xref: /openbmc/linux/mm/huge_memory.c (revision e496cf3d782135c1cca0d154d4b924517ff58de0)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 /*
39  * By default transparent hugepage support is disabled in order that avoid
40  * to risk increase the memory footprint of applications without a guaranteed
41  * benefit. When transparent hugepage support is enabled, is for all mappings,
42  * and khugepaged scans all mappings.
43  * Defrag is invoked by khugepaged hugepage allocations and by page faults
44  * for all hugepage allocations.
45  */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56 
57 static struct shrinker deferred_split_shrinker;
58 
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61 
62 struct page *get_huge_zero_page(void)
63 {
64 	struct page *zero_page;
65 retry:
66 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 		return READ_ONCE(huge_zero_page);
68 
69 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 			HPAGE_PMD_ORDER);
71 	if (!zero_page) {
72 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 		return NULL;
74 	}
75 	count_vm_event(THP_ZERO_PAGE_ALLOC);
76 	preempt_disable();
77 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 		preempt_enable();
79 		__free_pages(zero_page, compound_order(zero_page));
80 		goto retry;
81 	}
82 
83 	/* We take additional reference here. It will be put back by shrinker */
84 	atomic_set(&huge_zero_refcount, 2);
85 	preempt_enable();
86 	return READ_ONCE(huge_zero_page);
87 }
88 
89 void put_huge_zero_page(void)
90 {
91 	/*
92 	 * Counter should never go to zero here. Only shrinker can put
93 	 * last reference.
94 	 */
95 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97 
98 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
99 					struct shrink_control *sc)
100 {
101 	/* we can free zero page only if last reference remains */
102 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
103 }
104 
105 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
106 				       struct shrink_control *sc)
107 {
108 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
109 		struct page *zero_page = xchg(&huge_zero_page, NULL);
110 		BUG_ON(zero_page == NULL);
111 		__free_pages(zero_page, compound_order(zero_page));
112 		return HPAGE_PMD_NR;
113 	}
114 
115 	return 0;
116 }
117 
118 static struct shrinker huge_zero_page_shrinker = {
119 	.count_objects = shrink_huge_zero_page_count,
120 	.scan_objects = shrink_huge_zero_page_scan,
121 	.seeks = DEFAULT_SEEKS,
122 };
123 
124 #ifdef CONFIG_SYSFS
125 
126 static ssize_t triple_flag_store(struct kobject *kobj,
127 				 struct kobj_attribute *attr,
128 				 const char *buf, size_t count,
129 				 enum transparent_hugepage_flag enabled,
130 				 enum transparent_hugepage_flag deferred,
131 				 enum transparent_hugepage_flag req_madv)
132 {
133 	if (!memcmp("defer", buf,
134 		    min(sizeof("defer")-1, count))) {
135 		if (enabled == deferred)
136 			return -EINVAL;
137 		clear_bit(enabled, &transparent_hugepage_flags);
138 		clear_bit(req_madv, &transparent_hugepage_flags);
139 		set_bit(deferred, &transparent_hugepage_flags);
140 	} else if (!memcmp("always", buf,
141 		    min(sizeof("always")-1, count))) {
142 		clear_bit(deferred, &transparent_hugepage_flags);
143 		clear_bit(req_madv, &transparent_hugepage_flags);
144 		set_bit(enabled, &transparent_hugepage_flags);
145 	} else if (!memcmp("madvise", buf,
146 			   min(sizeof("madvise")-1, count))) {
147 		clear_bit(enabled, &transparent_hugepage_flags);
148 		clear_bit(deferred, &transparent_hugepage_flags);
149 		set_bit(req_madv, &transparent_hugepage_flags);
150 	} else if (!memcmp("never", buf,
151 			   min(sizeof("never")-1, count))) {
152 		clear_bit(enabled, &transparent_hugepage_flags);
153 		clear_bit(req_madv, &transparent_hugepage_flags);
154 		clear_bit(deferred, &transparent_hugepage_flags);
155 	} else
156 		return -EINVAL;
157 
158 	return count;
159 }
160 
161 static ssize_t enabled_show(struct kobject *kobj,
162 			    struct kobj_attribute *attr, char *buf)
163 {
164 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
165 		return sprintf(buf, "[always] madvise never\n");
166 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "always [madvise] never\n");
168 	else
169 		return sprintf(buf, "always madvise [never]\n");
170 }
171 
172 static ssize_t enabled_store(struct kobject *kobj,
173 			     struct kobj_attribute *attr,
174 			     const char *buf, size_t count)
175 {
176 	ssize_t ret;
177 
178 	ret = triple_flag_store(kobj, attr, buf, count,
179 				TRANSPARENT_HUGEPAGE_FLAG,
180 				TRANSPARENT_HUGEPAGE_FLAG,
181 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
182 
183 	if (ret > 0) {
184 		int err = start_stop_khugepaged();
185 		if (err)
186 			ret = err;
187 	}
188 
189 	return ret;
190 }
191 static struct kobj_attribute enabled_attr =
192 	__ATTR(enabled, 0644, enabled_show, enabled_store);
193 
194 ssize_t single_hugepage_flag_show(struct kobject *kobj,
195 				struct kobj_attribute *attr, char *buf,
196 				enum transparent_hugepage_flag flag)
197 {
198 	return sprintf(buf, "%d\n",
199 		       !!test_bit(flag, &transparent_hugepage_flags));
200 }
201 
202 ssize_t single_hugepage_flag_store(struct kobject *kobj,
203 				 struct kobj_attribute *attr,
204 				 const char *buf, size_t count,
205 				 enum transparent_hugepage_flag flag)
206 {
207 	unsigned long value;
208 	int ret;
209 
210 	ret = kstrtoul(buf, 10, &value);
211 	if (ret < 0)
212 		return ret;
213 	if (value > 1)
214 		return -EINVAL;
215 
216 	if (value)
217 		set_bit(flag, &transparent_hugepage_flags);
218 	else
219 		clear_bit(flag, &transparent_hugepage_flags);
220 
221 	return count;
222 }
223 
224 /*
225  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
226  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
227  * memory just to allocate one more hugepage.
228  */
229 static ssize_t defrag_show(struct kobject *kobj,
230 			   struct kobj_attribute *attr, char *buf)
231 {
232 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
233 		return sprintf(buf, "[always] defer madvise never\n");
234 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
235 		return sprintf(buf, "always [defer] madvise never\n");
236 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
237 		return sprintf(buf, "always defer [madvise] never\n");
238 	else
239 		return sprintf(buf, "always defer madvise [never]\n");
240 
241 }
242 static ssize_t defrag_store(struct kobject *kobj,
243 			    struct kobj_attribute *attr,
244 			    const char *buf, size_t count)
245 {
246 	return triple_flag_store(kobj, attr, buf, count,
247 				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
248 				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
249 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
250 }
251 static struct kobj_attribute defrag_attr =
252 	__ATTR(defrag, 0644, defrag_show, defrag_store);
253 
254 static ssize_t use_zero_page_show(struct kobject *kobj,
255 		struct kobj_attribute *attr, char *buf)
256 {
257 	return single_hugepage_flag_show(kobj, attr, buf,
258 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
259 }
260 static ssize_t use_zero_page_store(struct kobject *kobj,
261 		struct kobj_attribute *attr, const char *buf, size_t count)
262 {
263 	return single_hugepage_flag_store(kobj, attr, buf, count,
264 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
265 }
266 static struct kobj_attribute use_zero_page_attr =
267 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
268 #ifdef CONFIG_DEBUG_VM
269 static ssize_t debug_cow_show(struct kobject *kobj,
270 				struct kobj_attribute *attr, char *buf)
271 {
272 	return single_hugepage_flag_show(kobj, attr, buf,
273 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
274 }
275 static ssize_t debug_cow_store(struct kobject *kobj,
276 			       struct kobj_attribute *attr,
277 			       const char *buf, size_t count)
278 {
279 	return single_hugepage_flag_store(kobj, attr, buf, count,
280 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
281 }
282 static struct kobj_attribute debug_cow_attr =
283 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
284 #endif /* CONFIG_DEBUG_VM */
285 
286 static struct attribute *hugepage_attr[] = {
287 	&enabled_attr.attr,
288 	&defrag_attr.attr,
289 	&use_zero_page_attr.attr,
290 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
291 	&shmem_enabled_attr.attr,
292 #endif
293 #ifdef CONFIG_DEBUG_VM
294 	&debug_cow_attr.attr,
295 #endif
296 	NULL,
297 };
298 
299 static struct attribute_group hugepage_attr_group = {
300 	.attrs = hugepage_attr,
301 };
302 
303 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
304 {
305 	int err;
306 
307 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
308 	if (unlikely(!*hugepage_kobj)) {
309 		pr_err("failed to create transparent hugepage kobject\n");
310 		return -ENOMEM;
311 	}
312 
313 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
314 	if (err) {
315 		pr_err("failed to register transparent hugepage group\n");
316 		goto delete_obj;
317 	}
318 
319 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
320 	if (err) {
321 		pr_err("failed to register transparent hugepage group\n");
322 		goto remove_hp_group;
323 	}
324 
325 	return 0;
326 
327 remove_hp_group:
328 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
329 delete_obj:
330 	kobject_put(*hugepage_kobj);
331 	return err;
332 }
333 
334 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
335 {
336 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
337 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
338 	kobject_put(hugepage_kobj);
339 }
340 #else
341 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
342 {
343 	return 0;
344 }
345 
346 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
347 {
348 }
349 #endif /* CONFIG_SYSFS */
350 
351 static int __init hugepage_init(void)
352 {
353 	int err;
354 	struct kobject *hugepage_kobj;
355 
356 	if (!has_transparent_hugepage()) {
357 		transparent_hugepage_flags = 0;
358 		return -EINVAL;
359 	}
360 
361 	/*
362 	 * hugepages can't be allocated by the buddy allocator
363 	 */
364 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
365 	/*
366 	 * we use page->mapping and page->index in second tail page
367 	 * as list_head: assuming THP order >= 2
368 	 */
369 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
370 
371 	err = hugepage_init_sysfs(&hugepage_kobj);
372 	if (err)
373 		goto err_sysfs;
374 
375 	err = khugepaged_init();
376 	if (err)
377 		goto err_slab;
378 
379 	err = register_shrinker(&huge_zero_page_shrinker);
380 	if (err)
381 		goto err_hzp_shrinker;
382 	err = register_shrinker(&deferred_split_shrinker);
383 	if (err)
384 		goto err_split_shrinker;
385 
386 	/*
387 	 * By default disable transparent hugepages on smaller systems,
388 	 * where the extra memory used could hurt more than TLB overhead
389 	 * is likely to save.  The admin can still enable it through /sys.
390 	 */
391 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
392 		transparent_hugepage_flags = 0;
393 		return 0;
394 	}
395 
396 	err = start_stop_khugepaged();
397 	if (err)
398 		goto err_khugepaged;
399 
400 	return 0;
401 err_khugepaged:
402 	unregister_shrinker(&deferred_split_shrinker);
403 err_split_shrinker:
404 	unregister_shrinker(&huge_zero_page_shrinker);
405 err_hzp_shrinker:
406 	khugepaged_destroy();
407 err_slab:
408 	hugepage_exit_sysfs(hugepage_kobj);
409 err_sysfs:
410 	return err;
411 }
412 subsys_initcall(hugepage_init);
413 
414 static int __init setup_transparent_hugepage(char *str)
415 {
416 	int ret = 0;
417 	if (!str)
418 		goto out;
419 	if (!strcmp(str, "always")) {
420 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
421 			&transparent_hugepage_flags);
422 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
423 			  &transparent_hugepage_flags);
424 		ret = 1;
425 	} else if (!strcmp(str, "madvise")) {
426 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
427 			  &transparent_hugepage_flags);
428 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
429 			&transparent_hugepage_flags);
430 		ret = 1;
431 	} else if (!strcmp(str, "never")) {
432 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
433 			  &transparent_hugepage_flags);
434 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
435 			  &transparent_hugepage_flags);
436 		ret = 1;
437 	}
438 out:
439 	if (!ret)
440 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
441 	return ret;
442 }
443 __setup("transparent_hugepage=", setup_transparent_hugepage);
444 
445 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
446 {
447 	if (likely(vma->vm_flags & VM_WRITE))
448 		pmd = pmd_mkwrite(pmd);
449 	return pmd;
450 }
451 
452 static inline struct list_head *page_deferred_list(struct page *page)
453 {
454 	/*
455 	 * ->lru in the tail pages is occupied by compound_head.
456 	 * Let's use ->mapping + ->index in the second tail page as list_head.
457 	 */
458 	return (struct list_head *)&page[2].mapping;
459 }
460 
461 void prep_transhuge_page(struct page *page)
462 {
463 	/*
464 	 * we use page->mapping and page->indexlru in second tail page
465 	 * as list_head: assuming THP order >= 2
466 	 */
467 
468 	INIT_LIST_HEAD(page_deferred_list(page));
469 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
470 }
471 
472 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
473 		gfp_t gfp)
474 {
475 	struct vm_area_struct *vma = fe->vma;
476 	struct mem_cgroup *memcg;
477 	pgtable_t pgtable;
478 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
479 
480 	VM_BUG_ON_PAGE(!PageCompound(page), page);
481 
482 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
483 		put_page(page);
484 		count_vm_event(THP_FAULT_FALLBACK);
485 		return VM_FAULT_FALLBACK;
486 	}
487 
488 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
489 	if (unlikely(!pgtable)) {
490 		mem_cgroup_cancel_charge(page, memcg, true);
491 		put_page(page);
492 		return VM_FAULT_OOM;
493 	}
494 
495 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
496 	/*
497 	 * The memory barrier inside __SetPageUptodate makes sure that
498 	 * clear_huge_page writes become visible before the set_pmd_at()
499 	 * write.
500 	 */
501 	__SetPageUptodate(page);
502 
503 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
504 	if (unlikely(!pmd_none(*fe->pmd))) {
505 		spin_unlock(fe->ptl);
506 		mem_cgroup_cancel_charge(page, memcg, true);
507 		put_page(page);
508 		pte_free(vma->vm_mm, pgtable);
509 	} else {
510 		pmd_t entry;
511 
512 		/* Deliver the page fault to userland */
513 		if (userfaultfd_missing(vma)) {
514 			int ret;
515 
516 			spin_unlock(fe->ptl);
517 			mem_cgroup_cancel_charge(page, memcg, true);
518 			put_page(page);
519 			pte_free(vma->vm_mm, pgtable);
520 			ret = handle_userfault(fe, VM_UFFD_MISSING);
521 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
522 			return ret;
523 		}
524 
525 		entry = mk_huge_pmd(page, vma->vm_page_prot);
526 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
527 		page_add_new_anon_rmap(page, vma, haddr, true);
528 		mem_cgroup_commit_charge(page, memcg, false, true);
529 		lru_cache_add_active_or_unevictable(page, vma);
530 		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
531 		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
532 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
533 		atomic_long_inc(&vma->vm_mm->nr_ptes);
534 		spin_unlock(fe->ptl);
535 		count_vm_event(THP_FAULT_ALLOC);
536 	}
537 
538 	return 0;
539 }
540 
541 /*
542  * If THP is set to always then directly reclaim/compact as necessary
543  * If set to defer then do no reclaim and defer to khugepaged
544  * If set to madvise and the VMA is flagged then directly reclaim/compact
545  */
546 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
547 {
548 	gfp_t reclaim_flags = 0;
549 
550 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
551 	    (vma->vm_flags & VM_HUGEPAGE))
552 		reclaim_flags = __GFP_DIRECT_RECLAIM;
553 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
554 		reclaim_flags = __GFP_KSWAPD_RECLAIM;
555 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
556 		reclaim_flags = __GFP_DIRECT_RECLAIM;
557 
558 	return GFP_TRANSHUGE | reclaim_flags;
559 }
560 
561 /* Caller must hold page table lock. */
562 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
563 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
564 		struct page *zero_page)
565 {
566 	pmd_t entry;
567 	if (!pmd_none(*pmd))
568 		return false;
569 	entry = mk_pmd(zero_page, vma->vm_page_prot);
570 	entry = pmd_mkhuge(entry);
571 	if (pgtable)
572 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
573 	set_pmd_at(mm, haddr, pmd, entry);
574 	atomic_long_inc(&mm->nr_ptes);
575 	return true;
576 }
577 
578 int do_huge_pmd_anonymous_page(struct fault_env *fe)
579 {
580 	struct vm_area_struct *vma = fe->vma;
581 	gfp_t gfp;
582 	struct page *page;
583 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
584 
585 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
586 		return VM_FAULT_FALLBACK;
587 	if (unlikely(anon_vma_prepare(vma)))
588 		return VM_FAULT_OOM;
589 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
590 		return VM_FAULT_OOM;
591 	if (!(fe->flags & FAULT_FLAG_WRITE) &&
592 			!mm_forbids_zeropage(vma->vm_mm) &&
593 			transparent_hugepage_use_zero_page()) {
594 		pgtable_t pgtable;
595 		struct page *zero_page;
596 		bool set;
597 		int ret;
598 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
599 		if (unlikely(!pgtable))
600 			return VM_FAULT_OOM;
601 		zero_page = get_huge_zero_page();
602 		if (unlikely(!zero_page)) {
603 			pte_free(vma->vm_mm, pgtable);
604 			count_vm_event(THP_FAULT_FALLBACK);
605 			return VM_FAULT_FALLBACK;
606 		}
607 		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
608 		ret = 0;
609 		set = false;
610 		if (pmd_none(*fe->pmd)) {
611 			if (userfaultfd_missing(vma)) {
612 				spin_unlock(fe->ptl);
613 				ret = handle_userfault(fe, VM_UFFD_MISSING);
614 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
615 			} else {
616 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
617 						   haddr, fe->pmd, zero_page);
618 				spin_unlock(fe->ptl);
619 				set = true;
620 			}
621 		} else
622 			spin_unlock(fe->ptl);
623 		if (!set) {
624 			pte_free(vma->vm_mm, pgtable);
625 			put_huge_zero_page();
626 		}
627 		return ret;
628 	}
629 	gfp = alloc_hugepage_direct_gfpmask(vma);
630 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
631 	if (unlikely(!page)) {
632 		count_vm_event(THP_FAULT_FALLBACK);
633 		return VM_FAULT_FALLBACK;
634 	}
635 	prep_transhuge_page(page);
636 	return __do_huge_pmd_anonymous_page(fe, page, gfp);
637 }
638 
639 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
640 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
641 {
642 	struct mm_struct *mm = vma->vm_mm;
643 	pmd_t entry;
644 	spinlock_t *ptl;
645 
646 	ptl = pmd_lock(mm, pmd);
647 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
648 	if (pfn_t_devmap(pfn))
649 		entry = pmd_mkdevmap(entry);
650 	if (write) {
651 		entry = pmd_mkyoung(pmd_mkdirty(entry));
652 		entry = maybe_pmd_mkwrite(entry, vma);
653 	}
654 	set_pmd_at(mm, addr, pmd, entry);
655 	update_mmu_cache_pmd(vma, addr, pmd);
656 	spin_unlock(ptl);
657 }
658 
659 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
660 			pmd_t *pmd, pfn_t pfn, bool write)
661 {
662 	pgprot_t pgprot = vma->vm_page_prot;
663 	/*
664 	 * If we had pmd_special, we could avoid all these restrictions,
665 	 * but we need to be consistent with PTEs and architectures that
666 	 * can't support a 'special' bit.
667 	 */
668 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
669 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
670 						(VM_PFNMAP|VM_MIXEDMAP));
671 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
672 	BUG_ON(!pfn_t_devmap(pfn));
673 
674 	if (addr < vma->vm_start || addr >= vma->vm_end)
675 		return VM_FAULT_SIGBUS;
676 	if (track_pfn_insert(vma, &pgprot, pfn))
677 		return VM_FAULT_SIGBUS;
678 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
679 	return VM_FAULT_NOPAGE;
680 }
681 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
682 
683 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
684 		pmd_t *pmd)
685 {
686 	pmd_t _pmd;
687 
688 	/*
689 	 * We should set the dirty bit only for FOLL_WRITE but for now
690 	 * the dirty bit in the pmd is meaningless.  And if the dirty
691 	 * bit will become meaningful and we'll only set it with
692 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
693 	 * set the young bit, instead of the current set_pmd_at.
694 	 */
695 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
696 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
697 				pmd, _pmd,  1))
698 		update_mmu_cache_pmd(vma, addr, pmd);
699 }
700 
701 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
702 		pmd_t *pmd, int flags)
703 {
704 	unsigned long pfn = pmd_pfn(*pmd);
705 	struct mm_struct *mm = vma->vm_mm;
706 	struct dev_pagemap *pgmap;
707 	struct page *page;
708 
709 	assert_spin_locked(pmd_lockptr(mm, pmd));
710 
711 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
712 		return NULL;
713 
714 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
715 		/* pass */;
716 	else
717 		return NULL;
718 
719 	if (flags & FOLL_TOUCH)
720 		touch_pmd(vma, addr, pmd);
721 
722 	/*
723 	 * device mapped pages can only be returned if the
724 	 * caller will manage the page reference count.
725 	 */
726 	if (!(flags & FOLL_GET))
727 		return ERR_PTR(-EEXIST);
728 
729 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
730 	pgmap = get_dev_pagemap(pfn, NULL);
731 	if (!pgmap)
732 		return ERR_PTR(-EFAULT);
733 	page = pfn_to_page(pfn);
734 	get_page(page);
735 	put_dev_pagemap(pgmap);
736 
737 	return page;
738 }
739 
740 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
741 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
742 		  struct vm_area_struct *vma)
743 {
744 	spinlock_t *dst_ptl, *src_ptl;
745 	struct page *src_page;
746 	pmd_t pmd;
747 	pgtable_t pgtable = NULL;
748 	int ret = -ENOMEM;
749 
750 	/* Skip if can be re-fill on fault */
751 	if (!vma_is_anonymous(vma))
752 		return 0;
753 
754 	pgtable = pte_alloc_one(dst_mm, addr);
755 	if (unlikely(!pgtable))
756 		goto out;
757 
758 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
759 	src_ptl = pmd_lockptr(src_mm, src_pmd);
760 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
761 
762 	ret = -EAGAIN;
763 	pmd = *src_pmd;
764 	if (unlikely(!pmd_trans_huge(pmd))) {
765 		pte_free(dst_mm, pgtable);
766 		goto out_unlock;
767 	}
768 	/*
769 	 * When page table lock is held, the huge zero pmd should not be
770 	 * under splitting since we don't split the page itself, only pmd to
771 	 * a page table.
772 	 */
773 	if (is_huge_zero_pmd(pmd)) {
774 		struct page *zero_page;
775 		/*
776 		 * get_huge_zero_page() will never allocate a new page here,
777 		 * since we already have a zero page to copy. It just takes a
778 		 * reference.
779 		 */
780 		zero_page = get_huge_zero_page();
781 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
782 				zero_page);
783 		ret = 0;
784 		goto out_unlock;
785 	}
786 
787 	src_page = pmd_page(pmd);
788 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
789 	get_page(src_page);
790 	page_dup_rmap(src_page, true);
791 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
792 	atomic_long_inc(&dst_mm->nr_ptes);
793 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
794 
795 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
796 	pmd = pmd_mkold(pmd_wrprotect(pmd));
797 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
798 
799 	ret = 0;
800 out_unlock:
801 	spin_unlock(src_ptl);
802 	spin_unlock(dst_ptl);
803 out:
804 	return ret;
805 }
806 
807 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
808 {
809 	pmd_t entry;
810 	unsigned long haddr;
811 
812 	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
813 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
814 		goto unlock;
815 
816 	entry = pmd_mkyoung(orig_pmd);
817 	haddr = fe->address & HPAGE_PMD_MASK;
818 	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
819 				fe->flags & FAULT_FLAG_WRITE))
820 		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
821 
822 unlock:
823 	spin_unlock(fe->ptl);
824 }
825 
826 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
827 		struct page *page)
828 {
829 	struct vm_area_struct *vma = fe->vma;
830 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
831 	struct mem_cgroup *memcg;
832 	pgtable_t pgtable;
833 	pmd_t _pmd;
834 	int ret = 0, i;
835 	struct page **pages;
836 	unsigned long mmun_start;	/* For mmu_notifiers */
837 	unsigned long mmun_end;		/* For mmu_notifiers */
838 
839 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
840 			GFP_KERNEL);
841 	if (unlikely(!pages)) {
842 		ret |= VM_FAULT_OOM;
843 		goto out;
844 	}
845 
846 	for (i = 0; i < HPAGE_PMD_NR; i++) {
847 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
848 					       __GFP_OTHER_NODE, vma,
849 					       fe->address, page_to_nid(page));
850 		if (unlikely(!pages[i] ||
851 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
852 				     GFP_KERNEL, &memcg, false))) {
853 			if (pages[i])
854 				put_page(pages[i]);
855 			while (--i >= 0) {
856 				memcg = (void *)page_private(pages[i]);
857 				set_page_private(pages[i], 0);
858 				mem_cgroup_cancel_charge(pages[i], memcg,
859 						false);
860 				put_page(pages[i]);
861 			}
862 			kfree(pages);
863 			ret |= VM_FAULT_OOM;
864 			goto out;
865 		}
866 		set_page_private(pages[i], (unsigned long)memcg);
867 	}
868 
869 	for (i = 0; i < HPAGE_PMD_NR; i++) {
870 		copy_user_highpage(pages[i], page + i,
871 				   haddr + PAGE_SIZE * i, vma);
872 		__SetPageUptodate(pages[i]);
873 		cond_resched();
874 	}
875 
876 	mmun_start = haddr;
877 	mmun_end   = haddr + HPAGE_PMD_SIZE;
878 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
879 
880 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
881 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
882 		goto out_free_pages;
883 	VM_BUG_ON_PAGE(!PageHead(page), page);
884 
885 	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
886 	/* leave pmd empty until pte is filled */
887 
888 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
889 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
890 
891 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
892 		pte_t entry;
893 		entry = mk_pte(pages[i], vma->vm_page_prot);
894 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
895 		memcg = (void *)page_private(pages[i]);
896 		set_page_private(pages[i], 0);
897 		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
898 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
899 		lru_cache_add_active_or_unevictable(pages[i], vma);
900 		fe->pte = pte_offset_map(&_pmd, haddr);
901 		VM_BUG_ON(!pte_none(*fe->pte));
902 		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
903 		pte_unmap(fe->pte);
904 	}
905 	kfree(pages);
906 
907 	smp_wmb(); /* make pte visible before pmd */
908 	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
909 	page_remove_rmap(page, true);
910 	spin_unlock(fe->ptl);
911 
912 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
913 
914 	ret |= VM_FAULT_WRITE;
915 	put_page(page);
916 
917 out:
918 	return ret;
919 
920 out_free_pages:
921 	spin_unlock(fe->ptl);
922 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
923 	for (i = 0; i < HPAGE_PMD_NR; i++) {
924 		memcg = (void *)page_private(pages[i]);
925 		set_page_private(pages[i], 0);
926 		mem_cgroup_cancel_charge(pages[i], memcg, false);
927 		put_page(pages[i]);
928 	}
929 	kfree(pages);
930 	goto out;
931 }
932 
933 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
934 {
935 	struct vm_area_struct *vma = fe->vma;
936 	struct page *page = NULL, *new_page;
937 	struct mem_cgroup *memcg;
938 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
939 	unsigned long mmun_start;	/* For mmu_notifiers */
940 	unsigned long mmun_end;		/* For mmu_notifiers */
941 	gfp_t huge_gfp;			/* for allocation and charge */
942 	int ret = 0;
943 
944 	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
945 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
946 	if (is_huge_zero_pmd(orig_pmd))
947 		goto alloc;
948 	spin_lock(fe->ptl);
949 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
950 		goto out_unlock;
951 
952 	page = pmd_page(orig_pmd);
953 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
954 	/*
955 	 * We can only reuse the page if nobody else maps the huge page or it's
956 	 * part.
957 	 */
958 	if (page_trans_huge_mapcount(page, NULL) == 1) {
959 		pmd_t entry;
960 		entry = pmd_mkyoung(orig_pmd);
961 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
962 		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
963 			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
964 		ret |= VM_FAULT_WRITE;
965 		goto out_unlock;
966 	}
967 	get_page(page);
968 	spin_unlock(fe->ptl);
969 alloc:
970 	if (transparent_hugepage_enabled(vma) &&
971 	    !transparent_hugepage_debug_cow()) {
972 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
973 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
974 	} else
975 		new_page = NULL;
976 
977 	if (likely(new_page)) {
978 		prep_transhuge_page(new_page);
979 	} else {
980 		if (!page) {
981 			split_huge_pmd(vma, fe->pmd, fe->address);
982 			ret |= VM_FAULT_FALLBACK;
983 		} else {
984 			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
985 			if (ret & VM_FAULT_OOM) {
986 				split_huge_pmd(vma, fe->pmd, fe->address);
987 				ret |= VM_FAULT_FALLBACK;
988 			}
989 			put_page(page);
990 		}
991 		count_vm_event(THP_FAULT_FALLBACK);
992 		goto out;
993 	}
994 
995 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
996 					huge_gfp, &memcg, true))) {
997 		put_page(new_page);
998 		split_huge_pmd(vma, fe->pmd, fe->address);
999 		if (page)
1000 			put_page(page);
1001 		ret |= VM_FAULT_FALLBACK;
1002 		count_vm_event(THP_FAULT_FALLBACK);
1003 		goto out;
1004 	}
1005 
1006 	count_vm_event(THP_FAULT_ALLOC);
1007 
1008 	if (!page)
1009 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1010 	else
1011 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1012 	__SetPageUptodate(new_page);
1013 
1014 	mmun_start = haddr;
1015 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1016 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1017 
1018 	spin_lock(fe->ptl);
1019 	if (page)
1020 		put_page(page);
1021 	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1022 		spin_unlock(fe->ptl);
1023 		mem_cgroup_cancel_charge(new_page, memcg, true);
1024 		put_page(new_page);
1025 		goto out_mn;
1026 	} else {
1027 		pmd_t entry;
1028 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1029 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1030 		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1031 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1032 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1033 		lru_cache_add_active_or_unevictable(new_page, vma);
1034 		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1035 		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1036 		if (!page) {
1037 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1038 			put_huge_zero_page();
1039 		} else {
1040 			VM_BUG_ON_PAGE(!PageHead(page), page);
1041 			page_remove_rmap(page, true);
1042 			put_page(page);
1043 		}
1044 		ret |= VM_FAULT_WRITE;
1045 	}
1046 	spin_unlock(fe->ptl);
1047 out_mn:
1048 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1049 out:
1050 	return ret;
1051 out_unlock:
1052 	spin_unlock(fe->ptl);
1053 	return ret;
1054 }
1055 
1056 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1057 				   unsigned long addr,
1058 				   pmd_t *pmd,
1059 				   unsigned int flags)
1060 {
1061 	struct mm_struct *mm = vma->vm_mm;
1062 	struct page *page = NULL;
1063 
1064 	assert_spin_locked(pmd_lockptr(mm, pmd));
1065 
1066 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1067 		goto out;
1068 
1069 	/* Avoid dumping huge zero page */
1070 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1071 		return ERR_PTR(-EFAULT);
1072 
1073 	/* Full NUMA hinting faults to serialise migration in fault paths */
1074 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1075 		goto out;
1076 
1077 	page = pmd_page(*pmd);
1078 	VM_BUG_ON_PAGE(!PageHead(page), page);
1079 	if (flags & FOLL_TOUCH)
1080 		touch_pmd(vma, addr, pmd);
1081 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1082 		/*
1083 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1084 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1085 		 *
1086 		 * For anon THP:
1087 		 *
1088 		 * In most cases the pmd is the only mapping of the page as we
1089 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1090 		 * writable private mappings in populate_vma_page_range().
1091 		 *
1092 		 * The only scenario when we have the page shared here is if we
1093 		 * mlocking read-only mapping shared over fork(). We skip
1094 		 * mlocking such pages.
1095 		 *
1096 		 * For file THP:
1097 		 *
1098 		 * We can expect PageDoubleMap() to be stable under page lock:
1099 		 * for file pages we set it in page_add_file_rmap(), which
1100 		 * requires page to be locked.
1101 		 */
1102 
1103 		if (PageAnon(page) && compound_mapcount(page) != 1)
1104 			goto skip_mlock;
1105 		if (PageDoubleMap(page) || !page->mapping)
1106 			goto skip_mlock;
1107 		if (!trylock_page(page))
1108 			goto skip_mlock;
1109 		lru_add_drain();
1110 		if (page->mapping && !PageDoubleMap(page))
1111 			mlock_vma_page(page);
1112 		unlock_page(page);
1113 	}
1114 skip_mlock:
1115 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1116 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1117 	if (flags & FOLL_GET)
1118 		get_page(page);
1119 
1120 out:
1121 	return page;
1122 }
1123 
1124 /* NUMA hinting page fault entry point for trans huge pmds */
1125 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1126 {
1127 	struct vm_area_struct *vma = fe->vma;
1128 	struct anon_vma *anon_vma = NULL;
1129 	struct page *page;
1130 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1131 	int page_nid = -1, this_nid = numa_node_id();
1132 	int target_nid, last_cpupid = -1;
1133 	bool page_locked;
1134 	bool migrated = false;
1135 	bool was_writable;
1136 	int flags = 0;
1137 
1138 	/* A PROT_NONE fault should not end up here */
1139 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1140 
1141 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1142 	if (unlikely(!pmd_same(pmd, *fe->pmd)))
1143 		goto out_unlock;
1144 
1145 	/*
1146 	 * If there are potential migrations, wait for completion and retry
1147 	 * without disrupting NUMA hinting information. Do not relock and
1148 	 * check_same as the page may no longer be mapped.
1149 	 */
1150 	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1151 		page = pmd_page(*fe->pmd);
1152 		spin_unlock(fe->ptl);
1153 		wait_on_page_locked(page);
1154 		goto out;
1155 	}
1156 
1157 	page = pmd_page(pmd);
1158 	BUG_ON(is_huge_zero_page(page));
1159 	page_nid = page_to_nid(page);
1160 	last_cpupid = page_cpupid_last(page);
1161 	count_vm_numa_event(NUMA_HINT_FAULTS);
1162 	if (page_nid == this_nid) {
1163 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1164 		flags |= TNF_FAULT_LOCAL;
1165 	}
1166 
1167 	/* See similar comment in do_numa_page for explanation */
1168 	if (!(vma->vm_flags & VM_WRITE))
1169 		flags |= TNF_NO_GROUP;
1170 
1171 	/*
1172 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1173 	 * page_table_lock if at all possible
1174 	 */
1175 	page_locked = trylock_page(page);
1176 	target_nid = mpol_misplaced(page, vma, haddr);
1177 	if (target_nid == -1) {
1178 		/* If the page was locked, there are no parallel migrations */
1179 		if (page_locked)
1180 			goto clear_pmdnuma;
1181 	}
1182 
1183 	/* Migration could have started since the pmd_trans_migrating check */
1184 	if (!page_locked) {
1185 		spin_unlock(fe->ptl);
1186 		wait_on_page_locked(page);
1187 		page_nid = -1;
1188 		goto out;
1189 	}
1190 
1191 	/*
1192 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1193 	 * to serialises splits
1194 	 */
1195 	get_page(page);
1196 	spin_unlock(fe->ptl);
1197 	anon_vma = page_lock_anon_vma_read(page);
1198 
1199 	/* Confirm the PMD did not change while page_table_lock was released */
1200 	spin_lock(fe->ptl);
1201 	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1202 		unlock_page(page);
1203 		put_page(page);
1204 		page_nid = -1;
1205 		goto out_unlock;
1206 	}
1207 
1208 	/* Bail if we fail to protect against THP splits for any reason */
1209 	if (unlikely(!anon_vma)) {
1210 		put_page(page);
1211 		page_nid = -1;
1212 		goto clear_pmdnuma;
1213 	}
1214 
1215 	/*
1216 	 * Migrate the THP to the requested node, returns with page unlocked
1217 	 * and access rights restored.
1218 	 */
1219 	spin_unlock(fe->ptl);
1220 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1221 				fe->pmd, pmd, fe->address, page, target_nid);
1222 	if (migrated) {
1223 		flags |= TNF_MIGRATED;
1224 		page_nid = target_nid;
1225 	} else
1226 		flags |= TNF_MIGRATE_FAIL;
1227 
1228 	goto out;
1229 clear_pmdnuma:
1230 	BUG_ON(!PageLocked(page));
1231 	was_writable = pmd_write(pmd);
1232 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1233 	pmd = pmd_mkyoung(pmd);
1234 	if (was_writable)
1235 		pmd = pmd_mkwrite(pmd);
1236 	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1237 	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1238 	unlock_page(page);
1239 out_unlock:
1240 	spin_unlock(fe->ptl);
1241 
1242 out:
1243 	if (anon_vma)
1244 		page_unlock_anon_vma_read(anon_vma);
1245 
1246 	if (page_nid != -1)
1247 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1248 
1249 	return 0;
1250 }
1251 
1252 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1253 		pmd_t *pmd, unsigned long addr, unsigned long next)
1254 
1255 {
1256 	spinlock_t *ptl;
1257 	pmd_t orig_pmd;
1258 	struct page *page;
1259 	struct mm_struct *mm = tlb->mm;
1260 	int ret = 0;
1261 
1262 	ptl = pmd_trans_huge_lock(pmd, vma);
1263 	if (!ptl)
1264 		goto out_unlocked;
1265 
1266 	orig_pmd = *pmd;
1267 	if (is_huge_zero_pmd(orig_pmd)) {
1268 		ret = 1;
1269 		goto out;
1270 	}
1271 
1272 	page = pmd_page(orig_pmd);
1273 	/*
1274 	 * If other processes are mapping this page, we couldn't discard
1275 	 * the page unless they all do MADV_FREE so let's skip the page.
1276 	 */
1277 	if (page_mapcount(page) != 1)
1278 		goto out;
1279 
1280 	if (!trylock_page(page))
1281 		goto out;
1282 
1283 	/*
1284 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1285 	 * will deactivate only them.
1286 	 */
1287 	if (next - addr != HPAGE_PMD_SIZE) {
1288 		get_page(page);
1289 		spin_unlock(ptl);
1290 		split_huge_page(page);
1291 		put_page(page);
1292 		unlock_page(page);
1293 		goto out_unlocked;
1294 	}
1295 
1296 	if (PageDirty(page))
1297 		ClearPageDirty(page);
1298 	unlock_page(page);
1299 
1300 	if (PageActive(page))
1301 		deactivate_page(page);
1302 
1303 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1304 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1305 			tlb->fullmm);
1306 		orig_pmd = pmd_mkold(orig_pmd);
1307 		orig_pmd = pmd_mkclean(orig_pmd);
1308 
1309 		set_pmd_at(mm, addr, pmd, orig_pmd);
1310 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1311 	}
1312 	ret = 1;
1313 out:
1314 	spin_unlock(ptl);
1315 out_unlocked:
1316 	return ret;
1317 }
1318 
1319 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1320 		 pmd_t *pmd, unsigned long addr)
1321 {
1322 	pmd_t orig_pmd;
1323 	spinlock_t *ptl;
1324 
1325 	ptl = __pmd_trans_huge_lock(pmd, vma);
1326 	if (!ptl)
1327 		return 0;
1328 	/*
1329 	 * For architectures like ppc64 we look at deposited pgtable
1330 	 * when calling pmdp_huge_get_and_clear. So do the
1331 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1332 	 * operations.
1333 	 */
1334 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1335 			tlb->fullmm);
1336 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1337 	if (vma_is_dax(vma)) {
1338 		spin_unlock(ptl);
1339 		if (is_huge_zero_pmd(orig_pmd))
1340 			tlb_remove_page(tlb, pmd_page(orig_pmd));
1341 	} else if (is_huge_zero_pmd(orig_pmd)) {
1342 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1343 		atomic_long_dec(&tlb->mm->nr_ptes);
1344 		spin_unlock(ptl);
1345 		tlb_remove_page(tlb, pmd_page(orig_pmd));
1346 	} else {
1347 		struct page *page = pmd_page(orig_pmd);
1348 		page_remove_rmap(page, true);
1349 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1350 		VM_BUG_ON_PAGE(!PageHead(page), page);
1351 		if (PageAnon(page)) {
1352 			pgtable_t pgtable;
1353 			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1354 			pte_free(tlb->mm, pgtable);
1355 			atomic_long_dec(&tlb->mm->nr_ptes);
1356 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1357 		} else {
1358 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1359 		}
1360 		spin_unlock(ptl);
1361 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1362 	}
1363 	return 1;
1364 }
1365 
1366 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1367 		  unsigned long new_addr, unsigned long old_end,
1368 		  pmd_t *old_pmd, pmd_t *new_pmd)
1369 {
1370 	spinlock_t *old_ptl, *new_ptl;
1371 	pmd_t pmd;
1372 	struct mm_struct *mm = vma->vm_mm;
1373 
1374 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1375 	    (new_addr & ~HPAGE_PMD_MASK) ||
1376 	    old_end - old_addr < HPAGE_PMD_SIZE)
1377 		return false;
1378 
1379 	/*
1380 	 * The destination pmd shouldn't be established, free_pgtables()
1381 	 * should have release it.
1382 	 */
1383 	if (WARN_ON(!pmd_none(*new_pmd))) {
1384 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1385 		return false;
1386 	}
1387 
1388 	/*
1389 	 * We don't have to worry about the ordering of src and dst
1390 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1391 	 */
1392 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1393 	if (old_ptl) {
1394 		new_ptl = pmd_lockptr(mm, new_pmd);
1395 		if (new_ptl != old_ptl)
1396 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1397 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1398 		VM_BUG_ON(!pmd_none(*new_pmd));
1399 
1400 		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1401 				vma_is_anonymous(vma)) {
1402 			pgtable_t pgtable;
1403 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1404 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1405 		}
1406 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1407 		if (new_ptl != old_ptl)
1408 			spin_unlock(new_ptl);
1409 		spin_unlock(old_ptl);
1410 		return true;
1411 	}
1412 	return false;
1413 }
1414 
1415 /*
1416  * Returns
1417  *  - 0 if PMD could not be locked
1418  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1419  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1420  */
1421 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1422 		unsigned long addr, pgprot_t newprot, int prot_numa)
1423 {
1424 	struct mm_struct *mm = vma->vm_mm;
1425 	spinlock_t *ptl;
1426 	int ret = 0;
1427 
1428 	ptl = __pmd_trans_huge_lock(pmd, vma);
1429 	if (ptl) {
1430 		pmd_t entry;
1431 		bool preserve_write = prot_numa && pmd_write(*pmd);
1432 		ret = 1;
1433 
1434 		/*
1435 		 * Avoid trapping faults against the zero page. The read-only
1436 		 * data is likely to be read-cached on the local CPU and
1437 		 * local/remote hits to the zero page are not interesting.
1438 		 */
1439 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1440 			spin_unlock(ptl);
1441 			return ret;
1442 		}
1443 
1444 		if (!prot_numa || !pmd_protnone(*pmd)) {
1445 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1446 			entry = pmd_modify(entry, newprot);
1447 			if (preserve_write)
1448 				entry = pmd_mkwrite(entry);
1449 			ret = HPAGE_PMD_NR;
1450 			set_pmd_at(mm, addr, pmd, entry);
1451 			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1452 					pmd_write(entry));
1453 		}
1454 		spin_unlock(ptl);
1455 	}
1456 
1457 	return ret;
1458 }
1459 
1460 /*
1461  * Returns true if a given pmd maps a thp, false otherwise.
1462  *
1463  * Note that if it returns true, this routine returns without unlocking page
1464  * table lock. So callers must unlock it.
1465  */
1466 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1467 {
1468 	spinlock_t *ptl;
1469 	ptl = pmd_lock(vma->vm_mm, pmd);
1470 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1471 		return ptl;
1472 	spin_unlock(ptl);
1473 	return NULL;
1474 }
1475 
1476 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1477 		unsigned long haddr, pmd_t *pmd)
1478 {
1479 	struct mm_struct *mm = vma->vm_mm;
1480 	pgtable_t pgtable;
1481 	pmd_t _pmd;
1482 	int i;
1483 
1484 	/* leave pmd empty until pte is filled */
1485 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1486 
1487 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1488 	pmd_populate(mm, &_pmd, pgtable);
1489 
1490 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1491 		pte_t *pte, entry;
1492 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1493 		entry = pte_mkspecial(entry);
1494 		pte = pte_offset_map(&_pmd, haddr);
1495 		VM_BUG_ON(!pte_none(*pte));
1496 		set_pte_at(mm, haddr, pte, entry);
1497 		pte_unmap(pte);
1498 	}
1499 	smp_wmb(); /* make pte visible before pmd */
1500 	pmd_populate(mm, pmd, pgtable);
1501 	put_huge_zero_page();
1502 }
1503 
1504 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1505 		unsigned long haddr, bool freeze)
1506 {
1507 	struct mm_struct *mm = vma->vm_mm;
1508 	struct page *page;
1509 	pgtable_t pgtable;
1510 	pmd_t _pmd;
1511 	bool young, write, dirty;
1512 	unsigned long addr;
1513 	int i;
1514 
1515 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1516 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1517 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1518 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1519 
1520 	count_vm_event(THP_SPLIT_PMD);
1521 
1522 	if (!vma_is_anonymous(vma)) {
1523 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1524 		if (is_huge_zero_pmd(_pmd))
1525 			put_huge_zero_page();
1526 		if (vma_is_dax(vma))
1527 			return;
1528 		page = pmd_page(_pmd);
1529 		if (!PageReferenced(page) && pmd_young(_pmd))
1530 			SetPageReferenced(page);
1531 		page_remove_rmap(page, true);
1532 		put_page(page);
1533 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1534 		return;
1535 	} else if (is_huge_zero_pmd(*pmd)) {
1536 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1537 	}
1538 
1539 	page = pmd_page(*pmd);
1540 	VM_BUG_ON_PAGE(!page_count(page), page);
1541 	page_ref_add(page, HPAGE_PMD_NR - 1);
1542 	write = pmd_write(*pmd);
1543 	young = pmd_young(*pmd);
1544 	dirty = pmd_dirty(*pmd);
1545 
1546 	pmdp_huge_split_prepare(vma, haddr, pmd);
1547 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1548 	pmd_populate(mm, &_pmd, pgtable);
1549 
1550 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1551 		pte_t entry, *pte;
1552 		/*
1553 		 * Note that NUMA hinting access restrictions are not
1554 		 * transferred to avoid any possibility of altering
1555 		 * permissions across VMAs.
1556 		 */
1557 		if (freeze) {
1558 			swp_entry_t swp_entry;
1559 			swp_entry = make_migration_entry(page + i, write);
1560 			entry = swp_entry_to_pte(swp_entry);
1561 		} else {
1562 			entry = mk_pte(page + i, vma->vm_page_prot);
1563 			entry = maybe_mkwrite(entry, vma);
1564 			if (!write)
1565 				entry = pte_wrprotect(entry);
1566 			if (!young)
1567 				entry = pte_mkold(entry);
1568 		}
1569 		if (dirty)
1570 			SetPageDirty(page + i);
1571 		pte = pte_offset_map(&_pmd, addr);
1572 		BUG_ON(!pte_none(*pte));
1573 		set_pte_at(mm, addr, pte, entry);
1574 		atomic_inc(&page[i]._mapcount);
1575 		pte_unmap(pte);
1576 	}
1577 
1578 	/*
1579 	 * Set PG_double_map before dropping compound_mapcount to avoid
1580 	 * false-negative page_mapped().
1581 	 */
1582 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1583 		for (i = 0; i < HPAGE_PMD_NR; i++)
1584 			atomic_inc(&page[i]._mapcount);
1585 	}
1586 
1587 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1588 		/* Last compound_mapcount is gone. */
1589 		__dec_zone_page_state(page, NR_ANON_THPS);
1590 		if (TestClearPageDoubleMap(page)) {
1591 			/* No need in mapcount reference anymore */
1592 			for (i = 0; i < HPAGE_PMD_NR; i++)
1593 				atomic_dec(&page[i]._mapcount);
1594 		}
1595 	}
1596 
1597 	smp_wmb(); /* make pte visible before pmd */
1598 	/*
1599 	 * Up to this point the pmd is present and huge and userland has the
1600 	 * whole access to the hugepage during the split (which happens in
1601 	 * place). If we overwrite the pmd with the not-huge version pointing
1602 	 * to the pte here (which of course we could if all CPUs were bug
1603 	 * free), userland could trigger a small page size TLB miss on the
1604 	 * small sized TLB while the hugepage TLB entry is still established in
1605 	 * the huge TLB. Some CPU doesn't like that.
1606 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1607 	 * 383 on page 93. Intel should be safe but is also warns that it's
1608 	 * only safe if the permission and cache attributes of the two entries
1609 	 * loaded in the two TLB is identical (which should be the case here).
1610 	 * But it is generally safer to never allow small and huge TLB entries
1611 	 * for the same virtual address to be loaded simultaneously. So instead
1612 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1613 	 * current pmd notpresent (atomically because here the pmd_trans_huge
1614 	 * and pmd_trans_splitting must remain set at all times on the pmd
1615 	 * until the split is complete for this pmd), then we flush the SMP TLB
1616 	 * and finally we write the non-huge version of the pmd entry with
1617 	 * pmd_populate.
1618 	 */
1619 	pmdp_invalidate(vma, haddr, pmd);
1620 	pmd_populate(mm, pmd, pgtable);
1621 
1622 	if (freeze) {
1623 		for (i = 0; i < HPAGE_PMD_NR; i++) {
1624 			page_remove_rmap(page + i, false);
1625 			put_page(page + i);
1626 		}
1627 	}
1628 }
1629 
1630 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1631 		unsigned long address, bool freeze, struct page *page)
1632 {
1633 	spinlock_t *ptl;
1634 	struct mm_struct *mm = vma->vm_mm;
1635 	unsigned long haddr = address & HPAGE_PMD_MASK;
1636 
1637 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1638 	ptl = pmd_lock(mm, pmd);
1639 
1640 	/*
1641 	 * If caller asks to setup a migration entries, we need a page to check
1642 	 * pmd against. Otherwise we can end up replacing wrong page.
1643 	 */
1644 	VM_BUG_ON(freeze && !page);
1645 	if (page && page != pmd_page(*pmd))
1646 	        goto out;
1647 
1648 	if (pmd_trans_huge(*pmd)) {
1649 		page = pmd_page(*pmd);
1650 		if (PageMlocked(page))
1651 			clear_page_mlock(page);
1652 	} else if (!pmd_devmap(*pmd))
1653 		goto out;
1654 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1655 out:
1656 	spin_unlock(ptl);
1657 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1658 }
1659 
1660 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1661 		bool freeze, struct page *page)
1662 {
1663 	pgd_t *pgd;
1664 	pud_t *pud;
1665 	pmd_t *pmd;
1666 
1667 	pgd = pgd_offset(vma->vm_mm, address);
1668 	if (!pgd_present(*pgd))
1669 		return;
1670 
1671 	pud = pud_offset(pgd, address);
1672 	if (!pud_present(*pud))
1673 		return;
1674 
1675 	pmd = pmd_offset(pud, address);
1676 
1677 	__split_huge_pmd(vma, pmd, address, freeze, page);
1678 }
1679 
1680 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1681 			     unsigned long start,
1682 			     unsigned long end,
1683 			     long adjust_next)
1684 {
1685 	/*
1686 	 * If the new start address isn't hpage aligned and it could
1687 	 * previously contain an hugepage: check if we need to split
1688 	 * an huge pmd.
1689 	 */
1690 	if (start & ~HPAGE_PMD_MASK &&
1691 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1692 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1693 		split_huge_pmd_address(vma, start, false, NULL);
1694 
1695 	/*
1696 	 * If the new end address isn't hpage aligned and it could
1697 	 * previously contain an hugepage: check if we need to split
1698 	 * an huge pmd.
1699 	 */
1700 	if (end & ~HPAGE_PMD_MASK &&
1701 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1702 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1703 		split_huge_pmd_address(vma, end, false, NULL);
1704 
1705 	/*
1706 	 * If we're also updating the vma->vm_next->vm_start, if the new
1707 	 * vm_next->vm_start isn't page aligned and it could previously
1708 	 * contain an hugepage: check if we need to split an huge pmd.
1709 	 */
1710 	if (adjust_next > 0) {
1711 		struct vm_area_struct *next = vma->vm_next;
1712 		unsigned long nstart = next->vm_start;
1713 		nstart += adjust_next << PAGE_SHIFT;
1714 		if (nstart & ~HPAGE_PMD_MASK &&
1715 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1716 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1717 			split_huge_pmd_address(next, nstart, false, NULL);
1718 	}
1719 }
1720 
1721 static void freeze_page(struct page *page)
1722 {
1723 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1724 		TTU_RMAP_LOCKED;
1725 	int i, ret;
1726 
1727 	VM_BUG_ON_PAGE(!PageHead(page), page);
1728 
1729 	if (PageAnon(page))
1730 		ttu_flags |= TTU_MIGRATION;
1731 
1732 	/* We only need TTU_SPLIT_HUGE_PMD once */
1733 	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1734 	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1735 		/* Cut short if the page is unmapped */
1736 		if (page_count(page) == 1)
1737 			return;
1738 
1739 		ret = try_to_unmap(page + i, ttu_flags);
1740 	}
1741 	VM_BUG_ON_PAGE(ret, page + i - 1);
1742 }
1743 
1744 static void unfreeze_page(struct page *page)
1745 {
1746 	int i;
1747 
1748 	for (i = 0; i < HPAGE_PMD_NR; i++)
1749 		remove_migration_ptes(page + i, page + i, true);
1750 }
1751 
1752 static void __split_huge_page_tail(struct page *head, int tail,
1753 		struct lruvec *lruvec, struct list_head *list)
1754 {
1755 	struct page *page_tail = head + tail;
1756 
1757 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1758 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1759 
1760 	/*
1761 	 * tail_page->_refcount is zero and not changing from under us. But
1762 	 * get_page_unless_zero() may be running from under us on the
1763 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1764 	 * atomic_add(), we would then run atomic_set() concurrently with
1765 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
1766 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
1767 	 * because of PPro errata 66, 92, so unless somebody can guarantee
1768 	 * atomic_set() here would be safe on all archs (and not only on x86),
1769 	 * it's safer to use atomic_inc()/atomic_add().
1770 	 */
1771 	if (PageAnon(head)) {
1772 		page_ref_inc(page_tail);
1773 	} else {
1774 		/* Additional pin to radix tree */
1775 		page_ref_add(page_tail, 2);
1776 	}
1777 
1778 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1779 	page_tail->flags |= (head->flags &
1780 			((1L << PG_referenced) |
1781 			 (1L << PG_swapbacked) |
1782 			 (1L << PG_mlocked) |
1783 			 (1L << PG_uptodate) |
1784 			 (1L << PG_active) |
1785 			 (1L << PG_locked) |
1786 			 (1L << PG_unevictable) |
1787 			 (1L << PG_dirty)));
1788 
1789 	/*
1790 	 * After clearing PageTail the gup refcount can be released.
1791 	 * Page flags also must be visible before we make the page non-compound.
1792 	 */
1793 	smp_wmb();
1794 
1795 	clear_compound_head(page_tail);
1796 
1797 	if (page_is_young(head))
1798 		set_page_young(page_tail);
1799 	if (page_is_idle(head))
1800 		set_page_idle(page_tail);
1801 
1802 	/* ->mapping in first tail page is compound_mapcount */
1803 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1804 			page_tail);
1805 	page_tail->mapping = head->mapping;
1806 
1807 	page_tail->index = head->index + tail;
1808 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1809 	lru_add_page_tail(head, page_tail, lruvec, list);
1810 }
1811 
1812 static void __split_huge_page(struct page *page, struct list_head *list,
1813 		unsigned long flags)
1814 {
1815 	struct page *head = compound_head(page);
1816 	struct zone *zone = page_zone(head);
1817 	struct lruvec *lruvec;
1818 	pgoff_t end = -1;
1819 	int i;
1820 
1821 	lruvec = mem_cgroup_page_lruvec(head, zone);
1822 
1823 	/* complete memcg works before add pages to LRU */
1824 	mem_cgroup_split_huge_fixup(head);
1825 
1826 	if (!PageAnon(page))
1827 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1828 
1829 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1830 		__split_huge_page_tail(head, i, lruvec, list);
1831 		/* Some pages can be beyond i_size: drop them from page cache */
1832 		if (head[i].index >= end) {
1833 			__ClearPageDirty(head + i);
1834 			__delete_from_page_cache(head + i, NULL);
1835 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1836 				shmem_uncharge(head->mapping->host, 1);
1837 			put_page(head + i);
1838 		}
1839 	}
1840 
1841 	ClearPageCompound(head);
1842 	/* See comment in __split_huge_page_tail() */
1843 	if (PageAnon(head)) {
1844 		page_ref_inc(head);
1845 	} else {
1846 		/* Additional pin to radix tree */
1847 		page_ref_add(head, 2);
1848 		spin_unlock(&head->mapping->tree_lock);
1849 	}
1850 
1851 	spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
1852 
1853 	unfreeze_page(head);
1854 
1855 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1856 		struct page *subpage = head + i;
1857 		if (subpage == page)
1858 			continue;
1859 		unlock_page(subpage);
1860 
1861 		/*
1862 		 * Subpages may be freed if there wasn't any mapping
1863 		 * like if add_to_swap() is running on a lru page that
1864 		 * had its mapping zapped. And freeing these pages
1865 		 * requires taking the lru_lock so we do the put_page
1866 		 * of the tail pages after the split is complete.
1867 		 */
1868 		put_page(subpage);
1869 	}
1870 }
1871 
1872 int total_mapcount(struct page *page)
1873 {
1874 	int i, compound, ret;
1875 
1876 	VM_BUG_ON_PAGE(PageTail(page), page);
1877 
1878 	if (likely(!PageCompound(page)))
1879 		return atomic_read(&page->_mapcount) + 1;
1880 
1881 	compound = compound_mapcount(page);
1882 	if (PageHuge(page))
1883 		return compound;
1884 	ret = compound;
1885 	for (i = 0; i < HPAGE_PMD_NR; i++)
1886 		ret += atomic_read(&page[i]._mapcount) + 1;
1887 	/* File pages has compound_mapcount included in _mapcount */
1888 	if (!PageAnon(page))
1889 		return ret - compound * HPAGE_PMD_NR;
1890 	if (PageDoubleMap(page))
1891 		ret -= HPAGE_PMD_NR;
1892 	return ret;
1893 }
1894 
1895 /*
1896  * This calculates accurately how many mappings a transparent hugepage
1897  * has (unlike page_mapcount() which isn't fully accurate). This full
1898  * accuracy is primarily needed to know if copy-on-write faults can
1899  * reuse the page and change the mapping to read-write instead of
1900  * copying them. At the same time this returns the total_mapcount too.
1901  *
1902  * The function returns the highest mapcount any one of the subpages
1903  * has. If the return value is one, even if different processes are
1904  * mapping different subpages of the transparent hugepage, they can
1905  * all reuse it, because each process is reusing a different subpage.
1906  *
1907  * The total_mapcount is instead counting all virtual mappings of the
1908  * subpages. If the total_mapcount is equal to "one", it tells the
1909  * caller all mappings belong to the same "mm" and in turn the
1910  * anon_vma of the transparent hugepage can become the vma->anon_vma
1911  * local one as no other process may be mapping any of the subpages.
1912  *
1913  * It would be more accurate to replace page_mapcount() with
1914  * page_trans_huge_mapcount(), however we only use
1915  * page_trans_huge_mapcount() in the copy-on-write faults where we
1916  * need full accuracy to avoid breaking page pinning, because
1917  * page_trans_huge_mapcount() is slower than page_mapcount().
1918  */
1919 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1920 {
1921 	int i, ret, _total_mapcount, mapcount;
1922 
1923 	/* hugetlbfs shouldn't call it */
1924 	VM_BUG_ON_PAGE(PageHuge(page), page);
1925 
1926 	if (likely(!PageTransCompound(page))) {
1927 		mapcount = atomic_read(&page->_mapcount) + 1;
1928 		if (total_mapcount)
1929 			*total_mapcount = mapcount;
1930 		return mapcount;
1931 	}
1932 
1933 	page = compound_head(page);
1934 
1935 	_total_mapcount = ret = 0;
1936 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1937 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1938 		ret = max(ret, mapcount);
1939 		_total_mapcount += mapcount;
1940 	}
1941 	if (PageDoubleMap(page)) {
1942 		ret -= 1;
1943 		_total_mapcount -= HPAGE_PMD_NR;
1944 	}
1945 	mapcount = compound_mapcount(page);
1946 	ret += mapcount;
1947 	_total_mapcount += mapcount;
1948 	if (total_mapcount)
1949 		*total_mapcount = _total_mapcount;
1950 	return ret;
1951 }
1952 
1953 /*
1954  * This function splits huge page into normal pages. @page can point to any
1955  * subpage of huge page to split. Split doesn't change the position of @page.
1956  *
1957  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
1958  * The huge page must be locked.
1959  *
1960  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
1961  *
1962  * Both head page and tail pages will inherit mapping, flags, and so on from
1963  * the hugepage.
1964  *
1965  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
1966  * they are not mapped.
1967  *
1968  * Returns 0 if the hugepage is split successfully.
1969  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
1970  * us.
1971  */
1972 int split_huge_page_to_list(struct page *page, struct list_head *list)
1973 {
1974 	struct page *head = compound_head(page);
1975 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
1976 	struct anon_vma *anon_vma = NULL;
1977 	struct address_space *mapping = NULL;
1978 	int count, mapcount, extra_pins, ret;
1979 	bool mlocked;
1980 	unsigned long flags;
1981 
1982 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
1983 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1984 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1985 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1986 
1987 	if (PageAnon(head)) {
1988 		/*
1989 		 * The caller does not necessarily hold an mmap_sem that would
1990 		 * prevent the anon_vma disappearing so we first we take a
1991 		 * reference to it and then lock the anon_vma for write. This
1992 		 * is similar to page_lock_anon_vma_read except the write lock
1993 		 * is taken to serialise against parallel split or collapse
1994 		 * operations.
1995 		 */
1996 		anon_vma = page_get_anon_vma(head);
1997 		if (!anon_vma) {
1998 			ret = -EBUSY;
1999 			goto out;
2000 		}
2001 		extra_pins = 0;
2002 		mapping = NULL;
2003 		anon_vma_lock_write(anon_vma);
2004 	} else {
2005 		mapping = head->mapping;
2006 
2007 		/* Truncated ? */
2008 		if (!mapping) {
2009 			ret = -EBUSY;
2010 			goto out;
2011 		}
2012 
2013 		/* Addidional pins from radix tree */
2014 		extra_pins = HPAGE_PMD_NR;
2015 		anon_vma = NULL;
2016 		i_mmap_lock_read(mapping);
2017 	}
2018 
2019 	/*
2020 	 * Racy check if we can split the page, before freeze_page() will
2021 	 * split PMDs
2022 	 */
2023 	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2024 		ret = -EBUSY;
2025 		goto out_unlock;
2026 	}
2027 
2028 	mlocked = PageMlocked(page);
2029 	freeze_page(head);
2030 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2031 
2032 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2033 	if (mlocked)
2034 		lru_add_drain();
2035 
2036 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2037 	spin_lock_irqsave(&page_zone(head)->lru_lock, flags);
2038 
2039 	if (mapping) {
2040 		void **pslot;
2041 
2042 		spin_lock(&mapping->tree_lock);
2043 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2044 				page_index(head));
2045 		/*
2046 		 * Check if the head page is present in radix tree.
2047 		 * We assume all tail are present too, if head is there.
2048 		 */
2049 		if (radix_tree_deref_slot_protected(pslot,
2050 					&mapping->tree_lock) != head)
2051 			goto fail;
2052 	}
2053 
2054 	/* Prevent deferred_split_scan() touching ->_refcount */
2055 	spin_lock(&pgdata->split_queue_lock);
2056 	count = page_count(head);
2057 	mapcount = total_mapcount(head);
2058 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2059 		if (!list_empty(page_deferred_list(head))) {
2060 			pgdata->split_queue_len--;
2061 			list_del(page_deferred_list(head));
2062 		}
2063 		if (mapping)
2064 			__dec_zone_page_state(page, NR_SHMEM_THPS);
2065 		spin_unlock(&pgdata->split_queue_lock);
2066 		__split_huge_page(page, list, flags);
2067 		ret = 0;
2068 	} else {
2069 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2070 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2071 					mapcount, count);
2072 			if (PageTail(page))
2073 				dump_page(head, NULL);
2074 			dump_page(page, "total_mapcount(head) > 0");
2075 			BUG();
2076 		}
2077 		spin_unlock(&pgdata->split_queue_lock);
2078 fail:		if (mapping)
2079 			spin_unlock(&mapping->tree_lock);
2080 		spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
2081 		unfreeze_page(head);
2082 		ret = -EBUSY;
2083 	}
2084 
2085 out_unlock:
2086 	if (anon_vma) {
2087 		anon_vma_unlock_write(anon_vma);
2088 		put_anon_vma(anon_vma);
2089 	}
2090 	if (mapping)
2091 		i_mmap_unlock_read(mapping);
2092 out:
2093 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2094 	return ret;
2095 }
2096 
2097 void free_transhuge_page(struct page *page)
2098 {
2099 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2100 	unsigned long flags;
2101 
2102 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2103 	if (!list_empty(page_deferred_list(page))) {
2104 		pgdata->split_queue_len--;
2105 		list_del(page_deferred_list(page));
2106 	}
2107 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2108 	free_compound_page(page);
2109 }
2110 
2111 void deferred_split_huge_page(struct page *page)
2112 {
2113 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2114 	unsigned long flags;
2115 
2116 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2117 
2118 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2119 	if (list_empty(page_deferred_list(page))) {
2120 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2121 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2122 		pgdata->split_queue_len++;
2123 	}
2124 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2125 }
2126 
2127 static unsigned long deferred_split_count(struct shrinker *shrink,
2128 		struct shrink_control *sc)
2129 {
2130 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2131 	return ACCESS_ONCE(pgdata->split_queue_len);
2132 }
2133 
2134 static unsigned long deferred_split_scan(struct shrinker *shrink,
2135 		struct shrink_control *sc)
2136 {
2137 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2138 	unsigned long flags;
2139 	LIST_HEAD(list), *pos, *next;
2140 	struct page *page;
2141 	int split = 0;
2142 
2143 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2144 	/* Take pin on all head pages to avoid freeing them under us */
2145 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2146 		page = list_entry((void *)pos, struct page, mapping);
2147 		page = compound_head(page);
2148 		if (get_page_unless_zero(page)) {
2149 			list_move(page_deferred_list(page), &list);
2150 		} else {
2151 			/* We lost race with put_compound_page() */
2152 			list_del_init(page_deferred_list(page));
2153 			pgdata->split_queue_len--;
2154 		}
2155 		if (!--sc->nr_to_scan)
2156 			break;
2157 	}
2158 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2159 
2160 	list_for_each_safe(pos, next, &list) {
2161 		page = list_entry((void *)pos, struct page, mapping);
2162 		lock_page(page);
2163 		/* split_huge_page() removes page from list on success */
2164 		if (!split_huge_page(page))
2165 			split++;
2166 		unlock_page(page);
2167 		put_page(page);
2168 	}
2169 
2170 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2171 	list_splice_tail(&list, &pgdata->split_queue);
2172 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2173 
2174 	/*
2175 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2176 	 * This can happen if pages were freed under us.
2177 	 */
2178 	if (!split && list_empty(&pgdata->split_queue))
2179 		return SHRINK_STOP;
2180 	return split;
2181 }
2182 
2183 static struct shrinker deferred_split_shrinker = {
2184 	.count_objects = deferred_split_count,
2185 	.scan_objects = deferred_split_scan,
2186 	.seeks = DEFAULT_SEEKS,
2187 	.flags = SHRINKER_NUMA_AWARE,
2188 };
2189 
2190 #ifdef CONFIG_DEBUG_FS
2191 static int split_huge_pages_set(void *data, u64 val)
2192 {
2193 	struct zone *zone;
2194 	struct page *page;
2195 	unsigned long pfn, max_zone_pfn;
2196 	unsigned long total = 0, split = 0;
2197 
2198 	if (val != 1)
2199 		return -EINVAL;
2200 
2201 	for_each_populated_zone(zone) {
2202 		max_zone_pfn = zone_end_pfn(zone);
2203 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2204 			if (!pfn_valid(pfn))
2205 				continue;
2206 
2207 			page = pfn_to_page(pfn);
2208 			if (!get_page_unless_zero(page))
2209 				continue;
2210 
2211 			if (zone != page_zone(page))
2212 				goto next;
2213 
2214 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2215 				goto next;
2216 
2217 			total++;
2218 			lock_page(page);
2219 			if (!split_huge_page(page))
2220 				split++;
2221 			unlock_page(page);
2222 next:
2223 			put_page(page);
2224 		}
2225 	}
2226 
2227 	pr_info("%lu of %lu THP split\n", split, total);
2228 
2229 	return 0;
2230 }
2231 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2232 		"%llu\n");
2233 
2234 static int __init split_huge_pages_debugfs(void)
2235 {
2236 	void *ret;
2237 
2238 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2239 			&split_huge_pages_fops);
2240 	if (!ret)
2241 		pr_warn("Failed to create split_huge_pages in debugfs");
2242 	return 0;
2243 }
2244 late_initcall(split_huge_pages_debugfs);
2245 #endif
2246