1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_page_refs(&folio->page, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_page_refs(&folio->page, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in page_try_share_anon_rmap(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_page_refs(&folio->page, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 static struct page *no_page_table(struct vm_area_struct *vma, 504 unsigned int flags) 505 { 506 /* 507 * When core dumping an enormous anonymous area that nobody 508 * has touched so far, we don't want to allocate unnecessary pages or 509 * page tables. Return error instead of NULL to skip handle_mm_fault, 510 * then get_dump_page() will return NULL to leave a hole in the dump. 511 * But we can only make this optimization where a hole would surely 512 * be zero-filled if handle_mm_fault() actually did handle it. 513 */ 514 if ((flags & FOLL_DUMP) && 515 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 516 return ERR_PTR(-EFAULT); 517 return NULL; 518 } 519 520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 521 pte_t *pte, unsigned int flags) 522 { 523 if (flags & FOLL_TOUCH) { 524 pte_t orig_entry = ptep_get(pte); 525 pte_t entry = orig_entry; 526 527 if (flags & FOLL_WRITE) 528 entry = pte_mkdirty(entry); 529 entry = pte_mkyoung(entry); 530 531 if (!pte_same(orig_entry, entry)) { 532 set_pte_at(vma->vm_mm, address, pte, entry); 533 update_mmu_cache(vma, address, pte); 534 } 535 } 536 537 /* Proper page table entry exists, but no corresponding struct page */ 538 return -EEXIST; 539 } 540 541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 542 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 543 struct vm_area_struct *vma, 544 unsigned int flags) 545 { 546 /* If the pte is writable, we can write to the page. */ 547 if (pte_write(pte)) 548 return true; 549 550 /* Maybe FOLL_FORCE is set to override it? */ 551 if (!(flags & FOLL_FORCE)) 552 return false; 553 554 /* But FOLL_FORCE has no effect on shared mappings */ 555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 556 return false; 557 558 /* ... or read-only private ones */ 559 if (!(vma->vm_flags & VM_MAYWRITE)) 560 return false; 561 562 /* ... or already writable ones that just need to take a write fault */ 563 if (vma->vm_flags & VM_WRITE) 564 return false; 565 566 /* 567 * See can_change_pte_writable(): we broke COW and could map the page 568 * writable if we have an exclusive anonymous page ... 569 */ 570 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 571 return false; 572 573 /* ... and a write-fault isn't required for other reasons. */ 574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 575 return false; 576 return !userfaultfd_pte_wp(vma, pte); 577 } 578 579 static struct page *follow_page_pte(struct vm_area_struct *vma, 580 unsigned long address, pmd_t *pmd, unsigned int flags, 581 struct dev_pagemap **pgmap) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 struct page *page; 585 spinlock_t *ptl; 586 pte_t *ptep, pte; 587 int ret; 588 589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 591 (FOLL_PIN | FOLL_GET))) 592 return ERR_PTR(-EINVAL); 593 594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 595 if (!ptep) 596 return no_page_table(vma, flags); 597 pte = ptep_get(ptep); 598 if (!pte_present(pte)) 599 goto no_page; 600 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 601 goto no_page; 602 603 page = vm_normal_page(vma, address, pte); 604 605 /* 606 * We only care about anon pages in can_follow_write_pte() and don't 607 * have to worry about pte_devmap() because they are never anon. 608 */ 609 if ((flags & FOLL_WRITE) && 610 !can_follow_write_pte(pte, page, vma, flags)) { 611 page = NULL; 612 goto out; 613 } 614 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 616 /* 617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 618 * case since they are only valid while holding the pgmap 619 * reference. 620 */ 621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 622 if (*pgmap) 623 page = pte_page(pte); 624 else 625 goto no_page; 626 } else if (unlikely(!page)) { 627 if (flags & FOLL_DUMP) { 628 /* Avoid special (like zero) pages in core dumps */ 629 page = ERR_PTR(-EFAULT); 630 goto out; 631 } 632 633 if (is_zero_pfn(pte_pfn(pte))) { 634 page = pte_page(pte); 635 } else { 636 ret = follow_pfn_pte(vma, address, ptep, flags); 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 } 641 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 643 page = ERR_PTR(-EMLINK); 644 goto out; 645 } 646 647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 648 !PageAnonExclusive(page), page); 649 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 651 ret = try_grab_page(page, flags); 652 if (unlikely(ret)) { 653 page = ERR_PTR(ret); 654 goto out; 655 } 656 657 /* 658 * We need to make the page accessible if and only if we are going 659 * to access its content (the FOLL_PIN case). Please see 660 * Documentation/core-api/pin_user_pages.rst for details. 661 */ 662 if (flags & FOLL_PIN) { 663 ret = arch_make_page_accessible(page); 664 if (ret) { 665 unpin_user_page(page); 666 page = ERR_PTR(ret); 667 goto out; 668 } 669 } 670 if (flags & FOLL_TOUCH) { 671 if ((flags & FOLL_WRITE) && 672 !pte_dirty(pte) && !PageDirty(page)) 673 set_page_dirty(page); 674 /* 675 * pte_mkyoung() would be more correct here, but atomic care 676 * is needed to avoid losing the dirty bit: it is easier to use 677 * mark_page_accessed(). 678 */ 679 mark_page_accessed(page); 680 } 681 out: 682 pte_unmap_unlock(ptep, ptl); 683 return page; 684 no_page: 685 pte_unmap_unlock(ptep, ptl); 686 if (!pte_none(pte)) 687 return NULL; 688 return no_page_table(vma, flags); 689 } 690 691 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 692 unsigned long address, pud_t *pudp, 693 unsigned int flags, 694 struct follow_page_context *ctx) 695 { 696 pmd_t *pmd, pmdval; 697 spinlock_t *ptl; 698 struct page *page; 699 struct mm_struct *mm = vma->vm_mm; 700 701 pmd = pmd_offset(pudp, address); 702 pmdval = pmdp_get_lockless(pmd); 703 if (pmd_none(pmdval)) 704 return no_page_table(vma, flags); 705 if (!pmd_present(pmdval)) 706 return no_page_table(vma, flags); 707 if (pmd_devmap(pmdval)) { 708 ptl = pmd_lock(mm, pmd); 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 710 spin_unlock(ptl); 711 if (page) 712 return page; 713 } 714 if (likely(!pmd_trans_huge(pmdval))) 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 716 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 718 return no_page_table(vma, flags); 719 720 ptl = pmd_lock(mm, pmd); 721 if (unlikely(!pmd_present(*pmd))) { 722 spin_unlock(ptl); 723 return no_page_table(vma, flags); 724 } 725 if (unlikely(!pmd_trans_huge(*pmd))) { 726 spin_unlock(ptl); 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 728 } 729 if (flags & FOLL_SPLIT_PMD) { 730 spin_unlock(ptl); 731 split_huge_pmd(vma, pmd, address); 732 /* If pmd was left empty, stuff a page table in there quickly */ 733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 735 } 736 page = follow_trans_huge_pmd(vma, address, pmd, flags); 737 spin_unlock(ptl); 738 ctx->page_mask = HPAGE_PMD_NR - 1; 739 return page; 740 } 741 742 static struct page *follow_pud_mask(struct vm_area_struct *vma, 743 unsigned long address, p4d_t *p4dp, 744 unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pud_t *pud; 748 spinlock_t *ptl; 749 struct page *page; 750 struct mm_struct *mm = vma->vm_mm; 751 752 pud = pud_offset(p4dp, address); 753 if (pud_none(*pud)) 754 return no_page_table(vma, flags); 755 if (pud_devmap(*pud)) { 756 ptl = pud_lock(mm, pud); 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 758 spin_unlock(ptl); 759 if (page) 760 return page; 761 } 762 if (unlikely(pud_bad(*pud))) 763 return no_page_table(vma, flags); 764 765 return follow_pmd_mask(vma, address, pud, flags, ctx); 766 } 767 768 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 769 unsigned long address, pgd_t *pgdp, 770 unsigned int flags, 771 struct follow_page_context *ctx) 772 { 773 p4d_t *p4d; 774 775 p4d = p4d_offset(pgdp, address); 776 if (p4d_none(*p4d)) 777 return no_page_table(vma, flags); 778 BUILD_BUG_ON(p4d_huge(*p4d)); 779 if (unlikely(p4d_bad(*p4d))) 780 return no_page_table(vma, flags); 781 782 return follow_pud_mask(vma, address, p4d, flags, ctx); 783 } 784 785 /** 786 * follow_page_mask - look up a page descriptor from a user-virtual address 787 * @vma: vm_area_struct mapping @address 788 * @address: virtual address to look up 789 * @flags: flags modifying lookup behaviour 790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 791 * pointer to output page_mask 792 * 793 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 794 * 795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 796 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 797 * 798 * When getting an anonymous page and the caller has to trigger unsharing 799 * of a shared anonymous page first, -EMLINK is returned. The caller should 800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 801 * relevant with FOLL_PIN and !FOLL_WRITE. 802 * 803 * On output, the @ctx->page_mask is set according to the size of the page. 804 * 805 * Return: the mapped (struct page *), %NULL if no mapping exists, or 806 * an error pointer if there is a mapping to something not represented 807 * by a page descriptor (see also vm_normal_page()). 808 */ 809 static struct page *follow_page_mask(struct vm_area_struct *vma, 810 unsigned long address, unsigned int flags, 811 struct follow_page_context *ctx) 812 { 813 pgd_t *pgd; 814 struct mm_struct *mm = vma->vm_mm; 815 816 ctx->page_mask = 0; 817 818 /* 819 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 820 * special hugetlb page table walking code. This eliminates the 821 * need to check for hugetlb entries in the general walking code. 822 * 823 * hugetlb_follow_page_mask is only for follow_page() handling here. 824 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 825 */ 826 if (is_vm_hugetlb_page(vma)) 827 return hugetlb_follow_page_mask(vma, address, flags, 828 &ctx->page_mask); 829 830 pgd = pgd_offset(mm, address); 831 832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 833 return no_page_table(vma, flags); 834 835 return follow_p4d_mask(vma, address, pgd, flags, ctx); 836 } 837 838 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 839 unsigned int foll_flags) 840 { 841 struct follow_page_context ctx = { NULL }; 842 struct page *page; 843 844 if (vma_is_secretmem(vma)) 845 return NULL; 846 847 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 848 return NULL; 849 850 page = follow_page_mask(vma, address, foll_flags, &ctx); 851 if (ctx.pgmap) 852 put_dev_pagemap(ctx.pgmap); 853 return page; 854 } 855 856 static int get_gate_page(struct mm_struct *mm, unsigned long address, 857 unsigned int gup_flags, struct vm_area_struct **vma, 858 struct page **page) 859 { 860 pgd_t *pgd; 861 p4d_t *p4d; 862 pud_t *pud; 863 pmd_t *pmd; 864 pte_t *pte; 865 pte_t entry; 866 int ret = -EFAULT; 867 868 /* user gate pages are read-only */ 869 if (gup_flags & FOLL_WRITE) 870 return -EFAULT; 871 if (address > TASK_SIZE) 872 pgd = pgd_offset_k(address); 873 else 874 pgd = pgd_offset_gate(mm, address); 875 if (pgd_none(*pgd)) 876 return -EFAULT; 877 p4d = p4d_offset(pgd, address); 878 if (p4d_none(*p4d)) 879 return -EFAULT; 880 pud = pud_offset(p4d, address); 881 if (pud_none(*pud)) 882 return -EFAULT; 883 pmd = pmd_offset(pud, address); 884 if (!pmd_present(*pmd)) 885 return -EFAULT; 886 pte = pte_offset_map(pmd, address); 887 if (!pte) 888 return -EFAULT; 889 entry = ptep_get(pte); 890 if (pte_none(entry)) 891 goto unmap; 892 *vma = get_gate_vma(mm); 893 if (!page) 894 goto out; 895 *page = vm_normal_page(*vma, address, entry); 896 if (!*page) { 897 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 898 goto unmap; 899 *page = pte_page(entry); 900 } 901 ret = try_grab_page(*page, gup_flags); 902 if (unlikely(ret)) 903 goto unmap; 904 out: 905 ret = 0; 906 unmap: 907 pte_unmap(pte); 908 return ret; 909 } 910 911 /* 912 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 913 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 914 * to 0 and -EBUSY returned. 915 */ 916 static int faultin_page(struct vm_area_struct *vma, 917 unsigned long address, unsigned int *flags, bool unshare, 918 int *locked) 919 { 920 unsigned int fault_flags = 0; 921 vm_fault_t ret; 922 923 if (*flags & FOLL_NOFAULT) 924 return -EFAULT; 925 if (*flags & FOLL_WRITE) 926 fault_flags |= FAULT_FLAG_WRITE; 927 if (*flags & FOLL_REMOTE) 928 fault_flags |= FAULT_FLAG_REMOTE; 929 if (*flags & FOLL_UNLOCKABLE) { 930 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 931 /* 932 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 933 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 934 * That's because some callers may not be prepared to 935 * handle early exits caused by non-fatal signals. 936 */ 937 if (*flags & FOLL_INTERRUPTIBLE) 938 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 939 } 940 if (*flags & FOLL_NOWAIT) 941 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 942 if (*flags & FOLL_TRIED) { 943 /* 944 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 945 * can co-exist 946 */ 947 fault_flags |= FAULT_FLAG_TRIED; 948 } 949 if (unshare) { 950 fault_flags |= FAULT_FLAG_UNSHARE; 951 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 952 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 953 } 954 955 ret = handle_mm_fault(vma, address, fault_flags, NULL); 956 957 if (ret & VM_FAULT_COMPLETED) { 958 /* 959 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 960 * mmap lock in the page fault handler. Sanity check this. 961 */ 962 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 963 *locked = 0; 964 965 /* 966 * We should do the same as VM_FAULT_RETRY, but let's not 967 * return -EBUSY since that's not reflecting the reality of 968 * what has happened - we've just fully completed a page 969 * fault, with the mmap lock released. Use -EAGAIN to show 970 * that we want to take the mmap lock _again_. 971 */ 972 return -EAGAIN; 973 } 974 975 if (ret & VM_FAULT_ERROR) { 976 int err = vm_fault_to_errno(ret, *flags); 977 978 if (err) 979 return err; 980 BUG(); 981 } 982 983 if (ret & VM_FAULT_RETRY) { 984 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 985 *locked = 0; 986 return -EBUSY; 987 } 988 989 return 0; 990 } 991 992 /* 993 * Writing to file-backed mappings which require folio dirty tracking using GUP 994 * is a fundamentally broken operation, as kernel write access to GUP mappings 995 * do not adhere to the semantics expected by a file system. 996 * 997 * Consider the following scenario:- 998 * 999 * 1. A folio is written to via GUP which write-faults the memory, notifying 1000 * the file system and dirtying the folio. 1001 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1002 * the PTE being marked read-only. 1003 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1004 * direct mapping. 1005 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1006 * (though it does not have to). 1007 * 1008 * This results in both data being written to a folio without writenotify, and 1009 * the folio being dirtied unexpectedly (if the caller decides to do so). 1010 */ 1011 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1012 unsigned long gup_flags) 1013 { 1014 /* 1015 * If we aren't pinning then no problematic write can occur. A long term 1016 * pin is the most egregious case so this is the case we disallow. 1017 */ 1018 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1019 (FOLL_PIN | FOLL_LONGTERM)) 1020 return true; 1021 1022 /* 1023 * If the VMA does not require dirty tracking then no problematic write 1024 * can occur either. 1025 */ 1026 return !vma_needs_dirty_tracking(vma); 1027 } 1028 1029 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1030 { 1031 vm_flags_t vm_flags = vma->vm_flags; 1032 int write = (gup_flags & FOLL_WRITE); 1033 int foreign = (gup_flags & FOLL_REMOTE); 1034 bool vma_anon = vma_is_anonymous(vma); 1035 1036 if (vm_flags & (VM_IO | VM_PFNMAP)) 1037 return -EFAULT; 1038 1039 if ((gup_flags & FOLL_ANON) && !vma_anon) 1040 return -EFAULT; 1041 1042 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1043 return -EOPNOTSUPP; 1044 1045 if (vma_is_secretmem(vma)) 1046 return -EFAULT; 1047 1048 if (write) { 1049 if (!vma_anon && 1050 !writable_file_mapping_allowed(vma, gup_flags)) 1051 return -EFAULT; 1052 1053 if (!(vm_flags & VM_WRITE)) { 1054 if (!(gup_flags & FOLL_FORCE)) 1055 return -EFAULT; 1056 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1057 if (is_vm_hugetlb_page(vma)) 1058 return -EFAULT; 1059 /* 1060 * We used to let the write,force case do COW in a 1061 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1062 * set a breakpoint in a read-only mapping of an 1063 * executable, without corrupting the file (yet only 1064 * when that file had been opened for writing!). 1065 * Anon pages in shared mappings are surprising: now 1066 * just reject it. 1067 */ 1068 if (!is_cow_mapping(vm_flags)) 1069 return -EFAULT; 1070 } 1071 } else if (!(vm_flags & VM_READ)) { 1072 if (!(gup_flags & FOLL_FORCE)) 1073 return -EFAULT; 1074 /* 1075 * Is there actually any vma we can reach here which does not 1076 * have VM_MAYREAD set? 1077 */ 1078 if (!(vm_flags & VM_MAYREAD)) 1079 return -EFAULT; 1080 } 1081 /* 1082 * gups are always data accesses, not instruction 1083 * fetches, so execute=false here 1084 */ 1085 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1086 return -EFAULT; 1087 return 0; 1088 } 1089 1090 /* 1091 * This is "vma_lookup()", but with a warning if we would have 1092 * historically expanded the stack in the GUP code. 1093 */ 1094 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1095 unsigned long addr) 1096 { 1097 #ifdef CONFIG_STACK_GROWSUP 1098 return vma_lookup(mm, addr); 1099 #else 1100 static volatile unsigned long next_warn; 1101 struct vm_area_struct *vma; 1102 unsigned long now, next; 1103 1104 vma = find_vma(mm, addr); 1105 if (!vma || (addr >= vma->vm_start)) 1106 return vma; 1107 1108 /* Only warn for half-way relevant accesses */ 1109 if (!(vma->vm_flags & VM_GROWSDOWN)) 1110 return NULL; 1111 if (vma->vm_start - addr > 65536) 1112 return NULL; 1113 1114 /* Let's not warn more than once an hour.. */ 1115 now = jiffies; next = next_warn; 1116 if (next && time_before(now, next)) 1117 return NULL; 1118 next_warn = now + 60*60*HZ; 1119 1120 /* Let people know things may have changed. */ 1121 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1122 current->comm, task_pid_nr(current), 1123 vma->vm_start, vma->vm_end, addr); 1124 dump_stack(); 1125 return NULL; 1126 #endif 1127 } 1128 1129 /** 1130 * __get_user_pages() - pin user pages in memory 1131 * @mm: mm_struct of target mm 1132 * @start: starting user address 1133 * @nr_pages: number of pages from start to pin 1134 * @gup_flags: flags modifying pin behaviour 1135 * @pages: array that receives pointers to the pages pinned. 1136 * Should be at least nr_pages long. Or NULL, if caller 1137 * only intends to ensure the pages are faulted in. 1138 * @locked: whether we're still with the mmap_lock held 1139 * 1140 * Returns either number of pages pinned (which may be less than the 1141 * number requested), or an error. Details about the return value: 1142 * 1143 * -- If nr_pages is 0, returns 0. 1144 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1145 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1146 * pages pinned. Again, this may be less than nr_pages. 1147 * -- 0 return value is possible when the fault would need to be retried. 1148 * 1149 * The caller is responsible for releasing returned @pages, via put_page(). 1150 * 1151 * Must be called with mmap_lock held. It may be released. See below. 1152 * 1153 * __get_user_pages walks a process's page tables and takes a reference to 1154 * each struct page that each user address corresponds to at a given 1155 * instant. That is, it takes the page that would be accessed if a user 1156 * thread accesses the given user virtual address at that instant. 1157 * 1158 * This does not guarantee that the page exists in the user mappings when 1159 * __get_user_pages returns, and there may even be a completely different 1160 * page there in some cases (eg. if mmapped pagecache has been invalidated 1161 * and subsequently re-faulted). However it does guarantee that the page 1162 * won't be freed completely. And mostly callers simply care that the page 1163 * contains data that was valid *at some point in time*. Typically, an IO 1164 * or similar operation cannot guarantee anything stronger anyway because 1165 * locks can't be held over the syscall boundary. 1166 * 1167 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1168 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1169 * appropriate) must be called after the page is finished with, and 1170 * before put_page is called. 1171 * 1172 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1173 * be released. If this happens *@locked will be set to 0 on return. 1174 * 1175 * A caller using such a combination of @gup_flags must therefore hold the 1176 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1177 * it must be held for either reading or writing and will not be released. 1178 * 1179 * In most cases, get_user_pages or get_user_pages_fast should be used 1180 * instead of __get_user_pages. __get_user_pages should be used only if 1181 * you need some special @gup_flags. 1182 */ 1183 static long __get_user_pages(struct mm_struct *mm, 1184 unsigned long start, unsigned long nr_pages, 1185 unsigned int gup_flags, struct page **pages, 1186 int *locked) 1187 { 1188 long ret = 0, i = 0; 1189 struct vm_area_struct *vma = NULL; 1190 struct follow_page_context ctx = { NULL }; 1191 1192 if (!nr_pages) 1193 return 0; 1194 1195 start = untagged_addr_remote(mm, start); 1196 1197 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1198 1199 do { 1200 struct page *page; 1201 unsigned int foll_flags = gup_flags; 1202 unsigned int page_increm; 1203 1204 /* first iteration or cross vma bound */ 1205 if (!vma || start >= vma->vm_end) { 1206 vma = gup_vma_lookup(mm, start); 1207 if (!vma && in_gate_area(mm, start)) { 1208 ret = get_gate_page(mm, start & PAGE_MASK, 1209 gup_flags, &vma, 1210 pages ? &pages[i] : NULL); 1211 if (ret) 1212 goto out; 1213 ctx.page_mask = 0; 1214 goto next_page; 1215 } 1216 1217 if (!vma) { 1218 ret = -EFAULT; 1219 goto out; 1220 } 1221 ret = check_vma_flags(vma, gup_flags); 1222 if (ret) 1223 goto out; 1224 1225 if (is_vm_hugetlb_page(vma)) { 1226 i = follow_hugetlb_page(mm, vma, pages, 1227 &start, &nr_pages, i, 1228 gup_flags, locked); 1229 if (!*locked) { 1230 /* 1231 * We've got a VM_FAULT_RETRY 1232 * and we've lost mmap_lock. 1233 * We must stop here. 1234 */ 1235 BUG_ON(gup_flags & FOLL_NOWAIT); 1236 goto out; 1237 } 1238 continue; 1239 } 1240 } 1241 retry: 1242 /* 1243 * If we have a pending SIGKILL, don't keep faulting pages and 1244 * potentially allocating memory. 1245 */ 1246 if (fatal_signal_pending(current)) { 1247 ret = -EINTR; 1248 goto out; 1249 } 1250 cond_resched(); 1251 1252 page = follow_page_mask(vma, start, foll_flags, &ctx); 1253 if (!page || PTR_ERR(page) == -EMLINK) { 1254 ret = faultin_page(vma, start, &foll_flags, 1255 PTR_ERR(page) == -EMLINK, locked); 1256 switch (ret) { 1257 case 0: 1258 goto retry; 1259 case -EBUSY: 1260 case -EAGAIN: 1261 ret = 0; 1262 fallthrough; 1263 case -EFAULT: 1264 case -ENOMEM: 1265 case -EHWPOISON: 1266 goto out; 1267 } 1268 BUG(); 1269 } else if (PTR_ERR(page) == -EEXIST) { 1270 /* 1271 * Proper page table entry exists, but no corresponding 1272 * struct page. If the caller expects **pages to be 1273 * filled in, bail out now, because that can't be done 1274 * for this page. 1275 */ 1276 if (pages) { 1277 ret = PTR_ERR(page); 1278 goto out; 1279 } 1280 1281 goto next_page; 1282 } else if (IS_ERR(page)) { 1283 ret = PTR_ERR(page); 1284 goto out; 1285 } 1286 if (pages) { 1287 pages[i] = page; 1288 flush_anon_page(vma, page, start); 1289 flush_dcache_page(page); 1290 ctx.page_mask = 0; 1291 } 1292 next_page: 1293 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1294 if (page_increm > nr_pages) 1295 page_increm = nr_pages; 1296 i += page_increm; 1297 start += page_increm * PAGE_SIZE; 1298 nr_pages -= page_increm; 1299 } while (nr_pages); 1300 out: 1301 if (ctx.pgmap) 1302 put_dev_pagemap(ctx.pgmap); 1303 return i ? i : ret; 1304 } 1305 1306 static bool vma_permits_fault(struct vm_area_struct *vma, 1307 unsigned int fault_flags) 1308 { 1309 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1310 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1311 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1312 1313 if (!(vm_flags & vma->vm_flags)) 1314 return false; 1315 1316 /* 1317 * The architecture might have a hardware protection 1318 * mechanism other than read/write that can deny access. 1319 * 1320 * gup always represents data access, not instruction 1321 * fetches, so execute=false here: 1322 */ 1323 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1324 return false; 1325 1326 return true; 1327 } 1328 1329 /** 1330 * fixup_user_fault() - manually resolve a user page fault 1331 * @mm: mm_struct of target mm 1332 * @address: user address 1333 * @fault_flags:flags to pass down to handle_mm_fault() 1334 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1335 * does not allow retry. If NULL, the caller must guarantee 1336 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1337 * 1338 * This is meant to be called in the specific scenario where for locking reasons 1339 * we try to access user memory in atomic context (within a pagefault_disable() 1340 * section), this returns -EFAULT, and we want to resolve the user fault before 1341 * trying again. 1342 * 1343 * Typically this is meant to be used by the futex code. 1344 * 1345 * The main difference with get_user_pages() is that this function will 1346 * unconditionally call handle_mm_fault() which will in turn perform all the 1347 * necessary SW fixup of the dirty and young bits in the PTE, while 1348 * get_user_pages() only guarantees to update these in the struct page. 1349 * 1350 * This is important for some architectures where those bits also gate the 1351 * access permission to the page because they are maintained in software. On 1352 * such architectures, gup() will not be enough to make a subsequent access 1353 * succeed. 1354 * 1355 * This function will not return with an unlocked mmap_lock. So it has not the 1356 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1357 */ 1358 int fixup_user_fault(struct mm_struct *mm, 1359 unsigned long address, unsigned int fault_flags, 1360 bool *unlocked) 1361 { 1362 struct vm_area_struct *vma; 1363 vm_fault_t ret; 1364 1365 address = untagged_addr_remote(mm, address); 1366 1367 if (unlocked) 1368 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1369 1370 retry: 1371 vma = gup_vma_lookup(mm, address); 1372 if (!vma) 1373 return -EFAULT; 1374 1375 if (!vma_permits_fault(vma, fault_flags)) 1376 return -EFAULT; 1377 1378 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1379 fatal_signal_pending(current)) 1380 return -EINTR; 1381 1382 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1383 1384 if (ret & VM_FAULT_COMPLETED) { 1385 /* 1386 * NOTE: it's a pity that we need to retake the lock here 1387 * to pair with the unlock() in the callers. Ideally we 1388 * could tell the callers so they do not need to unlock. 1389 */ 1390 mmap_read_lock(mm); 1391 *unlocked = true; 1392 return 0; 1393 } 1394 1395 if (ret & VM_FAULT_ERROR) { 1396 int err = vm_fault_to_errno(ret, 0); 1397 1398 if (err) 1399 return err; 1400 BUG(); 1401 } 1402 1403 if (ret & VM_FAULT_RETRY) { 1404 mmap_read_lock(mm); 1405 *unlocked = true; 1406 fault_flags |= FAULT_FLAG_TRIED; 1407 goto retry; 1408 } 1409 1410 return 0; 1411 } 1412 EXPORT_SYMBOL_GPL(fixup_user_fault); 1413 1414 /* 1415 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1416 * specified, it'll also respond to generic signals. The caller of GUP 1417 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1418 */ 1419 static bool gup_signal_pending(unsigned int flags) 1420 { 1421 if (fatal_signal_pending(current)) 1422 return true; 1423 1424 if (!(flags & FOLL_INTERRUPTIBLE)) 1425 return false; 1426 1427 return signal_pending(current); 1428 } 1429 1430 /* 1431 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1432 * the caller. This function may drop the mmap_lock. If it does so, then it will 1433 * set (*locked = 0). 1434 * 1435 * (*locked == 0) means that the caller expects this function to acquire and 1436 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1437 * the function returns, even though it may have changed temporarily during 1438 * function execution. 1439 * 1440 * Please note that this function, unlike __get_user_pages(), will not return 0 1441 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1442 */ 1443 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1444 unsigned long start, 1445 unsigned long nr_pages, 1446 struct page **pages, 1447 int *locked, 1448 unsigned int flags) 1449 { 1450 long ret, pages_done; 1451 bool must_unlock = false; 1452 1453 /* 1454 * The internal caller expects GUP to manage the lock internally and the 1455 * lock must be released when this returns. 1456 */ 1457 if (!*locked) { 1458 if (mmap_read_lock_killable(mm)) 1459 return -EAGAIN; 1460 must_unlock = true; 1461 *locked = 1; 1462 } 1463 else 1464 mmap_assert_locked(mm); 1465 1466 if (flags & FOLL_PIN) 1467 mm_set_has_pinned_flag(&mm->flags); 1468 1469 /* 1470 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1471 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1472 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1473 * for FOLL_GET, not for the newer FOLL_PIN. 1474 * 1475 * FOLL_PIN always expects pages to be non-null, but no need to assert 1476 * that here, as any failures will be obvious enough. 1477 */ 1478 if (pages && !(flags & FOLL_PIN)) 1479 flags |= FOLL_GET; 1480 1481 pages_done = 0; 1482 for (;;) { 1483 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1484 locked); 1485 if (!(flags & FOLL_UNLOCKABLE)) { 1486 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1487 pages_done = ret; 1488 break; 1489 } 1490 1491 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1492 if (!*locked) { 1493 BUG_ON(ret < 0); 1494 BUG_ON(ret >= nr_pages); 1495 } 1496 1497 if (ret > 0) { 1498 nr_pages -= ret; 1499 pages_done += ret; 1500 if (!nr_pages) 1501 break; 1502 } 1503 if (*locked) { 1504 /* 1505 * VM_FAULT_RETRY didn't trigger or it was a 1506 * FOLL_NOWAIT. 1507 */ 1508 if (!pages_done) 1509 pages_done = ret; 1510 break; 1511 } 1512 /* 1513 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1514 * For the prefault case (!pages) we only update counts. 1515 */ 1516 if (likely(pages)) 1517 pages += ret; 1518 start += ret << PAGE_SHIFT; 1519 1520 /* The lock was temporarily dropped, so we must unlock later */ 1521 must_unlock = true; 1522 1523 retry: 1524 /* 1525 * Repeat on the address that fired VM_FAULT_RETRY 1526 * with both FAULT_FLAG_ALLOW_RETRY and 1527 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1528 * by fatal signals of even common signals, depending on 1529 * the caller's request. So we need to check it before we 1530 * start trying again otherwise it can loop forever. 1531 */ 1532 if (gup_signal_pending(flags)) { 1533 if (!pages_done) 1534 pages_done = -EINTR; 1535 break; 1536 } 1537 1538 ret = mmap_read_lock_killable(mm); 1539 if (ret) { 1540 BUG_ON(ret > 0); 1541 if (!pages_done) 1542 pages_done = ret; 1543 break; 1544 } 1545 1546 *locked = 1; 1547 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1548 pages, locked); 1549 if (!*locked) { 1550 /* Continue to retry until we succeeded */ 1551 BUG_ON(ret != 0); 1552 goto retry; 1553 } 1554 if (ret != 1) { 1555 BUG_ON(ret > 1); 1556 if (!pages_done) 1557 pages_done = ret; 1558 break; 1559 } 1560 nr_pages--; 1561 pages_done++; 1562 if (!nr_pages) 1563 break; 1564 if (likely(pages)) 1565 pages++; 1566 start += PAGE_SIZE; 1567 } 1568 if (must_unlock && *locked) { 1569 /* 1570 * We either temporarily dropped the lock, or the caller 1571 * requested that we both acquire and drop the lock. Either way, 1572 * we must now unlock, and notify the caller of that state. 1573 */ 1574 mmap_read_unlock(mm); 1575 *locked = 0; 1576 } 1577 return pages_done; 1578 } 1579 1580 /** 1581 * populate_vma_page_range() - populate a range of pages in the vma. 1582 * @vma: target vma 1583 * @start: start address 1584 * @end: end address 1585 * @locked: whether the mmap_lock is still held 1586 * 1587 * This takes care of mlocking the pages too if VM_LOCKED is set. 1588 * 1589 * Return either number of pages pinned in the vma, or a negative error 1590 * code on error. 1591 * 1592 * vma->vm_mm->mmap_lock must be held. 1593 * 1594 * If @locked is NULL, it may be held for read or write and will 1595 * be unperturbed. 1596 * 1597 * If @locked is non-NULL, it must held for read only and may be 1598 * released. If it's released, *@locked will be set to 0. 1599 */ 1600 long populate_vma_page_range(struct vm_area_struct *vma, 1601 unsigned long start, unsigned long end, int *locked) 1602 { 1603 struct mm_struct *mm = vma->vm_mm; 1604 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1605 int local_locked = 1; 1606 int gup_flags; 1607 long ret; 1608 1609 VM_BUG_ON(!PAGE_ALIGNED(start)); 1610 VM_BUG_ON(!PAGE_ALIGNED(end)); 1611 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1612 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1613 mmap_assert_locked(mm); 1614 1615 /* 1616 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1617 * faultin_page() to break COW, so it has no work to do here. 1618 */ 1619 if (vma->vm_flags & VM_LOCKONFAULT) 1620 return nr_pages; 1621 1622 gup_flags = FOLL_TOUCH; 1623 /* 1624 * We want to touch writable mappings with a write fault in order 1625 * to break COW, except for shared mappings because these don't COW 1626 * and we would not want to dirty them for nothing. 1627 */ 1628 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1629 gup_flags |= FOLL_WRITE; 1630 1631 /* 1632 * We want mlock to succeed for regions that have any permissions 1633 * other than PROT_NONE. 1634 */ 1635 if (vma_is_accessible(vma)) 1636 gup_flags |= FOLL_FORCE; 1637 1638 if (locked) 1639 gup_flags |= FOLL_UNLOCKABLE; 1640 1641 /* 1642 * We made sure addr is within a VMA, so the following will 1643 * not result in a stack expansion that recurses back here. 1644 */ 1645 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1646 NULL, locked ? locked : &local_locked); 1647 lru_add_drain(); 1648 return ret; 1649 } 1650 1651 /* 1652 * faultin_vma_page_range() - populate (prefault) page tables inside the 1653 * given VMA range readable/writable 1654 * 1655 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1656 * 1657 * @vma: target vma 1658 * @start: start address 1659 * @end: end address 1660 * @write: whether to prefault readable or writable 1661 * @locked: whether the mmap_lock is still held 1662 * 1663 * Returns either number of processed pages in the vma, or a negative error 1664 * code on error (see __get_user_pages()). 1665 * 1666 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1667 * covered by the VMA. If it's released, *@locked will be set to 0. 1668 */ 1669 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1670 unsigned long end, bool write, int *locked) 1671 { 1672 struct mm_struct *mm = vma->vm_mm; 1673 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1674 int gup_flags; 1675 long ret; 1676 1677 VM_BUG_ON(!PAGE_ALIGNED(start)); 1678 VM_BUG_ON(!PAGE_ALIGNED(end)); 1679 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1680 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1681 mmap_assert_locked(mm); 1682 1683 /* 1684 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1685 * the page dirty with FOLL_WRITE -- which doesn't make a 1686 * difference with !FOLL_FORCE, because the page is writable 1687 * in the page table. 1688 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1689 * a poisoned page. 1690 * !FOLL_FORCE: Require proper access permissions. 1691 */ 1692 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE; 1693 if (write) 1694 gup_flags |= FOLL_WRITE; 1695 1696 /* 1697 * We want to report -EINVAL instead of -EFAULT for any permission 1698 * problems or incompatible mappings. 1699 */ 1700 if (check_vma_flags(vma, gup_flags)) 1701 return -EINVAL; 1702 1703 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1704 NULL, locked); 1705 lru_add_drain(); 1706 return ret; 1707 } 1708 1709 /* 1710 * __mm_populate - populate and/or mlock pages within a range of address space. 1711 * 1712 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1713 * flags. VMAs must be already marked with the desired vm_flags, and 1714 * mmap_lock must not be held. 1715 */ 1716 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1717 { 1718 struct mm_struct *mm = current->mm; 1719 unsigned long end, nstart, nend; 1720 struct vm_area_struct *vma = NULL; 1721 int locked = 0; 1722 long ret = 0; 1723 1724 end = start + len; 1725 1726 for (nstart = start; nstart < end; nstart = nend) { 1727 /* 1728 * We want to fault in pages for [nstart; end) address range. 1729 * Find first corresponding VMA. 1730 */ 1731 if (!locked) { 1732 locked = 1; 1733 mmap_read_lock(mm); 1734 vma = find_vma_intersection(mm, nstart, end); 1735 } else if (nstart >= vma->vm_end) 1736 vma = find_vma_intersection(mm, vma->vm_end, end); 1737 1738 if (!vma) 1739 break; 1740 /* 1741 * Set [nstart; nend) to intersection of desired address 1742 * range with the first VMA. Also, skip undesirable VMA types. 1743 */ 1744 nend = min(end, vma->vm_end); 1745 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1746 continue; 1747 if (nstart < vma->vm_start) 1748 nstart = vma->vm_start; 1749 /* 1750 * Now fault in a range of pages. populate_vma_page_range() 1751 * double checks the vma flags, so that it won't mlock pages 1752 * if the vma was already munlocked. 1753 */ 1754 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1755 if (ret < 0) { 1756 if (ignore_errors) { 1757 ret = 0; 1758 continue; /* continue at next VMA */ 1759 } 1760 break; 1761 } 1762 nend = nstart + ret * PAGE_SIZE; 1763 ret = 0; 1764 } 1765 if (locked) 1766 mmap_read_unlock(mm); 1767 return ret; /* 0 or negative error code */ 1768 } 1769 #else /* CONFIG_MMU */ 1770 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1771 unsigned long nr_pages, struct page **pages, 1772 int *locked, unsigned int foll_flags) 1773 { 1774 struct vm_area_struct *vma; 1775 bool must_unlock = false; 1776 unsigned long vm_flags; 1777 long i; 1778 1779 if (!nr_pages) 1780 return 0; 1781 1782 /* 1783 * The internal caller expects GUP to manage the lock internally and the 1784 * lock must be released when this returns. 1785 */ 1786 if (!*locked) { 1787 if (mmap_read_lock_killable(mm)) 1788 return -EAGAIN; 1789 must_unlock = true; 1790 *locked = 1; 1791 } 1792 1793 /* calculate required read or write permissions. 1794 * If FOLL_FORCE is set, we only require the "MAY" flags. 1795 */ 1796 vm_flags = (foll_flags & FOLL_WRITE) ? 1797 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1798 vm_flags &= (foll_flags & FOLL_FORCE) ? 1799 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1800 1801 for (i = 0; i < nr_pages; i++) { 1802 vma = find_vma(mm, start); 1803 if (!vma) 1804 break; 1805 1806 /* protect what we can, including chardevs */ 1807 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1808 !(vm_flags & vma->vm_flags)) 1809 break; 1810 1811 if (pages) { 1812 pages[i] = virt_to_page((void *)start); 1813 if (pages[i]) 1814 get_page(pages[i]); 1815 } 1816 1817 start = (start + PAGE_SIZE) & PAGE_MASK; 1818 } 1819 1820 if (must_unlock && *locked) { 1821 mmap_read_unlock(mm); 1822 *locked = 0; 1823 } 1824 1825 return i ? : -EFAULT; 1826 } 1827 #endif /* !CONFIG_MMU */ 1828 1829 /** 1830 * fault_in_writeable - fault in userspace address range for writing 1831 * @uaddr: start of address range 1832 * @size: size of address range 1833 * 1834 * Returns the number of bytes not faulted in (like copy_to_user() and 1835 * copy_from_user()). 1836 */ 1837 size_t fault_in_writeable(char __user *uaddr, size_t size) 1838 { 1839 char __user *start = uaddr, *end; 1840 1841 if (unlikely(size == 0)) 1842 return 0; 1843 if (!user_write_access_begin(uaddr, size)) 1844 return size; 1845 if (!PAGE_ALIGNED(uaddr)) { 1846 unsafe_put_user(0, uaddr, out); 1847 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1848 } 1849 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1850 if (unlikely(end < start)) 1851 end = NULL; 1852 while (uaddr != end) { 1853 unsafe_put_user(0, uaddr, out); 1854 uaddr += PAGE_SIZE; 1855 } 1856 1857 out: 1858 user_write_access_end(); 1859 if (size > uaddr - start) 1860 return size - (uaddr - start); 1861 return 0; 1862 } 1863 EXPORT_SYMBOL(fault_in_writeable); 1864 1865 /** 1866 * fault_in_subpage_writeable - fault in an address range for writing 1867 * @uaddr: start of address range 1868 * @size: size of address range 1869 * 1870 * Fault in a user address range for writing while checking for permissions at 1871 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1872 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1873 * 1874 * Returns the number of bytes not faulted in (like copy_to_user() and 1875 * copy_from_user()). 1876 */ 1877 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1878 { 1879 size_t faulted_in; 1880 1881 /* 1882 * Attempt faulting in at page granularity first for page table 1883 * permission checking. The arch-specific probe_subpage_writeable() 1884 * functions may not check for this. 1885 */ 1886 faulted_in = size - fault_in_writeable(uaddr, size); 1887 if (faulted_in) 1888 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1889 1890 return size - faulted_in; 1891 } 1892 EXPORT_SYMBOL(fault_in_subpage_writeable); 1893 1894 /* 1895 * fault_in_safe_writeable - fault in an address range for writing 1896 * @uaddr: start of address range 1897 * @size: length of address range 1898 * 1899 * Faults in an address range for writing. This is primarily useful when we 1900 * already know that some or all of the pages in the address range aren't in 1901 * memory. 1902 * 1903 * Unlike fault_in_writeable(), this function is non-destructive. 1904 * 1905 * Note that we don't pin or otherwise hold the pages referenced that we fault 1906 * in. There's no guarantee that they'll stay in memory for any duration of 1907 * time. 1908 * 1909 * Returns the number of bytes not faulted in, like copy_to_user() and 1910 * copy_from_user(). 1911 */ 1912 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1913 { 1914 unsigned long start = (unsigned long)uaddr, end; 1915 struct mm_struct *mm = current->mm; 1916 bool unlocked = false; 1917 1918 if (unlikely(size == 0)) 1919 return 0; 1920 end = PAGE_ALIGN(start + size); 1921 if (end < start) 1922 end = 0; 1923 1924 mmap_read_lock(mm); 1925 do { 1926 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1927 break; 1928 start = (start + PAGE_SIZE) & PAGE_MASK; 1929 } while (start != end); 1930 mmap_read_unlock(mm); 1931 1932 if (size > (unsigned long)uaddr - start) 1933 return size - ((unsigned long)uaddr - start); 1934 return 0; 1935 } 1936 EXPORT_SYMBOL(fault_in_safe_writeable); 1937 1938 /** 1939 * fault_in_readable - fault in userspace address range for reading 1940 * @uaddr: start of user address range 1941 * @size: size of user address range 1942 * 1943 * Returns the number of bytes not faulted in (like copy_to_user() and 1944 * copy_from_user()). 1945 */ 1946 size_t fault_in_readable(const char __user *uaddr, size_t size) 1947 { 1948 const char __user *start = uaddr, *end; 1949 volatile char c; 1950 1951 if (unlikely(size == 0)) 1952 return 0; 1953 if (!user_read_access_begin(uaddr, size)) 1954 return size; 1955 if (!PAGE_ALIGNED(uaddr)) { 1956 unsafe_get_user(c, uaddr, out); 1957 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1958 } 1959 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1960 if (unlikely(end < start)) 1961 end = NULL; 1962 while (uaddr != end) { 1963 unsafe_get_user(c, uaddr, out); 1964 uaddr += PAGE_SIZE; 1965 } 1966 1967 out: 1968 user_read_access_end(); 1969 (void)c; 1970 if (size > uaddr - start) 1971 return size - (uaddr - start); 1972 return 0; 1973 } 1974 EXPORT_SYMBOL(fault_in_readable); 1975 1976 /** 1977 * get_dump_page() - pin user page in memory while writing it to core dump 1978 * @addr: user address 1979 * 1980 * Returns struct page pointer of user page pinned for dump, 1981 * to be freed afterwards by put_page(). 1982 * 1983 * Returns NULL on any kind of failure - a hole must then be inserted into 1984 * the corefile, to preserve alignment with its headers; and also returns 1985 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1986 * allowing a hole to be left in the corefile to save disk space. 1987 * 1988 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1989 */ 1990 #ifdef CONFIG_ELF_CORE 1991 struct page *get_dump_page(unsigned long addr) 1992 { 1993 struct page *page; 1994 int locked = 0; 1995 int ret; 1996 1997 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 1998 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1999 return (ret == 1) ? page : NULL; 2000 } 2001 #endif /* CONFIG_ELF_CORE */ 2002 2003 #ifdef CONFIG_MIGRATION 2004 /* 2005 * Returns the number of collected pages. Return value is always >= 0. 2006 */ 2007 static unsigned long collect_longterm_unpinnable_pages( 2008 struct list_head *movable_page_list, 2009 unsigned long nr_pages, 2010 struct page **pages) 2011 { 2012 unsigned long i, collected = 0; 2013 struct folio *prev_folio = NULL; 2014 bool drain_allow = true; 2015 2016 for (i = 0; i < nr_pages; i++) { 2017 struct folio *folio = page_folio(pages[i]); 2018 2019 if (folio == prev_folio) 2020 continue; 2021 prev_folio = folio; 2022 2023 if (folio_is_longterm_pinnable(folio)) 2024 continue; 2025 2026 collected++; 2027 2028 if (folio_is_device_coherent(folio)) 2029 continue; 2030 2031 if (folio_test_hugetlb(folio)) { 2032 isolate_hugetlb(folio, movable_page_list); 2033 continue; 2034 } 2035 2036 if (!folio_test_lru(folio) && drain_allow) { 2037 lru_add_drain_all(); 2038 drain_allow = false; 2039 } 2040 2041 if (!folio_isolate_lru(folio)) 2042 continue; 2043 2044 list_add_tail(&folio->lru, movable_page_list); 2045 node_stat_mod_folio(folio, 2046 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2047 folio_nr_pages(folio)); 2048 } 2049 2050 return collected; 2051 } 2052 2053 /* 2054 * Unpins all pages and migrates device coherent pages and movable_page_list. 2055 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2056 * (or partial success). 2057 */ 2058 static int migrate_longterm_unpinnable_pages( 2059 struct list_head *movable_page_list, 2060 unsigned long nr_pages, 2061 struct page **pages) 2062 { 2063 int ret; 2064 unsigned long i; 2065 2066 for (i = 0; i < nr_pages; i++) { 2067 struct folio *folio = page_folio(pages[i]); 2068 2069 if (folio_is_device_coherent(folio)) { 2070 /* 2071 * Migration will fail if the page is pinned, so convert 2072 * the pin on the source page to a normal reference. 2073 */ 2074 pages[i] = NULL; 2075 folio_get(folio); 2076 gup_put_folio(folio, 1, FOLL_PIN); 2077 2078 if (migrate_device_coherent_page(&folio->page)) { 2079 ret = -EBUSY; 2080 goto err; 2081 } 2082 2083 continue; 2084 } 2085 2086 /* 2087 * We can't migrate pages with unexpected references, so drop 2088 * the reference obtained by __get_user_pages_locked(). 2089 * Migrating pages have been added to movable_page_list after 2090 * calling folio_isolate_lru() which takes a reference so the 2091 * page won't be freed if it's migrating. 2092 */ 2093 unpin_user_page(pages[i]); 2094 pages[i] = NULL; 2095 } 2096 2097 if (!list_empty(movable_page_list)) { 2098 struct migration_target_control mtc = { 2099 .nid = NUMA_NO_NODE, 2100 .gfp_mask = GFP_USER | __GFP_NOWARN, 2101 }; 2102 2103 if (migrate_pages(movable_page_list, alloc_migration_target, 2104 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2105 MR_LONGTERM_PIN, NULL)) { 2106 ret = -ENOMEM; 2107 goto err; 2108 } 2109 } 2110 2111 putback_movable_pages(movable_page_list); 2112 2113 return -EAGAIN; 2114 2115 err: 2116 for (i = 0; i < nr_pages; i++) 2117 if (pages[i]) 2118 unpin_user_page(pages[i]); 2119 putback_movable_pages(movable_page_list); 2120 2121 return ret; 2122 } 2123 2124 /* 2125 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2126 * pages in the range are required to be pinned via FOLL_PIN, before calling 2127 * this routine. 2128 * 2129 * If any pages in the range are not allowed to be pinned, then this routine 2130 * will migrate those pages away, unpin all the pages in the range and return 2131 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2132 * call this routine again. 2133 * 2134 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2135 * The caller should give up, and propagate the error back up the call stack. 2136 * 2137 * If everything is OK and all pages in the range are allowed to be pinned, then 2138 * this routine leaves all pages pinned and returns zero for success. 2139 */ 2140 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2141 struct page **pages) 2142 { 2143 unsigned long collected; 2144 LIST_HEAD(movable_page_list); 2145 2146 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2147 nr_pages, pages); 2148 if (!collected) 2149 return 0; 2150 2151 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2152 pages); 2153 } 2154 #else 2155 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2156 struct page **pages) 2157 { 2158 return 0; 2159 } 2160 #endif /* CONFIG_MIGRATION */ 2161 2162 /* 2163 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2164 * allows us to process the FOLL_LONGTERM flag. 2165 */ 2166 static long __gup_longterm_locked(struct mm_struct *mm, 2167 unsigned long start, 2168 unsigned long nr_pages, 2169 struct page **pages, 2170 int *locked, 2171 unsigned int gup_flags) 2172 { 2173 unsigned int flags; 2174 long rc, nr_pinned_pages; 2175 2176 if (!(gup_flags & FOLL_LONGTERM)) 2177 return __get_user_pages_locked(mm, start, nr_pages, pages, 2178 locked, gup_flags); 2179 2180 flags = memalloc_pin_save(); 2181 do { 2182 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2183 pages, locked, 2184 gup_flags); 2185 if (nr_pinned_pages <= 0) { 2186 rc = nr_pinned_pages; 2187 break; 2188 } 2189 2190 /* FOLL_LONGTERM implies FOLL_PIN */ 2191 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2192 } while (rc == -EAGAIN); 2193 memalloc_pin_restore(flags); 2194 return rc ? rc : nr_pinned_pages; 2195 } 2196 2197 /* 2198 * Check that the given flags are valid for the exported gup/pup interface, and 2199 * update them with the required flags that the caller must have set. 2200 */ 2201 static bool is_valid_gup_args(struct page **pages, int *locked, 2202 unsigned int *gup_flags_p, unsigned int to_set) 2203 { 2204 unsigned int gup_flags = *gup_flags_p; 2205 2206 /* 2207 * These flags not allowed to be specified externally to the gup 2208 * interfaces: 2209 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2210 * - FOLL_REMOTE is internal only and used on follow_page() 2211 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2212 */ 2213 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE | 2214 FOLL_REMOTE | FOLL_FAST_ONLY))) 2215 return false; 2216 2217 gup_flags |= to_set; 2218 if (locked) { 2219 /* At the external interface locked must be set */ 2220 if (WARN_ON_ONCE(*locked != 1)) 2221 return false; 2222 2223 gup_flags |= FOLL_UNLOCKABLE; 2224 } 2225 2226 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2227 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2228 (FOLL_PIN | FOLL_GET))) 2229 return false; 2230 2231 /* LONGTERM can only be specified when pinning */ 2232 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2233 return false; 2234 2235 /* Pages input must be given if using GET/PIN */ 2236 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2237 return false; 2238 2239 /* We want to allow the pgmap to be hot-unplugged at all times */ 2240 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2241 (gup_flags & FOLL_PCI_P2PDMA))) 2242 return false; 2243 2244 *gup_flags_p = gup_flags; 2245 return true; 2246 } 2247 2248 #ifdef CONFIG_MMU 2249 /** 2250 * get_user_pages_remote() - pin user pages in memory 2251 * @mm: mm_struct of target mm 2252 * @start: starting user address 2253 * @nr_pages: number of pages from start to pin 2254 * @gup_flags: flags modifying lookup behaviour 2255 * @pages: array that receives pointers to the pages pinned. 2256 * Should be at least nr_pages long. Or NULL, if caller 2257 * only intends to ensure the pages are faulted in. 2258 * @locked: pointer to lock flag indicating whether lock is held and 2259 * subsequently whether VM_FAULT_RETRY functionality can be 2260 * utilised. Lock must initially be held. 2261 * 2262 * Returns either number of pages pinned (which may be less than the 2263 * number requested), or an error. Details about the return value: 2264 * 2265 * -- If nr_pages is 0, returns 0. 2266 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2267 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2268 * pages pinned. Again, this may be less than nr_pages. 2269 * 2270 * The caller is responsible for releasing returned @pages, via put_page(). 2271 * 2272 * Must be called with mmap_lock held for read or write. 2273 * 2274 * get_user_pages_remote walks a process's page tables and takes a reference 2275 * to each struct page that each user address corresponds to at a given 2276 * instant. That is, it takes the page that would be accessed if a user 2277 * thread accesses the given user virtual address at that instant. 2278 * 2279 * This does not guarantee that the page exists in the user mappings when 2280 * get_user_pages_remote returns, and there may even be a completely different 2281 * page there in some cases (eg. if mmapped pagecache has been invalidated 2282 * and subsequently re-faulted). However it does guarantee that the page 2283 * won't be freed completely. And mostly callers simply care that the page 2284 * contains data that was valid *at some point in time*. Typically, an IO 2285 * or similar operation cannot guarantee anything stronger anyway because 2286 * locks can't be held over the syscall boundary. 2287 * 2288 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2289 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2290 * be called after the page is finished with, and before put_page is called. 2291 * 2292 * get_user_pages_remote is typically used for fewer-copy IO operations, 2293 * to get a handle on the memory by some means other than accesses 2294 * via the user virtual addresses. The pages may be submitted for 2295 * DMA to devices or accessed via their kernel linear mapping (via the 2296 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2297 * 2298 * See also get_user_pages_fast, for performance critical applications. 2299 * 2300 * get_user_pages_remote should be phased out in favor of 2301 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2302 * should use get_user_pages_remote because it cannot pass 2303 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2304 */ 2305 long get_user_pages_remote(struct mm_struct *mm, 2306 unsigned long start, unsigned long nr_pages, 2307 unsigned int gup_flags, struct page **pages, 2308 int *locked) 2309 { 2310 int local_locked = 1; 2311 2312 if (!is_valid_gup_args(pages, locked, &gup_flags, 2313 FOLL_TOUCH | FOLL_REMOTE)) 2314 return -EINVAL; 2315 2316 return __get_user_pages_locked(mm, start, nr_pages, pages, 2317 locked ? locked : &local_locked, 2318 gup_flags); 2319 } 2320 EXPORT_SYMBOL(get_user_pages_remote); 2321 2322 #else /* CONFIG_MMU */ 2323 long get_user_pages_remote(struct mm_struct *mm, 2324 unsigned long start, unsigned long nr_pages, 2325 unsigned int gup_flags, struct page **pages, 2326 int *locked) 2327 { 2328 return 0; 2329 } 2330 #endif /* !CONFIG_MMU */ 2331 2332 /** 2333 * get_user_pages() - pin user pages in memory 2334 * @start: starting user address 2335 * @nr_pages: number of pages from start to pin 2336 * @gup_flags: flags modifying lookup behaviour 2337 * @pages: array that receives pointers to the pages pinned. 2338 * Should be at least nr_pages long. Or NULL, if caller 2339 * only intends to ensure the pages are faulted in. 2340 * 2341 * This is the same as get_user_pages_remote(), just with a less-flexible 2342 * calling convention where we assume that the mm being operated on belongs to 2343 * the current task, and doesn't allow passing of a locked parameter. We also 2344 * obviously don't pass FOLL_REMOTE in here. 2345 */ 2346 long get_user_pages(unsigned long start, unsigned long nr_pages, 2347 unsigned int gup_flags, struct page **pages) 2348 { 2349 int locked = 1; 2350 2351 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2352 return -EINVAL; 2353 2354 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2355 &locked, gup_flags); 2356 } 2357 EXPORT_SYMBOL(get_user_pages); 2358 2359 /* 2360 * get_user_pages_unlocked() is suitable to replace the form: 2361 * 2362 * mmap_read_lock(mm); 2363 * get_user_pages(mm, ..., pages, NULL); 2364 * mmap_read_unlock(mm); 2365 * 2366 * with: 2367 * 2368 * get_user_pages_unlocked(mm, ..., pages); 2369 * 2370 * It is functionally equivalent to get_user_pages_fast so 2371 * get_user_pages_fast should be used instead if specific gup_flags 2372 * (e.g. FOLL_FORCE) are not required. 2373 */ 2374 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2375 struct page **pages, unsigned int gup_flags) 2376 { 2377 int locked = 0; 2378 2379 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2380 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2381 return -EINVAL; 2382 2383 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2384 &locked, gup_flags); 2385 } 2386 EXPORT_SYMBOL(get_user_pages_unlocked); 2387 2388 /* 2389 * Fast GUP 2390 * 2391 * get_user_pages_fast attempts to pin user pages by walking the page 2392 * tables directly and avoids taking locks. Thus the walker needs to be 2393 * protected from page table pages being freed from under it, and should 2394 * block any THP splits. 2395 * 2396 * One way to achieve this is to have the walker disable interrupts, and 2397 * rely on IPIs from the TLB flushing code blocking before the page table 2398 * pages are freed. This is unsuitable for architectures that do not need 2399 * to broadcast an IPI when invalidating TLBs. 2400 * 2401 * Another way to achieve this is to batch up page table containing pages 2402 * belonging to more than one mm_user, then rcu_sched a callback to free those 2403 * pages. Disabling interrupts will allow the fast_gup walker to both block 2404 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2405 * (which is a relatively rare event). The code below adopts this strategy. 2406 * 2407 * Before activating this code, please be aware that the following assumptions 2408 * are currently made: 2409 * 2410 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2411 * free pages containing page tables or TLB flushing requires IPI broadcast. 2412 * 2413 * *) ptes can be read atomically by the architecture. 2414 * 2415 * *) access_ok is sufficient to validate userspace address ranges. 2416 * 2417 * The last two assumptions can be relaxed by the addition of helper functions. 2418 * 2419 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2420 */ 2421 #ifdef CONFIG_HAVE_FAST_GUP 2422 2423 /* 2424 * Used in the GUP-fast path to determine whether a pin is permitted for a 2425 * specific folio. 2426 * 2427 * This call assumes the caller has pinned the folio, that the lowest page table 2428 * level still points to this folio, and that interrupts have been disabled. 2429 * 2430 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2431 * (see comment describing the writable_file_mapping_allowed() function). We 2432 * therefore try to avoid the most egregious case of a long-term mapping doing 2433 * so. 2434 * 2435 * This function cannot be as thorough as that one as the VMA is not available 2436 * in the fast path, so instead we whitelist known good cases and if in doubt, 2437 * fall back to the slow path. 2438 */ 2439 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) 2440 { 2441 struct address_space *mapping; 2442 unsigned long mapping_flags; 2443 2444 /* 2445 * If we aren't pinning then no problematic write can occur. A long term 2446 * pin is the most egregious case so this is the one we disallow. 2447 */ 2448 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != 2449 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2450 return true; 2451 2452 /* The folio is pinned, so we can safely access folio fields. */ 2453 2454 if (WARN_ON_ONCE(folio_test_slab(folio))) 2455 return false; 2456 2457 /* hugetlb mappings do not require dirty-tracking. */ 2458 if (folio_test_hugetlb(folio)) 2459 return true; 2460 2461 /* 2462 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2463 * cannot proceed, which means no actions performed under RCU can 2464 * proceed either. 2465 * 2466 * inodes and thus their mappings are freed under RCU, which means the 2467 * mapping cannot be freed beneath us and thus we can safely dereference 2468 * it. 2469 */ 2470 lockdep_assert_irqs_disabled(); 2471 2472 /* 2473 * However, there may be operations which _alter_ the mapping, so ensure 2474 * we read it once and only once. 2475 */ 2476 mapping = READ_ONCE(folio->mapping); 2477 2478 /* 2479 * The mapping may have been truncated, in any case we cannot determine 2480 * if this mapping is safe - fall back to slow path to determine how to 2481 * proceed. 2482 */ 2483 if (!mapping) 2484 return false; 2485 2486 /* Anonymous folios pose no problem. */ 2487 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2488 if (mapping_flags) 2489 return mapping_flags & PAGE_MAPPING_ANON; 2490 2491 /* 2492 * At this point, we know the mapping is non-null and points to an 2493 * address_space object. The only remaining whitelisted file system is 2494 * shmem. 2495 */ 2496 return shmem_mapping(mapping); 2497 } 2498 2499 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2500 unsigned int flags, 2501 struct page **pages) 2502 { 2503 while ((*nr) - nr_start) { 2504 struct page *page = pages[--(*nr)]; 2505 2506 ClearPageReferenced(page); 2507 if (flags & FOLL_PIN) 2508 unpin_user_page(page); 2509 else 2510 put_page(page); 2511 } 2512 } 2513 2514 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2515 /* 2516 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2517 * operations. 2518 * 2519 * To pin the page, fast-gup needs to do below in order: 2520 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2521 * 2522 * For the rest of pgtable operations where pgtable updates can be racy 2523 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2524 * is pinned. 2525 * 2526 * Above will work for all pte-level operations, including THP split. 2527 * 2528 * For THP collapse, it's a bit more complicated because fast-gup may be 2529 * walking a pgtable page that is being freed (pte is still valid but pmd 2530 * can be cleared already). To avoid race in such condition, we need to 2531 * also check pmd here to make sure pmd doesn't change (corresponds to 2532 * pmdp_collapse_flush() in the THP collapse code path). 2533 */ 2534 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2535 unsigned long end, unsigned int flags, 2536 struct page **pages, int *nr) 2537 { 2538 struct dev_pagemap *pgmap = NULL; 2539 int nr_start = *nr, ret = 0; 2540 pte_t *ptep, *ptem; 2541 2542 ptem = ptep = pte_offset_map(&pmd, addr); 2543 if (!ptep) 2544 return 0; 2545 do { 2546 pte_t pte = ptep_get_lockless(ptep); 2547 struct page *page; 2548 struct folio *folio; 2549 2550 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2551 goto pte_unmap; 2552 2553 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2554 goto pte_unmap; 2555 2556 if (pte_devmap(pte)) { 2557 if (unlikely(flags & FOLL_LONGTERM)) 2558 goto pte_unmap; 2559 2560 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2561 if (unlikely(!pgmap)) { 2562 undo_dev_pagemap(nr, nr_start, flags, pages); 2563 goto pte_unmap; 2564 } 2565 } else if (pte_special(pte)) 2566 goto pte_unmap; 2567 2568 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2569 page = pte_page(pte); 2570 2571 folio = try_grab_folio(page, 1, flags); 2572 if (!folio) 2573 goto pte_unmap; 2574 2575 if (unlikely(page_is_secretmem(page))) { 2576 gup_put_folio(folio, 1, flags); 2577 goto pte_unmap; 2578 } 2579 2580 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2581 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2582 gup_put_folio(folio, 1, flags); 2583 goto pte_unmap; 2584 } 2585 2586 if (!folio_fast_pin_allowed(folio, flags)) { 2587 gup_put_folio(folio, 1, flags); 2588 goto pte_unmap; 2589 } 2590 2591 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2592 gup_put_folio(folio, 1, flags); 2593 goto pte_unmap; 2594 } 2595 2596 /* 2597 * We need to make the page accessible if and only if we are 2598 * going to access its content (the FOLL_PIN case). Please 2599 * see Documentation/core-api/pin_user_pages.rst for 2600 * details. 2601 */ 2602 if (flags & FOLL_PIN) { 2603 ret = arch_make_page_accessible(page); 2604 if (ret) { 2605 gup_put_folio(folio, 1, flags); 2606 goto pte_unmap; 2607 } 2608 } 2609 folio_set_referenced(folio); 2610 pages[*nr] = page; 2611 (*nr)++; 2612 } while (ptep++, addr += PAGE_SIZE, addr != end); 2613 2614 ret = 1; 2615 2616 pte_unmap: 2617 if (pgmap) 2618 put_dev_pagemap(pgmap); 2619 pte_unmap(ptem); 2620 return ret; 2621 } 2622 #else 2623 2624 /* 2625 * If we can't determine whether or not a pte is special, then fail immediately 2626 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2627 * to be special. 2628 * 2629 * For a futex to be placed on a THP tail page, get_futex_key requires a 2630 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2631 * useful to have gup_huge_pmd even if we can't operate on ptes. 2632 */ 2633 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2634 unsigned long end, unsigned int flags, 2635 struct page **pages, int *nr) 2636 { 2637 return 0; 2638 } 2639 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2640 2641 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2642 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2643 unsigned long end, unsigned int flags, 2644 struct page **pages, int *nr) 2645 { 2646 int nr_start = *nr; 2647 struct dev_pagemap *pgmap = NULL; 2648 2649 do { 2650 struct page *page = pfn_to_page(pfn); 2651 2652 pgmap = get_dev_pagemap(pfn, pgmap); 2653 if (unlikely(!pgmap)) { 2654 undo_dev_pagemap(nr, nr_start, flags, pages); 2655 break; 2656 } 2657 2658 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2659 undo_dev_pagemap(nr, nr_start, flags, pages); 2660 break; 2661 } 2662 2663 SetPageReferenced(page); 2664 pages[*nr] = page; 2665 if (unlikely(try_grab_page(page, flags))) { 2666 undo_dev_pagemap(nr, nr_start, flags, pages); 2667 break; 2668 } 2669 (*nr)++; 2670 pfn++; 2671 } while (addr += PAGE_SIZE, addr != end); 2672 2673 put_dev_pagemap(pgmap); 2674 return addr == end; 2675 } 2676 2677 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2678 unsigned long end, unsigned int flags, 2679 struct page **pages, int *nr) 2680 { 2681 unsigned long fault_pfn; 2682 int nr_start = *nr; 2683 2684 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2685 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2686 return 0; 2687 2688 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2689 undo_dev_pagemap(nr, nr_start, flags, pages); 2690 return 0; 2691 } 2692 return 1; 2693 } 2694 2695 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2696 unsigned long end, unsigned int flags, 2697 struct page **pages, int *nr) 2698 { 2699 unsigned long fault_pfn; 2700 int nr_start = *nr; 2701 2702 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2703 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2704 return 0; 2705 2706 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2707 undo_dev_pagemap(nr, nr_start, flags, pages); 2708 return 0; 2709 } 2710 return 1; 2711 } 2712 #else 2713 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2714 unsigned long end, unsigned int flags, 2715 struct page **pages, int *nr) 2716 { 2717 BUILD_BUG(); 2718 return 0; 2719 } 2720 2721 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2722 unsigned long end, unsigned int flags, 2723 struct page **pages, int *nr) 2724 { 2725 BUILD_BUG(); 2726 return 0; 2727 } 2728 #endif 2729 2730 static int record_subpages(struct page *page, unsigned long addr, 2731 unsigned long end, struct page **pages) 2732 { 2733 int nr; 2734 2735 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2736 pages[nr] = nth_page(page, nr); 2737 2738 return nr; 2739 } 2740 2741 #ifdef CONFIG_ARCH_HAS_HUGEPD 2742 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2743 unsigned long sz) 2744 { 2745 unsigned long __boundary = (addr + sz) & ~(sz-1); 2746 return (__boundary - 1 < end - 1) ? __boundary : end; 2747 } 2748 2749 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2750 unsigned long end, unsigned int flags, 2751 struct page **pages, int *nr) 2752 { 2753 unsigned long pte_end; 2754 struct page *page; 2755 struct folio *folio; 2756 pte_t pte; 2757 int refs; 2758 2759 pte_end = (addr + sz) & ~(sz-1); 2760 if (pte_end < end) 2761 end = pte_end; 2762 2763 pte = huge_ptep_get(ptep); 2764 2765 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2766 return 0; 2767 2768 /* hugepages are never "special" */ 2769 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2770 2771 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2772 refs = record_subpages(page, addr, end, pages + *nr); 2773 2774 folio = try_grab_folio(page, refs, flags); 2775 if (!folio) 2776 return 0; 2777 2778 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2779 gup_put_folio(folio, refs, flags); 2780 return 0; 2781 } 2782 2783 if (!folio_fast_pin_allowed(folio, flags)) { 2784 gup_put_folio(folio, refs, flags); 2785 return 0; 2786 } 2787 2788 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2789 gup_put_folio(folio, refs, flags); 2790 return 0; 2791 } 2792 2793 *nr += refs; 2794 folio_set_referenced(folio); 2795 return 1; 2796 } 2797 2798 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2799 unsigned int pdshift, unsigned long end, unsigned int flags, 2800 struct page **pages, int *nr) 2801 { 2802 pte_t *ptep; 2803 unsigned long sz = 1UL << hugepd_shift(hugepd); 2804 unsigned long next; 2805 2806 ptep = hugepte_offset(hugepd, addr, pdshift); 2807 do { 2808 next = hugepte_addr_end(addr, end, sz); 2809 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2810 return 0; 2811 } while (ptep++, addr = next, addr != end); 2812 2813 return 1; 2814 } 2815 #else 2816 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2817 unsigned int pdshift, unsigned long end, unsigned int flags, 2818 struct page **pages, int *nr) 2819 { 2820 return 0; 2821 } 2822 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2823 2824 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2825 unsigned long end, unsigned int flags, 2826 struct page **pages, int *nr) 2827 { 2828 struct page *page; 2829 struct folio *folio; 2830 int refs; 2831 2832 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2833 return 0; 2834 2835 if (pmd_devmap(orig)) { 2836 if (unlikely(flags & FOLL_LONGTERM)) 2837 return 0; 2838 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2839 pages, nr); 2840 } 2841 2842 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2843 refs = record_subpages(page, addr, end, pages + *nr); 2844 2845 folio = try_grab_folio(page, refs, flags); 2846 if (!folio) 2847 return 0; 2848 2849 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2850 gup_put_folio(folio, refs, flags); 2851 return 0; 2852 } 2853 2854 if (!folio_fast_pin_allowed(folio, flags)) { 2855 gup_put_folio(folio, refs, flags); 2856 return 0; 2857 } 2858 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2859 gup_put_folio(folio, refs, flags); 2860 return 0; 2861 } 2862 2863 *nr += refs; 2864 folio_set_referenced(folio); 2865 return 1; 2866 } 2867 2868 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2869 unsigned long end, unsigned int flags, 2870 struct page **pages, int *nr) 2871 { 2872 struct page *page; 2873 struct folio *folio; 2874 int refs; 2875 2876 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2877 return 0; 2878 2879 if (pud_devmap(orig)) { 2880 if (unlikely(flags & FOLL_LONGTERM)) 2881 return 0; 2882 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2883 pages, nr); 2884 } 2885 2886 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2887 refs = record_subpages(page, addr, end, pages + *nr); 2888 2889 folio = try_grab_folio(page, refs, flags); 2890 if (!folio) 2891 return 0; 2892 2893 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2894 gup_put_folio(folio, refs, flags); 2895 return 0; 2896 } 2897 2898 if (!folio_fast_pin_allowed(folio, flags)) { 2899 gup_put_folio(folio, refs, flags); 2900 return 0; 2901 } 2902 2903 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2904 gup_put_folio(folio, refs, flags); 2905 return 0; 2906 } 2907 2908 *nr += refs; 2909 folio_set_referenced(folio); 2910 return 1; 2911 } 2912 2913 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2914 unsigned long end, unsigned int flags, 2915 struct page **pages, int *nr) 2916 { 2917 int refs; 2918 struct page *page; 2919 struct folio *folio; 2920 2921 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2922 return 0; 2923 2924 BUILD_BUG_ON(pgd_devmap(orig)); 2925 2926 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2927 refs = record_subpages(page, addr, end, pages + *nr); 2928 2929 folio = try_grab_folio(page, refs, flags); 2930 if (!folio) 2931 return 0; 2932 2933 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2934 gup_put_folio(folio, refs, flags); 2935 return 0; 2936 } 2937 2938 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2939 gup_put_folio(folio, refs, flags); 2940 return 0; 2941 } 2942 2943 if (!folio_fast_pin_allowed(folio, flags)) { 2944 gup_put_folio(folio, refs, flags); 2945 return 0; 2946 } 2947 2948 *nr += refs; 2949 folio_set_referenced(folio); 2950 return 1; 2951 } 2952 2953 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2954 unsigned int flags, struct page **pages, int *nr) 2955 { 2956 unsigned long next; 2957 pmd_t *pmdp; 2958 2959 pmdp = pmd_offset_lockless(pudp, pud, addr); 2960 do { 2961 pmd_t pmd = pmdp_get_lockless(pmdp); 2962 2963 next = pmd_addr_end(addr, end); 2964 if (!pmd_present(pmd)) 2965 return 0; 2966 2967 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2968 pmd_devmap(pmd))) { 2969 if (pmd_protnone(pmd) && 2970 !gup_can_follow_protnone(flags)) 2971 return 0; 2972 2973 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2974 pages, nr)) 2975 return 0; 2976 2977 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2978 /* 2979 * architecture have different format for hugetlbfs 2980 * pmd format and THP pmd format 2981 */ 2982 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2983 PMD_SHIFT, next, flags, pages, nr)) 2984 return 0; 2985 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2986 return 0; 2987 } while (pmdp++, addr = next, addr != end); 2988 2989 return 1; 2990 } 2991 2992 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2993 unsigned int flags, struct page **pages, int *nr) 2994 { 2995 unsigned long next; 2996 pud_t *pudp; 2997 2998 pudp = pud_offset_lockless(p4dp, p4d, addr); 2999 do { 3000 pud_t pud = READ_ONCE(*pudp); 3001 3002 next = pud_addr_end(addr, end); 3003 if (unlikely(!pud_present(pud))) 3004 return 0; 3005 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 3006 if (!gup_huge_pud(pud, pudp, addr, next, flags, 3007 pages, nr)) 3008 return 0; 3009 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3010 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 3011 PUD_SHIFT, next, flags, pages, nr)) 3012 return 0; 3013 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 3014 return 0; 3015 } while (pudp++, addr = next, addr != end); 3016 3017 return 1; 3018 } 3019 3020 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 3021 unsigned int flags, struct page **pages, int *nr) 3022 { 3023 unsigned long next; 3024 p4d_t *p4dp; 3025 3026 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3027 do { 3028 p4d_t p4d = READ_ONCE(*p4dp); 3029 3030 next = p4d_addr_end(addr, end); 3031 if (p4d_none(p4d)) 3032 return 0; 3033 BUILD_BUG_ON(p4d_huge(p4d)); 3034 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3035 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 3036 P4D_SHIFT, next, flags, pages, nr)) 3037 return 0; 3038 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 3039 return 0; 3040 } while (p4dp++, addr = next, addr != end); 3041 3042 return 1; 3043 } 3044 3045 static void gup_pgd_range(unsigned long addr, unsigned long end, 3046 unsigned int flags, struct page **pages, int *nr) 3047 { 3048 unsigned long next; 3049 pgd_t *pgdp; 3050 3051 pgdp = pgd_offset(current->mm, addr); 3052 do { 3053 pgd_t pgd = READ_ONCE(*pgdp); 3054 3055 next = pgd_addr_end(addr, end); 3056 if (pgd_none(pgd)) 3057 return; 3058 if (unlikely(pgd_huge(pgd))) { 3059 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 3060 pages, nr)) 3061 return; 3062 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3063 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 3064 PGDIR_SHIFT, next, flags, pages, nr)) 3065 return; 3066 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 3067 return; 3068 } while (pgdp++, addr = next, addr != end); 3069 } 3070 #else 3071 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 3072 unsigned int flags, struct page **pages, int *nr) 3073 { 3074 } 3075 #endif /* CONFIG_HAVE_FAST_GUP */ 3076 3077 #ifndef gup_fast_permitted 3078 /* 3079 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3080 * we need to fall back to the slow version: 3081 */ 3082 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3083 { 3084 return true; 3085 } 3086 #endif 3087 3088 static unsigned long lockless_pages_from_mm(unsigned long start, 3089 unsigned long end, 3090 unsigned int gup_flags, 3091 struct page **pages) 3092 { 3093 unsigned long flags; 3094 int nr_pinned = 0; 3095 unsigned seq; 3096 3097 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 3098 !gup_fast_permitted(start, end)) 3099 return 0; 3100 3101 if (gup_flags & FOLL_PIN) { 3102 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3103 if (seq & 1) 3104 return 0; 3105 } 3106 3107 /* 3108 * Disable interrupts. The nested form is used, in order to allow full, 3109 * general purpose use of this routine. 3110 * 3111 * With interrupts disabled, we block page table pages from being freed 3112 * from under us. See struct mmu_table_batch comments in 3113 * include/asm-generic/tlb.h for more details. 3114 * 3115 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3116 * that come from THPs splitting. 3117 */ 3118 local_irq_save(flags); 3119 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3120 local_irq_restore(flags); 3121 3122 /* 3123 * When pinning pages for DMA there could be a concurrent write protect 3124 * from fork() via copy_page_range(), in this case always fail fast GUP. 3125 */ 3126 if (gup_flags & FOLL_PIN) { 3127 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3128 unpin_user_pages_lockless(pages, nr_pinned); 3129 return 0; 3130 } else { 3131 sanity_check_pinned_pages(pages, nr_pinned); 3132 } 3133 } 3134 return nr_pinned; 3135 } 3136 3137 static int internal_get_user_pages_fast(unsigned long start, 3138 unsigned long nr_pages, 3139 unsigned int gup_flags, 3140 struct page **pages) 3141 { 3142 unsigned long len, end; 3143 unsigned long nr_pinned; 3144 int locked = 0; 3145 int ret; 3146 3147 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3148 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3149 FOLL_FAST_ONLY | FOLL_NOFAULT | 3150 FOLL_PCI_P2PDMA))) 3151 return -EINVAL; 3152 3153 if (gup_flags & FOLL_PIN) 3154 mm_set_has_pinned_flag(¤t->mm->flags); 3155 3156 if (!(gup_flags & FOLL_FAST_ONLY)) 3157 might_lock_read(¤t->mm->mmap_lock); 3158 3159 start = untagged_addr(start) & PAGE_MASK; 3160 len = nr_pages << PAGE_SHIFT; 3161 if (check_add_overflow(start, len, &end)) 3162 return -EOVERFLOW; 3163 if (end > TASK_SIZE_MAX) 3164 return -EFAULT; 3165 if (unlikely(!access_ok((void __user *)start, len))) 3166 return -EFAULT; 3167 3168 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3169 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3170 return nr_pinned; 3171 3172 /* Slow path: try to get the remaining pages with get_user_pages */ 3173 start += nr_pinned << PAGE_SHIFT; 3174 pages += nr_pinned; 3175 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3176 pages, &locked, 3177 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3178 if (ret < 0) { 3179 /* 3180 * The caller has to unpin the pages we already pinned so 3181 * returning -errno is not an option 3182 */ 3183 if (nr_pinned) 3184 return nr_pinned; 3185 return ret; 3186 } 3187 return ret + nr_pinned; 3188 } 3189 3190 /** 3191 * get_user_pages_fast_only() - pin user pages in memory 3192 * @start: starting user address 3193 * @nr_pages: number of pages from start to pin 3194 * @gup_flags: flags modifying pin behaviour 3195 * @pages: array that receives pointers to the pages pinned. 3196 * Should be at least nr_pages long. 3197 * 3198 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3199 * the regular GUP. 3200 * 3201 * If the architecture does not support this function, simply return with no 3202 * pages pinned. 3203 * 3204 * Careful, careful! COW breaking can go either way, so a non-write 3205 * access can get ambiguous page results. If you call this function without 3206 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3207 */ 3208 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3209 unsigned int gup_flags, struct page **pages) 3210 { 3211 /* 3212 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3213 * because gup fast is always a "pin with a +1 page refcount" request. 3214 * 3215 * FOLL_FAST_ONLY is required in order to match the API description of 3216 * this routine: no fall back to regular ("slow") GUP. 3217 */ 3218 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3219 FOLL_GET | FOLL_FAST_ONLY)) 3220 return -EINVAL; 3221 3222 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3223 } 3224 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3225 3226 /** 3227 * get_user_pages_fast() - pin user pages in memory 3228 * @start: starting user address 3229 * @nr_pages: number of pages from start to pin 3230 * @gup_flags: flags modifying pin behaviour 3231 * @pages: array that receives pointers to the pages pinned. 3232 * Should be at least nr_pages long. 3233 * 3234 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3235 * If not successful, it will fall back to taking the lock and 3236 * calling get_user_pages(). 3237 * 3238 * Returns number of pages pinned. This may be fewer than the number requested. 3239 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3240 * -errno. 3241 */ 3242 int get_user_pages_fast(unsigned long start, int nr_pages, 3243 unsigned int gup_flags, struct page **pages) 3244 { 3245 /* 3246 * The caller may or may not have explicitly set FOLL_GET; either way is 3247 * OK. However, internally (within mm/gup.c), gup fast variants must set 3248 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3249 * request. 3250 */ 3251 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3252 return -EINVAL; 3253 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3254 } 3255 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3256 3257 /** 3258 * pin_user_pages_fast() - pin user pages in memory without taking locks 3259 * 3260 * @start: starting user address 3261 * @nr_pages: number of pages from start to pin 3262 * @gup_flags: flags modifying pin behaviour 3263 * @pages: array that receives pointers to the pages pinned. 3264 * Should be at least nr_pages long. 3265 * 3266 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3267 * get_user_pages_fast() for documentation on the function arguments, because 3268 * the arguments here are identical. 3269 * 3270 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3271 * see Documentation/core-api/pin_user_pages.rst for further details. 3272 * 3273 * Note that if a zero_page is amongst the returned pages, it will not have 3274 * pins in it and unpin_user_page() will not remove pins from it. 3275 */ 3276 int pin_user_pages_fast(unsigned long start, int nr_pages, 3277 unsigned int gup_flags, struct page **pages) 3278 { 3279 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3280 return -EINVAL; 3281 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3282 } 3283 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3284 3285 /** 3286 * pin_user_pages_remote() - pin pages of a remote process 3287 * 3288 * @mm: mm_struct of target mm 3289 * @start: starting user address 3290 * @nr_pages: number of pages from start to pin 3291 * @gup_flags: flags modifying lookup behaviour 3292 * @pages: array that receives pointers to the pages pinned. 3293 * Should be at least nr_pages long. 3294 * @locked: pointer to lock flag indicating whether lock is held and 3295 * subsequently whether VM_FAULT_RETRY functionality can be 3296 * utilised. Lock must initially be held. 3297 * 3298 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3299 * get_user_pages_remote() for documentation on the function arguments, because 3300 * the arguments here are identical. 3301 * 3302 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3303 * see Documentation/core-api/pin_user_pages.rst for details. 3304 * 3305 * Note that if a zero_page is amongst the returned pages, it will not have 3306 * pins in it and unpin_user_page*() will not remove pins from it. 3307 */ 3308 long pin_user_pages_remote(struct mm_struct *mm, 3309 unsigned long start, unsigned long nr_pages, 3310 unsigned int gup_flags, struct page **pages, 3311 int *locked) 3312 { 3313 int local_locked = 1; 3314 3315 if (!is_valid_gup_args(pages, locked, &gup_flags, 3316 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3317 return 0; 3318 return __gup_longterm_locked(mm, start, nr_pages, pages, 3319 locked ? locked : &local_locked, 3320 gup_flags); 3321 } 3322 EXPORT_SYMBOL(pin_user_pages_remote); 3323 3324 /** 3325 * pin_user_pages() - pin user pages in memory for use by other devices 3326 * 3327 * @start: starting user address 3328 * @nr_pages: number of pages from start to pin 3329 * @gup_flags: flags modifying lookup behaviour 3330 * @pages: array that receives pointers to the pages pinned. 3331 * Should be at least nr_pages long. 3332 * 3333 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3334 * FOLL_PIN is set. 3335 * 3336 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3337 * see Documentation/core-api/pin_user_pages.rst for details. 3338 * 3339 * Note that if a zero_page is amongst the returned pages, it will not have 3340 * pins in it and unpin_user_page*() will not remove pins from it. 3341 */ 3342 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3343 unsigned int gup_flags, struct page **pages) 3344 { 3345 int locked = 1; 3346 3347 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3348 return 0; 3349 return __gup_longterm_locked(current->mm, start, nr_pages, 3350 pages, &locked, gup_flags); 3351 } 3352 EXPORT_SYMBOL(pin_user_pages); 3353 3354 /* 3355 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3356 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3357 * FOLL_PIN and rejects FOLL_GET. 3358 * 3359 * Note that if a zero_page is amongst the returned pages, it will not have 3360 * pins in it and unpin_user_page*() will not remove pins from it. 3361 */ 3362 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3363 struct page **pages, unsigned int gup_flags) 3364 { 3365 int locked = 0; 3366 3367 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3368 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3369 return 0; 3370 3371 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3372 &locked, gup_flags); 3373 } 3374 EXPORT_SYMBOL(pin_user_pages_unlocked); 3375