1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 34 #include <asm/tlb.h> 35 #include <asm/pgalloc.h> 36 #include "internal.h" 37 38 /* 39 * By default transparent hugepage support is disabled in order that avoid 40 * to risk increase the memory footprint of applications without a guaranteed 41 * benefit. When transparent hugepage support is enabled, is for all mappings, 42 * and khugepaged scans all mappings. 43 * Defrag is invoked by khugepaged hugepage allocations and by page faults 44 * for all hugepage allocations. 45 */ 46 unsigned long transparent_hugepage_flags __read_mostly = 47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 49 #endif 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 52 #endif 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 56 57 static struct shrinker deferred_split_shrinker; 58 59 static atomic_t huge_zero_refcount; 60 struct page *huge_zero_page __read_mostly; 61 62 struct page *get_huge_zero_page(void) 63 { 64 struct page *zero_page; 65 retry: 66 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 67 return READ_ONCE(huge_zero_page); 68 69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 70 HPAGE_PMD_ORDER); 71 if (!zero_page) { 72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 73 return NULL; 74 } 75 count_vm_event(THP_ZERO_PAGE_ALLOC); 76 preempt_disable(); 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 78 preempt_enable(); 79 __free_pages(zero_page, compound_order(zero_page)); 80 goto retry; 81 } 82 83 /* We take additional reference here. It will be put back by shrinker */ 84 atomic_set(&huge_zero_refcount, 2); 85 preempt_enable(); 86 return READ_ONCE(huge_zero_page); 87 } 88 89 void put_huge_zero_page(void) 90 { 91 /* 92 * Counter should never go to zero here. Only shrinker can put 93 * last reference. 94 */ 95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 96 } 97 98 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 99 struct shrink_control *sc) 100 { 101 /* we can free zero page only if last reference remains */ 102 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 103 } 104 105 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 106 struct shrink_control *sc) 107 { 108 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 109 struct page *zero_page = xchg(&huge_zero_page, NULL); 110 BUG_ON(zero_page == NULL); 111 __free_pages(zero_page, compound_order(zero_page)); 112 return HPAGE_PMD_NR; 113 } 114 115 return 0; 116 } 117 118 static struct shrinker huge_zero_page_shrinker = { 119 .count_objects = shrink_huge_zero_page_count, 120 .scan_objects = shrink_huge_zero_page_scan, 121 .seeks = DEFAULT_SEEKS, 122 }; 123 124 #ifdef CONFIG_SYSFS 125 126 static ssize_t triple_flag_store(struct kobject *kobj, 127 struct kobj_attribute *attr, 128 const char *buf, size_t count, 129 enum transparent_hugepage_flag enabled, 130 enum transparent_hugepage_flag deferred, 131 enum transparent_hugepage_flag req_madv) 132 { 133 if (!memcmp("defer", buf, 134 min(sizeof("defer")-1, count))) { 135 if (enabled == deferred) 136 return -EINVAL; 137 clear_bit(enabled, &transparent_hugepage_flags); 138 clear_bit(req_madv, &transparent_hugepage_flags); 139 set_bit(deferred, &transparent_hugepage_flags); 140 } else if (!memcmp("always", buf, 141 min(sizeof("always")-1, count))) { 142 clear_bit(deferred, &transparent_hugepage_flags); 143 clear_bit(req_madv, &transparent_hugepage_flags); 144 set_bit(enabled, &transparent_hugepage_flags); 145 } else if (!memcmp("madvise", buf, 146 min(sizeof("madvise")-1, count))) { 147 clear_bit(enabled, &transparent_hugepage_flags); 148 clear_bit(deferred, &transparent_hugepage_flags); 149 set_bit(req_madv, &transparent_hugepage_flags); 150 } else if (!memcmp("never", buf, 151 min(sizeof("never")-1, count))) { 152 clear_bit(enabled, &transparent_hugepage_flags); 153 clear_bit(req_madv, &transparent_hugepage_flags); 154 clear_bit(deferred, &transparent_hugepage_flags); 155 } else 156 return -EINVAL; 157 158 return count; 159 } 160 161 static ssize_t enabled_show(struct kobject *kobj, 162 struct kobj_attribute *attr, char *buf) 163 { 164 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 165 return sprintf(buf, "[always] madvise never\n"); 166 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 167 return sprintf(buf, "always [madvise] never\n"); 168 else 169 return sprintf(buf, "always madvise [never]\n"); 170 } 171 172 static ssize_t enabled_store(struct kobject *kobj, 173 struct kobj_attribute *attr, 174 const char *buf, size_t count) 175 { 176 ssize_t ret; 177 178 ret = triple_flag_store(kobj, attr, buf, count, 179 TRANSPARENT_HUGEPAGE_FLAG, 180 TRANSPARENT_HUGEPAGE_FLAG, 181 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 182 183 if (ret > 0) { 184 int err = start_stop_khugepaged(); 185 if (err) 186 ret = err; 187 } 188 189 return ret; 190 } 191 static struct kobj_attribute enabled_attr = 192 __ATTR(enabled, 0644, enabled_show, enabled_store); 193 194 ssize_t single_hugepage_flag_show(struct kobject *kobj, 195 struct kobj_attribute *attr, char *buf, 196 enum transparent_hugepage_flag flag) 197 { 198 return sprintf(buf, "%d\n", 199 !!test_bit(flag, &transparent_hugepage_flags)); 200 } 201 202 ssize_t single_hugepage_flag_store(struct kobject *kobj, 203 struct kobj_attribute *attr, 204 const char *buf, size_t count, 205 enum transparent_hugepage_flag flag) 206 { 207 unsigned long value; 208 int ret; 209 210 ret = kstrtoul(buf, 10, &value); 211 if (ret < 0) 212 return ret; 213 if (value > 1) 214 return -EINVAL; 215 216 if (value) 217 set_bit(flag, &transparent_hugepage_flags); 218 else 219 clear_bit(flag, &transparent_hugepage_flags); 220 221 return count; 222 } 223 224 /* 225 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 226 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 227 * memory just to allocate one more hugepage. 228 */ 229 static ssize_t defrag_show(struct kobject *kobj, 230 struct kobj_attribute *attr, char *buf) 231 { 232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 233 return sprintf(buf, "[always] defer madvise never\n"); 234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 235 return sprintf(buf, "always [defer] madvise never\n"); 236 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 237 return sprintf(buf, "always defer [madvise] never\n"); 238 else 239 return sprintf(buf, "always defer madvise [never]\n"); 240 241 } 242 static ssize_t defrag_store(struct kobject *kobj, 243 struct kobj_attribute *attr, 244 const char *buf, size_t count) 245 { 246 return triple_flag_store(kobj, attr, buf, count, 247 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 248 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 249 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 250 } 251 static struct kobj_attribute defrag_attr = 252 __ATTR(defrag, 0644, defrag_show, defrag_store); 253 254 static ssize_t use_zero_page_show(struct kobject *kobj, 255 struct kobj_attribute *attr, char *buf) 256 { 257 return single_hugepage_flag_show(kobj, attr, buf, 258 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 259 } 260 static ssize_t use_zero_page_store(struct kobject *kobj, 261 struct kobj_attribute *attr, const char *buf, size_t count) 262 { 263 return single_hugepage_flag_store(kobj, attr, buf, count, 264 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 265 } 266 static struct kobj_attribute use_zero_page_attr = 267 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 268 #ifdef CONFIG_DEBUG_VM 269 static ssize_t debug_cow_show(struct kobject *kobj, 270 struct kobj_attribute *attr, char *buf) 271 { 272 return single_hugepage_flag_show(kobj, attr, buf, 273 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 274 } 275 static ssize_t debug_cow_store(struct kobject *kobj, 276 struct kobj_attribute *attr, 277 const char *buf, size_t count) 278 { 279 return single_hugepage_flag_store(kobj, attr, buf, count, 280 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 281 } 282 static struct kobj_attribute debug_cow_attr = 283 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 284 #endif /* CONFIG_DEBUG_VM */ 285 286 static struct attribute *hugepage_attr[] = { 287 &enabled_attr.attr, 288 &defrag_attr.attr, 289 &use_zero_page_attr.attr, 290 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 291 &shmem_enabled_attr.attr, 292 #endif 293 #ifdef CONFIG_DEBUG_VM 294 &debug_cow_attr.attr, 295 #endif 296 NULL, 297 }; 298 299 static struct attribute_group hugepage_attr_group = { 300 .attrs = hugepage_attr, 301 }; 302 303 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 304 { 305 int err; 306 307 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 308 if (unlikely(!*hugepage_kobj)) { 309 pr_err("failed to create transparent hugepage kobject\n"); 310 return -ENOMEM; 311 } 312 313 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 314 if (err) { 315 pr_err("failed to register transparent hugepage group\n"); 316 goto delete_obj; 317 } 318 319 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 320 if (err) { 321 pr_err("failed to register transparent hugepage group\n"); 322 goto remove_hp_group; 323 } 324 325 return 0; 326 327 remove_hp_group: 328 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 329 delete_obj: 330 kobject_put(*hugepage_kobj); 331 return err; 332 } 333 334 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 335 { 336 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 337 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 338 kobject_put(hugepage_kobj); 339 } 340 #else 341 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 342 { 343 return 0; 344 } 345 346 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 347 { 348 } 349 #endif /* CONFIG_SYSFS */ 350 351 static int __init hugepage_init(void) 352 { 353 int err; 354 struct kobject *hugepage_kobj; 355 356 if (!has_transparent_hugepage()) { 357 transparent_hugepage_flags = 0; 358 return -EINVAL; 359 } 360 361 /* 362 * hugepages can't be allocated by the buddy allocator 363 */ 364 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 365 /* 366 * we use page->mapping and page->index in second tail page 367 * as list_head: assuming THP order >= 2 368 */ 369 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 370 371 err = hugepage_init_sysfs(&hugepage_kobj); 372 if (err) 373 goto err_sysfs; 374 375 err = khugepaged_init(); 376 if (err) 377 goto err_slab; 378 379 err = register_shrinker(&huge_zero_page_shrinker); 380 if (err) 381 goto err_hzp_shrinker; 382 err = register_shrinker(&deferred_split_shrinker); 383 if (err) 384 goto err_split_shrinker; 385 386 /* 387 * By default disable transparent hugepages on smaller systems, 388 * where the extra memory used could hurt more than TLB overhead 389 * is likely to save. The admin can still enable it through /sys. 390 */ 391 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 392 transparent_hugepage_flags = 0; 393 return 0; 394 } 395 396 err = start_stop_khugepaged(); 397 if (err) 398 goto err_khugepaged; 399 400 return 0; 401 err_khugepaged: 402 unregister_shrinker(&deferred_split_shrinker); 403 err_split_shrinker: 404 unregister_shrinker(&huge_zero_page_shrinker); 405 err_hzp_shrinker: 406 khugepaged_destroy(); 407 err_slab: 408 hugepage_exit_sysfs(hugepage_kobj); 409 err_sysfs: 410 return err; 411 } 412 subsys_initcall(hugepage_init); 413 414 static int __init setup_transparent_hugepage(char *str) 415 { 416 int ret = 0; 417 if (!str) 418 goto out; 419 if (!strcmp(str, "always")) { 420 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 421 &transparent_hugepage_flags); 422 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 423 &transparent_hugepage_flags); 424 ret = 1; 425 } else if (!strcmp(str, "madvise")) { 426 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 427 &transparent_hugepage_flags); 428 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 429 &transparent_hugepage_flags); 430 ret = 1; 431 } else if (!strcmp(str, "never")) { 432 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 433 &transparent_hugepage_flags); 434 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 435 &transparent_hugepage_flags); 436 ret = 1; 437 } 438 out: 439 if (!ret) 440 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 441 return ret; 442 } 443 __setup("transparent_hugepage=", setup_transparent_hugepage); 444 445 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 446 { 447 if (likely(vma->vm_flags & VM_WRITE)) 448 pmd = pmd_mkwrite(pmd); 449 return pmd; 450 } 451 452 static inline struct list_head *page_deferred_list(struct page *page) 453 { 454 /* 455 * ->lru in the tail pages is occupied by compound_head. 456 * Let's use ->mapping + ->index in the second tail page as list_head. 457 */ 458 return (struct list_head *)&page[2].mapping; 459 } 460 461 void prep_transhuge_page(struct page *page) 462 { 463 /* 464 * we use page->mapping and page->indexlru in second tail page 465 * as list_head: assuming THP order >= 2 466 */ 467 468 INIT_LIST_HEAD(page_deferred_list(page)); 469 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 470 } 471 472 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page, 473 gfp_t gfp) 474 { 475 struct vm_area_struct *vma = fe->vma; 476 struct mem_cgroup *memcg; 477 pgtable_t pgtable; 478 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 479 480 VM_BUG_ON_PAGE(!PageCompound(page), page); 481 482 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 483 put_page(page); 484 count_vm_event(THP_FAULT_FALLBACK); 485 return VM_FAULT_FALLBACK; 486 } 487 488 pgtable = pte_alloc_one(vma->vm_mm, haddr); 489 if (unlikely(!pgtable)) { 490 mem_cgroup_cancel_charge(page, memcg, true); 491 put_page(page); 492 return VM_FAULT_OOM; 493 } 494 495 clear_huge_page(page, haddr, HPAGE_PMD_NR); 496 /* 497 * The memory barrier inside __SetPageUptodate makes sure that 498 * clear_huge_page writes become visible before the set_pmd_at() 499 * write. 500 */ 501 __SetPageUptodate(page); 502 503 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 504 if (unlikely(!pmd_none(*fe->pmd))) { 505 spin_unlock(fe->ptl); 506 mem_cgroup_cancel_charge(page, memcg, true); 507 put_page(page); 508 pte_free(vma->vm_mm, pgtable); 509 } else { 510 pmd_t entry; 511 512 /* Deliver the page fault to userland */ 513 if (userfaultfd_missing(vma)) { 514 int ret; 515 516 spin_unlock(fe->ptl); 517 mem_cgroup_cancel_charge(page, memcg, true); 518 put_page(page); 519 pte_free(vma->vm_mm, pgtable); 520 ret = handle_userfault(fe, VM_UFFD_MISSING); 521 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 522 return ret; 523 } 524 525 entry = mk_huge_pmd(page, vma->vm_page_prot); 526 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 527 page_add_new_anon_rmap(page, vma, haddr, true); 528 mem_cgroup_commit_charge(page, memcg, false, true); 529 lru_cache_add_active_or_unevictable(page, vma); 530 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable); 531 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); 532 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 533 atomic_long_inc(&vma->vm_mm->nr_ptes); 534 spin_unlock(fe->ptl); 535 count_vm_event(THP_FAULT_ALLOC); 536 } 537 538 return 0; 539 } 540 541 /* 542 * If THP is set to always then directly reclaim/compact as necessary 543 * If set to defer then do no reclaim and defer to khugepaged 544 * If set to madvise and the VMA is flagged then directly reclaim/compact 545 */ 546 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 547 { 548 gfp_t reclaim_flags = 0; 549 550 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) && 551 (vma->vm_flags & VM_HUGEPAGE)) 552 reclaim_flags = __GFP_DIRECT_RECLAIM; 553 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 554 reclaim_flags = __GFP_KSWAPD_RECLAIM; 555 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 556 reclaim_flags = __GFP_DIRECT_RECLAIM; 557 558 return GFP_TRANSHUGE | reclaim_flags; 559 } 560 561 /* Caller must hold page table lock. */ 562 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 563 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 564 struct page *zero_page) 565 { 566 pmd_t entry; 567 if (!pmd_none(*pmd)) 568 return false; 569 entry = mk_pmd(zero_page, vma->vm_page_prot); 570 entry = pmd_mkhuge(entry); 571 if (pgtable) 572 pgtable_trans_huge_deposit(mm, pmd, pgtable); 573 set_pmd_at(mm, haddr, pmd, entry); 574 atomic_long_inc(&mm->nr_ptes); 575 return true; 576 } 577 578 int do_huge_pmd_anonymous_page(struct fault_env *fe) 579 { 580 struct vm_area_struct *vma = fe->vma; 581 gfp_t gfp; 582 struct page *page; 583 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 584 585 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 586 return VM_FAULT_FALLBACK; 587 if (unlikely(anon_vma_prepare(vma))) 588 return VM_FAULT_OOM; 589 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 590 return VM_FAULT_OOM; 591 if (!(fe->flags & FAULT_FLAG_WRITE) && 592 !mm_forbids_zeropage(vma->vm_mm) && 593 transparent_hugepage_use_zero_page()) { 594 pgtable_t pgtable; 595 struct page *zero_page; 596 bool set; 597 int ret; 598 pgtable = pte_alloc_one(vma->vm_mm, haddr); 599 if (unlikely(!pgtable)) 600 return VM_FAULT_OOM; 601 zero_page = get_huge_zero_page(); 602 if (unlikely(!zero_page)) { 603 pte_free(vma->vm_mm, pgtable); 604 count_vm_event(THP_FAULT_FALLBACK); 605 return VM_FAULT_FALLBACK; 606 } 607 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 608 ret = 0; 609 set = false; 610 if (pmd_none(*fe->pmd)) { 611 if (userfaultfd_missing(vma)) { 612 spin_unlock(fe->ptl); 613 ret = handle_userfault(fe, VM_UFFD_MISSING); 614 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 615 } else { 616 set_huge_zero_page(pgtable, vma->vm_mm, vma, 617 haddr, fe->pmd, zero_page); 618 spin_unlock(fe->ptl); 619 set = true; 620 } 621 } else 622 spin_unlock(fe->ptl); 623 if (!set) { 624 pte_free(vma->vm_mm, pgtable); 625 put_huge_zero_page(); 626 } 627 return ret; 628 } 629 gfp = alloc_hugepage_direct_gfpmask(vma); 630 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 631 if (unlikely(!page)) { 632 count_vm_event(THP_FAULT_FALLBACK); 633 return VM_FAULT_FALLBACK; 634 } 635 prep_transhuge_page(page); 636 return __do_huge_pmd_anonymous_page(fe, page, gfp); 637 } 638 639 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 640 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) 641 { 642 struct mm_struct *mm = vma->vm_mm; 643 pmd_t entry; 644 spinlock_t *ptl; 645 646 ptl = pmd_lock(mm, pmd); 647 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 648 if (pfn_t_devmap(pfn)) 649 entry = pmd_mkdevmap(entry); 650 if (write) { 651 entry = pmd_mkyoung(pmd_mkdirty(entry)); 652 entry = maybe_pmd_mkwrite(entry, vma); 653 } 654 set_pmd_at(mm, addr, pmd, entry); 655 update_mmu_cache_pmd(vma, addr, pmd); 656 spin_unlock(ptl); 657 } 658 659 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 660 pmd_t *pmd, pfn_t pfn, bool write) 661 { 662 pgprot_t pgprot = vma->vm_page_prot; 663 /* 664 * If we had pmd_special, we could avoid all these restrictions, 665 * but we need to be consistent with PTEs and architectures that 666 * can't support a 'special' bit. 667 */ 668 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 669 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 670 (VM_PFNMAP|VM_MIXEDMAP)); 671 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 672 BUG_ON(!pfn_t_devmap(pfn)); 673 674 if (addr < vma->vm_start || addr >= vma->vm_end) 675 return VM_FAULT_SIGBUS; 676 if (track_pfn_insert(vma, &pgprot, pfn)) 677 return VM_FAULT_SIGBUS; 678 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); 679 return VM_FAULT_NOPAGE; 680 } 681 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 682 683 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 684 pmd_t *pmd) 685 { 686 pmd_t _pmd; 687 688 /* 689 * We should set the dirty bit only for FOLL_WRITE but for now 690 * the dirty bit in the pmd is meaningless. And if the dirty 691 * bit will become meaningful and we'll only set it with 692 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 693 * set the young bit, instead of the current set_pmd_at. 694 */ 695 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 696 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 697 pmd, _pmd, 1)) 698 update_mmu_cache_pmd(vma, addr, pmd); 699 } 700 701 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 702 pmd_t *pmd, int flags) 703 { 704 unsigned long pfn = pmd_pfn(*pmd); 705 struct mm_struct *mm = vma->vm_mm; 706 struct dev_pagemap *pgmap; 707 struct page *page; 708 709 assert_spin_locked(pmd_lockptr(mm, pmd)); 710 711 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 712 return NULL; 713 714 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 715 /* pass */; 716 else 717 return NULL; 718 719 if (flags & FOLL_TOUCH) 720 touch_pmd(vma, addr, pmd); 721 722 /* 723 * device mapped pages can only be returned if the 724 * caller will manage the page reference count. 725 */ 726 if (!(flags & FOLL_GET)) 727 return ERR_PTR(-EEXIST); 728 729 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 730 pgmap = get_dev_pagemap(pfn, NULL); 731 if (!pgmap) 732 return ERR_PTR(-EFAULT); 733 page = pfn_to_page(pfn); 734 get_page(page); 735 put_dev_pagemap(pgmap); 736 737 return page; 738 } 739 740 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 741 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 742 struct vm_area_struct *vma) 743 { 744 spinlock_t *dst_ptl, *src_ptl; 745 struct page *src_page; 746 pmd_t pmd; 747 pgtable_t pgtable = NULL; 748 int ret = -ENOMEM; 749 750 /* Skip if can be re-fill on fault */ 751 if (!vma_is_anonymous(vma)) 752 return 0; 753 754 pgtable = pte_alloc_one(dst_mm, addr); 755 if (unlikely(!pgtable)) 756 goto out; 757 758 dst_ptl = pmd_lock(dst_mm, dst_pmd); 759 src_ptl = pmd_lockptr(src_mm, src_pmd); 760 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 761 762 ret = -EAGAIN; 763 pmd = *src_pmd; 764 if (unlikely(!pmd_trans_huge(pmd))) { 765 pte_free(dst_mm, pgtable); 766 goto out_unlock; 767 } 768 /* 769 * When page table lock is held, the huge zero pmd should not be 770 * under splitting since we don't split the page itself, only pmd to 771 * a page table. 772 */ 773 if (is_huge_zero_pmd(pmd)) { 774 struct page *zero_page; 775 /* 776 * get_huge_zero_page() will never allocate a new page here, 777 * since we already have a zero page to copy. It just takes a 778 * reference. 779 */ 780 zero_page = get_huge_zero_page(); 781 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 782 zero_page); 783 ret = 0; 784 goto out_unlock; 785 } 786 787 src_page = pmd_page(pmd); 788 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 789 get_page(src_page); 790 page_dup_rmap(src_page, true); 791 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 792 atomic_long_inc(&dst_mm->nr_ptes); 793 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 794 795 pmdp_set_wrprotect(src_mm, addr, src_pmd); 796 pmd = pmd_mkold(pmd_wrprotect(pmd)); 797 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 798 799 ret = 0; 800 out_unlock: 801 spin_unlock(src_ptl); 802 spin_unlock(dst_ptl); 803 out: 804 return ret; 805 } 806 807 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd) 808 { 809 pmd_t entry; 810 unsigned long haddr; 811 812 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd); 813 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 814 goto unlock; 815 816 entry = pmd_mkyoung(orig_pmd); 817 haddr = fe->address & HPAGE_PMD_MASK; 818 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry, 819 fe->flags & FAULT_FLAG_WRITE)) 820 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd); 821 822 unlock: 823 spin_unlock(fe->ptl); 824 } 825 826 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd, 827 struct page *page) 828 { 829 struct vm_area_struct *vma = fe->vma; 830 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 831 struct mem_cgroup *memcg; 832 pgtable_t pgtable; 833 pmd_t _pmd; 834 int ret = 0, i; 835 struct page **pages; 836 unsigned long mmun_start; /* For mmu_notifiers */ 837 unsigned long mmun_end; /* For mmu_notifiers */ 838 839 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 840 GFP_KERNEL); 841 if (unlikely(!pages)) { 842 ret |= VM_FAULT_OOM; 843 goto out; 844 } 845 846 for (i = 0; i < HPAGE_PMD_NR; i++) { 847 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 848 __GFP_OTHER_NODE, vma, 849 fe->address, page_to_nid(page)); 850 if (unlikely(!pages[i] || 851 mem_cgroup_try_charge(pages[i], vma->vm_mm, 852 GFP_KERNEL, &memcg, false))) { 853 if (pages[i]) 854 put_page(pages[i]); 855 while (--i >= 0) { 856 memcg = (void *)page_private(pages[i]); 857 set_page_private(pages[i], 0); 858 mem_cgroup_cancel_charge(pages[i], memcg, 859 false); 860 put_page(pages[i]); 861 } 862 kfree(pages); 863 ret |= VM_FAULT_OOM; 864 goto out; 865 } 866 set_page_private(pages[i], (unsigned long)memcg); 867 } 868 869 for (i = 0; i < HPAGE_PMD_NR; i++) { 870 copy_user_highpage(pages[i], page + i, 871 haddr + PAGE_SIZE * i, vma); 872 __SetPageUptodate(pages[i]); 873 cond_resched(); 874 } 875 876 mmun_start = haddr; 877 mmun_end = haddr + HPAGE_PMD_SIZE; 878 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 879 880 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 881 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 882 goto out_free_pages; 883 VM_BUG_ON_PAGE(!PageHead(page), page); 884 885 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); 886 /* leave pmd empty until pte is filled */ 887 888 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd); 889 pmd_populate(vma->vm_mm, &_pmd, pgtable); 890 891 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 892 pte_t entry; 893 entry = mk_pte(pages[i], vma->vm_page_prot); 894 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 895 memcg = (void *)page_private(pages[i]); 896 set_page_private(pages[i], 0); 897 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false); 898 mem_cgroup_commit_charge(pages[i], memcg, false, false); 899 lru_cache_add_active_or_unevictable(pages[i], vma); 900 fe->pte = pte_offset_map(&_pmd, haddr); 901 VM_BUG_ON(!pte_none(*fe->pte)); 902 set_pte_at(vma->vm_mm, haddr, fe->pte, entry); 903 pte_unmap(fe->pte); 904 } 905 kfree(pages); 906 907 smp_wmb(); /* make pte visible before pmd */ 908 pmd_populate(vma->vm_mm, fe->pmd, pgtable); 909 page_remove_rmap(page, true); 910 spin_unlock(fe->ptl); 911 912 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 913 914 ret |= VM_FAULT_WRITE; 915 put_page(page); 916 917 out: 918 return ret; 919 920 out_free_pages: 921 spin_unlock(fe->ptl); 922 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 923 for (i = 0; i < HPAGE_PMD_NR; i++) { 924 memcg = (void *)page_private(pages[i]); 925 set_page_private(pages[i], 0); 926 mem_cgroup_cancel_charge(pages[i], memcg, false); 927 put_page(pages[i]); 928 } 929 kfree(pages); 930 goto out; 931 } 932 933 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd) 934 { 935 struct vm_area_struct *vma = fe->vma; 936 struct page *page = NULL, *new_page; 937 struct mem_cgroup *memcg; 938 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 939 unsigned long mmun_start; /* For mmu_notifiers */ 940 unsigned long mmun_end; /* For mmu_notifiers */ 941 gfp_t huge_gfp; /* for allocation and charge */ 942 int ret = 0; 943 944 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd); 945 VM_BUG_ON_VMA(!vma->anon_vma, vma); 946 if (is_huge_zero_pmd(orig_pmd)) 947 goto alloc; 948 spin_lock(fe->ptl); 949 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 950 goto out_unlock; 951 952 page = pmd_page(orig_pmd); 953 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 954 /* 955 * We can only reuse the page if nobody else maps the huge page or it's 956 * part. 957 */ 958 if (page_trans_huge_mapcount(page, NULL) == 1) { 959 pmd_t entry; 960 entry = pmd_mkyoung(orig_pmd); 961 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 962 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1)) 963 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 964 ret |= VM_FAULT_WRITE; 965 goto out_unlock; 966 } 967 get_page(page); 968 spin_unlock(fe->ptl); 969 alloc: 970 if (transparent_hugepage_enabled(vma) && 971 !transparent_hugepage_debug_cow()) { 972 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 973 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 974 } else 975 new_page = NULL; 976 977 if (likely(new_page)) { 978 prep_transhuge_page(new_page); 979 } else { 980 if (!page) { 981 split_huge_pmd(vma, fe->pmd, fe->address); 982 ret |= VM_FAULT_FALLBACK; 983 } else { 984 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page); 985 if (ret & VM_FAULT_OOM) { 986 split_huge_pmd(vma, fe->pmd, fe->address); 987 ret |= VM_FAULT_FALLBACK; 988 } 989 put_page(page); 990 } 991 count_vm_event(THP_FAULT_FALLBACK); 992 goto out; 993 } 994 995 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 996 huge_gfp, &memcg, true))) { 997 put_page(new_page); 998 split_huge_pmd(vma, fe->pmd, fe->address); 999 if (page) 1000 put_page(page); 1001 ret |= VM_FAULT_FALLBACK; 1002 count_vm_event(THP_FAULT_FALLBACK); 1003 goto out; 1004 } 1005 1006 count_vm_event(THP_FAULT_ALLOC); 1007 1008 if (!page) 1009 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1010 else 1011 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1012 __SetPageUptodate(new_page); 1013 1014 mmun_start = haddr; 1015 mmun_end = haddr + HPAGE_PMD_SIZE; 1016 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1017 1018 spin_lock(fe->ptl); 1019 if (page) 1020 put_page(page); 1021 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) { 1022 spin_unlock(fe->ptl); 1023 mem_cgroup_cancel_charge(new_page, memcg, true); 1024 put_page(new_page); 1025 goto out_mn; 1026 } else { 1027 pmd_t entry; 1028 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1029 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1030 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); 1031 page_add_new_anon_rmap(new_page, vma, haddr, true); 1032 mem_cgroup_commit_charge(new_page, memcg, false, true); 1033 lru_cache_add_active_or_unevictable(new_page, vma); 1034 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); 1035 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 1036 if (!page) { 1037 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1038 put_huge_zero_page(); 1039 } else { 1040 VM_BUG_ON_PAGE(!PageHead(page), page); 1041 page_remove_rmap(page, true); 1042 put_page(page); 1043 } 1044 ret |= VM_FAULT_WRITE; 1045 } 1046 spin_unlock(fe->ptl); 1047 out_mn: 1048 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1049 out: 1050 return ret; 1051 out_unlock: 1052 spin_unlock(fe->ptl); 1053 return ret; 1054 } 1055 1056 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1057 unsigned long addr, 1058 pmd_t *pmd, 1059 unsigned int flags) 1060 { 1061 struct mm_struct *mm = vma->vm_mm; 1062 struct page *page = NULL; 1063 1064 assert_spin_locked(pmd_lockptr(mm, pmd)); 1065 1066 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1067 goto out; 1068 1069 /* Avoid dumping huge zero page */ 1070 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1071 return ERR_PTR(-EFAULT); 1072 1073 /* Full NUMA hinting faults to serialise migration in fault paths */ 1074 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1075 goto out; 1076 1077 page = pmd_page(*pmd); 1078 VM_BUG_ON_PAGE(!PageHead(page), page); 1079 if (flags & FOLL_TOUCH) 1080 touch_pmd(vma, addr, pmd); 1081 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1082 /* 1083 * We don't mlock() pte-mapped THPs. This way we can avoid 1084 * leaking mlocked pages into non-VM_LOCKED VMAs. 1085 * 1086 * For anon THP: 1087 * 1088 * In most cases the pmd is the only mapping of the page as we 1089 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1090 * writable private mappings in populate_vma_page_range(). 1091 * 1092 * The only scenario when we have the page shared here is if we 1093 * mlocking read-only mapping shared over fork(). We skip 1094 * mlocking such pages. 1095 * 1096 * For file THP: 1097 * 1098 * We can expect PageDoubleMap() to be stable under page lock: 1099 * for file pages we set it in page_add_file_rmap(), which 1100 * requires page to be locked. 1101 */ 1102 1103 if (PageAnon(page) && compound_mapcount(page) != 1) 1104 goto skip_mlock; 1105 if (PageDoubleMap(page) || !page->mapping) 1106 goto skip_mlock; 1107 if (!trylock_page(page)) 1108 goto skip_mlock; 1109 lru_add_drain(); 1110 if (page->mapping && !PageDoubleMap(page)) 1111 mlock_vma_page(page); 1112 unlock_page(page); 1113 } 1114 skip_mlock: 1115 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1116 VM_BUG_ON_PAGE(!PageCompound(page), page); 1117 if (flags & FOLL_GET) 1118 get_page(page); 1119 1120 out: 1121 return page; 1122 } 1123 1124 /* NUMA hinting page fault entry point for trans huge pmds */ 1125 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd) 1126 { 1127 struct vm_area_struct *vma = fe->vma; 1128 struct anon_vma *anon_vma = NULL; 1129 struct page *page; 1130 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 1131 int page_nid = -1, this_nid = numa_node_id(); 1132 int target_nid, last_cpupid = -1; 1133 bool page_locked; 1134 bool migrated = false; 1135 bool was_writable; 1136 int flags = 0; 1137 1138 /* A PROT_NONE fault should not end up here */ 1139 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 1140 1141 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 1142 if (unlikely(!pmd_same(pmd, *fe->pmd))) 1143 goto out_unlock; 1144 1145 /* 1146 * If there are potential migrations, wait for completion and retry 1147 * without disrupting NUMA hinting information. Do not relock and 1148 * check_same as the page may no longer be mapped. 1149 */ 1150 if (unlikely(pmd_trans_migrating(*fe->pmd))) { 1151 page = pmd_page(*fe->pmd); 1152 spin_unlock(fe->ptl); 1153 wait_on_page_locked(page); 1154 goto out; 1155 } 1156 1157 page = pmd_page(pmd); 1158 BUG_ON(is_huge_zero_page(page)); 1159 page_nid = page_to_nid(page); 1160 last_cpupid = page_cpupid_last(page); 1161 count_vm_numa_event(NUMA_HINT_FAULTS); 1162 if (page_nid == this_nid) { 1163 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1164 flags |= TNF_FAULT_LOCAL; 1165 } 1166 1167 /* See similar comment in do_numa_page for explanation */ 1168 if (!(vma->vm_flags & VM_WRITE)) 1169 flags |= TNF_NO_GROUP; 1170 1171 /* 1172 * Acquire the page lock to serialise THP migrations but avoid dropping 1173 * page_table_lock if at all possible 1174 */ 1175 page_locked = trylock_page(page); 1176 target_nid = mpol_misplaced(page, vma, haddr); 1177 if (target_nid == -1) { 1178 /* If the page was locked, there are no parallel migrations */ 1179 if (page_locked) 1180 goto clear_pmdnuma; 1181 } 1182 1183 /* Migration could have started since the pmd_trans_migrating check */ 1184 if (!page_locked) { 1185 spin_unlock(fe->ptl); 1186 wait_on_page_locked(page); 1187 page_nid = -1; 1188 goto out; 1189 } 1190 1191 /* 1192 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1193 * to serialises splits 1194 */ 1195 get_page(page); 1196 spin_unlock(fe->ptl); 1197 anon_vma = page_lock_anon_vma_read(page); 1198 1199 /* Confirm the PMD did not change while page_table_lock was released */ 1200 spin_lock(fe->ptl); 1201 if (unlikely(!pmd_same(pmd, *fe->pmd))) { 1202 unlock_page(page); 1203 put_page(page); 1204 page_nid = -1; 1205 goto out_unlock; 1206 } 1207 1208 /* Bail if we fail to protect against THP splits for any reason */ 1209 if (unlikely(!anon_vma)) { 1210 put_page(page); 1211 page_nid = -1; 1212 goto clear_pmdnuma; 1213 } 1214 1215 /* 1216 * Migrate the THP to the requested node, returns with page unlocked 1217 * and access rights restored. 1218 */ 1219 spin_unlock(fe->ptl); 1220 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1221 fe->pmd, pmd, fe->address, page, target_nid); 1222 if (migrated) { 1223 flags |= TNF_MIGRATED; 1224 page_nid = target_nid; 1225 } else 1226 flags |= TNF_MIGRATE_FAIL; 1227 1228 goto out; 1229 clear_pmdnuma: 1230 BUG_ON(!PageLocked(page)); 1231 was_writable = pmd_write(pmd); 1232 pmd = pmd_modify(pmd, vma->vm_page_prot); 1233 pmd = pmd_mkyoung(pmd); 1234 if (was_writable) 1235 pmd = pmd_mkwrite(pmd); 1236 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd); 1237 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 1238 unlock_page(page); 1239 out_unlock: 1240 spin_unlock(fe->ptl); 1241 1242 out: 1243 if (anon_vma) 1244 page_unlock_anon_vma_read(anon_vma); 1245 1246 if (page_nid != -1) 1247 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags); 1248 1249 return 0; 1250 } 1251 1252 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1253 pmd_t *pmd, unsigned long addr, unsigned long next) 1254 1255 { 1256 spinlock_t *ptl; 1257 pmd_t orig_pmd; 1258 struct page *page; 1259 struct mm_struct *mm = tlb->mm; 1260 int ret = 0; 1261 1262 ptl = pmd_trans_huge_lock(pmd, vma); 1263 if (!ptl) 1264 goto out_unlocked; 1265 1266 orig_pmd = *pmd; 1267 if (is_huge_zero_pmd(orig_pmd)) { 1268 ret = 1; 1269 goto out; 1270 } 1271 1272 page = pmd_page(orig_pmd); 1273 /* 1274 * If other processes are mapping this page, we couldn't discard 1275 * the page unless they all do MADV_FREE so let's skip the page. 1276 */ 1277 if (page_mapcount(page) != 1) 1278 goto out; 1279 1280 if (!trylock_page(page)) 1281 goto out; 1282 1283 /* 1284 * If user want to discard part-pages of THP, split it so MADV_FREE 1285 * will deactivate only them. 1286 */ 1287 if (next - addr != HPAGE_PMD_SIZE) { 1288 get_page(page); 1289 spin_unlock(ptl); 1290 split_huge_page(page); 1291 put_page(page); 1292 unlock_page(page); 1293 goto out_unlocked; 1294 } 1295 1296 if (PageDirty(page)) 1297 ClearPageDirty(page); 1298 unlock_page(page); 1299 1300 if (PageActive(page)) 1301 deactivate_page(page); 1302 1303 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1304 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1305 tlb->fullmm); 1306 orig_pmd = pmd_mkold(orig_pmd); 1307 orig_pmd = pmd_mkclean(orig_pmd); 1308 1309 set_pmd_at(mm, addr, pmd, orig_pmd); 1310 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1311 } 1312 ret = 1; 1313 out: 1314 spin_unlock(ptl); 1315 out_unlocked: 1316 return ret; 1317 } 1318 1319 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1320 pmd_t *pmd, unsigned long addr) 1321 { 1322 pmd_t orig_pmd; 1323 spinlock_t *ptl; 1324 1325 ptl = __pmd_trans_huge_lock(pmd, vma); 1326 if (!ptl) 1327 return 0; 1328 /* 1329 * For architectures like ppc64 we look at deposited pgtable 1330 * when calling pmdp_huge_get_and_clear. So do the 1331 * pgtable_trans_huge_withdraw after finishing pmdp related 1332 * operations. 1333 */ 1334 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1335 tlb->fullmm); 1336 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1337 if (vma_is_dax(vma)) { 1338 spin_unlock(ptl); 1339 if (is_huge_zero_pmd(orig_pmd)) 1340 tlb_remove_page(tlb, pmd_page(orig_pmd)); 1341 } else if (is_huge_zero_pmd(orig_pmd)) { 1342 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); 1343 atomic_long_dec(&tlb->mm->nr_ptes); 1344 spin_unlock(ptl); 1345 tlb_remove_page(tlb, pmd_page(orig_pmd)); 1346 } else { 1347 struct page *page = pmd_page(orig_pmd); 1348 page_remove_rmap(page, true); 1349 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1350 VM_BUG_ON_PAGE(!PageHead(page), page); 1351 if (PageAnon(page)) { 1352 pgtable_t pgtable; 1353 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1354 pte_free(tlb->mm, pgtable); 1355 atomic_long_dec(&tlb->mm->nr_ptes); 1356 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1357 } else { 1358 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1359 } 1360 spin_unlock(ptl); 1361 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1362 } 1363 return 1; 1364 } 1365 1366 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1367 unsigned long new_addr, unsigned long old_end, 1368 pmd_t *old_pmd, pmd_t *new_pmd) 1369 { 1370 spinlock_t *old_ptl, *new_ptl; 1371 pmd_t pmd; 1372 struct mm_struct *mm = vma->vm_mm; 1373 1374 if ((old_addr & ~HPAGE_PMD_MASK) || 1375 (new_addr & ~HPAGE_PMD_MASK) || 1376 old_end - old_addr < HPAGE_PMD_SIZE) 1377 return false; 1378 1379 /* 1380 * The destination pmd shouldn't be established, free_pgtables() 1381 * should have release it. 1382 */ 1383 if (WARN_ON(!pmd_none(*new_pmd))) { 1384 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1385 return false; 1386 } 1387 1388 /* 1389 * We don't have to worry about the ordering of src and dst 1390 * ptlocks because exclusive mmap_sem prevents deadlock. 1391 */ 1392 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1393 if (old_ptl) { 1394 new_ptl = pmd_lockptr(mm, new_pmd); 1395 if (new_ptl != old_ptl) 1396 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1397 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1398 VM_BUG_ON(!pmd_none(*new_pmd)); 1399 1400 if (pmd_move_must_withdraw(new_ptl, old_ptl) && 1401 vma_is_anonymous(vma)) { 1402 pgtable_t pgtable; 1403 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1404 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1405 } 1406 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1407 if (new_ptl != old_ptl) 1408 spin_unlock(new_ptl); 1409 spin_unlock(old_ptl); 1410 return true; 1411 } 1412 return false; 1413 } 1414 1415 /* 1416 * Returns 1417 * - 0 if PMD could not be locked 1418 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1419 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1420 */ 1421 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1422 unsigned long addr, pgprot_t newprot, int prot_numa) 1423 { 1424 struct mm_struct *mm = vma->vm_mm; 1425 spinlock_t *ptl; 1426 int ret = 0; 1427 1428 ptl = __pmd_trans_huge_lock(pmd, vma); 1429 if (ptl) { 1430 pmd_t entry; 1431 bool preserve_write = prot_numa && pmd_write(*pmd); 1432 ret = 1; 1433 1434 /* 1435 * Avoid trapping faults against the zero page. The read-only 1436 * data is likely to be read-cached on the local CPU and 1437 * local/remote hits to the zero page are not interesting. 1438 */ 1439 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1440 spin_unlock(ptl); 1441 return ret; 1442 } 1443 1444 if (!prot_numa || !pmd_protnone(*pmd)) { 1445 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); 1446 entry = pmd_modify(entry, newprot); 1447 if (preserve_write) 1448 entry = pmd_mkwrite(entry); 1449 ret = HPAGE_PMD_NR; 1450 set_pmd_at(mm, addr, pmd, entry); 1451 BUG_ON(vma_is_anonymous(vma) && !preserve_write && 1452 pmd_write(entry)); 1453 } 1454 spin_unlock(ptl); 1455 } 1456 1457 return ret; 1458 } 1459 1460 /* 1461 * Returns true if a given pmd maps a thp, false otherwise. 1462 * 1463 * Note that if it returns true, this routine returns without unlocking page 1464 * table lock. So callers must unlock it. 1465 */ 1466 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1467 { 1468 spinlock_t *ptl; 1469 ptl = pmd_lock(vma->vm_mm, pmd); 1470 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1471 return ptl; 1472 spin_unlock(ptl); 1473 return NULL; 1474 } 1475 1476 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1477 unsigned long haddr, pmd_t *pmd) 1478 { 1479 struct mm_struct *mm = vma->vm_mm; 1480 pgtable_t pgtable; 1481 pmd_t _pmd; 1482 int i; 1483 1484 /* leave pmd empty until pte is filled */ 1485 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1486 1487 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1488 pmd_populate(mm, &_pmd, pgtable); 1489 1490 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1491 pte_t *pte, entry; 1492 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1493 entry = pte_mkspecial(entry); 1494 pte = pte_offset_map(&_pmd, haddr); 1495 VM_BUG_ON(!pte_none(*pte)); 1496 set_pte_at(mm, haddr, pte, entry); 1497 pte_unmap(pte); 1498 } 1499 smp_wmb(); /* make pte visible before pmd */ 1500 pmd_populate(mm, pmd, pgtable); 1501 put_huge_zero_page(); 1502 } 1503 1504 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1505 unsigned long haddr, bool freeze) 1506 { 1507 struct mm_struct *mm = vma->vm_mm; 1508 struct page *page; 1509 pgtable_t pgtable; 1510 pmd_t _pmd; 1511 bool young, write, dirty; 1512 unsigned long addr; 1513 int i; 1514 1515 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1516 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1517 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1518 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1519 1520 count_vm_event(THP_SPLIT_PMD); 1521 1522 if (!vma_is_anonymous(vma)) { 1523 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1524 if (is_huge_zero_pmd(_pmd)) 1525 put_huge_zero_page(); 1526 if (vma_is_dax(vma)) 1527 return; 1528 page = pmd_page(_pmd); 1529 if (!PageReferenced(page) && pmd_young(_pmd)) 1530 SetPageReferenced(page); 1531 page_remove_rmap(page, true); 1532 put_page(page); 1533 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1534 return; 1535 } else if (is_huge_zero_pmd(*pmd)) { 1536 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1537 } 1538 1539 page = pmd_page(*pmd); 1540 VM_BUG_ON_PAGE(!page_count(page), page); 1541 page_ref_add(page, HPAGE_PMD_NR - 1); 1542 write = pmd_write(*pmd); 1543 young = pmd_young(*pmd); 1544 dirty = pmd_dirty(*pmd); 1545 1546 pmdp_huge_split_prepare(vma, haddr, pmd); 1547 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1548 pmd_populate(mm, &_pmd, pgtable); 1549 1550 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1551 pte_t entry, *pte; 1552 /* 1553 * Note that NUMA hinting access restrictions are not 1554 * transferred to avoid any possibility of altering 1555 * permissions across VMAs. 1556 */ 1557 if (freeze) { 1558 swp_entry_t swp_entry; 1559 swp_entry = make_migration_entry(page + i, write); 1560 entry = swp_entry_to_pte(swp_entry); 1561 } else { 1562 entry = mk_pte(page + i, vma->vm_page_prot); 1563 entry = maybe_mkwrite(entry, vma); 1564 if (!write) 1565 entry = pte_wrprotect(entry); 1566 if (!young) 1567 entry = pte_mkold(entry); 1568 } 1569 if (dirty) 1570 SetPageDirty(page + i); 1571 pte = pte_offset_map(&_pmd, addr); 1572 BUG_ON(!pte_none(*pte)); 1573 set_pte_at(mm, addr, pte, entry); 1574 atomic_inc(&page[i]._mapcount); 1575 pte_unmap(pte); 1576 } 1577 1578 /* 1579 * Set PG_double_map before dropping compound_mapcount to avoid 1580 * false-negative page_mapped(). 1581 */ 1582 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 1583 for (i = 0; i < HPAGE_PMD_NR; i++) 1584 atomic_inc(&page[i]._mapcount); 1585 } 1586 1587 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 1588 /* Last compound_mapcount is gone. */ 1589 __dec_zone_page_state(page, NR_ANON_THPS); 1590 if (TestClearPageDoubleMap(page)) { 1591 /* No need in mapcount reference anymore */ 1592 for (i = 0; i < HPAGE_PMD_NR; i++) 1593 atomic_dec(&page[i]._mapcount); 1594 } 1595 } 1596 1597 smp_wmb(); /* make pte visible before pmd */ 1598 /* 1599 * Up to this point the pmd is present and huge and userland has the 1600 * whole access to the hugepage during the split (which happens in 1601 * place). If we overwrite the pmd with the not-huge version pointing 1602 * to the pte here (which of course we could if all CPUs were bug 1603 * free), userland could trigger a small page size TLB miss on the 1604 * small sized TLB while the hugepage TLB entry is still established in 1605 * the huge TLB. Some CPU doesn't like that. 1606 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 1607 * 383 on page 93. Intel should be safe but is also warns that it's 1608 * only safe if the permission and cache attributes of the two entries 1609 * loaded in the two TLB is identical (which should be the case here). 1610 * But it is generally safer to never allow small and huge TLB entries 1611 * for the same virtual address to be loaded simultaneously. So instead 1612 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 1613 * current pmd notpresent (atomically because here the pmd_trans_huge 1614 * and pmd_trans_splitting must remain set at all times on the pmd 1615 * until the split is complete for this pmd), then we flush the SMP TLB 1616 * and finally we write the non-huge version of the pmd entry with 1617 * pmd_populate. 1618 */ 1619 pmdp_invalidate(vma, haddr, pmd); 1620 pmd_populate(mm, pmd, pgtable); 1621 1622 if (freeze) { 1623 for (i = 0; i < HPAGE_PMD_NR; i++) { 1624 page_remove_rmap(page + i, false); 1625 put_page(page + i); 1626 } 1627 } 1628 } 1629 1630 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1631 unsigned long address, bool freeze, struct page *page) 1632 { 1633 spinlock_t *ptl; 1634 struct mm_struct *mm = vma->vm_mm; 1635 unsigned long haddr = address & HPAGE_PMD_MASK; 1636 1637 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 1638 ptl = pmd_lock(mm, pmd); 1639 1640 /* 1641 * If caller asks to setup a migration entries, we need a page to check 1642 * pmd against. Otherwise we can end up replacing wrong page. 1643 */ 1644 VM_BUG_ON(freeze && !page); 1645 if (page && page != pmd_page(*pmd)) 1646 goto out; 1647 1648 if (pmd_trans_huge(*pmd)) { 1649 page = pmd_page(*pmd); 1650 if (PageMlocked(page)) 1651 clear_page_mlock(page); 1652 } else if (!pmd_devmap(*pmd)) 1653 goto out; 1654 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 1655 out: 1656 spin_unlock(ptl); 1657 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 1658 } 1659 1660 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 1661 bool freeze, struct page *page) 1662 { 1663 pgd_t *pgd; 1664 pud_t *pud; 1665 pmd_t *pmd; 1666 1667 pgd = pgd_offset(vma->vm_mm, address); 1668 if (!pgd_present(*pgd)) 1669 return; 1670 1671 pud = pud_offset(pgd, address); 1672 if (!pud_present(*pud)) 1673 return; 1674 1675 pmd = pmd_offset(pud, address); 1676 1677 __split_huge_pmd(vma, pmd, address, freeze, page); 1678 } 1679 1680 void vma_adjust_trans_huge(struct vm_area_struct *vma, 1681 unsigned long start, 1682 unsigned long end, 1683 long adjust_next) 1684 { 1685 /* 1686 * If the new start address isn't hpage aligned and it could 1687 * previously contain an hugepage: check if we need to split 1688 * an huge pmd. 1689 */ 1690 if (start & ~HPAGE_PMD_MASK && 1691 (start & HPAGE_PMD_MASK) >= vma->vm_start && 1692 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1693 split_huge_pmd_address(vma, start, false, NULL); 1694 1695 /* 1696 * If the new end address isn't hpage aligned and it could 1697 * previously contain an hugepage: check if we need to split 1698 * an huge pmd. 1699 */ 1700 if (end & ~HPAGE_PMD_MASK && 1701 (end & HPAGE_PMD_MASK) >= vma->vm_start && 1702 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1703 split_huge_pmd_address(vma, end, false, NULL); 1704 1705 /* 1706 * If we're also updating the vma->vm_next->vm_start, if the new 1707 * vm_next->vm_start isn't page aligned and it could previously 1708 * contain an hugepage: check if we need to split an huge pmd. 1709 */ 1710 if (adjust_next > 0) { 1711 struct vm_area_struct *next = vma->vm_next; 1712 unsigned long nstart = next->vm_start; 1713 nstart += adjust_next << PAGE_SHIFT; 1714 if (nstart & ~HPAGE_PMD_MASK && 1715 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 1716 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 1717 split_huge_pmd_address(next, nstart, false, NULL); 1718 } 1719 } 1720 1721 static void freeze_page(struct page *page) 1722 { 1723 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 1724 TTU_RMAP_LOCKED; 1725 int i, ret; 1726 1727 VM_BUG_ON_PAGE(!PageHead(page), page); 1728 1729 if (PageAnon(page)) 1730 ttu_flags |= TTU_MIGRATION; 1731 1732 /* We only need TTU_SPLIT_HUGE_PMD once */ 1733 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD); 1734 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) { 1735 /* Cut short if the page is unmapped */ 1736 if (page_count(page) == 1) 1737 return; 1738 1739 ret = try_to_unmap(page + i, ttu_flags); 1740 } 1741 VM_BUG_ON_PAGE(ret, page + i - 1); 1742 } 1743 1744 static void unfreeze_page(struct page *page) 1745 { 1746 int i; 1747 1748 for (i = 0; i < HPAGE_PMD_NR; i++) 1749 remove_migration_ptes(page + i, page + i, true); 1750 } 1751 1752 static void __split_huge_page_tail(struct page *head, int tail, 1753 struct lruvec *lruvec, struct list_head *list) 1754 { 1755 struct page *page_tail = head + tail; 1756 1757 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 1758 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 1759 1760 /* 1761 * tail_page->_refcount is zero and not changing from under us. But 1762 * get_page_unless_zero() may be running from under us on the 1763 * tail_page. If we used atomic_set() below instead of atomic_inc() or 1764 * atomic_add(), we would then run atomic_set() concurrently with 1765 * get_page_unless_zero(), and atomic_set() is implemented in C not 1766 * using locked ops. spin_unlock on x86 sometime uses locked ops 1767 * because of PPro errata 66, 92, so unless somebody can guarantee 1768 * atomic_set() here would be safe on all archs (and not only on x86), 1769 * it's safer to use atomic_inc()/atomic_add(). 1770 */ 1771 if (PageAnon(head)) { 1772 page_ref_inc(page_tail); 1773 } else { 1774 /* Additional pin to radix tree */ 1775 page_ref_add(page_tail, 2); 1776 } 1777 1778 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1779 page_tail->flags |= (head->flags & 1780 ((1L << PG_referenced) | 1781 (1L << PG_swapbacked) | 1782 (1L << PG_mlocked) | 1783 (1L << PG_uptodate) | 1784 (1L << PG_active) | 1785 (1L << PG_locked) | 1786 (1L << PG_unevictable) | 1787 (1L << PG_dirty))); 1788 1789 /* 1790 * After clearing PageTail the gup refcount can be released. 1791 * Page flags also must be visible before we make the page non-compound. 1792 */ 1793 smp_wmb(); 1794 1795 clear_compound_head(page_tail); 1796 1797 if (page_is_young(head)) 1798 set_page_young(page_tail); 1799 if (page_is_idle(head)) 1800 set_page_idle(page_tail); 1801 1802 /* ->mapping in first tail page is compound_mapcount */ 1803 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 1804 page_tail); 1805 page_tail->mapping = head->mapping; 1806 1807 page_tail->index = head->index + tail; 1808 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 1809 lru_add_page_tail(head, page_tail, lruvec, list); 1810 } 1811 1812 static void __split_huge_page(struct page *page, struct list_head *list, 1813 unsigned long flags) 1814 { 1815 struct page *head = compound_head(page); 1816 struct zone *zone = page_zone(head); 1817 struct lruvec *lruvec; 1818 pgoff_t end = -1; 1819 int i; 1820 1821 lruvec = mem_cgroup_page_lruvec(head, zone); 1822 1823 /* complete memcg works before add pages to LRU */ 1824 mem_cgroup_split_huge_fixup(head); 1825 1826 if (!PageAnon(page)) 1827 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 1828 1829 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1830 __split_huge_page_tail(head, i, lruvec, list); 1831 /* Some pages can be beyond i_size: drop them from page cache */ 1832 if (head[i].index >= end) { 1833 __ClearPageDirty(head + i); 1834 __delete_from_page_cache(head + i, NULL); 1835 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 1836 shmem_uncharge(head->mapping->host, 1); 1837 put_page(head + i); 1838 } 1839 } 1840 1841 ClearPageCompound(head); 1842 /* See comment in __split_huge_page_tail() */ 1843 if (PageAnon(head)) { 1844 page_ref_inc(head); 1845 } else { 1846 /* Additional pin to radix tree */ 1847 page_ref_add(head, 2); 1848 spin_unlock(&head->mapping->tree_lock); 1849 } 1850 1851 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags); 1852 1853 unfreeze_page(head); 1854 1855 for (i = 0; i < HPAGE_PMD_NR; i++) { 1856 struct page *subpage = head + i; 1857 if (subpage == page) 1858 continue; 1859 unlock_page(subpage); 1860 1861 /* 1862 * Subpages may be freed if there wasn't any mapping 1863 * like if add_to_swap() is running on a lru page that 1864 * had its mapping zapped. And freeing these pages 1865 * requires taking the lru_lock so we do the put_page 1866 * of the tail pages after the split is complete. 1867 */ 1868 put_page(subpage); 1869 } 1870 } 1871 1872 int total_mapcount(struct page *page) 1873 { 1874 int i, compound, ret; 1875 1876 VM_BUG_ON_PAGE(PageTail(page), page); 1877 1878 if (likely(!PageCompound(page))) 1879 return atomic_read(&page->_mapcount) + 1; 1880 1881 compound = compound_mapcount(page); 1882 if (PageHuge(page)) 1883 return compound; 1884 ret = compound; 1885 for (i = 0; i < HPAGE_PMD_NR; i++) 1886 ret += atomic_read(&page[i]._mapcount) + 1; 1887 /* File pages has compound_mapcount included in _mapcount */ 1888 if (!PageAnon(page)) 1889 return ret - compound * HPAGE_PMD_NR; 1890 if (PageDoubleMap(page)) 1891 ret -= HPAGE_PMD_NR; 1892 return ret; 1893 } 1894 1895 /* 1896 * This calculates accurately how many mappings a transparent hugepage 1897 * has (unlike page_mapcount() which isn't fully accurate). This full 1898 * accuracy is primarily needed to know if copy-on-write faults can 1899 * reuse the page and change the mapping to read-write instead of 1900 * copying them. At the same time this returns the total_mapcount too. 1901 * 1902 * The function returns the highest mapcount any one of the subpages 1903 * has. If the return value is one, even if different processes are 1904 * mapping different subpages of the transparent hugepage, they can 1905 * all reuse it, because each process is reusing a different subpage. 1906 * 1907 * The total_mapcount is instead counting all virtual mappings of the 1908 * subpages. If the total_mapcount is equal to "one", it tells the 1909 * caller all mappings belong to the same "mm" and in turn the 1910 * anon_vma of the transparent hugepage can become the vma->anon_vma 1911 * local one as no other process may be mapping any of the subpages. 1912 * 1913 * It would be more accurate to replace page_mapcount() with 1914 * page_trans_huge_mapcount(), however we only use 1915 * page_trans_huge_mapcount() in the copy-on-write faults where we 1916 * need full accuracy to avoid breaking page pinning, because 1917 * page_trans_huge_mapcount() is slower than page_mapcount(). 1918 */ 1919 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 1920 { 1921 int i, ret, _total_mapcount, mapcount; 1922 1923 /* hugetlbfs shouldn't call it */ 1924 VM_BUG_ON_PAGE(PageHuge(page), page); 1925 1926 if (likely(!PageTransCompound(page))) { 1927 mapcount = atomic_read(&page->_mapcount) + 1; 1928 if (total_mapcount) 1929 *total_mapcount = mapcount; 1930 return mapcount; 1931 } 1932 1933 page = compound_head(page); 1934 1935 _total_mapcount = ret = 0; 1936 for (i = 0; i < HPAGE_PMD_NR; i++) { 1937 mapcount = atomic_read(&page[i]._mapcount) + 1; 1938 ret = max(ret, mapcount); 1939 _total_mapcount += mapcount; 1940 } 1941 if (PageDoubleMap(page)) { 1942 ret -= 1; 1943 _total_mapcount -= HPAGE_PMD_NR; 1944 } 1945 mapcount = compound_mapcount(page); 1946 ret += mapcount; 1947 _total_mapcount += mapcount; 1948 if (total_mapcount) 1949 *total_mapcount = _total_mapcount; 1950 return ret; 1951 } 1952 1953 /* 1954 * This function splits huge page into normal pages. @page can point to any 1955 * subpage of huge page to split. Split doesn't change the position of @page. 1956 * 1957 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 1958 * The huge page must be locked. 1959 * 1960 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 1961 * 1962 * Both head page and tail pages will inherit mapping, flags, and so on from 1963 * the hugepage. 1964 * 1965 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 1966 * they are not mapped. 1967 * 1968 * Returns 0 if the hugepage is split successfully. 1969 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 1970 * us. 1971 */ 1972 int split_huge_page_to_list(struct page *page, struct list_head *list) 1973 { 1974 struct page *head = compound_head(page); 1975 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 1976 struct anon_vma *anon_vma = NULL; 1977 struct address_space *mapping = NULL; 1978 int count, mapcount, extra_pins, ret; 1979 bool mlocked; 1980 unsigned long flags; 1981 1982 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 1983 VM_BUG_ON_PAGE(!PageLocked(page), page); 1984 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1985 VM_BUG_ON_PAGE(!PageCompound(page), page); 1986 1987 if (PageAnon(head)) { 1988 /* 1989 * The caller does not necessarily hold an mmap_sem that would 1990 * prevent the anon_vma disappearing so we first we take a 1991 * reference to it and then lock the anon_vma for write. This 1992 * is similar to page_lock_anon_vma_read except the write lock 1993 * is taken to serialise against parallel split or collapse 1994 * operations. 1995 */ 1996 anon_vma = page_get_anon_vma(head); 1997 if (!anon_vma) { 1998 ret = -EBUSY; 1999 goto out; 2000 } 2001 extra_pins = 0; 2002 mapping = NULL; 2003 anon_vma_lock_write(anon_vma); 2004 } else { 2005 mapping = head->mapping; 2006 2007 /* Truncated ? */ 2008 if (!mapping) { 2009 ret = -EBUSY; 2010 goto out; 2011 } 2012 2013 /* Addidional pins from radix tree */ 2014 extra_pins = HPAGE_PMD_NR; 2015 anon_vma = NULL; 2016 i_mmap_lock_read(mapping); 2017 } 2018 2019 /* 2020 * Racy check if we can split the page, before freeze_page() will 2021 * split PMDs 2022 */ 2023 if (total_mapcount(head) != page_count(head) - extra_pins - 1) { 2024 ret = -EBUSY; 2025 goto out_unlock; 2026 } 2027 2028 mlocked = PageMlocked(page); 2029 freeze_page(head); 2030 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2031 2032 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2033 if (mlocked) 2034 lru_add_drain(); 2035 2036 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2037 spin_lock_irqsave(&page_zone(head)->lru_lock, flags); 2038 2039 if (mapping) { 2040 void **pslot; 2041 2042 spin_lock(&mapping->tree_lock); 2043 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2044 page_index(head)); 2045 /* 2046 * Check if the head page is present in radix tree. 2047 * We assume all tail are present too, if head is there. 2048 */ 2049 if (radix_tree_deref_slot_protected(pslot, 2050 &mapping->tree_lock) != head) 2051 goto fail; 2052 } 2053 2054 /* Prevent deferred_split_scan() touching ->_refcount */ 2055 spin_lock(&pgdata->split_queue_lock); 2056 count = page_count(head); 2057 mapcount = total_mapcount(head); 2058 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2059 if (!list_empty(page_deferred_list(head))) { 2060 pgdata->split_queue_len--; 2061 list_del(page_deferred_list(head)); 2062 } 2063 if (mapping) 2064 __dec_zone_page_state(page, NR_SHMEM_THPS); 2065 spin_unlock(&pgdata->split_queue_lock); 2066 __split_huge_page(page, list, flags); 2067 ret = 0; 2068 } else { 2069 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2070 pr_alert("total_mapcount: %u, page_count(): %u\n", 2071 mapcount, count); 2072 if (PageTail(page)) 2073 dump_page(head, NULL); 2074 dump_page(page, "total_mapcount(head) > 0"); 2075 BUG(); 2076 } 2077 spin_unlock(&pgdata->split_queue_lock); 2078 fail: if (mapping) 2079 spin_unlock(&mapping->tree_lock); 2080 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags); 2081 unfreeze_page(head); 2082 ret = -EBUSY; 2083 } 2084 2085 out_unlock: 2086 if (anon_vma) { 2087 anon_vma_unlock_write(anon_vma); 2088 put_anon_vma(anon_vma); 2089 } 2090 if (mapping) 2091 i_mmap_unlock_read(mapping); 2092 out: 2093 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2094 return ret; 2095 } 2096 2097 void free_transhuge_page(struct page *page) 2098 { 2099 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2100 unsigned long flags; 2101 2102 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2103 if (!list_empty(page_deferred_list(page))) { 2104 pgdata->split_queue_len--; 2105 list_del(page_deferred_list(page)); 2106 } 2107 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2108 free_compound_page(page); 2109 } 2110 2111 void deferred_split_huge_page(struct page *page) 2112 { 2113 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2114 unsigned long flags; 2115 2116 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2117 2118 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2119 if (list_empty(page_deferred_list(page))) { 2120 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2121 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2122 pgdata->split_queue_len++; 2123 } 2124 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2125 } 2126 2127 static unsigned long deferred_split_count(struct shrinker *shrink, 2128 struct shrink_control *sc) 2129 { 2130 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2131 return ACCESS_ONCE(pgdata->split_queue_len); 2132 } 2133 2134 static unsigned long deferred_split_scan(struct shrinker *shrink, 2135 struct shrink_control *sc) 2136 { 2137 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2138 unsigned long flags; 2139 LIST_HEAD(list), *pos, *next; 2140 struct page *page; 2141 int split = 0; 2142 2143 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2144 /* Take pin on all head pages to avoid freeing them under us */ 2145 list_for_each_safe(pos, next, &pgdata->split_queue) { 2146 page = list_entry((void *)pos, struct page, mapping); 2147 page = compound_head(page); 2148 if (get_page_unless_zero(page)) { 2149 list_move(page_deferred_list(page), &list); 2150 } else { 2151 /* We lost race with put_compound_page() */ 2152 list_del_init(page_deferred_list(page)); 2153 pgdata->split_queue_len--; 2154 } 2155 if (!--sc->nr_to_scan) 2156 break; 2157 } 2158 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2159 2160 list_for_each_safe(pos, next, &list) { 2161 page = list_entry((void *)pos, struct page, mapping); 2162 lock_page(page); 2163 /* split_huge_page() removes page from list on success */ 2164 if (!split_huge_page(page)) 2165 split++; 2166 unlock_page(page); 2167 put_page(page); 2168 } 2169 2170 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2171 list_splice_tail(&list, &pgdata->split_queue); 2172 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2173 2174 /* 2175 * Stop shrinker if we didn't split any page, but the queue is empty. 2176 * This can happen if pages were freed under us. 2177 */ 2178 if (!split && list_empty(&pgdata->split_queue)) 2179 return SHRINK_STOP; 2180 return split; 2181 } 2182 2183 static struct shrinker deferred_split_shrinker = { 2184 .count_objects = deferred_split_count, 2185 .scan_objects = deferred_split_scan, 2186 .seeks = DEFAULT_SEEKS, 2187 .flags = SHRINKER_NUMA_AWARE, 2188 }; 2189 2190 #ifdef CONFIG_DEBUG_FS 2191 static int split_huge_pages_set(void *data, u64 val) 2192 { 2193 struct zone *zone; 2194 struct page *page; 2195 unsigned long pfn, max_zone_pfn; 2196 unsigned long total = 0, split = 0; 2197 2198 if (val != 1) 2199 return -EINVAL; 2200 2201 for_each_populated_zone(zone) { 2202 max_zone_pfn = zone_end_pfn(zone); 2203 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2204 if (!pfn_valid(pfn)) 2205 continue; 2206 2207 page = pfn_to_page(pfn); 2208 if (!get_page_unless_zero(page)) 2209 continue; 2210 2211 if (zone != page_zone(page)) 2212 goto next; 2213 2214 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2215 goto next; 2216 2217 total++; 2218 lock_page(page); 2219 if (!split_huge_page(page)) 2220 split++; 2221 unlock_page(page); 2222 next: 2223 put_page(page); 2224 } 2225 } 2226 2227 pr_info("%lu of %lu THP split\n", split, total); 2228 2229 return 0; 2230 } 2231 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2232 "%llu\n"); 2233 2234 static int __init split_huge_pages_debugfs(void) 2235 { 2236 void *ret; 2237 2238 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2239 &split_huge_pages_fops); 2240 if (!ret) 2241 pr_warn("Failed to create split_huge_pages in debugfs"); 2242 return 0; 2243 } 2244 late_initcall(split_huge_pages_debugfs); 2245 #endif 2246