_NODE)
3064 		nr_huge_pages = h->nr_huge_pages;
3065 	else
3066 		nr_huge_pages = h->nr_huge_pages_node[nid];
3067 
3068 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3069 }
3070 
3071 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3072 					   struct hstate *h, int nid,
3073 					   unsigned long count, size_t len)
3074 {
3075 	int err;
3076 	nodemask_t nodes_allowed, *n_mask;
3077 
3078 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3079 		return -EINVAL;
3080 
3081 	if (nid == NUMA_NO_NODE) {
3082 		/*
3083 		 * global hstate attribute
3084 		 */
3085 		if (!(obey_mempolicy &&
3086 				init_nodemask_of_mempolicy(&nodes_allowed)))
3087 			n_mask = &node_states[N_MEMORY];
3088 		else
3089 			n_mask = &nodes_allowed;
3090 	} else {
3091 		/*
3092 		 * Node specific request.  count adjustment happens in
3093 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3094 		 */
3095 		init_nodemask_of_node(&nodes_allowed, nid);
3096 		n_mask = &nodes_allowed;
3097 	}
3098 
3099 	err = set_max_huge_pages(h, count, nid, n_mask);
3100 
3101 	return err ? err : len;
3102 }
3103 
3104 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3105 					 struct kobject *kobj, const char *buf,
3106 					 size_t len)
3107 {
3108 	struct hstate *h;
3109 	unsigned long count;
3110 	int nid;
3111 	int err;
3112 
3113 	err = kstrtoul(buf, 10, &count);
3114 	if (err)
3115 		return err;
3116 
3117 	h = kobj_to_hstate(kobj, &nid);
3118 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3119 }
3120 
3121 static ssize_t nr_hugepages_show(struct kobject *kobj,
3122 				       struct kobj_attribute *attr, char *buf)
3123 {
3124 	return nr_hugepages_show_common(kobj, attr, buf);
3125 }
3126 
3127 static ssize_t nr_hugepages_store(struct kobject *kobj,
3128 	       struct kobj_attribute *attr, const char *buf, size_t len)
3129 {
3130 	return nr_hugepages_store_common(false, kobj, buf, len);
3131 }
3132 HSTATE_ATTR(nr_hugepages);
3133 
3134 #ifdef CONFIG_NUMA
3135 
3136 /*
3137  * hstate attribute for optionally mempolicy-based constraint on persistent
3138  * huge page alloc/free.
3139  */
3140 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3141 					   struct kobj_attribute *attr,
3142 					   char *buf)
3143 {
3144 	return nr_hugepages_show_common(kobj, attr, buf);
3145 }
3146 
3147 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3148 	       struct kobj_attribute *attr, const char *buf, size_t len)
3149 {
3150 	return nr_hugepages_store_common(true, kobj, buf, len);
3151 }
3152 HSTATE_ATTR(nr_hugepages_mempolicy);
3153 #endif
3154 
3155 
3156 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3157 					struct kobj_attribute *attr, char *buf)
3158 {
3159 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3160 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3161 }
3162 
3163 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3164 		struct kobj_attribute *attr, const char *buf, size_t count)
3165 {
3166 	int err;
3167 	unsigned long input;
3168 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3169 
3170 	if (hstate_is_gigantic(h))
3171 		return -EINVAL;
3172 
3173 	err = kstrtoul(buf, 10, &input);
3174 	if (err)
3175 		return err;
3176 
3177 	spin_lock_irq(&hugetlb_lock);
3178 	h->nr_overcommit_huge_pages = input;
3179 	spin_unlock_irq(&hugetlb_lock);
3180 
3181 	return count;
3182 }
3183 HSTATE_ATTR(nr_overcommit_hugepages);
3184 
3185 static ssize_t free_hugepages_show(struct kobject *kobj,
3186 					struct kobj_attribute *attr, char *buf)
3187 {
3188 	struct hstate *h;
3189 	unsigned long free_huge_pages;
3190 	int nid;
3191 
3192 	h = kobj_to_hstate(kobj, &nid);
3193 	if (nid == NUMA_NO_NODE)
3194 		free_huge_pages = h->free_huge_pages;
3195 	else
3196 		free_huge_pages = h->free_huge_pages_node[nid];
3197 
3198 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3199 }
3200 HSTATE_ATTR_RO(free_hugepages);
3201 
3202 static ssize_t resv_hugepages_show(struct kobject *kobj,
3203 					struct kobj_attribute *attr, char *buf)
3204 {
3205 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3206 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3207 }
3208 HSTATE_ATTR_RO(resv_hugepages);
3209 
3210 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3211 					struct kobj_attribute *attr, char *buf)
3212 {
3213 	struct hstate *h;
3214 	unsigned long surplus_huge_pages;
3215 	int nid;
3216 
3217 	h = kobj_to_hstate(kobj, &nid);
3218 	if (nid == NUMA_NO_NODE)
3219 		surplus_huge_pages = h->surplus_huge_pages;
3220 	else
3221 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3222 
3223 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3224 }
3225 HSTATE_ATTR_RO(surplus_hugepages);
3226 
3227 static struct attribute *hstate_attrs[] = {
3228 	&nr_hugepages_attr.attr,
3229 	&nr_overcommit_hugepages_attr.attr,
3230 	&free_hugepages_attr.attr,
3231 	&resv_hugepages_attr.attr,
3232 	&surplus_hugepages_attr.attr,
3233 #ifdef CONFIG_NUMA
3234 	&nr_hugepages_mempolicy_attr.attr,
3235 #endif
3236 	NULL,
3237 };
3238 
3239 static const struct attribute_group hstate_attr_group = {
3240 	.attrs = hstate_attrs,
3241 };
3242 
3243 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3244 				    struct kobject **hstate_kobjs,
3245 				    const struct attribute_group *hstate_attr_group)
3246 {
3247 	int retval;
3248 	int hi = hstate_index(h);
3249 
3250 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3251 	if (!hstate_kobjs[hi])
3252 		return -ENOMEM;
3253 
3254 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3255 	if (retval) {
3256 		kobject_put(hstate_kobjs[hi]);
3257 		hstate_kobjs[hi] = NULL;
3258 	}
3259 
3260 	return retval;
3261 }
3262 
3263 static void __init hugetlb_sysfs_init(void)
3264 {
3265 	struct hstate *h;
3266 	int err;
3267 
3268 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3269 	if (!hugepages_kobj)
3270 		return;
3271 
3272 	for_each_hstate(h) {
3273 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3274 					 hstate_kobjs, &hstate_attr_group);
3275 		if (err)
3276 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3277 	}
3278 }
3279 
3280 #ifdef CONFIG_NUMA
3281 
3282 /*
3283  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3284  * with node devices in node_devices[] using a parallel array.  The array
3285  * index of a node device or _hstate == node id.
3286  * This is here to avoid any static dependency of the node device driver, in
3287  * the base kernel, on the hugetlb module.
3288  */
3289 struct node_hstate {
3290 	struct kobject		*hugepages_kobj;
3291 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3292 };
3293 static struct node_hstate node_hstates[MAX_NUMNODES];
3294 
3295 /*
3296  * A subset of global hstate attributes for node devices
3297  */
3298 static struct attribute *per_node_hstate_attrs[] = {
3299 	&nr_hugepages_attr.attr,
3300 	&free_hugepages_attr.attr,
3301 	&surplus_hugepages_attr.attr,
3302 	NULL,
3303 };
3304 
3305 static const struct attribute_group per_node_hstate_attr_group = {
3306 	.attrs = per_node_hstate_attrs,
3307 };
3308 
3309 /*
3310  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3311  * Returns node id via non-NULL nidp.
3312  */
3313 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3314 {
3315 	int nid;
3316 
3317 	for (nid = 0; nid < nr_node_ids; nid++) {
3318 		struct node_hstate *nhs = &node_hstates[nid];
3319 		int i;
3320 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3321 			if (nhs->hstate_kobjs[i] == kobj) {
3322 				if (nidp)
3323 					*nidp = nid;
3324 				return &hstates[i];
3325 			}
3326 	}
3327 
3328 	BUG();
3329 	return NULL;
3330 }
3331 
3332 /*
3333  * Unregister hstate attributes from a single node device.
3334  * No-op if no hstate attributes attached.
3335  */
3336 static void hugetlb_unregister_node(struct node *node)
3337 {
3338 	struct hstate *h;
3339 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3340 
3341 	if (!nhs->hugepages_kobj)
3342 		return;		/* no hstate attributes */
3343 
3344 	for_each_hstate(h) {
3345 		int idx = hstate_index(h);
3346 		if (nhs->hstate_kobjs[idx]) {
3347 			kobject_put(nhs->hstate_kobjs[idx]);
3348 			nhs->hstate_kobjs[idx] = NULL;
3349 		}
3350 	}
3351 
3352 	kobject_put(nhs->hugepages_kobj);
3353 	nhs->hugepages_kobj = NULL;
3354 }
3355 
3356 
3357 /*
3358  * Register hstate attributes for a single node device.
3359  * No-op if attributes already registered.
3360  */
3361 static void hugetlb_register_node(struct node *node)
3362 {
3363 	struct hstate *h;
3364 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3365 	int err;
3366 
3367 	if (nhs->hugepages_kobj)
3368 		return;		/* already allocated */
3369 
3370 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3371 							&node->dev.kobj);
3372 	if (!nhs->hugepages_kobj)
3373 		return;
3374 
3375 	for_each_hstate(h) {
3376 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3377 						nhs->hstate_kobjs,
3378 						&per_node_hstate_attr_group);
3379 		if (err) {
3380 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3381 				h->name, node->dev.id);
3382 			hugetlb_unregister_node(node);
3383 			break;
3384 		}
3385 	}
3386 }
3387 
3388 /*
3389  * hugetlb init time:  register hstate attributes for all registered node
3390  * devices of nodes that have memory.  All on-line nodes should have
3391  * registered their associated device by this time.
3392  */
3393 static void __init hugetlb_register_all_nodes(void)
3394 {
3395 	int nid;
3396 
3397 	for_each_node_state(nid, N_MEMORY) {
3398 		struct node *node = node_devices[nid];
3399 		if (node->dev.id == nid)
3400 			hugetlb_register_node(node);
3401 	}
3402 
3403 	/*
3404 	 * Let the node device driver know we're here so it can
3405 	 * [un]register hstate attributes on node hotplug.
3406 	 */
3407 	register_hugetlbfs_with_node(hugetlb_register_node,
3408 				     hugetlb_unregister_node);
3409 }
3410 #else	/* !CONFIG_NUMA */
3411 
3412 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3413 {
3414 	BUG();
3415 	if (nidp)
3416 		*nidp = -1;
3417 	return NULL;
3418 }
3419 
3420 static void hugetlb_register_all_nodes(void) { }
3421 
3422 #endif
3423 
3424 static int __init hugetlb_init(void)
3425 {
3426 	int i;
3427 
3428 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3429 			__NR_HPAGEFLAGS);
3430 
3431 	if (!hugepages_supported()) {
3432 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3433 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3434 		return 0;
3435 	}
3436 
3437 	/*
3438 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3439 	 * architectures depend on setup being done here.
3440 	 */
3441 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3442 	if (!parsed_default_hugepagesz) {
3443 		/*
3444 		 * If we did not parse a default huge page size, set
3445 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3446 		 * number of huge pages for this default size was implicitly
3447 		 * specified, set that here as well.
3448 		 * Note that the implicit setting will overwrite an explicit
3449 		 * setting.  A warning will be printed in this case.
3450 		 */
3451 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3452 		if (default_hstate_max_huge_pages) {
3453 			if (default_hstate.max_huge_pages) {
3454 				char buf[32];
3455 
3456 				string_get_size(huge_page_size(&default_hstate),
3457 					1, STRING_UNITS_2, buf, 32);
3458 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3459 					default_hstate.max_huge_pages, buf);
3460 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3461 					default_hstate_max_huge_pages);
3462 			}
3463 			default_hstate.max_huge_pages =
3464 				default_hstate_max_huge_pages;
3465 		}
3466 	}
3467 
3468 	hugetlb_cma_check();
3469 	hugetlb_init_hstates();
3470 	gather_bootmem_prealloc();
3471 	report_hugepages();
3472 
3473 	hugetlb_sysfs_init();
3474 	hugetlb_register_all_nodes();
3475 	hugetlb_cgroup_file_init();
3476 
3477 #ifdef CONFIG_SMP
3478 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3479 #else
3480 	num_fault_mutexes = 1;
3481 #endif
3482 	hugetlb_fault_mutex_table =
3483 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3484 			      GFP_KERNEL);
3485 	BUG_ON(!hugetlb_fault_mutex_table);
3486 
3487 	for (i = 0; i < num_fault_mutexes; i++)
3488 		mutex_init(&hugetlb_fault_mutex_table[i]);
3489 	return 0;
3490 }
3491 subsys_initcall(hugetlb_init);
3492 
3493 /* Overwritten by architectures with more huge page sizes */
3494 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3495 {
3496 	return size == HPAGE_SIZE;
3497 }
3498 
3499 void __init hugetlb_add_hstate(unsigned int order)
3500 {
3501 	struct hstate *h;
3502 	unsigned long i;
3503 
3504 	if (size_to_hstate(PAGE_SIZE << order)) {
3505 		return;
3506 	}
3507 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3508 	BUG_ON(order == 0);
3509 	h = &hstates[hugetlb_max_hstate++];
3510 	mutex_init(&h->resize_lock);
3511 	h->order = order;
3512 	h->mask = ~(huge_page_size(h) - 1);
3513 	for (i = 0; i < MAX_NUMNODES; ++i)
3514 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3515 	INIT_LIST_HEAD(&h->hugepage_activelist);
3516 	h->next_nid_to_alloc = first_memory_node;
3517 	h->next_nid_to_free = first_memory_node;
3518 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3519 					huge_page_size(h)/1024);
3520 
3521 	parsed_hstate = h;
3522 }
3523 
3524 /*
3525  * hugepages command line processing
3526  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3527  * specification.  If not, ignore the hugepages value.  hugepages can also
3528  * be the first huge page command line  option in which case it implicitly
3529  * specifies the number of huge pages for the default size.
3530  */
3531 static int __init hugepages_setup(char *s)
3532 {
3533 	unsigned long *mhp;
3534 	static unsigned long *last_mhp;
3535 
3536 	if (!parsed_valid_hugepagesz) {
3537 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3538 		parsed_valid_hugepagesz = true;
3539 		return 0;
3540 	}
3541 
3542 	/*
3543 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3544 	 * yet, so this hugepages= parameter goes to the "default hstate".
3545 	 * Otherwise, it goes with the previously parsed hugepagesz or
3546 	 * default_hugepagesz.
3547 	 */
3548 	else if (!hugetlb_max_hstate)
3549 		mhp = &default_hstate_max_huge_pages;
3550 	else
3551 		mhp = &parsed_hstate->max_huge_pages;
3552 
3553 	if (mhp == last_mhp) {
3554 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3555 		return 0;
3556 	}
3557 
3558 	if (sscanf(s, "%lu", mhp) <= 0)
3559 		*mhp = 0;
3560 
3561 	/*
3562 	 * Global state is always initialized later in hugetlb_init.
3563 	 * But we need to allocate gigantic hstates here early to still
3564 	 * use the bootmem allocator.
3565 	 */
3566 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3567 		hugetlb_hstate_alloc_pages(parsed_hstate);
3568 
3569 	last_mhp = mhp;
3570 
3571 	return 1;
3572 }
3573 __setup("hugepages=", hugepages_setup);
3574 
3575 /*
3576  * hugepagesz command line processing
3577  * A specific huge page size can only be specified once with hugepagesz.
3578  * hugepagesz is followed by hugepages on the command line.  The global
3579  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3580  * hugepagesz argument was valid.
3581  */
3582 static int __init hugepagesz_setup(char *s)
3583 {
3584 	unsigned long size;
3585 	struct hstate *h;
3586 
3587 	parsed_valid_hugepagesz = false;
3588 	size = (unsigned long)memparse(s, NULL);
3589 
3590 	if (!arch_hugetlb_valid_size(size)) {
3591 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3592 		return 0;
3593 	}
3594 
3595 	h = size_to_hstate(size);
3596 	if (h) {
3597 		/*
3598 		 * hstate for this size already exists.  This is normally
3599 		 * an error, but is allowed if the existing hstate is the
3600 		 * default hstate.  More specifically, it is only allowed if
3601 		 * the number of huge pages for the default hstate was not
3602 		 * previously specified.
3603 		 */
3604 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3605 		    default_hstate.max_huge_pages) {
3606 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3607 			return 0;
3608 		}
3609 
3610 		/*
3611 		 * No need to call hugetlb_add_hstate() as hstate already
3612 		 * exists.  But, do set parsed_hstate so that a following
3613 		 * hugepages= parameter will be applied to this hstate.
3614 		 */
3615 		parsed_hstate = h;
3616 		parsed_valid_hugepagesz = true;
3617 		return 1;
3618 	}
3619 
3620 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3621 	parsed_valid_hugepagesz = true;
3622 	return 1;
3623 }
3624 __setup("hugepagesz=", hugepagesz_setup);
3625 
3626 /*
3627  * default_hugepagesz command line input
3628  * Only one instance of default_hugepagesz allowed on command line.
3629  */
3630 static int __init default_hugepagesz_setup(char *s)
3631 {
3632 	unsigned long size;
3633 
3634 	parsed_valid_hugepagesz = false;
3635 	if (parsed_default_hugepagesz) {
3636 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3637 		return 0;
3638 	}
3639 
3640 	size = (unsigned long)memparse(s, NULL);
3641 
3642 	if (!arch_hugetlb_valid_size(size)) {
3643 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3644 		return 0;
3645 	}
3646 
3647 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3648 	parsed_valid_hugepagesz = true;
3649 	parsed_default_hugepagesz = true;
3650 	default_hstate_idx = hstate_index(size_to_hstate(size));
3651 
3652 	/*
3653 	 * The number of default huge pages (for this size) could have been
3654 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3655 	 * then default_hstate_max_huge_pages is set.  If the default huge
3656 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3657 	 * allocated here from bootmem allocator.
3658 	 */
3659 	if (default_hstate_max_huge_pages) {
3660 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3661 		if (hstate_is_gigantic(&default_hstate))
3662 			hugetlb_hstate_alloc_pages(&default_hstate);
3663 		default_hstate_max_huge_pages = 0;
3664 	}
3665 
3666 	return 1;
3667 }
3668 __setup("default_hugepagesz=", default_hugepagesz_setup);
3669 
3670 static unsigned int allowed_mems_nr(struct hstate *h)
3671 {
3672 	int node;
3673 	unsigned int nr = 0;
3674 	nodemask_t *mpol_allowed;
3675 	unsigned int *array = h->free_huge_pages_node;
3676 	gfp_t gfp_mask = htlb_alloc_mask(h);
3677 
3678 	mpol_allowed = policy_nodemask_current(gfp_mask);
3679 
3680 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3681 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3682 			nr += array[node];
3683 	}
3684 
3685 	return nr;
3686 }
3687 
3688 #ifdef CONFIG_SYSCTL
3689 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3690 					  void *buffer, size_t *length,
3691 					  loff_t *ppos, unsigned long *out)
3692 {
3693 	struct ctl_table dup_table;
3694 
3695 	/*
3696 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3697 	 * can duplicate the @table and alter the duplicate of it.
3698 	 */
3699 	dup_table = *table;
3700 	dup_table.data = out;
3701 
3702 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3703 }
3704 
3705 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3706 			 struct ctl_table *table, int write,
3707 			 void *buffer, size_t *length, loff_t *ppos)
3708 {
3709 	struct hstate *h = &default_hstate;
3710 	unsigned long tmp = h->max_huge_pages;
3711 	int ret;
3712 
3713 	if (!hugepages_supported())
3714 		return -EOPNOTSUPP;
3715 
3716 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3717 					     &tmp);
3718 	if (ret)
3719 		goto out;
3720 
3721 	if (write)
3722 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3723 						  NUMA_NO_NODE, tmp, *length);
3724 out:
3725 	return ret;
3726 }
3727 
3728 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3729 			  void *buffer, size_t *length, loff_t *ppos)
3730 {
3731 
3732 	return hugetlb_sysctl_handler_common(false, table, write,
3733 							buffer, length, ppos);
3734 }
3735 
3736 #ifdef CONFIG_NUMA
3737 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3738 			  void *buffer, size_t *length, loff_t *ppos)
3739 {
3740 	return hugetlb_sysctl_handler_common(true, table, write,
3741 							buffer, length, ppos);
3742 }
3743 #endif /* CONFIG_NUMA */
3744 
3745 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3746 		void *buffer, size_t *length, loff_t *ppos)
3747 {
3748 	struct hstate *h = &default_hstate;
3749 	unsigned long tmp;
3750 	int ret;
3751 
3752 	if (!hugepages_supported())
3753 		return -EOPNOTSUPP;
3754 
3755 	tmp = h->nr_overcommit_huge_pages;
3756 
3757 	if (write && hstate_is_gigantic(h))
3758 		return -EINVAL;
3759 
3760 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3761 					     &tmp);
3762 	if (ret)
3763 		goto out;
3764 
3765 	if (write) {
3766 		spin_lock_irq(&hugetlb_lock);
3767 		h->nr_overcommit_huge_pages = tmp;
3768 		spin_unlock_irq(&hugetlb_lock);
3769 	}
3770 out:
3771 	return ret;
3772 }
3773 
3774 #endif /* CONFIG_SYSCTL */
3775 
3776 void hugetlb_report_meminfo(struct seq_file *m)
3777 {
3778 	struct hstate *h;
3779 	unsigned long total = 0;
3780 
3781 	if (!hugepages_supported())
3782 		return;
3783 
3784 	for_each_hstate(h) {
3785 		unsigned long count = h->nr_huge_pages;
3786 
3787 		total += huge_page_size(h) * count;
3788 
3789 		if (h == &default_hstate)
3790 			seq_printf(m,
3791 				   "HugePages_Total:   %5lu\n"
3792 				   "HugePages_Free:    %5lu\n"
3793 				   "HugePages_Rsvd:    %5lu\n"
3794 				   "HugePages_Surp:    %5lu\n"
3795 				   "Hugepagesize:   %8lu kB\n",
3796 				   count,
3797 				   h->free_huge_pages,
3798 				   h->resv_huge_pages,
3799 				   h->surplus_huge_pages,
3800 				   huge_page_size(h) / SZ_1K);
3801 	}
3802 
3803 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3804 }
3805 
3806 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3807 {
3808 	struct hstate *h = &default_hstate;
3809 
3810 	if (!hugepages_supported())
3811 		return 0;
3812 
3813 	return sysfs_emit_at(buf, len,
3814 			     "Node %d HugePages_Total: %5u\n"
3815 			     "Node %d HugePages_Free:  %5u\n"
3816 			     "Node %d HugePages_Surp:  %5u\n",
3817 			     nid, h->nr_huge_pages_node[nid],
3818 			     nid, h->free_huge_pages_node[nid],
3819 			     nid, h->surplus_huge_pages_node[nid]);
3820 }
3821 
3822 void hugetlb_show_meminfo(void)
3823 {
3824 	struct hstate *h;
3825 	int nid;
3826 
3827 	if (!hugepages_supported())
3828 		return;
3829 
3830 	for_each_node_state(nid, N_MEMORY)
3831 		for_each_hstate(h)
3832 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3833 				nid,
3834 				h->nr_huge_pages_node[nid],
3835 				h->free_huge_pages_node[nid],
3836 				h->surplus_huge_pages_node[nid],
3837 				huge_page_size(h) / SZ_1K);
3838 }
3839 
3840 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3841 {
3842 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3843 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3844 }
3845 
3846 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3847 unsigned long hugetlb_total_pages(void)
3848 {
3849 	struct hstate *h;
3850 	unsigned long nr_total_pages = 0;
3851 
3852 	for_each_hstate(h)
3853 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3854 	return nr_total_pages;
3855 }
3856 
3857 static int hugetlb_acct_memory(struct hstate *h, long delta)
3858 {
3859 	int ret = -ENOMEM;
3860 
3861 	if (!delta)
3862 		return 0;
3863 
3864 	spin_lock_irq(&hugetlb_lock);
3865 	/*
3866 	 * When cpuset is configured, it breaks the strict hugetlb page
3867 	 * reservation as the accounting is done on a global variable. Such
3868 	 * reservation is completely rubbish in the presence of cpuset because
3869 	 * the reservation is not checked against page availability for the
3870 	 * current cpuset. Application can still potentially OOM'ed by kernel
3871 	 * with lack of free htlb page in cpuset that the task is in.
3872 	 * Attempt to enforce strict accounting with cpuset is almost
3873 	 * impossible (or too ugly) because cpuset is too fluid that
3874 	 * task or memory node can be dynamically moved between cpusets.
3875 	 *
3876 	 * The change of semantics for shared hugetlb mapping with cpuset is
3877 	 * undesirable. However, in order to preserve some of the semantics,
3878 	 * we fall back to check against current free page availability as
3879 	 * a best attempt and hopefully to minimize the impact of changing
3880 	 * semantics that cpuset has.
3881 	 *
3882 	 * Apart from cpuset, we also have memory policy mechanism that
3883 	 * also determines from which node the kernel will allocate memory
3884 	 * in a NUMA system. So similar to cpuset, we also should consider
3885 	 * the memory policy of the current task. Similar to the description
3886 	 * above.
3887 	 */
3888 	if (delta > 0) {
3889 		if (gather_surplus_pages(h, delta) < 0)
3890 			goto out;
3891 
3892 		if (delta > allowed_mems_nr(h)) {
3893 			return_unused_surplus_pages(h, delta);
3894 			goto out;
3895 		}
3896 	}
3897 
3898 	ret = 0;
3899 	if (delta < 0)
3900 		return_unused_surplus_pages(h, (unsigned long) -delta);
3901 
3902 out:
3903 	spin_unlock_irq(&hugetlb_lock);
3904 	return ret;
3905 }
3906 
3907 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3908 {
3909 	struct resv_map *resv = vma_resv_map(vma);
3910 
3911 	/*
3912 	 * This new VMA should share its siblings reservation map if present.
3913 	 * The VMA will only ever have a valid reservation map pointer where
3914 	 * it is being copied for another still existing VMA.  As that VMA
3915 	 * has a reference to the reservation map it cannot disappear until
3916 	 * after this open call completes.  It is therefore safe to take a
3917 	 * new reference here without additional locking.
3918 	 */
3919 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3920 		kref_get(&resv->refs);
3921 }
3922 
3923 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3924 {
3925 	struct hstate *h = hstate_vma(vma);
3926 	struct resv_map *resv = vma_resv_map(vma);
3927 	struct hugepage_subpool *spool = subpool_vma(vma);
3928 	unsigned long reserve, start, end;
3929 	long gbl_reserve;
3930 
3931 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3932 		return;
3933 
3934 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3935 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3936 
3937 	reserve = (end - start) - region_count(resv, start, end);
3938 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3939 	if (reserve) {
3940 		/*
3941 		 * Decrement reserve counts.  The global reserve count may be
3942 		 * adjusted if the subpool has a minimum size.
3943 		 */
3944 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3945 		hugetlb_acct_memory(h, -gbl_reserve);
3946 	}
3947 
3948 	kref_put(&resv->refs, resv_map_release);
3949 }
3950 
3951 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3952 {
3953 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3954 		return -EINVAL;
3955 	return 0;
3956 }
3957 
3958 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3959 {
3960 	return huge_page_size(hstate_vma(vma));
3961 }
3962 
3963 /*
3964  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3965  * handle_mm_fault() to try to instantiate regular-sized pages in the
3966  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3967  * this far.
3968  */
3969 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3970 {
3971 	BUG();
3972 	return 0;
3973 }
3974 
3975 /*
3976  * When a new function is introduced to vm_operations_struct and added
3977  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3978  * This is because under System V memory model, mappings created via
3979  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3980  * their original vm_ops are overwritten with shm_vm_ops.
3981  */
3982 const struct vm_operations_struct hugetlb_vm_ops = {
3983 	.fault = hugetlb_vm_op_fault,
3984 	.open = hugetlb_vm_op_open,
3985 	.close = hugetlb_vm_op_close,
3986 	.may_split = hugetlb_vm_op_split,
3987 	.pagesize = hugetlb_vm_op_pagesize,
3988 };
3989 
3990 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3991 				int writable)
3992 {
3993 	pte_t entry;
3994 
3995 	if (writable) {
3996 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3997 					 vma->vm_page_prot)));
3998 	} else {
3999 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4000 					   vma->vm_page_prot));
4001 	}
4002 	entry = pte_mkyoung(entry);
4003 	entry = pte_mkhuge(entry);
4004 	entry = arch_make_huge_pte(entry, vma, page, writable);
4005 
4006 	return entry;
4007 }
4008 
4009 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4010 				   unsigned long address, pte_t *ptep)
4011 {
4012 	pte_t entry;
4013 
4014 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4015 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4016 		update_mmu_cache(vma, address, ptep);
4017 }
4018 
4019 bool is_hugetlb_entry_migration(pte_t pte)
4020 {
4021 	swp_entry_t swp;
4022 
4023 	if (huge_pte_none(pte) || pte_present(pte))
4024 		return false;
4025 	swp = pte_to_swp_entry(pte);
4026 	if (is_migration_entry(swp))
4027 		return true;
4028 	else
4029 		return false;
4030 }
4031 
4032 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4033 {
4034 	swp_entry_t swp;
4035 
4036 	if (huge_pte_none(pte) || pte_present(pte))
4037 		return false;
4038 	swp = pte_to_swp_entry(pte);
4039 	if (is_hwpoison_entry(swp))
4040 		return true;
4041 	else
4042 		return false;
4043 }
4044 
4045 static void
4046 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4047 		     struct page *new_page)
4048 {
4049 	__SetPageUptodate(new_page);
4050 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4051 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4052 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4053 	ClearHPageRestoreReserve(new_page);
4054 	SetHPageMigratable(new_page);
4055 }
4056 
4057 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4058 			    struct vm_area_struct *vma)
4059 {
4060 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4061 	struct page *ptepage;
4062 	unsigned long addr;
4063 	bool cow = is_cow_mapping(vma->vm_flags);
4064 	struct hstate *h = hstate_vma(vma);
4065 	unsigned long sz = huge_page_size(h);
4066 	unsigned long npages = pages_per_huge_page(h);
4067 	struct address_space *mapping = vma->vm_file->f_mapping;
4068 	struct mmu_notifier_range range;
4069 	int ret = 0;
4070 
4071 	if (cow) {
4072 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4073 					vma->vm_start,
4074 					vma->vm_end);
4075 		mmu_notifier_invalidate_range_start(&range);
4076 	} else {
4077 		/*
4078 		 * For shared mappings i_mmap_rwsem must be held to call
4079 		 * huge_pte_alloc, otherwise the returned ptep could go
4080 		 * away if part of a shared pmd and another thread calls
4081 		 * huge_pmd_unshare.
4082 		 */
4083 		i_mmap_lock_read(mapping);
4084 	}
4085 
4086 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4087 		spinlock_t *src_ptl, *dst_ptl;
4088 		src_pte = huge_pte_offset(src, addr, sz);
4089 		if (!src_pte)
4090 			continue;
4091 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4092 		if (!dst_pte) {
4093 			ret = -ENOMEM;
4094 			break;
4095 		}
4096 
4097 		/*
4098 		 * If the pagetables are shared don't copy or take references.
4099 		 * dst_pte == src_pte is the common case of src/dest sharing.
4100 		 *
4101 		 * However, src could have 'unshared' and dst shares with
4102 		 * another vma.  If dst_pte !none, this implies sharing.
4103 		 * Check here before taking page table lock, and once again
4104 		 * after taking the lock below.
4105 		 */
4106 		dst_entry = huge_ptep_get(dst_pte);
4107 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4108 			continue;
4109 
4110 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4111 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4112 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4113 		entry = huge_ptep_get(src_pte);
4114 		dst_entry = huge_ptep_get(dst_pte);
4115 again:
4116 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4117 			/*
4118 			 * Skip if src entry none.  Also, skip in the
4119 			 * unlikely case dst entry !none as this implies
4120 			 * sharing with another vma.
4121 			 */
4122 			;
4123 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4124 				    is_hugetlb_entry_hwpoisoned(entry))) {
4125 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4126 
4127 			if (is_write_migration_entry(swp_entry) && cow) {
4128 				/*
4129 				 * COW mappings require pages in both
4130 				 * parent and child to be set to read.
4131 				 */
4132 				make_migration_entry_read(&swp_entry);
4133 				entry = swp_entry_to_pte(swp_entry);
4134 				set_huge_swap_pte_at(src, addr, src_pte,
4135 						     entry, sz);
4136 			}
4137 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4138 		} else {
4139 			entry = huge_ptep_get(src_pte);
4140 			ptepage = pte_page(entry);
4141 			get_page(ptepage);
4142 
4143 			/*
4144 			 * This is a rare case where we see pinned hugetlb
4145 			 * pages while they're prone to COW.  We need to do the
4146 			 * COW earlier during fork.
4147 			 *
4148 			 * When pre-allocating the page or copying data, we
4149 			 * need to be without the pgtable locks since we could
4150 			 * sleep during the process.
4151 			 */
4152 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4153 				pte_t src_pte_old = entry;
4154 				struct page *new;
4155 
4156 				spin_unlock(src_ptl);
4157 				spin_unlock(dst_ptl);
4158 				/* Do not use reserve as it's private owned */
4159 				new = alloc_huge_page(vma, addr, 1);
4160 				if (IS_ERR(new)) {
4161 					put_page(ptepage);
4162 					ret = PTR_ERR(new);
4163 					break;
4164 				}
4165 				copy_user_huge_page(new, ptepage, addr, vma,
4166 						    npages);
4167 				put_page(ptepage);
4168 
4169 				/* Install the new huge page if src pte stable */
4170 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4171 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4172 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4173 				entry = huge_ptep_get(src_pte);
4174 				if (!pte_same(src_pte_old, entry)) {
4175 					restore_reserve_on_error(h, vma, addr,
4176 								new);
4177 					put_page(new);
4178 					/* dst_entry won't change as in child */
4179 					goto again;
4180 				}
4181 				hugetlb_install_page(vma, dst_pte, addr, new);
4182 				spin_unlock(src_ptl);
4183 				spin_unlock(dst_ptl);
4184 				continue;
4185 			}
4186 
4187 			if (cow) {
4188 				/*
4189 				 * No need to notify as we are downgrading page
4190 				 * table protection not changing it to point
4191 				 * to a new page.
4192 				 *
4193 				 * See Documentation/vm/mmu_notifier.rst
4194 				 */
4195 				huge_ptep_set_wrprotect(src, addr, src_pte);
4196 				entry = huge_pte_wrprotect(entry);
4197 			}
4198 
4199 			page_dup_rmap(ptepage, true);
4200 			set_huge_pte_at(dst, addr, dst_pte, entry);
4201 			hugetlb_count_add(npages, dst);
4202 		}
4203 		spin_unlock(src_ptl);
4204 		spin_unlock(dst_ptl);
4205 	}
4206 
4207 	if (cow)
4208 		mmu_notifier_invalidate_range_end(&range);
4209 	else
4210 		i_mmap_unlock_read(mapping);
4211 
4212 	return ret;
4213 }
4214 
4215 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4216 			    unsigned long start, unsigned long end,
4217 			    struct page *ref_page)
4218 {
4219 	struct mm_struct *mm = vma->vm_mm;
4220 	unsigned long address;
4221 	pte_t *ptep;
4222 	pte_t pte;
4223 	spinlock_t *ptl;
4224 	struct page *page;
4225 	struct hstate *h = hstate_vma(vma);
4226 	unsigned long sz = huge_page_size(h);
4227 	struct mmu_notifier_range range;
4228 
4229 	WARN_ON(!is_vm_hugetlb_page(vma));
4230 	BUG_ON(start & ~huge_page_mask(h));
4231 	BUG_ON(end & ~huge_page_mask(h));
4232 
4233 	/*
4234 	 * This is a hugetlb vma, all the pte entries should point
4235 	 * to huge page.
4236 	 */
4237 	tlb_change_page_size(tlb, sz);
4238 	tlb_start_vma(tlb, vma);
4239 
4240 	/*
4241 	 * If sharing possible, alert mmu notifiers of worst case.
4242 	 */
4243 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4244 				end);
4245 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4246 	mmu_notifier_invalidate_range_start(&range);
4247 	address = start;
4248 	for (; address < end; address += sz) {
4249 		ptep = huge_pte_offset(mm, address, sz);
4250 		if (!ptep)
4251 			continue;
4252 
4253 		ptl = huge_pte_lock(h, mm, ptep);
4254 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4255 			spin_unlock(ptl);
4256 			/*
4257 			 * We just unmapped a page of PMDs by clearing a PUD.
4258 			 * The caller's TLB flush range should cover this area.
4259 			 */
4260 			continue;
4261 		}
4262 
4263 		pte = huge_ptep_get(ptep);
4264 		if (huge_pte_none(pte)) {
4265 			spin_unlock(ptl);
4266 			continue;
4267 		}
4268 
4269 		/*
4270 		 * Migrating hugepage or HWPoisoned hugepage is already
4271 		 * unmapped and its refcount is dropped, so just clear pte here.
4272 		 */
4273 		if (unlikely(!pte_present(pte))) {
4274 			huge_pte_clear(mm, address, ptep, sz);
4275 			spin_unlock(ptl);
4276 			continue;
4277 		}
4278 
4279 		page = pte_page(pte);
4280 		/*
4281 		 * If a reference page is supplied, it is because a specific
4282 		 * page is being unmapped, not a range. Ensure the page we
4283 		 * are about to unmap is the actual page of interest.
4284 		 */
4285 		if (ref_page) {
4286 			if (page != ref_page) {
4287 				spin_unlock(ptl);
4288 				continue;
4289 			}
4290 			/*
4291 			 * Mark the VMA as having unmapped its page so that
4292 			 * future faults in this VMA will fail rather than
4293 			 * looking like data was lost
4294 			 */
4295 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4296 		}
4297 
4298 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4299 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4300 		if (huge_pte_dirty(pte))
4301 			set_page_dirty(page);
4302 
4303 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4304 		page_remove_rmap(page, true);
4305 
4306 		spin_unlock(ptl);
4307 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4308 		/*
4309 		 * Bail out after unmapping reference page if supplied
4310 		 */
4311 		if (ref_page)
4312 			break;
4313 	}
4314 	mmu_notifier_invalidate_range_end(&range);
4315 	tlb_end_vma(tlb, vma);
4316 }
4317 
4318 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4319 			  struct vm_area_struct *vma, unsigned long start,
4320 			  unsigned long end, struct page *ref_page)
4321 {
4322 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4323 
4324 	/*
4325 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4326 	 * test will fail on a vma being torn down, and not grab a page table
4327 	 * on its way out.  We're lucky that the flag has such an appropriate
4328 	 * name, and can in fact be safely cleared here. We could clear it
4329 	 * before the __unmap_hugepage_range above, but all that's necessary
4330 	 * is to clear it before releasing the i_mmap_rwsem. This works
4331 	 * because in the context this is called, the VMA is about to be
4332 	 * destroyed and the i_mmap_rwsem is held.
4333 	 */
4334 	vma->vm_flags &= ~VM_MAYSHARE;
4335 }
4336 
4337 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4338 			  unsigned long end, struct page *ref_page)
4339 {
4340 	struct mmu_gather tlb;
4341 
4342 	tlb_gather_mmu(&tlb, vma->vm_mm);
4343 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4344 	tlb_finish_mmu(&tlb);
4345 }
4346 
4347 /*
4348  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4349  * mapping it owns the reserve page for. The intention is to unmap the page
4350  * from other VMAs and let the children be SIGKILLed if they are faulting the
4351  * same region.
4352  */
4353 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4354 			      struct page *page, unsigned long address)
4355 {
4356 	struct hstate *h = hstate_vma(vma);
4357 	struct vm_area_struct *iter_vma;
4358 	struct address_space *mapping;
4359 	pgoff_t pgoff;
4360 
4361 	/*
4362 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4363 	 * from page cache lookup which is in HPAGE_SIZE units.
4364 	 */
4365 	address = address & huge_page_mask(h);
4366 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4367 			vma->vm_pgoff;
4368 	mapping = vma->vm_file->f_mapping;
4369 
4370 	/*
4371 	 * Take the mapping lock for the duration of the table walk. As
4372 	 * this mapping should be shared between all the VMAs,
4373 	 * __unmap_hugepage_range() is called as the lock is already held
4374 	 */
4375 	i_mmap_lock_write(mapping);
4376 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4377 		/* Do not unmap the current VMA */
4378 		if (iter_vma == vma)
4379 			continue;
4380 
4381 		/*
4382 		 * Shared VMAs have their own reserves and do not affect
4383 		 * MAP_PRIVATE accounting but it is possible that a shared
4384 		 * VMA is using the same page so check and skip such VMAs.
4385 		 */
4386 		if (iter_vma->vm_flags & VM_MAYSHARE)
4387 			continue;
4388 
4389 		/*
4390 		 * Unmap the page from other VMAs without their own reserves.
4391 		 * They get marked to be SIGKILLed if they fault in these
4392 		 * areas. This is because a future no-page fault on this VMA
4393 		 * could insert a zeroed page instead of the data existing
4394 		 * from the time of fork. This would look like data corruption
4395 		 */
4396 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4397 			unmap_hugepage_range(iter_vma, address,
4398 					     address + huge_page_size(h), page);
4399 	}
4400 	i_mmap_unlock_write(mapping);
4401 }
4402 
4403 /*
4404  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4405  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4406  * cannot race with other handlers or page migration.
4407  * Keep the pte_same checks anyway to make transition from the mutex easier.
4408  */
4409 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4410 		       unsigned long address, pte_t *ptep,
4411 		       struct page *pagecache_page, spinlock_t *ptl)
4412 {
4413 	pte_t pte;
4414 	struct hstate *h = hstate_vma(vma);
4415 	struct page *old_page, *new_page;
4416 	int outside_reserve = 0;
4417 	vm_fault_t ret = 0;
4418 	unsigned long haddr = address & huge_page_mask(h);
4419 	struct mmu_notifier_range range;
4420 
4421 	pte = huge_ptep_get(ptep);
4422 	old_page = pte_page(pte);
4423 
4424 retry_avoidcopy:
4425 	/* If no-one else is actually using this page, avoid the copy
4426 	 * and just make the page writable */
4427 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4428 		page_move_anon_rmap(old_page, vma);
4429 		set_huge_ptep_writable(vma, haddr, ptep);
4430 		return 0;
4431 	}
4432 
4433 	/*
4434 	 * If the process that created a MAP_PRIVATE mapping is about to
4435 	 * perform a COW due to a shared page count, attempt to satisfy
4436 	 * the allocation without using the existing reserves. The pagecache
4437 	 * page is used to determine if the reserve at this address was
4438 	 * consumed or not. If reserves were used, a partial faulted mapping
4439 	 * at the time of fork() could consume its reserves on COW instead
4440 	 * of the full address range.
4441 	 */
4442 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4443 			old_page != pagecache_page)
4444 		outside_reserve = 1;
4445 
4446 	get_page(old_page);
4447 
4448 	/*
4449 	 * Drop page table lock as buddy allocator may be called. It will
4450 	 * be acquired again before returning to the caller, as expected.
4451 	 */
4452 	spin_unlock(ptl);
4453 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4454 
4455 	if (IS_ERR(new_page)) {
4456 		/*
4457 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4458 		 * it is due to references held by a child and an insufficient
4459 		 * huge page pool. To guarantee the original mappers
4460 		 * reliability, unmap the page from child processes. The child
4461 		 * may get SIGKILLed if it later faults.
4462 		 */
4463 		if (outside_reserve) {
4464 			struct address_space *mapping = vma->vm_file->f_mapping;
4465 			pgoff_t idx;
4466 			u32 hash;
4467 
4468 			put_page(old_page);
4469 			BUG_ON(huge_pte_none(pte));
4470 			/*
4471 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4472 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4473 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4474 			 * here is OK as COW mappings do not interact with
4475 			 * PMD sharing.
4476 			 *
4477 			 * Reacquire both after unmap operation.
4478 			 */
4479 			idx = vma_hugecache_offset(h, vma, haddr);
4480 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4481 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4482 			i_mmap_unlock_read(mapping);
4483 
4484 			unmap_ref_private(mm, vma, old_page, haddr);
4485 
4486 			i_mmap_lock_read(mapping);
4487 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4488 			spin_lock(ptl);
4489 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4490 			if (likely(ptep &&
4491 				   pte_same(huge_ptep_get(ptep), pte)))
4492 				goto retry_avoidcopy;
4493 			/*
4494 			 * race occurs while re-acquiring page table
4495 			 * lock, and our job is done.
4496 			 */
4497 			return 0;
4498 		}
4499 
4500 		ret = vmf_error(PTR_ERR(new_page));
4501 		goto out_release_old;
4502 	}
4503 
4504 	/*
4505 	 * When the original hugepage is shared one, it does not have
4506 	 * anon_vma prepared.
4507 	 */
4508 	if (unlikely(anon_vma_prepare(vma))) {
4509 		ret = VM_FAULT_OOM;
4510 		goto out_release_all;
4511 	}
4512 
4513 	copy_user_huge_page(new_page, old_page, address, vma,
4514 			    pages_per_huge_page(h));
4515 	__SetPageUptodate(new_page);
4516 
4517 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4518 				haddr + huge_page_size(h));
4519 	mmu_notifier_invalidate_range_start(&range);
4520 
4521 	/*
4522 	 * Retake the page table lock to check for racing updates
4523 	 * before the page tables are altered
4524 	 */
4525 	spin_lock(ptl);
4526 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4527 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4528 		ClearHPageRestoreReserve(new_page);
4529 
4530 		/* Break COW */
4531 		huge_ptep_clear_flush(vma, haddr, ptep);
4532 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4533 		set_huge_pte_at(mm, haddr, ptep,
4534 				make_huge_pte(vma, new_page, 1));
4535 		page_remove_rmap(old_page, true);
4536 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4537 		SetHPageMigratable(new_page);
4538 		/* Make the old page be freed below */
4539 		new_page = old_page;
4540 	}
4541 	spin_unlock(ptl);
4542 	mmu_notifier_invalidate_range_end(&range);
4543 out_release_all:
4544 	restore_reserve_on_error(h, vma, haddr, new_page);
4545 	put_page(new_page);
4546 out_release_old:
4547 	put_page(old_page);
4548 
4549 	spin_lock(ptl); /* Caller expects lock to be held */
4550 	return ret;
4551 }
4552 
4553 /* Return the pagecache page at a given address within a VMA */
4554 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4555 			struct vm_area_struct *vma, unsigned long address)
4556 {
4557 	struct address_space *mapping;
4558 	pgoff_t idx;
4559 
4560 	mapping = vma->vm_file->f_mapping;
4561 	idx = vma_hugecache_offset(h, vma, address);
4562 
4563 	return find_lock_page(mapping, idx);
4564 }
4565 
4566 /*
4567  * Return whether there is a pagecache page to back given address within VMA.
4568  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4569  */
4570 static bool hugetlbfs_pagecache_present(struct hstate *h,
4571 			struct vm_area_struct *vma, unsigned long address)
4572 {
4573 	struct address_space *mapping;
4574 	pgoff_t idx;
4575 	struct page *page;
4576 
4577 	mapping = vma->vm_file->f_mapping;
4578 	idx = vma_hugecache_offset(h, vma, address);
4579 
4580 	page = find_get_page(mapping, idx);
4581 	if (page)
4582 		put_page(page);
4583 	return page != NULL;
4584 }
4585 
4586 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4587 			   pgoff_t idx)
4588 {
4589 	struct inode *inode = mapping->host;
4590 	struct hstate *h = hstate_inode(inode);
4591 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4592 
4593 	if (err)
4594 		return err;
4595 	ClearHPageRestoreReserve(page);
4596 
4597 	/*
4598 	 * set page dirty so that it will not be removed from cache/file
4599 	 * by non-hugetlbfs specific code paths.
4600 	 */
4601 	set_page_dirty(page);
4602 
4603 	spin_lock(&inode->i_lock);
4604 	inode->i_blocks += blocks_per_huge_page(h);
4605 	spin_unlock(&inode->i_lock);
4606 	return 0;
4607 }
4608 
4609 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4610 						  struct address_space *mapping,
4611 						  pgoff_t idx,
4612 						  unsigned int flags,
4613 						  unsigned long haddr,
4614 						  unsigned long reason)
4615 {
4616 	vm_fault_t ret;
4617 	u32 hash;
4618 	struct vm_fault vmf = {
4619 		.vma = vma,
4620 		.address = haddr,
4621 		.flags = flags,
4622 
4623 		/*
4624 		 * Hard to debug if it ends up being
4625 		 * used by a callee that assumes
4626 		 * something about the other
4627 		 * uninitialized fields... same as in
4628 		 * memory.c
4629 		 */
4630 	};
4631 
4632 	/*
4633 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
4634 	 * dropped before handling userfault.  Reacquire
4635 	 * after handling fault to make calling code simpler.
4636 	 */
4637 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4638 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4639 	i_mmap_unlock_read(mapping);
4640 	ret = handle_userfault(&vmf, reason);
4641 	i_mmap_lock_read(mapping);
4642 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4643 
4644 	return ret;
4645 }
4646 
4647 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4648 			struct vm_area_struct *vma,
4649 			struct address_space *mapping, pgoff_t idx,
4650 			unsigned long address, pte_t *ptep, unsigned int flags)
4651 {
4652 	struct hstate *h = hstate_vma(vma);
4653 	vm_fault_t ret = VM_FAULT_SIGBUS;
4654 	int anon_rmap = 0;
4655 	unsigned long size;
4656 	struct page *page;
4657 	pte_t new_pte;
4658 	spinlock_t *ptl;
4659 	unsigned long haddr = address & huge_page_mask(h);
4660 	bool new_page = false;
4661 
4662 	/*
4663 	 * Currently, we are forced to kill the process in the event the
4664 	 * original mapper has unmapped pages from the child due to a failed
4665 	 * COW. Warn that such a situation has occurred as it may not be obvious
4666 	 */
4667 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4668 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4669 			   current->pid);
4670 		return ret;
4671 	}
4672 
4673 	/*
4674 	 * We can not race with truncation due to holding i_mmap_rwsem.
4675 	 * i_size is modified when holding i_mmap_rwsem, so check here
4676 	 * once for faults beyond end of file.
4677 	 */
4678 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4679 	if (idx >= size)
4680 		goto out;
4681 
4682 retry:
4683 	page = find_lock_page(mapping, idx);
4684 	if (!page) {
4685 		/* Check for page in userfault range */
4686 		if (userfaultfd_missing(vma)) {
4687 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4688 						       flags, haddr,
4689 						       VM_UFFD_MISSING);
4690 			goto out;
4691 		}
4692 
4693 		page = alloc_huge_page(vma, haddr, 0);
4694 		if (IS_ERR(page)) {
4695 			/*
4696 			 * Returning error will result in faulting task being
4697 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4698 			 * tasks from racing to fault in the same page which
4699 			 * could result in false unable to allocate errors.
4700 			 * Page migration does not take the fault mutex, but
4701 			 * does a clear then write of pte's under page table
4702 			 * lock.  Page fault code could race with migration,
4703 			 * notice the clear pte and try to allocate a page
4704 			 * here.  Before returning error, get ptl and make
4705 			 * sure there really is no pte entry.
4706 			 */
4707 			ptl = huge_pte_lock(h, mm, ptep);
4708 			ret = 0;
4709 			if (huge_pte_none(huge_ptep_get(ptep)))
4710 				ret = vmf_error(PTR_ERR(page));
4711 			spin_unlock(ptl);
4712 			goto out;
4713 		}
4714 		clear_huge_page(page, address, pages_per_huge_page(h));
4715 		__SetPageUptodate(page);
4716 		new_page = true;
4717 
4718 		if (vma->vm_flags & VM_MAYSHARE) {
4719 			int err = huge_add_to_page_cache(page, mapping, idx);
4720 			if (err) {
4721 				put_page(page);
4722 				if (err == -EEXIST)
4723 					goto retry;
4724 				goto out;
4725 			}
4726 		} else {
4727 			lock_page(page);
4728 			if (unlikely(anon_vma_prepare(vma))) {
4729 				ret = VM_FAULT_OOM;
4730 				goto backout_unlocked;
4731 			}
4732 			anon_rmap = 1;
4733 		}
4734 	} else {
4735 		/*
4736 		 * If memory error occurs between mmap() and fault, some process
4737 		 * don't have hwpoisoned swap entry for errored virtual address.
4738 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4739 		 */
4740 		if (unlikely(PageHWPoison(page))) {
4741 			ret = VM_FAULT_HWPOISON_LARGE |
4742 				VM_FAULT_SET_HINDEX(hstate_index(h));
4743 			goto backout_unlocked;
4744 		}
4745 
4746 		/* Check for page in userfault range. */
4747 		if (userfaultfd_minor(vma)) {
4748 			unlock_page(page);
4749 			put_page(page);
4750 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4751 						       flags, haddr,
4752 						       VM_UFFD_MINOR);
4753 			goto out;
4754 		}
4755 	}
4756 
4757 	/*
4758 	 * If we are going to COW a private mapping later, we examine the
4759 	 * pending reservations for this page now. This will ensure that
4760 	 * any allocations necessary to record that reservation occur outside
4761 	 * the spinlock.
4762 	 */
4763 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4764 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4765 			ret = VM_FAULT_OOM;
4766 			goto backout_unlocked;
4767 		}
4768 		/* Just decrements count, does not deallocate */
4769 		vma_end_reservation(h, vma, haddr);
4770 	}
4771 
4772 	ptl = huge_pte_lock(h, mm, ptep);
4773 	ret = 0;
4774 	if (!huge_pte_none(huge_ptep_get(ptep)))
4775 		goto backout;
4776 
4777 	if (anon_rmap) {
4778 		ClearHPageRestoreReserve(page);
4779 		hugepage_add_new_anon_rmap(page, vma, haddr);
4780 	} else
4781 		page_dup_rmap(page, true);
4782 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4783 				&& (vma->vm_flags & VM_SHARED)));
4784 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4785 
4786 	hugetlb_count_add(pages_per_huge_page(h), mm);
4787 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4788 		/* Optimization, do the COW without a second fault */
4789 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4790 	}
4791 
4792 	spin_unlock(ptl);
4793 
4794 	/*
4795 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
4796 	 * found in the pagecache may not have HPageMigratableset if they have
4797 	 * been isolated for migration.
4798 	 */
4799 	if (new_page)
4800 		SetHPageMigratable(page);
4801 
4802 	unlock_page(page);
4803 out:
4804 	return ret;
4805 
4806 backout:
4807 	spin_unlock(ptl);
4808 backout_unlocked:
4809 	unlock_page(page);
4810 	restore_reserve_on_error(h, vma, haddr, page);
4811 	put_page(page);
4812 	goto out;
4813 }
4814 
4815 #ifdef CONFIG_SMP
4816 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4817 {
4818 	unsigned long key[2];
4819 	u32 hash;
4820 
4821 	key[0] = (unsigned long) mapping;
4822 	key[1] = idx;
4823 
4824 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4825 
4826 	return hash & (num_fault_mutexes - 1);
4827 }
4828 #else
4829 /*
4830  * For uniprocessor systems we always use a single mutex, so just
4831  * return 0 and avoid the hashing overhead.
4832  */
4833 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4834 {
4835 	return 0;
4836 }
4837 #endif
4838 
4839 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4840 			unsigned long address, unsigned int flags)
4841 {
4842 	pte_t *ptep, entry;
4843 	spinlock_t *ptl;
4844 	vm_fault_t ret;
4845 	u32 hash;
4846 	pgoff_t idx;
4847 	struct page *page = NULL;
4848 	struct page *pagecache_page = NULL;
4849 	struct hstate *h = hstate_vma(vma);
4850 	struct address_space *mapping;
4851 	int need_wait_lock = 0;
4852 	unsigned long haddr = address & huge_page_mask(h);
4853 
4854 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4855 	if (ptep) {
4856 		/*
4857 		 * Since we hold no locks, ptep could be stale.  That is
4858 		 * OK as we are only making decisions based on content and
4859 		 * not actually modifying content here.
4860 		 */
4861 		entry = huge_ptep_get(ptep);
4862 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4863 			migration_entry_wait_huge(vma, mm, ptep);
4864 			return 0;
4865 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4866 			return VM_FAULT_HWPOISON_LARGE |
4867 				VM_FAULT_SET_HINDEX(hstate_index(h));
4868 	}
4869 
4870 	/*
4871 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4872 	 * until finished with ptep.  This serves two purposes:
4873 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4874 	 *    and making the ptep no longer valid.
4875 	 * 2) It synchronizes us with i_size modifications during truncation.
4876 	 *
4877 	 * ptep could have already be assigned via huge_pte_offset.  That
4878 	 * is OK, as huge_pte_alloc will return the same value unless
4879 	 * something has changed.
4880 	 */
4881 	mapping = vma->vm_file->f_mapping;
4882 	i_mmap_lock_read(mapping);
4883 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4884 	if (!ptep) {
4885 		i_mmap_unlock_read(mapping);
4886 		return VM_FAULT_OOM;
4887 	}
4888 
4889 	/*
4890 	 * Serialize hugepage allocation and instantiation, so that we don't
4891 	 * get spurious allocation failures if two CPUs race to instantiate
4892 	 * the same page in the page cache.
4893 	 */
4894 	idx = vma_hugecache_offset(h, vma, haddr);
4895 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4896 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4897 
4898 	entry = huge_ptep_get(ptep);
4899 	if (huge_pte_none(entry)) {
4900 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4901 		goto out_mutex;
4902 	}
4903 
4904 	ret = 0;
4905 
4906 	/*
4907 	 * entry could be a migration/hwpoison entry at this point, so this
4908 	 * check prevents the kernel from going below assuming that we have
4909 	 * an active hugepage in pagecache. This goto expects the 2nd page
4910 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4911 	 * properly handle it.
4912 	 */
4913 	if (!pte_present(entry))
4914 		goto out_mutex;
4915 
4916 	/*
4917 	 * If we are going to COW the mapping later, we examine the pending
4918 	 * reservations for this page now. This will ensure that any
4919 	 * allocations necessary to record that reservation occur outside the
4920 	 * spinlock. For private mappings, we also lookup the pagecache
4921 	 * page now as it is used to determine if a reservation has been
4922 	 * consumed.
4923 	 */
4924 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4925 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4926 			ret = VM_FAULT_OOM;
4927 			goto out_mutex;
4928 		}
4929 		/* Just decrements count, does not deallocate */
4930 		vma_end_reservation(h, vma, haddr);
4931 
4932 		if (!(vma->vm_flags & VM_MAYSHARE))
4933 			pagecache_page = hugetlbfs_pagecache_page(h,
4934 								vma, haddr);
4935 	}
4936 
4937 	ptl = huge_pte_lock(h, mm, ptep);
4938 
4939 	/* Check for a racing update before calling hugetlb_cow */
4940 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4941 		goto out_ptl;
4942 
4943 	/*
4944 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4945 	 * pagecache_page, so here we need take the former one
4946 	 * when page != pagecache_page or !pagecache_page.
4947 	 */
4948 	page = pte_page(entry);
4949 	if (page != pagecache_page)
4950 		if (!trylock_page(page)) {
4951 			need_wait_lock = 1;
4952 			goto out_ptl;
4953 		}
4954 
4955 	get_page(page);
4956 
4957 	if (flags & FAULT_FLAG_WRITE) {
4958 		if (!huge_pte_write(entry)) {
4959 			ret = hugetlb_cow(mm, vma, address, ptep,
4960 					  pagecache_page, ptl);
4961 			goto out_put_page;
4962 		}
4963 		entry = huge_pte_mkdirty(entry);
4964 	}
4965 	entry = pte_mkyoung(entry);
4966 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4967 						flags & FAULT_FLAG_WRITE))
4968 		update_mmu_cache(vma, haddr, ptep);
4969 out_put_page:
4970 	if (page != pagecache_page)
4971 		unlock_page(page);
4972 	put_page(page);
4973 out_ptl:
4974 	spin_unlock(ptl);
4975 
4976 	if (pagecache_page) {
4977 		unlock_page(pagecache_page);
4978 		put_page(pagecache_page);
4979 	}
4980 out_mutex:
4981 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4982 	i_mmap_unlock_read(mapping);
4983 	/*
4984 	 * Generally it's safe to hold refcount during waiting page lock. But
4985 	 * here we just wait to defer the next page fault to avoid busy loop and
4986 	 * the page is not used after unlocked before returning from the current
4987 	 * page fault. So we are safe from accessing freed page, even if we wait
4988 	 * here without taking refcount.
4989 	 */
4990 	if (need_wait_lock)
4991 		wait_on_page_locked(page);
4992 	return ret;
4993 }
4994 
4995 #ifdef CONFIG_USERFAULTFD
4996 /*
4997  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4998  * modifications for huge pages.
4999  */
5000 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5001 			    pte_t *dst_pte,
5002 			    struct vm_area_struct *dst_vma,
5003 			    unsigned long dst_addr,
5004 			    unsigned long src_addr,
5005 			    enum mcopy_atomic_mode mode,
5006 			    struct page **pagep)
5007 {
5008 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5009 	struct address_space *mapping;
5010 	pgoff_t idx;
5011 	unsigned long size;
5012 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5013 	struct hstate *h = hstate_vma(dst_vma);
5014 	pte_t _dst_pte;
5015 	spinlock_t *ptl;
5016 	int ret;
5017 	struct page *page;
5018 	int writable;
5019 
5020 	mapping = dst_vma->vm_file->f_mapping;
5021 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5022 
5023 	if (is_continue) {
5024 		ret = -EFAULT;
5025 		page = find_lock_page(mapping, idx);
5026 		if (!page)
5027 			goto out;
5028 	} else if (!*pagep) {
5029 		/* If a page already exists, then it's UFFDIO_COPY for
5030 		 * a non-missing case. Return -EEXIST.
5031 		 */
5032 		if (vm_shared &&
5033 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5034 			ret = -EEXIST;
5035 			goto out;
5036 		}
5037 
5038 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5039 		if (IS_ERR(page)) {
5040 			ret = -ENOMEM;
5041 			goto out;
5042 		}
5043 
5044 		ret = copy_huge_page_from_user(page,
5045 						(const void __user *) src_addr,
5046 						pages_per_huge_page(h), false);
5047 
5048 		/* fallback to copy_from_user outside mmap_lock */
5049 		if (unlikely(ret)) {
5050 			ret = -ENOENT;
5051 			*pagep = page;
5052 			/* don't free the page */
5053 			goto out;
5054 		}
5055 	} else {
5056 		page = *pagep;
5057 		*pagep = NULL;
5058 	}
5059 
5060 	/*
5061 	 * The memory barrier inside __SetPageUptodate makes sure that
5062 	 * preceding stores to the page contents become visible before
5063 	 * the set_pte_at() write.
5064 	 */
5065 	__SetPageUptodate(page);
5066 
5067 	/* Add shared, newly allocated pages to the page cache. */
5068 	if (vm_shared && !is_continue) {
5069 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5070 		ret = -EFAULT;
5071 		if (idx >= size)
5072 			goto out_release_nounlock;
5073 
5074 		/*
5075 		 * Serialization between remove_inode_hugepages() and
5076 		 * huge_add_to_page_cache() below happens through the
5077 		 * hugetlb_fault_mutex_table that here must be hold by
5078 		 * the caller.
5079 		 */
5080 		ret = huge_add_to_page_cache(page, mapping, idx);
5081 		if (ret)
5082 			goto out_release_nounlock;
5083 	}
5084 
5085 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5086 	spin_lock(ptl);
5087 
5088 	/*
5089 	 * Recheck the i_size after holding PT lock to make sure not
5090 	 * to leave any page mapped (as page_mapped()) beyond the end
5091 	 * of the i_size (remove_inode_hugepages() is strict about
5092 	 * enforcing that). If we bail out here, we'll also leave a
5093 	 * page in the radix tree in the vm_shared case beyond the end
5094 	 * of the i_size, but remove_inode_hugepages() will take care
5095 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5096 	 */
5097 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5098 	ret = -EFAULT;
5099 	if (idx >= size)
5100 		goto out_release_unlock;
5101 
5102 	ret = -EEXIST;
5103 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5104 		goto out_release_unlock;
5105 
5106 	if (vm_shared) {
5107 		page_dup_rmap(page, true);
5108 	} else {
5109 		ClearHPageRestoreReserve(page);
5110 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5111 	}
5112 
5113 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5114 	if (is_continue && !vm_shared)
5115 		writable = 0;
5116 	else
5117 		writable = dst_vma->vm_flags & VM_WRITE;
5118 
5119 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5120 	if (writable)
5121 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5122 	_dst_pte = pte_mkyoung(_dst_pte);
5123 
5124 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5125 
5126 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5127 					dst_vma->vm_flags & VM_WRITE);
5128 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5129 
5130 	/* No need to invalidate - it was non-present before */
5131 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5132 
5133 	spin_unlock(ptl);
5134 	if (!is_continue)
5135 		SetHPageMigratable(page);
5136 	if (vm_shared || is_continue)
5137 		unlock_page(page);
5138 	ret = 0;
5139 out:
5140 	return ret;
5141 out_release_unlock:
5142 	spin_unlock(ptl);
5143 	if (vm_shared || is_continue)
5144 		unlock_page(page);
5145 out_release_nounlock:
5146 	restore_reserve_on_error(h, dst_vma, dst_addr, page);
5147 	put_page(page);
5148 	goto out;
5149 }
5150 #endif /* CONFIG_USERFAULTFD */
5151 
5152 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5153 				 int refs, struct page **pages,
5154 				 struct vm_area_struct **vmas)
5155 {
5156 	int nr;
5157 
5158 	for (nr = 0; nr < refs; nr++) {
5159 		if (likely(pages))
5160 			pages[nr] = mem_map_offset(page, nr);
5161 		if (vmas)
5162 			vmas[nr] = vma;
5163 	}
5164 }
5165 
5166 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5167 			 struct page **pages, struct vm_area_struct **vmas,
5168 			 unsigned long *position, unsigned long *nr_pages,
5169 			 long i, unsigned int flags, int *locked)
5170 {
5171 	unsigned long pfn_offset;
5172 	unsigned long vaddr = *position;
5173 	unsigned long remainder = *nr_pages;
5174 	struct hstate *h = hstate_vma(vma);
5175 	int err = -EFAULT, refs;
5176 
5177 	while (vaddr < vma->vm_end && remainder) {
5178 		pte_t *pte;
5179 		spinlock_t *ptl = NULL;
5180 		int absent;
5181 		struct page *page;
5182 
5183 		/*
5184 		 * If we have a pending SIGKILL, don't keep faulting pages and
5185 		 * potentially allocating memory.
5186 		 */
5187 		if (fatal_signal_pending(current)) {
5188 			remainder = 0;
5189 			break;
5190 		}
5191 
5192 		/*
5193 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5194 		 * each hugepage.  We have to make sure we get the
5195 		 * first, for the page indexing below to work.
5196 		 *
5197 		 * Note that page table lock is not held when pte is null.
5198 		 */
5199 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5200 				      huge_page_size(h));
5201 		if (pte)
5202 			ptl = huge_pte_lock(h, mm, pte);
5203 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5204 
5205 		/*
5206 		 * When coredumping, it suits get_dump_page if we just return
5207 		 * an error where there's an empty slot with no huge pagecache
5208 		 * to back it.  This way, we avoid allocating a hugepage, and
5209 		 * the sparse dumpfile avoids allocating disk blocks, but its
5210 		 * huge holes still show up with zeroes where they need to be.
5211 		 */
5212 		if (absent && (flags & FOLL_DUMP) &&
5213 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5214 			if (pte)
5215 				spin_unlock(ptl);
5216 			remainder = 0;
5217 			break;
5218 		}
5219 
5220 		/*
5221 		 * We need call hugetlb_fault for both hugepages under migration
5222 		 * (in which case hugetlb_fault waits for the migration,) and
5223 		 * hwpoisoned hugepages (in which case we need to prevent the
5224 		 * caller from accessing to them.) In order to do this, we use
5225 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5226 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5227 		 * both cases, and because we can't follow correct pages
5228 		 * directly from any kind of swap entries.
5229 		 */
5230 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5231 		    ((flags & FOLL_WRITE) &&
5232 		      !huge_pte_write(huge_ptep_get(pte)))) {
5233 			vm_fault_t ret;
5234 			unsigned int fault_flags = 0;
5235 
5236 			if (pte)
5237 				spin_unlock(ptl);
5238 			if (flags & FOLL_WRITE)
5239 				fault_flags |= FAULT_FLAG_WRITE;
5240 			if (locked)
5241 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5242 					FAULT_FLAG_KILLABLE;
5243 			if (flags & FOLL_NOWAIT)
5244 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5245 					FAULT_FLAG_RETRY_NOWAIT;
5246 			if (flags & FOLL_TRIED) {
5247 				/*
5248 				 * Note: FAULT_FLAG_ALLOW_RETRY and
5249 				 * FAULT_FLAG_TRIED can co-exist
5250 				 */
5251 				fault_flags |= FAULT_FLAG_TRIED;
5252 			}
5253 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5254 			if (ret & VM_FAULT_ERROR) {
5255 				err = vm_fault_to_errno(ret, flags);
5256 				remainder = 0;
5257 				break;
5258 			}
5259 			if (ret & VM_FAULT_RETRY) {
5260 				if (locked &&
5261 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5262 					*locked = 0;
5263 				*nr_pages = 0;
5264 				/*
5265 				 * VM_FAULT_RETRY must not return an
5266 				 * error, it will return zero
5267 				 * instead.
5268 				 *
5269 				 * No need to update "position" as the
5270 				 * caller will not check it after
5271 				 * *nr_pages is set to 0.
5272 				 */
5273 				return i;
5274 			}
5275 			continue;
5276 		}
5277 
5278 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5279 		page = pte_page(huge_ptep_get(pte));
5280 
5281 		/*
5282 		 * If subpage information not requested, update counters
5283 		 * and skip the same_page loop below.
5284 		 */
5285 		if (!pages && !vmas && !pfn_offset &&
5286 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5287 		    (remainder >= pages_per_huge_page(h))) {
5288 			vaddr += huge_page_size(h);
5289 			remainder -= pages_per_huge_page(h);
5290 			i += pages_per_huge_page(h);
5291 			spin_unlock(ptl);
5292 			continue;
5293 		}
5294 
5295 		refs = min3(pages_per_huge_page(h) - pfn_offset,
5296 			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5297 
5298 		if (pages || vmas)
5299 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
5300 					     vma, refs,
5301 					     likely(pages) ? pages + i : NULL,
5302 					     vmas ? vmas + i : NULL);
5303 
5304 		if (pages) {
5305 			/*
5306 			 * try_grab_compound_head() should always succeed here,
5307 			 * because: a) we hold the ptl lock, and b) we've just
5308 			 * checked that the huge page is present in the page
5309 			 * tables. If the huge page is present, then the tail
5310 			 * pages must also be present. The ptl prevents the
5311 			 * head page and tail pages from being rearranged in
5312 			 * any way. So this page must be available at this
5313 			 * point, unless the page refcount overflowed:
5314 			 */
5315 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5316 								 refs,
5317 								 flags))) {
5318 				spin_unlock(ptl);
5319 				remainder = 0;
5320 				err = -ENOMEM;
5321 				break;
5322 			}
5323 		}
5324 
5325 		vaddr += (refs << PAGE_SHIFT);
5326 		remainder -= refs;
5327 		i += refs;
5328 
5329 		spin_unlock(ptl);
5330 	}
5331 	*nr_pages = remainder;
5332 	/*
5333 	 * setting position is actually required only if remainder is
5334 	 * not zero but it's faster not to add a "if (remainder)"
5335 	 * branch.
5336 	 */
5337 	*position = vaddr;
5338 
5339 	return i ? i : err;
5340 }
5341 
5342 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5343 		unsigned long address, unsigned long end, pgprot_t newprot)
5344 {
5345 	struct mm_struct *mm = vma->vm_mm;
5346 	unsigned long start = address;
5347 	pte_t *ptep;
5348 	pte_t pte;
5349 	struct hstate *h = hstate_vma(vma);
5350 	unsigned long pages = 0;
5351 	bool shared_pmd = false;
5352 	struct mmu_notifier_range range;
5353 
5354 	/*
5355 	 * In the case of shared PMDs, the area to flush could be beyond
5356 	 * start/end.  Set range.start/range.end to cover the maximum possible
5357 	 * range if PMD sharing is possible.
5358 	 */
5359 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5360 				0, vma, mm, start, end);
5361 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5362 
5363 	BUG_ON(address >= end);
5364 	flush_cache_range(vma, range.start, range.end);
5365 
5366 	mmu_notifier_invalidate_range_start(&range);
5367 	i_mmap_lock_write(vma->vm_file->f_mapping);
5368 	for (; address < end; address += huge_page_size(h)) {
5369 		spinlock_t *ptl;
5370 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5371 		if (!ptep)
5372 			continue;
5373 		ptl = huge_pte_lock(h, mm, ptep);
5374 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5375 			pages++;
5376 			spin_unlock(ptl);
5377 			shared_pmd = true;
5378 			continue;
5379 		}
5380 		pte = huge_ptep_get(ptep);
5381 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5382 			spin_unlock(ptl);
5383 			continue;
5384 		}
5385 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5386 			swp_entry_t entry = pte_to_swp_entry(pte);
5387 
5388 			if (is_write_migration_entry(entry)) {
5389 				pte_t newpte;
5390 
5391 				make_migration_entry_read(&entry);
5392 				newpte = swp_entry_to_pte(entry);
5393 				set_huge_swap_pte_at(mm, address, ptep,
5394 						     newpte, huge_page_size(h));
5395 				pages++;
5396 			}
5397 			spin_unlock(ptl);
5398 			continue;
5399 		}
5400 		if (!huge_pte_none(pte)) {
5401 			pte_t old_pte;
5402 
5403 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5404 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5405 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5406 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5407 			pages++;
5408 		}
5409 		spin_unlock(ptl);
5410 	}
5411 	/*
5412 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5413 	 * may have cleared our pud entry and done put_page on the page table:
5414 	 * once we release i_mmap_rwsem, another task can do the final put_page
5415 	 * and that page table be reused and filled with junk.  If we actually
5416 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5417 	 */
5418 	if (shared_pmd)
5419 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5420 	else
5421 		flush_hugetlb_tlb_range(vma, start, end);
5422 	/*
5423 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5424 	 * page table protection not changing it to point to a new page.
5425 	 *
5426 	 * See Documentation/vm/mmu_notifier.rst
5427 	 */
5428 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5429 	mmu_notifier_invalidate_range_end(&range);
5430 
5431 	return pages << h->order;
5432 }
5433 
5434 /* Return true if reservation was successful, false otherwise.  */
5435 bool hugetlb_reserve_pages(struct inode *inode,
5436 					long from, long to,
5437 					struct vm_area_struct *vma,
5438 					vm_flags_t vm_flags)
5439 {
5440 	long chg, add = -1;
5441 	struct hstate *h = hstate_inode(inode);
5442 	struct hugepage_subpool *spool = subpool_inode(inode);
5443 	struct resv_map *resv_map;
5444 	struct hugetlb_cgroup *h_cg = NULL;
5445 	long gbl_reserve, regions_needed = 0;
5446 
5447 	/* This should never happen */
5448 	if (from > to) {
5449 		VM_WARN(1, "%s called with a negative range\n", __func__);
5450 		return false;
5451 	}
5452 
5453 	/*
5454 	 * Only apply hugepage reservation if asked. At fault time, an
5455 	 * attempt will be made for VM_NORESERVE to allocate a page
5456 	 * without using reserves
5457 	 */
5458 	if (vm_flags & VM_NORESERVE)
5459 		return true;
5460 
5461 	/*
5462 	 * Shared mappings base their reservation on the number of pages that
5463 	 * are already allocated on behalf of the file. Private mappings need
5464 	 * to reserve the full area even if read-only as mprotect() may be
5465 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5466 	 */
5467 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5468 		/*
5469 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5470 		 * called for inodes for which resv_maps were created (see
5471 		 * hugetlbfs_get_inode).
5472 		 */
5473 		resv_map = inode_resv_map(inode);
5474 
5475 		chg = region_chg(resv_map, from, to, &regions_needed);
5476 
5477 	} else {
5478 		/* Private mapping. */
5479 		resv_map = resv_map_alloc();
5480 		if (!resv_map)
5481 			return false;
5482 
5483 		chg = to - from;
5484 
5485 		set_vma_resv_map(vma, resv_map);
5486 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5487 	}
5488 
5489 	if (chg < 0)
5490 		goto out_err;
5491 
5492 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5493 				chg * pages_per_huge_page(h), &h_cg) < 0)
5494 		goto out_err;
5495 
5496 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5497 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5498 		 * of the resv_map.
5499 		 */
5500 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5501 	}
5502 
5503 	/*
5504 	 * There must be enough pages in the subpool for the mapping. If
5505 	 * the subpool has a minimum size, there may be some global
5506 	 * reservations already in place (gbl_reserve).
5507 	 */
5508 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5509 	if (gbl_reserve < 0)
5510 		goto out_uncharge_cgroup;
5511 
5512 	/*
5513 	 * Check enough hugepages are available for the reservation.
5514 	 * Hand the pages back to the subpool if there are not
5515 	 */
5516 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5517 		goto out_put_pages;
5518 
5519 	/*
5520 	 * Account for the reservations made. Shared mappings record regions
5521 	 * that have reservations as they are shared by multiple VMAs.
5522 	 * When the last VMA disappears, the region map says how much
5523 	 * the reservation was and the page cache tells how much of
5524 	 * the reservation was consumed. Private mappings are per-VMA and
5525 	 * only the consumed reservations are tracked. When the VMA
5526 	 * disappears, the original reservation is the VMA size and the
5527 	 * consumed reservations are stored in the map. Hence, nothing
5528 	 * else has to be done for private mappings here
5529 	 */
5530 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5531 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5532 
5533 		if (unlikely(add < 0)) {
5534 			hugetlb_acct_memory(h, -gbl_reserve);
5535 			goto out_put_pages;
5536 		} else if (unlikely(chg > add)) {
5537 			/*
5538 			 * pages in this range were added to the reserve
5539 			 * map between region_chg and region_add.  This
5540 			 * indicates a race with alloc_huge_page.  Adjust
5541 			 * the subpool and reserve counts modified above
5542 			 * based on the difference.
5543 			 */
5544 			long rsv_adjust;
5545 
5546 			/*
5547 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5548 			 * reference to h_cg->css. See comment below for detail.
5549 			 */
5550 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5551 				hstate_index(h),
5552 				(chg - add) * pages_per_huge_page(h), h_cg);
5553 
5554 			rsv_adjust = hugepage_subpool_put_pages(spool,
5555 								chg - add);
5556 			hugetlb_acct_memory(h, -rsv_adjust);
5557 		} else if (h_cg) {
5558 			/*
5559 			 * The file_regions will hold their own reference to
5560 			 * h_cg->css. So we should release the reference held
5561 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5562 			 * done.
5563 			 */
5564 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5565 		}
5566 	}
5567 	return true;
5568 
5569 out_put_pages:
5570 	/* put back original number of pages, chg */
5571 	(void)hugepage_subpool_put_pages(spool, chg);
5572 out_uncharge_cgroup:
5573 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5574 					    chg * pages_per_huge_page(h), h_cg);
5575 out_err:
5576 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5577 		/* Only call region_abort if the region_chg succeeded but the
5578 		 * region_add failed or didn't run.
5579 		 */
5580 		if (chg >= 0 && add < 0)
5581 			region_abort(resv_map, from, to, regions_needed);
5582 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5583 		kref_put(&resv_map->refs, resv_map_release);
5584 	return false;
5585 }
5586 
5587 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5588 								long freed)
5589 {
5590 	struct hstate *h = hstate_inode(inode);
5591 	struct resv_map *resv_map = inode_resv_map(inode);
5592 	long chg = 0;
5593 	struct hugepage_subpool *spool = subpool_inode(inode);
5594 	long gbl_reserve;
5595 
5596 	/*
5597 	 * Since this routine can be called in the evict inode path for all
5598 	 * hugetlbfs inodes, resv_map could be NULL.
5599 	 */
5600 	if (resv_map) {
5601 		chg = region_del(resv_map, start, end);
5602 		/*
5603 		 * region_del() can fail in the rare case where a region
5604 		 * must be split and another region descriptor can not be
5605 		 * allocated.  If end == LONG_MAX, it will not fail.
5606 		 */
5607 		if (chg < 0)
5608 			return chg;
5609 	}
5610 
5611 	spin_lock(&inode->i_lock);
5612 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5613 	spin_unlock(&inode->i_lock);
5614 
5615 	/*
5616 	 * If the subpool has a minimum size, the number of global
5617 	 * reservations to be released may be adjusted.
5618 	 *
5619 	 * Note that !resv_map implies freed == 0. So (chg - freed)
5620 	 * won't go negative.
5621 	 */
5622 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5623 	hugetlb_acct_memory(h, -gbl_reserve);
5624 
5625 	return 0;
5626 }
5627 
5628 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5629 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5630 				struct vm_area_struct *vma,
5631 				unsigned long addr, pgoff_t idx)
5632 {
5633 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5634 				svma->vm_start;
5635 	unsigned long sbase = saddr & PUD_MASK;
5636 	unsigned long s_end = sbase + PUD_SIZE;
5637 
5638 	/* Allow segments to share if only one is marked locked */
5639 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5640 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5641 
5642 	/*
5643 	 * match the virtual addresses, permission and the alignment of the
5644 	 * page table page.
5645 	 */
5646 	if (pmd_index(addr) != pmd_index(saddr) ||
5647 	    vm_flags != svm_flags ||
5648 	    !range_in_vma(svma, sbase, s_end))
5649 		return 0;
5650 
5651 	return saddr;
5652 }
5653 
5654 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5655 {
5656 	unsigned long base = addr & PUD_MASK;
5657 	unsigned long end = base + PUD_SIZE;
5658 
5659 	/*
5660 	 * check on proper vm_flags and page table alignment
5661 	 */
5662 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5663 		return true;
5664 	return false;
5665 }
5666 
5667 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5668 {
5669 #ifdef CONFIG_USERFAULTFD
5670 	if (uffd_disable_huge_pmd_share(vma))
5671 		return false;
5672 #endif
5673 	return vma_shareable(vma, addr);
5674 }
5675 
5676 /*
5677  * Determine if start,end range within vma could be mapped by shared pmd.
5678  * If yes, adjust start and end to cover range associated with possible
5679  * shared pmd mappings.
5680  */
5681 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5682 				unsigned long *start, unsigned long *end)
5683 {
5684 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5685 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5686 
5687 	/*
5688 	 * vma needs to span at least one aligned PUD size, and the range
5689 	 * must be at least partially within in.
5690 	 */
5691 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5692 		(*end <= v_start) || (*start >= v_end))
5693 		return;
5694 
5695 	/* Extend the range to be PUD aligned for a worst case scenario */
5696 	if (*start > v_start)
5697 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5698 
5699 	if (*end < v_end)
5700 		*end = ALIGN(*end, PUD_SIZE);
5701 }
5702 
5703 /*
5704  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5705  * and returns the corresponding pte. While this is not necessary for the
5706  * !shared pmd case because we can allocate the pmd later as well, it makes the
5707  * code much cleaner.
5708  *
5709  * This routine must be called with i_mmap_rwsem held in at least read mode if
5710  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5711  * table entries associated with the address space.  This is important as we
5712  * are setting up sharing based on existing page table entries (mappings).
5713  *
5714  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5715  * huge_pte_alloc know that sharing is not possible and do not take
5716  * i_mmap_rwsem as a performance optimization.  This is handled by the
5717  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5718  * only required for subsequent processing.
5719  */
5720 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5721 		      unsigned long addr, pud_t *pud)
5722 {
5723 	struct address_space *mapping = vma->vm_file->f_mapping;
5724 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5725 			vma->vm_pgoff;
5726 	struct vm_area_struct *svma;
5727 	unsigned long saddr;
5728 	pte_t *spte = NULL;
5729 	pte_t *pte;
5730 	spinlock_t *ptl;
5731 
5732 	i_mmap_assert_locked(mapping);
5733 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5734 		if (svma == vma)
5735 			continue;
5736 
5737 		saddr = page_table_shareable(svma, vma, addr, idx);
5738 		if (saddr) {
5739 			spte = huge_pte_offset(svma->vm_mm, saddr,
5740 					       vma_mmu_pagesize(svma));
5741 			if (spte) {
5742 				get_page(virt_to_page(spte));
5743 				break;
5744 			}
5745 		}
5746 	}
5747 
5748 	if (!spte)
5749 		goto out;
5750 
5751 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5752 	if (pud_none(*pud)) {
5753 		pud_populate(mm, pud,
5754 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5755 		mm_inc_nr_pmds(mm);
5756 	} else {
5757 		put_page(virt_to_page(spte));
5758 	}
5759 	spin_unlock(ptl);
5760 out:
5761 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5762 	return pte;
5763 }
5764 
5765 /*
5766  * unmap huge page backed by shared pte.
5767  *
5768  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5769  * indicated by page_count > 1, unmap is achieved by clearing pud and
5770  * decrementing the ref count. If count == 1, the pte page is not shared.
5771  *
5772  * Called with page table lock held and i_mmap_rwsem held in write mode.
5773  *
5774  * returns: 1 successfully unmapped a shared pte page
5775  *	    0 the underlying pte page is not shared, or it is the last user
5776  */
5777 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5778 					unsigned long *addr, pte_t *ptep)
5779 {
5780 	pgd_t *pgd = pgd_offset(mm, *addr);
5781 	p4d_t *p4d = p4d_offset(pgd, *addr);
5782 	pud_t *pud = pud_offset(p4d, *addr);
5783 
5784 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5785 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5786 	if (page_count(virt_to_page(ptep)) == 1)
5787 		return 0;
5788 
5789 	pud_clear(pud);
5790 	put_page(virt_to_page(ptep));
5791 	mm_dec_nr_pmds(mm);
5792 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5793 	return 1;
5794 }
5795 
5796 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5797 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5798 		      unsigned long addr, pud_t *pud)
5799 {
5800 	return NULL;
5801 }
5802 
5803 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5804 				unsigned long *addr, pte_t *ptep)
5805 {
5806 	return 0;
5807 }
5808 
5809 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5810 				unsigned long *start, unsigned long *end)
5811 {
5812 }
5813 
5814 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5815 {
5816 	return false;
5817 }
5818 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5819 
5820 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5821 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5822 			unsigned long addr, unsigned long sz)
5823 {
5824 	pgd_t *pgd;
5825 	p4d_t *p4d;
5826 	pud_t *pud;
5827 	pte_t *pte = NULL;
5828 
5829 	pgd = pgd_offset(mm, addr);
5830 	p4d = p4d_alloc(mm, pgd, addr);
5831 	if (!p4d)
5832 		return NULL;
5833 	pud = pud_alloc(mm, p4d, addr);
5834 	if (pud) {
5835 		if (sz == PUD_SIZE) {
5836 			pte = (pte_t *)pud;
5837 		} else {
5838 			BUG_ON(sz != PMD_SIZE);
5839 			if (want_pmd_share(vma, addr) && pud_none(*pud))
5840 				pte = huge_pmd_share(mm, vma, addr, pud);
5841 			else
5842 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5843 		}
5844 	}
5845 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5846 
5847 	return pte;
5848 }
5849 
5850 /*
5851  * huge_pte_offset() - Walk the page table to resolve the hugepage
5852  * entry at address @addr
5853  *
5854  * Return: Pointer to page table entry (PUD or PMD) for
5855  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5856  * size @sz doesn't match the hugepage size at this level of the page
5857  * table.
5858  */
5859 pte_t *huge_pte_offset(struct mm_struct *mm,
5860 		       unsigned long addr, unsigned long sz)
5861 {
5862 	pgd_t *pgd;
5863 	p4d_t *p4d;
5864 	pud_t *pud;
5865 	pmd_t *pmd;
5866 
5867 	pgd = pgd_offset(mm, addr);
5868 	if (!pgd_present(*pgd))
5869 		return NULL;
5870 	p4d = p4d_offset(pgd, addr);
5871 	if (!p4d_present(*p4d))
5872 		return NULL;
5873 
5874 	pud = pud_offset(p4d, addr);
5875 	if (sz == PUD_SIZE)
5876 		/* must be pud huge, non-present or none */
5877 		return (pte_t *)pud;
5878 	if (!pud_present(*pud))
5879 		return NULL;
5880 	/* must have a valid entry and size to go further */
5881 
5882 	pmd = pmd_offset(pud, addr);
5883 	/* must be pmd huge, non-present or none */
5884 	return (pte_t *)pmd;
5885 }
5886 
5887 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5888 
5889 /*
5890  * These functions are overwritable if your architecture needs its own
5891  * behavior.
5892  */
5893 struct page * __weak
5894 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5895 			      int write)
5896 {
5897 	return ERR_PTR(-EINVAL);
5898 }
5899 
5900 struct page * __weak
5901 follow_huge_pd(struct vm_area_struct *vma,
5902 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5903 {
5904 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5905 	return NULL;
5906 }
5907 
5908 struct page * __weak
5909 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5910 		pmd_t *pmd, int flags)
5911 {
5912 	struct page *page = NULL;
5913 	spinlock_t *ptl;
5914 	pte_t pte;
5915 
5916 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5917 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5918 			 (FOLL_PIN | FOLL_GET)))
5919 		return NULL;
5920 
5921 retry:
5922 	ptl = pmd_lockptr(mm, pmd);
5923 	spin_lock(ptl);
5924 	/*
5925 	 * make sure that the address range covered by this pmd is not
5926 	 * unmapped from other threads.
5927 	 */
5928 	if (!pmd_huge(*pmd))
5929 		goto out;
5930 	pte = huge_ptep_get((pte_t *)pmd);
5931 	if (pte_present(pte)) {
5932 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5933 		/*
5934 		 * try_grab_page() should always succeed here, because: a) we
5935 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5936 		 * huge pmd (head) page is present in the page tables. The ptl
5937 		 * prevents the head page and tail pages from being rearranged
5938 		 * in any way. So this page must be available at this point,
5939 		 * unless the page refcount overflowed:
5940 		 */
5941 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5942 			page = NULL;
5943 			goto out;
5944 		}
5945 	} else {
5946 		if (is_hugetlb_entry_migration(pte)) {
5947 			spin_unlock(ptl);
5948 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5949 			goto retry;
5950 		}
5951 		/*
5952 		 * hwpoisoned entry is treated as no_page_table in
5953 		 * follow_page_mask().
5954 		 */
5955 	}
5956 out:
5957 	spin_unlock(ptl);
5958 	return page;
5959 }
5960 
5961 struct page * __weak
5962 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5963 		pud_t *pud, int flags)
5964 {
5965 	if (flags & (FOLL_GET | FOLL_PIN))
5966 		return NULL;
5967 
5968 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5969 }
5970 
5971 struct page * __weak
5972 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5973 {
5974 	if (flags & (FOLL_GET | FOLL_PIN))
5975 		return NULL;
5976 
5977 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5978 }
5979 
5980 bool isolate_huge_page(struct page *page, struct list_head *list)
5981 {
5982 	bool ret = true;
5983 
5984 	spin_lock_irq(&hugetlb_lock);
5985 	if (!PageHeadHuge(page) ||
5986 	    !HPageMigratable(page) ||
5987 	    !get_page_unless_zero(page)) {
5988 		ret = false;
5989 		goto unlock;
5990 	}
5991 	ClearHPageMigratable(page);
5992 	list_move_tail(&page->lru, list);
5993 unlock:
5994 	spin_unlock_irq(&hugetlb_lock);
5995 	return ret;
5996 }
5997 
5998 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
5999 {
6000 	int ret = 0;
6001 
6002 	*hugetlb = false;
6003 	spin_lock_irq(&hugetlb_lock);
6004 	if (PageHeadHuge(page)) {
6005 		*hugetlb = true;
6006 		if (HPageFreed(page) || HPageMigratable(page))
6007 			ret = get_page_unless_zero(page);
6008 		else
6009 			ret = -EBUSY;
6010 	}
6011 	spin_unlock_irq(&hugetlb_lock);
6012 	return ret;
6013 }
6014 
6015 void putback_active_hugepage(struct page *page)
6016 {
6017 	spin_lock_irq(&hugetlb_lock);
6018 	SetHPageMigratable(page);
6019 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6020 	spin_unlock_irq(&hugetlb_lock);
6021 	put_page(page);
6022 }
6023 
6024 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6025 {
6026 	struct hstate *h = page_hstate(oldpage);
6027 
6028 	hugetlb_cgroup_migrate(oldpage, newpage);
6029 	set_page_owner_migrate_reason(newpage, reason);
6030 
6031 	/*
6032 	 * transfer temporary state of the new huge page. This is
6033 	 * reverse to other transitions because the newpage is going to
6034 	 * be final while the old one will be freed so it takes over
6035 	 * the temporary status.
6036 	 *
6037 	 * Also note that we have to transfer the per-node surplus state
6038 	 * here as well otherwise the global surplus count will not match
6039 	 * the per-node's.
6040 	 */
6041 	if (HPageTemporary(newpage)) {
6042 		int old_nid = page_to_nid(oldpage);
6043 		int new_nid = page_to_nid(newpage);
6044 
6045 		SetHPageTemporary(oldpage);
6046 		ClearHPageTemporary(newpage);
6047 
6048 		/*
6049 		 * There is no need to transfer the per-node surplus state
6050 		 * when we do not cross the node.
6051 		 */
6052 		if (new_nid == old_nid)
6053 			return;
6054 		spin_lock_irq(&hugetlb_lock);
6055 		if (h->surplus_huge_pages_node[old_nid]) {
6056 			h->surplus_huge_pages_node[old_nid]--;
6057 			h->surplus_huge_pages_node[new_nid]++;
6058 		}
6059 		spin_unlock_irq(&hugetlb_lock);
6060 	}
6061 }
6062 
6063 /*
6064  * This function will unconditionally remove all the shared pmd pgtable entries
6065  * within the specific vma for a hugetlbfs memory range.
6066  */
6067 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6068 {
6069 	struct hstate *h = hstate_vma(vma);
6070 	unsigned long sz = huge_page_size(h);
6071 	struct mm_struct *mm = vma->vm_mm;
6072 	struct mmu_notifier_range range;
6073 	unsigned long address, start, end;
6074 	spinlock_t *ptl;
6075 	pte_t *ptep;
6076 
6077 	if (!(vma->vm_flags & VM_MAYSHARE))
6078 		return;
6079 
6080 	start = ALIGN(vma->vm_start, PUD_SIZE);
6081 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6082 
6083 	if (start >= end)
6084 		return;
6085 
6086 	/*
6087 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6088 	 * we have already done the PUD_SIZE alignment.
6089 	 */
6090 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6091 				start, end);
6092 	mmu_notifier_invalidate_range_start(&range);
6093 	i_mmap_lock_write(vma->vm_file->f_mapping);
6094 	for (address = start; address < end; address += PUD_SIZE) {
6095 		unsigned long tmp = address;
6096 
6097 		ptep = huge_pte_offset(mm, address, sz);
6098 		if (!ptep)
6099 			continue;
6100 		ptl = huge_pte_lock(h, mm, ptep);
6101 		/* We don't want 'address' to be changed */
6102 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6103 		spin_unlock(ptl);
6104 	}
6105 	flush_hugetlb_tlb_range(vma, start, end);
6106 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6107 	/*
6108 	 * No need to call mmu_notifier_invalidate_range(), see
6109 	 * Documentation/vm/mmu_notifier.rst.
6110 	 */
6111 	mmu_notifier_invalidate_range_end(&range);
6112 }
6113 
6114 #ifdef CONFIG_CMA
6115 static bool cma_reserve_called __initdata;
6116 
6117 static int __init cmdline_parse_hugetlb_cma(char *p)
6118 {
6119 	hugetlb_cma_size = memparse(p, &p);
6120 	return 0;
6121 }
6122 
6123 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6124 
6125 void __init hugetlb_cma_reserve(int order)
6126 {
6127 	unsigned long size, reserved, per_node;
6128 	int nid;
6129 
6130 	cma_reserve_called = true;
6131 
6132 	if (!hugetlb_cma_size)
6133 		return;
6134 
6135 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6136 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6137 			(PAGE_SIZE << order) / SZ_1M);
6138 		return;
6139 	}
6140 
6141 	/*
6142 	 * If 3 GB area is requested on a machine with 4 numa nodes,
6143 	 * let's allocate 1 GB on first three nodes and ignore the last one.
6144 	 */
6145 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6146 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6147 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6148 
6149 	reserved = 0;
6150 	for_each_node_state(nid, N_ONLINE) {
6151 		int res;
6152 		char name[CMA_MAX_NAME];
6153 
6154 		size = min(per_node, hugetlb_cma_size - reserved);
6155 		size = round_up(size, PAGE_SIZE << order);
6156 
6157 		snprintf(name, sizeof(name), "hugetlb%d", nid);
6158 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6159 						 0, false, name,
6160 						 &hugetlb_cma[nid], nid);
6161 		if (res) {
6162 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6163 				res, nid);
6164 			continue;
6165 		}
6166 
6167 		reserved += size;
6168 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6169 			size / SZ_1M, nid);
6170 
6171 		if (reserved >= hugetlb_cma_size)
6172 			break;
6173 	}
6174 }
6175 
6176 void __init hugetlb_cma_check(void)
6177 {
6178 	if (!hugetlb_cma_size || cma_reserve_called)
6179 		return;
6180 
6181 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6182 }
6183 
6184 #endif /* CONFIG_CMA */
6185