xref: /openbmc/linux/mm/hugetlb.c (revision ad2fa3717b74994a22519dbe045757135db00dbb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44 #include "hugetlb_vmemmap.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87 	if (spool->count)
88 		return false;
89 	if (spool->max_hpages != -1)
90 		return spool->used_hpages == 0;
91 	if (spool->min_hpages != -1)
92 		return spool->rsv_hpages == spool->min_hpages;
93 
94 	return true;
95 }
96 
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98 						unsigned long irq_flags)
99 {
100 	spin_unlock_irqrestore(&spool->lock, irq_flags);
101 
102 	/* If no pages are used, and no other handles to the subpool
103 	 * remain, give up any reservations based on minimum size and
104 	 * free the subpool */
105 	if (subpool_is_free(spool)) {
106 		if (spool->min_hpages != -1)
107 			hugetlb_acct_memory(spool->hstate,
108 						-spool->min_hpages);
109 		kfree(spool);
110 	}
111 }
112 
113 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114 						long min_hpages)
115 {
116 	struct hugepage_subpool *spool;
117 
118 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
119 	if (!spool)
120 		return NULL;
121 
122 	spin_lock_init(&spool->lock);
123 	spool->count = 1;
124 	spool->max_hpages = max_hpages;
125 	spool->hstate = h;
126 	spool->min_hpages = min_hpages;
127 
128 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129 		kfree(spool);
130 		return NULL;
131 	}
132 	spool->rsv_hpages = min_hpages;
133 
134 	return spool;
135 }
136 
137 void hugepage_put_subpool(struct hugepage_subpool *spool)
138 {
139 	unsigned long flags;
140 
141 	spin_lock_irqsave(&spool->lock, flags);
142 	BUG_ON(!spool->count);
143 	spool->count--;
144 	unlock_or_release_subpool(spool, flags);
145 }
146 
147 /*
148  * Subpool accounting for allocating and reserving pages.
149  * Return -ENOMEM if there are not enough resources to satisfy the
150  * request.  Otherwise, return the number of pages by which the
151  * global pools must be adjusted (upward).  The returned value may
152  * only be different than the passed value (delta) in the case where
153  * a subpool minimum size must be maintained.
154  */
155 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
156 				      long delta)
157 {
158 	long ret = delta;
159 
160 	if (!spool)
161 		return ret;
162 
163 	spin_lock_irq(&spool->lock);
164 
165 	if (spool->max_hpages != -1) {		/* maximum size accounting */
166 		if ((spool->used_hpages + delta) <= spool->max_hpages)
167 			spool->used_hpages += delta;
168 		else {
169 			ret = -ENOMEM;
170 			goto unlock_ret;
171 		}
172 	}
173 
174 	/* minimum size accounting */
175 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
176 		if (delta > spool->rsv_hpages) {
177 			/*
178 			 * Asking for more reserves than those already taken on
179 			 * behalf of subpool.  Return difference.
180 			 */
181 			ret = delta - spool->rsv_hpages;
182 			spool->rsv_hpages = 0;
183 		} else {
184 			ret = 0;	/* reserves already accounted for */
185 			spool->rsv_hpages -= delta;
186 		}
187 	}
188 
189 unlock_ret:
190 	spin_unlock_irq(&spool->lock);
191 	return ret;
192 }
193 
194 /*
195  * Subpool accounting for freeing and unreserving pages.
196  * Return the number of global page reservations that must be dropped.
197  * The return value may only be different than the passed value (delta)
198  * in the case where a subpool minimum size must be maintained.
199  */
200 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
201 				       long delta)
202 {
203 	long ret = delta;
204 	unsigned long flags;
205 
206 	if (!spool)
207 		return delta;
208 
209 	spin_lock_irqsave(&spool->lock, flags);
210 
211 	if (spool->max_hpages != -1)		/* maximum size accounting */
212 		spool->used_hpages -= delta;
213 
214 	 /* minimum size accounting */
215 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216 		if (spool->rsv_hpages + delta <= spool->min_hpages)
217 			ret = 0;
218 		else
219 			ret = spool->rsv_hpages + delta - spool->min_hpages;
220 
221 		spool->rsv_hpages += delta;
222 		if (spool->rsv_hpages > spool->min_hpages)
223 			spool->rsv_hpages = spool->min_hpages;
224 	}
225 
226 	/*
227 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
228 	 * quota reference, free it now.
229 	 */
230 	unlock_or_release_subpool(spool, flags);
231 
232 	return ret;
233 }
234 
235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237 	return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239 
240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242 	return subpool_inode(file_inode(vma->vm_file));
243 }
244 
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246  * it for use.
247  */
248 static struct file_region *
249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251 	struct file_region *nrg = NULL;
252 
253 	VM_BUG_ON(resv->region_cache_count <= 0);
254 
255 	resv->region_cache_count--;
256 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257 	list_del(&nrg->link);
258 
259 	nrg->from = from;
260 	nrg->to = to;
261 
262 	return nrg;
263 }
264 
265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266 					      struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269 	nrg->reservation_counter = rg->reservation_counter;
270 	nrg->css = rg->css;
271 	if (rg->css)
272 		css_get(rg->css);
273 #endif
274 }
275 
276 /* Helper that records hugetlb_cgroup uncharge info. */
277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278 						struct hstate *h,
279 						struct resv_map *resv,
280 						struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 	if (h_cg) {
284 		nrg->reservation_counter =
285 			&h_cg->rsvd_hugepage[hstate_index(h)];
286 		nrg->css = &h_cg->css;
287 		/*
288 		 * The caller will hold exactly one h_cg->css reference for the
289 		 * whole contiguous reservation region. But this area might be
290 		 * scattered when there are already some file_regions reside in
291 		 * it. As a result, many file_regions may share only one css
292 		 * reference. In order to ensure that one file_region must hold
293 		 * exactly one h_cg->css reference, we should do css_get for
294 		 * each file_region and leave the reference held by caller
295 		 * untouched.
296 		 */
297 		css_get(&h_cg->css);
298 		if (!resv->pages_per_hpage)
299 			resv->pages_per_hpage = pages_per_huge_page(h);
300 		/* pages_per_hpage should be the same for all entries in
301 		 * a resv_map.
302 		 */
303 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 	} else {
305 		nrg->reservation_counter = NULL;
306 		nrg->css = NULL;
307 	}
308 #endif
309 }
310 
311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314 	if (rg->css)
315 		css_put(rg->css);
316 #endif
317 }
318 
319 static bool has_same_uncharge_info(struct file_region *rg,
320 				   struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323 	return rg && org &&
324 	       rg->reservation_counter == org->reservation_counter &&
325 	       rg->css == org->css;
326 
327 #else
328 	return true;
329 #endif
330 }
331 
332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334 	struct file_region *nrg = NULL, *prg = NULL;
335 
336 	prg = list_prev_entry(rg, link);
337 	if (&prg->link != &resv->regions && prg->to == rg->from &&
338 	    has_same_uncharge_info(prg, rg)) {
339 		prg->to = rg->to;
340 
341 		list_del(&rg->link);
342 		put_uncharge_info(rg);
343 		kfree(rg);
344 
345 		rg = prg;
346 	}
347 
348 	nrg = list_next_entry(rg, link);
349 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350 	    has_same_uncharge_info(nrg, rg)) {
351 		nrg->from = rg->from;
352 
353 		list_del(&rg->link);
354 		put_uncharge_info(rg);
355 		kfree(rg);
356 	}
357 }
358 
359 static inline long
360 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
362 		     long *regions_needed)
363 {
364 	struct file_region *nrg;
365 
366 	if (!regions_needed) {
367 		nrg = get_file_region_entry_from_cache(map, from, to);
368 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369 		list_add(&nrg->link, rg->link.prev);
370 		coalesce_file_region(map, nrg);
371 	} else
372 		*regions_needed += 1;
373 
374 	return to - from;
375 }
376 
377 /*
378  * Must be called with resv->lock held.
379  *
380  * Calling this with regions_needed != NULL will count the number of pages
381  * to be added but will not modify the linked list. And regions_needed will
382  * indicate the number of file_regions needed in the cache to carry out to add
383  * the regions for this range.
384  */
385 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
386 				     struct hugetlb_cgroup *h_cg,
387 				     struct hstate *h, long *regions_needed)
388 {
389 	long add = 0;
390 	struct list_head *head = &resv->regions;
391 	long last_accounted_offset = f;
392 	struct file_region *rg = NULL, *trg = NULL;
393 
394 	if (regions_needed)
395 		*regions_needed = 0;
396 
397 	/* In this loop, we essentially handle an entry for the range
398 	 * [last_accounted_offset, rg->from), at every iteration, with some
399 	 * bounds checking.
400 	 */
401 	list_for_each_entry_safe(rg, trg, head, link) {
402 		/* Skip irrelevant regions that start before our range. */
403 		if (rg->from < f) {
404 			/* If this region ends after the last accounted offset,
405 			 * then we need to update last_accounted_offset.
406 			 */
407 			if (rg->to > last_accounted_offset)
408 				last_accounted_offset = rg->to;
409 			continue;
410 		}
411 
412 		/* When we find a region that starts beyond our range, we've
413 		 * finished.
414 		 */
415 		if (rg->from >= t)
416 			break;
417 
418 		/* Add an entry for last_accounted_offset -> rg->from, and
419 		 * update last_accounted_offset.
420 		 */
421 		if (rg->from > last_accounted_offset)
422 			add += hugetlb_resv_map_add(resv, rg,
423 						    last_accounted_offset,
424 						    rg->from, h, h_cg,
425 						    regions_needed);
426 
427 		last_accounted_offset = rg->to;
428 	}
429 
430 	/* Handle the case where our range extends beyond
431 	 * last_accounted_offset.
432 	 */
433 	if (last_accounted_offset < t)
434 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435 					    t, h, h_cg, regions_needed);
436 
437 	VM_BUG_ON(add < 0);
438 	return add;
439 }
440 
441 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442  */
443 static int allocate_file_region_entries(struct resv_map *resv,
444 					int regions_needed)
445 	__must_hold(&resv->lock)
446 {
447 	struct list_head allocated_regions;
448 	int to_allocate = 0, i = 0;
449 	struct file_region *trg = NULL, *rg = NULL;
450 
451 	VM_BUG_ON(regions_needed < 0);
452 
453 	INIT_LIST_HEAD(&allocated_regions);
454 
455 	/*
456 	 * Check for sufficient descriptors in the cache to accommodate
457 	 * the number of in progress add operations plus regions_needed.
458 	 *
459 	 * This is a while loop because when we drop the lock, some other call
460 	 * to region_add or region_del may have consumed some region_entries,
461 	 * so we keep looping here until we finally have enough entries for
462 	 * (adds_in_progress + regions_needed).
463 	 */
464 	while (resv->region_cache_count <
465 	       (resv->adds_in_progress + regions_needed)) {
466 		to_allocate = resv->adds_in_progress + regions_needed -
467 			      resv->region_cache_count;
468 
469 		/* At this point, we should have enough entries in the cache
470 		 * for all the existing adds_in_progress. We should only be
471 		 * needing to allocate for regions_needed.
472 		 */
473 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474 
475 		spin_unlock(&resv->lock);
476 		for (i = 0; i < to_allocate; i++) {
477 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478 			if (!trg)
479 				goto out_of_memory;
480 			list_add(&trg->link, &allocated_regions);
481 		}
482 
483 		spin_lock(&resv->lock);
484 
485 		list_splice(&allocated_regions, &resv->region_cache);
486 		resv->region_cache_count += to_allocate;
487 	}
488 
489 	return 0;
490 
491 out_of_memory:
492 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493 		list_del(&rg->link);
494 		kfree(rg);
495 	}
496 	return -ENOMEM;
497 }
498 
499 /*
500  * Add the huge page range represented by [f, t) to the reserve
501  * map.  Regions will be taken from the cache to fill in this range.
502  * Sufficient regions should exist in the cache due to the previous
503  * call to region_chg with the same range, but in some cases the cache will not
504  * have sufficient entries due to races with other code doing region_add or
505  * region_del.  The extra needed entries will be allocated.
506  *
507  * regions_needed is the out value provided by a previous call to region_chg.
508  *
509  * Return the number of new huge pages added to the map.  This number is greater
510  * than or equal to zero.  If file_region entries needed to be allocated for
511  * this operation and we were not able to allocate, it returns -ENOMEM.
512  * region_add of regions of length 1 never allocate file_regions and cannot
513  * fail; region_chg will always allocate at least 1 entry and a region_add for
514  * 1 page will only require at most 1 entry.
515  */
516 static long region_add(struct resv_map *resv, long f, long t,
517 		       long in_regions_needed, struct hstate *h,
518 		       struct hugetlb_cgroup *h_cg)
519 {
520 	long add = 0, actual_regions_needed = 0;
521 
522 	spin_lock(&resv->lock);
523 retry:
524 
525 	/* Count how many regions are actually needed to execute this add. */
526 	add_reservation_in_range(resv, f, t, NULL, NULL,
527 				 &actual_regions_needed);
528 
529 	/*
530 	 * Check for sufficient descriptors in the cache to accommodate
531 	 * this add operation. Note that actual_regions_needed may be greater
532 	 * than in_regions_needed, as the resv_map may have been modified since
533 	 * the region_chg call. In this case, we need to make sure that we
534 	 * allocate extra entries, such that we have enough for all the
535 	 * existing adds_in_progress, plus the excess needed for this
536 	 * operation.
537 	 */
538 	if (actual_regions_needed > in_regions_needed &&
539 	    resv->region_cache_count <
540 		    resv->adds_in_progress +
541 			    (actual_regions_needed - in_regions_needed)) {
542 		/* region_add operation of range 1 should never need to
543 		 * allocate file_region entries.
544 		 */
545 		VM_BUG_ON(t - f <= 1);
546 
547 		if (allocate_file_region_entries(
548 			    resv, actual_regions_needed - in_regions_needed)) {
549 			return -ENOMEM;
550 		}
551 
552 		goto retry;
553 	}
554 
555 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556 
557 	resv->adds_in_progress -= in_regions_needed;
558 
559 	spin_unlock(&resv->lock);
560 	return add;
561 }
562 
563 /*
564  * Examine the existing reserve map and determine how many
565  * huge pages in the specified range [f, t) are NOT currently
566  * represented.  This routine is called before a subsequent
567  * call to region_add that will actually modify the reserve
568  * map to add the specified range [f, t).  region_chg does
569  * not change the number of huge pages represented by the
570  * map.  A number of new file_region structures is added to the cache as a
571  * placeholder, for the subsequent region_add call to use. At least 1
572  * file_region structure is added.
573  *
574  * out_regions_needed is the number of regions added to the
575  * resv->adds_in_progress.  This value needs to be provided to a follow up call
576  * to region_add or region_abort for proper accounting.
577  *
578  * Returns the number of huge pages that need to be added to the existing
579  * reservation map for the range [f, t).  This number is greater or equal to
580  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
581  * is needed and can not be allocated.
582  */
583 static long region_chg(struct resv_map *resv, long f, long t,
584 		       long *out_regions_needed)
585 {
586 	long chg = 0;
587 
588 	spin_lock(&resv->lock);
589 
590 	/* Count how many hugepages in this range are NOT represented. */
591 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
592 				       out_regions_needed);
593 
594 	if (*out_regions_needed == 0)
595 		*out_regions_needed = 1;
596 
597 	if (allocate_file_region_entries(resv, *out_regions_needed))
598 		return -ENOMEM;
599 
600 	resv->adds_in_progress += *out_regions_needed;
601 
602 	spin_unlock(&resv->lock);
603 	return chg;
604 }
605 
606 /*
607  * Abort the in progress add operation.  The adds_in_progress field
608  * of the resv_map keeps track of the operations in progress between
609  * calls to region_chg and region_add.  Operations are sometimes
610  * aborted after the call to region_chg.  In such cases, region_abort
611  * is called to decrement the adds_in_progress counter. regions_needed
612  * is the value returned by the region_chg call, it is used to decrement
613  * the adds_in_progress counter.
614  *
615  * NOTE: The range arguments [f, t) are not needed or used in this
616  * routine.  They are kept to make reading the calling code easier as
617  * arguments will match the associated region_chg call.
618  */
619 static void region_abort(struct resv_map *resv, long f, long t,
620 			 long regions_needed)
621 {
622 	spin_lock(&resv->lock);
623 	VM_BUG_ON(!resv->region_cache_count);
624 	resv->adds_in_progress -= regions_needed;
625 	spin_unlock(&resv->lock);
626 }
627 
628 /*
629  * Delete the specified range [f, t) from the reserve map.  If the
630  * t parameter is LONG_MAX, this indicates that ALL regions after f
631  * should be deleted.  Locate the regions which intersect [f, t)
632  * and either trim, delete or split the existing regions.
633  *
634  * Returns the number of huge pages deleted from the reserve map.
635  * In the normal case, the return value is zero or more.  In the
636  * case where a region must be split, a new region descriptor must
637  * be allocated.  If the allocation fails, -ENOMEM will be returned.
638  * NOTE: If the parameter t == LONG_MAX, then we will never split
639  * a region and possibly return -ENOMEM.  Callers specifying
640  * t == LONG_MAX do not need to check for -ENOMEM error.
641  */
642 static long region_del(struct resv_map *resv, long f, long t)
643 {
644 	struct list_head *head = &resv->regions;
645 	struct file_region *rg, *trg;
646 	struct file_region *nrg = NULL;
647 	long del = 0;
648 
649 retry:
650 	spin_lock(&resv->lock);
651 	list_for_each_entry_safe(rg, trg, head, link) {
652 		/*
653 		 * Skip regions before the range to be deleted.  file_region
654 		 * ranges are normally of the form [from, to).  However, there
655 		 * may be a "placeholder" entry in the map which is of the form
656 		 * (from, to) with from == to.  Check for placeholder entries
657 		 * at the beginning of the range to be deleted.
658 		 */
659 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
660 			continue;
661 
662 		if (rg->from >= t)
663 			break;
664 
665 		if (f > rg->from && t < rg->to) { /* Must split region */
666 			/*
667 			 * Check for an entry in the cache before dropping
668 			 * lock and attempting allocation.
669 			 */
670 			if (!nrg &&
671 			    resv->region_cache_count > resv->adds_in_progress) {
672 				nrg = list_first_entry(&resv->region_cache,
673 							struct file_region,
674 							link);
675 				list_del(&nrg->link);
676 				resv->region_cache_count--;
677 			}
678 
679 			if (!nrg) {
680 				spin_unlock(&resv->lock);
681 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682 				if (!nrg)
683 					return -ENOMEM;
684 				goto retry;
685 			}
686 
687 			del += t - f;
688 			hugetlb_cgroup_uncharge_file_region(
689 				resv, rg, t - f, false);
690 
691 			/* New entry for end of split region */
692 			nrg->from = t;
693 			nrg->to = rg->to;
694 
695 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696 
697 			INIT_LIST_HEAD(&nrg->link);
698 
699 			/* Original entry is trimmed */
700 			rg->to = f;
701 
702 			list_add(&nrg->link, &rg->link);
703 			nrg = NULL;
704 			break;
705 		}
706 
707 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708 			del += rg->to - rg->from;
709 			hugetlb_cgroup_uncharge_file_region(resv, rg,
710 							    rg->to - rg->from, true);
711 			list_del(&rg->link);
712 			kfree(rg);
713 			continue;
714 		}
715 
716 		if (f <= rg->from) {	/* Trim beginning of region */
717 			hugetlb_cgroup_uncharge_file_region(resv, rg,
718 							    t - rg->from, false);
719 
720 			del += t - rg->from;
721 			rg->from = t;
722 		} else {		/* Trim end of region */
723 			hugetlb_cgroup_uncharge_file_region(resv, rg,
724 							    rg->to - f, false);
725 
726 			del += rg->to - f;
727 			rg->to = f;
728 		}
729 	}
730 
731 	spin_unlock(&resv->lock);
732 	kfree(nrg);
733 	return del;
734 }
735 
736 /*
737  * A rare out of memory error was encountered which prevented removal of
738  * the reserve map region for a page.  The huge page itself was free'ed
739  * and removed from the page cache.  This routine will adjust the subpool
740  * usage count, and the global reserve count if needed.  By incrementing
741  * these counts, the reserve map entry which could not be deleted will
742  * appear as a "reserved" entry instead of simply dangling with incorrect
743  * counts.
744  */
745 void hugetlb_fix_reserve_counts(struct inode *inode)
746 {
747 	struct hugepage_subpool *spool = subpool_inode(inode);
748 	long rsv_adjust;
749 	bool reserved = false;
750 
751 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
752 	if (rsv_adjust > 0) {
753 		struct hstate *h = hstate_inode(inode);
754 
755 		if (!hugetlb_acct_memory(h, 1))
756 			reserved = true;
757 	} else if (!rsv_adjust) {
758 		reserved = true;
759 	}
760 
761 	if (!reserved)
762 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
763 }
764 
765 /*
766  * Count and return the number of huge pages in the reserve map
767  * that intersect with the range [f, t).
768  */
769 static long region_count(struct resv_map *resv, long f, long t)
770 {
771 	struct list_head *head = &resv->regions;
772 	struct file_region *rg;
773 	long chg = 0;
774 
775 	spin_lock(&resv->lock);
776 	/* Locate each segment we overlap with, and count that overlap. */
777 	list_for_each_entry(rg, head, link) {
778 		long seg_from;
779 		long seg_to;
780 
781 		if (rg->to <= f)
782 			continue;
783 		if (rg->from >= t)
784 			break;
785 
786 		seg_from = max(rg->from, f);
787 		seg_to = min(rg->to, t);
788 
789 		chg += seg_to - seg_from;
790 	}
791 	spin_unlock(&resv->lock);
792 
793 	return chg;
794 }
795 
796 /*
797  * Convert the address within this vma to the page offset within
798  * the mapping, in pagecache page units; huge pages here.
799  */
800 static pgoff_t vma_hugecache_offset(struct hstate *h,
801 			struct vm_area_struct *vma, unsigned long address)
802 {
803 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
804 			(vma->vm_pgoff >> huge_page_order(h));
805 }
806 
807 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808 				     unsigned long address)
809 {
810 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
811 }
812 EXPORT_SYMBOL_GPL(linear_hugepage_index);
813 
814 /*
815  * Return the size of the pages allocated when backing a VMA. In the majority
816  * cases this will be same size as used by the page table entries.
817  */
818 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819 {
820 	if (vma->vm_ops && vma->vm_ops->pagesize)
821 		return vma->vm_ops->pagesize(vma);
822 	return PAGE_SIZE;
823 }
824 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
825 
826 /*
827  * Return the page size being used by the MMU to back a VMA. In the majority
828  * of cases, the page size used by the kernel matches the MMU size. On
829  * architectures where it differs, an architecture-specific 'strong'
830  * version of this symbol is required.
831  */
832 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
833 {
834 	return vma_kernel_pagesize(vma);
835 }
836 
837 /*
838  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
839  * bits of the reservation map pointer, which are always clear due to
840  * alignment.
841  */
842 #define HPAGE_RESV_OWNER    (1UL << 0)
843 #define HPAGE_RESV_UNMAPPED (1UL << 1)
844 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
845 
846 /*
847  * These helpers are used to track how many pages are reserved for
848  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849  * is guaranteed to have their future faults succeed.
850  *
851  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852  * the reserve counters are updated with the hugetlb_lock held. It is safe
853  * to reset the VMA at fork() time as it is not in use yet and there is no
854  * chance of the global counters getting corrupted as a result of the values.
855  *
856  * The private mapping reservation is represented in a subtly different
857  * manner to a shared mapping.  A shared mapping has a region map associated
858  * with the underlying file, this region map represents the backing file
859  * pages which have ever had a reservation assigned which this persists even
860  * after the page is instantiated.  A private mapping has a region map
861  * associated with the original mmap which is attached to all VMAs which
862  * reference it, this region map represents those offsets which have consumed
863  * reservation ie. where pages have been instantiated.
864  */
865 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866 {
867 	return (unsigned long)vma->vm_private_data;
868 }
869 
870 static void set_vma_private_data(struct vm_area_struct *vma,
871 							unsigned long value)
872 {
873 	vma->vm_private_data = (void *)value;
874 }
875 
876 static void
877 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878 					  struct hugetlb_cgroup *h_cg,
879 					  struct hstate *h)
880 {
881 #ifdef CONFIG_CGROUP_HUGETLB
882 	if (!h_cg || !h) {
883 		resv_map->reservation_counter = NULL;
884 		resv_map->pages_per_hpage = 0;
885 		resv_map->css = NULL;
886 	} else {
887 		resv_map->reservation_counter =
888 			&h_cg->rsvd_hugepage[hstate_index(h)];
889 		resv_map->pages_per_hpage = pages_per_huge_page(h);
890 		resv_map->css = &h_cg->css;
891 	}
892 #endif
893 }
894 
895 struct resv_map *resv_map_alloc(void)
896 {
897 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
898 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899 
900 	if (!resv_map || !rg) {
901 		kfree(resv_map);
902 		kfree(rg);
903 		return NULL;
904 	}
905 
906 	kref_init(&resv_map->refs);
907 	spin_lock_init(&resv_map->lock);
908 	INIT_LIST_HEAD(&resv_map->regions);
909 
910 	resv_map->adds_in_progress = 0;
911 	/*
912 	 * Initialize these to 0. On shared mappings, 0's here indicate these
913 	 * fields don't do cgroup accounting. On private mappings, these will be
914 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
915 	 * reservations are to be un-charged from here.
916 	 */
917 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
918 
919 	INIT_LIST_HEAD(&resv_map->region_cache);
920 	list_add(&rg->link, &resv_map->region_cache);
921 	resv_map->region_cache_count = 1;
922 
923 	return resv_map;
924 }
925 
926 void resv_map_release(struct kref *ref)
927 {
928 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
929 	struct list_head *head = &resv_map->region_cache;
930 	struct file_region *rg, *trg;
931 
932 	/* Clear out any active regions before we release the map. */
933 	region_del(resv_map, 0, LONG_MAX);
934 
935 	/* ... and any entries left in the cache */
936 	list_for_each_entry_safe(rg, trg, head, link) {
937 		list_del(&rg->link);
938 		kfree(rg);
939 	}
940 
941 	VM_BUG_ON(resv_map->adds_in_progress);
942 
943 	kfree(resv_map);
944 }
945 
946 static inline struct resv_map *inode_resv_map(struct inode *inode)
947 {
948 	/*
949 	 * At inode evict time, i_mapping may not point to the original
950 	 * address space within the inode.  This original address space
951 	 * contains the pointer to the resv_map.  So, always use the
952 	 * address space embedded within the inode.
953 	 * The VERY common case is inode->mapping == &inode->i_data but,
954 	 * this may not be true for device special inodes.
955 	 */
956 	return (struct resv_map *)(&inode->i_data)->private_data;
957 }
958 
959 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
960 {
961 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962 	if (vma->vm_flags & VM_MAYSHARE) {
963 		struct address_space *mapping = vma->vm_file->f_mapping;
964 		struct inode *inode = mapping->host;
965 
966 		return inode_resv_map(inode);
967 
968 	} else {
969 		return (struct resv_map *)(get_vma_private_data(vma) &
970 							~HPAGE_RESV_MASK);
971 	}
972 }
973 
974 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
975 {
976 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
978 
979 	set_vma_private_data(vma, (get_vma_private_data(vma) &
980 				HPAGE_RESV_MASK) | (unsigned long)map);
981 }
982 
983 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984 {
985 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
987 
988 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
989 }
990 
991 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992 {
993 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994 
995 	return (get_vma_private_data(vma) & flag) != 0;
996 }
997 
998 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
999 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000 {
1001 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1002 	if (!(vma->vm_flags & VM_MAYSHARE))
1003 		vma->vm_private_data = (void *)0;
1004 }
1005 
1006 /* Returns true if the VMA has associated reserve pages */
1007 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1008 {
1009 	if (vma->vm_flags & VM_NORESERVE) {
1010 		/*
1011 		 * This address is already reserved by other process(chg == 0),
1012 		 * so, we should decrement reserved count. Without decrementing,
1013 		 * reserve count remains after releasing inode, because this
1014 		 * allocated page will go into page cache and is regarded as
1015 		 * coming from reserved pool in releasing step.  Currently, we
1016 		 * don't have any other solution to deal with this situation
1017 		 * properly, so add work-around here.
1018 		 */
1019 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1020 			return true;
1021 		else
1022 			return false;
1023 	}
1024 
1025 	/* Shared mappings always use reserves */
1026 	if (vma->vm_flags & VM_MAYSHARE) {
1027 		/*
1028 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1029 		 * be a region map for all pages.  The only situation where
1030 		 * there is no region map is if a hole was punched via
1031 		 * fallocate.  In this case, there really are no reserves to
1032 		 * use.  This situation is indicated if chg != 0.
1033 		 */
1034 		if (chg)
1035 			return false;
1036 		else
1037 			return true;
1038 	}
1039 
1040 	/*
1041 	 * Only the process that called mmap() has reserves for
1042 	 * private mappings.
1043 	 */
1044 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045 		/*
1046 		 * Like the shared case above, a hole punch or truncate
1047 		 * could have been performed on the private mapping.
1048 		 * Examine the value of chg to determine if reserves
1049 		 * actually exist or were previously consumed.
1050 		 * Very Subtle - The value of chg comes from a previous
1051 		 * call to vma_needs_reserves().  The reserve map for
1052 		 * private mappings has different (opposite) semantics
1053 		 * than that of shared mappings.  vma_needs_reserves()
1054 		 * has already taken this difference in semantics into
1055 		 * account.  Therefore, the meaning of chg is the same
1056 		 * as in the shared case above.  Code could easily be
1057 		 * combined, but keeping it separate draws attention to
1058 		 * subtle differences.
1059 		 */
1060 		if (chg)
1061 			return false;
1062 		else
1063 			return true;
1064 	}
1065 
1066 	return false;
1067 }
1068 
1069 static void enqueue_huge_page(struct hstate *h, struct page *page)
1070 {
1071 	int nid = page_to_nid(page);
1072 
1073 	lockdep_assert_held(&hugetlb_lock);
1074 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1075 	h->free_huge_pages++;
1076 	h->free_huge_pages_node[nid]++;
1077 	SetHPageFreed(page);
1078 }
1079 
1080 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1081 {
1082 	struct page *page;
1083 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1084 
1085 	lockdep_assert_held(&hugetlb_lock);
1086 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087 		if (pin && !is_pinnable_page(page))
1088 			continue;
1089 
1090 		if (PageHWPoison(page))
1091 			continue;
1092 
1093 		list_move(&page->lru, &h->hugepage_activelist);
1094 		set_page_refcounted(page);
1095 		ClearHPageFreed(page);
1096 		h->free_huge_pages--;
1097 		h->free_huge_pages_node[nid]--;
1098 		return page;
1099 	}
1100 
1101 	return NULL;
1102 }
1103 
1104 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105 		nodemask_t *nmask)
1106 {
1107 	unsigned int cpuset_mems_cookie;
1108 	struct zonelist *zonelist;
1109 	struct zone *zone;
1110 	struct zoneref *z;
1111 	int node = NUMA_NO_NODE;
1112 
1113 	zonelist = node_zonelist(nid, gfp_mask);
1114 
1115 retry_cpuset:
1116 	cpuset_mems_cookie = read_mems_allowed_begin();
1117 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118 		struct page *page;
1119 
1120 		if (!cpuset_zone_allowed(zone, gfp_mask))
1121 			continue;
1122 		/*
1123 		 * no need to ask again on the same node. Pool is node rather than
1124 		 * zone aware
1125 		 */
1126 		if (zone_to_nid(zone) == node)
1127 			continue;
1128 		node = zone_to_nid(zone);
1129 
1130 		page = dequeue_huge_page_node_exact(h, node);
1131 		if (page)
1132 			return page;
1133 	}
1134 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135 		goto retry_cpuset;
1136 
1137 	return NULL;
1138 }
1139 
1140 static struct page *dequeue_huge_page_vma(struct hstate *h,
1141 				struct vm_area_struct *vma,
1142 				unsigned long address, int avoid_reserve,
1143 				long chg)
1144 {
1145 	struct page *page;
1146 	struct mempolicy *mpol;
1147 	gfp_t gfp_mask;
1148 	nodemask_t *nodemask;
1149 	int nid;
1150 
1151 	/*
1152 	 * A child process with MAP_PRIVATE mappings created by their parent
1153 	 * have no page reserves. This check ensures that reservations are
1154 	 * not "stolen". The child may still get SIGKILLed
1155 	 */
1156 	if (!vma_has_reserves(vma, chg) &&
1157 			h->free_huge_pages - h->resv_huge_pages == 0)
1158 		goto err;
1159 
1160 	/* If reserves cannot be used, ensure enough pages are in the pool */
1161 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1162 		goto err;
1163 
1164 	gfp_mask = htlb_alloc_mask(h);
1165 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1166 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1168 		SetHPageRestoreReserve(page);
1169 		h->resv_huge_pages--;
1170 	}
1171 
1172 	mpol_cond_put(mpol);
1173 	return page;
1174 
1175 err:
1176 	return NULL;
1177 }
1178 
1179 /*
1180  * common helper functions for hstate_next_node_to_{alloc|free}.
1181  * We may have allocated or freed a huge page based on a different
1182  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183  * be outside of *nodes_allowed.  Ensure that we use an allowed
1184  * node for alloc or free.
1185  */
1186 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187 {
1188 	nid = next_node_in(nid, *nodes_allowed);
1189 	VM_BUG_ON(nid >= MAX_NUMNODES);
1190 
1191 	return nid;
1192 }
1193 
1194 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195 {
1196 	if (!node_isset(nid, *nodes_allowed))
1197 		nid = next_node_allowed(nid, nodes_allowed);
1198 	return nid;
1199 }
1200 
1201 /*
1202  * returns the previously saved node ["this node"] from which to
1203  * allocate a persistent huge page for the pool and advance the
1204  * next node from which to allocate, handling wrap at end of node
1205  * mask.
1206  */
1207 static int hstate_next_node_to_alloc(struct hstate *h,
1208 					nodemask_t *nodes_allowed)
1209 {
1210 	int nid;
1211 
1212 	VM_BUG_ON(!nodes_allowed);
1213 
1214 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216 
1217 	return nid;
1218 }
1219 
1220 /*
1221  * helper for remove_pool_huge_page() - return the previously saved
1222  * node ["this node"] from which to free a huge page.  Advance the
1223  * next node id whether or not we find a free huge page to free so
1224  * that the next attempt to free addresses the next node.
1225  */
1226 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227 {
1228 	int nid;
1229 
1230 	VM_BUG_ON(!nodes_allowed);
1231 
1232 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234 
1235 	return nid;
1236 }
1237 
1238 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1239 	for (nr_nodes = nodes_weight(*mask);				\
1240 		nr_nodes > 0 &&						\
1241 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1242 		nr_nodes--)
1243 
1244 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1245 	for (nr_nodes = nodes_weight(*mask);				\
1246 		nr_nodes > 0 &&						\
1247 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1248 		nr_nodes--)
1249 
1250 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1251 static void destroy_compound_gigantic_page(struct page *page,
1252 					unsigned int order)
1253 {
1254 	int i;
1255 	int nr_pages = 1 << order;
1256 	struct page *p = page + 1;
1257 
1258 	atomic_set(compound_mapcount_ptr(page), 0);
1259 	atomic_set(compound_pincount_ptr(page), 0);
1260 
1261 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1262 		clear_compound_head(p);
1263 		set_page_refcounted(p);
1264 	}
1265 
1266 	set_compound_order(page, 0);
1267 	page[1].compound_nr = 0;
1268 	__ClearPageHead(page);
1269 }
1270 
1271 static void free_gigantic_page(struct page *page, unsigned int order)
1272 {
1273 	/*
1274 	 * If the page isn't allocated using the cma allocator,
1275 	 * cma_release() returns false.
1276 	 */
1277 #ifdef CONFIG_CMA
1278 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1279 		return;
1280 #endif
1281 
1282 	free_contig_range(page_to_pfn(page), 1 << order);
1283 }
1284 
1285 #ifdef CONFIG_CONTIG_ALLOC
1286 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287 		int nid, nodemask_t *nodemask)
1288 {
1289 	unsigned long nr_pages = pages_per_huge_page(h);
1290 	if (nid == NUMA_NO_NODE)
1291 		nid = numa_mem_id();
1292 
1293 #ifdef CONFIG_CMA
1294 	{
1295 		struct page *page;
1296 		int node;
1297 
1298 		if (hugetlb_cma[nid]) {
1299 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300 					huge_page_order(h), true);
1301 			if (page)
1302 				return page;
1303 		}
1304 
1305 		if (!(gfp_mask & __GFP_THISNODE)) {
1306 			for_each_node_mask(node, *nodemask) {
1307 				if (node == nid || !hugetlb_cma[node])
1308 					continue;
1309 
1310 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1311 						huge_page_order(h), true);
1312 				if (page)
1313 					return page;
1314 			}
1315 		}
1316 	}
1317 #endif
1318 
1319 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 }
1321 
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1323 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1324 #else /* !CONFIG_CONTIG_ALLOC */
1325 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326 					int nid, nodemask_t *nodemask)
1327 {
1328 	return NULL;
1329 }
1330 #endif /* CONFIG_CONTIG_ALLOC */
1331 
1332 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1333 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1334 					int nid, nodemask_t *nodemask)
1335 {
1336 	return NULL;
1337 }
1338 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1339 static inline void destroy_compound_gigantic_page(struct page *page,
1340 						unsigned int order) { }
1341 #endif
1342 
1343 /*
1344  * Remove hugetlb page from lists, and update dtor so that page appears
1345  * as just a compound page.  A reference is held on the page.
1346  *
1347  * Must be called with hugetlb lock held.
1348  */
1349 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350 							bool adjust_surplus)
1351 {
1352 	int nid = page_to_nid(page);
1353 
1354 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356 
1357 	lockdep_assert_held(&hugetlb_lock);
1358 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359 		return;
1360 
1361 	list_del(&page->lru);
1362 
1363 	if (HPageFreed(page)) {
1364 		h->free_huge_pages--;
1365 		h->free_huge_pages_node[nid]--;
1366 	}
1367 	if (adjust_surplus) {
1368 		h->surplus_huge_pages--;
1369 		h->surplus_huge_pages_node[nid]--;
1370 	}
1371 
1372 	set_page_refcounted(page);
1373 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374 
1375 	h->nr_huge_pages--;
1376 	h->nr_huge_pages_node[nid]--;
1377 }
1378 
1379 static void add_hugetlb_page(struct hstate *h, struct page *page,
1380 			     bool adjust_surplus)
1381 {
1382 	int zeroed;
1383 	int nid = page_to_nid(page);
1384 
1385 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1386 
1387 	lockdep_assert_held(&hugetlb_lock);
1388 
1389 	INIT_LIST_HEAD(&page->lru);
1390 	h->nr_huge_pages++;
1391 	h->nr_huge_pages_node[nid]++;
1392 
1393 	if (adjust_surplus) {
1394 		h->surplus_huge_pages++;
1395 		h->surplus_huge_pages_node[nid]++;
1396 	}
1397 
1398 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1399 	set_page_private(page, 0);
1400 	SetHPageVmemmapOptimized(page);
1401 
1402 	/*
1403 	 * This page is now managed by the hugetlb allocator and has
1404 	 * no users -- drop the last reference.
1405 	 */
1406 	zeroed = put_page_testzero(page);
1407 	VM_BUG_ON_PAGE(!zeroed, page);
1408 	arch_clear_hugepage_flags(page);
1409 	enqueue_huge_page(h, page);
1410 }
1411 
1412 static void __update_and_free_page(struct hstate *h, struct page *page)
1413 {
1414 	int i;
1415 	struct page *subpage = page;
1416 
1417 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1418 		return;
1419 
1420 	if (alloc_huge_page_vmemmap(h, page)) {
1421 		spin_lock_irq(&hugetlb_lock);
1422 		/*
1423 		 * If we cannot allocate vmemmap pages, just refuse to free the
1424 		 * page and put the page back on the hugetlb free list and treat
1425 		 * as a surplus page.
1426 		 */
1427 		add_hugetlb_page(h, page, true);
1428 		spin_unlock_irq(&hugetlb_lock);
1429 		return;
1430 	}
1431 
1432 	for (i = 0; i < pages_per_huge_page(h);
1433 	     i++, subpage = mem_map_next(subpage, page, i)) {
1434 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1435 				1 << PG_referenced | 1 << PG_dirty |
1436 				1 << PG_active | 1 << PG_private |
1437 				1 << PG_writeback);
1438 	}
1439 	if (hstate_is_gigantic(h)) {
1440 		destroy_compound_gigantic_page(page, huge_page_order(h));
1441 		free_gigantic_page(page, huge_page_order(h));
1442 	} else {
1443 		__free_pages(page, huge_page_order(h));
1444 	}
1445 }
1446 
1447 /*
1448  * As update_and_free_page() can be called under any context, so we cannot
1449  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1450  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1451  * the vmemmap pages.
1452  *
1453  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1454  * freed and frees them one-by-one. As the page->mapping pointer is going
1455  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1456  * structure of a lockless linked list of huge pages to be freed.
1457  */
1458 static LLIST_HEAD(hpage_freelist);
1459 
1460 static void free_hpage_workfn(struct work_struct *work)
1461 {
1462 	struct llist_node *node;
1463 
1464 	node = llist_del_all(&hpage_freelist);
1465 
1466 	while (node) {
1467 		struct page *page;
1468 		struct hstate *h;
1469 
1470 		page = container_of((struct address_space **)node,
1471 				     struct page, mapping);
1472 		node = node->next;
1473 		page->mapping = NULL;
1474 		/*
1475 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1476 		 * is going to trigger because a previous call to
1477 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1478 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1479 		 */
1480 		h = size_to_hstate(page_size(page));
1481 
1482 		__update_and_free_page(h, page);
1483 
1484 		cond_resched();
1485 	}
1486 }
1487 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1488 
1489 static inline void flush_free_hpage_work(struct hstate *h)
1490 {
1491 	if (free_vmemmap_pages_per_hpage(h))
1492 		flush_work(&free_hpage_work);
1493 }
1494 
1495 static void update_and_free_page(struct hstate *h, struct page *page,
1496 				 bool atomic)
1497 {
1498 	if (!HPageVmemmapOptimized(page) || !atomic) {
1499 		__update_and_free_page(h, page);
1500 		return;
1501 	}
1502 
1503 	/*
1504 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1505 	 *
1506 	 * Only call schedule_work() if hpage_freelist is previously
1507 	 * empty. Otherwise, schedule_work() had been called but the workfn
1508 	 * hasn't retrieved the list yet.
1509 	 */
1510 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1511 		schedule_work(&free_hpage_work);
1512 }
1513 
1514 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1515 {
1516 	struct page *page, *t_page;
1517 
1518 	list_for_each_entry_safe(page, t_page, list, lru) {
1519 		update_and_free_page(h, page, false);
1520 		cond_resched();
1521 	}
1522 }
1523 
1524 struct hstate *size_to_hstate(unsigned long size)
1525 {
1526 	struct hstate *h;
1527 
1528 	for_each_hstate(h) {
1529 		if (huge_page_size(h) == size)
1530 			return h;
1531 	}
1532 	return NULL;
1533 }
1534 
1535 void free_huge_page(struct page *page)
1536 {
1537 	/*
1538 	 * Can't pass hstate in here because it is called from the
1539 	 * compound page destructor.
1540 	 */
1541 	struct hstate *h = page_hstate(page);
1542 	int nid = page_to_nid(page);
1543 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1544 	bool restore_reserve;
1545 	unsigned long flags;
1546 
1547 	VM_BUG_ON_PAGE(page_count(page), page);
1548 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1549 
1550 	hugetlb_set_page_subpool(page, NULL);
1551 	page->mapping = NULL;
1552 	restore_reserve = HPageRestoreReserve(page);
1553 	ClearHPageRestoreReserve(page);
1554 
1555 	/*
1556 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1557 	 * reservation.  If the page was associated with a subpool, there
1558 	 * would have been a page reserved in the subpool before allocation
1559 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1560 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1561 	 * remove the reserved page from the subpool.
1562 	 */
1563 	if (!restore_reserve) {
1564 		/*
1565 		 * A return code of zero implies that the subpool will be
1566 		 * under its minimum size if the reservation is not restored
1567 		 * after page is free.  Therefore, force restore_reserve
1568 		 * operation.
1569 		 */
1570 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1571 			restore_reserve = true;
1572 	}
1573 
1574 	spin_lock_irqsave(&hugetlb_lock, flags);
1575 	ClearHPageMigratable(page);
1576 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1577 				     pages_per_huge_page(h), page);
1578 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1579 					  pages_per_huge_page(h), page);
1580 	if (restore_reserve)
1581 		h->resv_huge_pages++;
1582 
1583 	if (HPageTemporary(page)) {
1584 		remove_hugetlb_page(h, page, false);
1585 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1586 		update_and_free_page(h, page, true);
1587 	} else if (h->surplus_huge_pages_node[nid]) {
1588 		/* remove the page from active list */
1589 		remove_hugetlb_page(h, page, true);
1590 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1591 		update_and_free_page(h, page, true);
1592 	} else {
1593 		arch_clear_hugepage_flags(page);
1594 		enqueue_huge_page(h, page);
1595 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1596 	}
1597 }
1598 
1599 /*
1600  * Must be called with the hugetlb lock held
1601  */
1602 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1603 {
1604 	lockdep_assert_held(&hugetlb_lock);
1605 	h->nr_huge_pages++;
1606 	h->nr_huge_pages_node[nid]++;
1607 }
1608 
1609 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1610 {
1611 	free_huge_page_vmemmap(h, page);
1612 	INIT_LIST_HEAD(&page->lru);
1613 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1614 	hugetlb_set_page_subpool(page, NULL);
1615 	set_hugetlb_cgroup(page, NULL);
1616 	set_hugetlb_cgroup_rsvd(page, NULL);
1617 }
1618 
1619 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1620 {
1621 	__prep_new_huge_page(h, page);
1622 	spin_lock_irq(&hugetlb_lock);
1623 	__prep_account_new_huge_page(h, nid);
1624 	spin_unlock_irq(&hugetlb_lock);
1625 }
1626 
1627 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1628 {
1629 	int i;
1630 	int nr_pages = 1 << order;
1631 	struct page *p = page + 1;
1632 
1633 	/* we rely on prep_new_huge_page to set the destructor */
1634 	set_compound_order(page, order);
1635 	__ClearPageReserved(page);
1636 	__SetPageHead(page);
1637 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1638 		/*
1639 		 * For gigantic hugepages allocated through bootmem at
1640 		 * boot, it's safer to be consistent with the not-gigantic
1641 		 * hugepages and clear the PG_reserved bit from all tail pages
1642 		 * too.  Otherwise drivers using get_user_pages() to access tail
1643 		 * pages may get the reference counting wrong if they see
1644 		 * PG_reserved set on a tail page (despite the head page not
1645 		 * having PG_reserved set).  Enforcing this consistency between
1646 		 * head and tail pages allows drivers to optimize away a check
1647 		 * on the head page when they need know if put_page() is needed
1648 		 * after get_user_pages().
1649 		 */
1650 		__ClearPageReserved(p);
1651 		set_page_count(p, 0);
1652 		set_compound_head(p, page);
1653 	}
1654 	atomic_set(compound_mapcount_ptr(page), -1);
1655 	atomic_set(compound_pincount_ptr(page), 0);
1656 }
1657 
1658 /*
1659  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1660  * transparent huge pages.  See the PageTransHuge() documentation for more
1661  * details.
1662  */
1663 int PageHuge(struct page *page)
1664 {
1665 	if (!PageCompound(page))
1666 		return 0;
1667 
1668 	page = compound_head(page);
1669 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1670 }
1671 EXPORT_SYMBOL_GPL(PageHuge);
1672 
1673 /*
1674  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1675  * normal or transparent huge pages.
1676  */
1677 int PageHeadHuge(struct page *page_head)
1678 {
1679 	if (!PageHead(page_head))
1680 		return 0;
1681 
1682 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1683 }
1684 
1685 /*
1686  * Find and lock address space (mapping) in write mode.
1687  *
1688  * Upon entry, the page is locked which means that page_mapping() is
1689  * stable.  Due to locking order, we can only trylock_write.  If we can
1690  * not get the lock, simply return NULL to caller.
1691  */
1692 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1693 {
1694 	struct address_space *mapping = page_mapping(hpage);
1695 
1696 	if (!mapping)
1697 		return mapping;
1698 
1699 	if (i_mmap_trylock_write(mapping))
1700 		return mapping;
1701 
1702 	return NULL;
1703 }
1704 
1705 pgoff_t hugetlb_basepage_index(struct page *page)
1706 {
1707 	struct page *page_head = compound_head(page);
1708 	pgoff_t index = page_index(page_head);
1709 	unsigned long compound_idx;
1710 
1711 	if (compound_order(page_head) >= MAX_ORDER)
1712 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1713 	else
1714 		compound_idx = page - page_head;
1715 
1716 	return (index << compound_order(page_head)) + compound_idx;
1717 }
1718 
1719 static struct page *alloc_buddy_huge_page(struct hstate *h,
1720 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1721 		nodemask_t *node_alloc_noretry)
1722 {
1723 	int order = huge_page_order(h);
1724 	struct page *page;
1725 	bool alloc_try_hard = true;
1726 
1727 	/*
1728 	 * By default we always try hard to allocate the page with
1729 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1730 	 * a loop (to adjust global huge page counts) and previous allocation
1731 	 * failed, do not continue to try hard on the same node.  Use the
1732 	 * node_alloc_noretry bitmap to manage this state information.
1733 	 */
1734 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1735 		alloc_try_hard = false;
1736 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1737 	if (alloc_try_hard)
1738 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1739 	if (nid == NUMA_NO_NODE)
1740 		nid = numa_mem_id();
1741 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1742 	if (page)
1743 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1744 	else
1745 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1746 
1747 	/*
1748 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1749 	 * indicates an overall state change.  Clear bit so that we resume
1750 	 * normal 'try hard' allocations.
1751 	 */
1752 	if (node_alloc_noretry && page && !alloc_try_hard)
1753 		node_clear(nid, *node_alloc_noretry);
1754 
1755 	/*
1756 	 * If we tried hard to get a page but failed, set bit so that
1757 	 * subsequent attempts will not try as hard until there is an
1758 	 * overall state change.
1759 	 */
1760 	if (node_alloc_noretry && !page && alloc_try_hard)
1761 		node_set(nid, *node_alloc_noretry);
1762 
1763 	return page;
1764 }
1765 
1766 /*
1767  * Common helper to allocate a fresh hugetlb page. All specific allocators
1768  * should use this function to get new hugetlb pages
1769  */
1770 static struct page *alloc_fresh_huge_page(struct hstate *h,
1771 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1772 		nodemask_t *node_alloc_noretry)
1773 {
1774 	struct page *page;
1775 
1776 	if (hstate_is_gigantic(h))
1777 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1778 	else
1779 		page = alloc_buddy_huge_page(h, gfp_mask,
1780 				nid, nmask, node_alloc_noretry);
1781 	if (!page)
1782 		return NULL;
1783 
1784 	if (hstate_is_gigantic(h))
1785 		prep_compound_gigantic_page(page, huge_page_order(h));
1786 	prep_new_huge_page(h, page, page_to_nid(page));
1787 
1788 	return page;
1789 }
1790 
1791 /*
1792  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1793  * manner.
1794  */
1795 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1796 				nodemask_t *node_alloc_noretry)
1797 {
1798 	struct page *page;
1799 	int nr_nodes, node;
1800 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1801 
1802 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1803 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1804 						node_alloc_noretry);
1805 		if (page)
1806 			break;
1807 	}
1808 
1809 	if (!page)
1810 		return 0;
1811 
1812 	put_page(page); /* free it into the hugepage allocator */
1813 
1814 	return 1;
1815 }
1816 
1817 /*
1818  * Remove huge page from pool from next node to free.  Attempt to keep
1819  * persistent huge pages more or less balanced over allowed nodes.
1820  * This routine only 'removes' the hugetlb page.  The caller must make
1821  * an additional call to free the page to low level allocators.
1822  * Called with hugetlb_lock locked.
1823  */
1824 static struct page *remove_pool_huge_page(struct hstate *h,
1825 						nodemask_t *nodes_allowed,
1826 						 bool acct_surplus)
1827 {
1828 	int nr_nodes, node;
1829 	struct page *page = NULL;
1830 
1831 	lockdep_assert_held(&hugetlb_lock);
1832 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1833 		/*
1834 		 * If we're returning unused surplus pages, only examine
1835 		 * nodes with surplus pages.
1836 		 */
1837 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1838 		    !list_empty(&h->hugepage_freelists[node])) {
1839 			page = list_entry(h->hugepage_freelists[node].next,
1840 					  struct page, lru);
1841 			remove_hugetlb_page(h, page, acct_surplus);
1842 			break;
1843 		}
1844 	}
1845 
1846 	return page;
1847 }
1848 
1849 /*
1850  * Dissolve a given free hugepage into free buddy pages. This function does
1851  * nothing for in-use hugepages and non-hugepages.
1852  * This function returns values like below:
1853  *
1854  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1855  *           when the system is under memory pressure and the feature of
1856  *           freeing unused vmemmap pages associated with each hugetlb page
1857  *           is enabled.
1858  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1859  *           (allocated or reserved.)
1860  *       0:  successfully dissolved free hugepages or the page is not a
1861  *           hugepage (considered as already dissolved)
1862  */
1863 int dissolve_free_huge_page(struct page *page)
1864 {
1865 	int rc = -EBUSY;
1866 
1867 retry:
1868 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1869 	if (!PageHuge(page))
1870 		return 0;
1871 
1872 	spin_lock_irq(&hugetlb_lock);
1873 	if (!PageHuge(page)) {
1874 		rc = 0;
1875 		goto out;
1876 	}
1877 
1878 	if (!page_count(page)) {
1879 		struct page *head = compound_head(page);
1880 		struct hstate *h = page_hstate(head);
1881 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1882 			goto out;
1883 
1884 		/*
1885 		 * We should make sure that the page is already on the free list
1886 		 * when it is dissolved.
1887 		 */
1888 		if (unlikely(!HPageFreed(head))) {
1889 			spin_unlock_irq(&hugetlb_lock);
1890 			cond_resched();
1891 
1892 			/*
1893 			 * Theoretically, we should return -EBUSY when we
1894 			 * encounter this race. In fact, we have a chance
1895 			 * to successfully dissolve the page if we do a
1896 			 * retry. Because the race window is quite small.
1897 			 * If we seize this opportunity, it is an optimization
1898 			 * for increasing the success rate of dissolving page.
1899 			 */
1900 			goto retry;
1901 		}
1902 
1903 		remove_hugetlb_page(h, head, false);
1904 		h->max_huge_pages--;
1905 		spin_unlock_irq(&hugetlb_lock);
1906 
1907 		/*
1908 		 * Normally update_and_free_page will allocate required vmemmmap
1909 		 * before freeing the page.  update_and_free_page will fail to
1910 		 * free the page if it can not allocate required vmemmap.  We
1911 		 * need to adjust max_huge_pages if the page is not freed.
1912 		 * Attempt to allocate vmemmmap here so that we can take
1913 		 * appropriate action on failure.
1914 		 */
1915 		rc = alloc_huge_page_vmemmap(h, head);
1916 		if (!rc) {
1917 			/*
1918 			 * Move PageHWPoison flag from head page to the raw
1919 			 * error page, which makes any subpages rather than
1920 			 * the error page reusable.
1921 			 */
1922 			if (PageHWPoison(head) && page != head) {
1923 				SetPageHWPoison(page);
1924 				ClearPageHWPoison(head);
1925 			}
1926 			update_and_free_page(h, head, false);
1927 		} else {
1928 			spin_lock_irq(&hugetlb_lock);
1929 			add_hugetlb_page(h, head, false);
1930 			h->max_huge_pages++;
1931 			spin_unlock_irq(&hugetlb_lock);
1932 		}
1933 
1934 		return rc;
1935 	}
1936 out:
1937 	spin_unlock_irq(&hugetlb_lock);
1938 	return rc;
1939 }
1940 
1941 /*
1942  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1943  * make specified memory blocks removable from the system.
1944  * Note that this will dissolve a free gigantic hugepage completely, if any
1945  * part of it lies within the given range.
1946  * Also note that if dissolve_free_huge_page() returns with an error, all
1947  * free hugepages that were dissolved before that error are lost.
1948  */
1949 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1950 {
1951 	unsigned long pfn;
1952 	struct page *page;
1953 	int rc = 0;
1954 
1955 	if (!hugepages_supported())
1956 		return rc;
1957 
1958 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1959 		page = pfn_to_page(pfn);
1960 		rc = dissolve_free_huge_page(page);
1961 		if (rc)
1962 			break;
1963 	}
1964 
1965 	return rc;
1966 }
1967 
1968 /*
1969  * Allocates a fresh surplus page from the page allocator.
1970  */
1971 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1972 		int nid, nodemask_t *nmask)
1973 {
1974 	struct page *page = NULL;
1975 
1976 	if (hstate_is_gigantic(h))
1977 		return NULL;
1978 
1979 	spin_lock_irq(&hugetlb_lock);
1980 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1981 		goto out_unlock;
1982 	spin_unlock_irq(&hugetlb_lock);
1983 
1984 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1985 	if (!page)
1986 		return NULL;
1987 
1988 	spin_lock_irq(&hugetlb_lock);
1989 	/*
1990 	 * We could have raced with the pool size change.
1991 	 * Double check that and simply deallocate the new page
1992 	 * if we would end up overcommiting the surpluses. Abuse
1993 	 * temporary page to workaround the nasty free_huge_page
1994 	 * codeflow
1995 	 */
1996 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1997 		SetHPageTemporary(page);
1998 		spin_unlock_irq(&hugetlb_lock);
1999 		put_page(page);
2000 		return NULL;
2001 	} else {
2002 		h->surplus_huge_pages++;
2003 		h->surplus_huge_pages_node[page_to_nid(page)]++;
2004 	}
2005 
2006 out_unlock:
2007 	spin_unlock_irq(&hugetlb_lock);
2008 
2009 	return page;
2010 }
2011 
2012 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2013 				     int nid, nodemask_t *nmask)
2014 {
2015 	struct page *page;
2016 
2017 	if (hstate_is_gigantic(h))
2018 		return NULL;
2019 
2020 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2021 	if (!page)
2022 		return NULL;
2023 
2024 	/*
2025 	 * We do not account these pages as surplus because they are only
2026 	 * temporary and will be released properly on the last reference
2027 	 */
2028 	SetHPageTemporary(page);
2029 
2030 	return page;
2031 }
2032 
2033 /*
2034  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2035  */
2036 static
2037 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2038 		struct vm_area_struct *vma, unsigned long addr)
2039 {
2040 	struct page *page;
2041 	struct mempolicy *mpol;
2042 	gfp_t gfp_mask = htlb_alloc_mask(h);
2043 	int nid;
2044 	nodemask_t *nodemask;
2045 
2046 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2047 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2048 	mpol_cond_put(mpol);
2049 
2050 	return page;
2051 }
2052 
2053 /* page migration callback function */
2054 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2055 		nodemask_t *nmask, gfp_t gfp_mask)
2056 {
2057 	spin_lock_irq(&hugetlb_lock);
2058 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2059 		struct page *page;
2060 
2061 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2062 		if (page) {
2063 			spin_unlock_irq(&hugetlb_lock);
2064 			return page;
2065 		}
2066 	}
2067 	spin_unlock_irq(&hugetlb_lock);
2068 
2069 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2070 }
2071 
2072 /* mempolicy aware migration callback */
2073 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2074 		unsigned long address)
2075 {
2076 	struct mempolicy *mpol;
2077 	nodemask_t *nodemask;
2078 	struct page *page;
2079 	gfp_t gfp_mask;
2080 	int node;
2081 
2082 	gfp_mask = htlb_alloc_mask(h);
2083 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2084 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2085 	mpol_cond_put(mpol);
2086 
2087 	return page;
2088 }
2089 
2090 /*
2091  * Increase the hugetlb pool such that it can accommodate a reservation
2092  * of size 'delta'.
2093  */
2094 static int gather_surplus_pages(struct hstate *h, long delta)
2095 	__must_hold(&hugetlb_lock)
2096 {
2097 	struct list_head surplus_list;
2098 	struct page *page, *tmp;
2099 	int ret;
2100 	long i;
2101 	long needed, allocated;
2102 	bool alloc_ok = true;
2103 
2104 	lockdep_assert_held(&hugetlb_lock);
2105 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2106 	if (needed <= 0) {
2107 		h->resv_huge_pages += delta;
2108 		return 0;
2109 	}
2110 
2111 	allocated = 0;
2112 	INIT_LIST_HEAD(&surplus_list);
2113 
2114 	ret = -ENOMEM;
2115 retry:
2116 	spin_unlock_irq(&hugetlb_lock);
2117 	for (i = 0; i < needed; i++) {
2118 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2119 				NUMA_NO_NODE, NULL);
2120 		if (!page) {
2121 			alloc_ok = false;
2122 			break;
2123 		}
2124 		list_add(&page->lru, &surplus_list);
2125 		cond_resched();
2126 	}
2127 	allocated += i;
2128 
2129 	/*
2130 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2131 	 * because either resv_huge_pages or free_huge_pages may have changed.
2132 	 */
2133 	spin_lock_irq(&hugetlb_lock);
2134 	needed = (h->resv_huge_pages + delta) -
2135 			(h->free_huge_pages + allocated);
2136 	if (needed > 0) {
2137 		if (alloc_ok)
2138 			goto retry;
2139 		/*
2140 		 * We were not able to allocate enough pages to
2141 		 * satisfy the entire reservation so we free what
2142 		 * we've allocated so far.
2143 		 */
2144 		goto free;
2145 	}
2146 	/*
2147 	 * The surplus_list now contains _at_least_ the number of extra pages
2148 	 * needed to accommodate the reservation.  Add the appropriate number
2149 	 * of pages to the hugetlb pool and free the extras back to the buddy
2150 	 * allocator.  Commit the entire reservation here to prevent another
2151 	 * process from stealing the pages as they are added to the pool but
2152 	 * before they are reserved.
2153 	 */
2154 	needed += allocated;
2155 	h->resv_huge_pages += delta;
2156 	ret = 0;
2157 
2158 	/* Free the needed pages to the hugetlb pool */
2159 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2160 		int zeroed;
2161 
2162 		if ((--needed) < 0)
2163 			break;
2164 		/*
2165 		 * This page is now managed by the hugetlb allocator and has
2166 		 * no users -- drop the buddy allocator's reference.
2167 		 */
2168 		zeroed = put_page_testzero(page);
2169 		VM_BUG_ON_PAGE(!zeroed, page);
2170 		enqueue_huge_page(h, page);
2171 	}
2172 free:
2173 	spin_unlock_irq(&hugetlb_lock);
2174 
2175 	/* Free unnecessary surplus pages to the buddy allocator */
2176 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2177 		put_page(page);
2178 	spin_lock_irq(&hugetlb_lock);
2179 
2180 	return ret;
2181 }
2182 
2183 /*
2184  * This routine has two main purposes:
2185  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2186  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2187  *    to the associated reservation map.
2188  * 2) Free any unused surplus pages that may have been allocated to satisfy
2189  *    the reservation.  As many as unused_resv_pages may be freed.
2190  */
2191 static void return_unused_surplus_pages(struct hstate *h,
2192 					unsigned long unused_resv_pages)
2193 {
2194 	unsigned long nr_pages;
2195 	struct page *page;
2196 	LIST_HEAD(page_list);
2197 
2198 	lockdep_assert_held(&hugetlb_lock);
2199 	/* Uncommit the reservation */
2200 	h->resv_huge_pages -= unused_resv_pages;
2201 
2202 	/* Cannot return gigantic pages currently */
2203 	if (hstate_is_gigantic(h))
2204 		goto out;
2205 
2206 	/*
2207 	 * Part (or even all) of the reservation could have been backed
2208 	 * by pre-allocated pages. Only free surplus pages.
2209 	 */
2210 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2211 
2212 	/*
2213 	 * We want to release as many surplus pages as possible, spread
2214 	 * evenly across all nodes with memory. Iterate across these nodes
2215 	 * until we can no longer free unreserved surplus pages. This occurs
2216 	 * when the nodes with surplus pages have no free pages.
2217 	 * remove_pool_huge_page() will balance the freed pages across the
2218 	 * on-line nodes with memory and will handle the hstate accounting.
2219 	 */
2220 	while (nr_pages--) {
2221 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2222 		if (!page)
2223 			goto out;
2224 
2225 		list_add(&page->lru, &page_list);
2226 	}
2227 
2228 out:
2229 	spin_unlock_irq(&hugetlb_lock);
2230 	update_and_free_pages_bulk(h, &page_list);
2231 	spin_lock_irq(&hugetlb_lock);
2232 }
2233 
2234 
2235 /*
2236  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2237  * are used by the huge page allocation routines to manage reservations.
2238  *
2239  * vma_needs_reservation is called to determine if the huge page at addr
2240  * within the vma has an associated reservation.  If a reservation is
2241  * needed, the value 1 is returned.  The caller is then responsible for
2242  * managing the global reservation and subpool usage counts.  After
2243  * the huge page has been allocated, vma_commit_reservation is called
2244  * to add the page to the reservation map.  If the page allocation fails,
2245  * the reservation must be ended instead of committed.  vma_end_reservation
2246  * is called in such cases.
2247  *
2248  * In the normal case, vma_commit_reservation returns the same value
2249  * as the preceding vma_needs_reservation call.  The only time this
2250  * is not the case is if a reserve map was changed between calls.  It
2251  * is the responsibility of the caller to notice the difference and
2252  * take appropriate action.
2253  *
2254  * vma_add_reservation is used in error paths where a reservation must
2255  * be restored when a newly allocated huge page must be freed.  It is
2256  * to be called after calling vma_needs_reservation to determine if a
2257  * reservation exists.
2258  *
2259  * vma_del_reservation is used in error paths where an entry in the reserve
2260  * map was created during huge page allocation and must be removed.  It is to
2261  * be called after calling vma_needs_reservation to determine if a reservation
2262  * exists.
2263  */
2264 enum vma_resv_mode {
2265 	VMA_NEEDS_RESV,
2266 	VMA_COMMIT_RESV,
2267 	VMA_END_RESV,
2268 	VMA_ADD_RESV,
2269 	VMA_DEL_RESV,
2270 };
2271 static long __vma_reservation_common(struct hstate *h,
2272 				struct vm_area_struct *vma, unsigned long addr,
2273 				enum vma_resv_mode mode)
2274 {
2275 	struct resv_map *resv;
2276 	pgoff_t idx;
2277 	long ret;
2278 	long dummy_out_regions_needed;
2279 
2280 	resv = vma_resv_map(vma);
2281 	if (!resv)
2282 		return 1;
2283 
2284 	idx = vma_hugecache_offset(h, vma, addr);
2285 	switch (mode) {
2286 	case VMA_NEEDS_RESV:
2287 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2288 		/* We assume that vma_reservation_* routines always operate on
2289 		 * 1 page, and that adding to resv map a 1 page entry can only
2290 		 * ever require 1 region.
2291 		 */
2292 		VM_BUG_ON(dummy_out_regions_needed != 1);
2293 		break;
2294 	case VMA_COMMIT_RESV:
2295 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2296 		/* region_add calls of range 1 should never fail. */
2297 		VM_BUG_ON(ret < 0);
2298 		break;
2299 	case VMA_END_RESV:
2300 		region_abort(resv, idx, idx + 1, 1);
2301 		ret = 0;
2302 		break;
2303 	case VMA_ADD_RESV:
2304 		if (vma->vm_flags & VM_MAYSHARE) {
2305 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2306 			/* region_add calls of range 1 should never fail. */
2307 			VM_BUG_ON(ret < 0);
2308 		} else {
2309 			region_abort(resv, idx, idx + 1, 1);
2310 			ret = region_del(resv, idx, idx + 1);
2311 		}
2312 		break;
2313 	case VMA_DEL_RESV:
2314 		if (vma->vm_flags & VM_MAYSHARE) {
2315 			region_abort(resv, idx, idx + 1, 1);
2316 			ret = region_del(resv, idx, idx + 1);
2317 		} else {
2318 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2319 			/* region_add calls of range 1 should never fail. */
2320 			VM_BUG_ON(ret < 0);
2321 		}
2322 		break;
2323 	default:
2324 		BUG();
2325 	}
2326 
2327 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2328 		return ret;
2329 	/*
2330 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2331 	 *
2332 	 * In most cases, reserves always exist for private mappings.
2333 	 * However, a file associated with mapping could have been
2334 	 * hole punched or truncated after reserves were consumed.
2335 	 * As subsequent fault on such a range will not use reserves.
2336 	 * Subtle - The reserve map for private mappings has the
2337 	 * opposite meaning than that of shared mappings.  If NO
2338 	 * entry is in the reserve map, it means a reservation exists.
2339 	 * If an entry exists in the reserve map, it means the
2340 	 * reservation has already been consumed.  As a result, the
2341 	 * return value of this routine is the opposite of the
2342 	 * value returned from reserve map manipulation routines above.
2343 	 */
2344 	if (ret > 0)
2345 		return 0;
2346 	if (ret == 0)
2347 		return 1;
2348 	return ret;
2349 }
2350 
2351 static long vma_needs_reservation(struct hstate *h,
2352 			struct vm_area_struct *vma, unsigned long addr)
2353 {
2354 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2355 }
2356 
2357 static long vma_commit_reservation(struct hstate *h,
2358 			struct vm_area_struct *vma, unsigned long addr)
2359 {
2360 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2361 }
2362 
2363 static void vma_end_reservation(struct hstate *h,
2364 			struct vm_area_struct *vma, unsigned long addr)
2365 {
2366 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2367 }
2368 
2369 static long vma_add_reservation(struct hstate *h,
2370 			struct vm_area_struct *vma, unsigned long addr)
2371 {
2372 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2373 }
2374 
2375 static long vma_del_reservation(struct hstate *h,
2376 			struct vm_area_struct *vma, unsigned long addr)
2377 {
2378 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2379 }
2380 
2381 /*
2382  * This routine is called to restore reservation information on error paths.
2383  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2384  * the hugetlb mutex should remain held when calling this routine.
2385  *
2386  * It handles two specific cases:
2387  * 1) A reservation was in place and the page consumed the reservation.
2388  *    HPageRestoreReserve is set in the page.
2389  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2390  *    not set.  However, alloc_huge_page always updates the reserve map.
2391  *
2392  * In case 1, free_huge_page later in the error path will increment the
2393  * global reserve count.  But, free_huge_page does not have enough context
2394  * to adjust the reservation map.  This case deals primarily with private
2395  * mappings.  Adjust the reserve map here to be consistent with global
2396  * reserve count adjustments to be made by free_huge_page.  Make sure the
2397  * reserve map indicates there is a reservation present.
2398  *
2399  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2400  */
2401 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2402 			unsigned long address, struct page *page)
2403 {
2404 	long rc = vma_needs_reservation(h, vma, address);
2405 
2406 	if (HPageRestoreReserve(page)) {
2407 		if (unlikely(rc < 0))
2408 			/*
2409 			 * Rare out of memory condition in reserve map
2410 			 * manipulation.  Clear HPageRestoreReserve so that
2411 			 * global reserve count will not be incremented
2412 			 * by free_huge_page.  This will make it appear
2413 			 * as though the reservation for this page was
2414 			 * consumed.  This may prevent the task from
2415 			 * faulting in the page at a later time.  This
2416 			 * is better than inconsistent global huge page
2417 			 * accounting of reserve counts.
2418 			 */
2419 			ClearHPageRestoreReserve(page);
2420 		else if (rc)
2421 			(void)vma_add_reservation(h, vma, address);
2422 		else
2423 			vma_end_reservation(h, vma, address);
2424 	} else {
2425 		if (!rc) {
2426 			/*
2427 			 * This indicates there is an entry in the reserve map
2428 			 * added by alloc_huge_page.  We know it was added
2429 			 * before the alloc_huge_page call, otherwise
2430 			 * HPageRestoreReserve would be set on the page.
2431 			 * Remove the entry so that a subsequent allocation
2432 			 * does not consume a reservation.
2433 			 */
2434 			rc = vma_del_reservation(h, vma, address);
2435 			if (rc < 0)
2436 				/*
2437 				 * VERY rare out of memory condition.  Since
2438 				 * we can not delete the entry, set
2439 				 * HPageRestoreReserve so that the reserve
2440 				 * count will be incremented when the page
2441 				 * is freed.  This reserve will be consumed
2442 				 * on a subsequent allocation.
2443 				 */
2444 				SetHPageRestoreReserve(page);
2445 		} else if (rc < 0) {
2446 			/*
2447 			 * Rare out of memory condition from
2448 			 * vma_needs_reservation call.  Memory allocation is
2449 			 * only attempted if a new entry is needed.  Therefore,
2450 			 * this implies there is not an entry in the
2451 			 * reserve map.
2452 			 *
2453 			 * For shared mappings, no entry in the map indicates
2454 			 * no reservation.  We are done.
2455 			 */
2456 			if (!(vma->vm_flags & VM_MAYSHARE))
2457 				/*
2458 				 * For private mappings, no entry indicates
2459 				 * a reservation is present.  Since we can
2460 				 * not add an entry, set SetHPageRestoreReserve
2461 				 * on the page so reserve count will be
2462 				 * incremented when freed.  This reserve will
2463 				 * be consumed on a subsequent allocation.
2464 				 */
2465 				SetHPageRestoreReserve(page);
2466 		} else
2467 			/*
2468 			 * No reservation present, do nothing
2469 			 */
2470 			 vma_end_reservation(h, vma, address);
2471 	}
2472 }
2473 
2474 /*
2475  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2476  * @h: struct hstate old page belongs to
2477  * @old_page: Old page to dissolve
2478  * @list: List to isolate the page in case we need to
2479  * Returns 0 on success, otherwise negated error.
2480  */
2481 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2482 					struct list_head *list)
2483 {
2484 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2485 	int nid = page_to_nid(old_page);
2486 	struct page *new_page;
2487 	int ret = 0;
2488 
2489 	/*
2490 	 * Before dissolving the page, we need to allocate a new one for the
2491 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2492 	 * by doing everything but actually updating counters and adding to
2493 	 * the pool.  This simplifies and let us do most of the processing
2494 	 * under the lock.
2495 	 */
2496 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2497 	if (!new_page)
2498 		return -ENOMEM;
2499 	__prep_new_huge_page(h, new_page);
2500 
2501 retry:
2502 	spin_lock_irq(&hugetlb_lock);
2503 	if (!PageHuge(old_page)) {
2504 		/*
2505 		 * Freed from under us. Drop new_page too.
2506 		 */
2507 		goto free_new;
2508 	} else if (page_count(old_page)) {
2509 		/*
2510 		 * Someone has grabbed the page, try to isolate it here.
2511 		 * Fail with -EBUSY if not possible.
2512 		 */
2513 		spin_unlock_irq(&hugetlb_lock);
2514 		if (!isolate_huge_page(old_page, list))
2515 			ret = -EBUSY;
2516 		spin_lock_irq(&hugetlb_lock);
2517 		goto free_new;
2518 	} else if (!HPageFreed(old_page)) {
2519 		/*
2520 		 * Page's refcount is 0 but it has not been enqueued in the
2521 		 * freelist yet. Race window is small, so we can succeed here if
2522 		 * we retry.
2523 		 */
2524 		spin_unlock_irq(&hugetlb_lock);
2525 		cond_resched();
2526 		goto retry;
2527 	} else {
2528 		/*
2529 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2530 		 * the freelist and decrease the counters. These will be
2531 		 * incremented again when calling __prep_account_new_huge_page()
2532 		 * and enqueue_huge_page() for new_page. The counters will remain
2533 		 * stable since this happens under the lock.
2534 		 */
2535 		remove_hugetlb_page(h, old_page, false);
2536 
2537 		/*
2538 		 * Reference count trick is needed because allocator gives us
2539 		 * referenced page but the pool requires pages with 0 refcount.
2540 		 */
2541 		__prep_account_new_huge_page(h, nid);
2542 		page_ref_dec(new_page);
2543 		enqueue_huge_page(h, new_page);
2544 
2545 		/*
2546 		 * Pages have been replaced, we can safely free the old one.
2547 		 */
2548 		spin_unlock_irq(&hugetlb_lock);
2549 		update_and_free_page(h, old_page, false);
2550 	}
2551 
2552 	return ret;
2553 
2554 free_new:
2555 	spin_unlock_irq(&hugetlb_lock);
2556 	update_and_free_page(h, new_page, false);
2557 
2558 	return ret;
2559 }
2560 
2561 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2562 {
2563 	struct hstate *h;
2564 	struct page *head;
2565 	int ret = -EBUSY;
2566 
2567 	/*
2568 	 * The page might have been dissolved from under our feet, so make sure
2569 	 * to carefully check the state under the lock.
2570 	 * Return success when racing as if we dissolved the page ourselves.
2571 	 */
2572 	spin_lock_irq(&hugetlb_lock);
2573 	if (PageHuge(page)) {
2574 		head = compound_head(page);
2575 		h = page_hstate(head);
2576 	} else {
2577 		spin_unlock_irq(&hugetlb_lock);
2578 		return 0;
2579 	}
2580 	spin_unlock_irq(&hugetlb_lock);
2581 
2582 	/*
2583 	 * Fence off gigantic pages as there is a cyclic dependency between
2584 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2585 	 * of bailing out right away without further retrying.
2586 	 */
2587 	if (hstate_is_gigantic(h))
2588 		return -ENOMEM;
2589 
2590 	if (page_count(head) && isolate_huge_page(head, list))
2591 		ret = 0;
2592 	else if (!page_count(head))
2593 		ret = alloc_and_dissolve_huge_page(h, head, list);
2594 
2595 	return ret;
2596 }
2597 
2598 struct page *alloc_huge_page(struct vm_area_struct *vma,
2599 				    unsigned long addr, int avoid_reserve)
2600 {
2601 	struct hugepage_subpool *spool = subpool_vma(vma);
2602 	struct hstate *h = hstate_vma(vma);
2603 	struct page *page;
2604 	long map_chg, map_commit;
2605 	long gbl_chg;
2606 	int ret, idx;
2607 	struct hugetlb_cgroup *h_cg;
2608 	bool deferred_reserve;
2609 
2610 	idx = hstate_index(h);
2611 	/*
2612 	 * Examine the region/reserve map to determine if the process
2613 	 * has a reservation for the page to be allocated.  A return
2614 	 * code of zero indicates a reservation exists (no change).
2615 	 */
2616 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2617 	if (map_chg < 0)
2618 		return ERR_PTR(-ENOMEM);
2619 
2620 	/*
2621 	 * Processes that did not create the mapping will have no
2622 	 * reserves as indicated by the region/reserve map. Check
2623 	 * that the allocation will not exceed the subpool limit.
2624 	 * Allocations for MAP_NORESERVE mappings also need to be
2625 	 * checked against any subpool limit.
2626 	 */
2627 	if (map_chg || avoid_reserve) {
2628 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2629 		if (gbl_chg < 0) {
2630 			vma_end_reservation(h, vma, addr);
2631 			return ERR_PTR(-ENOSPC);
2632 		}
2633 
2634 		/*
2635 		 * Even though there was no reservation in the region/reserve
2636 		 * map, there could be reservations associated with the
2637 		 * subpool that can be used.  This would be indicated if the
2638 		 * return value of hugepage_subpool_get_pages() is zero.
2639 		 * However, if avoid_reserve is specified we still avoid even
2640 		 * the subpool reservations.
2641 		 */
2642 		if (avoid_reserve)
2643 			gbl_chg = 1;
2644 	}
2645 
2646 	/* If this allocation is not consuming a reservation, charge it now.
2647 	 */
2648 	deferred_reserve = map_chg || avoid_reserve;
2649 	if (deferred_reserve) {
2650 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2651 			idx, pages_per_huge_page(h), &h_cg);
2652 		if (ret)
2653 			goto out_subpool_put;
2654 	}
2655 
2656 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2657 	if (ret)
2658 		goto out_uncharge_cgroup_reservation;
2659 
2660 	spin_lock_irq(&hugetlb_lock);
2661 	/*
2662 	 * glb_chg is passed to indicate whether or not a page must be taken
2663 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2664 	 * a reservation exists for the allocation.
2665 	 */
2666 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2667 	if (!page) {
2668 		spin_unlock_irq(&hugetlb_lock);
2669 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2670 		if (!page)
2671 			goto out_uncharge_cgroup;
2672 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2673 			SetHPageRestoreReserve(page);
2674 			h->resv_huge_pages--;
2675 		}
2676 		spin_lock_irq(&hugetlb_lock);
2677 		list_add(&page->lru, &h->hugepage_activelist);
2678 		/* Fall through */
2679 	}
2680 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2681 	/* If allocation is not consuming a reservation, also store the
2682 	 * hugetlb_cgroup pointer on the page.
2683 	 */
2684 	if (deferred_reserve) {
2685 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2686 						  h_cg, page);
2687 	}
2688 
2689 	spin_unlock_irq(&hugetlb_lock);
2690 
2691 	hugetlb_set_page_subpool(page, spool);
2692 
2693 	map_commit = vma_commit_reservation(h, vma, addr);
2694 	if (unlikely(map_chg > map_commit)) {
2695 		/*
2696 		 * The page was added to the reservation map between
2697 		 * vma_needs_reservation and vma_commit_reservation.
2698 		 * This indicates a race with hugetlb_reserve_pages.
2699 		 * Adjust for the subpool count incremented above AND
2700 		 * in hugetlb_reserve_pages for the same page.  Also,
2701 		 * the reservation count added in hugetlb_reserve_pages
2702 		 * no longer applies.
2703 		 */
2704 		long rsv_adjust;
2705 
2706 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2707 		hugetlb_acct_memory(h, -rsv_adjust);
2708 		if (deferred_reserve)
2709 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2710 					pages_per_huge_page(h), page);
2711 	}
2712 	return page;
2713 
2714 out_uncharge_cgroup:
2715 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2716 out_uncharge_cgroup_reservation:
2717 	if (deferred_reserve)
2718 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2719 						    h_cg);
2720 out_subpool_put:
2721 	if (map_chg || avoid_reserve)
2722 		hugepage_subpool_put_pages(spool, 1);
2723 	vma_end_reservation(h, vma, addr);
2724 	return ERR_PTR(-ENOSPC);
2725 }
2726 
2727 int alloc_bootmem_huge_page(struct hstate *h)
2728 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2729 int __alloc_bootmem_huge_page(struct hstate *h)
2730 {
2731 	struct huge_bootmem_page *m;
2732 	int nr_nodes, node;
2733 
2734 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2735 		void *addr;
2736 
2737 		addr = memblock_alloc_try_nid_raw(
2738 				huge_page_size(h), huge_page_size(h),
2739 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2740 		if (addr) {
2741 			/*
2742 			 * Use the beginning of the huge page to store the
2743 			 * huge_bootmem_page struct (until gather_bootmem
2744 			 * puts them into the mem_map).
2745 			 */
2746 			m = addr;
2747 			goto found;
2748 		}
2749 	}
2750 	return 0;
2751 
2752 found:
2753 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2754 	/* Put them into a private list first because mem_map is not up yet */
2755 	INIT_LIST_HEAD(&m->list);
2756 	list_add(&m->list, &huge_boot_pages);
2757 	m->hstate = h;
2758 	return 1;
2759 }
2760 
2761 static void __init prep_compound_huge_page(struct page *page,
2762 		unsigned int order)
2763 {
2764 	if (unlikely(order > (MAX_ORDER - 1)))
2765 		prep_compound_gigantic_page(page, order);
2766 	else
2767 		prep_compound_page(page, order);
2768 }
2769 
2770 /* Put bootmem huge pages into the standard lists after mem_map is up */
2771 static void __init gather_bootmem_prealloc(void)
2772 {
2773 	struct huge_bootmem_page *m;
2774 
2775 	list_for_each_entry(m, &huge_boot_pages, list) {
2776 		struct page *page = virt_to_page(m);
2777 		struct hstate *h = m->hstate;
2778 
2779 		WARN_ON(page_count(page) != 1);
2780 		prep_compound_huge_page(page, huge_page_order(h));
2781 		WARN_ON(PageReserved(page));
2782 		prep_new_huge_page(h, page, page_to_nid(page));
2783 		put_page(page); /* free it into the hugepage allocator */
2784 
2785 		/*
2786 		 * If we had gigantic hugepages allocated at boot time, we need
2787 		 * to restore the 'stolen' pages to totalram_pages in order to
2788 		 * fix confusing memory reports from free(1) and another
2789 		 * side-effects, like CommitLimit going negative.
2790 		 */
2791 		if (hstate_is_gigantic(h))
2792 			adjust_managed_page_count(page, pages_per_huge_page(h));
2793 		cond_resched();
2794 	}
2795 }
2796 
2797 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2798 {
2799 	unsigned long i;
2800 	nodemask_t *node_alloc_noretry;
2801 
2802 	if (!hstate_is_gigantic(h)) {
2803 		/*
2804 		 * Bit mask controlling how hard we retry per-node allocations.
2805 		 * Ignore errors as lower level routines can deal with
2806 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2807 		 * time, we are likely in bigger trouble.
2808 		 */
2809 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2810 						GFP_KERNEL);
2811 	} else {
2812 		/* allocations done at boot time */
2813 		node_alloc_noretry = NULL;
2814 	}
2815 
2816 	/* bit mask controlling how hard we retry per-node allocations */
2817 	if (node_alloc_noretry)
2818 		nodes_clear(*node_alloc_noretry);
2819 
2820 	for (i = 0; i < h->max_huge_pages; ++i) {
2821 		if (hstate_is_gigantic(h)) {
2822 			if (hugetlb_cma_size) {
2823 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2824 				goto free;
2825 			}
2826 			if (!alloc_bootmem_huge_page(h))
2827 				break;
2828 		} else if (!alloc_pool_huge_page(h,
2829 					 &node_states[N_MEMORY],
2830 					 node_alloc_noretry))
2831 			break;
2832 		cond_resched();
2833 	}
2834 	if (i < h->max_huge_pages) {
2835 		char buf[32];
2836 
2837 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2838 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2839 			h->max_huge_pages, buf, i);
2840 		h->max_huge_pages = i;
2841 	}
2842 free:
2843 	kfree(node_alloc_noretry);
2844 }
2845 
2846 static void __init hugetlb_init_hstates(void)
2847 {
2848 	struct hstate *h;
2849 
2850 	for_each_hstate(h) {
2851 		if (minimum_order > huge_page_order(h))
2852 			minimum_order = huge_page_order(h);
2853 
2854 		/* oversize hugepages were init'ed in early boot */
2855 		if (!hstate_is_gigantic(h))
2856 			hugetlb_hstate_alloc_pages(h);
2857 	}
2858 	VM_BUG_ON(minimum_order == UINT_MAX);
2859 }
2860 
2861 static void __init report_hugepages(void)
2862 {
2863 	struct hstate *h;
2864 
2865 	for_each_hstate(h) {
2866 		char buf[32];
2867 
2868 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2869 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2870 			buf, h->free_huge_pages);
2871 	}
2872 }
2873 
2874 #ifdef CONFIG_HIGHMEM
2875 static void try_to_free_low(struct hstate *h, unsigned long count,
2876 						nodemask_t *nodes_allowed)
2877 {
2878 	int i;
2879 	LIST_HEAD(page_list);
2880 
2881 	lockdep_assert_held(&hugetlb_lock);
2882 	if (hstate_is_gigantic(h))
2883 		return;
2884 
2885 	/*
2886 	 * Collect pages to be freed on a list, and free after dropping lock
2887 	 */
2888 	for_each_node_mask(i, *nodes_allowed) {
2889 		struct page *page, *next;
2890 		struct list_head *freel = &h->hugepage_freelists[i];
2891 		list_for_each_entry_safe(page, next, freel, lru) {
2892 			if (count >= h->nr_huge_pages)
2893 				goto out;
2894 			if (PageHighMem(page))
2895 				continue;
2896 			remove_hugetlb_page(h, page, false);
2897 			list_add(&page->lru, &page_list);
2898 		}
2899 	}
2900 
2901 out:
2902 	spin_unlock_irq(&hugetlb_lock);
2903 	update_and_free_pages_bulk(h, &page_list);
2904 	spin_lock_irq(&hugetlb_lock);
2905 }
2906 #else
2907 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2908 						nodemask_t *nodes_allowed)
2909 {
2910 }
2911 #endif
2912 
2913 /*
2914  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2915  * balanced by operating on them in a round-robin fashion.
2916  * Returns 1 if an adjustment was made.
2917  */
2918 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2919 				int delta)
2920 {
2921 	int nr_nodes, node;
2922 
2923 	lockdep_assert_held(&hugetlb_lock);
2924 	VM_BUG_ON(delta != -1 && delta != 1);
2925 
2926 	if (delta < 0) {
2927 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2928 			if (h->surplus_huge_pages_node[node])
2929 				goto found;
2930 		}
2931 	} else {
2932 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2933 			if (h->surplus_huge_pages_node[node] <
2934 					h->nr_huge_pages_node[node])
2935 				goto found;
2936 		}
2937 	}
2938 	return 0;
2939 
2940 found:
2941 	h->surplus_huge_pages += delta;
2942 	h->surplus_huge_pages_node[node] += delta;
2943 	return 1;
2944 }
2945 
2946 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2947 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2948 			      nodemask_t *nodes_allowed)
2949 {
2950 	unsigned long min_count, ret;
2951 	struct page *page;
2952 	LIST_HEAD(page_list);
2953 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2954 
2955 	/*
2956 	 * Bit mask controlling how hard we retry per-node allocations.
2957 	 * If we can not allocate the bit mask, do not attempt to allocate
2958 	 * the requested huge pages.
2959 	 */
2960 	if (node_alloc_noretry)
2961 		nodes_clear(*node_alloc_noretry);
2962 	else
2963 		return -ENOMEM;
2964 
2965 	/*
2966 	 * resize_lock mutex prevents concurrent adjustments to number of
2967 	 * pages in hstate via the proc/sysfs interfaces.
2968 	 */
2969 	mutex_lock(&h->resize_lock);
2970 	flush_free_hpage_work(h);
2971 	spin_lock_irq(&hugetlb_lock);
2972 
2973 	/*
2974 	 * Check for a node specific request.
2975 	 * Changing node specific huge page count may require a corresponding
2976 	 * change to the global count.  In any case, the passed node mask
2977 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2978 	 */
2979 	if (nid != NUMA_NO_NODE) {
2980 		unsigned long old_count = count;
2981 
2982 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2983 		/*
2984 		 * User may have specified a large count value which caused the
2985 		 * above calculation to overflow.  In this case, they wanted
2986 		 * to allocate as many huge pages as possible.  Set count to
2987 		 * largest possible value to align with their intention.
2988 		 */
2989 		if (count < old_count)
2990 			count = ULONG_MAX;
2991 	}
2992 
2993 	/*
2994 	 * Gigantic pages runtime allocation depend on the capability for large
2995 	 * page range allocation.
2996 	 * If the system does not provide this feature, return an error when
2997 	 * the user tries to allocate gigantic pages but let the user free the
2998 	 * boottime allocated gigantic pages.
2999 	 */
3000 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3001 		if (count > persistent_huge_pages(h)) {
3002 			spin_unlock_irq(&hugetlb_lock);
3003 			mutex_unlock(&h->resize_lock);
3004 			NODEMASK_FREE(node_alloc_noretry);
3005 			return -EINVAL;
3006 		}
3007 		/* Fall through to decrease pool */
3008 	}
3009 
3010 	/*
3011 	 * Increase the pool size
3012 	 * First take pages out of surplus state.  Then make up the
3013 	 * remaining difference by allocating fresh huge pages.
3014 	 *
3015 	 * We might race with alloc_surplus_huge_page() here and be unable
3016 	 * to convert a surplus huge page to a normal huge page. That is
3017 	 * not critical, though, it just means the overall size of the
3018 	 * pool might be one hugepage larger than it needs to be, but
3019 	 * within all the constraints specified by the sysctls.
3020 	 */
3021 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3022 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3023 			break;
3024 	}
3025 
3026 	while (count > persistent_huge_pages(h)) {
3027 		/*
3028 		 * If this allocation races such that we no longer need the
3029 		 * page, free_huge_page will handle it by freeing the page
3030 		 * and reducing the surplus.
3031 		 */
3032 		spin_unlock_irq(&hugetlb_lock);
3033 
3034 		/* yield cpu to avoid soft lockup */
3035 		cond_resched();
3036 
3037 		ret = alloc_pool_huge_page(h, nodes_allowed,
3038 						node_alloc_noretry);
3039 		spin_lock_irq(&hugetlb_lock);
3040 		if (!ret)
3041 			goto out;
3042 
3043 		/* Bail for signals. Probably ctrl-c from user */
3044 		if (signal_pending(current))
3045 			goto out;
3046 	}
3047 
3048 	/*
3049 	 * Decrease the pool size
3050 	 * First return free pages to the buddy allocator (being careful
3051 	 * to keep enough around to satisfy reservations).  Then place
3052 	 * pages into surplus state as needed so the pool will shrink
3053 	 * to the desired size as pages become free.
3054 	 *
3055 	 * By placing pages into the surplus state independent of the
3056 	 * overcommit value, we are allowing the surplus pool size to
3057 	 * exceed overcommit. There are few sane options here. Since
3058 	 * alloc_surplus_huge_page() is checking the global counter,
3059 	 * though, we'll note that we're not allowed to exceed surplus
3060 	 * and won't grow the pool anywhere else. Not until one of the
3061 	 * sysctls are changed, or the surplus pages go out of use.
3062 	 */
3063 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3064 	min_count = max(count, min_count);
3065 	try_to_free_low(h, min_count, nodes_allowed);
3066 
3067 	/*
3068 	 * Collect pages to be removed on list without dropping lock
3069 	 */
3070 	while (min_count < persistent_huge_pages(h)) {
3071 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3072 		if (!page)
3073 			break;
3074 
3075 		list_add(&page->lru, &page_list);
3076 	}
3077 	/* free the pages after dropping lock */
3078 	spin_unlock_irq(&hugetlb_lock);
3079 	update_and_free_pages_bulk(h, &page_list);
3080 	flush_free_hpage_work(h);
3081 	spin_lock_irq(&hugetlb_lock);
3082 
3083 	while (count < persistent_huge_pages(h)) {
3084 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3085 			break;
3086 	}
3087 out:
3088 	h->max_huge_pages = persistent_huge_pages(h);
3089 	spin_unlock_irq(&hugetlb_lock);
3090 	mutex_unlock(&h->resize_lock);
3091 
3092 	NODEMASK_FREE(node_alloc_noretry);
3093 
3094 	return 0;
3095 }
3096 
3097 #define HSTATE_ATTR_RO(_name) \
3098 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3099 
3100 #define HSTATE_ATTR(_name) \
3101 	static struct kobj_attribute _name##_attr = \
3102 		__ATTR(_name, 0644, _name##_show, _name##_store)
3103 
3104 static struct kobject *hugepages_kobj;
3105 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3106 
3107 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3108 
3109 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3110 {
3111 	int i;
3112 
3113 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3114 		if (hstate_kobjs[i] == kobj) {
3115 			if (nidp)
3116 				*nidp = NUMA_NO_NODE;
3117 			return &hstates[i];
3118 		}
3119 
3120 	return kobj_to_node_hstate(kobj, nidp);
3121 }
3122 
3123 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3124 					struct kobj_attribute *attr, char *buf)
3125 {
3126 	struct hstate *h;
3127 	unsigned long nr_huge_pages;
3128 	int nid;
3129 
3130 	h = kobj_to_hstate(kobj, &nid);
3131 	if (nid == NUMA_NO_NODE)
3132 		nr_huge_pages = h->nr_huge_pages;
3133 	else
3134 		nr_huge_pages = h->nr_huge_pages_node[nid];
3135 
3136 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3137 }
3138 
3139 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3140 					   struct hstate *h, int nid,
3141 					   unsigned long count, size_t len)
3142 {
3143 	int err;
3144 	nodemask_t nodes_allowed, *n_mask;
3145 
3146 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3147 		return -EINVAL;
3148 
3149 	if (nid == NUMA_NO_NODE) {
3150 		/*
3151 		 * global hstate attribute
3152 		 */
3153 		if (!(obey_mempolicy &&
3154 				init_nodemask_of_mempolicy(&nodes_allowed)))
3155 			n_mask = &node_states[N_MEMORY];
3156 		else
3157 			n_mask = &nodes_allowed;
3158 	} else {
3159 		/*
3160 		 * Node specific request.  count adjustment happens in
3161 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3162 		 */
3163 		init_nodemask_of_node(&nodes_allowed, nid);
3164 		n_mask = &nodes_allowed;
3165 	}
3166 
3167 	err = set_max_huge_pages(h, count, nid, n_mask);
3168 
3169 	return err ? err : len;
3170 }
3171 
3172 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3173 					 struct kobject *kobj, const char *buf,
3174 					 size_t len)
3175 {
3176 	struct hstate *h;
3177 	unsigned long count;
3178 	int nid;
3179 	int err;
3180 
3181 	err = kstrtoul(buf, 10, &count);
3182 	if (err)
3183 		return err;
3184 
3185 	h = kobj_to_hstate(kobj, &nid);
3186 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3187 }
3188 
3189 static ssize_t nr_hugepages_show(struct kobject *kobj,
3190 				       struct kobj_attribute *attr, char *buf)
3191 {
3192 	return nr_hugepages_show_common(kobj, attr, buf);
3193 }
3194 
3195 static ssize_t nr_hugepages_store(struct kobject *kobj,
3196 	       struct kobj_attribute *attr, const char *buf, size_t len)
3197 {
3198 	return nr_hugepages_store_common(false, kobj, buf, len);
3199 }
3200 HSTATE_ATTR(nr_hugepages);
3201 
3202 #ifdef CONFIG_NUMA
3203 
3204 /*
3205  * hstate attribute for optionally mempolicy-based constraint on persistent
3206  * huge page alloc/free.
3207  */
3208 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3209 					   struct kobj_attribute *attr,
3210 					   char *buf)
3211 {
3212 	return nr_hugepages_show_common(kobj, attr, buf);
3213 }
3214 
3215 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3216 	       struct kobj_attribute *attr, const char *buf, size_t len)
3217 {
3218 	return nr_hugepages_store_common(true, kobj, buf, len);
3219 }
3220 HSTATE_ATTR(nr_hugepages_mempolicy);
3221 #endif
3222 
3223 
3224 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3225 					struct kobj_attribute *attr, char *buf)
3226 {
3227 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3228 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3229 }
3230 
3231 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3232 		struct kobj_attribute *attr, const char *buf, size_t count)
3233 {
3234 	int err;
3235 	unsigned long input;
3236 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3237 
3238 	if (hstate_is_gigantic(h))
3239 		return -EINVAL;
3240 
3241 	err = kstrtoul(buf, 10, &input);
3242 	if (err)
3243 		return err;
3244 
3245 	spin_lock_irq(&hugetlb_lock);
3246 	h->nr_overcommit_huge_pages = input;
3247 	spin_unlock_irq(&hugetlb_lock);
3248 
3249 	return count;
3250 }
3251 HSTATE_ATTR(nr_overcommit_hugepages);
3252 
3253 static ssize_t free_hugepages_show(struct kobject *kobj,
3254 					struct kobj_attribute *attr, char *buf)
3255 {
3256 	struct hstate *h;
3257 	unsigned long free_huge_pages;
3258 	int nid;
3259 
3260 	h = kobj_to_hstate(kobj, &nid);
3261 	if (nid == NUMA_NO_NODE)
3262 		free_huge_pages = h->free_huge_pages;
3263 	else
3264 		free_huge_pages = h->free_huge_pages_node[nid];
3265 
3266 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3267 }
3268 HSTATE_ATTR_RO(free_hugepages);
3269 
3270 static ssize_t resv_hugepages_show(struct kobject *kobj,
3271 					struct kobj_attribute *attr, char *buf)
3272 {
3273 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3274 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3275 }
3276 HSTATE_ATTR_RO(resv_hugepages);
3277 
3278 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3279 					struct kobj_attribute *attr, char *buf)
3280 {
3281 	struct hstate *h;
3282 	unsigned long surplus_huge_pages;
3283 	int nid;
3284 
3285 	h = kobj_to_hstate(kobj, &nid);
3286 	if (nid == NUMA_NO_NODE)
3287 		surplus_huge_pages = h->surplus_huge_pages;
3288 	else
3289 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3290 
3291 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3292 }
3293 HSTATE_ATTR_RO(surplus_hugepages);
3294 
3295 static struct attribute *hstate_attrs[] = {
3296 	&nr_hugepages_attr.attr,
3297 	&nr_overcommit_hugepages_attr.attr,
3298 	&free_hugepages_attr.attr,
3299 	&resv_hugepages_attr.attr,
3300 	&surplus_hugepages_attr.attr,
3301 #ifdef CONFIG_NUMA
3302 	&nr_hugepages_mempolicy_attr.attr,
3303 #endif
3304 	NULL,
3305 };
3306 
3307 static const struct attribute_group hstate_attr_group = {
3308 	.attrs = hstate_attrs,
3309 };
3310 
3311 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3312 				    struct kobject **hstate_kobjs,
3313 				    const struct attribute_group *hstate_attr_group)
3314 {
3315 	int retval;
3316 	int hi = hstate_index(h);
3317 
3318 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3319 	if (!hstate_kobjs[hi])
3320 		return -ENOMEM;
3321 
3322 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3323 	if (retval) {
3324 		kobject_put(hstate_kobjs[hi]);
3325 		hstate_kobjs[hi] = NULL;
3326 	}
3327 
3328 	return retval;
3329 }
3330 
3331 static void __init hugetlb_sysfs_init(void)
3332 {
3333 	struct hstate *h;
3334 	int err;
3335 
3336 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3337 	if (!hugepages_kobj)
3338 		return;
3339 
3340 	for_each_hstate(h) {
3341 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3342 					 hstate_kobjs, &hstate_attr_group);
3343 		if (err)
3344 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3345 	}
3346 }
3347 
3348 #ifdef CONFIG_NUMA
3349 
3350 /*
3351  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3352  * with node devices in node_devices[] using a parallel array.  The array
3353  * index of a node device or _hstate == node id.
3354  * This is here to avoid any static dependency of the node device driver, in
3355  * the base kernel, on the hugetlb module.
3356  */
3357 struct node_hstate {
3358 	struct kobject		*hugepages_kobj;
3359 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3360 };
3361 static struct node_hstate node_hstates[MAX_NUMNODES];
3362 
3363 /*
3364  * A subset of global hstate attributes for node devices
3365  */
3366 static struct attribute *per_node_hstate_attrs[] = {
3367 	&nr_hugepages_attr.attr,
3368 	&free_hugepages_attr.attr,
3369 	&surplus_hugepages_attr.attr,
3370 	NULL,
3371 };
3372 
3373 static const struct attribute_group per_node_hstate_attr_group = {
3374 	.attrs = per_node_hstate_attrs,
3375 };
3376 
3377 /*
3378  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3379  * Returns node id via non-NULL nidp.
3380  */
3381 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3382 {
3383 	int nid;
3384 
3385 	for (nid = 0; nid < nr_node_ids; nid++) {
3386 		struct node_hstate *nhs = &node_hstates[nid];
3387 		int i;
3388 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3389 			if (nhs->hstate_kobjs[i] == kobj) {
3390 				if (nidp)
3391 					*nidp = nid;
3392 				return &hstates[i];
3393 			}
3394 	}
3395 
3396 	BUG();
3397 	return NULL;
3398 }
3399 
3400 /*
3401  * Unregister hstate attributes from a single node device.
3402  * No-op if no hstate attributes attached.
3403  */
3404 static void hugetlb_unregister_node(struct node *node)
3405 {
3406 	struct hstate *h;
3407 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3408 
3409 	if (!nhs->hugepages_kobj)
3410 		return;		/* no hstate attributes */
3411 
3412 	for_each_hstate(h) {
3413 		int idx = hstate_index(h);
3414 		if (nhs->hstate_kobjs[idx]) {
3415 			kobject_put(nhs->hstate_kobjs[idx]);
3416 			nhs->hstate_kobjs[idx] = NULL;
3417 		}
3418 	}
3419 
3420 	kobject_put(nhs->hugepages_kobj);
3421 	nhs->hugepages_kobj = NULL;
3422 }
3423 
3424 
3425 /*
3426  * Register hstate attributes for a single node device.
3427  * No-op if attributes already registered.
3428  */
3429 static void hugetlb_register_node(struct node *node)
3430 {
3431 	struct hstate *h;
3432 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3433 	int err;
3434 
3435 	if (nhs->hugepages_kobj)
3436 		return;		/* already allocated */
3437 
3438 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3439 							&node->dev.kobj);
3440 	if (!nhs->hugepages_kobj)
3441 		return;
3442 
3443 	for_each_hstate(h) {
3444 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3445 						nhs->hstate_kobjs,
3446 						&per_node_hstate_attr_group);
3447 		if (err) {
3448 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3449 				h->name, node->dev.id);
3450 			hugetlb_unregister_node(node);
3451 			break;
3452 		}
3453 	}
3454 }
3455 
3456 /*
3457  * hugetlb init time:  register hstate attributes for all registered node
3458  * devices of nodes that have memory.  All on-line nodes should have
3459  * registered their associated device by this time.
3460  */
3461 static void __init hugetlb_register_all_nodes(void)
3462 {
3463 	int nid;
3464 
3465 	for_each_node_state(nid, N_MEMORY) {
3466 		struct node *node = node_devices[nid];
3467 		if (node->dev.id == nid)
3468 			hugetlb_register_node(node);
3469 	}
3470 
3471 	/*
3472 	 * Let the node device driver know we're here so it can
3473 	 * [un]register hstate attributes on node hotplug.
3474 	 */
3475 	register_hugetlbfs_with_node(hugetlb_register_node,
3476 				     hugetlb_unregister_node);
3477 }
3478 #else	/* !CONFIG_NUMA */
3479 
3480 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3481 {
3482 	BUG();
3483 	if (nidp)
3484 		*nidp = -1;
3485 	return NULL;
3486 }
3487 
3488 static void hugetlb_register_all_nodes(void) { }
3489 
3490 #endif
3491 
3492 static int __init hugetlb_init(void)
3493 {
3494 	int i;
3495 
3496 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3497 			__NR_HPAGEFLAGS);
3498 
3499 	if (!hugepages_supported()) {
3500 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3501 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3502 		return 0;
3503 	}
3504 
3505 	/*
3506 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3507 	 * architectures depend on setup being done here.
3508 	 */
3509 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3510 	if (!parsed_default_hugepagesz) {
3511 		/*
3512 		 * If we did not parse a default huge page size, set
3513 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3514 		 * number of huge pages for this default size was implicitly
3515 		 * specified, set that here as well.
3516 		 * Note that the implicit setting will overwrite an explicit
3517 		 * setting.  A warning will be printed in this case.
3518 		 */
3519 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3520 		if (default_hstate_max_huge_pages) {
3521 			if (default_hstate.max_huge_pages) {
3522 				char buf[32];
3523 
3524 				string_get_size(huge_page_size(&default_hstate),
3525 					1, STRING_UNITS_2, buf, 32);
3526 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3527 					default_hstate.max_huge_pages, buf);
3528 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3529 					default_hstate_max_huge_pages);
3530 			}
3531 			default_hstate.max_huge_pages =
3532 				default_hstate_max_huge_pages;
3533 		}
3534 	}
3535 
3536 	hugetlb_cma_check();
3537 	hugetlb_init_hstates();
3538 	gather_bootmem_prealloc();
3539 	report_hugepages();
3540 
3541 	hugetlb_sysfs_init();
3542 	hugetlb_register_all_nodes();
3543 	hugetlb_cgroup_file_init();
3544 
3545 #ifdef CONFIG_SMP
3546 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3547 #else
3548 	num_fault_mutexes = 1;
3549 #endif
3550 	hugetlb_fault_mutex_table =
3551 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3552 			      GFP_KERNEL);
3553 	BUG_ON(!hugetlb_fault_mutex_table);
3554 
3555 	for (i = 0; i < num_fault_mutexes; i++)
3556 		mutex_init(&hugetlb_fault_mutex_table[i]);
3557 	return 0;
3558 }
3559 subsys_initcall(hugetlb_init);
3560 
3561 /* Overwritten by architectures with more huge page sizes */
3562 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3563 {
3564 	return size == HPAGE_SIZE;
3565 }
3566 
3567 void __init hugetlb_add_hstate(unsigned int order)
3568 {
3569 	struct hstate *h;
3570 	unsigned long i;
3571 
3572 	if (size_to_hstate(PAGE_SIZE << order)) {
3573 		return;
3574 	}
3575 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3576 	BUG_ON(order == 0);
3577 	h = &hstates[hugetlb_max_hstate++];
3578 	mutex_init(&h->resize_lock);
3579 	h->order = order;
3580 	h->mask = ~(huge_page_size(h) - 1);
3581 	for (i = 0; i < MAX_NUMNODES; ++i)
3582 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3583 	INIT_LIST_HEAD(&h->hugepage_activelist);
3584 	h->next_nid_to_alloc = first_memory_node;
3585 	h->next_nid_to_free = first_memory_node;
3586 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3587 					huge_page_size(h)/1024);
3588 
3589 	parsed_hstate = h;
3590 }
3591 
3592 /*
3593  * hugepages command line processing
3594  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3595  * specification.  If not, ignore the hugepages value.  hugepages can also
3596  * be the first huge page command line  option in which case it implicitly
3597  * specifies the number of huge pages for the default size.
3598  */
3599 static int __init hugepages_setup(char *s)
3600 {
3601 	unsigned long *mhp;
3602 	static unsigned long *last_mhp;
3603 
3604 	if (!parsed_valid_hugepagesz) {
3605 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3606 		parsed_valid_hugepagesz = true;
3607 		return 0;
3608 	}
3609 
3610 	/*
3611 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3612 	 * yet, so this hugepages= parameter goes to the "default hstate".
3613 	 * Otherwise, it goes with the previously parsed hugepagesz or
3614 	 * default_hugepagesz.
3615 	 */
3616 	else if (!hugetlb_max_hstate)
3617 		mhp = &default_hstate_max_huge_pages;
3618 	else
3619 		mhp = &parsed_hstate->max_huge_pages;
3620 
3621 	if (mhp == last_mhp) {
3622 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3623 		return 0;
3624 	}
3625 
3626 	if (sscanf(s, "%lu", mhp) <= 0)
3627 		*mhp = 0;
3628 
3629 	/*
3630 	 * Global state is always initialized later in hugetlb_init.
3631 	 * But we need to allocate gigantic hstates here early to still
3632 	 * use the bootmem allocator.
3633 	 */
3634 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3635 		hugetlb_hstate_alloc_pages(parsed_hstate);
3636 
3637 	last_mhp = mhp;
3638 
3639 	return 1;
3640 }
3641 __setup("hugepages=", hugepages_setup);
3642 
3643 /*
3644  * hugepagesz command line processing
3645  * A specific huge page size can only be specified once with hugepagesz.
3646  * hugepagesz is followed by hugepages on the command line.  The global
3647  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3648  * hugepagesz argument was valid.
3649  */
3650 static int __init hugepagesz_setup(char *s)
3651 {
3652 	unsigned long size;
3653 	struct hstate *h;
3654 
3655 	parsed_valid_hugepagesz = false;
3656 	size = (unsigned long)memparse(s, NULL);
3657 
3658 	if (!arch_hugetlb_valid_size(size)) {
3659 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3660 		return 0;
3661 	}
3662 
3663 	h = size_to_hstate(size);
3664 	if (h) {
3665 		/*
3666 		 * hstate for this size already exists.  This is normally
3667 		 * an error, but is allowed if the existing hstate is the
3668 		 * default hstate.  More specifically, it is only allowed if
3669 		 * the number of huge pages for the default hstate was not
3670 		 * previously specified.
3671 		 */
3672 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3673 		    default_hstate.max_huge_pages) {
3674 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3675 			return 0;
3676 		}
3677 
3678 		/*
3679 		 * No need to call hugetlb_add_hstate() as hstate already
3680 		 * exists.  But, do set parsed_hstate so that a following
3681 		 * hugepages= parameter will be applied to this hstate.
3682 		 */
3683 		parsed_hstate = h;
3684 		parsed_valid_hugepagesz = true;
3685 		return 1;
3686 	}
3687 
3688 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3689 	parsed_valid_hugepagesz = true;
3690 	return 1;
3691 }
3692 __setup("hugepagesz=", hugepagesz_setup);
3693 
3694 /*
3695  * default_hugepagesz command line input
3696  * Only one instance of default_hugepagesz allowed on command line.
3697  */
3698 static int __init default_hugepagesz_setup(char *s)
3699 {
3700 	unsigned long size;
3701 
3702 	parsed_valid_hugepagesz = false;
3703 	if (parsed_default_hugepagesz) {
3704 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3705 		return 0;
3706 	}
3707 
3708 	size = (unsigned long)memparse(s, NULL);
3709 
3710 	if (!arch_hugetlb_valid_size(size)) {
3711 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3712 		return 0;
3713 	}
3714 
3715 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3716 	parsed_valid_hugepagesz = true;
3717 	parsed_default_hugepagesz = true;
3718 	default_hstate_idx = hstate_index(size_to_hstate(size));
3719 
3720 	/*
3721 	 * The number of default huge pages (for this size) could have been
3722 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3723 	 * then default_hstate_max_huge_pages is set.  If the default huge
3724 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3725 	 * allocated here from bootmem allocator.
3726 	 */
3727 	if (default_hstate_max_huge_pages) {
3728 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3729 		if (hstate_is_gigantic(&default_hstate))
3730 			hugetlb_hstate_alloc_pages(&default_hstate);
3731 		default_hstate_max_huge_pages = 0;
3732 	}
3733 
3734 	return 1;
3735 }
3736 __setup("default_hugepagesz=", default_hugepagesz_setup);
3737 
3738 static unsigned int allowed_mems_nr(struct hstate *h)
3739 {
3740 	int node;
3741 	unsigned int nr = 0;
3742 	nodemask_t *mpol_allowed;
3743 	unsigned int *array = h->free_huge_pages_node;
3744 	gfp_t gfp_mask = htlb_alloc_mask(h);
3745 
3746 	mpol_allowed = policy_nodemask_current(gfp_mask);
3747 
3748 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3749 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3750 			nr += array[node];
3751 	}
3752 
3753 	return nr;
3754 }
3755 
3756 #ifdef CONFIG_SYSCTL
3757 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3758 					  void *buffer, size_t *length,
3759 					  loff_t *ppos, unsigned long *out)
3760 {
3761 	struct ctl_table dup_table;
3762 
3763 	/*
3764 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3765 	 * can duplicate the @table and alter the duplicate of it.
3766 	 */
3767 	dup_table = *table;
3768 	dup_table.data = out;
3769 
3770 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3771 }
3772 
3773 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3774 			 struct ctl_table *table, int write,
3775 			 void *buffer, size_t *length, loff_t *ppos)
3776 {
3777 	struct hstate *h = &default_hstate;
3778 	unsigned long tmp = h->max_huge_pages;
3779 	int ret;
3780 
3781 	if (!hugepages_supported())
3782 		return -EOPNOTSUPP;
3783 
3784 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3785 					     &tmp);
3786 	if (ret)
3787 		goto out;
3788 
3789 	if (write)
3790 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3791 						  NUMA_NO_NODE, tmp, *length);
3792 out:
3793 	return ret;
3794 }
3795 
3796 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3797 			  void *buffer, size_t *length, loff_t *ppos)
3798 {
3799 
3800 	return hugetlb_sysctl_handler_common(false, table, write,
3801 							buffer, length, ppos);
3802 }
3803 
3804 #ifdef CONFIG_NUMA
3805 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3806 			  void *buffer, size_t *length, loff_t *ppos)
3807 {
3808 	return hugetlb_sysctl_handler_common(true, table, write,
3809 							buffer, length, ppos);
3810 }
3811 #endif /* CONFIG_NUMA */
3812 
3813 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3814 		void *buffer, size_t *length, loff_t *ppos)
3815 {
3816 	struct hstate *h = &default_hstate;
3817 	unsigned long tmp;
3818 	int ret;
3819 
3820 	if (!hugepages_supported())
3821 		return -EOPNOTSUPP;
3822 
3823 	tmp = h->nr_overcommit_huge_pages;
3824 
3825 	if (write && hstate_is_gigantic(h))
3826 		return -EINVAL;
3827 
3828 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3829 					     &tmp);
3830 	if (ret)
3831 		goto out;
3832 
3833 	if (write) {
3834 		spin_lock_irq(&hugetlb_lock);
3835 		h->nr_overcommit_huge_pages = tmp;
3836 		spin_unlock_irq(&hugetlb_lock);
3837 	}
3838 out:
3839 	return ret;
3840 }
3841 
3842 #endif /* CONFIG_SYSCTL */
3843 
3844 void hugetlb_report_meminfo(struct seq_file *m)
3845 {
3846 	struct hstate *h;
3847 	unsigned long total = 0;
3848 
3849 	if (!hugepages_supported())
3850 		return;
3851 
3852 	for_each_hstate(h) {
3853 		unsigned long count = h->nr_huge_pages;
3854 
3855 		total += huge_page_size(h) * count;
3856 
3857 		if (h == &default_hstate)
3858 			seq_printf(m,
3859 				   "HugePages_Total:   %5lu\n"
3860 				   "HugePages_Free:    %5lu\n"
3861 				   "HugePages_Rsvd:    %5lu\n"
3862 				   "HugePages_Surp:    %5lu\n"
3863 				   "Hugepagesize:   %8lu kB\n",
3864 				   count,
3865 				   h->free_huge_pages,
3866 				   h->resv_huge_pages,
3867 				   h->surplus_huge_pages,
3868 				   huge_page_size(h) / SZ_1K);
3869 	}
3870 
3871 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3872 }
3873 
3874 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3875 {
3876 	struct hstate *h = &default_hstate;
3877 
3878 	if (!hugepages_supported())
3879 		return 0;
3880 
3881 	return sysfs_emit_at(buf, len,
3882 			     "Node %d HugePages_Total: %5u\n"
3883 			     "Node %d HugePages_Free:  %5u\n"
3884 			     "Node %d HugePages_Surp:  %5u\n",
3885 			     nid, h->nr_huge_pages_node[nid],
3886 			     nid, h->free_huge_pages_node[nid],
3887 			     nid, h->surplus_huge_pages_node[nid]);
3888 }
3889 
3890 void hugetlb_show_meminfo(void)
3891 {
3892 	struct hstate *h;
3893 	int nid;
3894 
3895 	if (!hugepages_supported())
3896 		return;
3897 
3898 	for_each_node_state(nid, N_MEMORY)
3899 		for_each_hstate(h)
3900 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3901 				nid,
3902 				h->nr_huge_pages_node[nid],
3903 				h->free_huge_pages_node[nid],
3904 				h->surplus_huge_pages_node[nid],
3905 				huge_page_size(h) / SZ_1K);
3906 }
3907 
3908 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3909 {
3910 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3911 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3912 }
3913 
3914 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3915 unsigned long hugetlb_total_pages(void)
3916 {
3917 	struct hstate *h;
3918 	unsigned long nr_total_pages = 0;
3919 
3920 	for_each_hstate(h)
3921 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3922 	return nr_total_pages;
3923 }
3924 
3925 static int hugetlb_acct_memory(struct hstate *h, long delta)
3926 {
3927 	int ret = -ENOMEM;
3928 
3929 	if (!delta)
3930 		return 0;
3931 
3932 	spin_lock_irq(&hugetlb_lock);
3933 	/*
3934 	 * When cpuset is configured, it breaks the strict hugetlb page
3935 	 * reservation as the accounting is done on a global variable. Such
3936 	 * reservation is completely rubbish in the presence of cpuset because
3937 	 * the reservation is not checked against page availability for the
3938 	 * current cpuset. Application can still potentially OOM'ed by kernel
3939 	 * with lack of free htlb page in cpuset that the task is in.
3940 	 * Attempt to enforce strict accounting with cpuset is almost
3941 	 * impossible (or too ugly) because cpuset is too fluid that
3942 	 * task or memory node can be dynamically moved between cpusets.
3943 	 *
3944 	 * The change of semantics for shared hugetlb mapping with cpuset is
3945 	 * undesirable. However, in order to preserve some of the semantics,
3946 	 * we fall back to check against current free page availability as
3947 	 * a best attempt and hopefully to minimize the impact of changing
3948 	 * semantics that cpuset has.
3949 	 *
3950 	 * Apart from cpuset, we also have memory policy mechanism that
3951 	 * also determines from which node the kernel will allocate memory
3952 	 * in a NUMA system. So similar to cpuset, we also should consider
3953 	 * the memory policy of the current task. Similar to the description
3954 	 * above.
3955 	 */
3956 	if (delta > 0) {
3957 		if (gather_surplus_pages(h, delta) < 0)
3958 			goto out;
3959 
3960 		if (delta > allowed_mems_nr(h)) {
3961 			return_unused_surplus_pages(h, delta);
3962 			goto out;
3963 		}
3964 	}
3965 
3966 	ret = 0;
3967 	if (delta < 0)
3968 		return_unused_surplus_pages(h, (unsigned long) -delta);
3969 
3970 out:
3971 	spin_unlock_irq(&hugetlb_lock);
3972 	return ret;
3973 }
3974 
3975 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3976 {
3977 	struct resv_map *resv = vma_resv_map(vma);
3978 
3979 	/*
3980 	 * This new VMA should share its siblings reservation map if present.
3981 	 * The VMA will only ever have a valid reservation map pointer where
3982 	 * it is being copied for another still existing VMA.  As that VMA
3983 	 * has a reference to the reservation map it cannot disappear until
3984 	 * after this open call completes.  It is therefore safe to take a
3985 	 * new reference here without additional locking.
3986 	 */
3987 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3988 		kref_get(&resv->refs);
3989 }
3990 
3991 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3992 {
3993 	struct hstate *h = hstate_vma(vma);
3994 	struct resv_map *resv = vma_resv_map(vma);
3995 	struct hugepage_subpool *spool = subpool_vma(vma);
3996 	unsigned long reserve, start, end;
3997 	long gbl_reserve;
3998 
3999 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4000 		return;
4001 
4002 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4003 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4004 
4005 	reserve = (end - start) - region_count(resv, start, end);
4006 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4007 	if (reserve) {
4008 		/*
4009 		 * Decrement reserve counts.  The global reserve count may be
4010 		 * adjusted if the subpool has a minimum size.
4011 		 */
4012 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4013 		hugetlb_acct_memory(h, -gbl_reserve);
4014 	}
4015 
4016 	kref_put(&resv->refs, resv_map_release);
4017 }
4018 
4019 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4020 {
4021 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4022 		return -EINVAL;
4023 	return 0;
4024 }
4025 
4026 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4027 {
4028 	return huge_page_size(hstate_vma(vma));
4029 }
4030 
4031 /*
4032  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4033  * handle_mm_fault() to try to instantiate regular-sized pages in the
4034  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4035  * this far.
4036  */
4037 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4038 {
4039 	BUG();
4040 	return 0;
4041 }
4042 
4043 /*
4044  * When a new function is introduced to vm_operations_struct and added
4045  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4046  * This is because under System V memory model, mappings created via
4047  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4048  * their original vm_ops are overwritten with shm_vm_ops.
4049  */
4050 const struct vm_operations_struct hugetlb_vm_ops = {
4051 	.fault = hugetlb_vm_op_fault,
4052 	.open = hugetlb_vm_op_open,
4053 	.close = hugetlb_vm_op_close,
4054 	.may_split = hugetlb_vm_op_split,
4055 	.pagesize = hugetlb_vm_op_pagesize,
4056 };
4057 
4058 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4059 				int writable)
4060 {
4061 	pte_t entry;
4062 
4063 	if (writable) {
4064 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4065 					 vma->vm_page_prot)));
4066 	} else {
4067 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4068 					   vma->vm_page_prot));
4069 	}
4070 	entry = pte_mkyoung(entry);
4071 	entry = pte_mkhuge(entry);
4072 	entry = arch_make_huge_pte(entry, vma, page, writable);
4073 
4074 	return entry;
4075 }
4076 
4077 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4078 				   unsigned long address, pte_t *ptep)
4079 {
4080 	pte_t entry;
4081 
4082 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4083 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4084 		update_mmu_cache(vma, address, ptep);
4085 }
4086 
4087 bool is_hugetlb_entry_migration(pte_t pte)
4088 {
4089 	swp_entry_t swp;
4090 
4091 	if (huge_pte_none(pte) || pte_present(pte))
4092 		return false;
4093 	swp = pte_to_swp_entry(pte);
4094 	if (is_migration_entry(swp))
4095 		return true;
4096 	else
4097 		return false;
4098 }
4099 
4100 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4101 {
4102 	swp_entry_t swp;
4103 
4104 	if (huge_pte_none(pte) || pte_present(pte))
4105 		return false;
4106 	swp = pte_to_swp_entry(pte);
4107 	if (is_hwpoison_entry(swp))
4108 		return true;
4109 	else
4110 		return false;
4111 }
4112 
4113 static void
4114 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4115 		     struct page *new_page)
4116 {
4117 	__SetPageUptodate(new_page);
4118 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4119 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4120 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4121 	ClearHPageRestoreReserve(new_page);
4122 	SetHPageMigratable(new_page);
4123 }
4124 
4125 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4126 			    struct vm_area_struct *vma)
4127 {
4128 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4129 	struct page *ptepage;
4130 	unsigned long addr;
4131 	bool cow = is_cow_mapping(vma->vm_flags);
4132 	struct hstate *h = hstate_vma(vma);
4133 	unsigned long sz = huge_page_size(h);
4134 	unsigned long npages = pages_per_huge_page(h);
4135 	struct address_space *mapping = vma->vm_file->f_mapping;
4136 	struct mmu_notifier_range range;
4137 	int ret = 0;
4138 
4139 	if (cow) {
4140 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4141 					vma->vm_start,
4142 					vma->vm_end);
4143 		mmu_notifier_invalidate_range_start(&range);
4144 	} else {
4145 		/*
4146 		 * For shared mappings i_mmap_rwsem must be held to call
4147 		 * huge_pte_alloc, otherwise the returned ptep could go
4148 		 * away if part of a shared pmd and another thread calls
4149 		 * huge_pmd_unshare.
4150 		 */
4151 		i_mmap_lock_read(mapping);
4152 	}
4153 
4154 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4155 		spinlock_t *src_ptl, *dst_ptl;
4156 		src_pte = huge_pte_offset(src, addr, sz);
4157 		if (!src_pte)
4158 			continue;
4159 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4160 		if (!dst_pte) {
4161 			ret = -ENOMEM;
4162 			break;
4163 		}
4164 
4165 		/*
4166 		 * If the pagetables are shared don't copy or take references.
4167 		 * dst_pte == src_pte is the common case of src/dest sharing.
4168 		 *
4169 		 * However, src could have 'unshared' and dst shares with
4170 		 * another vma.  If dst_pte !none, this implies sharing.
4171 		 * Check here before taking page table lock, and once again
4172 		 * after taking the lock below.
4173 		 */
4174 		dst_entry = huge_ptep_get(dst_pte);
4175 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4176 			continue;
4177 
4178 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4179 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4180 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4181 		entry = huge_ptep_get(src_pte);
4182 		dst_entry = huge_ptep_get(dst_pte);
4183 again:
4184 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4185 			/*
4186 			 * Skip if src entry none.  Also, skip in the
4187 			 * unlikely case dst entry !none as this implies
4188 			 * sharing with another vma.
4189 			 */
4190 			;
4191 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4192 				    is_hugetlb_entry_hwpoisoned(entry))) {
4193 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4194 
4195 			if (is_write_migration_entry(swp_entry) && cow) {
4196 				/*
4197 				 * COW mappings require pages in both
4198 				 * parent and child to be set to read.
4199 				 */
4200 				make_migration_entry_read(&swp_entry);
4201 				entry = swp_entry_to_pte(swp_entry);
4202 				set_huge_swap_pte_at(src, addr, src_pte,
4203 						     entry, sz);
4204 			}
4205 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4206 		} else {
4207 			entry = huge_ptep_get(src_pte);
4208 			ptepage = pte_page(entry);
4209 			get_page(ptepage);
4210 
4211 			/*
4212 			 * This is a rare case where we see pinned hugetlb
4213 			 * pages while they're prone to COW.  We need to do the
4214 			 * COW earlier during fork.
4215 			 *
4216 			 * When pre-allocating the page or copying data, we
4217 			 * need to be without the pgtable locks since we could
4218 			 * sleep during the process.
4219 			 */
4220 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4221 				pte_t src_pte_old = entry;
4222 				struct page *new;
4223 
4224 				spin_unlock(src_ptl);
4225 				spin_unlock(dst_ptl);
4226 				/* Do not use reserve as it's private owned */
4227 				new = alloc_huge_page(vma, addr, 1);
4228 				if (IS_ERR(new)) {
4229 					put_page(ptepage);
4230 					ret = PTR_ERR(new);
4231 					break;
4232 				}
4233 				copy_user_huge_page(new, ptepage, addr, vma,
4234 						    npages);
4235 				put_page(ptepage);
4236 
4237 				/* Install the new huge page if src pte stable */
4238 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4239 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4240 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4241 				entry = huge_ptep_get(src_pte);
4242 				if (!pte_same(src_pte_old, entry)) {
4243 					restore_reserve_on_error(h, vma, addr,
4244 								new);
4245 					put_page(new);
4246 					/* dst_entry won't change as in child */
4247 					goto again;
4248 				}
4249 				hugetlb_install_page(vma, dst_pte, addr, new);
4250 				spin_unlock(src_ptl);
4251 				spin_unlock(dst_ptl);
4252 				continue;
4253 			}
4254 
4255 			if (cow) {
4256 				/*
4257 				 * No need to notify as we are downgrading page
4258 				 * table protection not changing it to point
4259 				 * to a new page.
4260 				 *
4261 				 * See Documentation/vm/mmu_notifier.rst
4262 				 */
4263 				huge_ptep_set_wrprotect(src, addr, src_pte);
4264 				entry = huge_pte_wrprotect(entry);
4265 			}
4266 
4267 			page_dup_rmap(ptepage, true);
4268 			set_huge_pte_at(dst, addr, dst_pte, entry);
4269 			hugetlb_count_add(npages, dst);
4270 		}
4271 		spin_unlock(src_ptl);
4272 		spin_unlock(dst_ptl);
4273 	}
4274 
4275 	if (cow)
4276 		mmu_notifier_invalidate_range_end(&range);
4277 	else
4278 		i_mmap_unlock_read(mapping);
4279 
4280 	return ret;
4281 }
4282 
4283 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4284 			    unsigned long start, unsigned long end,
4285 			    struct page *ref_page)
4286 {
4287 	struct mm_struct *mm = vma->vm_mm;
4288 	unsigned long address;
4289 	pte_t *ptep;
4290 	pte_t pte;
4291 	spinlock_t *ptl;
4292 	struct page *page;
4293 	struct hstate *h = hstate_vma(vma);
4294 	unsigned long sz = huge_page_size(h);
4295 	struct mmu_notifier_range range;
4296 
4297 	WARN_ON(!is_vm_hugetlb_page(vma));
4298 	BUG_ON(start & ~huge_page_mask(h));
4299 	BUG_ON(end & ~huge_page_mask(h));
4300 
4301 	/*
4302 	 * This is a hugetlb vma, all the pte entries should point
4303 	 * to huge page.
4304 	 */
4305 	tlb_change_page_size(tlb, sz);
4306 	tlb_start_vma(tlb, vma);
4307 
4308 	/*
4309 	 * If sharing possible, alert mmu notifiers of worst case.
4310 	 */
4311 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4312 				end);
4313 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4314 	mmu_notifier_invalidate_range_start(&range);
4315 	address = start;
4316 	for (; address < end; address += sz) {
4317 		ptep = huge_pte_offset(mm, address, sz);
4318 		if (!ptep)
4319 			continue;
4320 
4321 		ptl = huge_pte_lock(h, mm, ptep);
4322 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4323 			spin_unlock(ptl);
4324 			/*
4325 			 * We just unmapped a page of PMDs by clearing a PUD.
4326 			 * The caller's TLB flush range should cover this area.
4327 			 */
4328 			continue;
4329 		}
4330 
4331 		pte = huge_ptep_get(ptep);
4332 		if (huge_pte_none(pte)) {
4333 			spin_unlock(ptl);
4334 			continue;
4335 		}
4336 
4337 		/*
4338 		 * Migrating hugepage or HWPoisoned hugepage is already
4339 		 * unmapped and its refcount is dropped, so just clear pte here.
4340 		 */
4341 		if (unlikely(!pte_present(pte))) {
4342 			huge_pte_clear(mm, address, ptep, sz);
4343 			spin_unlock(ptl);
4344 			continue;
4345 		}
4346 
4347 		page = pte_page(pte);
4348 		/*
4349 		 * If a reference page is supplied, it is because a specific
4350 		 * page is being unmapped, not a range. Ensure the page we
4351 		 * are about to unmap is the actual page of interest.
4352 		 */
4353 		if (ref_page) {
4354 			if (page != ref_page) {
4355 				spin_unlock(ptl);
4356 				continue;
4357 			}
4358 			/*
4359 			 * Mark the VMA as having unmapped its page so that
4360 			 * future faults in this VMA will fail rather than
4361 			 * looking like data was lost
4362 			 */
4363 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4364 		}
4365 
4366 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4367 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4368 		if (huge_pte_dirty(pte))
4369 			set_page_dirty(page);
4370 
4371 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4372 		page_remove_rmap(page, true);
4373 
4374 		spin_unlock(ptl);
4375 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4376 		/*
4377 		 * Bail out after unmapping reference page if supplied
4378 		 */
4379 		if (ref_page)
4380 			break;
4381 	}
4382 	mmu_notifier_invalidate_range_end(&range);
4383 	tlb_end_vma(tlb, vma);
4384 }
4385 
4386 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4387 			  struct vm_area_struct *vma, unsigned long start,
4388 			  unsigned long end, struct page *ref_page)
4389 {
4390 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4391 
4392 	/*
4393 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4394 	 * test will fail on a vma being torn down, and not grab a page table
4395 	 * on its way out.  We're lucky that the flag has such an appropriate
4396 	 * name, and can in fact be safely cleared here. We could clear it
4397 	 * before the __unmap_hugepage_range above, but all that's necessary
4398 	 * is to clear it before releasing the i_mmap_rwsem. This works
4399 	 * because in the context this is called, the VMA is about to be
4400 	 * destroyed and the i_mmap_rwsem is held.
4401 	 */
4402 	vma->vm_flags &= ~VM_MAYSHARE;
4403 }
4404 
4405 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4406 			  unsigned long end, struct page *ref_page)
4407 {
4408 	struct mmu_gather tlb;
4409 
4410 	tlb_gather_mmu(&tlb, vma->vm_mm);
4411 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4412 	tlb_finish_mmu(&tlb);
4413 }
4414 
4415 /*
4416  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4417  * mapping it owns the reserve page for. The intention is to unmap the page
4418  * from other VMAs and let the children be SIGKILLed if they are faulting the
4419  * same region.
4420  */
4421 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4422 			      struct page *page, unsigned long address)
4423 {
4424 	struct hstate *h = hstate_vma(vma);
4425 	struct vm_area_struct *iter_vma;
4426 	struct address_space *mapping;
4427 	pgoff_t pgoff;
4428 
4429 	/*
4430 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4431 	 * from page cache lookup which is in HPAGE_SIZE units.
4432 	 */
4433 	address = address & huge_page_mask(h);
4434 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4435 			vma->vm_pgoff;
4436 	mapping = vma->vm_file->f_mapping;
4437 
4438 	/*
4439 	 * Take the mapping lock for the duration of the table walk. As
4440 	 * this mapping should be shared between all the VMAs,
4441 	 * __unmap_hugepage_range() is called as the lock is already held
4442 	 */
4443 	i_mmap_lock_write(mapping);
4444 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4445 		/* Do not unmap the current VMA */
4446 		if (iter_vma == vma)
4447 			continue;
4448 
4449 		/*
4450 		 * Shared VMAs have their own reserves and do not affect
4451 		 * MAP_PRIVATE accounting but it is possible that a shared
4452 		 * VMA is using the same page so check and skip such VMAs.
4453 		 */
4454 		if (iter_vma->vm_flags & VM_MAYSHARE)
4455 			continue;
4456 
4457 		/*
4458 		 * Unmap the page from other VMAs without their own reserves.
4459 		 * They get marked to be SIGKILLed if they fault in these
4460 		 * areas. This is because a future no-page fault on this VMA
4461 		 * could insert a zeroed page instead of the data existing
4462 		 * from the time of fork. This would look like data corruption
4463 		 */
4464 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4465 			unmap_hugepage_range(iter_vma, address,
4466 					     address + huge_page_size(h), page);
4467 	}
4468 	i_mmap_unlock_write(mapping);
4469 }
4470 
4471 /*
4472  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4473  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4474  * cannot race with other handlers or page migration.
4475  * Keep the pte_same checks anyway to make transition from the mutex easier.
4476  */
4477 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4478 		       unsigned long address, pte_t *ptep,
4479 		       struct page *pagecache_page, spinlock_t *ptl)
4480 {
4481 	pte_t pte;
4482 	struct hstate *h = hstate_vma(vma);
4483 	struct page *old_page, *new_page;
4484 	int outside_reserve = 0;
4485 	vm_fault_t ret = 0;
4486 	unsigned long haddr = address & huge_page_mask(h);
4487 	struct mmu_notifier_range range;
4488 
4489 	pte = huge_ptep_get(ptep);
4490 	old_page = pte_page(pte);
4491 
4492 retry_avoidcopy:
4493 	/* If no-one else is actually using this page, avoid the copy
4494 	 * and just make the page writable */
4495 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4496 		page_move_anon_rmap(old_page, vma);
4497 		set_huge_ptep_writable(vma, haddr, ptep);
4498 		return 0;
4499 	}
4500 
4501 	/*
4502 	 * If the process that created a MAP_PRIVATE mapping is about to
4503 	 * perform a COW due to a shared page count, attempt to satisfy
4504 	 * the allocation without using the existing reserves. The pagecache
4505 	 * page is used to determine if the reserve at this address was
4506 	 * consumed or not. If reserves were used, a partial faulted mapping
4507 	 * at the time of fork() could consume its reserves on COW instead
4508 	 * of the full address range.
4509 	 */
4510 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4511 			old_page != pagecache_page)
4512 		outside_reserve = 1;
4513 
4514 	get_page(old_page);
4515 
4516 	/*
4517 	 * Drop page table lock as buddy allocator may be called. It will
4518 	 * be acquired again before returning to the caller, as expected.
4519 	 */
4520 	spin_unlock(ptl);
4521 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4522 
4523 	if (IS_ERR(new_page)) {
4524 		/*
4525 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4526 		 * it is due to references held by a child and an insufficient
4527 		 * huge page pool. To guarantee the original mappers
4528 		 * reliability, unmap the page from child processes. The child
4529 		 * may get SIGKILLed if it later faults.
4530 		 */
4531 		if (outside_reserve) {
4532 			struct address_space *mapping = vma->vm_file->f_mapping;
4533 			pgoff_t idx;
4534 			u32 hash;
4535 
4536 			put_page(old_page);
4537 			BUG_ON(huge_pte_none(pte));
4538 			/*
4539 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4540 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4541 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4542 			 * here is OK as COW mappings do not interact with
4543 			 * PMD sharing.
4544 			 *
4545 			 * Reacquire both after unmap operation.
4546 			 */
4547 			idx = vma_hugecache_offset(h, vma, haddr);
4548 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4549 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4550 			i_mmap_unlock_read(mapping);
4551 
4552 			unmap_ref_private(mm, vma, old_page, haddr);
4553 
4554 			i_mmap_lock_read(mapping);
4555 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4556 			spin_lock(ptl);
4557 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4558 			if (likely(ptep &&
4559 				   pte_same(huge_ptep_get(ptep), pte)))
4560 				goto retry_avoidcopy;
4561 			/*
4562 			 * race occurs while re-acquiring page table
4563 			 * lock, and our job is done.
4564 			 */
4565 			return 0;
4566 		}
4567 
4568 		ret = vmf_error(PTR_ERR(new_page));
4569 		goto out_release_old;
4570 	}
4571 
4572 	/*
4573 	 * When the original hugepage is shared one, it does not have
4574 	 * anon_vma prepared.
4575 	 */
4576 	if (unlikely(anon_vma_prepare(vma))) {
4577 		ret = VM_FAULT_OOM;
4578 		goto out_release_all;
4579 	}
4580 
4581 	copy_user_huge_page(new_page, old_page, address, vma,
4582 			    pages_per_huge_page(h));
4583 	__SetPageUptodate(new_page);
4584 
4585 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4586 				haddr + huge_page_size(h));
4587 	mmu_notifier_invalidate_range_start(&range);
4588 
4589 	/*
4590 	 * Retake the page table lock to check for racing updates
4591 	 * before the page tables are altered
4592 	 */
4593 	spin_lock(ptl);
4594 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4595 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4596 		ClearHPageRestoreReserve(new_page);
4597 
4598 		/* Break COW */
4599 		huge_ptep_clear_flush(vma, haddr, ptep);
4600 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4601 		set_huge_pte_at(mm, haddr, ptep,
4602 				make_huge_pte(vma, new_page, 1));
4603 		page_remove_rmap(old_page, true);
4604 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4605 		SetHPageMigratable(new_page);
4606 		/* Make the old page be freed below */
4607 		new_page = old_page;
4608 	}
4609 	spin_unlock(ptl);
4610 	mmu_notifier_invalidate_range_end(&range);
4611 out_release_all:
4612 	restore_reserve_on_error(h, vma, haddr, new_page);
4613 	put_page(new_page);
4614 out_release_old:
4615 	put_page(old_page);
4616 
4617 	spin_lock(ptl); /* Caller expects lock to be held */
4618 	return ret;
4619 }
4620 
4621 /* Return the pagecache page at a given address within a VMA */
4622 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4623 			struct vm_area_struct *vma, unsigned long address)
4624 {
4625 	struct address_space *mapping;
4626 	pgoff_t idx;
4627 
4628 	mapping = vma->vm_file->f_mapping;
4629 	idx = vma_hugecache_offset(h, vma, address);
4630 
4631 	return find_lock_page(mapping, idx);
4632 }
4633 
4634 /*
4635  * Return whether there is a pagecache page to back given address within VMA.
4636  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4637  */
4638 static bool hugetlbfs_pagecache_present(struct hstate *h,
4639 			struct vm_area_struct *vma, unsigned long address)
4640 {
4641 	struct address_space *mapping;
4642 	pgoff_t idx;
4643 	struct page *page;
4644 
4645 	mapping = vma->vm_file->f_mapping;
4646 	idx = vma_hugecache_offset(h, vma, address);
4647 
4648 	page = find_get_page(mapping, idx);
4649 	if (page)
4650 		put_page(page);
4651 	return page != NULL;
4652 }
4653 
4654 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4655 			   pgoff_t idx)
4656 {
4657 	struct inode *inode = mapping->host;
4658 	struct hstate *h = hstate_inode(inode);
4659 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4660 
4661 	if (err)
4662 		return err;
4663 	ClearHPageRestoreReserve(page);
4664 
4665 	/*
4666 	 * set page dirty so that it will not be removed from cache/file
4667 	 * by non-hugetlbfs specific code paths.
4668 	 */
4669 	set_page_dirty(page);
4670 
4671 	spin_lock(&inode->i_lock);
4672 	inode->i_blocks += blocks_per_huge_page(h);
4673 	spin_unlock(&inode->i_lock);
4674 	return 0;
4675 }
4676 
4677 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4678 						  struct address_space *mapping,
4679 						  pgoff_t idx,
4680 						  unsigned int flags,
4681 						  unsigned long haddr,
4682 						  unsigned long reason)
4683 {
4684 	vm_fault_t ret;
4685 	u32 hash;
4686 	struct vm_fault vmf = {
4687 		.vma = vma,
4688 		.address = haddr,
4689 		.flags = flags,
4690 
4691 		/*
4692 		 * Hard to debug if it ends up being
4693 		 * used by a callee that assumes
4694 		 * something about the other
4695 		 * uninitialized fields... same as in
4696 		 * memory.c
4697 		 */
4698 	};
4699 
4700 	/*
4701 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
4702 	 * dropped before handling userfault.  Reacquire
4703 	 * after handling fault to make calling code simpler.
4704 	 */
4705 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4706 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4707 	i_mmap_unlock_read(mapping);
4708 	ret = handle_userfault(&vmf, reason);
4709 	i_mmap_lock_read(mapping);
4710 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4711 
4712 	return ret;
4713 }
4714 
4715 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4716 			struct vm_area_struct *vma,
4717 			struct address_space *mapping, pgoff_t idx,
4718 			unsigned long address, pte_t *ptep, unsigned int flags)
4719 {
4720 	struct hstate *h = hstate_vma(vma);
4721 	vm_fault_t ret = VM_FAULT_SIGBUS;
4722 	int anon_rmap = 0;
4723 	unsigned long size;
4724 	struct page *page;
4725 	pte_t new_pte;
4726 	spinlock_t *ptl;
4727 	unsigned long haddr = address & huge_page_mask(h);
4728 	bool new_page = false;
4729 
4730 	/*
4731 	 * Currently, we are forced to kill the process in the event the
4732 	 * original mapper has unmapped pages from the child due to a failed
4733 	 * COW. Warn that such a situation has occurred as it may not be obvious
4734 	 */
4735 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4736 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4737 			   current->pid);
4738 		return ret;
4739 	}
4740 
4741 	/*
4742 	 * We can not race with truncation due to holding i_mmap_rwsem.
4743 	 * i_size is modified when holding i_mmap_rwsem, so check here
4744 	 * once for faults beyond end of file.
4745 	 */
4746 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4747 	if (idx >= size)
4748 		goto out;
4749 
4750 retry:
4751 	page = find_lock_page(mapping, idx);
4752 	if (!page) {
4753 		/* Check for page in userfault range */
4754 		if (userfaultfd_missing(vma)) {
4755 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4756 						       flags, haddr,
4757 						       VM_UFFD_MISSING);
4758 			goto out;
4759 		}
4760 
4761 		page = alloc_huge_page(vma, haddr, 0);
4762 		if (IS_ERR(page)) {
4763 			/*
4764 			 * Returning error will result in faulting task being
4765 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4766 			 * tasks from racing to fault in the same page which
4767 			 * could result in false unable to allocate errors.
4768 			 * Page migration does not take the fault mutex, but
4769 			 * does a clear then write of pte's under page table
4770 			 * lock.  Page fault code could race with migration,
4771 			 * notice the clear pte and try to allocate a page
4772 			 * here.  Before returning error, get ptl and make
4773 			 * sure there really is no pte entry.
4774 			 */
4775 			ptl = huge_pte_lock(h, mm, ptep);
4776 			ret = 0;
4777 			if (huge_pte_none(huge_ptep_get(ptep)))
4778 				ret = vmf_error(PTR_ERR(page));
4779 			spin_unlock(ptl);
4780 			goto out;
4781 		}
4782 		clear_huge_page(page, address, pages_per_huge_page(h));
4783 		__SetPageUptodate(page);
4784 		new_page = true;
4785 
4786 		if (vma->vm_flags & VM_MAYSHARE) {
4787 			int err = huge_add_to_page_cache(page, mapping, idx);
4788 			if (err) {
4789 				put_page(page);
4790 				if (err == -EEXIST)
4791 					goto retry;
4792 				goto out;
4793 			}
4794 		} else {
4795 			lock_page(page);
4796 			if (unlikely(anon_vma_prepare(vma))) {
4797 				ret = VM_FAULT_OOM;
4798 				goto backout_unlocked;
4799 			}
4800 			anon_rmap = 1;
4801 		}
4802 	} else {
4803 		/*
4804 		 * If memory error occurs between mmap() and fault, some process
4805 		 * don't have hwpoisoned swap entry for errored virtual address.
4806 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4807 		 */
4808 		if (unlikely(PageHWPoison(page))) {
4809 			ret = VM_FAULT_HWPOISON_LARGE |
4810 				VM_FAULT_SET_HINDEX(hstate_index(h));
4811 			goto backout_unlocked;
4812 		}
4813 
4814 		/* Check for page in userfault range. */
4815 		if (userfaultfd_minor(vma)) {
4816 			unlock_page(page);
4817 			put_page(page);
4818 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4819 						       flags, haddr,
4820 						       VM_UFFD_MINOR);
4821 			goto out;
4822 		}
4823 	}
4824 
4825 	/*
4826 	 * If we are going to COW a private mapping later, we examine the
4827 	 * pending reservations for this page now. This will ensure that
4828 	 * any allocations necessary to record that reservation occur outside
4829 	 * the spinlock.
4830 	 */
4831 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4832 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4833 			ret = VM_FAULT_OOM;
4834 			goto backout_unlocked;
4835 		}
4836 		/* Just decrements count, does not deallocate */
4837 		vma_end_reservation(h, vma, haddr);
4838 	}
4839 
4840 	ptl = huge_pte_lock(h, mm, ptep);
4841 	ret = 0;
4842 	if (!huge_pte_none(huge_ptep_get(ptep)))
4843 		goto backout;
4844 
4845 	if (anon_rmap) {
4846 		ClearHPageRestoreReserve(page);
4847 		hugepage_add_new_anon_rmap(page, vma, haddr);
4848 	} else
4849 		page_dup_rmap(page, true);
4850 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4851 				&& (vma->vm_flags & VM_SHARED)));
4852 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4853 
4854 	hugetlb_count_add(pages_per_huge_page(h), mm);
4855 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4856 		/* Optimization, do the COW without a second fault */
4857 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4858 	}
4859 
4860 	spin_unlock(ptl);
4861 
4862 	/*
4863 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
4864 	 * found in the pagecache may not have HPageMigratableset if they have
4865 	 * been isolated for migration.
4866 	 */
4867 	if (new_page)
4868 		SetHPageMigratable(page);
4869 
4870 	unlock_page(page);
4871 out:
4872 	return ret;
4873 
4874 backout:
4875 	spin_unlock(ptl);
4876 backout_unlocked:
4877 	unlock_page(page);
4878 	restore_reserve_on_error(h, vma, haddr, page);
4879 	put_page(page);
4880 	goto out;
4881 }
4882 
4883 #ifdef CONFIG_SMP
4884 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4885 {
4886 	unsigned long key[2];
4887 	u32 hash;
4888 
4889 	key[0] = (unsigned long) mapping;
4890 	key[1] = idx;
4891 
4892 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4893 
4894 	return hash & (num_fault_mutexes - 1);
4895 }
4896 #else
4897 /*
4898  * For uniprocessor systems we always use a single mutex, so just
4899  * return 0 and avoid the hashing overhead.
4900  */
4901 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4902 {
4903 	return 0;
4904 }
4905 #endif
4906 
4907 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4908 			unsigned long address, unsigned int flags)
4909 {
4910 	pte_t *ptep, entry;
4911 	spinlock_t *ptl;
4912 	vm_fault_t ret;
4913 	u32 hash;
4914 	pgoff_t idx;
4915 	struct page *page = NULL;
4916 	struct page *pagecache_page = NULL;
4917 	struct hstate *h = hstate_vma(vma);
4918 	struct address_space *mapping;
4919 	int need_wait_lock = 0;
4920 	unsigned long haddr = address & huge_page_mask(h);
4921 
4922 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4923 	if (ptep) {
4924 		/*
4925 		 * Since we hold no locks, ptep could be stale.  That is
4926 		 * OK as we are only making decisions based on content and
4927 		 * not actually modifying content here.
4928 		 */
4929 		entry = huge_ptep_get(ptep);
4930 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4931 			migration_entry_wait_huge(vma, mm, ptep);
4932 			return 0;
4933 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4934 			return VM_FAULT_HWPOISON_LARGE |
4935 				VM_FAULT_SET_HINDEX(hstate_index(h));
4936 	}
4937 
4938 	/*
4939 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4940 	 * until finished with ptep.  This serves two purposes:
4941 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4942 	 *    and making the ptep no longer valid.
4943 	 * 2) It synchronizes us with i_size modifications during truncation.
4944 	 *
4945 	 * ptep could have already be assigned via huge_pte_offset.  That
4946 	 * is OK, as huge_pte_alloc will return the same value unless
4947 	 * something has changed.
4948 	 */
4949 	mapping = vma->vm_file->f_mapping;
4950 	i_mmap_lock_read(mapping);
4951 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4952 	if (!ptep) {
4953 		i_mmap_unlock_read(mapping);
4954 		return VM_FAULT_OOM;
4955 	}
4956 
4957 	/*
4958 	 * Serialize hugepage allocation and instantiation, so that we don't
4959 	 * get spurious allocation failures if two CPUs race to instantiate
4960 	 * the same page in the page cache.
4961 	 */
4962 	idx = vma_hugecache_offset(h, vma, haddr);
4963 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4964 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4965 
4966 	entry = huge_ptep_get(ptep);
4967 	if (huge_pte_none(entry)) {
4968 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4969 		goto out_mutex;
4970 	}
4971 
4972 	ret = 0;
4973 
4974 	/*
4975 	 * entry could be a migration/hwpoison entry at this point, so this
4976 	 * check prevents the kernel from going below assuming that we have
4977 	 * an active hugepage in pagecache. This goto expects the 2nd page
4978 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4979 	 * properly handle it.
4980 	 */
4981 	if (!pte_present(entry))
4982 		goto out_mutex;
4983 
4984 	/*
4985 	 * If we are going to COW the mapping later, we examine the pending
4986 	 * reservations for this page now. This will ensure that any
4987 	 * allocations necessary to record that reservation occur outside the
4988 	 * spinlock. For private mappings, we also lookup the pagecache
4989 	 * page now as it is used to determine if a reservation has been
4990 	 * consumed.
4991 	 */
4992 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4993 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4994 			ret = VM_FAULT_OOM;
4995 			goto out_mutex;
4996 		}
4997 		/* Just decrements count, does not deallocate */
4998 		vma_end_reservation(h, vma, haddr);
4999 
5000 		if (!(vma->vm_flags & VM_MAYSHARE))
5001 			pagecache_page = hugetlbfs_pagecache_page(h,
5002 								vma, haddr);
5003 	}
5004 
5005 	ptl = huge_pte_lock(h, mm, ptep);
5006 
5007 	/* Check for a racing update before calling hugetlb_cow */
5008 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5009 		goto out_ptl;
5010 
5011 	/*
5012 	 * hugetlb_cow() requires page locks of pte_page(entry) and
5013 	 * pagecache_page, so here we need take the former one
5014 	 * when page != pagecache_page or !pagecache_page.
5015 	 */
5016 	page = pte_page(entry);
5017 	if (page != pagecache_page)
5018 		if (!trylock_page(page)) {
5019 			need_wait_lock = 1;
5020 			goto out_ptl;
5021 		}
5022 
5023 	get_page(page);
5024 
5025 	if (flags & FAULT_FLAG_WRITE) {
5026 		if (!huge_pte_write(entry)) {
5027 			ret = hugetlb_cow(mm, vma, address, ptep,
5028 					  pagecache_page, ptl);
5029 			goto out_put_page;
5030 		}
5031 		entry = huge_pte_mkdirty(entry);
5032 	}
5033 	entry = pte_mkyoung(entry);
5034 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5035 						flags & FAULT_FLAG_WRITE))
5036 		update_mmu_cache(vma, haddr, ptep);
5037 out_put_page:
5038 	if (page != pagecache_page)
5039 		unlock_page(page);
5040 	put_page(page);
5041 out_ptl:
5042 	spin_unlock(ptl);
5043 
5044 	if (pagecache_page) {
5045 		unlock_page(pagecache_page);
5046 		put_page(pagecache_page);
5047 	}
5048 out_mutex:
5049 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5050 	i_mmap_unlock_read(mapping);
5051 	/*
5052 	 * Generally it's safe to hold refcount during waiting page lock. But
5053 	 * here we just wait to defer the next page fault to avoid busy loop and
5054 	 * the page is not used after unlocked before returning from the current
5055 	 * page fault. So we are safe from accessing freed page, even if we wait
5056 	 * here without taking refcount.
5057 	 */
5058 	if (need_wait_lock)
5059 		wait_on_page_locked(page);
5060 	return ret;
5061 }
5062 
5063 #ifdef CONFIG_USERFAULTFD
5064 /*
5065  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5066  * modifications for huge pages.
5067  */
5068 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5069 			    pte_t *dst_pte,
5070 			    struct vm_area_struct *dst_vma,
5071 			    unsigned long dst_addr,
5072 			    unsigned long src_addr,
5073 			    enum mcopy_atomic_mode mode,
5074 			    struct page **pagep)
5075 {
5076 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5077 	struct address_space *mapping;
5078 	pgoff_t idx;
5079 	unsigned long size;
5080 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5081 	struct hstate *h = hstate_vma(dst_vma);
5082 	pte_t _dst_pte;
5083 	spinlock_t *ptl;
5084 	int ret;
5085 	struct page *page;
5086 	int writable;
5087 
5088 	mapping = dst_vma->vm_file->f_mapping;
5089 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5090 
5091 	if (is_continue) {
5092 		ret = -EFAULT;
5093 		page = find_lock_page(mapping, idx);
5094 		if (!page)
5095 			goto out;
5096 	} else if (!*pagep) {
5097 		/* If a page already exists, then it's UFFDIO_COPY for
5098 		 * a non-missing case. Return -EEXIST.
5099 		 */
5100 		if (vm_shared &&
5101 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5102 			ret = -EEXIST;
5103 			goto out;
5104 		}
5105 
5106 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5107 		if (IS_ERR(page)) {
5108 			ret = -ENOMEM;
5109 			goto out;
5110 		}
5111 
5112 		ret = copy_huge_page_from_user(page,
5113 						(const void __user *) src_addr,
5114 						pages_per_huge_page(h), false);
5115 
5116 		/* fallback to copy_from_user outside mmap_lock */
5117 		if (unlikely(ret)) {
5118 			ret = -ENOENT;
5119 			*pagep = page;
5120 			/* don't free the page */
5121 			goto out;
5122 		}
5123 	} else {
5124 		page = *pagep;
5125 		*pagep = NULL;
5126 	}
5127 
5128 	/*
5129 	 * The memory barrier inside __SetPageUptodate makes sure that
5130 	 * preceding stores to the page contents become visible before
5131 	 * the set_pte_at() write.
5132 	 */
5133 	__SetPageUptodate(page);
5134 
5135 	/* Add shared, newly allocated pages to the page cache. */
5136 	if (vm_shared && !is_continue) {
5137 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5138 		ret = -EFAULT;
5139 		if (idx >= size)
5140 			goto out_release_nounlock;
5141 
5142 		/*
5143 		 * Serialization between remove_inode_hugepages() and
5144 		 * huge_add_to_page_cache() below happens through the
5145 		 * hugetlb_fault_mutex_table that here must be hold by
5146 		 * the caller.
5147 		 */
5148 		ret = huge_add_to_page_cache(page, mapping, idx);
5149 		if (ret)
5150 			goto out_release_nounlock;
5151 	}
5152 
5153 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5154 	spin_lock(ptl);
5155 
5156 	/*
5157 	 * Recheck the i_size after holding PT lock to make sure not
5158 	 * to leave any page mapped (as page_mapped()) beyond the end
5159 	 * of the i_size (remove_inode_hugepages() is strict about
5160 	 * enforcing that). If we bail out here, we'll also leave a
5161 	 * page in the radix tree in the vm_shared case beyond the end
5162 	 * of the i_size, but remove_inode_hugepages() will take care
5163 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5164 	 */
5165 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5166 	ret = -EFAULT;
5167 	if (idx >= size)
5168 		goto out_release_unlock;
5169 
5170 	ret = -EEXIST;
5171 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5172 		goto out_release_unlock;
5173 
5174 	if (vm_shared) {
5175 		page_dup_rmap(page, true);
5176 	} else {
5177 		ClearHPageRestoreReserve(page);
5178 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5179 	}
5180 
5181 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5182 	if (is_continue && !vm_shared)
5183 		writable = 0;
5184 	else
5185 		writable = dst_vma->vm_flags & VM_WRITE;
5186 
5187 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5188 	if (writable)
5189 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5190 	_dst_pte = pte_mkyoung(_dst_pte);
5191 
5192 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5193 
5194 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5195 					dst_vma->vm_flags & VM_WRITE);
5196 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5197 
5198 	/* No need to invalidate - it was non-present before */
5199 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5200 
5201 	spin_unlock(ptl);
5202 	if (!is_continue)
5203 		SetHPageMigratable(page);
5204 	if (vm_shared || is_continue)
5205 		unlock_page(page);
5206 	ret = 0;
5207 out:
5208 	return ret;
5209 out_release_unlock:
5210 	spin_unlock(ptl);
5211 	if (vm_shared || is_continue)
5212 		unlock_page(page);
5213 out_release_nounlock:
5214 	restore_reserve_on_error(h, dst_vma, dst_addr, page);
5215 	put_page(page);
5216 	goto out;
5217 }
5218 #endif /* CONFIG_USERFAULTFD */
5219 
5220 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5221 				 int refs, struct page **pages,
5222 				 struct vm_area_struct **vmas)
5223 {
5224 	int nr;
5225 
5226 	for (nr = 0; nr < refs; nr++) {
5227 		if (likely(pages))
5228 			pages[nr] = mem_map_offset(page, nr);
5229 		if (vmas)
5230 			vmas[nr] = vma;
5231 	}
5232 }
5233 
5234 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5235 			 struct page **pages, struct vm_area_struct **vmas,
5236 			 unsigned long *position, unsigned long *nr_pages,
5237 			 long i, unsigned int flags, int *locked)
5238 {
5239 	unsigned long pfn_offset;
5240 	unsigned long vaddr = *position;
5241 	unsigned long remainder = *nr_pages;
5242 	struct hstate *h = hstate_vma(vma);
5243 	int err = -EFAULT, refs;
5244 
5245 	while (vaddr < vma->vm_end && remainder) {
5246 		pte_t *pte;
5247 		spinlock_t *ptl = NULL;
5248 		int absent;
5249 		struct page *page;
5250 
5251 		/*
5252 		 * If we have a pending SIGKILL, don't keep faulting pages and
5253 		 * potentially allocating memory.
5254 		 */
5255 		if (fatal_signal_pending(current)) {
5256 			remainder = 0;
5257 			break;
5258 		}
5259 
5260 		/*
5261 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5262 		 * each hugepage.  We have to make sure we get the
5263 		 * first, for the page indexing below to work.
5264 		 *
5265 		 * Note that page table lock is not held when pte is null.
5266 		 */
5267 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5268 				      huge_page_size(h));
5269 		if (pte)
5270 			ptl = huge_pte_lock(h, mm, pte);
5271 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5272 
5273 		/*
5274 		 * When coredumping, it suits get_dump_page if we just return
5275 		 * an error where there's an empty slot with no huge pagecache
5276 		 * to back it.  This way, we avoid allocating a hugepage, and
5277 		 * the sparse dumpfile avoids allocating disk blocks, but its
5278 		 * huge holes still show up with zeroes where they need to be.
5279 		 */
5280 		if (absent && (flags & FOLL_DUMP) &&
5281 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5282 			if (pte)
5283 				spin_unlock(ptl);
5284 			remainder = 0;
5285 			break;
5286 		}
5287 
5288 		/*
5289 		 * We need call hugetlb_fault for both hugepages under migration
5290 		 * (in which case hugetlb_fault waits for the migration,) and
5291 		 * hwpoisoned hugepages (in which case we need to prevent the
5292 		 * caller from accessing to them.) In order to do this, we use
5293 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5294 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5295 		 * both cases, and because we can't follow correct pages
5296 		 * directly from any kind of swap entries.
5297 		 */
5298 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5299 		    ((flags & FOLL_WRITE) &&
5300 		      !huge_pte_write(huge_ptep_get(pte)))) {
5301 			vm_fault_t ret;
5302 			unsigned int fault_flags = 0;
5303 
5304 			if (pte)
5305 				spin_unlock(ptl);
5306 			if (flags & FOLL_WRITE)
5307 				fault_flags |= FAULT_FLAG_WRITE;
5308 			if (locked)
5309 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5310 					FAULT_FLAG_KILLABLE;
5311 			if (flags & FOLL_NOWAIT)
5312 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5313 					FAULT_FLAG_RETRY_NOWAIT;
5314 			if (flags & FOLL_TRIED) {
5315 				/*
5316 				 * Note: FAULT_FLAG_ALLOW_RETRY and
5317 				 * FAULT_FLAG_TRIED can co-exist
5318 				 */
5319 				fault_flags |= FAULT_FLAG_TRIED;
5320 			}
5321 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5322 			if (ret & VM_FAULT_ERROR) {
5323 				err = vm_fault_to_errno(ret, flags);
5324 				remainder = 0;
5325 				break;
5326 			}
5327 			if (ret & VM_FAULT_RETRY) {
5328 				if (locked &&
5329 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5330 					*locked = 0;
5331 				*nr_pages = 0;
5332 				/*
5333 				 * VM_FAULT_RETRY must not return an
5334 				 * error, it will return zero
5335 				 * instead.
5336 				 *
5337 				 * No need to update "position" as the
5338 				 * caller will not check it after
5339 				 * *nr_pages is set to 0.
5340 				 */
5341 				return i;
5342 			}
5343 			continue;
5344 		}
5345 
5346 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5347 		page = pte_page(huge_ptep_get(pte));
5348 
5349 		/*
5350 		 * If subpage information not requested, update counters
5351 		 * and skip the same_page loop below.
5352 		 */
5353 		if (!pages && !vmas && !pfn_offset &&
5354 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5355 		    (remainder >= pages_per_huge_page(h))) {
5356 			vaddr += huge_page_size(h);
5357 			remainder -= pages_per_huge_page(h);
5358 			i += pages_per_huge_page(h);
5359 			spin_unlock(ptl);
5360 			continue;
5361 		}
5362 
5363 		refs = min3(pages_per_huge_page(h) - pfn_offset,
5364 			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5365 
5366 		if (pages || vmas)
5367 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
5368 					     vma, refs,
5369 					     likely(pages) ? pages + i : NULL,
5370 					     vmas ? vmas + i : NULL);
5371 
5372 		if (pages) {
5373 			/*
5374 			 * try_grab_compound_head() should always succeed here,
5375 			 * because: a) we hold the ptl lock, and b) we've just
5376 			 * checked that the huge page is present in the page
5377 			 * tables. If the huge page is present, then the tail
5378 			 * pages must also be present. The ptl prevents the
5379 			 * head page and tail pages from being rearranged in
5380 			 * any way. So this page must be available at this
5381 			 * point, unless the page refcount overflowed:
5382 			 */
5383 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5384 								 refs,
5385 								 flags))) {
5386 				spin_unlock(ptl);
5387 				remainder = 0;
5388 				err = -ENOMEM;
5389 				break;
5390 			}
5391 		}
5392 
5393 		vaddr += (refs << PAGE_SHIFT);
5394 		remainder -= refs;
5395 		i += refs;
5396 
5397 		spin_unlock(ptl);
5398 	}
5399 	*nr_pages = remainder;
5400 	/*
5401 	 * setting position is actually required only if remainder is
5402 	 * not zero but it's faster not to add a "if (remainder)"
5403 	 * branch.
5404 	 */
5405 	*position = vaddr;
5406 
5407 	return i ? i : err;
5408 }
5409 
5410 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5411 		unsigned long address, unsigned long end, pgprot_t newprot)
5412 {
5413 	struct mm_struct *mm = vma->vm_mm;
5414 	unsigned long start = address;
5415 	pte_t *ptep;
5416 	pte_t pte;
5417 	struct hstate *h = hstate_vma(vma);
5418 	unsigned long pages = 0;
5419 	bool shared_pmd = false;
5420 	struct mmu_notifier_range range;
5421 
5422 	/*
5423 	 * In the case of shared PMDs, the area to flush could be beyond
5424 	 * start/end.  Set range.start/range.end to cover the maximum possible
5425 	 * range if PMD sharing is possible.
5426 	 */
5427 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5428 				0, vma, mm, start, end);
5429 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5430 
5431 	BUG_ON(address >= end);
5432 	flush_cache_range(vma, range.start, range.end);
5433 
5434 	mmu_notifier_invalidate_range_start(&range);
5435 	i_mmap_lock_write(vma->vm_file->f_mapping);
5436 	for (; address < end; address += huge_page_size(h)) {
5437 		spinlock_t *ptl;
5438 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5439 		if (!ptep)
5440 			continue;
5441 		ptl = huge_pte_lock(h, mm, ptep);
5442 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5443 			pages++;
5444 			spin_unlock(ptl);
5445 			shared_pmd = true;
5446 			continue;
5447 		}
5448 		pte = huge_ptep_get(ptep);
5449 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5450 			spin_unlock(ptl);
5451 			continue;
5452 		}
5453 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5454 			swp_entry_t entry = pte_to_swp_entry(pte);
5455 
5456 			if (is_write_migration_entry(entry)) {
5457 				pte_t newpte;
5458 
5459 				make_migration_entry_read(&entry);
5460 				newpte = swp_entry_to_pte(entry);
5461 				set_huge_swap_pte_at(mm, address, ptep,
5462 						     newpte, huge_page_size(h));
5463 				pages++;
5464 			}
5465 			spin_unlock(ptl);
5466 			continue;
5467 		}
5468 		if (!huge_pte_none(pte)) {
5469 			pte_t old_pte;
5470 
5471 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5472 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5473 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5474 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5475 			pages++;
5476 		}
5477 		spin_unlock(ptl);
5478 	}
5479 	/*
5480 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5481 	 * may have cleared our pud entry and done put_page on the page table:
5482 	 * once we release i_mmap_rwsem, another task can do the final put_page
5483 	 * and that page table be reused and filled with junk.  If we actually
5484 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5485 	 */
5486 	if (shared_pmd)
5487 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5488 	else
5489 		flush_hugetlb_tlb_range(vma, start, end);
5490 	/*
5491 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5492 	 * page table protection not changing it to point to a new page.
5493 	 *
5494 	 * See Documentation/vm/mmu_notifier.rst
5495 	 */
5496 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5497 	mmu_notifier_invalidate_range_end(&range);
5498 
5499 	return pages << h->order;
5500 }
5501 
5502 /* Return true if reservation was successful, false otherwise.  */
5503 bool hugetlb_reserve_pages(struct inode *inode,
5504 					long from, long to,
5505 					struct vm_area_struct *vma,
5506 					vm_flags_t vm_flags)
5507 {
5508 	long chg, add = -1;
5509 	struct hstate *h = hstate_inode(inode);
5510 	struct hugepage_subpool *spool = subpool_inode(inode);
5511 	struct resv_map *resv_map;
5512 	struct hugetlb_cgroup *h_cg = NULL;
5513 	long gbl_reserve, regions_needed = 0;
5514 
5515 	/* This should never happen */
5516 	if (from > to) {
5517 		VM_WARN(1, "%s called with a negative range\n", __func__);
5518 		return false;
5519 	}
5520 
5521 	/*
5522 	 * Only apply hugepage reservation if asked. At fault time, an
5523 	 * attempt will be made for VM_NORESERVE to allocate a page
5524 	 * without using reserves
5525 	 */
5526 	if (vm_flags & VM_NORESERVE)
5527 		return true;
5528 
5529 	/*
5530 	 * Shared mappings base their reservation on the number of pages that
5531 	 * are already allocated on behalf of the file. Private mappings need
5532 	 * to reserve the full area even if read-only as mprotect() may be
5533 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5534 	 */
5535 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5536 		/*
5537 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5538 		 * called for inodes for which resv_maps were created (see
5539 		 * hugetlbfs_get_inode).
5540 		 */
5541 		resv_map = inode_resv_map(inode);
5542 
5543 		chg = region_chg(resv_map, from, to, &regions_needed);
5544 
5545 	} else {
5546 		/* Private mapping. */
5547 		resv_map = resv_map_alloc();
5548 		if (!resv_map)
5549 			return false;
5550 
5551 		chg = to - from;
5552 
5553 		set_vma_resv_map(vma, resv_map);
5554 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5555 	}
5556 
5557 	if (chg < 0)
5558 		goto out_err;
5559 
5560 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5561 				chg * pages_per_huge_page(h), &h_cg) < 0)
5562 		goto out_err;
5563 
5564 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5565 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5566 		 * of the resv_map.
5567 		 */
5568 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5569 	}
5570 
5571 	/*
5572 	 * There must be enough pages in the subpool for the mapping. If
5573 	 * the subpool has a minimum size, there may be some global
5574 	 * reservations already in place (gbl_reserve).
5575 	 */
5576 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5577 	if (gbl_reserve < 0)
5578 		goto out_uncharge_cgroup;
5579 
5580 	/*
5581 	 * Check enough hugepages are available for the reservation.
5582 	 * Hand the pages back to the subpool if there are not
5583 	 */
5584 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5585 		goto out_put_pages;
5586 
5587 	/*
5588 	 * Account for the reservations made. Shared mappings record regions
5589 	 * that have reservations as they are shared by multiple VMAs.
5590 	 * When the last VMA disappears, the region map says how much
5591 	 * the reservation was and the page cache tells how much of
5592 	 * the reservation was consumed. Private mappings are per-VMA and
5593 	 * only the consumed reservations are tracked. When the VMA
5594 	 * disappears, the original reservation is the VMA size and the
5595 	 * consumed reservations are stored in the map. Hence, nothing
5596 	 * else has to be done for private mappings here
5597 	 */
5598 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5599 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5600 
5601 		if (unlikely(add < 0)) {
5602 			hugetlb_acct_memory(h, -gbl_reserve);
5603 			goto out_put_pages;
5604 		} else if (unlikely(chg > add)) {
5605 			/*
5606 			 * pages in this range were added to the reserve
5607 			 * map between region_chg and region_add.  This
5608 			 * indicates a race with alloc_huge_page.  Adjust
5609 			 * the subpool and reserve counts modified above
5610 			 * based on the difference.
5611 			 */
5612 			long rsv_adjust;
5613 
5614 			/*
5615 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5616 			 * reference to h_cg->css. See comment below for detail.
5617 			 */
5618 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5619 				hstate_index(h),
5620 				(chg - add) * pages_per_huge_page(h), h_cg);
5621 
5622 			rsv_adjust = hugepage_subpool_put_pages(spool,
5623 								chg - add);
5624 			hugetlb_acct_memory(h, -rsv_adjust);
5625 		} else if (h_cg) {
5626 			/*
5627 			 * The file_regions will hold their own reference to
5628 			 * h_cg->css. So we should release the reference held
5629 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5630 			 * done.
5631 			 */
5632 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5633 		}
5634 	}
5635 	return true;
5636 
5637 out_put_pages:
5638 	/* put back original number of pages, chg */
5639 	(void)hugepage_subpool_put_pages(spool, chg);
5640 out_uncharge_cgroup:
5641 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5642 					    chg * pages_per_huge_page(h), h_cg);
5643 out_err:
5644 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5645 		/* Only call region_abort if the region_chg succeeded but the
5646 		 * region_add failed or didn't run.
5647 		 */
5648 		if (chg >= 0 && add < 0)
5649 			region_abort(resv_map, from, to, regions_needed);
5650 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5651 		kref_put(&resv_map->refs, resv_map_release);
5652 	return false;
5653 }
5654 
5655 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5656 								long freed)
5657 {
5658 	struct hstate *h = hstate_inode(inode);
5659 	struct resv_map *resv_map = inode_resv_map(inode);
5660 	long chg = 0;
5661 	struct hugepage_subpool *spool = subpool_inode(inode);
5662 	long gbl_reserve;
5663 
5664 	/*
5665 	 * Since this routine can be called in the evict inode path for all
5666 	 * hugetlbfs inodes, resv_map could be NULL.
5667 	 */
5668 	if (resv_map) {
5669 		chg = region_del(resv_map, start, end);
5670 		/*
5671 		 * region_del() can fail in the rare case where a region
5672 		 * must be split and another region descriptor can not be
5673 		 * allocated.  If end == LONG_MAX, it will not fail.
5674 		 */
5675 		if (chg < 0)
5676 			return chg;
5677 	}
5678 
5679 	spin_lock(&inode->i_lock);
5680 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5681 	spin_unlock(&inode->i_lock);
5682 
5683 	/*
5684 	 * If the subpool has a minimum size, the number of global
5685 	 * reservations to be released may be adjusted.
5686 	 *
5687 	 * Note that !resv_map implies freed == 0. So (chg - freed)
5688 	 * won't go negative.
5689 	 */
5690 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5691 	hugetlb_acct_memory(h, -gbl_reserve);
5692 
5693 	return 0;
5694 }
5695 
5696 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5697 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5698 				struct vm_area_struct *vma,
5699 				unsigned long addr, pgoff_t idx)
5700 {
5701 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5702 				svma->vm_start;
5703 	unsigned long sbase = saddr & PUD_MASK;
5704 	unsigned long s_end = sbase + PUD_SIZE;
5705 
5706 	/* Allow segments to share if only one is marked locked */
5707 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5708 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5709 
5710 	/*
5711 	 * match the virtual addresses, permission and the alignment of the
5712 	 * page table page.
5713 	 */
5714 	if (pmd_index(addr) != pmd_index(saddr) ||
5715 	    vm_flags != svm_flags ||
5716 	    !range_in_vma(svma, sbase, s_end))
5717 		return 0;
5718 
5719 	return saddr;
5720 }
5721 
5722 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5723 {
5724 	unsigned long base = addr & PUD_MASK;
5725 	unsigned long end = base + PUD_SIZE;
5726 
5727 	/*
5728 	 * check on proper vm_flags and page table alignment
5729 	 */
5730 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5731 		return true;
5732 	return false;
5733 }
5734 
5735 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5736 {
5737 #ifdef CONFIG_USERFAULTFD
5738 	if (uffd_disable_huge_pmd_share(vma))
5739 		return false;
5740 #endif
5741 	return vma_shareable(vma, addr);
5742 }
5743 
5744 /*
5745  * Determine if start,end range within vma could be mapped by shared pmd.
5746  * If yes, adjust start and end to cover range associated with possible
5747  * shared pmd mappings.
5748  */
5749 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5750 				unsigned long *start, unsigned long *end)
5751 {
5752 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5753 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5754 
5755 	/*
5756 	 * vma needs to span at least one aligned PUD size, and the range
5757 	 * must be at least partially within in.
5758 	 */
5759 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5760 		(*end <= v_start) || (*start >= v_end))
5761 		return;
5762 
5763 	/* Extend the range to be PUD aligned for a worst case scenario */
5764 	if (*start > v_start)
5765 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5766 
5767 	if (*end < v_end)
5768 		*end = ALIGN(*end, PUD_SIZE);
5769 }
5770 
5771 /*
5772  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5773  * and returns the corresponding pte. While this is not necessary for the
5774  * !shared pmd case because we can allocate the pmd later as well, it makes the
5775  * code much cleaner.
5776  *
5777  * This routine must be called with i_mmap_rwsem held in at least read mode if
5778  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5779  * table entries associated with the address space.  This is important as we
5780  * are setting up sharing based on existing page table entries (mappings).
5781  *
5782  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5783  * huge_pte_alloc know that sharing is not possible and do not take
5784  * i_mmap_rwsem as a performance optimization.  This is handled by the
5785  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5786  * only required for subsequent processing.
5787  */
5788 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5789 		      unsigned long addr, pud_t *pud)
5790 {
5791 	struct address_space *mapping = vma->vm_file->f_mapping;
5792 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5793 			vma->vm_pgoff;
5794 	struct vm_area_struct *svma;
5795 	unsigned long saddr;
5796 	pte_t *spte = NULL;
5797 	pte_t *pte;
5798 	spinlock_t *ptl;
5799 
5800 	i_mmap_assert_locked(mapping);
5801 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5802 		if (svma == vma)
5803 			continue;
5804 
5805 		saddr = page_table_shareable(svma, vma, addr, idx);
5806 		if (saddr) {
5807 			spte = huge_pte_offset(svma->vm_mm, saddr,
5808 					       vma_mmu_pagesize(svma));
5809 			if (spte) {
5810 				get_page(virt_to_page(spte));
5811 				break;
5812 			}
5813 		}
5814 	}
5815 
5816 	if (!spte)
5817 		goto out;
5818 
5819 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5820 	if (pud_none(*pud)) {
5821 		pud_populate(mm, pud,
5822 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5823 		mm_inc_nr_pmds(mm);
5824 	} else {
5825 		put_page(virt_to_page(spte));
5826 	}
5827 	spin_unlock(ptl);
5828 out:
5829 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5830 	return pte;
5831 }
5832 
5833 /*
5834  * unmap huge page backed by shared pte.
5835  *
5836  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5837  * indicated by page_count > 1, unmap is achieved by clearing pud and
5838  * decrementing the ref count. If count == 1, the pte page is not shared.
5839  *
5840  * Called with page table lock held and i_mmap_rwsem held in write mode.
5841  *
5842  * returns: 1 successfully unmapped a shared pte page
5843  *	    0 the underlying pte page is not shared, or it is the last user
5844  */
5845 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5846 					unsigned long *addr, pte_t *ptep)
5847 {
5848 	pgd_t *pgd = pgd_offset(mm, *addr);
5849 	p4d_t *p4d = p4d_offset(pgd, *addr);
5850 	pud_t *pud = pud_offset(p4d, *addr);
5851 
5852 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5853 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5854 	if (page_count(virt_to_page(ptep)) == 1)
5855 		return 0;
5856 
5857 	pud_clear(pud);
5858 	put_page(virt_to_page(ptep));
5859 	mm_dec_nr_pmds(mm);
5860 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5861 	return 1;
5862 }
5863 
5864 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5865 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5866 		      unsigned long addr, pud_t *pud)
5867 {
5868 	return NULL;
5869 }
5870 
5871 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5872 				unsigned long *addr, pte_t *ptep)
5873 {
5874 	return 0;
5875 }
5876 
5877 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5878 				unsigned long *start, unsigned long *end)
5879 {
5880 }
5881 
5882 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5883 {
5884 	return false;
5885 }
5886 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5887 
5888 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5889 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5890 			unsigned long addr, unsigned long sz)
5891 {
5892 	pgd_t *pgd;
5893 	p4d_t *p4d;
5894 	pud_t *pud;
5895 	pte_t *pte = NULL;
5896 
5897 	pgd = pgd_offset(mm, addr);
5898 	p4d = p4d_alloc(mm, pgd, addr);
5899 	if (!p4d)
5900 		return NULL;
5901 	pud = pud_alloc(mm, p4d, addr);
5902 	if (pud) {
5903 		if (sz == PUD_SIZE) {
5904 			pte = (pte_t *)pud;
5905 		} else {
5906 			BUG_ON(sz != PMD_SIZE);
5907 			if (want_pmd_share(vma, addr) && pud_none(*pud))
5908 				pte = huge_pmd_share(mm, vma, addr, pud);
5909 			else
5910 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5911 		}
5912 	}
5913 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5914 
5915 	return pte;
5916 }
5917 
5918 /*
5919  * huge_pte_offset() - Walk the page table to resolve the hugepage
5920  * entry at address @addr
5921  *
5922  * Return: Pointer to page table entry (PUD or PMD) for
5923  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5924  * size @sz doesn't match the hugepage size at this level of the page
5925  * table.
5926  */
5927 pte_t *huge_pte_offset(struct mm_struct *mm,
5928 		       unsigned long addr, unsigned long sz)
5929 {
5930 	pgd_t *pgd;
5931 	p4d_t *p4d;
5932 	pud_t *pud;
5933 	pmd_t *pmd;
5934 
5935 	pgd = pgd_offset(mm, addr);
5936 	if (!pgd_present(*pgd))
5937 		return NULL;
5938 	p4d = p4d_offset(pgd, addr);
5939 	if (!p4d_present(*p4d))
5940 		return NULL;
5941 
5942 	pud = pud_offset(p4d, addr);
5943 	if (sz == PUD_SIZE)
5944 		/* must be pud huge, non-present or none */
5945 		return (pte_t *)pud;
5946 	if (!pud_present(*pud))
5947 		return NULL;
5948 	/* must have a valid entry and size to go further */
5949 
5950 	pmd = pmd_offset(pud, addr);
5951 	/* must be pmd huge, non-present or none */
5952 	return (pte_t *)pmd;
5953 }
5954 
5955 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5956 
5957 /*
5958  * These functions are overwritable if your architecture needs its own
5959  * behavior.
5960  */
5961 struct page * __weak
5962 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5963 			      int write)
5964 {
5965 	return ERR_PTR(-EINVAL);
5966 }
5967 
5968 struct page * __weak
5969 follow_huge_pd(struct vm_area_struct *vma,
5970 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5971 {
5972 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5973 	return NULL;
5974 }
5975 
5976 struct page * __weak
5977 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5978 		pmd_t *pmd, int flags)
5979 {
5980 	struct page *page = NULL;
5981 	spinlock_t *ptl;
5982 	pte_t pte;
5983 
5984 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5985 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5986 			 (FOLL_PIN | FOLL_GET)))
5987 		return NULL;
5988 
5989 retry:
5990 	ptl = pmd_lockptr(mm, pmd);
5991 	spin_lock(ptl);
5992 	/*
5993 	 * make sure that the address range covered by this pmd is not
5994 	 * unmapped from other threads.
5995 	 */
5996 	if (!pmd_huge(*pmd))
5997 		goto out;
5998 	pte = huge_ptep_get((pte_t *)pmd);
5999 	if (pte_present(pte)) {
6000 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6001 		/*
6002 		 * try_grab_page() should always succeed here, because: a) we
6003 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6004 		 * huge pmd (head) page is present in the page tables. The ptl
6005 		 * prevents the head page and tail pages from being rearranged
6006 		 * in any way. So this page must be available at this point,
6007 		 * unless the page refcount overflowed:
6008 		 */
6009 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6010 			page = NULL;
6011 			goto out;
6012 		}
6013 	} else {
6014 		if (is_hugetlb_entry_migration(pte)) {
6015 			spin_unlock(ptl);
6016 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
6017 			goto retry;
6018 		}
6019 		/*
6020 		 * hwpoisoned entry is treated as no_page_table in
6021 		 * follow_page_mask().
6022 		 */
6023 	}
6024 out:
6025 	spin_unlock(ptl);
6026 	return page;
6027 }
6028 
6029 struct page * __weak
6030 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6031 		pud_t *pud, int flags)
6032 {
6033 	if (flags & (FOLL_GET | FOLL_PIN))
6034 		return NULL;
6035 
6036 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6037 }
6038 
6039 struct page * __weak
6040 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6041 {
6042 	if (flags & (FOLL_GET | FOLL_PIN))
6043 		return NULL;
6044 
6045 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6046 }
6047 
6048 bool isolate_huge_page(struct page *page, struct list_head *list)
6049 {
6050 	bool ret = true;
6051 
6052 	spin_lock_irq(&hugetlb_lock);
6053 	if (!PageHeadHuge(page) ||
6054 	    !HPageMigratable(page) ||
6055 	    !get_page_unless_zero(page)) {
6056 		ret = false;
6057 		goto unlock;
6058 	}
6059 	ClearHPageMigratable(page);
6060 	list_move_tail(&page->lru, list);
6061 unlock:
6062 	spin_unlock_irq(&hugetlb_lock);
6063 	return ret;
6064 }
6065 
6066 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6067 {
6068 	int ret = 0;
6069 
6070 	*hugetlb = false;
6071 	spin_lock_irq(&hugetlb_lock);
6072 	if (PageHeadHuge(page)) {
6073 		*hugetlb = true;
6074 		if (HPageFreed(page) || HPageMigratable(page))
6075 			ret = get_page_unless_zero(page);
6076 		else
6077 			ret = -EBUSY;
6078 	}
6079 	spin_unlock_irq(&hugetlb_lock);
6080 	return ret;
6081 }
6082 
6083 void putback_active_hugepage(struct page *page)
6084 {
6085 	spin_lock_irq(&hugetlb_lock);
6086 	SetHPageMigratable(page);
6087 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6088 	spin_unlock_irq(&hugetlb_lock);
6089 	put_page(page);
6090 }
6091 
6092 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6093 {
6094 	struct hstate *h = page_hstate(oldpage);
6095 
6096 	hugetlb_cgroup_migrate(oldpage, newpage);
6097 	set_page_owner_migrate_reason(newpage, reason);
6098 
6099 	/*
6100 	 * transfer temporary state of the new huge page. This is
6101 	 * reverse to other transitions because the newpage is going to
6102 	 * be final while the old one will be freed so it takes over
6103 	 * the temporary status.
6104 	 *
6105 	 * Also note that we have to transfer the per-node surplus state
6106 	 * here as well otherwise the global surplus count will not match
6107 	 * the per-node's.
6108 	 */
6109 	if (HPageTemporary(newpage)) {
6110 		int old_nid = page_to_nid(oldpage);
6111 		int new_nid = page_to_nid(newpage);
6112 
6113 		SetHPageTemporary(oldpage);
6114 		ClearHPageTemporary(newpage);
6115 
6116 		/*
6117 		 * There is no need to transfer the per-node surplus state
6118 		 * when we do not cross the node.
6119 		 */
6120 		if (new_nid == old_nid)
6121 			return;
6122 		spin_lock_irq(&hugetlb_lock);
6123 		if (h->surplus_huge_pages_node[old_nid]) {
6124 			h->surplus_huge_pages_node[old_nid]--;
6125 			h->surplus_huge_pages_node[new_nid]++;
6126 		}
6127 		spin_unlock_irq(&hugetlb_lock);
6128 	}
6129 }
6130 
6131 /*
6132  * This function will unconditionally remove all the shared pmd pgtable entries
6133  * within the specific vma for a hugetlbfs memory range.
6134  */
6135 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6136 {
6137 	struct hstate *h = hstate_vma(vma);
6138 	unsigned long sz = huge_page_size(h);
6139 	struct mm_struct *mm = vma->vm_mm;
6140 	struct mmu_notifier_range range;
6141 	unsigned long address, start, end;
6142 	spinlock_t *ptl;
6143 	pte_t *ptep;
6144 
6145 	if (!(vma->vm_flags & VM_MAYSHARE))
6146 		return;
6147 
6148 	start = ALIGN(vma->vm_start, PUD_SIZE);
6149 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6150 
6151 	if (start >= end)
6152 		return;
6153 
6154 	/*
6155 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6156 	 * we have already done the PUD_SIZE alignment.
6157 	 */
6158 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6159 				start, end);
6160 	mmu_notifier_invalidate_range_start(&range);
6161 	i_mmap_lock_write(vma->vm_file->f_mapping);
6162 	for (address = start; address < end; address += PUD_SIZE) {
6163 		unsigned long tmp = address;
6164 
6165 		ptep = huge_pte_offset(mm, address, sz);
6166 		if (!ptep)
6167 			continue;
6168 		ptl = huge_pte_lock(h, mm, ptep);
6169 		/* We don't want 'address' to be changed */
6170 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6171 		spin_unlock(ptl);
6172 	}
6173 	flush_hugetlb_tlb_range(vma, start, end);
6174 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6175 	/*
6176 	 * No need to call mmu_notifier_invalidate_range(), see
6177 	 * Documentation/vm/mmu_notifier.rst.
6178 	 */
6179 	mmu_notifier_invalidate_range_end(&range);
6180 }
6181 
6182 #ifdef CONFIG_CMA
6183 static bool cma_reserve_called __initdata;
6184 
6185 static int __init cmdline_parse_hugetlb_cma(char *p)
6186 {
6187 	hugetlb_cma_size = memparse(p, &p);
6188 	return 0;
6189 }
6190 
6191 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6192 
6193 void __init hugetlb_cma_reserve(int order)
6194 {
6195 	unsigned long size, reserved, per_node;
6196 	int nid;
6197 
6198 	cma_reserve_called = true;
6199 
6200 	if (!hugetlb_cma_size)
6201 		return;
6202 
6203 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6204 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6205 			(PAGE_SIZE << order) / SZ_1M);
6206 		return;
6207 	}
6208 
6209 	/*
6210 	 * If 3 GB area is requested on a machine with 4 numa nodes,
6211 	 * let's allocate 1 GB on first three nodes and ignore the last one.
6212 	 */
6213 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6214 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6215 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6216 
6217 	reserved = 0;
6218 	for_each_node_state(nid, N_ONLINE) {
6219 		int res;
6220 		char name[CMA_MAX_NAME];
6221 
6222 		size = min(per_node, hugetlb_cma_size - reserved);
6223 		size = round_up(size, PAGE_SIZE << order);
6224 
6225 		snprintf(name, sizeof(name), "hugetlb%d", nid);
6226 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6227 						 0, false, name,
6228 						 &hugetlb_cma[nid], nid);
6229 		if (res) {
6230 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6231 				res, nid);
6232 			continue;
6233 		}
6234 
6235 		reserved += size;
6236 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6237 			size / SZ_1M, nid);
6238 
6239 		if (reserved >= hugetlb_cma_size)
6240 			break;
6241 	}
6242 }
6243 
6244 void __init hugetlb_cma_check(void)
6245 {
6246 	if (!hugetlb_cma_size || cma_reserve_called)
6247 		return;
6248 
6249 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6250 }
6251 
6252 #endif /* CONFIG_CMA */
6253