1 /* 2 * High memory handling common code and variables. 3 * 4 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de 5 * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de 6 * 7 * 8 * Redesigned the x86 32-bit VM architecture to deal with 9 * 64-bit physical space. With current x86 CPUs this 10 * means up to 64 Gigabytes physical RAM. 11 * 12 * Rewrote high memory support to move the page cache into 13 * high memory. Implemented permanent (schedulable) kmaps 14 * based on Linus' idea. 15 * 16 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> 17 */ 18 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/swap.h> 22 #include <linux/bio.h> 23 #include <linux/pagemap.h> 24 #include <linux/mempool.h> 25 #include <linux/blkdev.h> 26 #include <linux/init.h> 27 #include <linux/hash.h> 28 #include <linux/highmem.h> 29 #include <asm/tlbflush.h> 30 31 static mempool_t *page_pool, *isa_page_pool; 32 33 static void *page_pool_alloc(unsigned int __nocast gfp_mask, void *data) 34 { 35 unsigned int gfp = gfp_mask | (unsigned int) (long) data; 36 37 return alloc_page(gfp); 38 } 39 40 static void page_pool_free(void *page, void *data) 41 { 42 __free_page(page); 43 } 44 45 /* 46 * Virtual_count is not a pure "count". 47 * 0 means that it is not mapped, and has not been mapped 48 * since a TLB flush - it is usable. 49 * 1 means that there are no users, but it has been mapped 50 * since the last TLB flush - so we can't use it. 51 * n means that there are (n-1) current users of it. 52 */ 53 #ifdef CONFIG_HIGHMEM 54 static int pkmap_count[LAST_PKMAP]; 55 static unsigned int last_pkmap_nr; 56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock); 57 58 pte_t * pkmap_page_table; 59 60 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); 61 62 static void flush_all_zero_pkmaps(void) 63 { 64 int i; 65 66 flush_cache_kmaps(); 67 68 for (i = 0; i < LAST_PKMAP; i++) { 69 struct page *page; 70 71 /* 72 * zero means we don't have anything to do, 73 * >1 means that it is still in use. Only 74 * a count of 1 means that it is free but 75 * needs to be unmapped 76 */ 77 if (pkmap_count[i] != 1) 78 continue; 79 pkmap_count[i] = 0; 80 81 /* sanity check */ 82 if (pte_none(pkmap_page_table[i])) 83 BUG(); 84 85 /* 86 * Don't need an atomic fetch-and-clear op here; 87 * no-one has the page mapped, and cannot get at 88 * its virtual address (and hence PTE) without first 89 * getting the kmap_lock (which is held here). 90 * So no dangers, even with speculative execution. 91 */ 92 page = pte_page(pkmap_page_table[i]); 93 pte_clear(&init_mm, (unsigned long)page_address(page), 94 &pkmap_page_table[i]); 95 96 set_page_address(page, NULL); 97 } 98 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); 99 } 100 101 static inline unsigned long map_new_virtual(struct page *page) 102 { 103 unsigned long vaddr; 104 int count; 105 106 start: 107 count = LAST_PKMAP; 108 /* Find an empty entry */ 109 for (;;) { 110 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; 111 if (!last_pkmap_nr) { 112 flush_all_zero_pkmaps(); 113 count = LAST_PKMAP; 114 } 115 if (!pkmap_count[last_pkmap_nr]) 116 break; /* Found a usable entry */ 117 if (--count) 118 continue; 119 120 /* 121 * Sleep for somebody else to unmap their entries 122 */ 123 { 124 DECLARE_WAITQUEUE(wait, current); 125 126 __set_current_state(TASK_UNINTERRUPTIBLE); 127 add_wait_queue(&pkmap_map_wait, &wait); 128 spin_unlock(&kmap_lock); 129 schedule(); 130 remove_wait_queue(&pkmap_map_wait, &wait); 131 spin_lock(&kmap_lock); 132 133 /* Somebody else might have mapped it while we slept */ 134 if (page_address(page)) 135 return (unsigned long)page_address(page); 136 137 /* Re-start */ 138 goto start; 139 } 140 } 141 vaddr = PKMAP_ADDR(last_pkmap_nr); 142 set_pte_at(&init_mm, vaddr, 143 &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); 144 145 pkmap_count[last_pkmap_nr] = 1; 146 set_page_address(page, (void *)vaddr); 147 148 return vaddr; 149 } 150 151 void fastcall *kmap_high(struct page *page) 152 { 153 unsigned long vaddr; 154 155 /* 156 * For highmem pages, we can't trust "virtual" until 157 * after we have the lock. 158 * 159 * We cannot call this from interrupts, as it may block 160 */ 161 spin_lock(&kmap_lock); 162 vaddr = (unsigned long)page_address(page); 163 if (!vaddr) 164 vaddr = map_new_virtual(page); 165 pkmap_count[PKMAP_NR(vaddr)]++; 166 if (pkmap_count[PKMAP_NR(vaddr)] < 2) 167 BUG(); 168 spin_unlock(&kmap_lock); 169 return (void*) vaddr; 170 } 171 172 EXPORT_SYMBOL(kmap_high); 173 174 void fastcall kunmap_high(struct page *page) 175 { 176 unsigned long vaddr; 177 unsigned long nr; 178 int need_wakeup; 179 180 spin_lock(&kmap_lock); 181 vaddr = (unsigned long)page_address(page); 182 if (!vaddr) 183 BUG(); 184 nr = PKMAP_NR(vaddr); 185 186 /* 187 * A count must never go down to zero 188 * without a TLB flush! 189 */ 190 need_wakeup = 0; 191 switch (--pkmap_count[nr]) { 192 case 0: 193 BUG(); 194 case 1: 195 /* 196 * Avoid an unnecessary wake_up() function call. 197 * The common case is pkmap_count[] == 1, but 198 * no waiters. 199 * The tasks queued in the wait-queue are guarded 200 * by both the lock in the wait-queue-head and by 201 * the kmap_lock. As the kmap_lock is held here, 202 * no need for the wait-queue-head's lock. Simply 203 * test if the queue is empty. 204 */ 205 need_wakeup = waitqueue_active(&pkmap_map_wait); 206 } 207 spin_unlock(&kmap_lock); 208 209 /* do wake-up, if needed, race-free outside of the spin lock */ 210 if (need_wakeup) 211 wake_up(&pkmap_map_wait); 212 } 213 214 EXPORT_SYMBOL(kunmap_high); 215 216 #define POOL_SIZE 64 217 218 static __init int init_emergency_pool(void) 219 { 220 struct sysinfo i; 221 si_meminfo(&i); 222 si_swapinfo(&i); 223 224 if (!i.totalhigh) 225 return 0; 226 227 page_pool = mempool_create(POOL_SIZE, page_pool_alloc, page_pool_free, NULL); 228 if (!page_pool) 229 BUG(); 230 printk("highmem bounce pool size: %d pages\n", POOL_SIZE); 231 232 return 0; 233 } 234 235 __initcall(init_emergency_pool); 236 237 /* 238 * highmem version, map in to vec 239 */ 240 static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom) 241 { 242 unsigned long flags; 243 unsigned char *vto; 244 245 local_irq_save(flags); 246 vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ); 247 memcpy(vto + to->bv_offset, vfrom, to->bv_len); 248 kunmap_atomic(vto, KM_BOUNCE_READ); 249 local_irq_restore(flags); 250 } 251 252 #else /* CONFIG_HIGHMEM */ 253 254 #define bounce_copy_vec(to, vfrom) \ 255 memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len) 256 257 #endif 258 259 #define ISA_POOL_SIZE 16 260 261 /* 262 * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA 263 * as the max address, so check if the pool has already been created. 264 */ 265 int init_emergency_isa_pool(void) 266 { 267 if (isa_page_pool) 268 return 0; 269 270 isa_page_pool = mempool_create(ISA_POOL_SIZE, page_pool_alloc, page_pool_free, (void *) __GFP_DMA); 271 if (!isa_page_pool) 272 BUG(); 273 274 printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE); 275 return 0; 276 } 277 278 /* 279 * Simple bounce buffer support for highmem pages. Depending on the 280 * queue gfp mask set, *to may or may not be a highmem page. kmap it 281 * always, it will do the Right Thing 282 */ 283 static void copy_to_high_bio_irq(struct bio *to, struct bio *from) 284 { 285 unsigned char *vfrom; 286 struct bio_vec *tovec, *fromvec; 287 int i; 288 289 __bio_for_each_segment(tovec, to, i, 0) { 290 fromvec = from->bi_io_vec + i; 291 292 /* 293 * not bounced 294 */ 295 if (tovec->bv_page == fromvec->bv_page) 296 continue; 297 298 /* 299 * fromvec->bv_offset and fromvec->bv_len might have been 300 * modified by the block layer, so use the original copy, 301 * bounce_copy_vec already uses tovec->bv_len 302 */ 303 vfrom = page_address(fromvec->bv_page) + tovec->bv_offset; 304 305 flush_dcache_page(tovec->bv_page); 306 bounce_copy_vec(tovec, vfrom); 307 } 308 } 309 310 static void bounce_end_io(struct bio *bio, mempool_t *pool, int err) 311 { 312 struct bio *bio_orig = bio->bi_private; 313 struct bio_vec *bvec, *org_vec; 314 int i; 315 316 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) 317 set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags); 318 319 /* 320 * free up bounce indirect pages used 321 */ 322 __bio_for_each_segment(bvec, bio, i, 0) { 323 org_vec = bio_orig->bi_io_vec + i; 324 if (bvec->bv_page == org_vec->bv_page) 325 continue; 326 327 mempool_free(bvec->bv_page, pool); 328 } 329 330 bio_endio(bio_orig, bio_orig->bi_size, err); 331 bio_put(bio); 332 } 333 334 static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done,int err) 335 { 336 if (bio->bi_size) 337 return 1; 338 339 bounce_end_io(bio, page_pool, err); 340 return 0; 341 } 342 343 static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err) 344 { 345 if (bio->bi_size) 346 return 1; 347 348 bounce_end_io(bio, isa_page_pool, err); 349 return 0; 350 } 351 352 static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err) 353 { 354 struct bio *bio_orig = bio->bi_private; 355 356 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 357 copy_to_high_bio_irq(bio_orig, bio); 358 359 bounce_end_io(bio, pool, err); 360 } 361 362 static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 363 { 364 if (bio->bi_size) 365 return 1; 366 367 __bounce_end_io_read(bio, page_pool, err); 368 return 0; 369 } 370 371 static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err) 372 { 373 if (bio->bi_size) 374 return 1; 375 376 __bounce_end_io_read(bio, isa_page_pool, err); 377 return 0; 378 } 379 380 static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig, 381 mempool_t *pool) 382 { 383 struct page *page; 384 struct bio *bio = NULL; 385 int i, rw = bio_data_dir(*bio_orig); 386 struct bio_vec *to, *from; 387 388 bio_for_each_segment(from, *bio_orig, i) { 389 page = from->bv_page; 390 391 /* 392 * is destination page below bounce pfn? 393 */ 394 if (page_to_pfn(page) < q->bounce_pfn) 395 continue; 396 397 /* 398 * irk, bounce it 399 */ 400 if (!bio) 401 bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt); 402 403 to = bio->bi_io_vec + i; 404 405 to->bv_page = mempool_alloc(pool, q->bounce_gfp); 406 to->bv_len = from->bv_len; 407 to->bv_offset = from->bv_offset; 408 409 if (rw == WRITE) { 410 char *vto, *vfrom; 411 412 flush_dcache_page(from->bv_page); 413 vto = page_address(to->bv_page) + to->bv_offset; 414 vfrom = kmap(from->bv_page) + from->bv_offset; 415 memcpy(vto, vfrom, to->bv_len); 416 kunmap(from->bv_page); 417 } 418 } 419 420 /* 421 * no pages bounced 422 */ 423 if (!bio) 424 return; 425 426 /* 427 * at least one page was bounced, fill in possible non-highmem 428 * pages 429 */ 430 __bio_for_each_segment(from, *bio_orig, i, 0) { 431 to = bio_iovec_idx(bio, i); 432 if (!to->bv_page) { 433 to->bv_page = from->bv_page; 434 to->bv_len = from->bv_len; 435 to->bv_offset = from->bv_offset; 436 } 437 } 438 439 bio->bi_bdev = (*bio_orig)->bi_bdev; 440 bio->bi_flags |= (1 << BIO_BOUNCED); 441 bio->bi_sector = (*bio_orig)->bi_sector; 442 bio->bi_rw = (*bio_orig)->bi_rw; 443 444 bio->bi_vcnt = (*bio_orig)->bi_vcnt; 445 bio->bi_idx = (*bio_orig)->bi_idx; 446 bio->bi_size = (*bio_orig)->bi_size; 447 448 if (pool == page_pool) { 449 bio->bi_end_io = bounce_end_io_write; 450 if (rw == READ) 451 bio->bi_end_io = bounce_end_io_read; 452 } else { 453 bio->bi_end_io = bounce_end_io_write_isa; 454 if (rw == READ) 455 bio->bi_end_io = bounce_end_io_read_isa; 456 } 457 458 bio->bi_private = *bio_orig; 459 *bio_orig = bio; 460 } 461 462 void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig) 463 { 464 mempool_t *pool; 465 466 /* 467 * for non-isa bounce case, just check if the bounce pfn is equal 468 * to or bigger than the highest pfn in the system -- in that case, 469 * don't waste time iterating over bio segments 470 */ 471 if (!(q->bounce_gfp & GFP_DMA)) { 472 if (q->bounce_pfn >= blk_max_pfn) 473 return; 474 pool = page_pool; 475 } else { 476 BUG_ON(!isa_page_pool); 477 pool = isa_page_pool; 478 } 479 480 /* 481 * slow path 482 */ 483 __blk_queue_bounce(q, bio_orig, pool); 484 } 485 486 EXPORT_SYMBOL(blk_queue_bounce); 487 488 #if defined(HASHED_PAGE_VIRTUAL) 489 490 #define PA_HASH_ORDER 7 491 492 /* 493 * Describes one page->virtual association 494 */ 495 struct page_address_map { 496 struct page *page; 497 void *virtual; 498 struct list_head list; 499 }; 500 501 /* 502 * page_address_map freelist, allocated from page_address_maps. 503 */ 504 static struct list_head page_address_pool; /* freelist */ 505 static spinlock_t pool_lock; /* protects page_address_pool */ 506 507 /* 508 * Hash table bucket 509 */ 510 static struct page_address_slot { 511 struct list_head lh; /* List of page_address_maps */ 512 spinlock_t lock; /* Protect this bucket's list */ 513 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER]; 514 515 static struct page_address_slot *page_slot(struct page *page) 516 { 517 return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)]; 518 } 519 520 void *page_address(struct page *page) 521 { 522 unsigned long flags; 523 void *ret; 524 struct page_address_slot *pas; 525 526 if (!PageHighMem(page)) 527 return lowmem_page_address(page); 528 529 pas = page_slot(page); 530 ret = NULL; 531 spin_lock_irqsave(&pas->lock, flags); 532 if (!list_empty(&pas->lh)) { 533 struct page_address_map *pam; 534 535 list_for_each_entry(pam, &pas->lh, list) { 536 if (pam->page == page) { 537 ret = pam->virtual; 538 goto done; 539 } 540 } 541 } 542 done: 543 spin_unlock_irqrestore(&pas->lock, flags); 544 return ret; 545 } 546 547 EXPORT_SYMBOL(page_address); 548 549 void set_page_address(struct page *page, void *virtual) 550 { 551 unsigned long flags; 552 struct page_address_slot *pas; 553 struct page_address_map *pam; 554 555 BUG_ON(!PageHighMem(page)); 556 557 pas = page_slot(page); 558 if (virtual) { /* Add */ 559 BUG_ON(list_empty(&page_address_pool)); 560 561 spin_lock_irqsave(&pool_lock, flags); 562 pam = list_entry(page_address_pool.next, 563 struct page_address_map, list); 564 list_del(&pam->list); 565 spin_unlock_irqrestore(&pool_lock, flags); 566 567 pam->page = page; 568 pam->virtual = virtual; 569 570 spin_lock_irqsave(&pas->lock, flags); 571 list_add_tail(&pam->list, &pas->lh); 572 spin_unlock_irqrestore(&pas->lock, flags); 573 } else { /* Remove */ 574 spin_lock_irqsave(&pas->lock, flags); 575 list_for_each_entry(pam, &pas->lh, list) { 576 if (pam->page == page) { 577 list_del(&pam->list); 578 spin_unlock_irqrestore(&pas->lock, flags); 579 spin_lock_irqsave(&pool_lock, flags); 580 list_add_tail(&pam->list, &page_address_pool); 581 spin_unlock_irqrestore(&pool_lock, flags); 582 goto done; 583 } 584 } 585 spin_unlock_irqrestore(&pas->lock, flags); 586 } 587 done: 588 return; 589 } 590 591 static struct page_address_map page_address_maps[LAST_PKMAP]; 592 593 void __init page_address_init(void) 594 { 595 int i; 596 597 INIT_LIST_HEAD(&page_address_pool); 598 for (i = 0; i < ARRAY_SIZE(page_address_maps); i++) 599 list_add(&page_address_maps[i].list, &page_address_pool); 600 for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) { 601 INIT_LIST_HEAD(&page_address_htable[i].lh); 602 spin_lock_init(&page_address_htable[i].lock); 603 } 604 spin_lock_init(&pool_lock); 605 } 606 607 #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */ 608