xref: /openbmc/linux/mm/huge_memory.c (revision ac79f78dab892fcdc11fda8af5cc5e80d09dca8a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "[always] madvise never\n");
168 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 		return sprintf(buf, "always [madvise] never\n");
170 	else
171 		return sprintf(buf, "always madvise [never]\n");
172 }
173 
174 static ssize_t enabled_store(struct kobject *kobj,
175 			     struct kobj_attribute *attr,
176 			     const char *buf, size_t count)
177 {
178 	ssize_t ret = count;
179 
180 	if (!memcmp("always", buf,
181 		    min(sizeof("always")-1, count))) {
182 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
184 	} else if (!memcmp("madvise", buf,
185 			   min(sizeof("madvise")-1, count))) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 	} else if (!memcmp("never", buf,
189 			   min(sizeof("never")-1, count))) {
190 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 	} else
193 		ret = -EINVAL;
194 
195 	if (ret > 0) {
196 		int err = start_stop_khugepaged();
197 		if (err)
198 			ret = err;
199 	}
200 	return ret;
201 }
202 static struct kobj_attribute enabled_attr =
203 	__ATTR(enabled, 0644, enabled_show, enabled_store);
204 
205 ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 				struct kobj_attribute *attr, char *buf,
207 				enum transparent_hugepage_flag flag)
208 {
209 	return sprintf(buf, "%d\n",
210 		       !!test_bit(flag, &transparent_hugepage_flags));
211 }
212 
213 ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 				 struct kobj_attribute *attr,
215 				 const char *buf, size_t count,
216 				 enum transparent_hugepage_flag flag)
217 {
218 	unsigned long value;
219 	int ret;
220 
221 	ret = kstrtoul(buf, 10, &value);
222 	if (ret < 0)
223 		return ret;
224 	if (value > 1)
225 		return -EINVAL;
226 
227 	if (value)
228 		set_bit(flag, &transparent_hugepage_flags);
229 	else
230 		clear_bit(flag, &transparent_hugepage_flags);
231 
232 	return count;
233 }
234 
235 static ssize_t defrag_show(struct kobject *kobj,
236 			   struct kobj_attribute *attr, char *buf)
237 {
238 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247 }
248 
249 static ssize_t defrag_store(struct kobject *kobj,
250 			    struct kobj_attribute *attr,
251 			    const char *buf, size_t count)
252 {
253 	if (!memcmp("always", buf,
254 		    min(sizeof("always")-1, count))) {
255 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 	} else if (!memcmp("defer+madvise", buf,
260 		    min(sizeof("defer+madvise")-1, count))) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 	} else if (!memcmp("defer", buf,
266 		    min(sizeof("defer")-1, count))) {
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 	} else if (!memcmp("madvise", buf,
272 			   min(sizeof("madvise")-1, count))) {
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 	} else if (!memcmp("never", buf,
278 			   min(sizeof("never")-1, count))) {
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
283 	} else
284 		return -EINVAL;
285 
286 	return count;
287 }
288 static struct kobj_attribute defrag_attr =
289 	__ATTR(defrag, 0644, defrag_show, defrag_store);
290 
291 static ssize_t use_zero_page_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return single_hugepage_flag_show(kobj, attr, buf,
295 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
296 }
297 static ssize_t use_zero_page_store(struct kobject *kobj,
298 		struct kobj_attribute *attr, const char *buf, size_t count)
299 {
300 	return single_hugepage_flag_store(kobj, attr, buf, count,
301 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 }
303 static struct kobj_attribute use_zero_page_attr =
304 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
305 
306 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
307 		struct kobj_attribute *attr, char *buf)
308 {
309 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
310 }
311 static struct kobj_attribute hpage_pmd_size_attr =
312 	__ATTR_RO(hpage_pmd_size);
313 
314 #ifdef CONFIG_DEBUG_VM
315 static ssize_t debug_cow_show(struct kobject *kobj,
316 				struct kobj_attribute *attr, char *buf)
317 {
318 	return single_hugepage_flag_show(kobj, attr, buf,
319 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
320 }
321 static ssize_t debug_cow_store(struct kobject *kobj,
322 			       struct kobj_attribute *attr,
323 			       const char *buf, size_t count)
324 {
325 	return single_hugepage_flag_store(kobj, attr, buf, count,
326 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
327 }
328 static struct kobj_attribute debug_cow_attr =
329 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
330 #endif /* CONFIG_DEBUG_VM */
331 
332 static struct attribute *hugepage_attr[] = {
333 	&enabled_attr.attr,
334 	&defrag_attr.attr,
335 	&use_zero_page_attr.attr,
336 	&hpage_pmd_size_attr.attr,
337 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 	&shmem_enabled_attr.attr,
339 #endif
340 #ifdef CONFIG_DEBUG_VM
341 	&debug_cow_attr.attr,
342 #endif
343 	NULL,
344 };
345 
346 static const struct attribute_group hugepage_attr_group = {
347 	.attrs = hugepage_attr,
348 };
349 
350 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
351 {
352 	int err;
353 
354 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
355 	if (unlikely(!*hugepage_kobj)) {
356 		pr_err("failed to create transparent hugepage kobject\n");
357 		return -ENOMEM;
358 	}
359 
360 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
361 	if (err) {
362 		pr_err("failed to register transparent hugepage group\n");
363 		goto delete_obj;
364 	}
365 
366 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
367 	if (err) {
368 		pr_err("failed to register transparent hugepage group\n");
369 		goto remove_hp_group;
370 	}
371 
372 	return 0;
373 
374 remove_hp_group:
375 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
376 delete_obj:
377 	kobject_put(*hugepage_kobj);
378 	return err;
379 }
380 
381 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
382 {
383 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
384 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
385 	kobject_put(hugepage_kobj);
386 }
387 #else
388 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
389 {
390 	return 0;
391 }
392 
393 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
394 {
395 }
396 #endif /* CONFIG_SYSFS */
397 
398 static int __init hugepage_init(void)
399 {
400 	int err;
401 	struct kobject *hugepage_kobj;
402 
403 	if (!has_transparent_hugepage()) {
404 		transparent_hugepage_flags = 0;
405 		return -EINVAL;
406 	}
407 
408 	/*
409 	 * hugepages can't be allocated by the buddy allocator
410 	 */
411 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
412 	/*
413 	 * we use page->mapping and page->index in second tail page
414 	 * as list_head: assuming THP order >= 2
415 	 */
416 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
417 
418 	err = hugepage_init_sysfs(&hugepage_kobj);
419 	if (err)
420 		goto err_sysfs;
421 
422 	err = khugepaged_init();
423 	if (err)
424 		goto err_slab;
425 
426 	err = register_shrinker(&huge_zero_page_shrinker);
427 	if (err)
428 		goto err_hzp_shrinker;
429 	err = register_shrinker(&deferred_split_shrinker);
430 	if (err)
431 		goto err_split_shrinker;
432 
433 	/*
434 	 * By default disable transparent hugepages on smaller systems,
435 	 * where the extra memory used could hurt more than TLB overhead
436 	 * is likely to save.  The admin can still enable it through /sys.
437 	 */
438 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439 		transparent_hugepage_flags = 0;
440 		return 0;
441 	}
442 
443 	err = start_stop_khugepaged();
444 	if (err)
445 		goto err_khugepaged;
446 
447 	return 0;
448 err_khugepaged:
449 	unregister_shrinker(&deferred_split_shrinker);
450 err_split_shrinker:
451 	unregister_shrinker(&huge_zero_page_shrinker);
452 err_hzp_shrinker:
453 	khugepaged_destroy();
454 err_slab:
455 	hugepage_exit_sysfs(hugepage_kobj);
456 err_sysfs:
457 	return err;
458 }
459 subsys_initcall(hugepage_init);
460 
461 static int __init setup_transparent_hugepage(char *str)
462 {
463 	int ret = 0;
464 	if (!str)
465 		goto out;
466 	if (!strcmp(str, "always")) {
467 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 			&transparent_hugepage_flags);
469 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 			  &transparent_hugepage_flags);
471 		ret = 1;
472 	} else if (!strcmp(str, "madvise")) {
473 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 			  &transparent_hugepage_flags);
475 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 			&transparent_hugepage_flags);
477 		ret = 1;
478 	} else if (!strcmp(str, "never")) {
479 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 			  &transparent_hugepage_flags);
481 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 			  &transparent_hugepage_flags);
483 		ret = 1;
484 	}
485 out:
486 	if (!ret)
487 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 	return ret;
489 }
490 __setup("transparent_hugepage=", setup_transparent_hugepage);
491 
492 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493 {
494 	if (likely(vma->vm_flags & VM_WRITE))
495 		pmd = pmd_mkwrite(pmd);
496 	return pmd;
497 }
498 
499 static inline struct list_head *page_deferred_list(struct page *page)
500 {
501 	/* ->lru in the tail pages is occupied by compound_head. */
502 	return &page[2].deferred_list;
503 }
504 
505 void prep_transhuge_page(struct page *page)
506 {
507 	/*
508 	 * we use page->mapping and page->indexlru in second tail page
509 	 * as list_head: assuming THP order >= 2
510 	 */
511 
512 	INIT_LIST_HEAD(page_deferred_list(page));
513 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
514 }
515 
516 static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
517 		loff_t off, unsigned long flags, unsigned long size)
518 {
519 	unsigned long addr;
520 	loff_t off_end = off + len;
521 	loff_t off_align = round_up(off, size);
522 	unsigned long len_pad;
523 
524 	if (off_end <= off_align || (off_end - off_align) < size)
525 		return 0;
526 
527 	len_pad = len + size;
528 	if (len_pad < len || (off + len_pad) < off)
529 		return 0;
530 
531 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
532 					      off >> PAGE_SHIFT, flags);
533 	if (IS_ERR_VALUE(addr))
534 		return 0;
535 
536 	addr += (off - addr) & (size - 1);
537 	return addr;
538 }
539 
540 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
541 		unsigned long len, unsigned long pgoff, unsigned long flags)
542 {
543 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
544 
545 	if (addr)
546 		goto out;
547 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
548 		goto out;
549 
550 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
551 	if (addr)
552 		return addr;
553 
554  out:
555 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
556 }
557 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
558 
559 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
560 			struct page *page, gfp_t gfp)
561 {
562 	struct vm_area_struct *vma = vmf->vma;
563 	struct mem_cgroup *memcg;
564 	pgtable_t pgtable;
565 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
566 	vm_fault_t ret = 0;
567 
568 	VM_BUG_ON_PAGE(!PageCompound(page), page);
569 
570 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
571 		put_page(page);
572 		count_vm_event(THP_FAULT_FALLBACK);
573 		return VM_FAULT_FALLBACK;
574 	}
575 
576 	pgtable = pte_alloc_one(vma->vm_mm);
577 	if (unlikely(!pgtable)) {
578 		ret = VM_FAULT_OOM;
579 		goto release;
580 	}
581 
582 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
583 	/*
584 	 * The memory barrier inside __SetPageUptodate makes sure that
585 	 * clear_huge_page writes become visible before the set_pmd_at()
586 	 * write.
587 	 */
588 	__SetPageUptodate(page);
589 
590 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
591 	if (unlikely(!pmd_none(*vmf->pmd))) {
592 		goto unlock_release;
593 	} else {
594 		pmd_t entry;
595 
596 		ret = check_stable_address_space(vma->vm_mm);
597 		if (ret)
598 			goto unlock_release;
599 
600 		/* Deliver the page fault to userland */
601 		if (userfaultfd_missing(vma)) {
602 			vm_fault_t ret2;
603 
604 			spin_unlock(vmf->ptl);
605 			mem_cgroup_cancel_charge(page, memcg, true);
606 			put_page(page);
607 			pte_free(vma->vm_mm, pgtable);
608 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
609 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
610 			return ret2;
611 		}
612 
613 		entry = mk_huge_pmd(page, vma->vm_page_prot);
614 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
615 		page_add_new_anon_rmap(page, vma, haddr, true);
616 		mem_cgroup_commit_charge(page, memcg, false, true);
617 		lru_cache_add_active_or_unevictable(page, vma);
618 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
619 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
620 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
621 		mm_inc_nr_ptes(vma->vm_mm);
622 		spin_unlock(vmf->ptl);
623 		count_vm_event(THP_FAULT_ALLOC);
624 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
625 	}
626 
627 	return 0;
628 unlock_release:
629 	spin_unlock(vmf->ptl);
630 release:
631 	if (pgtable)
632 		pte_free(vma->vm_mm, pgtable);
633 	mem_cgroup_cancel_charge(page, memcg, true);
634 	put_page(page);
635 	return ret;
636 
637 }
638 
639 /*
640  * always: directly stall for all thp allocations
641  * defer: wake kswapd and fail if not immediately available
642  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
643  *		  fail if not immediately available
644  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
645  *	    available
646  * never: never stall for any thp allocation
647  */
648 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
649 {
650 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
651 	const gfp_t gfp_mask = GFP_TRANSHUGE_LIGHT | __GFP_THISNODE;
652 
653 	/* Always do synchronous compaction */
654 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
655 		return GFP_TRANSHUGE | __GFP_THISNODE |
656 		       (vma_madvised ? 0 : __GFP_NORETRY);
657 
658 	/* Kick kcompactd and fail quickly */
659 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
660 		return gfp_mask | __GFP_KSWAPD_RECLAIM;
661 
662 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
663 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
664 		return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM :
665 						  __GFP_KSWAPD_RECLAIM);
666 
667 	/* Only do synchronous compaction if madvised */
668 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
669 		return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
670 
671 	return gfp_mask;
672 }
673 
674 /* Caller must hold page table lock. */
675 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
676 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
677 		struct page *zero_page)
678 {
679 	pmd_t entry;
680 	if (!pmd_none(*pmd))
681 		return false;
682 	entry = mk_pmd(zero_page, vma->vm_page_prot);
683 	entry = pmd_mkhuge(entry);
684 	if (pgtable)
685 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
686 	set_pmd_at(mm, haddr, pmd, entry);
687 	mm_inc_nr_ptes(mm);
688 	return true;
689 }
690 
691 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
692 {
693 	struct vm_area_struct *vma = vmf->vma;
694 	gfp_t gfp;
695 	struct page *page;
696 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
697 
698 	if (!transhuge_vma_suitable(vma, haddr))
699 		return VM_FAULT_FALLBACK;
700 	if (unlikely(anon_vma_prepare(vma)))
701 		return VM_FAULT_OOM;
702 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
703 		return VM_FAULT_OOM;
704 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
705 			!mm_forbids_zeropage(vma->vm_mm) &&
706 			transparent_hugepage_use_zero_page()) {
707 		pgtable_t pgtable;
708 		struct page *zero_page;
709 		bool set;
710 		vm_fault_t ret;
711 		pgtable = pte_alloc_one(vma->vm_mm);
712 		if (unlikely(!pgtable))
713 			return VM_FAULT_OOM;
714 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
715 		if (unlikely(!zero_page)) {
716 			pte_free(vma->vm_mm, pgtable);
717 			count_vm_event(THP_FAULT_FALLBACK);
718 			return VM_FAULT_FALLBACK;
719 		}
720 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
721 		ret = 0;
722 		set = false;
723 		if (pmd_none(*vmf->pmd)) {
724 			ret = check_stable_address_space(vma->vm_mm);
725 			if (ret) {
726 				spin_unlock(vmf->ptl);
727 			} else if (userfaultfd_missing(vma)) {
728 				spin_unlock(vmf->ptl);
729 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
730 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
731 			} else {
732 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
733 						   haddr, vmf->pmd, zero_page);
734 				spin_unlock(vmf->ptl);
735 				set = true;
736 			}
737 		} else
738 			spin_unlock(vmf->ptl);
739 		if (!set)
740 			pte_free(vma->vm_mm, pgtable);
741 		return ret;
742 	}
743 	gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
744 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
745 	if (unlikely(!page)) {
746 		count_vm_event(THP_FAULT_FALLBACK);
747 		return VM_FAULT_FALLBACK;
748 	}
749 	prep_transhuge_page(page);
750 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
751 }
752 
753 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
754 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
755 		pgtable_t pgtable)
756 {
757 	struct mm_struct *mm = vma->vm_mm;
758 	pmd_t entry;
759 	spinlock_t *ptl;
760 
761 	ptl = pmd_lock(mm, pmd);
762 	if (!pmd_none(*pmd)) {
763 		if (write) {
764 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
765 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
766 				goto out_unlock;
767 			}
768 			entry = pmd_mkyoung(*pmd);
769 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
770 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
771 				update_mmu_cache_pmd(vma, addr, pmd);
772 		}
773 
774 		goto out_unlock;
775 	}
776 
777 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
778 	if (pfn_t_devmap(pfn))
779 		entry = pmd_mkdevmap(entry);
780 	if (write) {
781 		entry = pmd_mkyoung(pmd_mkdirty(entry));
782 		entry = maybe_pmd_mkwrite(entry, vma);
783 	}
784 
785 	if (pgtable) {
786 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
787 		mm_inc_nr_ptes(mm);
788 		pgtable = NULL;
789 	}
790 
791 	set_pmd_at(mm, addr, pmd, entry);
792 	update_mmu_cache_pmd(vma, addr, pmd);
793 
794 out_unlock:
795 	spin_unlock(ptl);
796 	if (pgtable)
797 		pte_free(mm, pgtable);
798 }
799 
800 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
801 {
802 	unsigned long addr = vmf->address & PMD_MASK;
803 	struct vm_area_struct *vma = vmf->vma;
804 	pgprot_t pgprot = vma->vm_page_prot;
805 	pgtable_t pgtable = NULL;
806 
807 	/*
808 	 * If we had pmd_special, we could avoid all these restrictions,
809 	 * but we need to be consistent with PTEs and architectures that
810 	 * can't support a 'special' bit.
811 	 */
812 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
813 			!pfn_t_devmap(pfn));
814 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
815 						(VM_PFNMAP|VM_MIXEDMAP));
816 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
817 
818 	if (addr < vma->vm_start || addr >= vma->vm_end)
819 		return VM_FAULT_SIGBUS;
820 
821 	if (arch_needs_pgtable_deposit()) {
822 		pgtable = pte_alloc_one(vma->vm_mm);
823 		if (!pgtable)
824 			return VM_FAULT_OOM;
825 	}
826 
827 	track_pfn_insert(vma, &pgprot, pfn);
828 
829 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
830 	return VM_FAULT_NOPAGE;
831 }
832 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
833 
834 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
835 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
836 {
837 	if (likely(vma->vm_flags & VM_WRITE))
838 		pud = pud_mkwrite(pud);
839 	return pud;
840 }
841 
842 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
843 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
844 {
845 	struct mm_struct *mm = vma->vm_mm;
846 	pud_t entry;
847 	spinlock_t *ptl;
848 
849 	ptl = pud_lock(mm, pud);
850 	if (!pud_none(*pud)) {
851 		if (write) {
852 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
853 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
854 				goto out_unlock;
855 			}
856 			entry = pud_mkyoung(*pud);
857 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
858 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
859 				update_mmu_cache_pud(vma, addr, pud);
860 		}
861 		goto out_unlock;
862 	}
863 
864 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
865 	if (pfn_t_devmap(pfn))
866 		entry = pud_mkdevmap(entry);
867 	if (write) {
868 		entry = pud_mkyoung(pud_mkdirty(entry));
869 		entry = maybe_pud_mkwrite(entry, vma);
870 	}
871 	set_pud_at(mm, addr, pud, entry);
872 	update_mmu_cache_pud(vma, addr, pud);
873 
874 out_unlock:
875 	spin_unlock(ptl);
876 }
877 
878 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
879 {
880 	unsigned long addr = vmf->address & PUD_MASK;
881 	struct vm_area_struct *vma = vmf->vma;
882 	pgprot_t pgprot = vma->vm_page_prot;
883 
884 	/*
885 	 * If we had pud_special, we could avoid all these restrictions,
886 	 * but we need to be consistent with PTEs and architectures that
887 	 * can't support a 'special' bit.
888 	 */
889 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
890 			!pfn_t_devmap(pfn));
891 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
892 						(VM_PFNMAP|VM_MIXEDMAP));
893 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
894 
895 	if (addr < vma->vm_start || addr >= vma->vm_end)
896 		return VM_FAULT_SIGBUS;
897 
898 	track_pfn_insert(vma, &pgprot, pfn);
899 
900 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
901 	return VM_FAULT_NOPAGE;
902 }
903 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
904 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
905 
906 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
907 		pmd_t *pmd, int flags)
908 {
909 	pmd_t _pmd;
910 
911 	_pmd = pmd_mkyoung(*pmd);
912 	if (flags & FOLL_WRITE)
913 		_pmd = pmd_mkdirty(_pmd);
914 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
915 				pmd, _pmd, flags & FOLL_WRITE))
916 		update_mmu_cache_pmd(vma, addr, pmd);
917 }
918 
919 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
920 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
921 {
922 	unsigned long pfn = pmd_pfn(*pmd);
923 	struct mm_struct *mm = vma->vm_mm;
924 	struct page *page;
925 
926 	assert_spin_locked(pmd_lockptr(mm, pmd));
927 
928 	/*
929 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
930 	 * not be in this function with `flags & FOLL_COW` set.
931 	 */
932 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
933 
934 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
935 		return NULL;
936 
937 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
938 		/* pass */;
939 	else
940 		return NULL;
941 
942 	if (flags & FOLL_TOUCH)
943 		touch_pmd(vma, addr, pmd, flags);
944 
945 	/*
946 	 * device mapped pages can only be returned if the
947 	 * caller will manage the page reference count.
948 	 */
949 	if (!(flags & FOLL_GET))
950 		return ERR_PTR(-EEXIST);
951 
952 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
953 	*pgmap = get_dev_pagemap(pfn, *pgmap);
954 	if (!*pgmap)
955 		return ERR_PTR(-EFAULT);
956 	page = pfn_to_page(pfn);
957 	get_page(page);
958 
959 	return page;
960 }
961 
962 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
963 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
964 		  struct vm_area_struct *vma)
965 {
966 	spinlock_t *dst_ptl, *src_ptl;
967 	struct page *src_page;
968 	pmd_t pmd;
969 	pgtable_t pgtable = NULL;
970 	int ret = -ENOMEM;
971 
972 	/* Skip if can be re-fill on fault */
973 	if (!vma_is_anonymous(vma))
974 		return 0;
975 
976 	pgtable = pte_alloc_one(dst_mm);
977 	if (unlikely(!pgtable))
978 		goto out;
979 
980 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
981 	src_ptl = pmd_lockptr(src_mm, src_pmd);
982 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
983 
984 	ret = -EAGAIN;
985 	pmd = *src_pmd;
986 
987 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
988 	if (unlikely(is_swap_pmd(pmd))) {
989 		swp_entry_t entry = pmd_to_swp_entry(pmd);
990 
991 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
992 		if (is_write_migration_entry(entry)) {
993 			make_migration_entry_read(&entry);
994 			pmd = swp_entry_to_pmd(entry);
995 			if (pmd_swp_soft_dirty(*src_pmd))
996 				pmd = pmd_swp_mksoft_dirty(pmd);
997 			set_pmd_at(src_mm, addr, src_pmd, pmd);
998 		}
999 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1000 		mm_inc_nr_ptes(dst_mm);
1001 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1002 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1003 		ret = 0;
1004 		goto out_unlock;
1005 	}
1006 #endif
1007 
1008 	if (unlikely(!pmd_trans_huge(pmd))) {
1009 		pte_free(dst_mm, pgtable);
1010 		goto out_unlock;
1011 	}
1012 	/*
1013 	 * When page table lock is held, the huge zero pmd should not be
1014 	 * under splitting since we don't split the page itself, only pmd to
1015 	 * a page table.
1016 	 */
1017 	if (is_huge_zero_pmd(pmd)) {
1018 		struct page *zero_page;
1019 		/*
1020 		 * get_huge_zero_page() will never allocate a new page here,
1021 		 * since we already have a zero page to copy. It just takes a
1022 		 * reference.
1023 		 */
1024 		zero_page = mm_get_huge_zero_page(dst_mm);
1025 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1026 				zero_page);
1027 		ret = 0;
1028 		goto out_unlock;
1029 	}
1030 
1031 	src_page = pmd_page(pmd);
1032 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1033 	get_page(src_page);
1034 	page_dup_rmap(src_page, true);
1035 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1036 	mm_inc_nr_ptes(dst_mm);
1037 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1038 
1039 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1040 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1041 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1042 
1043 	ret = 0;
1044 out_unlock:
1045 	spin_unlock(src_ptl);
1046 	spin_unlock(dst_ptl);
1047 out:
1048 	return ret;
1049 }
1050 
1051 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1052 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1053 		pud_t *pud, int flags)
1054 {
1055 	pud_t _pud;
1056 
1057 	_pud = pud_mkyoung(*pud);
1058 	if (flags & FOLL_WRITE)
1059 		_pud = pud_mkdirty(_pud);
1060 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1061 				pud, _pud, flags & FOLL_WRITE))
1062 		update_mmu_cache_pud(vma, addr, pud);
1063 }
1064 
1065 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1066 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1067 {
1068 	unsigned long pfn = pud_pfn(*pud);
1069 	struct mm_struct *mm = vma->vm_mm;
1070 	struct page *page;
1071 
1072 	assert_spin_locked(pud_lockptr(mm, pud));
1073 
1074 	if (flags & FOLL_WRITE && !pud_write(*pud))
1075 		return NULL;
1076 
1077 	if (pud_present(*pud) && pud_devmap(*pud))
1078 		/* pass */;
1079 	else
1080 		return NULL;
1081 
1082 	if (flags & FOLL_TOUCH)
1083 		touch_pud(vma, addr, pud, flags);
1084 
1085 	/*
1086 	 * device mapped pages can only be returned if the
1087 	 * caller will manage the page reference count.
1088 	 */
1089 	if (!(flags & FOLL_GET))
1090 		return ERR_PTR(-EEXIST);
1091 
1092 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1093 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1094 	if (!*pgmap)
1095 		return ERR_PTR(-EFAULT);
1096 	page = pfn_to_page(pfn);
1097 	get_page(page);
1098 
1099 	return page;
1100 }
1101 
1102 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1103 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1104 		  struct vm_area_struct *vma)
1105 {
1106 	spinlock_t *dst_ptl, *src_ptl;
1107 	pud_t pud;
1108 	int ret;
1109 
1110 	dst_ptl = pud_lock(dst_mm, dst_pud);
1111 	src_ptl = pud_lockptr(src_mm, src_pud);
1112 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1113 
1114 	ret = -EAGAIN;
1115 	pud = *src_pud;
1116 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1117 		goto out_unlock;
1118 
1119 	/*
1120 	 * When page table lock is held, the huge zero pud should not be
1121 	 * under splitting since we don't split the page itself, only pud to
1122 	 * a page table.
1123 	 */
1124 	if (is_huge_zero_pud(pud)) {
1125 		/* No huge zero pud yet */
1126 	}
1127 
1128 	pudp_set_wrprotect(src_mm, addr, src_pud);
1129 	pud = pud_mkold(pud_wrprotect(pud));
1130 	set_pud_at(dst_mm, addr, dst_pud, pud);
1131 
1132 	ret = 0;
1133 out_unlock:
1134 	spin_unlock(src_ptl);
1135 	spin_unlock(dst_ptl);
1136 	return ret;
1137 }
1138 
1139 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1140 {
1141 	pud_t entry;
1142 	unsigned long haddr;
1143 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1144 
1145 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1146 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1147 		goto unlock;
1148 
1149 	entry = pud_mkyoung(orig_pud);
1150 	if (write)
1151 		entry = pud_mkdirty(entry);
1152 	haddr = vmf->address & HPAGE_PUD_MASK;
1153 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1154 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1155 
1156 unlock:
1157 	spin_unlock(vmf->ptl);
1158 }
1159 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1160 
1161 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1162 {
1163 	pmd_t entry;
1164 	unsigned long haddr;
1165 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1166 
1167 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1168 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1169 		goto unlock;
1170 
1171 	entry = pmd_mkyoung(orig_pmd);
1172 	if (write)
1173 		entry = pmd_mkdirty(entry);
1174 	haddr = vmf->address & HPAGE_PMD_MASK;
1175 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1176 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1177 
1178 unlock:
1179 	spin_unlock(vmf->ptl);
1180 }
1181 
1182 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1183 			pmd_t orig_pmd, struct page *page)
1184 {
1185 	struct vm_area_struct *vma = vmf->vma;
1186 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1187 	struct mem_cgroup *memcg;
1188 	pgtable_t pgtable;
1189 	pmd_t _pmd;
1190 	int i;
1191 	vm_fault_t ret = 0;
1192 	struct page **pages;
1193 	struct mmu_notifier_range range;
1194 
1195 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1196 			      GFP_KERNEL);
1197 	if (unlikely(!pages)) {
1198 		ret |= VM_FAULT_OOM;
1199 		goto out;
1200 	}
1201 
1202 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1203 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1204 					       vmf->address, page_to_nid(page));
1205 		if (unlikely(!pages[i] ||
1206 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1207 				     GFP_KERNEL, &memcg, false))) {
1208 			if (pages[i])
1209 				put_page(pages[i]);
1210 			while (--i >= 0) {
1211 				memcg = (void *)page_private(pages[i]);
1212 				set_page_private(pages[i], 0);
1213 				mem_cgroup_cancel_charge(pages[i], memcg,
1214 						false);
1215 				put_page(pages[i]);
1216 			}
1217 			kfree(pages);
1218 			ret |= VM_FAULT_OOM;
1219 			goto out;
1220 		}
1221 		set_page_private(pages[i], (unsigned long)memcg);
1222 	}
1223 
1224 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1225 		copy_user_highpage(pages[i], page + i,
1226 				   haddr + PAGE_SIZE * i, vma);
1227 		__SetPageUptodate(pages[i]);
1228 		cond_resched();
1229 	}
1230 
1231 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1232 				haddr, haddr + HPAGE_PMD_SIZE);
1233 	mmu_notifier_invalidate_range_start(&range);
1234 
1235 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1236 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1237 		goto out_free_pages;
1238 	VM_BUG_ON_PAGE(!PageHead(page), page);
1239 
1240 	/*
1241 	 * Leave pmd empty until pte is filled note we must notify here as
1242 	 * concurrent CPU thread might write to new page before the call to
1243 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1244 	 * device seeing memory write in different order than CPU.
1245 	 *
1246 	 * See Documentation/vm/mmu_notifier.rst
1247 	 */
1248 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1249 
1250 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1251 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1252 
1253 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1254 		pte_t entry;
1255 		entry = mk_pte(pages[i], vma->vm_page_prot);
1256 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1257 		memcg = (void *)page_private(pages[i]);
1258 		set_page_private(pages[i], 0);
1259 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1260 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1261 		lru_cache_add_active_or_unevictable(pages[i], vma);
1262 		vmf->pte = pte_offset_map(&_pmd, haddr);
1263 		VM_BUG_ON(!pte_none(*vmf->pte));
1264 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1265 		pte_unmap(vmf->pte);
1266 	}
1267 	kfree(pages);
1268 
1269 	smp_wmb(); /* make pte visible before pmd */
1270 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1271 	page_remove_rmap(page, true);
1272 	spin_unlock(vmf->ptl);
1273 
1274 	/*
1275 	 * No need to double call mmu_notifier->invalidate_range() callback as
1276 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1277 	 */
1278 	mmu_notifier_invalidate_range_only_end(&range);
1279 
1280 	ret |= VM_FAULT_WRITE;
1281 	put_page(page);
1282 
1283 out:
1284 	return ret;
1285 
1286 out_free_pages:
1287 	spin_unlock(vmf->ptl);
1288 	mmu_notifier_invalidate_range_end(&range);
1289 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1290 		memcg = (void *)page_private(pages[i]);
1291 		set_page_private(pages[i], 0);
1292 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1293 		put_page(pages[i]);
1294 	}
1295 	kfree(pages);
1296 	goto out;
1297 }
1298 
1299 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1300 {
1301 	struct vm_area_struct *vma = vmf->vma;
1302 	struct page *page = NULL, *new_page;
1303 	struct mem_cgroup *memcg;
1304 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1305 	struct mmu_notifier_range range;
1306 	gfp_t huge_gfp;			/* for allocation and charge */
1307 	vm_fault_t ret = 0;
1308 
1309 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1310 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1311 	if (is_huge_zero_pmd(orig_pmd))
1312 		goto alloc;
1313 	spin_lock(vmf->ptl);
1314 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1315 		goto out_unlock;
1316 
1317 	page = pmd_page(orig_pmd);
1318 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1319 	/*
1320 	 * We can only reuse the page if nobody else maps the huge page or it's
1321 	 * part.
1322 	 */
1323 	if (!trylock_page(page)) {
1324 		get_page(page);
1325 		spin_unlock(vmf->ptl);
1326 		lock_page(page);
1327 		spin_lock(vmf->ptl);
1328 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1329 			unlock_page(page);
1330 			put_page(page);
1331 			goto out_unlock;
1332 		}
1333 		put_page(page);
1334 	}
1335 	if (reuse_swap_page(page, NULL)) {
1336 		pmd_t entry;
1337 		entry = pmd_mkyoung(orig_pmd);
1338 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1339 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1340 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1341 		ret |= VM_FAULT_WRITE;
1342 		unlock_page(page);
1343 		goto out_unlock;
1344 	}
1345 	unlock_page(page);
1346 	get_page(page);
1347 	spin_unlock(vmf->ptl);
1348 alloc:
1349 	if (__transparent_hugepage_enabled(vma) &&
1350 	    !transparent_hugepage_debug_cow()) {
1351 		huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1352 		new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1353 				haddr, numa_node_id());
1354 	} else
1355 		new_page = NULL;
1356 
1357 	if (likely(new_page)) {
1358 		prep_transhuge_page(new_page);
1359 	} else {
1360 		if (!page) {
1361 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1362 			ret |= VM_FAULT_FALLBACK;
1363 		} else {
1364 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1365 			if (ret & VM_FAULT_OOM) {
1366 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1367 				ret |= VM_FAULT_FALLBACK;
1368 			}
1369 			put_page(page);
1370 		}
1371 		count_vm_event(THP_FAULT_FALLBACK);
1372 		goto out;
1373 	}
1374 
1375 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1376 					huge_gfp, &memcg, true))) {
1377 		put_page(new_page);
1378 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1379 		if (page)
1380 			put_page(page);
1381 		ret |= VM_FAULT_FALLBACK;
1382 		count_vm_event(THP_FAULT_FALLBACK);
1383 		goto out;
1384 	}
1385 
1386 	count_vm_event(THP_FAULT_ALLOC);
1387 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1388 
1389 	if (!page)
1390 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1391 	else
1392 		copy_user_huge_page(new_page, page, vmf->address,
1393 				    vma, HPAGE_PMD_NR);
1394 	__SetPageUptodate(new_page);
1395 
1396 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1397 				haddr, haddr + HPAGE_PMD_SIZE);
1398 	mmu_notifier_invalidate_range_start(&range);
1399 
1400 	spin_lock(vmf->ptl);
1401 	if (page)
1402 		put_page(page);
1403 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1404 		spin_unlock(vmf->ptl);
1405 		mem_cgroup_cancel_charge(new_page, memcg, true);
1406 		put_page(new_page);
1407 		goto out_mn;
1408 	} else {
1409 		pmd_t entry;
1410 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1411 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1412 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1413 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1414 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1415 		lru_cache_add_active_or_unevictable(new_page, vma);
1416 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1417 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1418 		if (!page) {
1419 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1420 		} else {
1421 			VM_BUG_ON_PAGE(!PageHead(page), page);
1422 			page_remove_rmap(page, true);
1423 			put_page(page);
1424 		}
1425 		ret |= VM_FAULT_WRITE;
1426 	}
1427 	spin_unlock(vmf->ptl);
1428 out_mn:
1429 	/*
1430 	 * No need to double call mmu_notifier->invalidate_range() callback as
1431 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1432 	 */
1433 	mmu_notifier_invalidate_range_only_end(&range);
1434 out:
1435 	return ret;
1436 out_unlock:
1437 	spin_unlock(vmf->ptl);
1438 	return ret;
1439 }
1440 
1441 /*
1442  * FOLL_FORCE can write to even unwritable pmd's, but only
1443  * after we've gone through a COW cycle and they are dirty.
1444  */
1445 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1446 {
1447 	return pmd_write(pmd) ||
1448 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1449 }
1450 
1451 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1452 				   unsigned long addr,
1453 				   pmd_t *pmd,
1454 				   unsigned int flags)
1455 {
1456 	struct mm_struct *mm = vma->vm_mm;
1457 	struct page *page = NULL;
1458 
1459 	assert_spin_locked(pmd_lockptr(mm, pmd));
1460 
1461 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1462 		goto out;
1463 
1464 	/* Avoid dumping huge zero page */
1465 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1466 		return ERR_PTR(-EFAULT);
1467 
1468 	/* Full NUMA hinting faults to serialise migration in fault paths */
1469 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1470 		goto out;
1471 
1472 	page = pmd_page(*pmd);
1473 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1474 	if (flags & FOLL_TOUCH)
1475 		touch_pmd(vma, addr, pmd, flags);
1476 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1477 		/*
1478 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1479 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1480 		 *
1481 		 * For anon THP:
1482 		 *
1483 		 * In most cases the pmd is the only mapping of the page as we
1484 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1485 		 * writable private mappings in populate_vma_page_range().
1486 		 *
1487 		 * The only scenario when we have the page shared here is if we
1488 		 * mlocking read-only mapping shared over fork(). We skip
1489 		 * mlocking such pages.
1490 		 *
1491 		 * For file THP:
1492 		 *
1493 		 * We can expect PageDoubleMap() to be stable under page lock:
1494 		 * for file pages we set it in page_add_file_rmap(), which
1495 		 * requires page to be locked.
1496 		 */
1497 
1498 		if (PageAnon(page) && compound_mapcount(page) != 1)
1499 			goto skip_mlock;
1500 		if (PageDoubleMap(page) || !page->mapping)
1501 			goto skip_mlock;
1502 		if (!trylock_page(page))
1503 			goto skip_mlock;
1504 		lru_add_drain();
1505 		if (page->mapping && !PageDoubleMap(page))
1506 			mlock_vma_page(page);
1507 		unlock_page(page);
1508 	}
1509 skip_mlock:
1510 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1511 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1512 	if (flags & FOLL_GET)
1513 		get_page(page);
1514 
1515 out:
1516 	return page;
1517 }
1518 
1519 /* NUMA hinting page fault entry point for trans huge pmds */
1520 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1521 {
1522 	struct vm_area_struct *vma = vmf->vma;
1523 	struct anon_vma *anon_vma = NULL;
1524 	struct page *page;
1525 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1526 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1527 	int target_nid, last_cpupid = -1;
1528 	bool page_locked;
1529 	bool migrated = false;
1530 	bool was_writable;
1531 	int flags = 0;
1532 
1533 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1534 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1535 		goto out_unlock;
1536 
1537 	/*
1538 	 * If there are potential migrations, wait for completion and retry
1539 	 * without disrupting NUMA hinting information. Do not relock and
1540 	 * check_same as the page may no longer be mapped.
1541 	 */
1542 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1543 		page = pmd_page(*vmf->pmd);
1544 		if (!get_page_unless_zero(page))
1545 			goto out_unlock;
1546 		spin_unlock(vmf->ptl);
1547 		put_and_wait_on_page_locked(page);
1548 		goto out;
1549 	}
1550 
1551 	page = pmd_page(pmd);
1552 	BUG_ON(is_huge_zero_page(page));
1553 	page_nid = page_to_nid(page);
1554 	last_cpupid = page_cpupid_last(page);
1555 	count_vm_numa_event(NUMA_HINT_FAULTS);
1556 	if (page_nid == this_nid) {
1557 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1558 		flags |= TNF_FAULT_LOCAL;
1559 	}
1560 
1561 	/* See similar comment in do_numa_page for explanation */
1562 	if (!pmd_savedwrite(pmd))
1563 		flags |= TNF_NO_GROUP;
1564 
1565 	/*
1566 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1567 	 * page_table_lock if at all possible
1568 	 */
1569 	page_locked = trylock_page(page);
1570 	target_nid = mpol_misplaced(page, vma, haddr);
1571 	if (target_nid == NUMA_NO_NODE) {
1572 		/* If the page was locked, there are no parallel migrations */
1573 		if (page_locked)
1574 			goto clear_pmdnuma;
1575 	}
1576 
1577 	/* Migration could have started since the pmd_trans_migrating check */
1578 	if (!page_locked) {
1579 		page_nid = NUMA_NO_NODE;
1580 		if (!get_page_unless_zero(page))
1581 			goto out_unlock;
1582 		spin_unlock(vmf->ptl);
1583 		put_and_wait_on_page_locked(page);
1584 		goto out;
1585 	}
1586 
1587 	/*
1588 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1589 	 * to serialises splits
1590 	 */
1591 	get_page(page);
1592 	spin_unlock(vmf->ptl);
1593 	anon_vma = page_lock_anon_vma_read(page);
1594 
1595 	/* Confirm the PMD did not change while page_table_lock was released */
1596 	spin_lock(vmf->ptl);
1597 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1598 		unlock_page(page);
1599 		put_page(page);
1600 		page_nid = NUMA_NO_NODE;
1601 		goto out_unlock;
1602 	}
1603 
1604 	/* Bail if we fail to protect against THP splits for any reason */
1605 	if (unlikely(!anon_vma)) {
1606 		put_page(page);
1607 		page_nid = NUMA_NO_NODE;
1608 		goto clear_pmdnuma;
1609 	}
1610 
1611 	/*
1612 	 * Since we took the NUMA fault, we must have observed the !accessible
1613 	 * bit. Make sure all other CPUs agree with that, to avoid them
1614 	 * modifying the page we're about to migrate.
1615 	 *
1616 	 * Must be done under PTL such that we'll observe the relevant
1617 	 * inc_tlb_flush_pending().
1618 	 *
1619 	 * We are not sure a pending tlb flush here is for a huge page
1620 	 * mapping or not. Hence use the tlb range variant
1621 	 */
1622 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1623 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1624 		/*
1625 		 * change_huge_pmd() released the pmd lock before
1626 		 * invalidating the secondary MMUs sharing the primary
1627 		 * MMU pagetables (with ->invalidate_range()). The
1628 		 * mmu_notifier_invalidate_range_end() (which
1629 		 * internally calls ->invalidate_range()) in
1630 		 * change_pmd_range() will run after us, so we can't
1631 		 * rely on it here and we need an explicit invalidate.
1632 		 */
1633 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1634 					      haddr + HPAGE_PMD_SIZE);
1635 	}
1636 
1637 	/*
1638 	 * Migrate the THP to the requested node, returns with page unlocked
1639 	 * and access rights restored.
1640 	 */
1641 	spin_unlock(vmf->ptl);
1642 
1643 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1644 				vmf->pmd, pmd, vmf->address, page, target_nid);
1645 	if (migrated) {
1646 		flags |= TNF_MIGRATED;
1647 		page_nid = target_nid;
1648 	} else
1649 		flags |= TNF_MIGRATE_FAIL;
1650 
1651 	goto out;
1652 clear_pmdnuma:
1653 	BUG_ON(!PageLocked(page));
1654 	was_writable = pmd_savedwrite(pmd);
1655 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1656 	pmd = pmd_mkyoung(pmd);
1657 	if (was_writable)
1658 		pmd = pmd_mkwrite(pmd);
1659 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1660 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1661 	unlock_page(page);
1662 out_unlock:
1663 	spin_unlock(vmf->ptl);
1664 
1665 out:
1666 	if (anon_vma)
1667 		page_unlock_anon_vma_read(anon_vma);
1668 
1669 	if (page_nid != NUMA_NO_NODE)
1670 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1671 				flags);
1672 
1673 	return 0;
1674 }
1675 
1676 /*
1677  * Return true if we do MADV_FREE successfully on entire pmd page.
1678  * Otherwise, return false.
1679  */
1680 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1681 		pmd_t *pmd, unsigned long addr, unsigned long next)
1682 {
1683 	spinlock_t *ptl;
1684 	pmd_t orig_pmd;
1685 	struct page *page;
1686 	struct mm_struct *mm = tlb->mm;
1687 	bool ret = false;
1688 
1689 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1690 
1691 	ptl = pmd_trans_huge_lock(pmd, vma);
1692 	if (!ptl)
1693 		goto out_unlocked;
1694 
1695 	orig_pmd = *pmd;
1696 	if (is_huge_zero_pmd(orig_pmd))
1697 		goto out;
1698 
1699 	if (unlikely(!pmd_present(orig_pmd))) {
1700 		VM_BUG_ON(thp_migration_supported() &&
1701 				  !is_pmd_migration_entry(orig_pmd));
1702 		goto out;
1703 	}
1704 
1705 	page = pmd_page(orig_pmd);
1706 	/*
1707 	 * If other processes are mapping this page, we couldn't discard
1708 	 * the page unless they all do MADV_FREE so let's skip the page.
1709 	 */
1710 	if (page_mapcount(page) != 1)
1711 		goto out;
1712 
1713 	if (!trylock_page(page))
1714 		goto out;
1715 
1716 	/*
1717 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1718 	 * will deactivate only them.
1719 	 */
1720 	if (next - addr != HPAGE_PMD_SIZE) {
1721 		get_page(page);
1722 		spin_unlock(ptl);
1723 		split_huge_page(page);
1724 		unlock_page(page);
1725 		put_page(page);
1726 		goto out_unlocked;
1727 	}
1728 
1729 	if (PageDirty(page))
1730 		ClearPageDirty(page);
1731 	unlock_page(page);
1732 
1733 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1734 		pmdp_invalidate(vma, addr, pmd);
1735 		orig_pmd = pmd_mkold(orig_pmd);
1736 		orig_pmd = pmd_mkclean(orig_pmd);
1737 
1738 		set_pmd_at(mm, addr, pmd, orig_pmd);
1739 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1740 	}
1741 
1742 	mark_page_lazyfree(page);
1743 	ret = true;
1744 out:
1745 	spin_unlock(ptl);
1746 out_unlocked:
1747 	return ret;
1748 }
1749 
1750 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1751 {
1752 	pgtable_t pgtable;
1753 
1754 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1755 	pte_free(mm, pgtable);
1756 	mm_dec_nr_ptes(mm);
1757 }
1758 
1759 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1760 		 pmd_t *pmd, unsigned long addr)
1761 {
1762 	pmd_t orig_pmd;
1763 	spinlock_t *ptl;
1764 
1765 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1766 
1767 	ptl = __pmd_trans_huge_lock(pmd, vma);
1768 	if (!ptl)
1769 		return 0;
1770 	/*
1771 	 * For architectures like ppc64 we look at deposited pgtable
1772 	 * when calling pmdp_huge_get_and_clear. So do the
1773 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1774 	 * operations.
1775 	 */
1776 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1777 			tlb->fullmm);
1778 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1779 	if (vma_is_dax(vma)) {
1780 		if (arch_needs_pgtable_deposit())
1781 			zap_deposited_table(tlb->mm, pmd);
1782 		spin_unlock(ptl);
1783 		if (is_huge_zero_pmd(orig_pmd))
1784 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1785 	} else if (is_huge_zero_pmd(orig_pmd)) {
1786 		zap_deposited_table(tlb->mm, pmd);
1787 		spin_unlock(ptl);
1788 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1789 	} else {
1790 		struct page *page = NULL;
1791 		int flush_needed = 1;
1792 
1793 		if (pmd_present(orig_pmd)) {
1794 			page = pmd_page(orig_pmd);
1795 			page_remove_rmap(page, true);
1796 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1797 			VM_BUG_ON_PAGE(!PageHead(page), page);
1798 		} else if (thp_migration_supported()) {
1799 			swp_entry_t entry;
1800 
1801 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1802 			entry = pmd_to_swp_entry(orig_pmd);
1803 			page = pfn_to_page(swp_offset(entry));
1804 			flush_needed = 0;
1805 		} else
1806 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1807 
1808 		if (PageAnon(page)) {
1809 			zap_deposited_table(tlb->mm, pmd);
1810 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1811 		} else {
1812 			if (arch_needs_pgtable_deposit())
1813 				zap_deposited_table(tlb->mm, pmd);
1814 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1815 		}
1816 
1817 		spin_unlock(ptl);
1818 		if (flush_needed)
1819 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1820 	}
1821 	return 1;
1822 }
1823 
1824 #ifndef pmd_move_must_withdraw
1825 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1826 					 spinlock_t *old_pmd_ptl,
1827 					 struct vm_area_struct *vma)
1828 {
1829 	/*
1830 	 * With split pmd lock we also need to move preallocated
1831 	 * PTE page table if new_pmd is on different PMD page table.
1832 	 *
1833 	 * We also don't deposit and withdraw tables for file pages.
1834 	 */
1835 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1836 }
1837 #endif
1838 
1839 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1840 {
1841 #ifdef CONFIG_MEM_SOFT_DIRTY
1842 	if (unlikely(is_pmd_migration_entry(pmd)))
1843 		pmd = pmd_swp_mksoft_dirty(pmd);
1844 	else if (pmd_present(pmd))
1845 		pmd = pmd_mksoft_dirty(pmd);
1846 #endif
1847 	return pmd;
1848 }
1849 
1850 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1851 		  unsigned long new_addr, unsigned long old_end,
1852 		  pmd_t *old_pmd, pmd_t *new_pmd)
1853 {
1854 	spinlock_t *old_ptl, *new_ptl;
1855 	pmd_t pmd;
1856 	struct mm_struct *mm = vma->vm_mm;
1857 	bool force_flush = false;
1858 
1859 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1860 	    (new_addr & ~HPAGE_PMD_MASK) ||
1861 	    old_end - old_addr < HPAGE_PMD_SIZE)
1862 		return false;
1863 
1864 	/*
1865 	 * The destination pmd shouldn't be established, free_pgtables()
1866 	 * should have release it.
1867 	 */
1868 	if (WARN_ON(!pmd_none(*new_pmd))) {
1869 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1870 		return false;
1871 	}
1872 
1873 	/*
1874 	 * We don't have to worry about the ordering of src and dst
1875 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1876 	 */
1877 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1878 	if (old_ptl) {
1879 		new_ptl = pmd_lockptr(mm, new_pmd);
1880 		if (new_ptl != old_ptl)
1881 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1882 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1883 		if (pmd_present(pmd))
1884 			force_flush = true;
1885 		VM_BUG_ON(!pmd_none(*new_pmd));
1886 
1887 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1888 			pgtable_t pgtable;
1889 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1890 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1891 		}
1892 		pmd = move_soft_dirty_pmd(pmd);
1893 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1894 		if (force_flush)
1895 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1896 		if (new_ptl != old_ptl)
1897 			spin_unlock(new_ptl);
1898 		spin_unlock(old_ptl);
1899 		return true;
1900 	}
1901 	return false;
1902 }
1903 
1904 /*
1905  * Returns
1906  *  - 0 if PMD could not be locked
1907  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1908  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1909  */
1910 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1911 		unsigned long addr, pgprot_t newprot, int prot_numa)
1912 {
1913 	struct mm_struct *mm = vma->vm_mm;
1914 	spinlock_t *ptl;
1915 	pmd_t entry;
1916 	bool preserve_write;
1917 	int ret;
1918 
1919 	ptl = __pmd_trans_huge_lock(pmd, vma);
1920 	if (!ptl)
1921 		return 0;
1922 
1923 	preserve_write = prot_numa && pmd_write(*pmd);
1924 	ret = 1;
1925 
1926 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1927 	if (is_swap_pmd(*pmd)) {
1928 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1929 
1930 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1931 		if (is_write_migration_entry(entry)) {
1932 			pmd_t newpmd;
1933 			/*
1934 			 * A protection check is difficult so
1935 			 * just be safe and disable write
1936 			 */
1937 			make_migration_entry_read(&entry);
1938 			newpmd = swp_entry_to_pmd(entry);
1939 			if (pmd_swp_soft_dirty(*pmd))
1940 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1941 			set_pmd_at(mm, addr, pmd, newpmd);
1942 		}
1943 		goto unlock;
1944 	}
1945 #endif
1946 
1947 	/*
1948 	 * Avoid trapping faults against the zero page. The read-only
1949 	 * data is likely to be read-cached on the local CPU and
1950 	 * local/remote hits to the zero page are not interesting.
1951 	 */
1952 	if (prot_numa && is_huge_zero_pmd(*pmd))
1953 		goto unlock;
1954 
1955 	if (prot_numa && pmd_protnone(*pmd))
1956 		goto unlock;
1957 
1958 	/*
1959 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1960 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1961 	 * which is also under down_read(mmap_sem):
1962 	 *
1963 	 *	CPU0:				CPU1:
1964 	 *				change_huge_pmd(prot_numa=1)
1965 	 *				 pmdp_huge_get_and_clear_notify()
1966 	 * madvise_dontneed()
1967 	 *  zap_pmd_range()
1968 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1969 	 *   // skip the pmd
1970 	 *				 set_pmd_at();
1971 	 *				 // pmd is re-established
1972 	 *
1973 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1974 	 * which may break userspace.
1975 	 *
1976 	 * pmdp_invalidate() is required to make sure we don't miss
1977 	 * dirty/young flags set by hardware.
1978 	 */
1979 	entry = pmdp_invalidate(vma, addr, pmd);
1980 
1981 	entry = pmd_modify(entry, newprot);
1982 	if (preserve_write)
1983 		entry = pmd_mk_savedwrite(entry);
1984 	ret = HPAGE_PMD_NR;
1985 	set_pmd_at(mm, addr, pmd, entry);
1986 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1987 unlock:
1988 	spin_unlock(ptl);
1989 	return ret;
1990 }
1991 
1992 /*
1993  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1994  *
1995  * Note that if it returns page table lock pointer, this routine returns without
1996  * unlocking page table lock. So callers must unlock it.
1997  */
1998 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1999 {
2000 	spinlock_t *ptl;
2001 	ptl = pmd_lock(vma->vm_mm, pmd);
2002 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2003 			pmd_devmap(*pmd)))
2004 		return ptl;
2005 	spin_unlock(ptl);
2006 	return NULL;
2007 }
2008 
2009 /*
2010  * Returns true if a given pud maps a thp, false otherwise.
2011  *
2012  * Note that if it returns true, this routine returns without unlocking page
2013  * table lock. So callers must unlock it.
2014  */
2015 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2016 {
2017 	spinlock_t *ptl;
2018 
2019 	ptl = pud_lock(vma->vm_mm, pud);
2020 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2021 		return ptl;
2022 	spin_unlock(ptl);
2023 	return NULL;
2024 }
2025 
2026 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2027 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2028 		 pud_t *pud, unsigned long addr)
2029 {
2030 	spinlock_t *ptl;
2031 
2032 	ptl = __pud_trans_huge_lock(pud, vma);
2033 	if (!ptl)
2034 		return 0;
2035 	/*
2036 	 * For architectures like ppc64 we look at deposited pgtable
2037 	 * when calling pudp_huge_get_and_clear. So do the
2038 	 * pgtable_trans_huge_withdraw after finishing pudp related
2039 	 * operations.
2040 	 */
2041 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2042 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2043 	if (vma_is_dax(vma)) {
2044 		spin_unlock(ptl);
2045 		/* No zero page support yet */
2046 	} else {
2047 		/* No support for anonymous PUD pages yet */
2048 		BUG();
2049 	}
2050 	return 1;
2051 }
2052 
2053 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2054 		unsigned long haddr)
2055 {
2056 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2057 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2058 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2059 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2060 
2061 	count_vm_event(THP_SPLIT_PUD);
2062 
2063 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2064 }
2065 
2066 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2067 		unsigned long address)
2068 {
2069 	spinlock_t *ptl;
2070 	struct mmu_notifier_range range;
2071 
2072 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2073 				address & HPAGE_PUD_MASK,
2074 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2075 	mmu_notifier_invalidate_range_start(&range);
2076 	ptl = pud_lock(vma->vm_mm, pud);
2077 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2078 		goto out;
2079 	__split_huge_pud_locked(vma, pud, range.start);
2080 
2081 out:
2082 	spin_unlock(ptl);
2083 	/*
2084 	 * No need to double call mmu_notifier->invalidate_range() callback as
2085 	 * the above pudp_huge_clear_flush_notify() did already call it.
2086 	 */
2087 	mmu_notifier_invalidate_range_only_end(&range);
2088 }
2089 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2090 
2091 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2092 		unsigned long haddr, pmd_t *pmd)
2093 {
2094 	struct mm_struct *mm = vma->vm_mm;
2095 	pgtable_t pgtable;
2096 	pmd_t _pmd;
2097 	int i;
2098 
2099 	/*
2100 	 * Leave pmd empty until pte is filled note that it is fine to delay
2101 	 * notification until mmu_notifier_invalidate_range_end() as we are
2102 	 * replacing a zero pmd write protected page with a zero pte write
2103 	 * protected page.
2104 	 *
2105 	 * See Documentation/vm/mmu_notifier.rst
2106 	 */
2107 	pmdp_huge_clear_flush(vma, haddr, pmd);
2108 
2109 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2110 	pmd_populate(mm, &_pmd, pgtable);
2111 
2112 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2113 		pte_t *pte, entry;
2114 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2115 		entry = pte_mkspecial(entry);
2116 		pte = pte_offset_map(&_pmd, haddr);
2117 		VM_BUG_ON(!pte_none(*pte));
2118 		set_pte_at(mm, haddr, pte, entry);
2119 		pte_unmap(pte);
2120 	}
2121 	smp_wmb(); /* make pte visible before pmd */
2122 	pmd_populate(mm, pmd, pgtable);
2123 }
2124 
2125 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2126 		unsigned long haddr, bool freeze)
2127 {
2128 	struct mm_struct *mm = vma->vm_mm;
2129 	struct page *page;
2130 	pgtable_t pgtable;
2131 	pmd_t old_pmd, _pmd;
2132 	bool young, write, soft_dirty, pmd_migration = false;
2133 	unsigned long addr;
2134 	int i;
2135 
2136 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2137 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2138 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2139 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2140 				&& !pmd_devmap(*pmd));
2141 
2142 	count_vm_event(THP_SPLIT_PMD);
2143 
2144 	if (!vma_is_anonymous(vma)) {
2145 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2146 		/*
2147 		 * We are going to unmap this huge page. So
2148 		 * just go ahead and zap it
2149 		 */
2150 		if (arch_needs_pgtable_deposit())
2151 			zap_deposited_table(mm, pmd);
2152 		if (vma_is_dax(vma))
2153 			return;
2154 		page = pmd_page(_pmd);
2155 		if (!PageDirty(page) && pmd_dirty(_pmd))
2156 			set_page_dirty(page);
2157 		if (!PageReferenced(page) && pmd_young(_pmd))
2158 			SetPageReferenced(page);
2159 		page_remove_rmap(page, true);
2160 		put_page(page);
2161 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2162 		return;
2163 	} else if (is_huge_zero_pmd(*pmd)) {
2164 		/*
2165 		 * FIXME: Do we want to invalidate secondary mmu by calling
2166 		 * mmu_notifier_invalidate_range() see comments below inside
2167 		 * __split_huge_pmd() ?
2168 		 *
2169 		 * We are going from a zero huge page write protected to zero
2170 		 * small page also write protected so it does not seems useful
2171 		 * to invalidate secondary mmu at this time.
2172 		 */
2173 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2174 	}
2175 
2176 	/*
2177 	 * Up to this point the pmd is present and huge and userland has the
2178 	 * whole access to the hugepage during the split (which happens in
2179 	 * place). If we overwrite the pmd with the not-huge version pointing
2180 	 * to the pte here (which of course we could if all CPUs were bug
2181 	 * free), userland could trigger a small page size TLB miss on the
2182 	 * small sized TLB while the hugepage TLB entry is still established in
2183 	 * the huge TLB. Some CPU doesn't like that.
2184 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2185 	 * 383 on page 93. Intel should be safe but is also warns that it's
2186 	 * only safe if the permission and cache attributes of the two entries
2187 	 * loaded in the two TLB is identical (which should be the case here).
2188 	 * But it is generally safer to never allow small and huge TLB entries
2189 	 * for the same virtual address to be loaded simultaneously. So instead
2190 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2191 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2192 	 * must remain set at all times on the pmd until the split is complete
2193 	 * for this pmd), then we flush the SMP TLB and finally we write the
2194 	 * non-huge version of the pmd entry with pmd_populate.
2195 	 */
2196 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2197 
2198 	pmd_migration = is_pmd_migration_entry(old_pmd);
2199 	if (unlikely(pmd_migration)) {
2200 		swp_entry_t entry;
2201 
2202 		entry = pmd_to_swp_entry(old_pmd);
2203 		page = pfn_to_page(swp_offset(entry));
2204 		write = is_write_migration_entry(entry);
2205 		young = false;
2206 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2207 	} else {
2208 		page = pmd_page(old_pmd);
2209 		if (pmd_dirty(old_pmd))
2210 			SetPageDirty(page);
2211 		write = pmd_write(old_pmd);
2212 		young = pmd_young(old_pmd);
2213 		soft_dirty = pmd_soft_dirty(old_pmd);
2214 	}
2215 	VM_BUG_ON_PAGE(!page_count(page), page);
2216 	page_ref_add(page, HPAGE_PMD_NR - 1);
2217 
2218 	/*
2219 	 * Withdraw the table only after we mark the pmd entry invalid.
2220 	 * This's critical for some architectures (Power).
2221 	 */
2222 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2223 	pmd_populate(mm, &_pmd, pgtable);
2224 
2225 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2226 		pte_t entry, *pte;
2227 		/*
2228 		 * Note that NUMA hinting access restrictions are not
2229 		 * transferred to avoid any possibility of altering
2230 		 * permissions across VMAs.
2231 		 */
2232 		if (freeze || pmd_migration) {
2233 			swp_entry_t swp_entry;
2234 			swp_entry = make_migration_entry(page + i, write);
2235 			entry = swp_entry_to_pte(swp_entry);
2236 			if (soft_dirty)
2237 				entry = pte_swp_mksoft_dirty(entry);
2238 		} else {
2239 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2240 			entry = maybe_mkwrite(entry, vma);
2241 			if (!write)
2242 				entry = pte_wrprotect(entry);
2243 			if (!young)
2244 				entry = pte_mkold(entry);
2245 			if (soft_dirty)
2246 				entry = pte_mksoft_dirty(entry);
2247 		}
2248 		pte = pte_offset_map(&_pmd, addr);
2249 		BUG_ON(!pte_none(*pte));
2250 		set_pte_at(mm, addr, pte, entry);
2251 		atomic_inc(&page[i]._mapcount);
2252 		pte_unmap(pte);
2253 	}
2254 
2255 	/*
2256 	 * Set PG_double_map before dropping compound_mapcount to avoid
2257 	 * false-negative page_mapped().
2258 	 */
2259 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2260 		for (i = 0; i < HPAGE_PMD_NR; i++)
2261 			atomic_inc(&page[i]._mapcount);
2262 	}
2263 
2264 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2265 		/* Last compound_mapcount is gone. */
2266 		__dec_node_page_state(page, NR_ANON_THPS);
2267 		if (TestClearPageDoubleMap(page)) {
2268 			/* No need in mapcount reference anymore */
2269 			for (i = 0; i < HPAGE_PMD_NR; i++)
2270 				atomic_dec(&page[i]._mapcount);
2271 		}
2272 	}
2273 
2274 	smp_wmb(); /* make pte visible before pmd */
2275 	pmd_populate(mm, pmd, pgtable);
2276 
2277 	if (freeze) {
2278 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2279 			page_remove_rmap(page + i, false);
2280 			put_page(page + i);
2281 		}
2282 	}
2283 }
2284 
2285 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2286 		unsigned long address, bool freeze, struct page *page)
2287 {
2288 	spinlock_t *ptl;
2289 	struct mmu_notifier_range range;
2290 
2291 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2292 				address & HPAGE_PMD_MASK,
2293 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2294 	mmu_notifier_invalidate_range_start(&range);
2295 	ptl = pmd_lock(vma->vm_mm, pmd);
2296 
2297 	/*
2298 	 * If caller asks to setup a migration entries, we need a page to check
2299 	 * pmd against. Otherwise we can end up replacing wrong page.
2300 	 */
2301 	VM_BUG_ON(freeze && !page);
2302 	if (page && page != pmd_page(*pmd))
2303 	        goto out;
2304 
2305 	if (pmd_trans_huge(*pmd)) {
2306 		page = pmd_page(*pmd);
2307 		if (PageMlocked(page))
2308 			clear_page_mlock(page);
2309 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2310 		goto out;
2311 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2312 out:
2313 	spin_unlock(ptl);
2314 	/*
2315 	 * No need to double call mmu_notifier->invalidate_range() callback.
2316 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2317 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2318 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2319 	 *    fault will trigger a flush_notify before pointing to a new page
2320 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2321 	 *    page in the meantime)
2322 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2323 	 *     to invalidate secondary tlb entry they are all still valid.
2324 	 *     any further changes to individual pte will notify. So no need
2325 	 *     to call mmu_notifier->invalidate_range()
2326 	 */
2327 	mmu_notifier_invalidate_range_only_end(&range);
2328 }
2329 
2330 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2331 		bool freeze, struct page *page)
2332 {
2333 	pgd_t *pgd;
2334 	p4d_t *p4d;
2335 	pud_t *pud;
2336 	pmd_t *pmd;
2337 
2338 	pgd = pgd_offset(vma->vm_mm, address);
2339 	if (!pgd_present(*pgd))
2340 		return;
2341 
2342 	p4d = p4d_offset(pgd, address);
2343 	if (!p4d_present(*p4d))
2344 		return;
2345 
2346 	pud = pud_offset(p4d, address);
2347 	if (!pud_present(*pud))
2348 		return;
2349 
2350 	pmd = pmd_offset(pud, address);
2351 
2352 	__split_huge_pmd(vma, pmd, address, freeze, page);
2353 }
2354 
2355 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2356 			     unsigned long start,
2357 			     unsigned long end,
2358 			     long adjust_next)
2359 {
2360 	/*
2361 	 * If the new start address isn't hpage aligned and it could
2362 	 * previously contain an hugepage: check if we need to split
2363 	 * an huge pmd.
2364 	 */
2365 	if (start & ~HPAGE_PMD_MASK &&
2366 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2367 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2368 		split_huge_pmd_address(vma, start, false, NULL);
2369 
2370 	/*
2371 	 * If the new end address isn't hpage aligned and it could
2372 	 * previously contain an hugepage: check if we need to split
2373 	 * an huge pmd.
2374 	 */
2375 	if (end & ~HPAGE_PMD_MASK &&
2376 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2377 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2378 		split_huge_pmd_address(vma, end, false, NULL);
2379 
2380 	/*
2381 	 * If we're also updating the vma->vm_next->vm_start, if the new
2382 	 * vm_next->vm_start isn't page aligned and it could previously
2383 	 * contain an hugepage: check if we need to split an huge pmd.
2384 	 */
2385 	if (adjust_next > 0) {
2386 		struct vm_area_struct *next = vma->vm_next;
2387 		unsigned long nstart = next->vm_start;
2388 		nstart += adjust_next << PAGE_SHIFT;
2389 		if (nstart & ~HPAGE_PMD_MASK &&
2390 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2391 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2392 			split_huge_pmd_address(next, nstart, false, NULL);
2393 	}
2394 }
2395 
2396 static void unmap_page(struct page *page)
2397 {
2398 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2399 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2400 	bool unmap_success;
2401 
2402 	VM_BUG_ON_PAGE(!PageHead(page), page);
2403 
2404 	if (PageAnon(page))
2405 		ttu_flags |= TTU_SPLIT_FREEZE;
2406 
2407 	unmap_success = try_to_unmap(page, ttu_flags);
2408 	VM_BUG_ON_PAGE(!unmap_success, page);
2409 }
2410 
2411 static void remap_page(struct page *page)
2412 {
2413 	int i;
2414 	if (PageTransHuge(page)) {
2415 		remove_migration_ptes(page, page, true);
2416 	} else {
2417 		for (i = 0; i < HPAGE_PMD_NR; i++)
2418 			remove_migration_ptes(page + i, page + i, true);
2419 	}
2420 }
2421 
2422 static void __split_huge_page_tail(struct page *head, int tail,
2423 		struct lruvec *lruvec, struct list_head *list)
2424 {
2425 	struct page *page_tail = head + tail;
2426 
2427 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2428 
2429 	/*
2430 	 * Clone page flags before unfreezing refcount.
2431 	 *
2432 	 * After successful get_page_unless_zero() might follow flags change,
2433 	 * for exmaple lock_page() which set PG_waiters.
2434 	 */
2435 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2436 	page_tail->flags |= (head->flags &
2437 			((1L << PG_referenced) |
2438 			 (1L << PG_swapbacked) |
2439 			 (1L << PG_swapcache) |
2440 			 (1L << PG_mlocked) |
2441 			 (1L << PG_uptodate) |
2442 			 (1L << PG_active) |
2443 			 (1L << PG_workingset) |
2444 			 (1L << PG_locked) |
2445 			 (1L << PG_unevictable) |
2446 			 (1L << PG_dirty)));
2447 
2448 	/* ->mapping in first tail page is compound_mapcount */
2449 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2450 			page_tail);
2451 	page_tail->mapping = head->mapping;
2452 	page_tail->index = head->index + tail;
2453 
2454 	/* Page flags must be visible before we make the page non-compound. */
2455 	smp_wmb();
2456 
2457 	/*
2458 	 * Clear PageTail before unfreezing page refcount.
2459 	 *
2460 	 * After successful get_page_unless_zero() might follow put_page()
2461 	 * which needs correct compound_head().
2462 	 */
2463 	clear_compound_head(page_tail);
2464 
2465 	/* Finally unfreeze refcount. Additional reference from page cache. */
2466 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2467 					  PageSwapCache(head)));
2468 
2469 	if (page_is_young(head))
2470 		set_page_young(page_tail);
2471 	if (page_is_idle(head))
2472 		set_page_idle(page_tail);
2473 
2474 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2475 
2476 	/*
2477 	 * always add to the tail because some iterators expect new
2478 	 * pages to show after the currently processed elements - e.g.
2479 	 * migrate_pages
2480 	 */
2481 	lru_add_page_tail(head, page_tail, lruvec, list);
2482 }
2483 
2484 static void __split_huge_page(struct page *page, struct list_head *list,
2485 		pgoff_t end, unsigned long flags)
2486 {
2487 	struct page *head = compound_head(page);
2488 	pg_data_t *pgdat = page_pgdat(head);
2489 	struct lruvec *lruvec;
2490 	int i;
2491 
2492 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2493 
2494 	/* complete memcg works before add pages to LRU */
2495 	mem_cgroup_split_huge_fixup(head);
2496 
2497 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2498 		__split_huge_page_tail(head, i, lruvec, list);
2499 		/* Some pages can be beyond i_size: drop them from page cache */
2500 		if (head[i].index >= end) {
2501 			ClearPageDirty(head + i);
2502 			__delete_from_page_cache(head + i, NULL);
2503 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2504 				shmem_uncharge(head->mapping->host, 1);
2505 			put_page(head + i);
2506 		}
2507 	}
2508 
2509 	ClearPageCompound(head);
2510 
2511 	split_page_owner(head, HPAGE_PMD_ORDER);
2512 
2513 	/* See comment in __split_huge_page_tail() */
2514 	if (PageAnon(head)) {
2515 		/* Additional pin to swap cache */
2516 		if (PageSwapCache(head))
2517 			page_ref_add(head, 2);
2518 		else
2519 			page_ref_inc(head);
2520 	} else {
2521 		/* Additional pin to page cache */
2522 		page_ref_add(head, 2);
2523 		xa_unlock(&head->mapping->i_pages);
2524 	}
2525 
2526 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2527 
2528 	remap_page(head);
2529 
2530 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2531 		struct page *subpage = head + i;
2532 		if (subpage == page)
2533 			continue;
2534 		unlock_page(subpage);
2535 
2536 		/*
2537 		 * Subpages may be freed if there wasn't any mapping
2538 		 * like if add_to_swap() is running on a lru page that
2539 		 * had its mapping zapped. And freeing these pages
2540 		 * requires taking the lru_lock so we do the put_page
2541 		 * of the tail pages after the split is complete.
2542 		 */
2543 		put_page(subpage);
2544 	}
2545 }
2546 
2547 int total_mapcount(struct page *page)
2548 {
2549 	int i, compound, ret;
2550 
2551 	VM_BUG_ON_PAGE(PageTail(page), page);
2552 
2553 	if (likely(!PageCompound(page)))
2554 		return atomic_read(&page->_mapcount) + 1;
2555 
2556 	compound = compound_mapcount(page);
2557 	if (PageHuge(page))
2558 		return compound;
2559 	ret = compound;
2560 	for (i = 0; i < HPAGE_PMD_NR; i++)
2561 		ret += atomic_read(&page[i]._mapcount) + 1;
2562 	/* File pages has compound_mapcount included in _mapcount */
2563 	if (!PageAnon(page))
2564 		return ret - compound * HPAGE_PMD_NR;
2565 	if (PageDoubleMap(page))
2566 		ret -= HPAGE_PMD_NR;
2567 	return ret;
2568 }
2569 
2570 /*
2571  * This calculates accurately how many mappings a transparent hugepage
2572  * has (unlike page_mapcount() which isn't fully accurate). This full
2573  * accuracy is primarily needed to know if copy-on-write faults can
2574  * reuse the page and change the mapping to read-write instead of
2575  * copying them. At the same time this returns the total_mapcount too.
2576  *
2577  * The function returns the highest mapcount any one of the subpages
2578  * has. If the return value is one, even if different processes are
2579  * mapping different subpages of the transparent hugepage, they can
2580  * all reuse it, because each process is reusing a different subpage.
2581  *
2582  * The total_mapcount is instead counting all virtual mappings of the
2583  * subpages. If the total_mapcount is equal to "one", it tells the
2584  * caller all mappings belong to the same "mm" and in turn the
2585  * anon_vma of the transparent hugepage can become the vma->anon_vma
2586  * local one as no other process may be mapping any of the subpages.
2587  *
2588  * It would be more accurate to replace page_mapcount() with
2589  * page_trans_huge_mapcount(), however we only use
2590  * page_trans_huge_mapcount() in the copy-on-write faults where we
2591  * need full accuracy to avoid breaking page pinning, because
2592  * page_trans_huge_mapcount() is slower than page_mapcount().
2593  */
2594 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2595 {
2596 	int i, ret, _total_mapcount, mapcount;
2597 
2598 	/* hugetlbfs shouldn't call it */
2599 	VM_BUG_ON_PAGE(PageHuge(page), page);
2600 
2601 	if (likely(!PageTransCompound(page))) {
2602 		mapcount = atomic_read(&page->_mapcount) + 1;
2603 		if (total_mapcount)
2604 			*total_mapcount = mapcount;
2605 		return mapcount;
2606 	}
2607 
2608 	page = compound_head(page);
2609 
2610 	_total_mapcount = ret = 0;
2611 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2612 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2613 		ret = max(ret, mapcount);
2614 		_total_mapcount += mapcount;
2615 	}
2616 	if (PageDoubleMap(page)) {
2617 		ret -= 1;
2618 		_total_mapcount -= HPAGE_PMD_NR;
2619 	}
2620 	mapcount = compound_mapcount(page);
2621 	ret += mapcount;
2622 	_total_mapcount += mapcount;
2623 	if (total_mapcount)
2624 		*total_mapcount = _total_mapcount;
2625 	return ret;
2626 }
2627 
2628 /* Racy check whether the huge page can be split */
2629 bool can_split_huge_page(struct page *page, int *pextra_pins)
2630 {
2631 	int extra_pins;
2632 
2633 	/* Additional pins from page cache */
2634 	if (PageAnon(page))
2635 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2636 	else
2637 		extra_pins = HPAGE_PMD_NR;
2638 	if (pextra_pins)
2639 		*pextra_pins = extra_pins;
2640 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2641 }
2642 
2643 /*
2644  * This function splits huge page into normal pages. @page can point to any
2645  * subpage of huge page to split. Split doesn't change the position of @page.
2646  *
2647  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2648  * The huge page must be locked.
2649  *
2650  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2651  *
2652  * Both head page and tail pages will inherit mapping, flags, and so on from
2653  * the hugepage.
2654  *
2655  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2656  * they are not mapped.
2657  *
2658  * Returns 0 if the hugepage is split successfully.
2659  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2660  * us.
2661  */
2662 int split_huge_page_to_list(struct page *page, struct list_head *list)
2663 {
2664 	struct page *head = compound_head(page);
2665 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2666 	struct anon_vma *anon_vma = NULL;
2667 	struct address_space *mapping = NULL;
2668 	int count, mapcount, extra_pins, ret;
2669 	bool mlocked;
2670 	unsigned long flags;
2671 	pgoff_t end;
2672 
2673 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2674 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2675 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2676 
2677 	if (PageWriteback(page))
2678 		return -EBUSY;
2679 
2680 	if (PageAnon(head)) {
2681 		/*
2682 		 * The caller does not necessarily hold an mmap_sem that would
2683 		 * prevent the anon_vma disappearing so we first we take a
2684 		 * reference to it and then lock the anon_vma for write. This
2685 		 * is similar to page_lock_anon_vma_read except the write lock
2686 		 * is taken to serialise against parallel split or collapse
2687 		 * operations.
2688 		 */
2689 		anon_vma = page_get_anon_vma(head);
2690 		if (!anon_vma) {
2691 			ret = -EBUSY;
2692 			goto out;
2693 		}
2694 		end = -1;
2695 		mapping = NULL;
2696 		anon_vma_lock_write(anon_vma);
2697 	} else {
2698 		mapping = head->mapping;
2699 
2700 		/* Truncated ? */
2701 		if (!mapping) {
2702 			ret = -EBUSY;
2703 			goto out;
2704 		}
2705 
2706 		anon_vma = NULL;
2707 		i_mmap_lock_read(mapping);
2708 
2709 		/*
2710 		 *__split_huge_page() may need to trim off pages beyond EOF:
2711 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2712 		 * which cannot be nested inside the page tree lock. So note
2713 		 * end now: i_size itself may be changed at any moment, but
2714 		 * head page lock is good enough to serialize the trimming.
2715 		 */
2716 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2717 	}
2718 
2719 	/*
2720 	 * Racy check if we can split the page, before unmap_page() will
2721 	 * split PMDs
2722 	 */
2723 	if (!can_split_huge_page(head, &extra_pins)) {
2724 		ret = -EBUSY;
2725 		goto out_unlock;
2726 	}
2727 
2728 	mlocked = PageMlocked(page);
2729 	unmap_page(head);
2730 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2731 
2732 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2733 	if (mlocked)
2734 		lru_add_drain();
2735 
2736 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2737 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2738 
2739 	if (mapping) {
2740 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2741 
2742 		/*
2743 		 * Check if the head page is present in page cache.
2744 		 * We assume all tail are present too, if head is there.
2745 		 */
2746 		xa_lock(&mapping->i_pages);
2747 		if (xas_load(&xas) != head)
2748 			goto fail;
2749 	}
2750 
2751 	/* Prevent deferred_split_scan() touching ->_refcount */
2752 	spin_lock(&pgdata->split_queue_lock);
2753 	count = page_count(head);
2754 	mapcount = total_mapcount(head);
2755 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2756 		if (!list_empty(page_deferred_list(head))) {
2757 			pgdata->split_queue_len--;
2758 			list_del(page_deferred_list(head));
2759 		}
2760 		if (mapping)
2761 			__dec_node_page_state(page, NR_SHMEM_THPS);
2762 		spin_unlock(&pgdata->split_queue_lock);
2763 		__split_huge_page(page, list, end, flags);
2764 		if (PageSwapCache(head)) {
2765 			swp_entry_t entry = { .val = page_private(head) };
2766 
2767 			ret = split_swap_cluster(entry);
2768 		} else
2769 			ret = 0;
2770 	} else {
2771 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2772 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2773 					mapcount, count);
2774 			if (PageTail(page))
2775 				dump_page(head, NULL);
2776 			dump_page(page, "total_mapcount(head) > 0");
2777 			BUG();
2778 		}
2779 		spin_unlock(&pgdata->split_queue_lock);
2780 fail:		if (mapping)
2781 			xa_unlock(&mapping->i_pages);
2782 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2783 		remap_page(head);
2784 		ret = -EBUSY;
2785 	}
2786 
2787 out_unlock:
2788 	if (anon_vma) {
2789 		anon_vma_unlock_write(anon_vma);
2790 		put_anon_vma(anon_vma);
2791 	}
2792 	if (mapping)
2793 		i_mmap_unlock_read(mapping);
2794 out:
2795 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2796 	return ret;
2797 }
2798 
2799 void free_transhuge_page(struct page *page)
2800 {
2801 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2802 	unsigned long flags;
2803 
2804 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2805 	if (!list_empty(page_deferred_list(page))) {
2806 		pgdata->split_queue_len--;
2807 		list_del(page_deferred_list(page));
2808 	}
2809 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2810 	free_compound_page(page);
2811 }
2812 
2813 void deferred_split_huge_page(struct page *page)
2814 {
2815 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2816 	unsigned long flags;
2817 
2818 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2819 
2820 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2821 	if (list_empty(page_deferred_list(page))) {
2822 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2823 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2824 		pgdata->split_queue_len++;
2825 	}
2826 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2827 }
2828 
2829 static unsigned long deferred_split_count(struct shrinker *shrink,
2830 		struct shrink_control *sc)
2831 {
2832 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2833 	return READ_ONCE(pgdata->split_queue_len);
2834 }
2835 
2836 static unsigned long deferred_split_scan(struct shrinker *shrink,
2837 		struct shrink_control *sc)
2838 {
2839 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2840 	unsigned long flags;
2841 	LIST_HEAD(list), *pos, *next;
2842 	struct page *page;
2843 	int split = 0;
2844 
2845 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2846 	/* Take pin on all head pages to avoid freeing them under us */
2847 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2848 		page = list_entry((void *)pos, struct page, mapping);
2849 		page = compound_head(page);
2850 		if (get_page_unless_zero(page)) {
2851 			list_move(page_deferred_list(page), &list);
2852 		} else {
2853 			/* We lost race with put_compound_page() */
2854 			list_del_init(page_deferred_list(page));
2855 			pgdata->split_queue_len--;
2856 		}
2857 		if (!--sc->nr_to_scan)
2858 			break;
2859 	}
2860 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2861 
2862 	list_for_each_safe(pos, next, &list) {
2863 		page = list_entry((void *)pos, struct page, mapping);
2864 		if (!trylock_page(page))
2865 			goto next;
2866 		/* split_huge_page() removes page from list on success */
2867 		if (!split_huge_page(page))
2868 			split++;
2869 		unlock_page(page);
2870 next:
2871 		put_page(page);
2872 	}
2873 
2874 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2875 	list_splice_tail(&list, &pgdata->split_queue);
2876 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2877 
2878 	/*
2879 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2880 	 * This can happen if pages were freed under us.
2881 	 */
2882 	if (!split && list_empty(&pgdata->split_queue))
2883 		return SHRINK_STOP;
2884 	return split;
2885 }
2886 
2887 static struct shrinker deferred_split_shrinker = {
2888 	.count_objects = deferred_split_count,
2889 	.scan_objects = deferred_split_scan,
2890 	.seeks = DEFAULT_SEEKS,
2891 	.flags = SHRINKER_NUMA_AWARE,
2892 };
2893 
2894 #ifdef CONFIG_DEBUG_FS
2895 static int split_huge_pages_set(void *data, u64 val)
2896 {
2897 	struct zone *zone;
2898 	struct page *page;
2899 	unsigned long pfn, max_zone_pfn;
2900 	unsigned long total = 0, split = 0;
2901 
2902 	if (val != 1)
2903 		return -EINVAL;
2904 
2905 	for_each_populated_zone(zone) {
2906 		max_zone_pfn = zone_end_pfn(zone);
2907 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2908 			if (!pfn_valid(pfn))
2909 				continue;
2910 
2911 			page = pfn_to_page(pfn);
2912 			if (!get_page_unless_zero(page))
2913 				continue;
2914 
2915 			if (zone != page_zone(page))
2916 				goto next;
2917 
2918 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2919 				goto next;
2920 
2921 			total++;
2922 			lock_page(page);
2923 			if (!split_huge_page(page))
2924 				split++;
2925 			unlock_page(page);
2926 next:
2927 			put_page(page);
2928 		}
2929 	}
2930 
2931 	pr_info("%lu of %lu THP split\n", split, total);
2932 
2933 	return 0;
2934 }
2935 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2936 		"%llu\n");
2937 
2938 static int __init split_huge_pages_debugfs(void)
2939 {
2940 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2941 			    &split_huge_pages_fops);
2942 	return 0;
2943 }
2944 late_initcall(split_huge_pages_debugfs);
2945 #endif
2946 
2947 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2948 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2949 		struct page *page)
2950 {
2951 	struct vm_area_struct *vma = pvmw->vma;
2952 	struct mm_struct *mm = vma->vm_mm;
2953 	unsigned long address = pvmw->address;
2954 	pmd_t pmdval;
2955 	swp_entry_t entry;
2956 	pmd_t pmdswp;
2957 
2958 	if (!(pvmw->pmd && !pvmw->pte))
2959 		return;
2960 
2961 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2962 	pmdval = *pvmw->pmd;
2963 	pmdp_invalidate(vma, address, pvmw->pmd);
2964 	if (pmd_dirty(pmdval))
2965 		set_page_dirty(page);
2966 	entry = make_migration_entry(page, pmd_write(pmdval));
2967 	pmdswp = swp_entry_to_pmd(entry);
2968 	if (pmd_soft_dirty(pmdval))
2969 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2970 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2971 	page_remove_rmap(page, true);
2972 	put_page(page);
2973 }
2974 
2975 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2976 {
2977 	struct vm_area_struct *vma = pvmw->vma;
2978 	struct mm_struct *mm = vma->vm_mm;
2979 	unsigned long address = pvmw->address;
2980 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2981 	pmd_t pmde;
2982 	swp_entry_t entry;
2983 
2984 	if (!(pvmw->pmd && !pvmw->pte))
2985 		return;
2986 
2987 	entry = pmd_to_swp_entry(*pvmw->pmd);
2988 	get_page(new);
2989 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2990 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2991 		pmde = pmd_mksoft_dirty(pmde);
2992 	if (is_write_migration_entry(entry))
2993 		pmde = maybe_pmd_mkwrite(pmde, vma);
2994 
2995 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2996 	if (PageAnon(new))
2997 		page_add_anon_rmap(new, vma, mmun_start, true);
2998 	else
2999 		page_add_file_rmap(new, true);
3000 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3001 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3002 		mlock_vma_page(new);
3003 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3004 }
3005 #endif
3006