xref: /openbmc/linux/mm/gup.c (revision 5502ea44f5ade35d32a397353956bc026b870400)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_page_refs(&folio->page, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_page_refs(&folio->page, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in page_try_share_anon_rmap().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_page_refs(&folio->page, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 static struct page *no_page_table(struct vm_area_struct *vma,
504 		unsigned int flags)
505 {
506 	/*
507 	 * When core dumping an enormous anonymous area that nobody
508 	 * has touched so far, we don't want to allocate unnecessary pages or
509 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
510 	 * then get_dump_page() will return NULL to leave a hole in the dump.
511 	 * But we can only make this optimization where a hole would surely
512 	 * be zero-filled if handle_mm_fault() actually did handle it.
513 	 */
514 	if ((flags & FOLL_DUMP) &&
515 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 		return ERR_PTR(-EFAULT);
517 	return NULL;
518 }
519 
520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 		pte_t *pte, unsigned int flags)
522 {
523 	if (flags & FOLL_TOUCH) {
524 		pte_t orig_entry = ptep_get(pte);
525 		pte_t entry = orig_entry;
526 
527 		if (flags & FOLL_WRITE)
528 			entry = pte_mkdirty(entry);
529 		entry = pte_mkyoung(entry);
530 
531 		if (!pte_same(orig_entry, entry)) {
532 			set_pte_at(vma->vm_mm, address, pte, entry);
533 			update_mmu_cache(vma, address, pte);
534 		}
535 	}
536 
537 	/* Proper page table entry exists, but no corresponding struct page */
538 	return -EEXIST;
539 }
540 
541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 					struct vm_area_struct *vma,
544 					unsigned int flags)
545 {
546 	/* If the pte is writable, we can write to the page. */
547 	if (pte_write(pte))
548 		return true;
549 
550 	/* Maybe FOLL_FORCE is set to override it? */
551 	if (!(flags & FOLL_FORCE))
552 		return false;
553 
554 	/* But FOLL_FORCE has no effect on shared mappings */
555 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 		return false;
557 
558 	/* ... or read-only private ones */
559 	if (!(vma->vm_flags & VM_MAYWRITE))
560 		return false;
561 
562 	/* ... or already writable ones that just need to take a write fault */
563 	if (vma->vm_flags & VM_WRITE)
564 		return false;
565 
566 	/*
567 	 * See can_change_pte_writable(): we broke COW and could map the page
568 	 * writable if we have an exclusive anonymous page ...
569 	 */
570 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 		return false;
572 
573 	/* ... and a write-fault isn't required for other reasons. */
574 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 		return false;
576 	return !userfaultfd_pte_wp(vma, pte);
577 }
578 
579 static struct page *follow_page_pte(struct vm_area_struct *vma,
580 		unsigned long address, pmd_t *pmd, unsigned int flags,
581 		struct dev_pagemap **pgmap)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	struct page *page;
585 	spinlock_t *ptl;
586 	pte_t *ptep, pte;
587 	int ret;
588 
589 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 			 (FOLL_PIN | FOLL_GET)))
592 		return ERR_PTR(-EINVAL);
593 
594 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 	if (!ptep)
596 		return no_page_table(vma, flags);
597 	pte = ptep_get(ptep);
598 	if (!pte_present(pte))
599 		goto no_page;
600 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
601 		goto no_page;
602 
603 	page = vm_normal_page(vma, address, pte);
604 
605 	/*
606 	 * We only care about anon pages in can_follow_write_pte() and don't
607 	 * have to worry about pte_devmap() because they are never anon.
608 	 */
609 	if ((flags & FOLL_WRITE) &&
610 	    !can_follow_write_pte(pte, page, vma, flags)) {
611 		page = NULL;
612 		goto out;
613 	}
614 
615 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 		/*
617 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 		 * case since they are only valid while holding the pgmap
619 		 * reference.
620 		 */
621 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 		if (*pgmap)
623 			page = pte_page(pte);
624 		else
625 			goto no_page;
626 	} else if (unlikely(!page)) {
627 		if (flags & FOLL_DUMP) {
628 			/* Avoid special (like zero) pages in core dumps */
629 			page = ERR_PTR(-EFAULT);
630 			goto out;
631 		}
632 
633 		if (is_zero_pfn(pte_pfn(pte))) {
634 			page = pte_page(pte);
635 		} else {
636 			ret = follow_pfn_pte(vma, address, ptep, flags);
637 			page = ERR_PTR(ret);
638 			goto out;
639 		}
640 	}
641 
642 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 		page = ERR_PTR(-EMLINK);
644 		goto out;
645 	}
646 
647 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 		       !PageAnonExclusive(page), page);
649 
650 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 	ret = try_grab_page(page, flags);
652 	if (unlikely(ret)) {
653 		page = ERR_PTR(ret);
654 		goto out;
655 	}
656 
657 	/*
658 	 * We need to make the page accessible if and only if we are going
659 	 * to access its content (the FOLL_PIN case).  Please see
660 	 * Documentation/core-api/pin_user_pages.rst for details.
661 	 */
662 	if (flags & FOLL_PIN) {
663 		ret = arch_make_page_accessible(page);
664 		if (ret) {
665 			unpin_user_page(page);
666 			page = ERR_PTR(ret);
667 			goto out;
668 		}
669 	}
670 	if (flags & FOLL_TOUCH) {
671 		if ((flags & FOLL_WRITE) &&
672 		    !pte_dirty(pte) && !PageDirty(page))
673 			set_page_dirty(page);
674 		/*
675 		 * pte_mkyoung() would be more correct here, but atomic care
676 		 * is needed to avoid losing the dirty bit: it is easier to use
677 		 * mark_page_accessed().
678 		 */
679 		mark_page_accessed(page);
680 	}
681 out:
682 	pte_unmap_unlock(ptep, ptl);
683 	return page;
684 no_page:
685 	pte_unmap_unlock(ptep, ptl);
686 	if (!pte_none(pte))
687 		return NULL;
688 	return no_page_table(vma, flags);
689 }
690 
691 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 				    unsigned long address, pud_t *pudp,
693 				    unsigned int flags,
694 				    struct follow_page_context *ctx)
695 {
696 	pmd_t *pmd, pmdval;
697 	spinlock_t *ptl;
698 	struct page *page;
699 	struct mm_struct *mm = vma->vm_mm;
700 
701 	pmd = pmd_offset(pudp, address);
702 	pmdval = pmdp_get_lockless(pmd);
703 	if (pmd_none(pmdval))
704 		return no_page_table(vma, flags);
705 	if (!pmd_present(pmdval))
706 		return no_page_table(vma, flags);
707 	if (pmd_devmap(pmdval)) {
708 		ptl = pmd_lock(mm, pmd);
709 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 		spin_unlock(ptl);
711 		if (page)
712 			return page;
713 	}
714 	if (likely(!pmd_trans_huge(pmdval)))
715 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
716 
717 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
718 		return no_page_table(vma, flags);
719 
720 	ptl = pmd_lock(mm, pmd);
721 	if (unlikely(!pmd_present(*pmd))) {
722 		spin_unlock(ptl);
723 		return no_page_table(vma, flags);
724 	}
725 	if (unlikely(!pmd_trans_huge(*pmd))) {
726 		spin_unlock(ptl);
727 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728 	}
729 	if (flags & FOLL_SPLIT_PMD) {
730 		spin_unlock(ptl);
731 		split_huge_pmd(vma, pmd, address);
732 		/* If pmd was left empty, stuff a page table in there quickly */
733 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
734 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
735 	}
736 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 	spin_unlock(ptl);
738 	ctx->page_mask = HPAGE_PMD_NR - 1;
739 	return page;
740 }
741 
742 static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 				    unsigned long address, p4d_t *p4dp,
744 				    unsigned int flags,
745 				    struct follow_page_context *ctx)
746 {
747 	pud_t *pud;
748 	spinlock_t *ptl;
749 	struct page *page;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	pud = pud_offset(p4dp, address);
753 	if (pud_none(*pud))
754 		return no_page_table(vma, flags);
755 	if (pud_devmap(*pud)) {
756 		ptl = pud_lock(mm, pud);
757 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758 		spin_unlock(ptl);
759 		if (page)
760 			return page;
761 	}
762 	if (unlikely(pud_bad(*pud)))
763 		return no_page_table(vma, flags);
764 
765 	return follow_pmd_mask(vma, address, pud, flags, ctx);
766 }
767 
768 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 				    unsigned long address, pgd_t *pgdp,
770 				    unsigned int flags,
771 				    struct follow_page_context *ctx)
772 {
773 	p4d_t *p4d;
774 
775 	p4d = p4d_offset(pgdp, address);
776 	if (p4d_none(*p4d))
777 		return no_page_table(vma, flags);
778 	BUILD_BUG_ON(p4d_huge(*p4d));
779 	if (unlikely(p4d_bad(*p4d)))
780 		return no_page_table(vma, flags);
781 
782 	return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784 
785 /**
786  * follow_page_mask - look up a page descriptor from a user-virtual address
787  * @vma: vm_area_struct mapping @address
788  * @address: virtual address to look up
789  * @flags: flags modifying lookup behaviour
790  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791  *       pointer to output page_mask
792  *
793  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794  *
795  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797  *
798  * When getting an anonymous page and the caller has to trigger unsharing
799  * of a shared anonymous page first, -EMLINK is returned. The caller should
800  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801  * relevant with FOLL_PIN and !FOLL_WRITE.
802  *
803  * On output, the @ctx->page_mask is set according to the size of the page.
804  *
805  * Return: the mapped (struct page *), %NULL if no mapping exists, or
806  * an error pointer if there is a mapping to something not represented
807  * by a page descriptor (see also vm_normal_page()).
808  */
809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 			      unsigned long address, unsigned int flags,
811 			      struct follow_page_context *ctx)
812 {
813 	pgd_t *pgd;
814 	struct mm_struct *mm = vma->vm_mm;
815 
816 	ctx->page_mask = 0;
817 
818 	/*
819 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
820 	 * special hugetlb page table walking code.  This eliminates the
821 	 * need to check for hugetlb entries in the general walking code.
822 	 *
823 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
824 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
825 	 */
826 	if (is_vm_hugetlb_page(vma))
827 		return hugetlb_follow_page_mask(vma, address, flags,
828 						&ctx->page_mask);
829 
830 	pgd = pgd_offset(mm, address);
831 
832 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 		return no_page_table(vma, flags);
834 
835 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
836 }
837 
838 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
839 			 unsigned int foll_flags)
840 {
841 	struct follow_page_context ctx = { NULL };
842 	struct page *page;
843 
844 	if (vma_is_secretmem(vma))
845 		return NULL;
846 
847 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
848 		return NULL;
849 
850 	page = follow_page_mask(vma, address, foll_flags, &ctx);
851 	if (ctx.pgmap)
852 		put_dev_pagemap(ctx.pgmap);
853 	return page;
854 }
855 
856 static int get_gate_page(struct mm_struct *mm, unsigned long address,
857 		unsigned int gup_flags, struct vm_area_struct **vma,
858 		struct page **page)
859 {
860 	pgd_t *pgd;
861 	p4d_t *p4d;
862 	pud_t *pud;
863 	pmd_t *pmd;
864 	pte_t *pte;
865 	pte_t entry;
866 	int ret = -EFAULT;
867 
868 	/* user gate pages are read-only */
869 	if (gup_flags & FOLL_WRITE)
870 		return -EFAULT;
871 	if (address > TASK_SIZE)
872 		pgd = pgd_offset_k(address);
873 	else
874 		pgd = pgd_offset_gate(mm, address);
875 	if (pgd_none(*pgd))
876 		return -EFAULT;
877 	p4d = p4d_offset(pgd, address);
878 	if (p4d_none(*p4d))
879 		return -EFAULT;
880 	pud = pud_offset(p4d, address);
881 	if (pud_none(*pud))
882 		return -EFAULT;
883 	pmd = pmd_offset(pud, address);
884 	if (!pmd_present(*pmd))
885 		return -EFAULT;
886 	pte = pte_offset_map(pmd, address);
887 	if (!pte)
888 		return -EFAULT;
889 	entry = ptep_get(pte);
890 	if (pte_none(entry))
891 		goto unmap;
892 	*vma = get_gate_vma(mm);
893 	if (!page)
894 		goto out;
895 	*page = vm_normal_page(*vma, address, entry);
896 	if (!*page) {
897 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
898 			goto unmap;
899 		*page = pte_page(entry);
900 	}
901 	ret = try_grab_page(*page, gup_flags);
902 	if (unlikely(ret))
903 		goto unmap;
904 out:
905 	ret = 0;
906 unmap:
907 	pte_unmap(pte);
908 	return ret;
909 }
910 
911 /*
912  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
913  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
914  * to 0 and -EBUSY returned.
915  */
916 static int faultin_page(struct vm_area_struct *vma,
917 		unsigned long address, unsigned int *flags, bool unshare,
918 		int *locked)
919 {
920 	unsigned int fault_flags = 0;
921 	vm_fault_t ret;
922 
923 	if (*flags & FOLL_NOFAULT)
924 		return -EFAULT;
925 	if (*flags & FOLL_WRITE)
926 		fault_flags |= FAULT_FLAG_WRITE;
927 	if (*flags & FOLL_REMOTE)
928 		fault_flags |= FAULT_FLAG_REMOTE;
929 	if (*flags & FOLL_UNLOCKABLE) {
930 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
931 		/*
932 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
933 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
934 		 * That's because some callers may not be prepared to
935 		 * handle early exits caused by non-fatal signals.
936 		 */
937 		if (*flags & FOLL_INTERRUPTIBLE)
938 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
939 	}
940 	if (*flags & FOLL_NOWAIT)
941 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
942 	if (*flags & FOLL_TRIED) {
943 		/*
944 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 		 * can co-exist
946 		 */
947 		fault_flags |= FAULT_FLAG_TRIED;
948 	}
949 	if (unshare) {
950 		fault_flags |= FAULT_FLAG_UNSHARE;
951 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
952 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
953 	}
954 
955 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
956 
957 	if (ret & VM_FAULT_COMPLETED) {
958 		/*
959 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
960 		 * mmap lock in the page fault handler. Sanity check this.
961 		 */
962 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
963 		*locked = 0;
964 
965 		/*
966 		 * We should do the same as VM_FAULT_RETRY, but let's not
967 		 * return -EBUSY since that's not reflecting the reality of
968 		 * what has happened - we've just fully completed a page
969 		 * fault, with the mmap lock released.  Use -EAGAIN to show
970 		 * that we want to take the mmap lock _again_.
971 		 */
972 		return -EAGAIN;
973 	}
974 
975 	if (ret & VM_FAULT_ERROR) {
976 		int err = vm_fault_to_errno(ret, *flags);
977 
978 		if (err)
979 			return err;
980 		BUG();
981 	}
982 
983 	if (ret & VM_FAULT_RETRY) {
984 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
985 			*locked = 0;
986 		return -EBUSY;
987 	}
988 
989 	return 0;
990 }
991 
992 /*
993  * Writing to file-backed mappings which require folio dirty tracking using GUP
994  * is a fundamentally broken operation, as kernel write access to GUP mappings
995  * do not adhere to the semantics expected by a file system.
996  *
997  * Consider the following scenario:-
998  *
999  * 1. A folio is written to via GUP which write-faults the memory, notifying
1000  *    the file system and dirtying the folio.
1001  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1002  *    the PTE being marked read-only.
1003  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1004  *    direct mapping.
1005  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1006  *    (though it does not have to).
1007  *
1008  * This results in both data being written to a folio without writenotify, and
1009  * the folio being dirtied unexpectedly (if the caller decides to do so).
1010  */
1011 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1012 					  unsigned long gup_flags)
1013 {
1014 	/*
1015 	 * If we aren't pinning then no problematic write can occur. A long term
1016 	 * pin is the most egregious case so this is the case we disallow.
1017 	 */
1018 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1019 	    (FOLL_PIN | FOLL_LONGTERM))
1020 		return true;
1021 
1022 	/*
1023 	 * If the VMA does not require dirty tracking then no problematic write
1024 	 * can occur either.
1025 	 */
1026 	return !vma_needs_dirty_tracking(vma);
1027 }
1028 
1029 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1030 {
1031 	vm_flags_t vm_flags = vma->vm_flags;
1032 	int write = (gup_flags & FOLL_WRITE);
1033 	int foreign = (gup_flags & FOLL_REMOTE);
1034 	bool vma_anon = vma_is_anonymous(vma);
1035 
1036 	if (vm_flags & (VM_IO | VM_PFNMAP))
1037 		return -EFAULT;
1038 
1039 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1040 		return -EFAULT;
1041 
1042 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1043 		return -EOPNOTSUPP;
1044 
1045 	if (vma_is_secretmem(vma))
1046 		return -EFAULT;
1047 
1048 	if (write) {
1049 		if (!vma_anon &&
1050 		    !writable_file_mapping_allowed(vma, gup_flags))
1051 			return -EFAULT;
1052 
1053 		if (!(vm_flags & VM_WRITE)) {
1054 			if (!(gup_flags & FOLL_FORCE))
1055 				return -EFAULT;
1056 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1057 			if (is_vm_hugetlb_page(vma))
1058 				return -EFAULT;
1059 			/*
1060 			 * We used to let the write,force case do COW in a
1061 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1062 			 * set a breakpoint in a read-only mapping of an
1063 			 * executable, without corrupting the file (yet only
1064 			 * when that file had been opened for writing!).
1065 			 * Anon pages in shared mappings are surprising: now
1066 			 * just reject it.
1067 			 */
1068 			if (!is_cow_mapping(vm_flags))
1069 				return -EFAULT;
1070 		}
1071 	} else if (!(vm_flags & VM_READ)) {
1072 		if (!(gup_flags & FOLL_FORCE))
1073 			return -EFAULT;
1074 		/*
1075 		 * Is there actually any vma we can reach here which does not
1076 		 * have VM_MAYREAD set?
1077 		 */
1078 		if (!(vm_flags & VM_MAYREAD))
1079 			return -EFAULT;
1080 	}
1081 	/*
1082 	 * gups are always data accesses, not instruction
1083 	 * fetches, so execute=false here
1084 	 */
1085 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1086 		return -EFAULT;
1087 	return 0;
1088 }
1089 
1090 /*
1091  * This is "vma_lookup()", but with a warning if we would have
1092  * historically expanded the stack in the GUP code.
1093  */
1094 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1095 	 unsigned long addr)
1096 {
1097 #ifdef CONFIG_STACK_GROWSUP
1098 	return vma_lookup(mm, addr);
1099 #else
1100 	static volatile unsigned long next_warn;
1101 	struct vm_area_struct *vma;
1102 	unsigned long now, next;
1103 
1104 	vma = find_vma(mm, addr);
1105 	if (!vma || (addr >= vma->vm_start))
1106 		return vma;
1107 
1108 	/* Only warn for half-way relevant accesses */
1109 	if (!(vma->vm_flags & VM_GROWSDOWN))
1110 		return NULL;
1111 	if (vma->vm_start - addr > 65536)
1112 		return NULL;
1113 
1114 	/* Let's not warn more than once an hour.. */
1115 	now = jiffies; next = next_warn;
1116 	if (next && time_before(now, next))
1117 		return NULL;
1118 	next_warn = now + 60*60*HZ;
1119 
1120 	/* Let people know things may have changed. */
1121 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1122 		current->comm, task_pid_nr(current),
1123 		vma->vm_start, vma->vm_end, addr);
1124 	dump_stack();
1125 	return NULL;
1126 #endif
1127 }
1128 
1129 /**
1130  * __get_user_pages() - pin user pages in memory
1131  * @mm:		mm_struct of target mm
1132  * @start:	starting user address
1133  * @nr_pages:	number of pages from start to pin
1134  * @gup_flags:	flags modifying pin behaviour
1135  * @pages:	array that receives pointers to the pages pinned.
1136  *		Should be at least nr_pages long. Or NULL, if caller
1137  *		only intends to ensure the pages are faulted in.
1138  * @locked:     whether we're still with the mmap_lock held
1139  *
1140  * Returns either number of pages pinned (which may be less than the
1141  * number requested), or an error. Details about the return value:
1142  *
1143  * -- If nr_pages is 0, returns 0.
1144  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1145  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1146  *    pages pinned. Again, this may be less than nr_pages.
1147  * -- 0 return value is possible when the fault would need to be retried.
1148  *
1149  * The caller is responsible for releasing returned @pages, via put_page().
1150  *
1151  * Must be called with mmap_lock held.  It may be released.  See below.
1152  *
1153  * __get_user_pages walks a process's page tables and takes a reference to
1154  * each struct page that each user address corresponds to at a given
1155  * instant. That is, it takes the page that would be accessed if a user
1156  * thread accesses the given user virtual address at that instant.
1157  *
1158  * This does not guarantee that the page exists in the user mappings when
1159  * __get_user_pages returns, and there may even be a completely different
1160  * page there in some cases (eg. if mmapped pagecache has been invalidated
1161  * and subsequently re-faulted). However it does guarantee that the page
1162  * won't be freed completely. And mostly callers simply care that the page
1163  * contains data that was valid *at some point in time*. Typically, an IO
1164  * or similar operation cannot guarantee anything stronger anyway because
1165  * locks can't be held over the syscall boundary.
1166  *
1167  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1168  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1169  * appropriate) must be called after the page is finished with, and
1170  * before put_page is called.
1171  *
1172  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1173  * be released. If this happens *@locked will be set to 0 on return.
1174  *
1175  * A caller using such a combination of @gup_flags must therefore hold the
1176  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1177  * it must be held for either reading or writing and will not be released.
1178  *
1179  * In most cases, get_user_pages or get_user_pages_fast should be used
1180  * instead of __get_user_pages. __get_user_pages should be used only if
1181  * you need some special @gup_flags.
1182  */
1183 static long __get_user_pages(struct mm_struct *mm,
1184 		unsigned long start, unsigned long nr_pages,
1185 		unsigned int gup_flags, struct page **pages,
1186 		int *locked)
1187 {
1188 	long ret = 0, i = 0;
1189 	struct vm_area_struct *vma = NULL;
1190 	struct follow_page_context ctx = { NULL };
1191 
1192 	if (!nr_pages)
1193 		return 0;
1194 
1195 	start = untagged_addr_remote(mm, start);
1196 
1197 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1198 
1199 	do {
1200 		struct page *page;
1201 		unsigned int foll_flags = gup_flags;
1202 		unsigned int page_increm;
1203 
1204 		/* first iteration or cross vma bound */
1205 		if (!vma || start >= vma->vm_end) {
1206 			vma = gup_vma_lookup(mm, start);
1207 			if (!vma && in_gate_area(mm, start)) {
1208 				ret = get_gate_page(mm, start & PAGE_MASK,
1209 						gup_flags, &vma,
1210 						pages ? &pages[i] : NULL);
1211 				if (ret)
1212 					goto out;
1213 				ctx.page_mask = 0;
1214 				goto next_page;
1215 			}
1216 
1217 			if (!vma) {
1218 				ret = -EFAULT;
1219 				goto out;
1220 			}
1221 			ret = check_vma_flags(vma, gup_flags);
1222 			if (ret)
1223 				goto out;
1224 
1225 			if (is_vm_hugetlb_page(vma)) {
1226 				i = follow_hugetlb_page(mm, vma, pages,
1227 							&start, &nr_pages, i,
1228 							gup_flags, locked);
1229 				if (!*locked) {
1230 					/*
1231 					 * We've got a VM_FAULT_RETRY
1232 					 * and we've lost mmap_lock.
1233 					 * We must stop here.
1234 					 */
1235 					BUG_ON(gup_flags & FOLL_NOWAIT);
1236 					goto out;
1237 				}
1238 				continue;
1239 			}
1240 		}
1241 retry:
1242 		/*
1243 		 * If we have a pending SIGKILL, don't keep faulting pages and
1244 		 * potentially allocating memory.
1245 		 */
1246 		if (fatal_signal_pending(current)) {
1247 			ret = -EINTR;
1248 			goto out;
1249 		}
1250 		cond_resched();
1251 
1252 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1253 		if (!page || PTR_ERR(page) == -EMLINK) {
1254 			ret = faultin_page(vma, start, &foll_flags,
1255 					   PTR_ERR(page) == -EMLINK, locked);
1256 			switch (ret) {
1257 			case 0:
1258 				goto retry;
1259 			case -EBUSY:
1260 			case -EAGAIN:
1261 				ret = 0;
1262 				fallthrough;
1263 			case -EFAULT:
1264 			case -ENOMEM:
1265 			case -EHWPOISON:
1266 				goto out;
1267 			}
1268 			BUG();
1269 		} else if (PTR_ERR(page) == -EEXIST) {
1270 			/*
1271 			 * Proper page table entry exists, but no corresponding
1272 			 * struct page. If the caller expects **pages to be
1273 			 * filled in, bail out now, because that can't be done
1274 			 * for this page.
1275 			 */
1276 			if (pages) {
1277 				ret = PTR_ERR(page);
1278 				goto out;
1279 			}
1280 
1281 			goto next_page;
1282 		} else if (IS_ERR(page)) {
1283 			ret = PTR_ERR(page);
1284 			goto out;
1285 		}
1286 		if (pages) {
1287 			pages[i] = page;
1288 			flush_anon_page(vma, page, start);
1289 			flush_dcache_page(page);
1290 			ctx.page_mask = 0;
1291 		}
1292 next_page:
1293 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1294 		if (page_increm > nr_pages)
1295 			page_increm = nr_pages;
1296 		i += page_increm;
1297 		start += page_increm * PAGE_SIZE;
1298 		nr_pages -= page_increm;
1299 	} while (nr_pages);
1300 out:
1301 	if (ctx.pgmap)
1302 		put_dev_pagemap(ctx.pgmap);
1303 	return i ? i : ret;
1304 }
1305 
1306 static bool vma_permits_fault(struct vm_area_struct *vma,
1307 			      unsigned int fault_flags)
1308 {
1309 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1310 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1311 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1312 
1313 	if (!(vm_flags & vma->vm_flags))
1314 		return false;
1315 
1316 	/*
1317 	 * The architecture might have a hardware protection
1318 	 * mechanism other than read/write that can deny access.
1319 	 *
1320 	 * gup always represents data access, not instruction
1321 	 * fetches, so execute=false here:
1322 	 */
1323 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1324 		return false;
1325 
1326 	return true;
1327 }
1328 
1329 /**
1330  * fixup_user_fault() - manually resolve a user page fault
1331  * @mm:		mm_struct of target mm
1332  * @address:	user address
1333  * @fault_flags:flags to pass down to handle_mm_fault()
1334  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1335  *		does not allow retry. If NULL, the caller must guarantee
1336  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1337  *
1338  * This is meant to be called in the specific scenario where for locking reasons
1339  * we try to access user memory in atomic context (within a pagefault_disable()
1340  * section), this returns -EFAULT, and we want to resolve the user fault before
1341  * trying again.
1342  *
1343  * Typically this is meant to be used by the futex code.
1344  *
1345  * The main difference with get_user_pages() is that this function will
1346  * unconditionally call handle_mm_fault() which will in turn perform all the
1347  * necessary SW fixup of the dirty and young bits in the PTE, while
1348  * get_user_pages() only guarantees to update these in the struct page.
1349  *
1350  * This is important for some architectures where those bits also gate the
1351  * access permission to the page because they are maintained in software.  On
1352  * such architectures, gup() will not be enough to make a subsequent access
1353  * succeed.
1354  *
1355  * This function will not return with an unlocked mmap_lock. So it has not the
1356  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1357  */
1358 int fixup_user_fault(struct mm_struct *mm,
1359 		     unsigned long address, unsigned int fault_flags,
1360 		     bool *unlocked)
1361 {
1362 	struct vm_area_struct *vma;
1363 	vm_fault_t ret;
1364 
1365 	address = untagged_addr_remote(mm, address);
1366 
1367 	if (unlocked)
1368 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1369 
1370 retry:
1371 	vma = gup_vma_lookup(mm, address);
1372 	if (!vma)
1373 		return -EFAULT;
1374 
1375 	if (!vma_permits_fault(vma, fault_flags))
1376 		return -EFAULT;
1377 
1378 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1379 	    fatal_signal_pending(current))
1380 		return -EINTR;
1381 
1382 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1383 
1384 	if (ret & VM_FAULT_COMPLETED) {
1385 		/*
1386 		 * NOTE: it's a pity that we need to retake the lock here
1387 		 * to pair with the unlock() in the callers. Ideally we
1388 		 * could tell the callers so they do not need to unlock.
1389 		 */
1390 		mmap_read_lock(mm);
1391 		*unlocked = true;
1392 		return 0;
1393 	}
1394 
1395 	if (ret & VM_FAULT_ERROR) {
1396 		int err = vm_fault_to_errno(ret, 0);
1397 
1398 		if (err)
1399 			return err;
1400 		BUG();
1401 	}
1402 
1403 	if (ret & VM_FAULT_RETRY) {
1404 		mmap_read_lock(mm);
1405 		*unlocked = true;
1406 		fault_flags |= FAULT_FLAG_TRIED;
1407 		goto retry;
1408 	}
1409 
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(fixup_user_fault);
1413 
1414 /*
1415  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1416  * specified, it'll also respond to generic signals.  The caller of GUP
1417  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1418  */
1419 static bool gup_signal_pending(unsigned int flags)
1420 {
1421 	if (fatal_signal_pending(current))
1422 		return true;
1423 
1424 	if (!(flags & FOLL_INTERRUPTIBLE))
1425 		return false;
1426 
1427 	return signal_pending(current);
1428 }
1429 
1430 /*
1431  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1432  * the caller. This function may drop the mmap_lock. If it does so, then it will
1433  * set (*locked = 0).
1434  *
1435  * (*locked == 0) means that the caller expects this function to acquire and
1436  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1437  * the function returns, even though it may have changed temporarily during
1438  * function execution.
1439  *
1440  * Please note that this function, unlike __get_user_pages(), will not return 0
1441  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1442  */
1443 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1444 						unsigned long start,
1445 						unsigned long nr_pages,
1446 						struct page **pages,
1447 						int *locked,
1448 						unsigned int flags)
1449 {
1450 	long ret, pages_done;
1451 	bool must_unlock = false;
1452 
1453 	/*
1454 	 * The internal caller expects GUP to manage the lock internally and the
1455 	 * lock must be released when this returns.
1456 	 */
1457 	if (!*locked) {
1458 		if (mmap_read_lock_killable(mm))
1459 			return -EAGAIN;
1460 		must_unlock = true;
1461 		*locked = 1;
1462 	}
1463 	else
1464 		mmap_assert_locked(mm);
1465 
1466 	if (flags & FOLL_PIN)
1467 		mm_set_has_pinned_flag(&mm->flags);
1468 
1469 	/*
1470 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1471 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1472 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1473 	 * for FOLL_GET, not for the newer FOLL_PIN.
1474 	 *
1475 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1476 	 * that here, as any failures will be obvious enough.
1477 	 */
1478 	if (pages && !(flags & FOLL_PIN))
1479 		flags |= FOLL_GET;
1480 
1481 	pages_done = 0;
1482 	for (;;) {
1483 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1484 				       locked);
1485 		if (!(flags & FOLL_UNLOCKABLE)) {
1486 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1487 			pages_done = ret;
1488 			break;
1489 		}
1490 
1491 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1492 		if (!*locked) {
1493 			BUG_ON(ret < 0);
1494 			BUG_ON(ret >= nr_pages);
1495 		}
1496 
1497 		if (ret > 0) {
1498 			nr_pages -= ret;
1499 			pages_done += ret;
1500 			if (!nr_pages)
1501 				break;
1502 		}
1503 		if (*locked) {
1504 			/*
1505 			 * VM_FAULT_RETRY didn't trigger or it was a
1506 			 * FOLL_NOWAIT.
1507 			 */
1508 			if (!pages_done)
1509 				pages_done = ret;
1510 			break;
1511 		}
1512 		/*
1513 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1514 		 * For the prefault case (!pages) we only update counts.
1515 		 */
1516 		if (likely(pages))
1517 			pages += ret;
1518 		start += ret << PAGE_SHIFT;
1519 
1520 		/* The lock was temporarily dropped, so we must unlock later */
1521 		must_unlock = true;
1522 
1523 retry:
1524 		/*
1525 		 * Repeat on the address that fired VM_FAULT_RETRY
1526 		 * with both FAULT_FLAG_ALLOW_RETRY and
1527 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1528 		 * by fatal signals of even common signals, depending on
1529 		 * the caller's request. So we need to check it before we
1530 		 * start trying again otherwise it can loop forever.
1531 		 */
1532 		if (gup_signal_pending(flags)) {
1533 			if (!pages_done)
1534 				pages_done = -EINTR;
1535 			break;
1536 		}
1537 
1538 		ret = mmap_read_lock_killable(mm);
1539 		if (ret) {
1540 			BUG_ON(ret > 0);
1541 			if (!pages_done)
1542 				pages_done = ret;
1543 			break;
1544 		}
1545 
1546 		*locked = 1;
1547 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1548 				       pages, locked);
1549 		if (!*locked) {
1550 			/* Continue to retry until we succeeded */
1551 			BUG_ON(ret != 0);
1552 			goto retry;
1553 		}
1554 		if (ret != 1) {
1555 			BUG_ON(ret > 1);
1556 			if (!pages_done)
1557 				pages_done = ret;
1558 			break;
1559 		}
1560 		nr_pages--;
1561 		pages_done++;
1562 		if (!nr_pages)
1563 			break;
1564 		if (likely(pages))
1565 			pages++;
1566 		start += PAGE_SIZE;
1567 	}
1568 	if (must_unlock && *locked) {
1569 		/*
1570 		 * We either temporarily dropped the lock, or the caller
1571 		 * requested that we both acquire and drop the lock. Either way,
1572 		 * we must now unlock, and notify the caller of that state.
1573 		 */
1574 		mmap_read_unlock(mm);
1575 		*locked = 0;
1576 	}
1577 	return pages_done;
1578 }
1579 
1580 /**
1581  * populate_vma_page_range() -  populate a range of pages in the vma.
1582  * @vma:   target vma
1583  * @start: start address
1584  * @end:   end address
1585  * @locked: whether the mmap_lock is still held
1586  *
1587  * This takes care of mlocking the pages too if VM_LOCKED is set.
1588  *
1589  * Return either number of pages pinned in the vma, or a negative error
1590  * code on error.
1591  *
1592  * vma->vm_mm->mmap_lock must be held.
1593  *
1594  * If @locked is NULL, it may be held for read or write and will
1595  * be unperturbed.
1596  *
1597  * If @locked is non-NULL, it must held for read only and may be
1598  * released.  If it's released, *@locked will be set to 0.
1599  */
1600 long populate_vma_page_range(struct vm_area_struct *vma,
1601 		unsigned long start, unsigned long end, int *locked)
1602 {
1603 	struct mm_struct *mm = vma->vm_mm;
1604 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1605 	int local_locked = 1;
1606 	int gup_flags;
1607 	long ret;
1608 
1609 	VM_BUG_ON(!PAGE_ALIGNED(start));
1610 	VM_BUG_ON(!PAGE_ALIGNED(end));
1611 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1612 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1613 	mmap_assert_locked(mm);
1614 
1615 	/*
1616 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1617 	 * faultin_page() to break COW, so it has no work to do here.
1618 	 */
1619 	if (vma->vm_flags & VM_LOCKONFAULT)
1620 		return nr_pages;
1621 
1622 	gup_flags = FOLL_TOUCH;
1623 	/*
1624 	 * We want to touch writable mappings with a write fault in order
1625 	 * to break COW, except for shared mappings because these don't COW
1626 	 * and we would not want to dirty them for nothing.
1627 	 */
1628 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1629 		gup_flags |= FOLL_WRITE;
1630 
1631 	/*
1632 	 * We want mlock to succeed for regions that have any permissions
1633 	 * other than PROT_NONE.
1634 	 */
1635 	if (vma_is_accessible(vma))
1636 		gup_flags |= FOLL_FORCE;
1637 
1638 	if (locked)
1639 		gup_flags |= FOLL_UNLOCKABLE;
1640 
1641 	/*
1642 	 * We made sure addr is within a VMA, so the following will
1643 	 * not result in a stack expansion that recurses back here.
1644 	 */
1645 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1646 			       NULL, locked ? locked : &local_locked);
1647 	lru_add_drain();
1648 	return ret;
1649 }
1650 
1651 /*
1652  * faultin_vma_page_range() - populate (prefault) page tables inside the
1653  *			      given VMA range readable/writable
1654  *
1655  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1656  *
1657  * @vma: target vma
1658  * @start: start address
1659  * @end: end address
1660  * @write: whether to prefault readable or writable
1661  * @locked: whether the mmap_lock is still held
1662  *
1663  * Returns either number of processed pages in the vma, or a negative error
1664  * code on error (see __get_user_pages()).
1665  *
1666  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1667  * covered by the VMA. If it's released, *@locked will be set to 0.
1668  */
1669 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1670 			    unsigned long end, bool write, int *locked)
1671 {
1672 	struct mm_struct *mm = vma->vm_mm;
1673 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1674 	int gup_flags;
1675 	long ret;
1676 
1677 	VM_BUG_ON(!PAGE_ALIGNED(start));
1678 	VM_BUG_ON(!PAGE_ALIGNED(end));
1679 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1680 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1681 	mmap_assert_locked(mm);
1682 
1683 	/*
1684 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1685 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1686 	 *	       difference with !FOLL_FORCE, because the page is writable
1687 	 *	       in the page table.
1688 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1689 	 *		  a poisoned page.
1690 	 * !FOLL_FORCE: Require proper access permissions.
1691 	 */
1692 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1693 	if (write)
1694 		gup_flags |= FOLL_WRITE;
1695 
1696 	/*
1697 	 * We want to report -EINVAL instead of -EFAULT for any permission
1698 	 * problems or incompatible mappings.
1699 	 */
1700 	if (check_vma_flags(vma, gup_flags))
1701 		return -EINVAL;
1702 
1703 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1704 			       NULL, locked);
1705 	lru_add_drain();
1706 	return ret;
1707 }
1708 
1709 /*
1710  * __mm_populate - populate and/or mlock pages within a range of address space.
1711  *
1712  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1713  * flags. VMAs must be already marked with the desired vm_flags, and
1714  * mmap_lock must not be held.
1715  */
1716 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1717 {
1718 	struct mm_struct *mm = current->mm;
1719 	unsigned long end, nstart, nend;
1720 	struct vm_area_struct *vma = NULL;
1721 	int locked = 0;
1722 	long ret = 0;
1723 
1724 	end = start + len;
1725 
1726 	for (nstart = start; nstart < end; nstart = nend) {
1727 		/*
1728 		 * We want to fault in pages for [nstart; end) address range.
1729 		 * Find first corresponding VMA.
1730 		 */
1731 		if (!locked) {
1732 			locked = 1;
1733 			mmap_read_lock(mm);
1734 			vma = find_vma_intersection(mm, nstart, end);
1735 		} else if (nstart >= vma->vm_end)
1736 			vma = find_vma_intersection(mm, vma->vm_end, end);
1737 
1738 		if (!vma)
1739 			break;
1740 		/*
1741 		 * Set [nstart; nend) to intersection of desired address
1742 		 * range with the first VMA. Also, skip undesirable VMA types.
1743 		 */
1744 		nend = min(end, vma->vm_end);
1745 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1746 			continue;
1747 		if (nstart < vma->vm_start)
1748 			nstart = vma->vm_start;
1749 		/*
1750 		 * Now fault in a range of pages. populate_vma_page_range()
1751 		 * double checks the vma flags, so that it won't mlock pages
1752 		 * if the vma was already munlocked.
1753 		 */
1754 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1755 		if (ret < 0) {
1756 			if (ignore_errors) {
1757 				ret = 0;
1758 				continue;	/* continue at next VMA */
1759 			}
1760 			break;
1761 		}
1762 		nend = nstart + ret * PAGE_SIZE;
1763 		ret = 0;
1764 	}
1765 	if (locked)
1766 		mmap_read_unlock(mm);
1767 	return ret;	/* 0 or negative error code */
1768 }
1769 #else /* CONFIG_MMU */
1770 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1771 		unsigned long nr_pages, struct page **pages,
1772 		int *locked, unsigned int foll_flags)
1773 {
1774 	struct vm_area_struct *vma;
1775 	bool must_unlock = false;
1776 	unsigned long vm_flags;
1777 	long i;
1778 
1779 	if (!nr_pages)
1780 		return 0;
1781 
1782 	/*
1783 	 * The internal caller expects GUP to manage the lock internally and the
1784 	 * lock must be released when this returns.
1785 	 */
1786 	if (!*locked) {
1787 		if (mmap_read_lock_killable(mm))
1788 			return -EAGAIN;
1789 		must_unlock = true;
1790 		*locked = 1;
1791 	}
1792 
1793 	/* calculate required read or write permissions.
1794 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1795 	 */
1796 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1797 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1798 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1799 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1800 
1801 	for (i = 0; i < nr_pages; i++) {
1802 		vma = find_vma(mm, start);
1803 		if (!vma)
1804 			break;
1805 
1806 		/* protect what we can, including chardevs */
1807 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1808 		    !(vm_flags & vma->vm_flags))
1809 			break;
1810 
1811 		if (pages) {
1812 			pages[i] = virt_to_page((void *)start);
1813 			if (pages[i])
1814 				get_page(pages[i]);
1815 		}
1816 
1817 		start = (start + PAGE_SIZE) & PAGE_MASK;
1818 	}
1819 
1820 	if (must_unlock && *locked) {
1821 		mmap_read_unlock(mm);
1822 		*locked = 0;
1823 	}
1824 
1825 	return i ? : -EFAULT;
1826 }
1827 #endif /* !CONFIG_MMU */
1828 
1829 /**
1830  * fault_in_writeable - fault in userspace address range for writing
1831  * @uaddr: start of address range
1832  * @size: size of address range
1833  *
1834  * Returns the number of bytes not faulted in (like copy_to_user() and
1835  * copy_from_user()).
1836  */
1837 size_t fault_in_writeable(char __user *uaddr, size_t size)
1838 {
1839 	char __user *start = uaddr, *end;
1840 
1841 	if (unlikely(size == 0))
1842 		return 0;
1843 	if (!user_write_access_begin(uaddr, size))
1844 		return size;
1845 	if (!PAGE_ALIGNED(uaddr)) {
1846 		unsafe_put_user(0, uaddr, out);
1847 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1848 	}
1849 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1850 	if (unlikely(end < start))
1851 		end = NULL;
1852 	while (uaddr != end) {
1853 		unsafe_put_user(0, uaddr, out);
1854 		uaddr += PAGE_SIZE;
1855 	}
1856 
1857 out:
1858 	user_write_access_end();
1859 	if (size > uaddr - start)
1860 		return size - (uaddr - start);
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(fault_in_writeable);
1864 
1865 /**
1866  * fault_in_subpage_writeable - fault in an address range for writing
1867  * @uaddr: start of address range
1868  * @size: size of address range
1869  *
1870  * Fault in a user address range for writing while checking for permissions at
1871  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1872  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1873  *
1874  * Returns the number of bytes not faulted in (like copy_to_user() and
1875  * copy_from_user()).
1876  */
1877 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1878 {
1879 	size_t faulted_in;
1880 
1881 	/*
1882 	 * Attempt faulting in at page granularity first for page table
1883 	 * permission checking. The arch-specific probe_subpage_writeable()
1884 	 * functions may not check for this.
1885 	 */
1886 	faulted_in = size - fault_in_writeable(uaddr, size);
1887 	if (faulted_in)
1888 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1889 
1890 	return size - faulted_in;
1891 }
1892 EXPORT_SYMBOL(fault_in_subpage_writeable);
1893 
1894 /*
1895  * fault_in_safe_writeable - fault in an address range for writing
1896  * @uaddr: start of address range
1897  * @size: length of address range
1898  *
1899  * Faults in an address range for writing.  This is primarily useful when we
1900  * already know that some or all of the pages in the address range aren't in
1901  * memory.
1902  *
1903  * Unlike fault_in_writeable(), this function is non-destructive.
1904  *
1905  * Note that we don't pin or otherwise hold the pages referenced that we fault
1906  * in.  There's no guarantee that they'll stay in memory for any duration of
1907  * time.
1908  *
1909  * Returns the number of bytes not faulted in, like copy_to_user() and
1910  * copy_from_user().
1911  */
1912 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1913 {
1914 	unsigned long start = (unsigned long)uaddr, end;
1915 	struct mm_struct *mm = current->mm;
1916 	bool unlocked = false;
1917 
1918 	if (unlikely(size == 0))
1919 		return 0;
1920 	end = PAGE_ALIGN(start + size);
1921 	if (end < start)
1922 		end = 0;
1923 
1924 	mmap_read_lock(mm);
1925 	do {
1926 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1927 			break;
1928 		start = (start + PAGE_SIZE) & PAGE_MASK;
1929 	} while (start != end);
1930 	mmap_read_unlock(mm);
1931 
1932 	if (size > (unsigned long)uaddr - start)
1933 		return size - ((unsigned long)uaddr - start);
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL(fault_in_safe_writeable);
1937 
1938 /**
1939  * fault_in_readable - fault in userspace address range for reading
1940  * @uaddr: start of user address range
1941  * @size: size of user address range
1942  *
1943  * Returns the number of bytes not faulted in (like copy_to_user() and
1944  * copy_from_user()).
1945  */
1946 size_t fault_in_readable(const char __user *uaddr, size_t size)
1947 {
1948 	const char __user *start = uaddr, *end;
1949 	volatile char c;
1950 
1951 	if (unlikely(size == 0))
1952 		return 0;
1953 	if (!user_read_access_begin(uaddr, size))
1954 		return size;
1955 	if (!PAGE_ALIGNED(uaddr)) {
1956 		unsafe_get_user(c, uaddr, out);
1957 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1958 	}
1959 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1960 	if (unlikely(end < start))
1961 		end = NULL;
1962 	while (uaddr != end) {
1963 		unsafe_get_user(c, uaddr, out);
1964 		uaddr += PAGE_SIZE;
1965 	}
1966 
1967 out:
1968 	user_read_access_end();
1969 	(void)c;
1970 	if (size > uaddr - start)
1971 		return size - (uaddr - start);
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL(fault_in_readable);
1975 
1976 /**
1977  * get_dump_page() - pin user page in memory while writing it to core dump
1978  * @addr: user address
1979  *
1980  * Returns struct page pointer of user page pinned for dump,
1981  * to be freed afterwards by put_page().
1982  *
1983  * Returns NULL on any kind of failure - a hole must then be inserted into
1984  * the corefile, to preserve alignment with its headers; and also returns
1985  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1986  * allowing a hole to be left in the corefile to save disk space.
1987  *
1988  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1989  */
1990 #ifdef CONFIG_ELF_CORE
1991 struct page *get_dump_page(unsigned long addr)
1992 {
1993 	struct page *page;
1994 	int locked = 0;
1995 	int ret;
1996 
1997 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
1998 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1999 	return (ret == 1) ? page : NULL;
2000 }
2001 #endif /* CONFIG_ELF_CORE */
2002 
2003 #ifdef CONFIG_MIGRATION
2004 /*
2005  * Returns the number of collected pages. Return value is always >= 0.
2006  */
2007 static unsigned long collect_longterm_unpinnable_pages(
2008 					struct list_head *movable_page_list,
2009 					unsigned long nr_pages,
2010 					struct page **pages)
2011 {
2012 	unsigned long i, collected = 0;
2013 	struct folio *prev_folio = NULL;
2014 	bool drain_allow = true;
2015 
2016 	for (i = 0; i < nr_pages; i++) {
2017 		struct folio *folio = page_folio(pages[i]);
2018 
2019 		if (folio == prev_folio)
2020 			continue;
2021 		prev_folio = folio;
2022 
2023 		if (folio_is_longterm_pinnable(folio))
2024 			continue;
2025 
2026 		collected++;
2027 
2028 		if (folio_is_device_coherent(folio))
2029 			continue;
2030 
2031 		if (folio_test_hugetlb(folio)) {
2032 			isolate_hugetlb(folio, movable_page_list);
2033 			continue;
2034 		}
2035 
2036 		if (!folio_test_lru(folio) && drain_allow) {
2037 			lru_add_drain_all();
2038 			drain_allow = false;
2039 		}
2040 
2041 		if (!folio_isolate_lru(folio))
2042 			continue;
2043 
2044 		list_add_tail(&folio->lru, movable_page_list);
2045 		node_stat_mod_folio(folio,
2046 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2047 				    folio_nr_pages(folio));
2048 	}
2049 
2050 	return collected;
2051 }
2052 
2053 /*
2054  * Unpins all pages and migrates device coherent pages and movable_page_list.
2055  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2056  * (or partial success).
2057  */
2058 static int migrate_longterm_unpinnable_pages(
2059 					struct list_head *movable_page_list,
2060 					unsigned long nr_pages,
2061 					struct page **pages)
2062 {
2063 	int ret;
2064 	unsigned long i;
2065 
2066 	for (i = 0; i < nr_pages; i++) {
2067 		struct folio *folio = page_folio(pages[i]);
2068 
2069 		if (folio_is_device_coherent(folio)) {
2070 			/*
2071 			 * Migration will fail if the page is pinned, so convert
2072 			 * the pin on the source page to a normal reference.
2073 			 */
2074 			pages[i] = NULL;
2075 			folio_get(folio);
2076 			gup_put_folio(folio, 1, FOLL_PIN);
2077 
2078 			if (migrate_device_coherent_page(&folio->page)) {
2079 				ret = -EBUSY;
2080 				goto err;
2081 			}
2082 
2083 			continue;
2084 		}
2085 
2086 		/*
2087 		 * We can't migrate pages with unexpected references, so drop
2088 		 * the reference obtained by __get_user_pages_locked().
2089 		 * Migrating pages have been added to movable_page_list after
2090 		 * calling folio_isolate_lru() which takes a reference so the
2091 		 * page won't be freed if it's migrating.
2092 		 */
2093 		unpin_user_page(pages[i]);
2094 		pages[i] = NULL;
2095 	}
2096 
2097 	if (!list_empty(movable_page_list)) {
2098 		struct migration_target_control mtc = {
2099 			.nid = NUMA_NO_NODE,
2100 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2101 		};
2102 
2103 		if (migrate_pages(movable_page_list, alloc_migration_target,
2104 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2105 				  MR_LONGTERM_PIN, NULL)) {
2106 			ret = -ENOMEM;
2107 			goto err;
2108 		}
2109 	}
2110 
2111 	putback_movable_pages(movable_page_list);
2112 
2113 	return -EAGAIN;
2114 
2115 err:
2116 	for (i = 0; i < nr_pages; i++)
2117 		if (pages[i])
2118 			unpin_user_page(pages[i]);
2119 	putback_movable_pages(movable_page_list);
2120 
2121 	return ret;
2122 }
2123 
2124 /*
2125  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2126  * pages in the range are required to be pinned via FOLL_PIN, before calling
2127  * this routine.
2128  *
2129  * If any pages in the range are not allowed to be pinned, then this routine
2130  * will migrate those pages away, unpin all the pages in the range and return
2131  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2132  * call this routine again.
2133  *
2134  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2135  * The caller should give up, and propagate the error back up the call stack.
2136  *
2137  * If everything is OK and all pages in the range are allowed to be pinned, then
2138  * this routine leaves all pages pinned and returns zero for success.
2139  */
2140 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2141 					    struct page **pages)
2142 {
2143 	unsigned long collected;
2144 	LIST_HEAD(movable_page_list);
2145 
2146 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2147 						nr_pages, pages);
2148 	if (!collected)
2149 		return 0;
2150 
2151 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2152 						pages);
2153 }
2154 #else
2155 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2156 					    struct page **pages)
2157 {
2158 	return 0;
2159 }
2160 #endif /* CONFIG_MIGRATION */
2161 
2162 /*
2163  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2164  * allows us to process the FOLL_LONGTERM flag.
2165  */
2166 static long __gup_longterm_locked(struct mm_struct *mm,
2167 				  unsigned long start,
2168 				  unsigned long nr_pages,
2169 				  struct page **pages,
2170 				  int *locked,
2171 				  unsigned int gup_flags)
2172 {
2173 	unsigned int flags;
2174 	long rc, nr_pinned_pages;
2175 
2176 	if (!(gup_flags & FOLL_LONGTERM))
2177 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2178 					       locked, gup_flags);
2179 
2180 	flags = memalloc_pin_save();
2181 	do {
2182 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2183 							  pages, locked,
2184 							  gup_flags);
2185 		if (nr_pinned_pages <= 0) {
2186 			rc = nr_pinned_pages;
2187 			break;
2188 		}
2189 
2190 		/* FOLL_LONGTERM implies FOLL_PIN */
2191 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2192 	} while (rc == -EAGAIN);
2193 	memalloc_pin_restore(flags);
2194 	return rc ? rc : nr_pinned_pages;
2195 }
2196 
2197 /*
2198  * Check that the given flags are valid for the exported gup/pup interface, and
2199  * update them with the required flags that the caller must have set.
2200  */
2201 static bool is_valid_gup_args(struct page **pages, int *locked,
2202 			      unsigned int *gup_flags_p, unsigned int to_set)
2203 {
2204 	unsigned int gup_flags = *gup_flags_p;
2205 
2206 	/*
2207 	 * These flags not allowed to be specified externally to the gup
2208 	 * interfaces:
2209 	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2210 	 * - FOLL_REMOTE is internal only and used on follow_page()
2211 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2212 	 */
2213 	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2214 				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2215 		return false;
2216 
2217 	gup_flags |= to_set;
2218 	if (locked) {
2219 		/* At the external interface locked must be set */
2220 		if (WARN_ON_ONCE(*locked != 1))
2221 			return false;
2222 
2223 		gup_flags |= FOLL_UNLOCKABLE;
2224 	}
2225 
2226 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2227 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2228 			 (FOLL_PIN | FOLL_GET)))
2229 		return false;
2230 
2231 	/* LONGTERM can only be specified when pinning */
2232 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2233 		return false;
2234 
2235 	/* Pages input must be given if using GET/PIN */
2236 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2237 		return false;
2238 
2239 	/* We want to allow the pgmap to be hot-unplugged at all times */
2240 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2241 			 (gup_flags & FOLL_PCI_P2PDMA)))
2242 		return false;
2243 
2244 	*gup_flags_p = gup_flags;
2245 	return true;
2246 }
2247 
2248 #ifdef CONFIG_MMU
2249 /**
2250  * get_user_pages_remote() - pin user pages in memory
2251  * @mm:		mm_struct of target mm
2252  * @start:	starting user address
2253  * @nr_pages:	number of pages from start to pin
2254  * @gup_flags:	flags modifying lookup behaviour
2255  * @pages:	array that receives pointers to the pages pinned.
2256  *		Should be at least nr_pages long. Or NULL, if caller
2257  *		only intends to ensure the pages are faulted in.
2258  * @locked:	pointer to lock flag indicating whether lock is held and
2259  *		subsequently whether VM_FAULT_RETRY functionality can be
2260  *		utilised. Lock must initially be held.
2261  *
2262  * Returns either number of pages pinned (which may be less than the
2263  * number requested), or an error. Details about the return value:
2264  *
2265  * -- If nr_pages is 0, returns 0.
2266  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2267  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2268  *    pages pinned. Again, this may be less than nr_pages.
2269  *
2270  * The caller is responsible for releasing returned @pages, via put_page().
2271  *
2272  * Must be called with mmap_lock held for read or write.
2273  *
2274  * get_user_pages_remote walks a process's page tables and takes a reference
2275  * to each struct page that each user address corresponds to at a given
2276  * instant. That is, it takes the page that would be accessed if a user
2277  * thread accesses the given user virtual address at that instant.
2278  *
2279  * This does not guarantee that the page exists in the user mappings when
2280  * get_user_pages_remote returns, and there may even be a completely different
2281  * page there in some cases (eg. if mmapped pagecache has been invalidated
2282  * and subsequently re-faulted). However it does guarantee that the page
2283  * won't be freed completely. And mostly callers simply care that the page
2284  * contains data that was valid *at some point in time*. Typically, an IO
2285  * or similar operation cannot guarantee anything stronger anyway because
2286  * locks can't be held over the syscall boundary.
2287  *
2288  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2289  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2290  * be called after the page is finished with, and before put_page is called.
2291  *
2292  * get_user_pages_remote is typically used for fewer-copy IO operations,
2293  * to get a handle on the memory by some means other than accesses
2294  * via the user virtual addresses. The pages may be submitted for
2295  * DMA to devices or accessed via their kernel linear mapping (via the
2296  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2297  *
2298  * See also get_user_pages_fast, for performance critical applications.
2299  *
2300  * get_user_pages_remote should be phased out in favor of
2301  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2302  * should use get_user_pages_remote because it cannot pass
2303  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2304  */
2305 long get_user_pages_remote(struct mm_struct *mm,
2306 		unsigned long start, unsigned long nr_pages,
2307 		unsigned int gup_flags, struct page **pages,
2308 		int *locked)
2309 {
2310 	int local_locked = 1;
2311 
2312 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2313 			       FOLL_TOUCH | FOLL_REMOTE))
2314 		return -EINVAL;
2315 
2316 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2317 				       locked ? locked : &local_locked,
2318 				       gup_flags);
2319 }
2320 EXPORT_SYMBOL(get_user_pages_remote);
2321 
2322 #else /* CONFIG_MMU */
2323 long get_user_pages_remote(struct mm_struct *mm,
2324 			   unsigned long start, unsigned long nr_pages,
2325 			   unsigned int gup_flags, struct page **pages,
2326 			   int *locked)
2327 {
2328 	return 0;
2329 }
2330 #endif /* !CONFIG_MMU */
2331 
2332 /**
2333  * get_user_pages() - pin user pages in memory
2334  * @start:      starting user address
2335  * @nr_pages:   number of pages from start to pin
2336  * @gup_flags:  flags modifying lookup behaviour
2337  * @pages:      array that receives pointers to the pages pinned.
2338  *              Should be at least nr_pages long. Or NULL, if caller
2339  *              only intends to ensure the pages are faulted in.
2340  *
2341  * This is the same as get_user_pages_remote(), just with a less-flexible
2342  * calling convention where we assume that the mm being operated on belongs to
2343  * the current task, and doesn't allow passing of a locked parameter.  We also
2344  * obviously don't pass FOLL_REMOTE in here.
2345  */
2346 long get_user_pages(unsigned long start, unsigned long nr_pages,
2347 		    unsigned int gup_flags, struct page **pages)
2348 {
2349 	int locked = 1;
2350 
2351 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2352 		return -EINVAL;
2353 
2354 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2355 				       &locked, gup_flags);
2356 }
2357 EXPORT_SYMBOL(get_user_pages);
2358 
2359 /*
2360  * get_user_pages_unlocked() is suitable to replace the form:
2361  *
2362  *      mmap_read_lock(mm);
2363  *      get_user_pages(mm, ..., pages, NULL);
2364  *      mmap_read_unlock(mm);
2365  *
2366  *  with:
2367  *
2368  *      get_user_pages_unlocked(mm, ..., pages);
2369  *
2370  * It is functionally equivalent to get_user_pages_fast so
2371  * get_user_pages_fast should be used instead if specific gup_flags
2372  * (e.g. FOLL_FORCE) are not required.
2373  */
2374 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2375 			     struct page **pages, unsigned int gup_flags)
2376 {
2377 	int locked = 0;
2378 
2379 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2380 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2381 		return -EINVAL;
2382 
2383 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2384 				       &locked, gup_flags);
2385 }
2386 EXPORT_SYMBOL(get_user_pages_unlocked);
2387 
2388 /*
2389  * Fast GUP
2390  *
2391  * get_user_pages_fast attempts to pin user pages by walking the page
2392  * tables directly and avoids taking locks. Thus the walker needs to be
2393  * protected from page table pages being freed from under it, and should
2394  * block any THP splits.
2395  *
2396  * One way to achieve this is to have the walker disable interrupts, and
2397  * rely on IPIs from the TLB flushing code blocking before the page table
2398  * pages are freed. This is unsuitable for architectures that do not need
2399  * to broadcast an IPI when invalidating TLBs.
2400  *
2401  * Another way to achieve this is to batch up page table containing pages
2402  * belonging to more than one mm_user, then rcu_sched a callback to free those
2403  * pages. Disabling interrupts will allow the fast_gup walker to both block
2404  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2405  * (which is a relatively rare event). The code below adopts this strategy.
2406  *
2407  * Before activating this code, please be aware that the following assumptions
2408  * are currently made:
2409  *
2410  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2411  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2412  *
2413  *  *) ptes can be read atomically by the architecture.
2414  *
2415  *  *) access_ok is sufficient to validate userspace address ranges.
2416  *
2417  * The last two assumptions can be relaxed by the addition of helper functions.
2418  *
2419  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2420  */
2421 #ifdef CONFIG_HAVE_FAST_GUP
2422 
2423 /*
2424  * Used in the GUP-fast path to determine whether a pin is permitted for a
2425  * specific folio.
2426  *
2427  * This call assumes the caller has pinned the folio, that the lowest page table
2428  * level still points to this folio, and that interrupts have been disabled.
2429  *
2430  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2431  * (see comment describing the writable_file_mapping_allowed() function). We
2432  * therefore try to avoid the most egregious case of a long-term mapping doing
2433  * so.
2434  *
2435  * This function cannot be as thorough as that one as the VMA is not available
2436  * in the fast path, so instead we whitelist known good cases and if in doubt,
2437  * fall back to the slow path.
2438  */
2439 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2440 {
2441 	struct address_space *mapping;
2442 	unsigned long mapping_flags;
2443 
2444 	/*
2445 	 * If we aren't pinning then no problematic write can occur. A long term
2446 	 * pin is the most egregious case so this is the one we disallow.
2447 	 */
2448 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2449 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2450 		return true;
2451 
2452 	/* The folio is pinned, so we can safely access folio fields. */
2453 
2454 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2455 		return false;
2456 
2457 	/* hugetlb mappings do not require dirty-tracking. */
2458 	if (folio_test_hugetlb(folio))
2459 		return true;
2460 
2461 	/*
2462 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2463 	 * cannot proceed, which means no actions performed under RCU can
2464 	 * proceed either.
2465 	 *
2466 	 * inodes and thus their mappings are freed under RCU, which means the
2467 	 * mapping cannot be freed beneath us and thus we can safely dereference
2468 	 * it.
2469 	 */
2470 	lockdep_assert_irqs_disabled();
2471 
2472 	/*
2473 	 * However, there may be operations which _alter_ the mapping, so ensure
2474 	 * we read it once and only once.
2475 	 */
2476 	mapping = READ_ONCE(folio->mapping);
2477 
2478 	/*
2479 	 * The mapping may have been truncated, in any case we cannot determine
2480 	 * if this mapping is safe - fall back to slow path to determine how to
2481 	 * proceed.
2482 	 */
2483 	if (!mapping)
2484 		return false;
2485 
2486 	/* Anonymous folios pose no problem. */
2487 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2488 	if (mapping_flags)
2489 		return mapping_flags & PAGE_MAPPING_ANON;
2490 
2491 	/*
2492 	 * At this point, we know the mapping is non-null and points to an
2493 	 * address_space object. The only remaining whitelisted file system is
2494 	 * shmem.
2495 	 */
2496 	return shmem_mapping(mapping);
2497 }
2498 
2499 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2500 					    unsigned int flags,
2501 					    struct page **pages)
2502 {
2503 	while ((*nr) - nr_start) {
2504 		struct page *page = pages[--(*nr)];
2505 
2506 		ClearPageReferenced(page);
2507 		if (flags & FOLL_PIN)
2508 			unpin_user_page(page);
2509 		else
2510 			put_page(page);
2511 	}
2512 }
2513 
2514 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2515 /*
2516  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2517  * operations.
2518  *
2519  * To pin the page, fast-gup needs to do below in order:
2520  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2521  *
2522  * For the rest of pgtable operations where pgtable updates can be racy
2523  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2524  * is pinned.
2525  *
2526  * Above will work for all pte-level operations, including THP split.
2527  *
2528  * For THP collapse, it's a bit more complicated because fast-gup may be
2529  * walking a pgtable page that is being freed (pte is still valid but pmd
2530  * can be cleared already).  To avoid race in such condition, we need to
2531  * also check pmd here to make sure pmd doesn't change (corresponds to
2532  * pmdp_collapse_flush() in the THP collapse code path).
2533  */
2534 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2535 			 unsigned long end, unsigned int flags,
2536 			 struct page **pages, int *nr)
2537 {
2538 	struct dev_pagemap *pgmap = NULL;
2539 	int nr_start = *nr, ret = 0;
2540 	pte_t *ptep, *ptem;
2541 
2542 	ptem = ptep = pte_offset_map(&pmd, addr);
2543 	if (!ptep)
2544 		return 0;
2545 	do {
2546 		pte_t pte = ptep_get_lockless(ptep);
2547 		struct page *page;
2548 		struct folio *folio;
2549 
2550 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2551 			goto pte_unmap;
2552 
2553 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2554 			goto pte_unmap;
2555 
2556 		if (pte_devmap(pte)) {
2557 			if (unlikely(flags & FOLL_LONGTERM))
2558 				goto pte_unmap;
2559 
2560 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2561 			if (unlikely(!pgmap)) {
2562 				undo_dev_pagemap(nr, nr_start, flags, pages);
2563 				goto pte_unmap;
2564 			}
2565 		} else if (pte_special(pte))
2566 			goto pte_unmap;
2567 
2568 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2569 		page = pte_page(pte);
2570 
2571 		folio = try_grab_folio(page, 1, flags);
2572 		if (!folio)
2573 			goto pte_unmap;
2574 
2575 		if (unlikely(page_is_secretmem(page))) {
2576 			gup_put_folio(folio, 1, flags);
2577 			goto pte_unmap;
2578 		}
2579 
2580 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2581 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2582 			gup_put_folio(folio, 1, flags);
2583 			goto pte_unmap;
2584 		}
2585 
2586 		if (!folio_fast_pin_allowed(folio, flags)) {
2587 			gup_put_folio(folio, 1, flags);
2588 			goto pte_unmap;
2589 		}
2590 
2591 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2592 			gup_put_folio(folio, 1, flags);
2593 			goto pte_unmap;
2594 		}
2595 
2596 		/*
2597 		 * We need to make the page accessible if and only if we are
2598 		 * going to access its content (the FOLL_PIN case).  Please
2599 		 * see Documentation/core-api/pin_user_pages.rst for
2600 		 * details.
2601 		 */
2602 		if (flags & FOLL_PIN) {
2603 			ret = arch_make_page_accessible(page);
2604 			if (ret) {
2605 				gup_put_folio(folio, 1, flags);
2606 				goto pte_unmap;
2607 			}
2608 		}
2609 		folio_set_referenced(folio);
2610 		pages[*nr] = page;
2611 		(*nr)++;
2612 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2613 
2614 	ret = 1;
2615 
2616 pte_unmap:
2617 	if (pgmap)
2618 		put_dev_pagemap(pgmap);
2619 	pte_unmap(ptem);
2620 	return ret;
2621 }
2622 #else
2623 
2624 /*
2625  * If we can't determine whether or not a pte is special, then fail immediately
2626  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2627  * to be special.
2628  *
2629  * For a futex to be placed on a THP tail page, get_futex_key requires a
2630  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2631  * useful to have gup_huge_pmd even if we can't operate on ptes.
2632  */
2633 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2634 			 unsigned long end, unsigned int flags,
2635 			 struct page **pages, int *nr)
2636 {
2637 	return 0;
2638 }
2639 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2640 
2641 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2642 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2643 			     unsigned long end, unsigned int flags,
2644 			     struct page **pages, int *nr)
2645 {
2646 	int nr_start = *nr;
2647 	struct dev_pagemap *pgmap = NULL;
2648 
2649 	do {
2650 		struct page *page = pfn_to_page(pfn);
2651 
2652 		pgmap = get_dev_pagemap(pfn, pgmap);
2653 		if (unlikely(!pgmap)) {
2654 			undo_dev_pagemap(nr, nr_start, flags, pages);
2655 			break;
2656 		}
2657 
2658 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2659 			undo_dev_pagemap(nr, nr_start, flags, pages);
2660 			break;
2661 		}
2662 
2663 		SetPageReferenced(page);
2664 		pages[*nr] = page;
2665 		if (unlikely(try_grab_page(page, flags))) {
2666 			undo_dev_pagemap(nr, nr_start, flags, pages);
2667 			break;
2668 		}
2669 		(*nr)++;
2670 		pfn++;
2671 	} while (addr += PAGE_SIZE, addr != end);
2672 
2673 	put_dev_pagemap(pgmap);
2674 	return addr == end;
2675 }
2676 
2677 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2678 				 unsigned long end, unsigned int flags,
2679 				 struct page **pages, int *nr)
2680 {
2681 	unsigned long fault_pfn;
2682 	int nr_start = *nr;
2683 
2684 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2685 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2686 		return 0;
2687 
2688 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2689 		undo_dev_pagemap(nr, nr_start, flags, pages);
2690 		return 0;
2691 	}
2692 	return 1;
2693 }
2694 
2695 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2696 				 unsigned long end, unsigned int flags,
2697 				 struct page **pages, int *nr)
2698 {
2699 	unsigned long fault_pfn;
2700 	int nr_start = *nr;
2701 
2702 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2703 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2704 		return 0;
2705 
2706 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2707 		undo_dev_pagemap(nr, nr_start, flags, pages);
2708 		return 0;
2709 	}
2710 	return 1;
2711 }
2712 #else
2713 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2714 				 unsigned long end, unsigned int flags,
2715 				 struct page **pages, int *nr)
2716 {
2717 	BUILD_BUG();
2718 	return 0;
2719 }
2720 
2721 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2722 				 unsigned long end, unsigned int flags,
2723 				 struct page **pages, int *nr)
2724 {
2725 	BUILD_BUG();
2726 	return 0;
2727 }
2728 #endif
2729 
2730 static int record_subpages(struct page *page, unsigned long addr,
2731 			   unsigned long end, struct page **pages)
2732 {
2733 	int nr;
2734 
2735 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2736 		pages[nr] = nth_page(page, nr);
2737 
2738 	return nr;
2739 }
2740 
2741 #ifdef CONFIG_ARCH_HAS_HUGEPD
2742 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2743 				      unsigned long sz)
2744 {
2745 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2746 	return (__boundary - 1 < end - 1) ? __boundary : end;
2747 }
2748 
2749 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2750 		       unsigned long end, unsigned int flags,
2751 		       struct page **pages, int *nr)
2752 {
2753 	unsigned long pte_end;
2754 	struct page *page;
2755 	struct folio *folio;
2756 	pte_t pte;
2757 	int refs;
2758 
2759 	pte_end = (addr + sz) & ~(sz-1);
2760 	if (pte_end < end)
2761 		end = pte_end;
2762 
2763 	pte = huge_ptep_get(ptep);
2764 
2765 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2766 		return 0;
2767 
2768 	/* hugepages are never "special" */
2769 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2770 
2771 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2772 	refs = record_subpages(page, addr, end, pages + *nr);
2773 
2774 	folio = try_grab_folio(page, refs, flags);
2775 	if (!folio)
2776 		return 0;
2777 
2778 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2779 		gup_put_folio(folio, refs, flags);
2780 		return 0;
2781 	}
2782 
2783 	if (!folio_fast_pin_allowed(folio, flags)) {
2784 		gup_put_folio(folio, refs, flags);
2785 		return 0;
2786 	}
2787 
2788 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2789 		gup_put_folio(folio, refs, flags);
2790 		return 0;
2791 	}
2792 
2793 	*nr += refs;
2794 	folio_set_referenced(folio);
2795 	return 1;
2796 }
2797 
2798 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2799 		unsigned int pdshift, unsigned long end, unsigned int flags,
2800 		struct page **pages, int *nr)
2801 {
2802 	pte_t *ptep;
2803 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2804 	unsigned long next;
2805 
2806 	ptep = hugepte_offset(hugepd, addr, pdshift);
2807 	do {
2808 		next = hugepte_addr_end(addr, end, sz);
2809 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2810 			return 0;
2811 	} while (ptep++, addr = next, addr != end);
2812 
2813 	return 1;
2814 }
2815 #else
2816 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2817 		unsigned int pdshift, unsigned long end, unsigned int flags,
2818 		struct page **pages, int *nr)
2819 {
2820 	return 0;
2821 }
2822 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2823 
2824 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2825 			unsigned long end, unsigned int flags,
2826 			struct page **pages, int *nr)
2827 {
2828 	struct page *page;
2829 	struct folio *folio;
2830 	int refs;
2831 
2832 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2833 		return 0;
2834 
2835 	if (pmd_devmap(orig)) {
2836 		if (unlikely(flags & FOLL_LONGTERM))
2837 			return 0;
2838 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2839 					     pages, nr);
2840 	}
2841 
2842 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2843 	refs = record_subpages(page, addr, end, pages + *nr);
2844 
2845 	folio = try_grab_folio(page, refs, flags);
2846 	if (!folio)
2847 		return 0;
2848 
2849 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2850 		gup_put_folio(folio, refs, flags);
2851 		return 0;
2852 	}
2853 
2854 	if (!folio_fast_pin_allowed(folio, flags)) {
2855 		gup_put_folio(folio, refs, flags);
2856 		return 0;
2857 	}
2858 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2859 		gup_put_folio(folio, refs, flags);
2860 		return 0;
2861 	}
2862 
2863 	*nr += refs;
2864 	folio_set_referenced(folio);
2865 	return 1;
2866 }
2867 
2868 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2869 			unsigned long end, unsigned int flags,
2870 			struct page **pages, int *nr)
2871 {
2872 	struct page *page;
2873 	struct folio *folio;
2874 	int refs;
2875 
2876 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2877 		return 0;
2878 
2879 	if (pud_devmap(orig)) {
2880 		if (unlikely(flags & FOLL_LONGTERM))
2881 			return 0;
2882 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2883 					     pages, nr);
2884 	}
2885 
2886 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2887 	refs = record_subpages(page, addr, end, pages + *nr);
2888 
2889 	folio = try_grab_folio(page, refs, flags);
2890 	if (!folio)
2891 		return 0;
2892 
2893 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2894 		gup_put_folio(folio, refs, flags);
2895 		return 0;
2896 	}
2897 
2898 	if (!folio_fast_pin_allowed(folio, flags)) {
2899 		gup_put_folio(folio, refs, flags);
2900 		return 0;
2901 	}
2902 
2903 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2904 		gup_put_folio(folio, refs, flags);
2905 		return 0;
2906 	}
2907 
2908 	*nr += refs;
2909 	folio_set_referenced(folio);
2910 	return 1;
2911 }
2912 
2913 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2914 			unsigned long end, unsigned int flags,
2915 			struct page **pages, int *nr)
2916 {
2917 	int refs;
2918 	struct page *page;
2919 	struct folio *folio;
2920 
2921 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2922 		return 0;
2923 
2924 	BUILD_BUG_ON(pgd_devmap(orig));
2925 
2926 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2927 	refs = record_subpages(page, addr, end, pages + *nr);
2928 
2929 	folio = try_grab_folio(page, refs, flags);
2930 	if (!folio)
2931 		return 0;
2932 
2933 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2934 		gup_put_folio(folio, refs, flags);
2935 		return 0;
2936 	}
2937 
2938 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2939 		gup_put_folio(folio, refs, flags);
2940 		return 0;
2941 	}
2942 
2943 	if (!folio_fast_pin_allowed(folio, flags)) {
2944 		gup_put_folio(folio, refs, flags);
2945 		return 0;
2946 	}
2947 
2948 	*nr += refs;
2949 	folio_set_referenced(folio);
2950 	return 1;
2951 }
2952 
2953 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2954 		unsigned int flags, struct page **pages, int *nr)
2955 {
2956 	unsigned long next;
2957 	pmd_t *pmdp;
2958 
2959 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2960 	do {
2961 		pmd_t pmd = pmdp_get_lockless(pmdp);
2962 
2963 		next = pmd_addr_end(addr, end);
2964 		if (!pmd_present(pmd))
2965 			return 0;
2966 
2967 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2968 			     pmd_devmap(pmd))) {
2969 			if (pmd_protnone(pmd) &&
2970 			    !gup_can_follow_protnone(flags))
2971 				return 0;
2972 
2973 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2974 				pages, nr))
2975 				return 0;
2976 
2977 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2978 			/*
2979 			 * architecture have different format for hugetlbfs
2980 			 * pmd format and THP pmd format
2981 			 */
2982 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2983 					 PMD_SHIFT, next, flags, pages, nr))
2984 				return 0;
2985 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2986 			return 0;
2987 	} while (pmdp++, addr = next, addr != end);
2988 
2989 	return 1;
2990 }
2991 
2992 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2993 			 unsigned int flags, struct page **pages, int *nr)
2994 {
2995 	unsigned long next;
2996 	pud_t *pudp;
2997 
2998 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2999 	do {
3000 		pud_t pud = READ_ONCE(*pudp);
3001 
3002 		next = pud_addr_end(addr, end);
3003 		if (unlikely(!pud_present(pud)))
3004 			return 0;
3005 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3006 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3007 					  pages, nr))
3008 				return 0;
3009 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3010 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3011 					 PUD_SHIFT, next, flags, pages, nr))
3012 				return 0;
3013 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3014 			return 0;
3015 	} while (pudp++, addr = next, addr != end);
3016 
3017 	return 1;
3018 }
3019 
3020 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3021 			 unsigned int flags, struct page **pages, int *nr)
3022 {
3023 	unsigned long next;
3024 	p4d_t *p4dp;
3025 
3026 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3027 	do {
3028 		p4d_t p4d = READ_ONCE(*p4dp);
3029 
3030 		next = p4d_addr_end(addr, end);
3031 		if (p4d_none(p4d))
3032 			return 0;
3033 		BUILD_BUG_ON(p4d_huge(p4d));
3034 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3035 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3036 					 P4D_SHIFT, next, flags, pages, nr))
3037 				return 0;
3038 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3039 			return 0;
3040 	} while (p4dp++, addr = next, addr != end);
3041 
3042 	return 1;
3043 }
3044 
3045 static void gup_pgd_range(unsigned long addr, unsigned long end,
3046 		unsigned int flags, struct page **pages, int *nr)
3047 {
3048 	unsigned long next;
3049 	pgd_t *pgdp;
3050 
3051 	pgdp = pgd_offset(current->mm, addr);
3052 	do {
3053 		pgd_t pgd = READ_ONCE(*pgdp);
3054 
3055 		next = pgd_addr_end(addr, end);
3056 		if (pgd_none(pgd))
3057 			return;
3058 		if (unlikely(pgd_huge(pgd))) {
3059 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3060 					  pages, nr))
3061 				return;
3062 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3063 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3064 					 PGDIR_SHIFT, next, flags, pages, nr))
3065 				return;
3066 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3067 			return;
3068 	} while (pgdp++, addr = next, addr != end);
3069 }
3070 #else
3071 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3072 		unsigned int flags, struct page **pages, int *nr)
3073 {
3074 }
3075 #endif /* CONFIG_HAVE_FAST_GUP */
3076 
3077 #ifndef gup_fast_permitted
3078 /*
3079  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3080  * we need to fall back to the slow version:
3081  */
3082 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3083 {
3084 	return true;
3085 }
3086 #endif
3087 
3088 static unsigned long lockless_pages_from_mm(unsigned long start,
3089 					    unsigned long end,
3090 					    unsigned int gup_flags,
3091 					    struct page **pages)
3092 {
3093 	unsigned long flags;
3094 	int nr_pinned = 0;
3095 	unsigned seq;
3096 
3097 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3098 	    !gup_fast_permitted(start, end))
3099 		return 0;
3100 
3101 	if (gup_flags & FOLL_PIN) {
3102 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3103 		if (seq & 1)
3104 			return 0;
3105 	}
3106 
3107 	/*
3108 	 * Disable interrupts. The nested form is used, in order to allow full,
3109 	 * general purpose use of this routine.
3110 	 *
3111 	 * With interrupts disabled, we block page table pages from being freed
3112 	 * from under us. See struct mmu_table_batch comments in
3113 	 * include/asm-generic/tlb.h for more details.
3114 	 *
3115 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3116 	 * that come from THPs splitting.
3117 	 */
3118 	local_irq_save(flags);
3119 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3120 	local_irq_restore(flags);
3121 
3122 	/*
3123 	 * When pinning pages for DMA there could be a concurrent write protect
3124 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3125 	 */
3126 	if (gup_flags & FOLL_PIN) {
3127 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3128 			unpin_user_pages_lockless(pages, nr_pinned);
3129 			return 0;
3130 		} else {
3131 			sanity_check_pinned_pages(pages, nr_pinned);
3132 		}
3133 	}
3134 	return nr_pinned;
3135 }
3136 
3137 static int internal_get_user_pages_fast(unsigned long start,
3138 					unsigned long nr_pages,
3139 					unsigned int gup_flags,
3140 					struct page **pages)
3141 {
3142 	unsigned long len, end;
3143 	unsigned long nr_pinned;
3144 	int locked = 0;
3145 	int ret;
3146 
3147 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3148 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3149 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3150 				       FOLL_PCI_P2PDMA)))
3151 		return -EINVAL;
3152 
3153 	if (gup_flags & FOLL_PIN)
3154 		mm_set_has_pinned_flag(&current->mm->flags);
3155 
3156 	if (!(gup_flags & FOLL_FAST_ONLY))
3157 		might_lock_read(&current->mm->mmap_lock);
3158 
3159 	start = untagged_addr(start) & PAGE_MASK;
3160 	len = nr_pages << PAGE_SHIFT;
3161 	if (check_add_overflow(start, len, &end))
3162 		return -EOVERFLOW;
3163 	if (end > TASK_SIZE_MAX)
3164 		return -EFAULT;
3165 	if (unlikely(!access_ok((void __user *)start, len)))
3166 		return -EFAULT;
3167 
3168 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3169 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3170 		return nr_pinned;
3171 
3172 	/* Slow path: try to get the remaining pages with get_user_pages */
3173 	start += nr_pinned << PAGE_SHIFT;
3174 	pages += nr_pinned;
3175 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3176 				    pages, &locked,
3177 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3178 	if (ret < 0) {
3179 		/*
3180 		 * The caller has to unpin the pages we already pinned so
3181 		 * returning -errno is not an option
3182 		 */
3183 		if (nr_pinned)
3184 			return nr_pinned;
3185 		return ret;
3186 	}
3187 	return ret + nr_pinned;
3188 }
3189 
3190 /**
3191  * get_user_pages_fast_only() - pin user pages in memory
3192  * @start:      starting user address
3193  * @nr_pages:   number of pages from start to pin
3194  * @gup_flags:  flags modifying pin behaviour
3195  * @pages:      array that receives pointers to the pages pinned.
3196  *              Should be at least nr_pages long.
3197  *
3198  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3199  * the regular GUP.
3200  *
3201  * If the architecture does not support this function, simply return with no
3202  * pages pinned.
3203  *
3204  * Careful, careful! COW breaking can go either way, so a non-write
3205  * access can get ambiguous page results. If you call this function without
3206  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3207  */
3208 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3209 			     unsigned int gup_flags, struct page **pages)
3210 {
3211 	/*
3212 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3213 	 * because gup fast is always a "pin with a +1 page refcount" request.
3214 	 *
3215 	 * FOLL_FAST_ONLY is required in order to match the API description of
3216 	 * this routine: no fall back to regular ("slow") GUP.
3217 	 */
3218 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3219 			       FOLL_GET | FOLL_FAST_ONLY))
3220 		return -EINVAL;
3221 
3222 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3223 }
3224 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3225 
3226 /**
3227  * get_user_pages_fast() - pin user pages in memory
3228  * @start:      starting user address
3229  * @nr_pages:   number of pages from start to pin
3230  * @gup_flags:  flags modifying pin behaviour
3231  * @pages:      array that receives pointers to the pages pinned.
3232  *              Should be at least nr_pages long.
3233  *
3234  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3235  * If not successful, it will fall back to taking the lock and
3236  * calling get_user_pages().
3237  *
3238  * Returns number of pages pinned. This may be fewer than the number requested.
3239  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3240  * -errno.
3241  */
3242 int get_user_pages_fast(unsigned long start, int nr_pages,
3243 			unsigned int gup_flags, struct page **pages)
3244 {
3245 	/*
3246 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3247 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3248 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3249 	 * request.
3250 	 */
3251 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3252 		return -EINVAL;
3253 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3254 }
3255 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3256 
3257 /**
3258  * pin_user_pages_fast() - pin user pages in memory without taking locks
3259  *
3260  * @start:      starting user address
3261  * @nr_pages:   number of pages from start to pin
3262  * @gup_flags:  flags modifying pin behaviour
3263  * @pages:      array that receives pointers to the pages pinned.
3264  *              Should be at least nr_pages long.
3265  *
3266  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3267  * get_user_pages_fast() for documentation on the function arguments, because
3268  * the arguments here are identical.
3269  *
3270  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3271  * see Documentation/core-api/pin_user_pages.rst for further details.
3272  *
3273  * Note that if a zero_page is amongst the returned pages, it will not have
3274  * pins in it and unpin_user_page() will not remove pins from it.
3275  */
3276 int pin_user_pages_fast(unsigned long start, int nr_pages,
3277 			unsigned int gup_flags, struct page **pages)
3278 {
3279 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3280 		return -EINVAL;
3281 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3282 }
3283 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3284 
3285 /**
3286  * pin_user_pages_remote() - pin pages of a remote process
3287  *
3288  * @mm:		mm_struct of target mm
3289  * @start:	starting user address
3290  * @nr_pages:	number of pages from start to pin
3291  * @gup_flags:	flags modifying lookup behaviour
3292  * @pages:	array that receives pointers to the pages pinned.
3293  *		Should be at least nr_pages long.
3294  * @locked:	pointer to lock flag indicating whether lock is held and
3295  *		subsequently whether VM_FAULT_RETRY functionality can be
3296  *		utilised. Lock must initially be held.
3297  *
3298  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3299  * get_user_pages_remote() for documentation on the function arguments, because
3300  * the arguments here are identical.
3301  *
3302  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3303  * see Documentation/core-api/pin_user_pages.rst for details.
3304  *
3305  * Note that if a zero_page is amongst the returned pages, it will not have
3306  * pins in it and unpin_user_page*() will not remove pins from it.
3307  */
3308 long pin_user_pages_remote(struct mm_struct *mm,
3309 			   unsigned long start, unsigned long nr_pages,
3310 			   unsigned int gup_flags, struct page **pages,
3311 			   int *locked)
3312 {
3313 	int local_locked = 1;
3314 
3315 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3316 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3317 		return 0;
3318 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3319 				     locked ? locked : &local_locked,
3320 				     gup_flags);
3321 }
3322 EXPORT_SYMBOL(pin_user_pages_remote);
3323 
3324 /**
3325  * pin_user_pages() - pin user pages in memory for use by other devices
3326  *
3327  * @start:	starting user address
3328  * @nr_pages:	number of pages from start to pin
3329  * @gup_flags:	flags modifying lookup behaviour
3330  * @pages:	array that receives pointers to the pages pinned.
3331  *		Should be at least nr_pages long.
3332  *
3333  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3334  * FOLL_PIN is set.
3335  *
3336  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3337  * see Documentation/core-api/pin_user_pages.rst for details.
3338  *
3339  * Note that if a zero_page is amongst the returned pages, it will not have
3340  * pins in it and unpin_user_page*() will not remove pins from it.
3341  */
3342 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3343 		    unsigned int gup_flags, struct page **pages)
3344 {
3345 	int locked = 1;
3346 
3347 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3348 		return 0;
3349 	return __gup_longterm_locked(current->mm, start, nr_pages,
3350 				     pages, &locked, gup_flags);
3351 }
3352 EXPORT_SYMBOL(pin_user_pages);
3353 
3354 /*
3355  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3356  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3357  * FOLL_PIN and rejects FOLL_GET.
3358  *
3359  * Note that if a zero_page is amongst the returned pages, it will not have
3360  * pins in it and unpin_user_page*() will not remove pins from it.
3361  */
3362 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3363 			     struct page **pages, unsigned int gup_flags)
3364 {
3365 	int locked = 0;
3366 
3367 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3368 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3369 		return 0;
3370 
3371 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3372 				     &locked, gup_flags);
3373 }
3374 EXPORT_SYMBOL(pin_user_pages_unlocked);
3375