xref: /openbmc/linux/mm/hugetlb.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20 
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23 
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35 static int hugetlb_next_nid;
36 
37 /*
38  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39  */
40 static DEFINE_SPINLOCK(hugetlb_lock);
41 
42 static void clear_huge_page(struct page *page, unsigned long addr)
43 {
44 	int i;
45 
46 	might_sleep();
47 	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48 		cond_resched();
49 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
50 	}
51 }
52 
53 static void copy_huge_page(struct page *dst, struct page *src,
54 			   unsigned long addr, struct vm_area_struct *vma)
55 {
56 	int i;
57 
58 	might_sleep();
59 	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60 		cond_resched();
61 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
62 	}
63 }
64 
65 static void enqueue_huge_page(struct page *page)
66 {
67 	int nid = page_to_nid(page);
68 	list_add(&page->lru, &hugepage_freelists[nid]);
69 	free_huge_pages++;
70 	free_huge_pages_node[nid]++;
71 }
72 
73 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74 				unsigned long address)
75 {
76 	int nid;
77 	struct page *page = NULL;
78 	struct mempolicy *mpol;
79 	struct zonelist *zonelist = huge_zonelist(vma, address,
80 					htlb_alloc_mask, &mpol);
81 	struct zone **z;
82 
83 	for (z = zonelist->zones; *z; z++) {
84 		nid = zone_to_nid(*z);
85 		if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86 		    !list_empty(&hugepage_freelists[nid])) {
87 			page = list_entry(hugepage_freelists[nid].next,
88 					  struct page, lru);
89 			list_del(&page->lru);
90 			free_huge_pages--;
91 			free_huge_pages_node[nid]--;
92 			if (vma && vma->vm_flags & VM_MAYSHARE)
93 				resv_huge_pages--;
94 			break;
95 		}
96 	}
97 	mpol_free(mpol);	/* unref if mpol !NULL */
98 	return page;
99 }
100 
101 static void update_and_free_page(struct page *page)
102 {
103 	int i;
104 	nr_huge_pages--;
105 	nr_huge_pages_node[page_to_nid(page)]--;
106 	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109 				1 << PG_private | 1<< PG_writeback);
110 	}
111 	set_compound_page_dtor(page, NULL);
112 	set_page_refcounted(page);
113 	__free_pages(page, HUGETLB_PAGE_ORDER);
114 }
115 
116 static void free_huge_page(struct page *page)
117 {
118 	int nid = page_to_nid(page);
119 
120 	BUG_ON(page_count(page));
121 	INIT_LIST_HEAD(&page->lru);
122 
123 	spin_lock(&hugetlb_lock);
124 	if (surplus_huge_pages_node[nid]) {
125 		update_and_free_page(page);
126 		surplus_huge_pages--;
127 		surplus_huge_pages_node[nid]--;
128 	} else {
129 		enqueue_huge_page(page);
130 	}
131 	spin_unlock(&hugetlb_lock);
132 }
133 
134 /*
135  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
136  * balanced by operating on them in a round-robin fashion.
137  * Returns 1 if an adjustment was made.
138  */
139 static int adjust_pool_surplus(int delta)
140 {
141 	static int prev_nid;
142 	int nid = prev_nid;
143 	int ret = 0;
144 
145 	VM_BUG_ON(delta != -1 && delta != 1);
146 	do {
147 		nid = next_node(nid, node_online_map);
148 		if (nid == MAX_NUMNODES)
149 			nid = first_node(node_online_map);
150 
151 		/* To shrink on this node, there must be a surplus page */
152 		if (delta < 0 && !surplus_huge_pages_node[nid])
153 			continue;
154 		/* Surplus cannot exceed the total number of pages */
155 		if (delta > 0 && surplus_huge_pages_node[nid] >=
156 						nr_huge_pages_node[nid])
157 			continue;
158 
159 		surplus_huge_pages += delta;
160 		surplus_huge_pages_node[nid] += delta;
161 		ret = 1;
162 		break;
163 	} while (nid != prev_nid);
164 
165 	prev_nid = nid;
166 	return ret;
167 }
168 
169 static struct page *alloc_fresh_huge_page_node(int nid)
170 {
171 	struct page *page;
172 
173 	page = alloc_pages_node(nid,
174 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
175 		HUGETLB_PAGE_ORDER);
176 	if (page) {
177 		set_compound_page_dtor(page, free_huge_page);
178 		spin_lock(&hugetlb_lock);
179 		nr_huge_pages++;
180 		nr_huge_pages_node[nid]++;
181 		spin_unlock(&hugetlb_lock);
182 		put_page(page); /* free it into the hugepage allocator */
183 	}
184 
185 	return page;
186 }
187 
188 static int alloc_fresh_huge_page(void)
189 {
190 	struct page *page;
191 	int start_nid;
192 	int next_nid;
193 	int ret = 0;
194 
195 	start_nid = hugetlb_next_nid;
196 
197 	do {
198 		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
199 		if (page)
200 			ret = 1;
201 		/*
202 		 * Use a helper variable to find the next node and then
203 		 * copy it back to hugetlb_next_nid afterwards:
204 		 * otherwise there's a window in which a racer might
205 		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
206 		 * But we don't need to use a spin_lock here: it really
207 		 * doesn't matter if occasionally a racer chooses the
208 		 * same nid as we do.  Move nid forward in the mask even
209 		 * if we just successfully allocated a hugepage so that
210 		 * the next caller gets hugepages on the next node.
211 		 */
212 		next_nid = next_node(hugetlb_next_nid, node_online_map);
213 		if (next_nid == MAX_NUMNODES)
214 			next_nid = first_node(node_online_map);
215 		hugetlb_next_nid = next_nid;
216 	} while (!page && hugetlb_next_nid != start_nid);
217 
218 	return ret;
219 }
220 
221 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
222 						unsigned long address)
223 {
224 	struct page *page;
225 
226 	/* Check if the dynamic pool is enabled */
227 	if (!hugetlb_dynamic_pool)
228 		return NULL;
229 
230 	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
231 					HUGETLB_PAGE_ORDER);
232 	if (page) {
233 		set_compound_page_dtor(page, free_huge_page);
234 		spin_lock(&hugetlb_lock);
235 		nr_huge_pages++;
236 		nr_huge_pages_node[page_to_nid(page)]++;
237 		surplus_huge_pages++;
238 		surplus_huge_pages_node[page_to_nid(page)]++;
239 		spin_unlock(&hugetlb_lock);
240 	}
241 
242 	return page;
243 }
244 
245 /*
246  * Increase the hugetlb pool such that it can accomodate a reservation
247  * of size 'delta'.
248  */
249 static int gather_surplus_pages(int delta)
250 {
251 	struct list_head surplus_list;
252 	struct page *page, *tmp;
253 	int ret, i;
254 	int needed, allocated;
255 
256 	needed = (resv_huge_pages + delta) - free_huge_pages;
257 	if (needed <= 0)
258 		return 0;
259 
260 	allocated = 0;
261 	INIT_LIST_HEAD(&surplus_list);
262 
263 	ret = -ENOMEM;
264 retry:
265 	spin_unlock(&hugetlb_lock);
266 	for (i = 0; i < needed; i++) {
267 		page = alloc_buddy_huge_page(NULL, 0);
268 		if (!page) {
269 			/*
270 			 * We were not able to allocate enough pages to
271 			 * satisfy the entire reservation so we free what
272 			 * we've allocated so far.
273 			 */
274 			spin_lock(&hugetlb_lock);
275 			needed = 0;
276 			goto free;
277 		}
278 
279 		list_add(&page->lru, &surplus_list);
280 	}
281 	allocated += needed;
282 
283 	/*
284 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
285 	 * because either resv_huge_pages or free_huge_pages may have changed.
286 	 */
287 	spin_lock(&hugetlb_lock);
288 	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
289 	if (needed > 0)
290 		goto retry;
291 
292 	/*
293 	 * The surplus_list now contains _at_least_ the number of extra pages
294 	 * needed to accomodate the reservation.  Add the appropriate number
295 	 * of pages to the hugetlb pool and free the extras back to the buddy
296 	 * allocator.
297 	 */
298 	needed += allocated;
299 	ret = 0;
300 free:
301 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
302 		list_del(&page->lru);
303 		if ((--needed) >= 0)
304 			enqueue_huge_page(page);
305 		else {
306 			/*
307 			 * Decrement the refcount and free the page using its
308 			 * destructor.  This must be done with hugetlb_lock
309 			 * unlocked which is safe because free_huge_page takes
310 			 * hugetlb_lock before deciding how to free the page.
311 			 */
312 			spin_unlock(&hugetlb_lock);
313 			put_page(page);
314 			spin_lock(&hugetlb_lock);
315 		}
316 	}
317 
318 	return ret;
319 }
320 
321 /*
322  * When releasing a hugetlb pool reservation, any surplus pages that were
323  * allocated to satisfy the reservation must be explicitly freed if they were
324  * never used.
325  */
326 void return_unused_surplus_pages(unsigned long unused_resv_pages)
327 {
328 	static int nid = -1;
329 	struct page *page;
330 	unsigned long nr_pages;
331 
332 	nr_pages = min(unused_resv_pages, surplus_huge_pages);
333 
334 	while (nr_pages) {
335 		nid = next_node(nid, node_online_map);
336 		if (nid == MAX_NUMNODES)
337 			nid = first_node(node_online_map);
338 
339 		if (!surplus_huge_pages_node[nid])
340 			continue;
341 
342 		if (!list_empty(&hugepage_freelists[nid])) {
343 			page = list_entry(hugepage_freelists[nid].next,
344 					  struct page, lru);
345 			list_del(&page->lru);
346 			update_and_free_page(page);
347 			free_huge_pages--;
348 			free_huge_pages_node[nid]--;
349 			surplus_huge_pages--;
350 			surplus_huge_pages_node[nid]--;
351 			nr_pages--;
352 		}
353 	}
354 }
355 
356 static struct page *alloc_huge_page(struct vm_area_struct *vma,
357 				    unsigned long addr)
358 {
359 	struct page *page = NULL;
360 	int use_reserved_page = vma->vm_flags & VM_MAYSHARE;
361 
362 	spin_lock(&hugetlb_lock);
363 	if (!use_reserved_page && (free_huge_pages <= resv_huge_pages))
364 		goto fail;
365 
366 	page = dequeue_huge_page(vma, addr);
367 	if (!page)
368 		goto fail;
369 
370 	spin_unlock(&hugetlb_lock);
371 	set_page_refcounted(page);
372 	return page;
373 
374 fail:
375 	spin_unlock(&hugetlb_lock);
376 
377 	/*
378 	 * Private mappings do not use reserved huge pages so the allocation
379 	 * may have failed due to an undersized hugetlb pool.  Try to grab a
380 	 * surplus huge page from the buddy allocator.
381 	 */
382 	if (!use_reserved_page)
383 		page = alloc_buddy_huge_page(vma, addr);
384 
385 	return page;
386 }
387 
388 static int __init hugetlb_init(void)
389 {
390 	unsigned long i;
391 
392 	if (HPAGE_SHIFT == 0)
393 		return 0;
394 
395 	for (i = 0; i < MAX_NUMNODES; ++i)
396 		INIT_LIST_HEAD(&hugepage_freelists[i]);
397 
398 	hugetlb_next_nid = first_node(node_online_map);
399 
400 	for (i = 0; i < max_huge_pages; ++i) {
401 		if (!alloc_fresh_huge_page())
402 			break;
403 	}
404 	max_huge_pages = free_huge_pages = nr_huge_pages = i;
405 	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
406 	return 0;
407 }
408 module_init(hugetlb_init);
409 
410 static int __init hugetlb_setup(char *s)
411 {
412 	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
413 		max_huge_pages = 0;
414 	return 1;
415 }
416 __setup("hugepages=", hugetlb_setup);
417 
418 static unsigned int cpuset_mems_nr(unsigned int *array)
419 {
420 	int node;
421 	unsigned int nr = 0;
422 
423 	for_each_node_mask(node, cpuset_current_mems_allowed)
424 		nr += array[node];
425 
426 	return nr;
427 }
428 
429 #ifdef CONFIG_SYSCTL
430 #ifdef CONFIG_HIGHMEM
431 static void try_to_free_low(unsigned long count)
432 {
433 	int i;
434 
435 	for (i = 0; i < MAX_NUMNODES; ++i) {
436 		struct page *page, *next;
437 		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
438 			if (count >= nr_huge_pages)
439 				return;
440 			if (PageHighMem(page))
441 				continue;
442 			list_del(&page->lru);
443 			update_and_free_page(page);
444 			free_huge_pages--;
445 			free_huge_pages_node[page_to_nid(page)]--;
446 		}
447 	}
448 }
449 #else
450 static inline void try_to_free_low(unsigned long count)
451 {
452 }
453 #endif
454 
455 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
456 static unsigned long set_max_huge_pages(unsigned long count)
457 {
458 	unsigned long min_count, ret;
459 
460 	/*
461 	 * Increase the pool size
462 	 * First take pages out of surplus state.  Then make up the
463 	 * remaining difference by allocating fresh huge pages.
464 	 */
465 	spin_lock(&hugetlb_lock);
466 	while (surplus_huge_pages && count > persistent_huge_pages) {
467 		if (!adjust_pool_surplus(-1))
468 			break;
469 	}
470 
471 	while (count > persistent_huge_pages) {
472 		int ret;
473 		/*
474 		 * If this allocation races such that we no longer need the
475 		 * page, free_huge_page will handle it by freeing the page
476 		 * and reducing the surplus.
477 		 */
478 		spin_unlock(&hugetlb_lock);
479 		ret = alloc_fresh_huge_page();
480 		spin_lock(&hugetlb_lock);
481 		if (!ret)
482 			goto out;
483 
484 	}
485 
486 	/*
487 	 * Decrease the pool size
488 	 * First return free pages to the buddy allocator (being careful
489 	 * to keep enough around to satisfy reservations).  Then place
490 	 * pages into surplus state as needed so the pool will shrink
491 	 * to the desired size as pages become free.
492 	 */
493 	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
494 	min_count = max(count, min_count);
495 	try_to_free_low(min_count);
496 	while (min_count < persistent_huge_pages) {
497 		struct page *page = dequeue_huge_page(NULL, 0);
498 		if (!page)
499 			break;
500 		update_and_free_page(page);
501 	}
502 	while (count < persistent_huge_pages) {
503 		if (!adjust_pool_surplus(1))
504 			break;
505 	}
506 out:
507 	ret = persistent_huge_pages;
508 	spin_unlock(&hugetlb_lock);
509 	return ret;
510 }
511 
512 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
513 			   struct file *file, void __user *buffer,
514 			   size_t *length, loff_t *ppos)
515 {
516 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
517 	max_huge_pages = set_max_huge_pages(max_huge_pages);
518 	return 0;
519 }
520 
521 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
522 			struct file *file, void __user *buffer,
523 			size_t *length, loff_t *ppos)
524 {
525 	proc_dointvec(table, write, file, buffer, length, ppos);
526 	if (hugepages_treat_as_movable)
527 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
528 	else
529 		htlb_alloc_mask = GFP_HIGHUSER;
530 	return 0;
531 }
532 
533 #endif /* CONFIG_SYSCTL */
534 
535 int hugetlb_report_meminfo(char *buf)
536 {
537 	return sprintf(buf,
538 			"HugePages_Total: %5lu\n"
539 			"HugePages_Free:  %5lu\n"
540 			"HugePages_Rsvd:  %5lu\n"
541 			"HugePages_Surp:  %5lu\n"
542 			"Hugepagesize:    %5lu kB\n",
543 			nr_huge_pages,
544 			free_huge_pages,
545 			resv_huge_pages,
546 			surplus_huge_pages,
547 			HPAGE_SIZE/1024);
548 }
549 
550 int hugetlb_report_node_meminfo(int nid, char *buf)
551 {
552 	return sprintf(buf,
553 		"Node %d HugePages_Total: %5u\n"
554 		"Node %d HugePages_Free:  %5u\n",
555 		nid, nr_huge_pages_node[nid],
556 		nid, free_huge_pages_node[nid]);
557 }
558 
559 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
560 unsigned long hugetlb_total_pages(void)
561 {
562 	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
563 }
564 
565 /*
566  * We cannot handle pagefaults against hugetlb pages at all.  They cause
567  * handle_mm_fault() to try to instantiate regular-sized pages in the
568  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
569  * this far.
570  */
571 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
572 {
573 	BUG();
574 	return 0;
575 }
576 
577 struct vm_operations_struct hugetlb_vm_ops = {
578 	.fault = hugetlb_vm_op_fault,
579 };
580 
581 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
582 				int writable)
583 {
584 	pte_t entry;
585 
586 	if (writable) {
587 		entry =
588 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
589 	} else {
590 		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
591 	}
592 	entry = pte_mkyoung(entry);
593 	entry = pte_mkhuge(entry);
594 
595 	return entry;
596 }
597 
598 static void set_huge_ptep_writable(struct vm_area_struct *vma,
599 				   unsigned long address, pte_t *ptep)
600 {
601 	pte_t entry;
602 
603 	entry = pte_mkwrite(pte_mkdirty(*ptep));
604 	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
605 		update_mmu_cache(vma, address, entry);
606 	}
607 }
608 
609 
610 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
611 			    struct vm_area_struct *vma)
612 {
613 	pte_t *src_pte, *dst_pte, entry;
614 	struct page *ptepage;
615 	unsigned long addr;
616 	int cow;
617 
618 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
619 
620 	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
621 		src_pte = huge_pte_offset(src, addr);
622 		if (!src_pte)
623 			continue;
624 		dst_pte = huge_pte_alloc(dst, addr);
625 		if (!dst_pte)
626 			goto nomem;
627 		spin_lock(&dst->page_table_lock);
628 		spin_lock(&src->page_table_lock);
629 		if (!pte_none(*src_pte)) {
630 			if (cow)
631 				ptep_set_wrprotect(src, addr, src_pte);
632 			entry = *src_pte;
633 			ptepage = pte_page(entry);
634 			get_page(ptepage);
635 			set_huge_pte_at(dst, addr, dst_pte, entry);
636 		}
637 		spin_unlock(&src->page_table_lock);
638 		spin_unlock(&dst->page_table_lock);
639 	}
640 	return 0;
641 
642 nomem:
643 	return -ENOMEM;
644 }
645 
646 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
647 			    unsigned long end)
648 {
649 	struct mm_struct *mm = vma->vm_mm;
650 	unsigned long address;
651 	pte_t *ptep;
652 	pte_t pte;
653 	struct page *page;
654 	struct page *tmp;
655 	/*
656 	 * A page gathering list, protected by per file i_mmap_lock. The
657 	 * lock is used to avoid list corruption from multiple unmapping
658 	 * of the same page since we are using page->lru.
659 	 */
660 	LIST_HEAD(page_list);
661 
662 	WARN_ON(!is_vm_hugetlb_page(vma));
663 	BUG_ON(start & ~HPAGE_MASK);
664 	BUG_ON(end & ~HPAGE_MASK);
665 
666 	spin_lock(&mm->page_table_lock);
667 	for (address = start; address < end; address += HPAGE_SIZE) {
668 		ptep = huge_pte_offset(mm, address);
669 		if (!ptep)
670 			continue;
671 
672 		if (huge_pmd_unshare(mm, &address, ptep))
673 			continue;
674 
675 		pte = huge_ptep_get_and_clear(mm, address, ptep);
676 		if (pte_none(pte))
677 			continue;
678 
679 		page = pte_page(pte);
680 		if (pte_dirty(pte))
681 			set_page_dirty(page);
682 		list_add(&page->lru, &page_list);
683 	}
684 	spin_unlock(&mm->page_table_lock);
685 	flush_tlb_range(vma, start, end);
686 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
687 		list_del(&page->lru);
688 		put_page(page);
689 	}
690 }
691 
692 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
693 			  unsigned long end)
694 {
695 	/*
696 	 * It is undesirable to test vma->vm_file as it should be non-null
697 	 * for valid hugetlb area. However, vm_file will be NULL in the error
698 	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
699 	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
700 	 * to clean up. Since no pte has actually been setup, it is safe to
701 	 * do nothing in this case.
702 	 */
703 	if (vma->vm_file) {
704 		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
705 		__unmap_hugepage_range(vma, start, end);
706 		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
707 	}
708 }
709 
710 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
711 			unsigned long address, pte_t *ptep, pte_t pte)
712 {
713 	struct page *old_page, *new_page;
714 	int avoidcopy;
715 
716 	old_page = pte_page(pte);
717 
718 	/* If no-one else is actually using this page, avoid the copy
719 	 * and just make the page writable */
720 	avoidcopy = (page_count(old_page) == 1);
721 	if (avoidcopy) {
722 		set_huge_ptep_writable(vma, address, ptep);
723 		return 0;
724 	}
725 
726 	page_cache_get(old_page);
727 	new_page = alloc_huge_page(vma, address);
728 
729 	if (!new_page) {
730 		page_cache_release(old_page);
731 		return VM_FAULT_OOM;
732 	}
733 
734 	spin_unlock(&mm->page_table_lock);
735 	copy_huge_page(new_page, old_page, address, vma);
736 	spin_lock(&mm->page_table_lock);
737 
738 	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
739 	if (likely(pte_same(*ptep, pte))) {
740 		/* Break COW */
741 		set_huge_pte_at(mm, address, ptep,
742 				make_huge_pte(vma, new_page, 1));
743 		/* Make the old page be freed below */
744 		new_page = old_page;
745 	}
746 	page_cache_release(new_page);
747 	page_cache_release(old_page);
748 	return 0;
749 }
750 
751 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
752 			unsigned long address, pte_t *ptep, int write_access)
753 {
754 	int ret = VM_FAULT_SIGBUS;
755 	unsigned long idx;
756 	unsigned long size;
757 	struct page *page;
758 	struct address_space *mapping;
759 	pte_t new_pte;
760 
761 	mapping = vma->vm_file->f_mapping;
762 	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
763 		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
764 
765 	/*
766 	 * Use page lock to guard against racing truncation
767 	 * before we get page_table_lock.
768 	 */
769 retry:
770 	page = find_lock_page(mapping, idx);
771 	if (!page) {
772 		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
773 		if (idx >= size)
774 			goto out;
775 		if (hugetlb_get_quota(mapping))
776 			goto out;
777 		page = alloc_huge_page(vma, address);
778 		if (!page) {
779 			hugetlb_put_quota(mapping);
780 			ret = VM_FAULT_OOM;
781 			goto out;
782 		}
783 		clear_huge_page(page, address);
784 
785 		if (vma->vm_flags & VM_SHARED) {
786 			int err;
787 
788 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
789 			if (err) {
790 				put_page(page);
791 				hugetlb_put_quota(mapping);
792 				if (err == -EEXIST)
793 					goto retry;
794 				goto out;
795 			}
796 		} else
797 			lock_page(page);
798 	}
799 
800 	spin_lock(&mm->page_table_lock);
801 	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
802 	if (idx >= size)
803 		goto backout;
804 
805 	ret = 0;
806 	if (!pte_none(*ptep))
807 		goto backout;
808 
809 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
810 				&& (vma->vm_flags & VM_SHARED)));
811 	set_huge_pte_at(mm, address, ptep, new_pte);
812 
813 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
814 		/* Optimization, do the COW without a second fault */
815 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
816 	}
817 
818 	spin_unlock(&mm->page_table_lock);
819 	unlock_page(page);
820 out:
821 	return ret;
822 
823 backout:
824 	spin_unlock(&mm->page_table_lock);
825 	hugetlb_put_quota(mapping);
826 	unlock_page(page);
827 	put_page(page);
828 	goto out;
829 }
830 
831 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
832 			unsigned long address, int write_access)
833 {
834 	pte_t *ptep;
835 	pte_t entry;
836 	int ret;
837 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
838 
839 	ptep = huge_pte_alloc(mm, address);
840 	if (!ptep)
841 		return VM_FAULT_OOM;
842 
843 	/*
844 	 * Serialize hugepage allocation and instantiation, so that we don't
845 	 * get spurious allocation failures if two CPUs race to instantiate
846 	 * the same page in the page cache.
847 	 */
848 	mutex_lock(&hugetlb_instantiation_mutex);
849 	entry = *ptep;
850 	if (pte_none(entry)) {
851 		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
852 		mutex_unlock(&hugetlb_instantiation_mutex);
853 		return ret;
854 	}
855 
856 	ret = 0;
857 
858 	spin_lock(&mm->page_table_lock);
859 	/* Check for a racing update before calling hugetlb_cow */
860 	if (likely(pte_same(entry, *ptep)))
861 		if (write_access && !pte_write(entry))
862 			ret = hugetlb_cow(mm, vma, address, ptep, entry);
863 	spin_unlock(&mm->page_table_lock);
864 	mutex_unlock(&hugetlb_instantiation_mutex);
865 
866 	return ret;
867 }
868 
869 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
870 			struct page **pages, struct vm_area_struct **vmas,
871 			unsigned long *position, int *length, int i)
872 {
873 	unsigned long pfn_offset;
874 	unsigned long vaddr = *position;
875 	int remainder = *length;
876 
877 	spin_lock(&mm->page_table_lock);
878 	while (vaddr < vma->vm_end && remainder) {
879 		pte_t *pte;
880 		struct page *page;
881 
882 		/*
883 		 * Some archs (sparc64, sh*) have multiple pte_ts to
884 		 * each hugepage.  We have to make * sure we get the
885 		 * first, for the page indexing below to work.
886 		 */
887 		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
888 
889 		if (!pte || pte_none(*pte)) {
890 			int ret;
891 
892 			spin_unlock(&mm->page_table_lock);
893 			ret = hugetlb_fault(mm, vma, vaddr, 0);
894 			spin_lock(&mm->page_table_lock);
895 			if (!(ret & VM_FAULT_ERROR))
896 				continue;
897 
898 			remainder = 0;
899 			if (!i)
900 				i = -EFAULT;
901 			break;
902 		}
903 
904 		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
905 		page = pte_page(*pte);
906 same_page:
907 		if (pages) {
908 			get_page(page);
909 			pages[i] = page + pfn_offset;
910 		}
911 
912 		if (vmas)
913 			vmas[i] = vma;
914 
915 		vaddr += PAGE_SIZE;
916 		++pfn_offset;
917 		--remainder;
918 		++i;
919 		if (vaddr < vma->vm_end && remainder &&
920 				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
921 			/*
922 			 * We use pfn_offset to avoid touching the pageframes
923 			 * of this compound page.
924 			 */
925 			goto same_page;
926 		}
927 	}
928 	spin_unlock(&mm->page_table_lock);
929 	*length = remainder;
930 	*position = vaddr;
931 
932 	return i;
933 }
934 
935 void hugetlb_change_protection(struct vm_area_struct *vma,
936 		unsigned long address, unsigned long end, pgprot_t newprot)
937 {
938 	struct mm_struct *mm = vma->vm_mm;
939 	unsigned long start = address;
940 	pte_t *ptep;
941 	pte_t pte;
942 
943 	BUG_ON(address >= end);
944 	flush_cache_range(vma, address, end);
945 
946 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
947 	spin_lock(&mm->page_table_lock);
948 	for (; address < end; address += HPAGE_SIZE) {
949 		ptep = huge_pte_offset(mm, address);
950 		if (!ptep)
951 			continue;
952 		if (huge_pmd_unshare(mm, &address, ptep))
953 			continue;
954 		if (!pte_none(*ptep)) {
955 			pte = huge_ptep_get_and_clear(mm, address, ptep);
956 			pte = pte_mkhuge(pte_modify(pte, newprot));
957 			set_huge_pte_at(mm, address, ptep, pte);
958 		}
959 	}
960 	spin_unlock(&mm->page_table_lock);
961 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
962 
963 	flush_tlb_range(vma, start, end);
964 }
965 
966 struct file_region {
967 	struct list_head link;
968 	long from;
969 	long to;
970 };
971 
972 static long region_add(struct list_head *head, long f, long t)
973 {
974 	struct file_region *rg, *nrg, *trg;
975 
976 	/* Locate the region we are either in or before. */
977 	list_for_each_entry(rg, head, link)
978 		if (f <= rg->to)
979 			break;
980 
981 	/* Round our left edge to the current segment if it encloses us. */
982 	if (f > rg->from)
983 		f = rg->from;
984 
985 	/* Check for and consume any regions we now overlap with. */
986 	nrg = rg;
987 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
988 		if (&rg->link == head)
989 			break;
990 		if (rg->from > t)
991 			break;
992 
993 		/* If this area reaches higher then extend our area to
994 		 * include it completely.  If this is not the first area
995 		 * which we intend to reuse, free it. */
996 		if (rg->to > t)
997 			t = rg->to;
998 		if (rg != nrg) {
999 			list_del(&rg->link);
1000 			kfree(rg);
1001 		}
1002 	}
1003 	nrg->from = f;
1004 	nrg->to = t;
1005 	return 0;
1006 }
1007 
1008 static long region_chg(struct list_head *head, long f, long t)
1009 {
1010 	struct file_region *rg, *nrg;
1011 	long chg = 0;
1012 
1013 	/* Locate the region we are before or in. */
1014 	list_for_each_entry(rg, head, link)
1015 		if (f <= rg->to)
1016 			break;
1017 
1018 	/* If we are below the current region then a new region is required.
1019 	 * Subtle, allocate a new region at the position but make it zero
1020 	 * size such that we can guarentee to record the reservation. */
1021 	if (&rg->link == head || t < rg->from) {
1022 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1023 		if (!nrg)
1024 			return -ENOMEM;
1025 		nrg->from = f;
1026 		nrg->to   = f;
1027 		INIT_LIST_HEAD(&nrg->link);
1028 		list_add(&nrg->link, rg->link.prev);
1029 
1030 		return t - f;
1031 	}
1032 
1033 	/* Round our left edge to the current segment if it encloses us. */
1034 	if (f > rg->from)
1035 		f = rg->from;
1036 	chg = t - f;
1037 
1038 	/* Check for and consume any regions we now overlap with. */
1039 	list_for_each_entry(rg, rg->link.prev, link) {
1040 		if (&rg->link == head)
1041 			break;
1042 		if (rg->from > t)
1043 			return chg;
1044 
1045 		/* We overlap with this area, if it extends futher than
1046 		 * us then we must extend ourselves.  Account for its
1047 		 * existing reservation. */
1048 		if (rg->to > t) {
1049 			chg += rg->to - t;
1050 			t = rg->to;
1051 		}
1052 		chg -= rg->to - rg->from;
1053 	}
1054 	return chg;
1055 }
1056 
1057 static long region_truncate(struct list_head *head, long end)
1058 {
1059 	struct file_region *rg, *trg;
1060 	long chg = 0;
1061 
1062 	/* Locate the region we are either in or before. */
1063 	list_for_each_entry(rg, head, link)
1064 		if (end <= rg->to)
1065 			break;
1066 	if (&rg->link == head)
1067 		return 0;
1068 
1069 	/* If we are in the middle of a region then adjust it. */
1070 	if (end > rg->from) {
1071 		chg = rg->to - end;
1072 		rg->to = end;
1073 		rg = list_entry(rg->link.next, typeof(*rg), link);
1074 	}
1075 
1076 	/* Drop any remaining regions. */
1077 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1078 		if (&rg->link == head)
1079 			break;
1080 		chg += rg->to - rg->from;
1081 		list_del(&rg->link);
1082 		kfree(rg);
1083 	}
1084 	return chg;
1085 }
1086 
1087 static int hugetlb_acct_memory(long delta)
1088 {
1089 	int ret = -ENOMEM;
1090 
1091 	spin_lock(&hugetlb_lock);
1092 	/*
1093 	 * When cpuset is configured, it breaks the strict hugetlb page
1094 	 * reservation as the accounting is done on a global variable. Such
1095 	 * reservation is completely rubbish in the presence of cpuset because
1096 	 * the reservation is not checked against page availability for the
1097 	 * current cpuset. Application can still potentially OOM'ed by kernel
1098 	 * with lack of free htlb page in cpuset that the task is in.
1099 	 * Attempt to enforce strict accounting with cpuset is almost
1100 	 * impossible (or too ugly) because cpuset is too fluid that
1101 	 * task or memory node can be dynamically moved between cpusets.
1102 	 *
1103 	 * The change of semantics for shared hugetlb mapping with cpuset is
1104 	 * undesirable. However, in order to preserve some of the semantics,
1105 	 * we fall back to check against current free page availability as
1106 	 * a best attempt and hopefully to minimize the impact of changing
1107 	 * semantics that cpuset has.
1108 	 */
1109 	if (delta > 0) {
1110 		if (gather_surplus_pages(delta) < 0)
1111 			goto out;
1112 
1113 		if (delta > cpuset_mems_nr(free_huge_pages_node))
1114 			goto out;
1115 	}
1116 
1117 	ret = 0;
1118 	resv_huge_pages += delta;
1119 	if (delta < 0)
1120 		return_unused_surplus_pages((unsigned long) -delta);
1121 
1122 out:
1123 	spin_unlock(&hugetlb_lock);
1124 	return ret;
1125 }
1126 
1127 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1128 {
1129 	long ret, chg;
1130 
1131 	chg = region_chg(&inode->i_mapping->private_list, from, to);
1132 	if (chg < 0)
1133 		return chg;
1134 
1135 	ret = hugetlb_acct_memory(chg);
1136 	if (ret < 0)
1137 		return ret;
1138 	region_add(&inode->i_mapping->private_list, from, to);
1139 	return 0;
1140 }
1141 
1142 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1143 {
1144 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
1145 	hugetlb_acct_memory(freed - chg);
1146 }
1147