xref: /openbmc/linux/mm/huge_memory.c (revision 2e3468778dbe3ec389a10c21a703bb8e5be5cfbc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 
40 #include <asm/tlb.h>
41 #include <asm/pgalloc.h>
42 #include "internal.h"
43 #include "swap.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/thp.h>
47 
48 /*
49  * By default, transparent hugepage support is disabled in order to avoid
50  * risking an increased memory footprint for applications that are not
51  * guaranteed to benefit from it. When transparent hugepage support is
52  * enabled, it is for all mappings, and khugepaged scans all mappings.
53  * Defrag is invoked by khugepaged hugepage allocations and by page faults
54  * for all hugepage allocations.
55  */
56 unsigned long transparent_hugepage_flags __read_mostly =
57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
58 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
59 #endif
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
61 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
62 #endif
63 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
66 
67 static struct shrinker deferred_split_shrinker;
68 
69 static atomic_t huge_zero_refcount;
70 struct page *huge_zero_page __read_mostly;
71 unsigned long huge_zero_pfn __read_mostly = ~0UL;
72 
73 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
74 			bool smaps, bool in_pf, bool enforce_sysfs)
75 {
76 	if (!vma->vm_mm)		/* vdso */
77 		return false;
78 
79 	/*
80 	 * Explicitly disabled through madvise or prctl, or some
81 	 * architectures may disable THP for some mappings, for
82 	 * example, s390 kvm.
83 	 * */
84 	if ((vm_flags & VM_NOHUGEPAGE) ||
85 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
86 		return false;
87 	/*
88 	 * If the hardware/firmware marked hugepage support disabled.
89 	 */
90 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
91 		return false;
92 
93 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
94 	if (vma_is_dax(vma))
95 		return in_pf;
96 
97 	/*
98 	 * Special VMA and hugetlb VMA.
99 	 * Must be checked after dax since some dax mappings may have
100 	 * VM_MIXEDMAP set.
101 	 */
102 	if (vm_flags & VM_NO_KHUGEPAGED)
103 		return false;
104 
105 	/*
106 	 * Check alignment for file vma and size for both file and anon vma.
107 	 *
108 	 * Skip the check for page fault. Huge fault does the check in fault
109 	 * handlers. And this check is not suitable for huge PUD fault.
110 	 */
111 	if (!in_pf &&
112 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
113 		return false;
114 
115 	/*
116 	 * Enabled via shmem mount options or sysfs settings.
117 	 * Must be done before hugepage flags check since shmem has its
118 	 * own flags.
119 	 */
120 	if (!in_pf && shmem_file(vma->vm_file))
121 		return shmem_huge_enabled(vma);
122 
123 	/* Enforce sysfs THP requirements as necessary */
124 	if (enforce_sysfs &&
125 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
126 					   !hugepage_flags_always())))
127 		return false;
128 
129 	/* Only regular file is valid */
130 	if (!in_pf && file_thp_enabled(vma))
131 		return true;
132 
133 	if (!vma_is_anonymous(vma))
134 		return false;
135 
136 	if (vma_is_temporary_stack(vma))
137 		return false;
138 
139 	/*
140 	 * THPeligible bit of smaps should show 1 for proper VMAs even
141 	 * though anon_vma is not initialized yet.
142 	 *
143 	 * Allow page fault since anon_vma may be not initialized until
144 	 * the first page fault.
145 	 */
146 	if (!vma->anon_vma)
147 		return (smaps || in_pf);
148 
149 	return true;
150 }
151 
152 static bool get_huge_zero_page(void)
153 {
154 	struct page *zero_page;
155 retry:
156 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
157 		return true;
158 
159 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
160 			HPAGE_PMD_ORDER);
161 	if (!zero_page) {
162 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
163 		return false;
164 	}
165 	count_vm_event(THP_ZERO_PAGE_ALLOC);
166 	preempt_disable();
167 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
168 		preempt_enable();
169 		__free_pages(zero_page, compound_order(zero_page));
170 		goto retry;
171 	}
172 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
173 
174 	/* We take additional reference here. It will be put back by shrinker */
175 	atomic_set(&huge_zero_refcount, 2);
176 	preempt_enable();
177 	return true;
178 }
179 
180 static void put_huge_zero_page(void)
181 {
182 	/*
183 	 * Counter should never go to zero here. Only shrinker can put
184 	 * last reference.
185 	 */
186 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
187 }
188 
189 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
190 {
191 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
192 		return READ_ONCE(huge_zero_page);
193 
194 	if (!get_huge_zero_page())
195 		return NULL;
196 
197 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
198 		put_huge_zero_page();
199 
200 	return READ_ONCE(huge_zero_page);
201 }
202 
203 void mm_put_huge_zero_page(struct mm_struct *mm)
204 {
205 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
206 		put_huge_zero_page();
207 }
208 
209 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
210 					struct shrink_control *sc)
211 {
212 	/* we can free zero page only if last reference remains */
213 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
214 }
215 
216 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
217 				       struct shrink_control *sc)
218 {
219 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
220 		struct page *zero_page = xchg(&huge_zero_page, NULL);
221 		BUG_ON(zero_page == NULL);
222 		WRITE_ONCE(huge_zero_pfn, ~0UL);
223 		__free_pages(zero_page, compound_order(zero_page));
224 		return HPAGE_PMD_NR;
225 	}
226 
227 	return 0;
228 }
229 
230 static struct shrinker huge_zero_page_shrinker = {
231 	.count_objects = shrink_huge_zero_page_count,
232 	.scan_objects = shrink_huge_zero_page_scan,
233 	.seeks = DEFAULT_SEEKS,
234 };
235 
236 #ifdef CONFIG_SYSFS
237 static ssize_t enabled_show(struct kobject *kobj,
238 			    struct kobj_attribute *attr, char *buf)
239 {
240 	const char *output;
241 
242 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
243 		output = "[always] madvise never";
244 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
245 			  &transparent_hugepage_flags))
246 		output = "always [madvise] never";
247 	else
248 		output = "always madvise [never]";
249 
250 	return sysfs_emit(buf, "%s\n", output);
251 }
252 
253 static ssize_t enabled_store(struct kobject *kobj,
254 			     struct kobj_attribute *attr,
255 			     const char *buf, size_t count)
256 {
257 	ssize_t ret = count;
258 
259 	if (sysfs_streq(buf, "always")) {
260 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
262 	} else if (sysfs_streq(buf, "madvise")) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
265 	} else if (sysfs_streq(buf, "never")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		ret = -EINVAL;
270 
271 	if (ret > 0) {
272 		int err = start_stop_khugepaged();
273 		if (err)
274 			ret = err;
275 	}
276 	return ret;
277 }
278 
279 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
280 
281 ssize_t single_hugepage_flag_show(struct kobject *kobj,
282 				  struct kobj_attribute *attr, char *buf,
283 				  enum transparent_hugepage_flag flag)
284 {
285 	return sysfs_emit(buf, "%d\n",
286 			  !!test_bit(flag, &transparent_hugepage_flags));
287 }
288 
289 ssize_t single_hugepage_flag_store(struct kobject *kobj,
290 				 struct kobj_attribute *attr,
291 				 const char *buf, size_t count,
292 				 enum transparent_hugepage_flag flag)
293 {
294 	unsigned long value;
295 	int ret;
296 
297 	ret = kstrtoul(buf, 10, &value);
298 	if (ret < 0)
299 		return ret;
300 	if (value > 1)
301 		return -EINVAL;
302 
303 	if (value)
304 		set_bit(flag, &transparent_hugepage_flags);
305 	else
306 		clear_bit(flag, &transparent_hugepage_flags);
307 
308 	return count;
309 }
310 
311 static ssize_t defrag_show(struct kobject *kobj,
312 			   struct kobj_attribute *attr, char *buf)
313 {
314 	const char *output;
315 
316 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
317 		     &transparent_hugepage_flags))
318 		output = "[always] defer defer+madvise madvise never";
319 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
320 			  &transparent_hugepage_flags))
321 		output = "always [defer] defer+madvise madvise never";
322 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
323 			  &transparent_hugepage_flags))
324 		output = "always defer [defer+madvise] madvise never";
325 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
326 			  &transparent_hugepage_flags))
327 		output = "always defer defer+madvise [madvise] never";
328 	else
329 		output = "always defer defer+madvise madvise [never]";
330 
331 	return sysfs_emit(buf, "%s\n", output);
332 }
333 
334 static ssize_t defrag_store(struct kobject *kobj,
335 			    struct kobj_attribute *attr,
336 			    const char *buf, size_t count)
337 {
338 	if (sysfs_streq(buf, "always")) {
339 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
340 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
342 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
343 	} else if (sysfs_streq(buf, "defer+madvise")) {
344 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
347 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
348 	} else if (sysfs_streq(buf, "defer")) {
349 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
350 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
352 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
353 	} else if (sysfs_streq(buf, "madvise")) {
354 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
355 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
357 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
358 	} else if (sysfs_streq(buf, "never")) {
359 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
360 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
363 	} else
364 		return -EINVAL;
365 
366 	return count;
367 }
368 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
369 
370 static ssize_t use_zero_page_show(struct kobject *kobj,
371 				  struct kobj_attribute *attr, char *buf)
372 {
373 	return single_hugepage_flag_show(kobj, attr, buf,
374 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
375 }
376 static ssize_t use_zero_page_store(struct kobject *kobj,
377 		struct kobj_attribute *attr, const char *buf, size_t count)
378 {
379 	return single_hugepage_flag_store(kobj, attr, buf, count,
380 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
381 }
382 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
383 
384 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
385 				   struct kobj_attribute *attr, char *buf)
386 {
387 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
388 }
389 static struct kobj_attribute hpage_pmd_size_attr =
390 	__ATTR_RO(hpage_pmd_size);
391 
392 static struct attribute *hugepage_attr[] = {
393 	&enabled_attr.attr,
394 	&defrag_attr.attr,
395 	&use_zero_page_attr.attr,
396 	&hpage_pmd_size_attr.attr,
397 #ifdef CONFIG_SHMEM
398 	&shmem_enabled_attr.attr,
399 #endif
400 	NULL,
401 };
402 
403 static const struct attribute_group hugepage_attr_group = {
404 	.attrs = hugepage_attr,
405 };
406 
407 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
408 {
409 	int err;
410 
411 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
412 	if (unlikely(!*hugepage_kobj)) {
413 		pr_err("failed to create transparent hugepage kobject\n");
414 		return -ENOMEM;
415 	}
416 
417 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
418 	if (err) {
419 		pr_err("failed to register transparent hugepage group\n");
420 		goto delete_obj;
421 	}
422 
423 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
424 	if (err) {
425 		pr_err("failed to register transparent hugepage group\n");
426 		goto remove_hp_group;
427 	}
428 
429 	return 0;
430 
431 remove_hp_group:
432 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
433 delete_obj:
434 	kobject_put(*hugepage_kobj);
435 	return err;
436 }
437 
438 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
439 {
440 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
441 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
442 	kobject_put(hugepage_kobj);
443 }
444 #else
445 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
446 {
447 	return 0;
448 }
449 
450 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
451 {
452 }
453 #endif /* CONFIG_SYSFS */
454 
455 static int __init hugepage_init(void)
456 {
457 	int err;
458 	struct kobject *hugepage_kobj;
459 
460 	if (!has_transparent_hugepage()) {
461 		/*
462 		 * Hardware doesn't support hugepages, hence disable
463 		 * DAX PMD support.
464 		 */
465 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
466 		return -EINVAL;
467 	}
468 
469 	/*
470 	 * hugepages can't be allocated by the buddy allocator
471 	 */
472 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
473 	/*
474 	 * we use page->mapping and page->index in second tail page
475 	 * as list_head: assuming THP order >= 2
476 	 */
477 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
478 
479 	err = hugepage_init_sysfs(&hugepage_kobj);
480 	if (err)
481 		goto err_sysfs;
482 
483 	err = khugepaged_init();
484 	if (err)
485 		goto err_slab;
486 
487 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
488 	if (err)
489 		goto err_hzp_shrinker;
490 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
491 	if (err)
492 		goto err_split_shrinker;
493 
494 	/*
495 	 * By default disable transparent hugepages on smaller systems,
496 	 * where the extra memory used could hurt more than TLB overhead
497 	 * is likely to save.  The admin can still enable it through /sys.
498 	 */
499 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
500 		transparent_hugepage_flags = 0;
501 		return 0;
502 	}
503 
504 	err = start_stop_khugepaged();
505 	if (err)
506 		goto err_khugepaged;
507 
508 	return 0;
509 err_khugepaged:
510 	unregister_shrinker(&deferred_split_shrinker);
511 err_split_shrinker:
512 	unregister_shrinker(&huge_zero_page_shrinker);
513 err_hzp_shrinker:
514 	khugepaged_destroy();
515 err_slab:
516 	hugepage_exit_sysfs(hugepage_kobj);
517 err_sysfs:
518 	return err;
519 }
520 subsys_initcall(hugepage_init);
521 
522 static int __init setup_transparent_hugepage(char *str)
523 {
524 	int ret = 0;
525 	if (!str)
526 		goto out;
527 	if (!strcmp(str, "always")) {
528 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
529 			&transparent_hugepage_flags);
530 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
531 			  &transparent_hugepage_flags);
532 		ret = 1;
533 	} else if (!strcmp(str, "madvise")) {
534 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
535 			  &transparent_hugepage_flags);
536 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
537 			&transparent_hugepage_flags);
538 		ret = 1;
539 	} else if (!strcmp(str, "never")) {
540 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
541 			  &transparent_hugepage_flags);
542 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
543 			  &transparent_hugepage_flags);
544 		ret = 1;
545 	}
546 out:
547 	if (!ret)
548 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
549 	return ret;
550 }
551 __setup("transparent_hugepage=", setup_transparent_hugepage);
552 
553 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
554 {
555 	if (likely(vma->vm_flags & VM_WRITE))
556 		pmd = pmd_mkwrite(pmd);
557 	return pmd;
558 }
559 
560 #ifdef CONFIG_MEMCG
561 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
562 {
563 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
564 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
565 
566 	if (memcg)
567 		return &memcg->deferred_split_queue;
568 	else
569 		return &pgdat->deferred_split_queue;
570 }
571 #else
572 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
573 {
574 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
575 
576 	return &pgdat->deferred_split_queue;
577 }
578 #endif
579 
580 void prep_transhuge_page(struct page *page)
581 {
582 	/*
583 	 * we use page->mapping and page->index in second tail page
584 	 * as list_head: assuming THP order >= 2
585 	 */
586 
587 	INIT_LIST_HEAD(page_deferred_list(page));
588 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
589 }
590 
591 static inline bool is_transparent_hugepage(struct page *page)
592 {
593 	if (!PageCompound(page))
594 		return false;
595 
596 	page = compound_head(page);
597 	return is_huge_zero_page(page) ||
598 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
599 }
600 
601 static unsigned long __thp_get_unmapped_area(struct file *filp,
602 		unsigned long addr, unsigned long len,
603 		loff_t off, unsigned long flags, unsigned long size)
604 {
605 	loff_t off_end = off + len;
606 	loff_t off_align = round_up(off, size);
607 	unsigned long len_pad, ret;
608 
609 	if (off_end <= off_align || (off_end - off_align) < size)
610 		return 0;
611 
612 	len_pad = len + size;
613 	if (len_pad < len || (off + len_pad) < off)
614 		return 0;
615 
616 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
617 					      off >> PAGE_SHIFT, flags);
618 
619 	/*
620 	 * The failure might be due to length padding. The caller will retry
621 	 * without the padding.
622 	 */
623 	if (IS_ERR_VALUE(ret))
624 		return 0;
625 
626 	/*
627 	 * Do not try to align to THP boundary if allocation at the address
628 	 * hint succeeds.
629 	 */
630 	if (ret == addr)
631 		return addr;
632 
633 	ret += (off - ret) & (size - 1);
634 	return ret;
635 }
636 
637 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
638 		unsigned long len, unsigned long pgoff, unsigned long flags)
639 {
640 	unsigned long ret;
641 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
642 
643 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
644 	if (ret)
645 		return ret;
646 
647 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
648 }
649 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
650 
651 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
652 			struct page *page, gfp_t gfp)
653 {
654 	struct vm_area_struct *vma = vmf->vma;
655 	pgtable_t pgtable;
656 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
657 	vm_fault_t ret = 0;
658 
659 	VM_BUG_ON_PAGE(!PageCompound(page), page);
660 
661 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
662 		put_page(page);
663 		count_vm_event(THP_FAULT_FALLBACK);
664 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
665 		return VM_FAULT_FALLBACK;
666 	}
667 	cgroup_throttle_swaprate(page, gfp);
668 
669 	pgtable = pte_alloc_one(vma->vm_mm);
670 	if (unlikely(!pgtable)) {
671 		ret = VM_FAULT_OOM;
672 		goto release;
673 	}
674 
675 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
676 	/*
677 	 * The memory barrier inside __SetPageUptodate makes sure that
678 	 * clear_huge_page writes become visible before the set_pmd_at()
679 	 * write.
680 	 */
681 	__SetPageUptodate(page);
682 
683 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 	if (unlikely(!pmd_none(*vmf->pmd))) {
685 		goto unlock_release;
686 	} else {
687 		pmd_t entry;
688 
689 		ret = check_stable_address_space(vma->vm_mm);
690 		if (ret)
691 			goto unlock_release;
692 
693 		/* Deliver the page fault to userland */
694 		if (userfaultfd_missing(vma)) {
695 			spin_unlock(vmf->ptl);
696 			put_page(page);
697 			pte_free(vma->vm_mm, pgtable);
698 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
699 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
700 			return ret;
701 		}
702 
703 		entry = mk_huge_pmd(page, vma->vm_page_prot);
704 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
705 		page_add_new_anon_rmap(page, vma, haddr);
706 		lru_cache_add_inactive_or_unevictable(page, vma);
707 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
708 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
709 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
710 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
711 		mm_inc_nr_ptes(vma->vm_mm);
712 		spin_unlock(vmf->ptl);
713 		count_vm_event(THP_FAULT_ALLOC);
714 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
715 	}
716 
717 	return 0;
718 unlock_release:
719 	spin_unlock(vmf->ptl);
720 release:
721 	if (pgtable)
722 		pte_free(vma->vm_mm, pgtable);
723 	put_page(page);
724 	return ret;
725 
726 }
727 
728 /*
729  * always: directly stall for all thp allocations
730  * defer: wake kswapd and fail if not immediately available
731  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
732  *		  fail if not immediately available
733  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
734  *	    available
735  * never: never stall for any thp allocation
736  */
737 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
738 {
739 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
740 
741 	/* Always do synchronous compaction */
742 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
743 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
744 
745 	/* Kick kcompactd and fail quickly */
746 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
747 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
748 
749 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
750 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
751 		return GFP_TRANSHUGE_LIGHT |
752 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
753 					__GFP_KSWAPD_RECLAIM);
754 
755 	/* Only do synchronous compaction if madvised */
756 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
757 		return GFP_TRANSHUGE_LIGHT |
758 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
759 
760 	return GFP_TRANSHUGE_LIGHT;
761 }
762 
763 /* Caller must hold page table lock. */
764 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 		struct page *zero_page)
767 {
768 	pmd_t entry;
769 	if (!pmd_none(*pmd))
770 		return;
771 	entry = mk_pmd(zero_page, vma->vm_page_prot);
772 	entry = pmd_mkhuge(entry);
773 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
774 	set_pmd_at(mm, haddr, pmd, entry);
775 	mm_inc_nr_ptes(mm);
776 }
777 
778 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
779 {
780 	struct vm_area_struct *vma = vmf->vma;
781 	gfp_t gfp;
782 	struct folio *folio;
783 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
784 
785 	if (!transhuge_vma_suitable(vma, haddr))
786 		return VM_FAULT_FALLBACK;
787 	if (unlikely(anon_vma_prepare(vma)))
788 		return VM_FAULT_OOM;
789 	khugepaged_enter_vma(vma, vma->vm_flags);
790 
791 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
792 			!mm_forbids_zeropage(vma->vm_mm) &&
793 			transparent_hugepage_use_zero_page()) {
794 		pgtable_t pgtable;
795 		struct page *zero_page;
796 		vm_fault_t ret;
797 		pgtable = pte_alloc_one(vma->vm_mm);
798 		if (unlikely(!pgtable))
799 			return VM_FAULT_OOM;
800 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
801 		if (unlikely(!zero_page)) {
802 			pte_free(vma->vm_mm, pgtable);
803 			count_vm_event(THP_FAULT_FALLBACK);
804 			return VM_FAULT_FALLBACK;
805 		}
806 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
807 		ret = 0;
808 		if (pmd_none(*vmf->pmd)) {
809 			ret = check_stable_address_space(vma->vm_mm);
810 			if (ret) {
811 				spin_unlock(vmf->ptl);
812 				pte_free(vma->vm_mm, pgtable);
813 			} else if (userfaultfd_missing(vma)) {
814 				spin_unlock(vmf->ptl);
815 				pte_free(vma->vm_mm, pgtable);
816 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
817 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
818 			} else {
819 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
820 						   haddr, vmf->pmd, zero_page);
821 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
822 				spin_unlock(vmf->ptl);
823 			}
824 		} else {
825 			spin_unlock(vmf->ptl);
826 			pte_free(vma->vm_mm, pgtable);
827 		}
828 		return ret;
829 	}
830 	gfp = vma_thp_gfp_mask(vma);
831 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
832 	if (unlikely(!folio)) {
833 		count_vm_event(THP_FAULT_FALLBACK);
834 		return VM_FAULT_FALLBACK;
835 	}
836 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
837 }
838 
839 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
840 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
841 		pgtable_t pgtable)
842 {
843 	struct mm_struct *mm = vma->vm_mm;
844 	pmd_t entry;
845 	spinlock_t *ptl;
846 
847 	ptl = pmd_lock(mm, pmd);
848 	if (!pmd_none(*pmd)) {
849 		if (write) {
850 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
851 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
852 				goto out_unlock;
853 			}
854 			entry = pmd_mkyoung(*pmd);
855 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
856 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
857 				update_mmu_cache_pmd(vma, addr, pmd);
858 		}
859 
860 		goto out_unlock;
861 	}
862 
863 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
864 	if (pfn_t_devmap(pfn))
865 		entry = pmd_mkdevmap(entry);
866 	if (write) {
867 		entry = pmd_mkyoung(pmd_mkdirty(entry));
868 		entry = maybe_pmd_mkwrite(entry, vma);
869 	}
870 
871 	if (pgtable) {
872 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
873 		mm_inc_nr_ptes(mm);
874 		pgtable = NULL;
875 	}
876 
877 	set_pmd_at(mm, addr, pmd, entry);
878 	update_mmu_cache_pmd(vma, addr, pmd);
879 
880 out_unlock:
881 	spin_unlock(ptl);
882 	if (pgtable)
883 		pte_free(mm, pgtable);
884 }
885 
886 /**
887  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
888  * @vmf: Structure describing the fault
889  * @pfn: pfn to insert
890  * @pgprot: page protection to use
891  * @write: whether it's a write fault
892  *
893  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
894  * also consult the vmf_insert_mixed_prot() documentation when
895  * @pgprot != @vmf->vma->vm_page_prot.
896  *
897  * Return: vm_fault_t value.
898  */
899 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
900 				   pgprot_t pgprot, bool write)
901 {
902 	unsigned long addr = vmf->address & PMD_MASK;
903 	struct vm_area_struct *vma = vmf->vma;
904 	pgtable_t pgtable = NULL;
905 
906 	/*
907 	 * If we had pmd_special, we could avoid all these restrictions,
908 	 * but we need to be consistent with PTEs and architectures that
909 	 * can't support a 'special' bit.
910 	 */
911 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
912 			!pfn_t_devmap(pfn));
913 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
914 						(VM_PFNMAP|VM_MIXEDMAP));
915 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
916 
917 	if (addr < vma->vm_start || addr >= vma->vm_end)
918 		return VM_FAULT_SIGBUS;
919 
920 	if (arch_needs_pgtable_deposit()) {
921 		pgtable = pte_alloc_one(vma->vm_mm);
922 		if (!pgtable)
923 			return VM_FAULT_OOM;
924 	}
925 
926 	track_pfn_insert(vma, &pgprot, pfn);
927 
928 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
929 	return VM_FAULT_NOPAGE;
930 }
931 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
932 
933 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
934 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
935 {
936 	if (likely(vma->vm_flags & VM_WRITE))
937 		pud = pud_mkwrite(pud);
938 	return pud;
939 }
940 
941 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
942 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
943 {
944 	struct mm_struct *mm = vma->vm_mm;
945 	pud_t entry;
946 	spinlock_t *ptl;
947 
948 	ptl = pud_lock(mm, pud);
949 	if (!pud_none(*pud)) {
950 		if (write) {
951 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
952 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
953 				goto out_unlock;
954 			}
955 			entry = pud_mkyoung(*pud);
956 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
957 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
958 				update_mmu_cache_pud(vma, addr, pud);
959 		}
960 		goto out_unlock;
961 	}
962 
963 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
964 	if (pfn_t_devmap(pfn))
965 		entry = pud_mkdevmap(entry);
966 	if (write) {
967 		entry = pud_mkyoung(pud_mkdirty(entry));
968 		entry = maybe_pud_mkwrite(entry, vma);
969 	}
970 	set_pud_at(mm, addr, pud, entry);
971 	update_mmu_cache_pud(vma, addr, pud);
972 
973 out_unlock:
974 	spin_unlock(ptl);
975 }
976 
977 /**
978  * vmf_insert_pfn_pud_prot - insert a pud size pfn
979  * @vmf: Structure describing the fault
980  * @pfn: pfn to insert
981  * @pgprot: page protection to use
982  * @write: whether it's a write fault
983  *
984  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
985  * also consult the vmf_insert_mixed_prot() documentation when
986  * @pgprot != @vmf->vma->vm_page_prot.
987  *
988  * Return: vm_fault_t value.
989  */
990 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
991 				   pgprot_t pgprot, bool write)
992 {
993 	unsigned long addr = vmf->address & PUD_MASK;
994 	struct vm_area_struct *vma = vmf->vma;
995 
996 	/*
997 	 * If we had pud_special, we could avoid all these restrictions,
998 	 * but we need to be consistent with PTEs and architectures that
999 	 * can't support a 'special' bit.
1000 	 */
1001 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1002 			!pfn_t_devmap(pfn));
1003 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1004 						(VM_PFNMAP|VM_MIXEDMAP));
1005 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1006 
1007 	if (addr < vma->vm_start || addr >= vma->vm_end)
1008 		return VM_FAULT_SIGBUS;
1009 
1010 	track_pfn_insert(vma, &pgprot, pfn);
1011 
1012 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1013 	return VM_FAULT_NOPAGE;
1014 }
1015 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1016 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1017 
1018 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1019 		      pmd_t *pmd, bool write)
1020 {
1021 	pmd_t _pmd;
1022 
1023 	_pmd = pmd_mkyoung(*pmd);
1024 	if (write)
1025 		_pmd = pmd_mkdirty(_pmd);
1026 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1027 				  pmd, _pmd, write))
1028 		update_mmu_cache_pmd(vma, addr, pmd);
1029 }
1030 
1031 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1032 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1033 {
1034 	unsigned long pfn = pmd_pfn(*pmd);
1035 	struct mm_struct *mm = vma->vm_mm;
1036 	struct page *page;
1037 
1038 	assert_spin_locked(pmd_lockptr(mm, pmd));
1039 
1040 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1041 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1042 			 (FOLL_PIN | FOLL_GET)))
1043 		return NULL;
1044 
1045 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046 		return NULL;
1047 
1048 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049 		/* pass */;
1050 	else
1051 		return NULL;
1052 
1053 	if (flags & FOLL_TOUCH)
1054 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1055 
1056 	/*
1057 	 * device mapped pages can only be returned if the
1058 	 * caller will manage the page reference count.
1059 	 */
1060 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1061 		return ERR_PTR(-EEXIST);
1062 
1063 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1065 	if (!*pgmap)
1066 		return ERR_PTR(-EFAULT);
1067 	page = pfn_to_page(pfn);
1068 	if (!try_grab_page(page, flags))
1069 		page = ERR_PTR(-ENOMEM);
1070 
1071 	return page;
1072 }
1073 
1074 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1075 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1076 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1077 {
1078 	spinlock_t *dst_ptl, *src_ptl;
1079 	struct page *src_page;
1080 	pmd_t pmd;
1081 	pgtable_t pgtable = NULL;
1082 	int ret = -ENOMEM;
1083 
1084 	/* Skip if can be re-fill on fault */
1085 	if (!vma_is_anonymous(dst_vma))
1086 		return 0;
1087 
1088 	pgtable = pte_alloc_one(dst_mm);
1089 	if (unlikely(!pgtable))
1090 		goto out;
1091 
1092 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1093 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1094 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1095 
1096 	ret = -EAGAIN;
1097 	pmd = *src_pmd;
1098 
1099 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1100 	if (unlikely(is_swap_pmd(pmd))) {
1101 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1102 
1103 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1104 		if (!is_readable_migration_entry(entry)) {
1105 			entry = make_readable_migration_entry(
1106 							swp_offset(entry));
1107 			pmd = swp_entry_to_pmd(entry);
1108 			if (pmd_swp_soft_dirty(*src_pmd))
1109 				pmd = pmd_swp_mksoft_dirty(pmd);
1110 			if (pmd_swp_uffd_wp(*src_pmd))
1111 				pmd = pmd_swp_mkuffd_wp(pmd);
1112 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1113 		}
1114 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1115 		mm_inc_nr_ptes(dst_mm);
1116 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1117 		if (!userfaultfd_wp(dst_vma))
1118 			pmd = pmd_swp_clear_uffd_wp(pmd);
1119 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1120 		ret = 0;
1121 		goto out_unlock;
1122 	}
1123 #endif
1124 
1125 	if (unlikely(!pmd_trans_huge(pmd))) {
1126 		pte_free(dst_mm, pgtable);
1127 		goto out_unlock;
1128 	}
1129 	/*
1130 	 * When page table lock is held, the huge zero pmd should not be
1131 	 * under splitting since we don't split the page itself, only pmd to
1132 	 * a page table.
1133 	 */
1134 	if (is_huge_zero_pmd(pmd)) {
1135 		/*
1136 		 * get_huge_zero_page() will never allocate a new page here,
1137 		 * since we already have a zero page to copy. It just takes a
1138 		 * reference.
1139 		 */
1140 		mm_get_huge_zero_page(dst_mm);
1141 		goto out_zero_page;
1142 	}
1143 
1144 	src_page = pmd_page(pmd);
1145 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1146 
1147 	get_page(src_page);
1148 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1149 		/* Page maybe pinned: split and retry the fault on PTEs. */
1150 		put_page(src_page);
1151 		pte_free(dst_mm, pgtable);
1152 		spin_unlock(src_ptl);
1153 		spin_unlock(dst_ptl);
1154 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1155 		return -EAGAIN;
1156 	}
1157 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1158 out_zero_page:
1159 	mm_inc_nr_ptes(dst_mm);
1160 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1161 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1162 	if (!userfaultfd_wp(dst_vma))
1163 		pmd = pmd_clear_uffd_wp(pmd);
1164 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1165 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1166 
1167 	ret = 0;
1168 out_unlock:
1169 	spin_unlock(src_ptl);
1170 	spin_unlock(dst_ptl);
1171 out:
1172 	return ret;
1173 }
1174 
1175 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1176 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1177 		      pud_t *pud, bool write)
1178 {
1179 	pud_t _pud;
1180 
1181 	_pud = pud_mkyoung(*pud);
1182 	if (write)
1183 		_pud = pud_mkdirty(_pud);
1184 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1185 				  pud, _pud, write))
1186 		update_mmu_cache_pud(vma, addr, pud);
1187 }
1188 
1189 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1190 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1191 {
1192 	unsigned long pfn = pud_pfn(*pud);
1193 	struct mm_struct *mm = vma->vm_mm;
1194 	struct page *page;
1195 
1196 	assert_spin_locked(pud_lockptr(mm, pud));
1197 
1198 	if (flags & FOLL_WRITE && !pud_write(*pud))
1199 		return NULL;
1200 
1201 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1202 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1203 			 (FOLL_PIN | FOLL_GET)))
1204 		return NULL;
1205 
1206 	if (pud_present(*pud) && pud_devmap(*pud))
1207 		/* pass */;
1208 	else
1209 		return NULL;
1210 
1211 	if (flags & FOLL_TOUCH)
1212 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1213 
1214 	/*
1215 	 * device mapped pages can only be returned if the
1216 	 * caller will manage the page reference count.
1217 	 *
1218 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1219 	 */
1220 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1221 		return ERR_PTR(-EEXIST);
1222 
1223 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1224 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1225 	if (!*pgmap)
1226 		return ERR_PTR(-EFAULT);
1227 	page = pfn_to_page(pfn);
1228 	if (!try_grab_page(page, flags))
1229 		page = ERR_PTR(-ENOMEM);
1230 
1231 	return page;
1232 }
1233 
1234 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1235 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1236 		  struct vm_area_struct *vma)
1237 {
1238 	spinlock_t *dst_ptl, *src_ptl;
1239 	pud_t pud;
1240 	int ret;
1241 
1242 	dst_ptl = pud_lock(dst_mm, dst_pud);
1243 	src_ptl = pud_lockptr(src_mm, src_pud);
1244 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1245 
1246 	ret = -EAGAIN;
1247 	pud = *src_pud;
1248 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1249 		goto out_unlock;
1250 
1251 	/*
1252 	 * When page table lock is held, the huge zero pud should not be
1253 	 * under splitting since we don't split the page itself, only pud to
1254 	 * a page table.
1255 	 */
1256 	if (is_huge_zero_pud(pud)) {
1257 		/* No huge zero pud yet */
1258 	}
1259 
1260 	/*
1261 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1262 	 * and split if duplicating fails.
1263 	 */
1264 	pudp_set_wrprotect(src_mm, addr, src_pud);
1265 	pud = pud_mkold(pud_wrprotect(pud));
1266 	set_pud_at(dst_mm, addr, dst_pud, pud);
1267 
1268 	ret = 0;
1269 out_unlock:
1270 	spin_unlock(src_ptl);
1271 	spin_unlock(dst_ptl);
1272 	return ret;
1273 }
1274 
1275 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1276 {
1277 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1278 
1279 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1280 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1281 		goto unlock;
1282 
1283 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1284 unlock:
1285 	spin_unlock(vmf->ptl);
1286 }
1287 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1288 
1289 void huge_pmd_set_accessed(struct vm_fault *vmf)
1290 {
1291 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1292 
1293 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1294 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1295 		goto unlock;
1296 
1297 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1298 
1299 unlock:
1300 	spin_unlock(vmf->ptl);
1301 }
1302 
1303 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1304 {
1305 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1306 	struct vm_area_struct *vma = vmf->vma;
1307 	struct page *page;
1308 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1309 	pmd_t orig_pmd = vmf->orig_pmd;
1310 
1311 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1312 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1313 
1314 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1315 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1316 
1317 	if (is_huge_zero_pmd(orig_pmd))
1318 		goto fallback;
1319 
1320 	spin_lock(vmf->ptl);
1321 
1322 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1323 		spin_unlock(vmf->ptl);
1324 		return 0;
1325 	}
1326 
1327 	page = pmd_page(orig_pmd);
1328 	VM_BUG_ON_PAGE(!PageHead(page), page);
1329 
1330 	/* Early check when only holding the PT lock. */
1331 	if (PageAnonExclusive(page))
1332 		goto reuse;
1333 
1334 	if (!trylock_page(page)) {
1335 		get_page(page);
1336 		spin_unlock(vmf->ptl);
1337 		lock_page(page);
1338 		spin_lock(vmf->ptl);
1339 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1340 			spin_unlock(vmf->ptl);
1341 			unlock_page(page);
1342 			put_page(page);
1343 			return 0;
1344 		}
1345 		put_page(page);
1346 	}
1347 
1348 	/* Recheck after temporarily dropping the PT lock. */
1349 	if (PageAnonExclusive(page)) {
1350 		unlock_page(page);
1351 		goto reuse;
1352 	}
1353 
1354 	/*
1355 	 * See do_wp_page(): we can only reuse the page exclusively if there are
1356 	 * no additional references. Note that we always drain the LRU
1357 	 * pagevecs immediately after adding a THP.
1358 	 */
1359 	if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1360 		goto unlock_fallback;
1361 	if (PageSwapCache(page))
1362 		try_to_free_swap(page);
1363 	if (page_count(page) == 1) {
1364 		pmd_t entry;
1365 
1366 		page_move_anon_rmap(page, vma);
1367 		unlock_page(page);
1368 reuse:
1369 		if (unlikely(unshare)) {
1370 			spin_unlock(vmf->ptl);
1371 			return 0;
1372 		}
1373 		entry = pmd_mkyoung(orig_pmd);
1374 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1375 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1376 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1377 		spin_unlock(vmf->ptl);
1378 		return VM_FAULT_WRITE;
1379 	}
1380 
1381 unlock_fallback:
1382 	unlock_page(page);
1383 	spin_unlock(vmf->ptl);
1384 fallback:
1385 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1386 	return VM_FAULT_FALLBACK;
1387 }
1388 
1389 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1390 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1391 					struct vm_area_struct *vma,
1392 					unsigned int flags)
1393 {
1394 	/* If the pmd is writable, we can write to the page. */
1395 	if (pmd_write(pmd))
1396 		return true;
1397 
1398 	/* Maybe FOLL_FORCE is set to override it? */
1399 	if (!(flags & FOLL_FORCE))
1400 		return false;
1401 
1402 	/* But FOLL_FORCE has no effect on shared mappings */
1403 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1404 		return false;
1405 
1406 	/* ... or read-only private ones */
1407 	if (!(vma->vm_flags & VM_MAYWRITE))
1408 		return false;
1409 
1410 	/* ... or already writable ones that just need to take a write fault */
1411 	if (vma->vm_flags & VM_WRITE)
1412 		return false;
1413 
1414 	/*
1415 	 * See can_change_pte_writable(): we broke COW and could map the page
1416 	 * writable if we have an exclusive anonymous page ...
1417 	 */
1418 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1419 		return false;
1420 
1421 	/* ... and a write-fault isn't required for other reasons. */
1422 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1423 		return false;
1424 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1425 }
1426 
1427 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1428 				   unsigned long addr,
1429 				   pmd_t *pmd,
1430 				   unsigned int flags)
1431 {
1432 	struct mm_struct *mm = vma->vm_mm;
1433 	struct page *page;
1434 
1435 	assert_spin_locked(pmd_lockptr(mm, pmd));
1436 
1437 	page = pmd_page(*pmd);
1438 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1439 
1440 	if ((flags & FOLL_WRITE) &&
1441 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1442 		return NULL;
1443 
1444 	/* Avoid dumping huge zero page */
1445 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1446 		return ERR_PTR(-EFAULT);
1447 
1448 	/* Full NUMA hinting faults to serialise migration in fault paths */
1449 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1450 		return NULL;
1451 
1452 	if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1453 		return ERR_PTR(-EMLINK);
1454 
1455 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1456 			!PageAnonExclusive(page), page);
1457 
1458 	if (!try_grab_page(page, flags))
1459 		return ERR_PTR(-ENOMEM);
1460 
1461 	if (flags & FOLL_TOUCH)
1462 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1463 
1464 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1465 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1466 
1467 	return page;
1468 }
1469 
1470 /* NUMA hinting page fault entry point for trans huge pmds */
1471 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1472 {
1473 	struct vm_area_struct *vma = vmf->vma;
1474 	pmd_t oldpmd = vmf->orig_pmd;
1475 	pmd_t pmd;
1476 	struct page *page;
1477 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1478 	int page_nid = NUMA_NO_NODE;
1479 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1480 	bool migrated = false;
1481 	bool was_writable = pmd_savedwrite(oldpmd);
1482 	int flags = 0;
1483 
1484 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1485 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1486 		spin_unlock(vmf->ptl);
1487 		goto out;
1488 	}
1489 
1490 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1491 	page = vm_normal_page_pmd(vma, haddr, pmd);
1492 	if (!page)
1493 		goto out_map;
1494 
1495 	/* See similar comment in do_numa_page for explanation */
1496 	if (!was_writable)
1497 		flags |= TNF_NO_GROUP;
1498 
1499 	page_nid = page_to_nid(page);
1500 	/*
1501 	 * For memory tiering mode, cpupid of slow memory page is used
1502 	 * to record page access time.  So use default value.
1503 	 */
1504 	if (node_is_toptier(page_nid))
1505 		last_cpupid = page_cpupid_last(page);
1506 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1507 				       &flags);
1508 
1509 	if (target_nid == NUMA_NO_NODE) {
1510 		put_page(page);
1511 		goto out_map;
1512 	}
1513 
1514 	spin_unlock(vmf->ptl);
1515 
1516 	migrated = migrate_misplaced_page(page, vma, target_nid);
1517 	if (migrated) {
1518 		flags |= TNF_MIGRATED;
1519 		page_nid = target_nid;
1520 	} else {
1521 		flags |= TNF_MIGRATE_FAIL;
1522 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1523 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1524 			spin_unlock(vmf->ptl);
1525 			goto out;
1526 		}
1527 		goto out_map;
1528 	}
1529 
1530 out:
1531 	if (page_nid != NUMA_NO_NODE)
1532 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1533 				flags);
1534 
1535 	return 0;
1536 
1537 out_map:
1538 	/* Restore the PMD */
1539 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1540 	pmd = pmd_mkyoung(pmd);
1541 	if (was_writable)
1542 		pmd = pmd_mkwrite(pmd);
1543 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1544 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1545 	spin_unlock(vmf->ptl);
1546 	goto out;
1547 }
1548 
1549 /*
1550  * Return true if we do MADV_FREE successfully on entire pmd page.
1551  * Otherwise, return false.
1552  */
1553 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1554 		pmd_t *pmd, unsigned long addr, unsigned long next)
1555 {
1556 	spinlock_t *ptl;
1557 	pmd_t orig_pmd;
1558 	struct page *page;
1559 	struct mm_struct *mm = tlb->mm;
1560 	bool ret = false;
1561 
1562 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1563 
1564 	ptl = pmd_trans_huge_lock(pmd, vma);
1565 	if (!ptl)
1566 		goto out_unlocked;
1567 
1568 	orig_pmd = *pmd;
1569 	if (is_huge_zero_pmd(orig_pmd))
1570 		goto out;
1571 
1572 	if (unlikely(!pmd_present(orig_pmd))) {
1573 		VM_BUG_ON(thp_migration_supported() &&
1574 				  !is_pmd_migration_entry(orig_pmd));
1575 		goto out;
1576 	}
1577 
1578 	page = pmd_page(orig_pmd);
1579 	/*
1580 	 * If other processes are mapping this page, we couldn't discard
1581 	 * the page unless they all do MADV_FREE so let's skip the page.
1582 	 */
1583 	if (total_mapcount(page) != 1)
1584 		goto out;
1585 
1586 	if (!trylock_page(page))
1587 		goto out;
1588 
1589 	/*
1590 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1591 	 * will deactivate only them.
1592 	 */
1593 	if (next - addr != HPAGE_PMD_SIZE) {
1594 		get_page(page);
1595 		spin_unlock(ptl);
1596 		split_huge_page(page);
1597 		unlock_page(page);
1598 		put_page(page);
1599 		goto out_unlocked;
1600 	}
1601 
1602 	if (PageDirty(page))
1603 		ClearPageDirty(page);
1604 	unlock_page(page);
1605 
1606 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1607 		pmdp_invalidate(vma, addr, pmd);
1608 		orig_pmd = pmd_mkold(orig_pmd);
1609 		orig_pmd = pmd_mkclean(orig_pmd);
1610 
1611 		set_pmd_at(mm, addr, pmd, orig_pmd);
1612 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1613 	}
1614 
1615 	mark_page_lazyfree(page);
1616 	ret = true;
1617 out:
1618 	spin_unlock(ptl);
1619 out_unlocked:
1620 	return ret;
1621 }
1622 
1623 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1624 {
1625 	pgtable_t pgtable;
1626 
1627 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1628 	pte_free(mm, pgtable);
1629 	mm_dec_nr_ptes(mm);
1630 }
1631 
1632 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1633 		 pmd_t *pmd, unsigned long addr)
1634 {
1635 	pmd_t orig_pmd;
1636 	spinlock_t *ptl;
1637 
1638 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1639 
1640 	ptl = __pmd_trans_huge_lock(pmd, vma);
1641 	if (!ptl)
1642 		return 0;
1643 	/*
1644 	 * For architectures like ppc64 we look at deposited pgtable
1645 	 * when calling pmdp_huge_get_and_clear. So do the
1646 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1647 	 * operations.
1648 	 */
1649 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1650 						tlb->fullmm);
1651 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652 	if (vma_is_special_huge(vma)) {
1653 		if (arch_needs_pgtable_deposit())
1654 			zap_deposited_table(tlb->mm, pmd);
1655 		spin_unlock(ptl);
1656 	} else if (is_huge_zero_pmd(orig_pmd)) {
1657 		zap_deposited_table(tlb->mm, pmd);
1658 		spin_unlock(ptl);
1659 	} else {
1660 		struct page *page = NULL;
1661 		int flush_needed = 1;
1662 
1663 		if (pmd_present(orig_pmd)) {
1664 			page = pmd_page(orig_pmd);
1665 			page_remove_rmap(page, vma, true);
1666 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1667 			VM_BUG_ON_PAGE(!PageHead(page), page);
1668 		} else if (thp_migration_supported()) {
1669 			swp_entry_t entry;
1670 
1671 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1672 			entry = pmd_to_swp_entry(orig_pmd);
1673 			page = pfn_swap_entry_to_page(entry);
1674 			flush_needed = 0;
1675 		} else
1676 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1677 
1678 		if (PageAnon(page)) {
1679 			zap_deposited_table(tlb->mm, pmd);
1680 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1681 		} else {
1682 			if (arch_needs_pgtable_deposit())
1683 				zap_deposited_table(tlb->mm, pmd);
1684 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1685 		}
1686 
1687 		spin_unlock(ptl);
1688 		if (flush_needed)
1689 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1690 	}
1691 	return 1;
1692 }
1693 
1694 #ifndef pmd_move_must_withdraw
1695 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1696 					 spinlock_t *old_pmd_ptl,
1697 					 struct vm_area_struct *vma)
1698 {
1699 	/*
1700 	 * With split pmd lock we also need to move preallocated
1701 	 * PTE page table if new_pmd is on different PMD page table.
1702 	 *
1703 	 * We also don't deposit and withdraw tables for file pages.
1704 	 */
1705 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1706 }
1707 #endif
1708 
1709 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1710 {
1711 #ifdef CONFIG_MEM_SOFT_DIRTY
1712 	if (unlikely(is_pmd_migration_entry(pmd)))
1713 		pmd = pmd_swp_mksoft_dirty(pmd);
1714 	else if (pmd_present(pmd))
1715 		pmd = pmd_mksoft_dirty(pmd);
1716 #endif
1717 	return pmd;
1718 }
1719 
1720 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1721 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1722 {
1723 	spinlock_t *old_ptl, *new_ptl;
1724 	pmd_t pmd;
1725 	struct mm_struct *mm = vma->vm_mm;
1726 	bool force_flush = false;
1727 
1728 	/*
1729 	 * The destination pmd shouldn't be established, free_pgtables()
1730 	 * should have release it.
1731 	 */
1732 	if (WARN_ON(!pmd_none(*new_pmd))) {
1733 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1734 		return false;
1735 	}
1736 
1737 	/*
1738 	 * We don't have to worry about the ordering of src and dst
1739 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1740 	 */
1741 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1742 	if (old_ptl) {
1743 		new_ptl = pmd_lockptr(mm, new_pmd);
1744 		if (new_ptl != old_ptl)
1745 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1746 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1747 		if (pmd_present(pmd))
1748 			force_flush = true;
1749 		VM_BUG_ON(!pmd_none(*new_pmd));
1750 
1751 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1752 			pgtable_t pgtable;
1753 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1754 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1755 		}
1756 		pmd = move_soft_dirty_pmd(pmd);
1757 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1758 		if (force_flush)
1759 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1760 		if (new_ptl != old_ptl)
1761 			spin_unlock(new_ptl);
1762 		spin_unlock(old_ptl);
1763 		return true;
1764 	}
1765 	return false;
1766 }
1767 
1768 /*
1769  * Returns
1770  *  - 0 if PMD could not be locked
1771  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1772  *      or if prot_numa but THP migration is not supported
1773  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1774  */
1775 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1776 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1777 		    unsigned long cp_flags)
1778 {
1779 	struct mm_struct *mm = vma->vm_mm;
1780 	spinlock_t *ptl;
1781 	pmd_t oldpmd, entry;
1782 	bool preserve_write;
1783 	int ret;
1784 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1785 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1786 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1787 
1788 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1789 
1790 	if (prot_numa && !thp_migration_supported())
1791 		return 1;
1792 
1793 	ptl = __pmd_trans_huge_lock(pmd, vma);
1794 	if (!ptl)
1795 		return 0;
1796 
1797 	preserve_write = prot_numa && pmd_write(*pmd);
1798 	ret = 1;
1799 
1800 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1801 	if (is_swap_pmd(*pmd)) {
1802 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1803 		struct page *page = pfn_swap_entry_to_page(entry);
1804 
1805 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1806 		if (is_writable_migration_entry(entry)) {
1807 			pmd_t newpmd;
1808 			/*
1809 			 * A protection check is difficult so
1810 			 * just be safe and disable write
1811 			 */
1812 			if (PageAnon(page))
1813 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1814 			else
1815 				entry = make_readable_migration_entry(swp_offset(entry));
1816 			newpmd = swp_entry_to_pmd(entry);
1817 			if (pmd_swp_soft_dirty(*pmd))
1818 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1819 			if (pmd_swp_uffd_wp(*pmd))
1820 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1821 			set_pmd_at(mm, addr, pmd, newpmd);
1822 		}
1823 		goto unlock;
1824 	}
1825 #endif
1826 
1827 	if (prot_numa) {
1828 		struct page *page;
1829 		bool toptier;
1830 		/*
1831 		 * Avoid trapping faults against the zero page. The read-only
1832 		 * data is likely to be read-cached on the local CPU and
1833 		 * local/remote hits to the zero page are not interesting.
1834 		 */
1835 		if (is_huge_zero_pmd(*pmd))
1836 			goto unlock;
1837 
1838 		if (pmd_protnone(*pmd))
1839 			goto unlock;
1840 
1841 		page = pmd_page(*pmd);
1842 		toptier = node_is_toptier(page_to_nid(page));
1843 		/*
1844 		 * Skip scanning top tier node if normal numa
1845 		 * balancing is disabled
1846 		 */
1847 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1848 		    toptier)
1849 			goto unlock;
1850 
1851 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1852 		    !toptier)
1853 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1854 	}
1855 	/*
1856 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1857 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1858 	 * which is also under mmap_read_lock(mm):
1859 	 *
1860 	 *	CPU0:				CPU1:
1861 	 *				change_huge_pmd(prot_numa=1)
1862 	 *				 pmdp_huge_get_and_clear_notify()
1863 	 * madvise_dontneed()
1864 	 *  zap_pmd_range()
1865 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1866 	 *   // skip the pmd
1867 	 *				 set_pmd_at();
1868 	 *				 // pmd is re-established
1869 	 *
1870 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1871 	 * which may break userspace.
1872 	 *
1873 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1874 	 * dirty/young flags set by hardware.
1875 	 */
1876 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1877 
1878 	entry = pmd_modify(oldpmd, newprot);
1879 	if (preserve_write)
1880 		entry = pmd_mk_savedwrite(entry);
1881 	if (uffd_wp) {
1882 		entry = pmd_wrprotect(entry);
1883 		entry = pmd_mkuffd_wp(entry);
1884 	} else if (uffd_wp_resolve) {
1885 		/*
1886 		 * Leave the write bit to be handled by PF interrupt
1887 		 * handler, then things like COW could be properly
1888 		 * handled.
1889 		 */
1890 		entry = pmd_clear_uffd_wp(entry);
1891 	}
1892 	ret = HPAGE_PMD_NR;
1893 	set_pmd_at(mm, addr, pmd, entry);
1894 
1895 	if (huge_pmd_needs_flush(oldpmd, entry))
1896 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1897 
1898 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1899 unlock:
1900 	spin_unlock(ptl);
1901 	return ret;
1902 }
1903 
1904 /*
1905  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1906  *
1907  * Note that if it returns page table lock pointer, this routine returns without
1908  * unlocking page table lock. So callers must unlock it.
1909  */
1910 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1911 {
1912 	spinlock_t *ptl;
1913 	ptl = pmd_lock(vma->vm_mm, pmd);
1914 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1915 			pmd_devmap(*pmd)))
1916 		return ptl;
1917 	spin_unlock(ptl);
1918 	return NULL;
1919 }
1920 
1921 /*
1922  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1923  *
1924  * Note that if it returns page table lock pointer, this routine returns without
1925  * unlocking page table lock. So callers must unlock it.
1926  */
1927 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1928 {
1929 	spinlock_t *ptl;
1930 
1931 	ptl = pud_lock(vma->vm_mm, pud);
1932 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1933 		return ptl;
1934 	spin_unlock(ptl);
1935 	return NULL;
1936 }
1937 
1938 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1939 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1940 		 pud_t *pud, unsigned long addr)
1941 {
1942 	spinlock_t *ptl;
1943 
1944 	ptl = __pud_trans_huge_lock(pud, vma);
1945 	if (!ptl)
1946 		return 0;
1947 
1948 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1949 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1950 	if (vma_is_special_huge(vma)) {
1951 		spin_unlock(ptl);
1952 		/* No zero page support yet */
1953 	} else {
1954 		/* No support for anonymous PUD pages yet */
1955 		BUG();
1956 	}
1957 	return 1;
1958 }
1959 
1960 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1961 		unsigned long haddr)
1962 {
1963 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1964 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1965 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1966 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1967 
1968 	count_vm_event(THP_SPLIT_PUD);
1969 
1970 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1971 }
1972 
1973 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1974 		unsigned long address)
1975 {
1976 	spinlock_t *ptl;
1977 	struct mmu_notifier_range range;
1978 
1979 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1980 				address & HPAGE_PUD_MASK,
1981 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1982 	mmu_notifier_invalidate_range_start(&range);
1983 	ptl = pud_lock(vma->vm_mm, pud);
1984 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1985 		goto out;
1986 	__split_huge_pud_locked(vma, pud, range.start);
1987 
1988 out:
1989 	spin_unlock(ptl);
1990 	/*
1991 	 * No need to double call mmu_notifier->invalidate_range() callback as
1992 	 * the above pudp_huge_clear_flush_notify() did already call it.
1993 	 */
1994 	mmu_notifier_invalidate_range_only_end(&range);
1995 }
1996 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1997 
1998 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1999 		unsigned long haddr, pmd_t *pmd)
2000 {
2001 	struct mm_struct *mm = vma->vm_mm;
2002 	pgtable_t pgtable;
2003 	pmd_t _pmd;
2004 	int i;
2005 
2006 	/*
2007 	 * Leave pmd empty until pte is filled note that it is fine to delay
2008 	 * notification until mmu_notifier_invalidate_range_end() as we are
2009 	 * replacing a zero pmd write protected page with a zero pte write
2010 	 * protected page.
2011 	 *
2012 	 * See Documentation/mm/mmu_notifier.rst
2013 	 */
2014 	pmdp_huge_clear_flush(vma, haddr, pmd);
2015 
2016 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2017 	pmd_populate(mm, &_pmd, pgtable);
2018 
2019 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2020 		pte_t *pte, entry;
2021 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2022 		entry = pte_mkspecial(entry);
2023 		pte = pte_offset_map(&_pmd, haddr);
2024 		VM_BUG_ON(!pte_none(*pte));
2025 		set_pte_at(mm, haddr, pte, entry);
2026 		pte_unmap(pte);
2027 	}
2028 	smp_wmb(); /* make pte visible before pmd */
2029 	pmd_populate(mm, pmd, pgtable);
2030 }
2031 
2032 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2033 		unsigned long haddr, bool freeze)
2034 {
2035 	struct mm_struct *mm = vma->vm_mm;
2036 	struct page *page;
2037 	pgtable_t pgtable;
2038 	pmd_t old_pmd, _pmd;
2039 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2040 	bool anon_exclusive = false, dirty = false;
2041 	unsigned long addr;
2042 	int i;
2043 
2044 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2045 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2046 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2047 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2048 				&& !pmd_devmap(*pmd));
2049 
2050 	count_vm_event(THP_SPLIT_PMD);
2051 
2052 	if (!vma_is_anonymous(vma)) {
2053 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2054 		/*
2055 		 * We are going to unmap this huge page. So
2056 		 * just go ahead and zap it
2057 		 */
2058 		if (arch_needs_pgtable_deposit())
2059 			zap_deposited_table(mm, pmd);
2060 		if (vma_is_special_huge(vma))
2061 			return;
2062 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2063 			swp_entry_t entry;
2064 
2065 			entry = pmd_to_swp_entry(old_pmd);
2066 			page = pfn_swap_entry_to_page(entry);
2067 		} else {
2068 			page = pmd_page(old_pmd);
2069 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2070 				set_page_dirty(page);
2071 			if (!PageReferenced(page) && pmd_young(old_pmd))
2072 				SetPageReferenced(page);
2073 			page_remove_rmap(page, vma, true);
2074 			put_page(page);
2075 		}
2076 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2077 		return;
2078 	}
2079 
2080 	if (is_huge_zero_pmd(*pmd)) {
2081 		/*
2082 		 * FIXME: Do we want to invalidate secondary mmu by calling
2083 		 * mmu_notifier_invalidate_range() see comments below inside
2084 		 * __split_huge_pmd() ?
2085 		 *
2086 		 * We are going from a zero huge page write protected to zero
2087 		 * small page also write protected so it does not seems useful
2088 		 * to invalidate secondary mmu at this time.
2089 		 */
2090 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2091 	}
2092 
2093 	/*
2094 	 * Up to this point the pmd is present and huge and userland has the
2095 	 * whole access to the hugepage during the split (which happens in
2096 	 * place). If we overwrite the pmd with the not-huge version pointing
2097 	 * to the pte here (which of course we could if all CPUs were bug
2098 	 * free), userland could trigger a small page size TLB miss on the
2099 	 * small sized TLB while the hugepage TLB entry is still established in
2100 	 * the huge TLB. Some CPU doesn't like that.
2101 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2102 	 * 383 on page 105. Intel should be safe but is also warns that it's
2103 	 * only safe if the permission and cache attributes of the two entries
2104 	 * loaded in the two TLB is identical (which should be the case here).
2105 	 * But it is generally safer to never allow small and huge TLB entries
2106 	 * for the same virtual address to be loaded simultaneously. So instead
2107 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2108 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2109 	 * must remain set at all times on the pmd until the split is complete
2110 	 * for this pmd), then we flush the SMP TLB and finally we write the
2111 	 * non-huge version of the pmd entry with pmd_populate.
2112 	 */
2113 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2114 
2115 	pmd_migration = is_pmd_migration_entry(old_pmd);
2116 	if (unlikely(pmd_migration)) {
2117 		swp_entry_t entry;
2118 
2119 		entry = pmd_to_swp_entry(old_pmd);
2120 		page = pfn_swap_entry_to_page(entry);
2121 		write = is_writable_migration_entry(entry);
2122 		if (PageAnon(page))
2123 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2124 		young = is_migration_entry_young(entry);
2125 		dirty = is_migration_entry_dirty(entry);
2126 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2127 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2128 	} else {
2129 		page = pmd_page(old_pmd);
2130 		if (pmd_dirty(old_pmd)) {
2131 			dirty = true;
2132 			SetPageDirty(page);
2133 		}
2134 		write = pmd_write(old_pmd);
2135 		young = pmd_young(old_pmd);
2136 		soft_dirty = pmd_soft_dirty(old_pmd);
2137 		uffd_wp = pmd_uffd_wp(old_pmd);
2138 
2139 		VM_BUG_ON_PAGE(!page_count(page), page);
2140 		page_ref_add(page, HPAGE_PMD_NR - 1);
2141 
2142 		/*
2143 		 * Without "freeze", we'll simply split the PMD, propagating the
2144 		 * PageAnonExclusive() flag for each PTE by setting it for
2145 		 * each subpage -- no need to (temporarily) clear.
2146 		 *
2147 		 * With "freeze" we want to replace mapped pages by
2148 		 * migration entries right away. This is only possible if we
2149 		 * managed to clear PageAnonExclusive() -- see
2150 		 * set_pmd_migration_entry().
2151 		 *
2152 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2153 		 * only and let try_to_migrate_one() fail later.
2154 		 *
2155 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2156 		 */
2157 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2158 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2159 			freeze = false;
2160 	}
2161 
2162 	/*
2163 	 * Withdraw the table only after we mark the pmd entry invalid.
2164 	 * This's critical for some architectures (Power).
2165 	 */
2166 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2167 	pmd_populate(mm, &_pmd, pgtable);
2168 
2169 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2170 		pte_t entry, *pte;
2171 		/*
2172 		 * Note that NUMA hinting access restrictions are not
2173 		 * transferred to avoid any possibility of altering
2174 		 * permissions across VMAs.
2175 		 */
2176 		if (freeze || pmd_migration) {
2177 			swp_entry_t swp_entry;
2178 			if (write)
2179 				swp_entry = make_writable_migration_entry(
2180 							page_to_pfn(page + i));
2181 			else if (anon_exclusive)
2182 				swp_entry = make_readable_exclusive_migration_entry(
2183 							page_to_pfn(page + i));
2184 			else
2185 				swp_entry = make_readable_migration_entry(
2186 							page_to_pfn(page + i));
2187 			if (young)
2188 				swp_entry = make_migration_entry_young(swp_entry);
2189 			if (dirty)
2190 				swp_entry = make_migration_entry_dirty(swp_entry);
2191 			entry = swp_entry_to_pte(swp_entry);
2192 			if (soft_dirty)
2193 				entry = pte_swp_mksoft_dirty(entry);
2194 			if (uffd_wp)
2195 				entry = pte_swp_mkuffd_wp(entry);
2196 		} else {
2197 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2198 			entry = maybe_mkwrite(entry, vma);
2199 			if (anon_exclusive)
2200 				SetPageAnonExclusive(page + i);
2201 			if (!write)
2202 				entry = pte_wrprotect(entry);
2203 			if (!young)
2204 				entry = pte_mkold(entry);
2205 			/* NOTE: this may set soft-dirty too on some archs */
2206 			if (dirty)
2207 				entry = pte_mkdirty(entry);
2208 			if (soft_dirty)
2209 				entry = pte_mksoft_dirty(entry);
2210 			if (uffd_wp)
2211 				entry = pte_mkuffd_wp(entry);
2212 		}
2213 		pte = pte_offset_map(&_pmd, addr);
2214 		BUG_ON(!pte_none(*pte));
2215 		set_pte_at(mm, addr, pte, entry);
2216 		if (!pmd_migration)
2217 			atomic_inc(&page[i]._mapcount);
2218 		pte_unmap(pte);
2219 	}
2220 
2221 	if (!pmd_migration) {
2222 		/*
2223 		 * Set PG_double_map before dropping compound_mapcount to avoid
2224 		 * false-negative page_mapped().
2225 		 */
2226 		if (compound_mapcount(page) > 1 &&
2227 		    !TestSetPageDoubleMap(page)) {
2228 			for (i = 0; i < HPAGE_PMD_NR; i++)
2229 				atomic_inc(&page[i]._mapcount);
2230 		}
2231 
2232 		lock_page_memcg(page);
2233 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2234 			/* Last compound_mapcount is gone. */
2235 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2236 						-HPAGE_PMD_NR);
2237 			if (TestClearPageDoubleMap(page)) {
2238 				/* No need in mapcount reference anymore */
2239 				for (i = 0; i < HPAGE_PMD_NR; i++)
2240 					atomic_dec(&page[i]._mapcount);
2241 			}
2242 		}
2243 		unlock_page_memcg(page);
2244 
2245 		/* Above is effectively page_remove_rmap(page, vma, true) */
2246 		munlock_vma_page(page, vma, true);
2247 	}
2248 
2249 	smp_wmb(); /* make pte visible before pmd */
2250 	pmd_populate(mm, pmd, pgtable);
2251 
2252 	if (freeze) {
2253 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2254 			page_remove_rmap(page + i, vma, false);
2255 			put_page(page + i);
2256 		}
2257 	}
2258 }
2259 
2260 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2261 		unsigned long address, bool freeze, struct folio *folio)
2262 {
2263 	spinlock_t *ptl;
2264 	struct mmu_notifier_range range;
2265 
2266 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2267 				address & HPAGE_PMD_MASK,
2268 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2269 	mmu_notifier_invalidate_range_start(&range);
2270 	ptl = pmd_lock(vma->vm_mm, pmd);
2271 
2272 	/*
2273 	 * If caller asks to setup a migration entry, we need a folio to check
2274 	 * pmd against. Otherwise we can end up replacing wrong folio.
2275 	 */
2276 	VM_BUG_ON(freeze && !folio);
2277 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2278 
2279 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2280 	    is_pmd_migration_entry(*pmd)) {
2281 		/*
2282 		 * It's safe to call pmd_page when folio is set because it's
2283 		 * guaranteed that pmd is present.
2284 		 */
2285 		if (folio && folio != page_folio(pmd_page(*pmd)))
2286 			goto out;
2287 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2288 	}
2289 
2290 out:
2291 	spin_unlock(ptl);
2292 	/*
2293 	 * No need to double call mmu_notifier->invalidate_range() callback.
2294 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2295 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2296 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2297 	 *    fault will trigger a flush_notify before pointing to a new page
2298 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2299 	 *    page in the meantime)
2300 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2301 	 *     to invalidate secondary tlb entry they are all still valid.
2302 	 *     any further changes to individual pte will notify. So no need
2303 	 *     to call mmu_notifier->invalidate_range()
2304 	 */
2305 	mmu_notifier_invalidate_range_only_end(&range);
2306 }
2307 
2308 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2309 		bool freeze, struct folio *folio)
2310 {
2311 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2312 
2313 	if (!pmd)
2314 		return;
2315 
2316 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2317 }
2318 
2319 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2320 {
2321 	/*
2322 	 * If the new address isn't hpage aligned and it could previously
2323 	 * contain an hugepage: check if we need to split an huge pmd.
2324 	 */
2325 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2326 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2327 			 ALIGN(address, HPAGE_PMD_SIZE)))
2328 		split_huge_pmd_address(vma, address, false, NULL);
2329 }
2330 
2331 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2332 			     unsigned long start,
2333 			     unsigned long end,
2334 			     long adjust_next)
2335 {
2336 	/* Check if we need to split start first. */
2337 	split_huge_pmd_if_needed(vma, start);
2338 
2339 	/* Check if we need to split end next. */
2340 	split_huge_pmd_if_needed(vma, end);
2341 
2342 	/*
2343 	 * If we're also updating the vma->vm_next->vm_start,
2344 	 * check if we need to split it.
2345 	 */
2346 	if (adjust_next > 0) {
2347 		struct vm_area_struct *next = vma->vm_next;
2348 		unsigned long nstart = next->vm_start;
2349 		nstart += adjust_next;
2350 		split_huge_pmd_if_needed(next, nstart);
2351 	}
2352 }
2353 
2354 static void unmap_page(struct page *page)
2355 {
2356 	struct folio *folio = page_folio(page);
2357 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2358 		TTU_SYNC;
2359 
2360 	VM_BUG_ON_PAGE(!PageHead(page), page);
2361 
2362 	/*
2363 	 * Anon pages need migration entries to preserve them, but file
2364 	 * pages can simply be left unmapped, then faulted back on demand.
2365 	 * If that is ever changed (perhaps for mlock), update remap_page().
2366 	 */
2367 	if (folio_test_anon(folio))
2368 		try_to_migrate(folio, ttu_flags);
2369 	else
2370 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2371 }
2372 
2373 static void remap_page(struct folio *folio, unsigned long nr)
2374 {
2375 	int i = 0;
2376 
2377 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2378 	if (!folio_test_anon(folio))
2379 		return;
2380 	for (;;) {
2381 		remove_migration_ptes(folio, folio, true);
2382 		i += folio_nr_pages(folio);
2383 		if (i >= nr)
2384 			break;
2385 		folio = folio_next(folio);
2386 	}
2387 }
2388 
2389 static void lru_add_page_tail(struct page *head, struct page *tail,
2390 		struct lruvec *lruvec, struct list_head *list)
2391 {
2392 	VM_BUG_ON_PAGE(!PageHead(head), head);
2393 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2394 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2395 	lockdep_assert_held(&lruvec->lru_lock);
2396 
2397 	if (list) {
2398 		/* page reclaim is reclaiming a huge page */
2399 		VM_WARN_ON(PageLRU(head));
2400 		get_page(tail);
2401 		list_add_tail(&tail->lru, list);
2402 	} else {
2403 		/* head is still on lru (and we have it frozen) */
2404 		VM_WARN_ON(!PageLRU(head));
2405 		if (PageUnevictable(tail))
2406 			tail->mlock_count = 0;
2407 		else
2408 			list_add_tail(&tail->lru, &head->lru);
2409 		SetPageLRU(tail);
2410 	}
2411 }
2412 
2413 static void __split_huge_page_tail(struct page *head, int tail,
2414 		struct lruvec *lruvec, struct list_head *list)
2415 {
2416 	struct page *page_tail = head + tail;
2417 
2418 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2419 
2420 	/*
2421 	 * Clone page flags before unfreezing refcount.
2422 	 *
2423 	 * After successful get_page_unless_zero() might follow flags change,
2424 	 * for example lock_page() which set PG_waiters.
2425 	 *
2426 	 * Note that for mapped sub-pages of an anonymous THP,
2427 	 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2428 	 * the migration entry instead from where remap_page() will restore it.
2429 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2430 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2431 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2432 	 */
2433 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2434 	page_tail->flags |= (head->flags &
2435 			((1L << PG_referenced) |
2436 			 (1L << PG_swapbacked) |
2437 			 (1L << PG_swapcache) |
2438 			 (1L << PG_mlocked) |
2439 			 (1L << PG_uptodate) |
2440 			 (1L << PG_active) |
2441 			 (1L << PG_workingset) |
2442 			 (1L << PG_locked) |
2443 			 (1L << PG_unevictable) |
2444 #ifdef CONFIG_64BIT
2445 			 (1L << PG_arch_2) |
2446 #endif
2447 			 (1L << PG_dirty)));
2448 
2449 	/* ->mapping in first tail page is compound_mapcount */
2450 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2451 			page_tail);
2452 	page_tail->mapping = head->mapping;
2453 	page_tail->index = head->index + tail;
2454 	page_tail->private = 0;
2455 
2456 	/* Page flags must be visible before we make the page non-compound. */
2457 	smp_wmb();
2458 
2459 	/*
2460 	 * Clear PageTail before unfreezing page refcount.
2461 	 *
2462 	 * After successful get_page_unless_zero() might follow put_page()
2463 	 * which needs correct compound_head().
2464 	 */
2465 	clear_compound_head(page_tail);
2466 
2467 	/* Finally unfreeze refcount. Additional reference from page cache. */
2468 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2469 					  PageSwapCache(head)));
2470 
2471 	if (page_is_young(head))
2472 		set_page_young(page_tail);
2473 	if (page_is_idle(head))
2474 		set_page_idle(page_tail);
2475 
2476 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2477 
2478 	/*
2479 	 * always add to the tail because some iterators expect new
2480 	 * pages to show after the currently processed elements - e.g.
2481 	 * migrate_pages
2482 	 */
2483 	lru_add_page_tail(head, page_tail, lruvec, list);
2484 }
2485 
2486 static void __split_huge_page(struct page *page, struct list_head *list,
2487 		pgoff_t end)
2488 {
2489 	struct folio *folio = page_folio(page);
2490 	struct page *head = &folio->page;
2491 	struct lruvec *lruvec;
2492 	struct address_space *swap_cache = NULL;
2493 	unsigned long offset = 0;
2494 	unsigned int nr = thp_nr_pages(head);
2495 	int i;
2496 
2497 	/* complete memcg works before add pages to LRU */
2498 	split_page_memcg(head, nr);
2499 
2500 	if (PageAnon(head) && PageSwapCache(head)) {
2501 		swp_entry_t entry = { .val = page_private(head) };
2502 
2503 		offset = swp_offset(entry);
2504 		swap_cache = swap_address_space(entry);
2505 		xa_lock(&swap_cache->i_pages);
2506 	}
2507 
2508 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2509 	lruvec = folio_lruvec_lock(folio);
2510 
2511 	ClearPageHasHWPoisoned(head);
2512 
2513 	for (i = nr - 1; i >= 1; i--) {
2514 		__split_huge_page_tail(head, i, lruvec, list);
2515 		/* Some pages can be beyond EOF: drop them from page cache */
2516 		if (head[i].index >= end) {
2517 			struct folio *tail = page_folio(head + i);
2518 
2519 			if (shmem_mapping(head->mapping))
2520 				shmem_uncharge(head->mapping->host, 1);
2521 			else if (folio_test_clear_dirty(tail))
2522 				folio_account_cleaned(tail,
2523 					inode_to_wb(folio->mapping->host));
2524 			__filemap_remove_folio(tail, NULL);
2525 			folio_put(tail);
2526 		} else if (!PageAnon(page)) {
2527 			__xa_store(&head->mapping->i_pages, head[i].index,
2528 					head + i, 0);
2529 		} else if (swap_cache) {
2530 			__xa_store(&swap_cache->i_pages, offset + i,
2531 					head + i, 0);
2532 		}
2533 	}
2534 
2535 	ClearPageCompound(head);
2536 	unlock_page_lruvec(lruvec);
2537 	/* Caller disabled irqs, so they are still disabled here */
2538 
2539 	split_page_owner(head, nr);
2540 
2541 	/* See comment in __split_huge_page_tail() */
2542 	if (PageAnon(head)) {
2543 		/* Additional pin to swap cache */
2544 		if (PageSwapCache(head)) {
2545 			page_ref_add(head, 2);
2546 			xa_unlock(&swap_cache->i_pages);
2547 		} else {
2548 			page_ref_inc(head);
2549 		}
2550 	} else {
2551 		/* Additional pin to page cache */
2552 		page_ref_add(head, 2);
2553 		xa_unlock(&head->mapping->i_pages);
2554 	}
2555 	local_irq_enable();
2556 
2557 	remap_page(folio, nr);
2558 
2559 	if (PageSwapCache(head)) {
2560 		swp_entry_t entry = { .val = page_private(head) };
2561 
2562 		split_swap_cluster(entry);
2563 	}
2564 
2565 	for (i = 0; i < nr; i++) {
2566 		struct page *subpage = head + i;
2567 		if (subpage == page)
2568 			continue;
2569 		unlock_page(subpage);
2570 
2571 		/*
2572 		 * Subpages may be freed if there wasn't any mapping
2573 		 * like if add_to_swap() is running on a lru page that
2574 		 * had its mapping zapped. And freeing these pages
2575 		 * requires taking the lru_lock so we do the put_page
2576 		 * of the tail pages after the split is complete.
2577 		 */
2578 		free_page_and_swap_cache(subpage);
2579 	}
2580 }
2581 
2582 /* Racy check whether the huge page can be split */
2583 bool can_split_folio(struct folio *folio, int *pextra_pins)
2584 {
2585 	int extra_pins;
2586 
2587 	/* Additional pins from page cache */
2588 	if (folio_test_anon(folio))
2589 		extra_pins = folio_test_swapcache(folio) ?
2590 				folio_nr_pages(folio) : 0;
2591 	else
2592 		extra_pins = folio_nr_pages(folio);
2593 	if (pextra_pins)
2594 		*pextra_pins = extra_pins;
2595 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2596 }
2597 
2598 /*
2599  * This function splits huge page into normal pages. @page can point to any
2600  * subpage of huge page to split. Split doesn't change the position of @page.
2601  *
2602  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2603  * The huge page must be locked.
2604  *
2605  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2606  *
2607  * Both head page and tail pages will inherit mapping, flags, and so on from
2608  * the hugepage.
2609  *
2610  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2611  * they are not mapped.
2612  *
2613  * Returns 0 if the hugepage is split successfully.
2614  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2615  * us.
2616  */
2617 int split_huge_page_to_list(struct page *page, struct list_head *list)
2618 {
2619 	struct folio *folio = page_folio(page);
2620 	struct page *head = &folio->page;
2621 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2622 	XA_STATE(xas, &head->mapping->i_pages, head->index);
2623 	struct anon_vma *anon_vma = NULL;
2624 	struct address_space *mapping = NULL;
2625 	int extra_pins, ret;
2626 	pgoff_t end;
2627 	bool is_hzp;
2628 
2629 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2630 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2631 
2632 	is_hzp = is_huge_zero_page(head);
2633 	VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2634 	if (is_hzp)
2635 		return -EBUSY;
2636 
2637 	if (PageWriteback(head))
2638 		return -EBUSY;
2639 
2640 	if (PageAnon(head)) {
2641 		/*
2642 		 * The caller does not necessarily hold an mmap_lock that would
2643 		 * prevent the anon_vma disappearing so we first we take a
2644 		 * reference to it and then lock the anon_vma for write. This
2645 		 * is similar to folio_lock_anon_vma_read except the write lock
2646 		 * is taken to serialise against parallel split or collapse
2647 		 * operations.
2648 		 */
2649 		anon_vma = page_get_anon_vma(head);
2650 		if (!anon_vma) {
2651 			ret = -EBUSY;
2652 			goto out;
2653 		}
2654 		end = -1;
2655 		mapping = NULL;
2656 		anon_vma_lock_write(anon_vma);
2657 	} else {
2658 		gfp_t gfp;
2659 
2660 		mapping = head->mapping;
2661 
2662 		/* Truncated ? */
2663 		if (!mapping) {
2664 			ret = -EBUSY;
2665 			goto out;
2666 		}
2667 
2668 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2669 							GFP_RECLAIM_MASK);
2670 
2671 		if (folio_test_private(folio) &&
2672 				!filemap_release_folio(folio, gfp)) {
2673 			ret = -EBUSY;
2674 			goto out;
2675 		}
2676 
2677 		xas_split_alloc(&xas, head, compound_order(head), gfp);
2678 		if (xas_error(&xas)) {
2679 			ret = xas_error(&xas);
2680 			goto out;
2681 		}
2682 
2683 		anon_vma = NULL;
2684 		i_mmap_lock_read(mapping);
2685 
2686 		/*
2687 		 *__split_huge_page() may need to trim off pages beyond EOF:
2688 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2689 		 * which cannot be nested inside the page tree lock. So note
2690 		 * end now: i_size itself may be changed at any moment, but
2691 		 * head page lock is good enough to serialize the trimming.
2692 		 */
2693 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2694 		if (shmem_mapping(mapping))
2695 			end = shmem_fallocend(mapping->host, end);
2696 	}
2697 
2698 	/*
2699 	 * Racy check if we can split the page, before unmap_page() will
2700 	 * split PMDs
2701 	 */
2702 	if (!can_split_folio(folio, &extra_pins)) {
2703 		ret = -EBUSY;
2704 		goto out_unlock;
2705 	}
2706 
2707 	unmap_page(head);
2708 
2709 	/* block interrupt reentry in xa_lock and spinlock */
2710 	local_irq_disable();
2711 	if (mapping) {
2712 		/*
2713 		 * Check if the head page is present in page cache.
2714 		 * We assume all tail are present too, if head is there.
2715 		 */
2716 		xas_lock(&xas);
2717 		xas_reset(&xas);
2718 		if (xas_load(&xas) != head)
2719 			goto fail;
2720 	}
2721 
2722 	/* Prevent deferred_split_scan() touching ->_refcount */
2723 	spin_lock(&ds_queue->split_queue_lock);
2724 	if (page_ref_freeze(head, 1 + extra_pins)) {
2725 		if (!list_empty(page_deferred_list(head))) {
2726 			ds_queue->split_queue_len--;
2727 			list_del(page_deferred_list(head));
2728 		}
2729 		spin_unlock(&ds_queue->split_queue_lock);
2730 		if (mapping) {
2731 			int nr = thp_nr_pages(head);
2732 
2733 			xas_split(&xas, head, thp_order(head));
2734 			if (PageSwapBacked(head)) {
2735 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2736 							-nr);
2737 			} else {
2738 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2739 							-nr);
2740 				filemap_nr_thps_dec(mapping);
2741 			}
2742 		}
2743 
2744 		__split_huge_page(page, list, end);
2745 		ret = 0;
2746 	} else {
2747 		spin_unlock(&ds_queue->split_queue_lock);
2748 fail:
2749 		if (mapping)
2750 			xas_unlock(&xas);
2751 		local_irq_enable();
2752 		remap_page(folio, folio_nr_pages(folio));
2753 		ret = -EBUSY;
2754 	}
2755 
2756 out_unlock:
2757 	if (anon_vma) {
2758 		anon_vma_unlock_write(anon_vma);
2759 		put_anon_vma(anon_vma);
2760 	}
2761 	if (mapping)
2762 		i_mmap_unlock_read(mapping);
2763 out:
2764 	xas_destroy(&xas);
2765 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2766 	return ret;
2767 }
2768 
2769 void free_transhuge_page(struct page *page)
2770 {
2771 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2772 	unsigned long flags;
2773 
2774 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2775 	if (!list_empty(page_deferred_list(page))) {
2776 		ds_queue->split_queue_len--;
2777 		list_del(page_deferred_list(page));
2778 	}
2779 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2780 	free_compound_page(page);
2781 }
2782 
2783 void deferred_split_huge_page(struct page *page)
2784 {
2785 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2786 #ifdef CONFIG_MEMCG
2787 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2788 #endif
2789 	unsigned long flags;
2790 
2791 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2792 
2793 	/*
2794 	 * The try_to_unmap() in page reclaim path might reach here too,
2795 	 * this may cause a race condition to corrupt deferred split queue.
2796 	 * And, if page reclaim is already handling the same page, it is
2797 	 * unnecessary to handle it again in shrinker.
2798 	 *
2799 	 * Check PageSwapCache to determine if the page is being
2800 	 * handled by page reclaim since THP swap would add the page into
2801 	 * swap cache before calling try_to_unmap().
2802 	 */
2803 	if (PageSwapCache(page))
2804 		return;
2805 
2806 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2807 	if (list_empty(page_deferred_list(page))) {
2808 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2809 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2810 		ds_queue->split_queue_len++;
2811 #ifdef CONFIG_MEMCG
2812 		if (memcg)
2813 			set_shrinker_bit(memcg, page_to_nid(page),
2814 					 deferred_split_shrinker.id);
2815 #endif
2816 	}
2817 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2818 }
2819 
2820 static unsigned long deferred_split_count(struct shrinker *shrink,
2821 		struct shrink_control *sc)
2822 {
2823 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2824 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2825 
2826 #ifdef CONFIG_MEMCG
2827 	if (sc->memcg)
2828 		ds_queue = &sc->memcg->deferred_split_queue;
2829 #endif
2830 	return READ_ONCE(ds_queue->split_queue_len);
2831 }
2832 
2833 static unsigned long deferred_split_scan(struct shrinker *shrink,
2834 		struct shrink_control *sc)
2835 {
2836 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2837 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2838 	unsigned long flags;
2839 	LIST_HEAD(list), *pos, *next;
2840 	struct page *page;
2841 	int split = 0;
2842 
2843 #ifdef CONFIG_MEMCG
2844 	if (sc->memcg)
2845 		ds_queue = &sc->memcg->deferred_split_queue;
2846 #endif
2847 
2848 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2849 	/* Take pin on all head pages to avoid freeing them under us */
2850 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2851 		page = list_entry((void *)pos, struct page, deferred_list);
2852 		page = compound_head(page);
2853 		if (get_page_unless_zero(page)) {
2854 			list_move(page_deferred_list(page), &list);
2855 		} else {
2856 			/* We lost race with put_compound_page() */
2857 			list_del_init(page_deferred_list(page));
2858 			ds_queue->split_queue_len--;
2859 		}
2860 		if (!--sc->nr_to_scan)
2861 			break;
2862 	}
2863 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2864 
2865 	list_for_each_safe(pos, next, &list) {
2866 		page = list_entry((void *)pos, struct page, deferred_list);
2867 		if (!trylock_page(page))
2868 			goto next;
2869 		/* split_huge_page() removes page from list on success */
2870 		if (!split_huge_page(page))
2871 			split++;
2872 		unlock_page(page);
2873 next:
2874 		put_page(page);
2875 	}
2876 
2877 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2878 	list_splice_tail(&list, &ds_queue->split_queue);
2879 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2880 
2881 	/*
2882 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2883 	 * This can happen if pages were freed under us.
2884 	 */
2885 	if (!split && list_empty(&ds_queue->split_queue))
2886 		return SHRINK_STOP;
2887 	return split;
2888 }
2889 
2890 static struct shrinker deferred_split_shrinker = {
2891 	.count_objects = deferred_split_count,
2892 	.scan_objects = deferred_split_scan,
2893 	.seeks = DEFAULT_SEEKS,
2894 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2895 		 SHRINKER_NONSLAB,
2896 };
2897 
2898 #ifdef CONFIG_DEBUG_FS
2899 static void split_huge_pages_all(void)
2900 {
2901 	struct zone *zone;
2902 	struct page *page;
2903 	unsigned long pfn, max_zone_pfn;
2904 	unsigned long total = 0, split = 0;
2905 
2906 	pr_debug("Split all THPs\n");
2907 	for_each_zone(zone) {
2908 		if (!managed_zone(zone))
2909 			continue;
2910 		max_zone_pfn = zone_end_pfn(zone);
2911 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2912 			int nr_pages;
2913 
2914 			page = pfn_to_online_page(pfn);
2915 			if (!page || !get_page_unless_zero(page))
2916 				continue;
2917 
2918 			if (zone != page_zone(page))
2919 				goto next;
2920 
2921 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2922 				goto next;
2923 
2924 			total++;
2925 			lock_page(page);
2926 			nr_pages = thp_nr_pages(page);
2927 			if (!split_huge_page(page))
2928 				split++;
2929 			pfn += nr_pages - 1;
2930 			unlock_page(page);
2931 next:
2932 			put_page(page);
2933 			cond_resched();
2934 		}
2935 	}
2936 
2937 	pr_debug("%lu of %lu THP split\n", split, total);
2938 }
2939 
2940 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2941 {
2942 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2943 		    is_vm_hugetlb_page(vma);
2944 }
2945 
2946 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2947 				unsigned long vaddr_end)
2948 {
2949 	int ret = 0;
2950 	struct task_struct *task;
2951 	struct mm_struct *mm;
2952 	unsigned long total = 0, split = 0;
2953 	unsigned long addr;
2954 
2955 	vaddr_start &= PAGE_MASK;
2956 	vaddr_end &= PAGE_MASK;
2957 
2958 	/* Find the task_struct from pid */
2959 	rcu_read_lock();
2960 	task = find_task_by_vpid(pid);
2961 	if (!task) {
2962 		rcu_read_unlock();
2963 		ret = -ESRCH;
2964 		goto out;
2965 	}
2966 	get_task_struct(task);
2967 	rcu_read_unlock();
2968 
2969 	/* Find the mm_struct */
2970 	mm = get_task_mm(task);
2971 	put_task_struct(task);
2972 
2973 	if (!mm) {
2974 		ret = -EINVAL;
2975 		goto out;
2976 	}
2977 
2978 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2979 		 pid, vaddr_start, vaddr_end);
2980 
2981 	mmap_read_lock(mm);
2982 	/*
2983 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2984 	 * table filled with PTE-mapped THPs, each of which is distinct.
2985 	 */
2986 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2987 		struct vm_area_struct *vma = vma_lookup(mm, addr);
2988 		struct page *page;
2989 
2990 		if (!vma)
2991 			break;
2992 
2993 		/* skip special VMA and hugetlb VMA */
2994 		if (vma_not_suitable_for_thp_split(vma)) {
2995 			addr = vma->vm_end;
2996 			continue;
2997 		}
2998 
2999 		/* FOLL_DUMP to ignore special (like zero) pages */
3000 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3001 
3002 		if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
3003 			continue;
3004 
3005 		if (!is_transparent_hugepage(page))
3006 			goto next;
3007 
3008 		total++;
3009 		if (!can_split_folio(page_folio(page), NULL))
3010 			goto next;
3011 
3012 		if (!trylock_page(page))
3013 			goto next;
3014 
3015 		if (!split_huge_page(page))
3016 			split++;
3017 
3018 		unlock_page(page);
3019 next:
3020 		put_page(page);
3021 		cond_resched();
3022 	}
3023 	mmap_read_unlock(mm);
3024 	mmput(mm);
3025 
3026 	pr_debug("%lu of %lu THP split\n", split, total);
3027 
3028 out:
3029 	return ret;
3030 }
3031 
3032 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3033 				pgoff_t off_end)
3034 {
3035 	struct filename *file;
3036 	struct file *candidate;
3037 	struct address_space *mapping;
3038 	int ret = -EINVAL;
3039 	pgoff_t index;
3040 	int nr_pages = 1;
3041 	unsigned long total = 0, split = 0;
3042 
3043 	file = getname_kernel(file_path);
3044 	if (IS_ERR(file))
3045 		return ret;
3046 
3047 	candidate = file_open_name(file, O_RDONLY, 0);
3048 	if (IS_ERR(candidate))
3049 		goto out;
3050 
3051 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3052 		 file_path, off_start, off_end);
3053 
3054 	mapping = candidate->f_mapping;
3055 
3056 	for (index = off_start; index < off_end; index += nr_pages) {
3057 		struct page *fpage = pagecache_get_page(mapping, index,
3058 						FGP_ENTRY | FGP_HEAD, 0);
3059 
3060 		nr_pages = 1;
3061 		if (xa_is_value(fpage) || !fpage)
3062 			continue;
3063 
3064 		if (!is_transparent_hugepage(fpage))
3065 			goto next;
3066 
3067 		total++;
3068 		nr_pages = thp_nr_pages(fpage);
3069 
3070 		if (!trylock_page(fpage))
3071 			goto next;
3072 
3073 		if (!split_huge_page(fpage))
3074 			split++;
3075 
3076 		unlock_page(fpage);
3077 next:
3078 		put_page(fpage);
3079 		cond_resched();
3080 	}
3081 
3082 	filp_close(candidate, NULL);
3083 	ret = 0;
3084 
3085 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3086 out:
3087 	putname(file);
3088 	return ret;
3089 }
3090 
3091 #define MAX_INPUT_BUF_SZ 255
3092 
3093 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3094 				size_t count, loff_t *ppops)
3095 {
3096 	static DEFINE_MUTEX(split_debug_mutex);
3097 	ssize_t ret;
3098 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3099 	char input_buf[MAX_INPUT_BUF_SZ];
3100 	int pid;
3101 	unsigned long vaddr_start, vaddr_end;
3102 
3103 	ret = mutex_lock_interruptible(&split_debug_mutex);
3104 	if (ret)
3105 		return ret;
3106 
3107 	ret = -EFAULT;
3108 
3109 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3110 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3111 		goto out;
3112 
3113 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3114 
3115 	if (input_buf[0] == '/') {
3116 		char *tok;
3117 		char *buf = input_buf;
3118 		char file_path[MAX_INPUT_BUF_SZ];
3119 		pgoff_t off_start = 0, off_end = 0;
3120 		size_t input_len = strlen(input_buf);
3121 
3122 		tok = strsep(&buf, ",");
3123 		if (tok) {
3124 			strcpy(file_path, tok);
3125 		} else {
3126 			ret = -EINVAL;
3127 			goto out;
3128 		}
3129 
3130 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3131 		if (ret != 2) {
3132 			ret = -EINVAL;
3133 			goto out;
3134 		}
3135 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3136 		if (!ret)
3137 			ret = input_len;
3138 
3139 		goto out;
3140 	}
3141 
3142 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3143 	if (ret == 1 && pid == 1) {
3144 		split_huge_pages_all();
3145 		ret = strlen(input_buf);
3146 		goto out;
3147 	} else if (ret != 3) {
3148 		ret = -EINVAL;
3149 		goto out;
3150 	}
3151 
3152 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3153 	if (!ret)
3154 		ret = strlen(input_buf);
3155 out:
3156 	mutex_unlock(&split_debug_mutex);
3157 	return ret;
3158 
3159 }
3160 
3161 static const struct file_operations split_huge_pages_fops = {
3162 	.owner	 = THIS_MODULE,
3163 	.write	 = split_huge_pages_write,
3164 	.llseek  = no_llseek,
3165 };
3166 
3167 static int __init split_huge_pages_debugfs(void)
3168 {
3169 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3170 			    &split_huge_pages_fops);
3171 	return 0;
3172 }
3173 late_initcall(split_huge_pages_debugfs);
3174 #endif
3175 
3176 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3177 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3178 		struct page *page)
3179 {
3180 	struct vm_area_struct *vma = pvmw->vma;
3181 	struct mm_struct *mm = vma->vm_mm;
3182 	unsigned long address = pvmw->address;
3183 	bool anon_exclusive;
3184 	pmd_t pmdval;
3185 	swp_entry_t entry;
3186 	pmd_t pmdswp;
3187 
3188 	if (!(pvmw->pmd && !pvmw->pte))
3189 		return 0;
3190 
3191 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3192 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3193 
3194 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3195 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3196 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3197 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3198 		return -EBUSY;
3199 	}
3200 
3201 	if (pmd_dirty(pmdval))
3202 		set_page_dirty(page);
3203 	if (pmd_write(pmdval))
3204 		entry = make_writable_migration_entry(page_to_pfn(page));
3205 	else if (anon_exclusive)
3206 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3207 	else
3208 		entry = make_readable_migration_entry(page_to_pfn(page));
3209 	if (pmd_young(pmdval))
3210 		entry = make_migration_entry_young(entry);
3211 	if (pmd_dirty(pmdval))
3212 		entry = make_migration_entry_dirty(entry);
3213 	pmdswp = swp_entry_to_pmd(entry);
3214 	if (pmd_soft_dirty(pmdval))
3215 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3216 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3217 	page_remove_rmap(page, vma, true);
3218 	put_page(page);
3219 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3220 
3221 	return 0;
3222 }
3223 
3224 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3225 {
3226 	struct vm_area_struct *vma = pvmw->vma;
3227 	struct mm_struct *mm = vma->vm_mm;
3228 	unsigned long address = pvmw->address;
3229 	unsigned long haddr = address & HPAGE_PMD_MASK;
3230 	pmd_t pmde;
3231 	swp_entry_t entry;
3232 
3233 	if (!(pvmw->pmd && !pvmw->pte))
3234 		return;
3235 
3236 	entry = pmd_to_swp_entry(*pvmw->pmd);
3237 	get_page(new);
3238 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3239 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3240 		pmde = pmd_mksoft_dirty(pmde);
3241 	if (is_writable_migration_entry(entry))
3242 		pmde = maybe_pmd_mkwrite(pmde, vma);
3243 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3244 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3245 	if (!is_migration_entry_young(entry))
3246 		pmde = pmd_mkold(pmde);
3247 	/* NOTE: this may contain setting soft-dirty on some archs */
3248 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3249 		pmde = pmd_mkdirty(pmde);
3250 
3251 	if (PageAnon(new)) {
3252 		rmap_t rmap_flags = RMAP_COMPOUND;
3253 
3254 		if (!is_readable_migration_entry(entry))
3255 			rmap_flags |= RMAP_EXCLUSIVE;
3256 
3257 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3258 	} else {
3259 		page_add_file_rmap(new, vma, true);
3260 	}
3261 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3262 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3263 
3264 	/* No need to invalidate - it was non-present before */
3265 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3266 	trace_remove_migration_pmd(address, pmd_val(pmde));
3267 }
3268 #endif
3269