xref: /openbmc/linux/mm/filemap.c (revision e61452365372570253b2b1de84bab0cdb2e62c64)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static void page_cache_tree_delete(struct address_space *mapping,
114 				   struct page *page, void *shadow)
115 {
116 	struct radix_tree_node *node;
117 	unsigned long index;
118 	unsigned int offset;
119 	unsigned int tag;
120 	void **slot;
121 
122 	VM_BUG_ON(!PageLocked(page));
123 
124 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125 
126 	if (shadow) {
127 		mapping->nrexceptional++;
128 		/*
129 		 * Make sure the nrexceptional update is committed before
130 		 * the nrpages update so that final truncate racing
131 		 * with reclaim does not see both counters 0 at the
132 		 * same time and miss a shadow entry.
133 		 */
134 		smp_wmb();
135 	}
136 	mapping->nrpages--;
137 
138 	if (!node) {
139 		/* Clear direct pointer tags in root node */
140 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 		radix_tree_replace_slot(slot, shadow);
142 		return;
143 	}
144 
145 	/* Clear tree tags for the removed page */
146 	index = page->index;
147 	offset = index & RADIX_TREE_MAP_MASK;
148 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 		if (test_bit(offset, node->tags[tag]))
150 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 	}
152 
153 	/* Delete page, swap shadow entry */
154 	radix_tree_replace_slot(slot, shadow);
155 	workingset_node_pages_dec(node);
156 	if (shadow)
157 		workingset_node_shadows_inc(node);
158 	else
159 		if (__radix_tree_delete_node(&mapping->page_tree, node))
160 			return;
161 
162 	/*
163 	 * Track node that only contains shadow entries.
164 	 *
165 	 * Avoid acquiring the list_lru lock if already tracked.  The
166 	 * list_empty() test is safe as node->private_list is
167 	 * protected by mapping->tree_lock.
168 	 */
169 	if (!workingset_node_pages(node) &&
170 	    list_empty(&node->private_list)) {
171 		node->private_data = mapping;
172 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 	}
174 }
175 
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock.
180  */
181 void __delete_from_page_cache(struct page *page, void *shadow)
182 {
183 	struct address_space *mapping = page->mapping;
184 
185 	trace_mm_filemap_delete_from_page_cache(page);
186 	/*
187 	 * if we're uptodate, flush out into the cleancache, otherwise
188 	 * invalidate any existing cleancache entries.  We can't leave
189 	 * stale data around in the cleancache once our page is gone
190 	 */
191 	if (PageUptodate(page) && PageMappedToDisk(page))
192 		cleancache_put_page(page);
193 	else
194 		cleancache_invalidate_page(mapping, page);
195 
196 	VM_BUG_ON_PAGE(page_mapped(page), page);
197 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198 		int mapcount;
199 
200 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
201 			 current->comm, page_to_pfn(page));
202 		dump_page(page, "still mapped when deleted");
203 		dump_stack();
204 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205 
206 		mapcount = page_mapcount(page);
207 		if (mapping_exiting(mapping) &&
208 		    page_count(page) >= mapcount + 2) {
209 			/*
210 			 * All vmas have already been torn down, so it's
211 			 * a good bet that actually the page is unmapped,
212 			 * and we'd prefer not to leak it: if we're wrong,
213 			 * some other bad page check should catch it later.
214 			 */
215 			page_mapcount_reset(page);
216 			atomic_sub(mapcount, &page->_count);
217 		}
218 	}
219 
220 	page_cache_tree_delete(mapping, page, shadow);
221 
222 	page->mapping = NULL;
223 	/* Leave page->index set: truncation lookup relies upon it */
224 
225 	/* hugetlb pages do not participate in page cache accounting. */
226 	if (!PageHuge(page))
227 		__dec_zone_page_state(page, NR_FILE_PAGES);
228 	if (PageSwapBacked(page))
229 		__dec_zone_page_state(page, NR_SHMEM);
230 
231 	/*
232 	 * At this point page must be either written or cleaned by truncate.
233 	 * Dirty page here signals a bug and loss of unwritten data.
234 	 *
235 	 * This fixes dirty accounting after removing the page entirely but
236 	 * leaves PageDirty set: it has no effect for truncated page and
237 	 * anyway will be cleared before returning page into buddy allocator.
238 	 */
239 	if (WARN_ON_ONCE(PageDirty(page)))
240 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
241 }
242 
243 /**
244  * delete_from_page_cache - delete page from page cache
245  * @page: the page which the kernel is trying to remove from page cache
246  *
247  * This must be called only on pages that have been verified to be in the page
248  * cache and locked.  It will never put the page into the free list, the caller
249  * has a reference on the page.
250  */
251 void delete_from_page_cache(struct page *page)
252 {
253 	struct address_space *mapping = page->mapping;
254 	unsigned long flags;
255 
256 	void (*freepage)(struct page *);
257 
258 	BUG_ON(!PageLocked(page));
259 
260 	freepage = mapping->a_ops->freepage;
261 
262 	spin_lock_irqsave(&mapping->tree_lock, flags);
263 	__delete_from_page_cache(page, NULL);
264 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
265 
266 	if (freepage)
267 		freepage(page);
268 	page_cache_release(page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271 
272 static int filemap_check_errors(struct address_space *mapping)
273 {
274 	int ret = 0;
275 	/* Check for outstanding write errors */
276 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
277 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
278 		ret = -ENOSPC;
279 	if (test_bit(AS_EIO, &mapping->flags) &&
280 	    test_and_clear_bit(AS_EIO, &mapping->flags))
281 		ret = -EIO;
282 	return ret;
283 }
284 
285 /**
286  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
287  * @mapping:	address space structure to write
288  * @start:	offset in bytes where the range starts
289  * @end:	offset in bytes where the range ends (inclusive)
290  * @sync_mode:	enable synchronous operation
291  *
292  * Start writeback against all of a mapping's dirty pages that lie
293  * within the byte offsets <start, end> inclusive.
294  *
295  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
296  * opposed to a regular memory cleansing writeback.  The difference between
297  * these two operations is that if a dirty page/buffer is encountered, it must
298  * be waited upon, and not just skipped over.
299  */
300 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301 				loff_t end, int sync_mode)
302 {
303 	int ret;
304 	struct writeback_control wbc = {
305 		.sync_mode = sync_mode,
306 		.nr_to_write = LONG_MAX,
307 		.range_start = start,
308 		.range_end = end,
309 	};
310 
311 	if (!mapping_cap_writeback_dirty(mapping))
312 		return 0;
313 
314 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
315 	ret = do_writepages(mapping, &wbc);
316 	wbc_detach_inode(&wbc);
317 	return ret;
318 }
319 
320 static inline int __filemap_fdatawrite(struct address_space *mapping,
321 	int sync_mode)
322 {
323 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
324 }
325 
326 int filemap_fdatawrite(struct address_space *mapping)
327 {
328 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329 }
330 EXPORT_SYMBOL(filemap_fdatawrite);
331 
332 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 				loff_t end)
334 {
335 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336 }
337 EXPORT_SYMBOL(filemap_fdatawrite_range);
338 
339 /**
340  * filemap_flush - mostly a non-blocking flush
341  * @mapping:	target address_space
342  *
343  * This is a mostly non-blocking flush.  Not suitable for data-integrity
344  * purposes - I/O may not be started against all dirty pages.
345  */
346 int filemap_flush(struct address_space *mapping)
347 {
348 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349 }
350 EXPORT_SYMBOL(filemap_flush);
351 
352 static int __filemap_fdatawait_range(struct address_space *mapping,
353 				     loff_t start_byte, loff_t end_byte)
354 {
355 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
356 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
357 	struct pagevec pvec;
358 	int nr_pages;
359 	int ret = 0;
360 
361 	if (end_byte < start_byte)
362 		goto out;
363 
364 	pagevec_init(&pvec, 0);
365 	while ((index <= end) &&
366 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367 			PAGECACHE_TAG_WRITEBACK,
368 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369 		unsigned i;
370 
371 		for (i = 0; i < nr_pages; i++) {
372 			struct page *page = pvec.pages[i];
373 
374 			/* until radix tree lookup accepts end_index */
375 			if (page->index > end)
376 				continue;
377 
378 			wait_on_page_writeback(page);
379 			if (TestClearPageError(page))
380 				ret = -EIO;
381 		}
382 		pagevec_release(&pvec);
383 		cond_resched();
384 	}
385 out:
386 	return ret;
387 }
388 
389 /**
390  * filemap_fdatawait_range - wait for writeback to complete
391  * @mapping:		address space structure to wait for
392  * @start_byte:		offset in bytes where the range starts
393  * @end_byte:		offset in bytes where the range ends (inclusive)
394  *
395  * Walk the list of under-writeback pages of the given address space
396  * in the given range and wait for all of them.  Check error status of
397  * the address space and return it.
398  *
399  * Since the error status of the address space is cleared by this function,
400  * callers are responsible for checking the return value and handling and/or
401  * reporting the error.
402  */
403 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404 			    loff_t end_byte)
405 {
406 	int ret, ret2;
407 
408 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
409 	ret2 = filemap_check_errors(mapping);
410 	if (!ret)
411 		ret = ret2;
412 
413 	return ret;
414 }
415 EXPORT_SYMBOL(filemap_fdatawait_range);
416 
417 /**
418  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419  * @mapping: address space structure to wait for
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * and wait for all of them.  Unlike filemap_fdatawait(), this function
423  * does not clear error status of the address space.
424  *
425  * Use this function if callers don't handle errors themselves.  Expected
426  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427  * fsfreeze(8)
428  */
429 void filemap_fdatawait_keep_errors(struct address_space *mapping)
430 {
431 	loff_t i_size = i_size_read(mapping->host);
432 
433 	if (i_size == 0)
434 		return;
435 
436 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
437 }
438 
439 /**
440  * filemap_fdatawait - wait for all under-writeback pages to complete
441  * @mapping: address space structure to wait for
442  *
443  * Walk the list of under-writeback pages of the given address space
444  * and wait for all of them.  Check error status of the address space
445  * and return it.
446  *
447  * Since the error status of the address space is cleared by this function,
448  * callers are responsible for checking the return value and handling and/or
449  * reporting the error.
450  */
451 int filemap_fdatawait(struct address_space *mapping)
452 {
453 	loff_t i_size = i_size_read(mapping->host);
454 
455 	if (i_size == 0)
456 		return 0;
457 
458 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
459 }
460 EXPORT_SYMBOL(filemap_fdatawait);
461 
462 int filemap_write_and_wait(struct address_space *mapping)
463 {
464 	int err = 0;
465 
466 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
467 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
468 		err = filemap_fdatawrite(mapping);
469 		/*
470 		 * Even if the above returned error, the pages may be
471 		 * written partially (e.g. -ENOSPC), so we wait for it.
472 		 * But the -EIO is special case, it may indicate the worst
473 		 * thing (e.g. bug) happened, so we avoid waiting for it.
474 		 */
475 		if (err != -EIO) {
476 			int err2 = filemap_fdatawait(mapping);
477 			if (!err)
478 				err = err2;
479 		}
480 	} else {
481 		err = filemap_check_errors(mapping);
482 	}
483 	return err;
484 }
485 EXPORT_SYMBOL(filemap_write_and_wait);
486 
487 /**
488  * filemap_write_and_wait_range - write out & wait on a file range
489  * @mapping:	the address_space for the pages
490  * @lstart:	offset in bytes where the range starts
491  * @lend:	offset in bytes where the range ends (inclusive)
492  *
493  * Write out and wait upon file offsets lstart->lend, inclusive.
494  *
495  * Note that `lend' is inclusive (describes the last byte to be written) so
496  * that this function can be used to write to the very end-of-file (end = -1).
497  */
498 int filemap_write_and_wait_range(struct address_space *mapping,
499 				 loff_t lstart, loff_t lend)
500 {
501 	int err = 0;
502 
503 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
504 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
505 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
506 						 WB_SYNC_ALL);
507 		/* See comment of filemap_write_and_wait() */
508 		if (err != -EIO) {
509 			int err2 = filemap_fdatawait_range(mapping,
510 						lstart, lend);
511 			if (!err)
512 				err = err2;
513 		}
514 	} else {
515 		err = filemap_check_errors(mapping);
516 	}
517 	return err;
518 }
519 EXPORT_SYMBOL(filemap_write_and_wait_range);
520 
521 /**
522  * replace_page_cache_page - replace a pagecache page with a new one
523  * @old:	page to be replaced
524  * @new:	page to replace with
525  * @gfp_mask:	allocation mode
526  *
527  * This function replaces a page in the pagecache with a new one.  On
528  * success it acquires the pagecache reference for the new page and
529  * drops it for the old page.  Both the old and new pages must be
530  * locked.  This function does not add the new page to the LRU, the
531  * caller must do that.
532  *
533  * The remove + add is atomic.  The only way this function can fail is
534  * memory allocation failure.
535  */
536 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537 {
538 	int error;
539 
540 	VM_BUG_ON_PAGE(!PageLocked(old), old);
541 	VM_BUG_ON_PAGE(!PageLocked(new), new);
542 	VM_BUG_ON_PAGE(new->mapping, new);
543 
544 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545 	if (!error) {
546 		struct address_space *mapping = old->mapping;
547 		void (*freepage)(struct page *);
548 		unsigned long flags;
549 
550 		pgoff_t offset = old->index;
551 		freepage = mapping->a_ops->freepage;
552 
553 		page_cache_get(new);
554 		new->mapping = mapping;
555 		new->index = offset;
556 
557 		spin_lock_irqsave(&mapping->tree_lock, flags);
558 		__delete_from_page_cache(old, NULL);
559 		error = radix_tree_insert(&mapping->page_tree, offset, new);
560 		BUG_ON(error);
561 		mapping->nrpages++;
562 
563 		/*
564 		 * hugetlb pages do not participate in page cache accounting.
565 		 */
566 		if (!PageHuge(new))
567 			__inc_zone_page_state(new, NR_FILE_PAGES);
568 		if (PageSwapBacked(new))
569 			__inc_zone_page_state(new, NR_SHMEM);
570 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
571 		mem_cgroup_migrate(old, new);
572 		radix_tree_preload_end();
573 		if (freepage)
574 			freepage(old);
575 		page_cache_release(old);
576 	}
577 
578 	return error;
579 }
580 EXPORT_SYMBOL_GPL(replace_page_cache_page);
581 
582 static int page_cache_tree_insert(struct address_space *mapping,
583 				  struct page *page, void **shadowp)
584 {
585 	struct radix_tree_node *node;
586 	void **slot;
587 	int error;
588 
589 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
590 				    &node, &slot);
591 	if (error)
592 		return error;
593 	if (*slot) {
594 		void *p;
595 
596 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597 		if (!radix_tree_exceptional_entry(p))
598 			return -EEXIST;
599 
600 		if (WARN_ON(dax_mapping(mapping)))
601 			return -EINVAL;
602 
603 		if (shadowp)
604 			*shadowp = p;
605 		mapping->nrexceptional--;
606 		if (node)
607 			workingset_node_shadows_dec(node);
608 	}
609 	radix_tree_replace_slot(slot, page);
610 	mapping->nrpages++;
611 	if (node) {
612 		workingset_node_pages_inc(node);
613 		/*
614 		 * Don't track node that contains actual pages.
615 		 *
616 		 * Avoid acquiring the list_lru lock if already
617 		 * untracked.  The list_empty() test is safe as
618 		 * node->private_list is protected by
619 		 * mapping->tree_lock.
620 		 */
621 		if (!list_empty(&node->private_list))
622 			list_lru_del(&workingset_shadow_nodes,
623 				     &node->private_list);
624 	}
625 	return 0;
626 }
627 
628 static int __add_to_page_cache_locked(struct page *page,
629 				      struct address_space *mapping,
630 				      pgoff_t offset, gfp_t gfp_mask,
631 				      void **shadowp)
632 {
633 	int huge = PageHuge(page);
634 	struct mem_cgroup *memcg;
635 	int error;
636 
637 	VM_BUG_ON_PAGE(!PageLocked(page), page);
638 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
639 
640 	if (!huge) {
641 		error = mem_cgroup_try_charge(page, current->mm,
642 					      gfp_mask, &memcg, false);
643 		if (error)
644 			return error;
645 	}
646 
647 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
648 	if (error) {
649 		if (!huge)
650 			mem_cgroup_cancel_charge(page, memcg, false);
651 		return error;
652 	}
653 
654 	page_cache_get(page);
655 	page->mapping = mapping;
656 	page->index = offset;
657 
658 	spin_lock_irq(&mapping->tree_lock);
659 	error = page_cache_tree_insert(mapping, page, shadowp);
660 	radix_tree_preload_end();
661 	if (unlikely(error))
662 		goto err_insert;
663 
664 	/* hugetlb pages do not participate in page cache accounting. */
665 	if (!huge)
666 		__inc_zone_page_state(page, NR_FILE_PAGES);
667 	spin_unlock_irq(&mapping->tree_lock);
668 	if (!huge)
669 		mem_cgroup_commit_charge(page, memcg, false, false);
670 	trace_mm_filemap_add_to_page_cache(page);
671 	return 0;
672 err_insert:
673 	page->mapping = NULL;
674 	/* Leave page->index set: truncation relies upon it */
675 	spin_unlock_irq(&mapping->tree_lock);
676 	if (!huge)
677 		mem_cgroup_cancel_charge(page, memcg, false);
678 	page_cache_release(page);
679 	return error;
680 }
681 
682 /**
683  * add_to_page_cache_locked - add a locked page to the pagecache
684  * @page:	page to add
685  * @mapping:	the page's address_space
686  * @offset:	page index
687  * @gfp_mask:	page allocation mode
688  *
689  * This function is used to add a page to the pagecache. It must be locked.
690  * This function does not add the page to the LRU.  The caller must do that.
691  */
692 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693 		pgoff_t offset, gfp_t gfp_mask)
694 {
695 	return __add_to_page_cache_locked(page, mapping, offset,
696 					  gfp_mask, NULL);
697 }
698 EXPORT_SYMBOL(add_to_page_cache_locked);
699 
700 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
701 				pgoff_t offset, gfp_t gfp_mask)
702 {
703 	void *shadow = NULL;
704 	int ret;
705 
706 	__SetPageLocked(page);
707 	ret = __add_to_page_cache_locked(page, mapping, offset,
708 					 gfp_mask, &shadow);
709 	if (unlikely(ret))
710 		__ClearPageLocked(page);
711 	else {
712 		/*
713 		 * The page might have been evicted from cache only
714 		 * recently, in which case it should be activated like
715 		 * any other repeatedly accessed page.
716 		 */
717 		if (shadow && workingset_refault(shadow)) {
718 			SetPageActive(page);
719 			workingset_activation(page);
720 		} else
721 			ClearPageActive(page);
722 		lru_cache_add(page);
723 	}
724 	return ret;
725 }
726 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
727 
728 #ifdef CONFIG_NUMA
729 struct page *__page_cache_alloc(gfp_t gfp)
730 {
731 	int n;
732 	struct page *page;
733 
734 	if (cpuset_do_page_mem_spread()) {
735 		unsigned int cpuset_mems_cookie;
736 		do {
737 			cpuset_mems_cookie = read_mems_allowed_begin();
738 			n = cpuset_mem_spread_node();
739 			page = __alloc_pages_node(n, gfp, 0);
740 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
741 
742 		return page;
743 	}
744 	return alloc_pages(gfp, 0);
745 }
746 EXPORT_SYMBOL(__page_cache_alloc);
747 #endif
748 
749 /*
750  * In order to wait for pages to become available there must be
751  * waitqueues associated with pages. By using a hash table of
752  * waitqueues where the bucket discipline is to maintain all
753  * waiters on the same queue and wake all when any of the pages
754  * become available, and for the woken contexts to check to be
755  * sure the appropriate page became available, this saves space
756  * at a cost of "thundering herd" phenomena during rare hash
757  * collisions.
758  */
759 wait_queue_head_t *page_waitqueue(struct page *page)
760 {
761 	const struct zone *zone = page_zone(page);
762 
763 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
764 }
765 EXPORT_SYMBOL(page_waitqueue);
766 
767 void wait_on_page_bit(struct page *page, int bit_nr)
768 {
769 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
770 
771 	if (test_bit(bit_nr, &page->flags))
772 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
773 							TASK_UNINTERRUPTIBLE);
774 }
775 EXPORT_SYMBOL(wait_on_page_bit);
776 
777 int wait_on_page_bit_killable(struct page *page, int bit_nr)
778 {
779 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
780 
781 	if (!test_bit(bit_nr, &page->flags))
782 		return 0;
783 
784 	return __wait_on_bit(page_waitqueue(page), &wait,
785 			     bit_wait_io, TASK_KILLABLE);
786 }
787 
788 int wait_on_page_bit_killable_timeout(struct page *page,
789 				       int bit_nr, unsigned long timeout)
790 {
791 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
792 
793 	wait.key.timeout = jiffies + timeout;
794 	if (!test_bit(bit_nr, &page->flags))
795 		return 0;
796 	return __wait_on_bit(page_waitqueue(page), &wait,
797 			     bit_wait_io_timeout, TASK_KILLABLE);
798 }
799 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
800 
801 /**
802  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
803  * @page: Page defining the wait queue of interest
804  * @waiter: Waiter to add to the queue
805  *
806  * Add an arbitrary @waiter to the wait queue for the nominated @page.
807  */
808 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
809 {
810 	wait_queue_head_t *q = page_waitqueue(page);
811 	unsigned long flags;
812 
813 	spin_lock_irqsave(&q->lock, flags);
814 	__add_wait_queue(q, waiter);
815 	spin_unlock_irqrestore(&q->lock, flags);
816 }
817 EXPORT_SYMBOL_GPL(add_page_wait_queue);
818 
819 /**
820  * unlock_page - unlock a locked page
821  * @page: the page
822  *
823  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
824  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
825  * mechanism between PageLocked pages and PageWriteback pages is shared.
826  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
827  *
828  * The mb is necessary to enforce ordering between the clear_bit and the read
829  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
830  */
831 void unlock_page(struct page *page)
832 {
833 	page = compound_head(page);
834 	VM_BUG_ON_PAGE(!PageLocked(page), page);
835 	clear_bit_unlock(PG_locked, &page->flags);
836 	smp_mb__after_atomic();
837 	wake_up_page(page, PG_locked);
838 }
839 EXPORT_SYMBOL(unlock_page);
840 
841 /**
842  * end_page_writeback - end writeback against a page
843  * @page: the page
844  */
845 void end_page_writeback(struct page *page)
846 {
847 	/*
848 	 * TestClearPageReclaim could be used here but it is an atomic
849 	 * operation and overkill in this particular case. Failing to
850 	 * shuffle a page marked for immediate reclaim is too mild to
851 	 * justify taking an atomic operation penalty at the end of
852 	 * ever page writeback.
853 	 */
854 	if (PageReclaim(page)) {
855 		ClearPageReclaim(page);
856 		rotate_reclaimable_page(page);
857 	}
858 
859 	if (!test_clear_page_writeback(page))
860 		BUG();
861 
862 	smp_mb__after_atomic();
863 	wake_up_page(page, PG_writeback);
864 }
865 EXPORT_SYMBOL(end_page_writeback);
866 
867 /*
868  * After completing I/O on a page, call this routine to update the page
869  * flags appropriately
870  */
871 void page_endio(struct page *page, int rw, int err)
872 {
873 	if (rw == READ) {
874 		if (!err) {
875 			SetPageUptodate(page);
876 		} else {
877 			ClearPageUptodate(page);
878 			SetPageError(page);
879 		}
880 		unlock_page(page);
881 	} else { /* rw == WRITE */
882 		if (err) {
883 			SetPageError(page);
884 			if (page->mapping)
885 				mapping_set_error(page->mapping, err);
886 		}
887 		end_page_writeback(page);
888 	}
889 }
890 EXPORT_SYMBOL_GPL(page_endio);
891 
892 /**
893  * __lock_page - get a lock on the page, assuming we need to sleep to get it
894  * @page: the page to lock
895  */
896 void __lock_page(struct page *page)
897 {
898 	struct page *page_head = compound_head(page);
899 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
900 
901 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
902 							TASK_UNINTERRUPTIBLE);
903 }
904 EXPORT_SYMBOL(__lock_page);
905 
906 int __lock_page_killable(struct page *page)
907 {
908 	struct page *page_head = compound_head(page);
909 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
910 
911 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
912 					bit_wait_io, TASK_KILLABLE);
913 }
914 EXPORT_SYMBOL_GPL(__lock_page_killable);
915 
916 /*
917  * Return values:
918  * 1 - page is locked; mmap_sem is still held.
919  * 0 - page is not locked.
920  *     mmap_sem has been released (up_read()), unless flags had both
921  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
922  *     which case mmap_sem is still held.
923  *
924  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
925  * with the page locked and the mmap_sem unperturbed.
926  */
927 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
928 			 unsigned int flags)
929 {
930 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
931 		/*
932 		 * CAUTION! In this case, mmap_sem is not released
933 		 * even though return 0.
934 		 */
935 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
936 			return 0;
937 
938 		up_read(&mm->mmap_sem);
939 		if (flags & FAULT_FLAG_KILLABLE)
940 			wait_on_page_locked_killable(page);
941 		else
942 			wait_on_page_locked(page);
943 		return 0;
944 	} else {
945 		if (flags & FAULT_FLAG_KILLABLE) {
946 			int ret;
947 
948 			ret = __lock_page_killable(page);
949 			if (ret) {
950 				up_read(&mm->mmap_sem);
951 				return 0;
952 			}
953 		} else
954 			__lock_page(page);
955 		return 1;
956 	}
957 }
958 
959 /**
960  * page_cache_next_hole - find the next hole (not-present entry)
961  * @mapping: mapping
962  * @index: index
963  * @max_scan: maximum range to search
964  *
965  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
966  * lowest indexed hole.
967  *
968  * Returns: the index of the hole if found, otherwise returns an index
969  * outside of the set specified (in which case 'return - index >=
970  * max_scan' will be true). In rare cases of index wrap-around, 0 will
971  * be returned.
972  *
973  * page_cache_next_hole may be called under rcu_read_lock. However,
974  * like radix_tree_gang_lookup, this will not atomically search a
975  * snapshot of the tree at a single point in time. For example, if a
976  * hole is created at index 5, then subsequently a hole is created at
977  * index 10, page_cache_next_hole covering both indexes may return 10
978  * if called under rcu_read_lock.
979  */
980 pgoff_t page_cache_next_hole(struct address_space *mapping,
981 			     pgoff_t index, unsigned long max_scan)
982 {
983 	unsigned long i;
984 
985 	for (i = 0; i < max_scan; i++) {
986 		struct page *page;
987 
988 		page = radix_tree_lookup(&mapping->page_tree, index);
989 		if (!page || radix_tree_exceptional_entry(page))
990 			break;
991 		index++;
992 		if (index == 0)
993 			break;
994 	}
995 
996 	return index;
997 }
998 EXPORT_SYMBOL(page_cache_next_hole);
999 
1000 /**
1001  * page_cache_prev_hole - find the prev hole (not-present entry)
1002  * @mapping: mapping
1003  * @index: index
1004  * @max_scan: maximum range to search
1005  *
1006  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007  * the first hole.
1008  *
1009  * Returns: the index of the hole if found, otherwise returns an index
1010  * outside of the set specified (in which case 'index - return >=
1011  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012  * will be returned.
1013  *
1014  * page_cache_prev_hole may be called under rcu_read_lock. However,
1015  * like radix_tree_gang_lookup, this will not atomically search a
1016  * snapshot of the tree at a single point in time. For example, if a
1017  * hole is created at index 10, then subsequently a hole is created at
1018  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019  * called under rcu_read_lock.
1020  */
1021 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022 			     pgoff_t index, unsigned long max_scan)
1023 {
1024 	unsigned long i;
1025 
1026 	for (i = 0; i < max_scan; i++) {
1027 		struct page *page;
1028 
1029 		page = radix_tree_lookup(&mapping->page_tree, index);
1030 		if (!page || radix_tree_exceptional_entry(page))
1031 			break;
1032 		index--;
1033 		if (index == ULONG_MAX)
1034 			break;
1035 	}
1036 
1037 	return index;
1038 }
1039 EXPORT_SYMBOL(page_cache_prev_hole);
1040 
1041 /**
1042  * find_get_entry - find and get a page cache entry
1043  * @mapping: the address_space to search
1044  * @offset: the page cache index
1045  *
1046  * Looks up the page cache slot at @mapping & @offset.  If there is a
1047  * page cache page, it is returned with an increased refcount.
1048  *
1049  * If the slot holds a shadow entry of a previously evicted page, or a
1050  * swap entry from shmem/tmpfs, it is returned.
1051  *
1052  * Otherwise, %NULL is returned.
1053  */
1054 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055 {
1056 	void **pagep;
1057 	struct page *page;
1058 
1059 	rcu_read_lock();
1060 repeat:
1061 	page = NULL;
1062 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063 	if (pagep) {
1064 		page = radix_tree_deref_slot(pagep);
1065 		if (unlikely(!page))
1066 			goto out;
1067 		if (radix_tree_exception(page)) {
1068 			if (radix_tree_deref_retry(page))
1069 				goto repeat;
1070 			/*
1071 			 * A shadow entry of a recently evicted page,
1072 			 * or a swap entry from shmem/tmpfs.  Return
1073 			 * it without attempting to raise page count.
1074 			 */
1075 			goto out;
1076 		}
1077 		if (!page_cache_get_speculative(page))
1078 			goto repeat;
1079 
1080 		/*
1081 		 * Has the page moved?
1082 		 * This is part of the lockless pagecache protocol. See
1083 		 * include/linux/pagemap.h for details.
1084 		 */
1085 		if (unlikely(page != *pagep)) {
1086 			page_cache_release(page);
1087 			goto repeat;
1088 		}
1089 	}
1090 out:
1091 	rcu_read_unlock();
1092 
1093 	return page;
1094 }
1095 EXPORT_SYMBOL(find_get_entry);
1096 
1097 /**
1098  * find_lock_entry - locate, pin and lock a page cache entry
1099  * @mapping: the address_space to search
1100  * @offset: the page cache index
1101  *
1102  * Looks up the page cache slot at @mapping & @offset.  If there is a
1103  * page cache page, it is returned locked and with an increased
1104  * refcount.
1105  *
1106  * If the slot holds a shadow entry of a previously evicted page, or a
1107  * swap entry from shmem/tmpfs, it is returned.
1108  *
1109  * Otherwise, %NULL is returned.
1110  *
1111  * find_lock_entry() may sleep.
1112  */
1113 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1114 {
1115 	struct page *page;
1116 
1117 repeat:
1118 	page = find_get_entry(mapping, offset);
1119 	if (page && !radix_tree_exception(page)) {
1120 		lock_page(page);
1121 		/* Has the page been truncated? */
1122 		if (unlikely(page->mapping != mapping)) {
1123 			unlock_page(page);
1124 			page_cache_release(page);
1125 			goto repeat;
1126 		}
1127 		VM_BUG_ON_PAGE(page->index != offset, page);
1128 	}
1129 	return page;
1130 }
1131 EXPORT_SYMBOL(find_lock_entry);
1132 
1133 /**
1134  * pagecache_get_page - find and get a page reference
1135  * @mapping: the address_space to search
1136  * @offset: the page index
1137  * @fgp_flags: PCG flags
1138  * @gfp_mask: gfp mask to use for the page cache data page allocation
1139  *
1140  * Looks up the page cache slot at @mapping & @offset.
1141  *
1142  * PCG flags modify how the page is returned.
1143  *
1144  * FGP_ACCESSED: the page will be marked accessed
1145  * FGP_LOCK: Page is return locked
1146  * FGP_CREAT: If page is not present then a new page is allocated using
1147  *		@gfp_mask and added to the page cache and the VM's LRU
1148  *		list. The page is returned locked and with an increased
1149  *		refcount. Otherwise, %NULL is returned.
1150  *
1151  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152  * if the GFP flags specified for FGP_CREAT are atomic.
1153  *
1154  * If there is a page cache page, it is returned with an increased refcount.
1155  */
1156 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157 	int fgp_flags, gfp_t gfp_mask)
1158 {
1159 	struct page *page;
1160 
1161 repeat:
1162 	page = find_get_entry(mapping, offset);
1163 	if (radix_tree_exceptional_entry(page))
1164 		page = NULL;
1165 	if (!page)
1166 		goto no_page;
1167 
1168 	if (fgp_flags & FGP_LOCK) {
1169 		if (fgp_flags & FGP_NOWAIT) {
1170 			if (!trylock_page(page)) {
1171 				page_cache_release(page);
1172 				return NULL;
1173 			}
1174 		} else {
1175 			lock_page(page);
1176 		}
1177 
1178 		/* Has the page been truncated? */
1179 		if (unlikely(page->mapping != mapping)) {
1180 			unlock_page(page);
1181 			page_cache_release(page);
1182 			goto repeat;
1183 		}
1184 		VM_BUG_ON_PAGE(page->index != offset, page);
1185 	}
1186 
1187 	if (page && (fgp_flags & FGP_ACCESSED))
1188 		mark_page_accessed(page);
1189 
1190 no_page:
1191 	if (!page && (fgp_flags & FGP_CREAT)) {
1192 		int err;
1193 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194 			gfp_mask |= __GFP_WRITE;
1195 		if (fgp_flags & FGP_NOFS)
1196 			gfp_mask &= ~__GFP_FS;
1197 
1198 		page = __page_cache_alloc(gfp_mask);
1199 		if (!page)
1200 			return NULL;
1201 
1202 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203 			fgp_flags |= FGP_LOCK;
1204 
1205 		/* Init accessed so avoid atomic mark_page_accessed later */
1206 		if (fgp_flags & FGP_ACCESSED)
1207 			__SetPageReferenced(page);
1208 
1209 		err = add_to_page_cache_lru(page, mapping, offset,
1210 				gfp_mask & GFP_RECLAIM_MASK);
1211 		if (unlikely(err)) {
1212 			page_cache_release(page);
1213 			page = NULL;
1214 			if (err == -EEXIST)
1215 				goto repeat;
1216 		}
1217 	}
1218 
1219 	return page;
1220 }
1221 EXPORT_SYMBOL(pagecache_get_page);
1222 
1223 /**
1224  * find_get_entries - gang pagecache lookup
1225  * @mapping:	The address_space to search
1226  * @start:	The starting page cache index
1227  * @nr_entries:	The maximum number of entries
1228  * @entries:	Where the resulting entries are placed
1229  * @indices:	The cache indices corresponding to the entries in @entries
1230  *
1231  * find_get_entries() will search for and return a group of up to
1232  * @nr_entries entries in the mapping.  The entries are placed at
1233  * @entries.  find_get_entries() takes a reference against any actual
1234  * pages it returns.
1235  *
1236  * The search returns a group of mapping-contiguous page cache entries
1237  * with ascending indexes.  There may be holes in the indices due to
1238  * not-present pages.
1239  *
1240  * Any shadow entries of evicted pages, or swap entries from
1241  * shmem/tmpfs, are included in the returned array.
1242  *
1243  * find_get_entries() returns the number of pages and shadow entries
1244  * which were found.
1245  */
1246 unsigned find_get_entries(struct address_space *mapping,
1247 			  pgoff_t start, unsigned int nr_entries,
1248 			  struct page **entries, pgoff_t *indices)
1249 {
1250 	void **slot;
1251 	unsigned int ret = 0;
1252 	struct radix_tree_iter iter;
1253 
1254 	if (!nr_entries)
1255 		return 0;
1256 
1257 	rcu_read_lock();
1258 restart:
1259 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1260 		struct page *page;
1261 repeat:
1262 		page = radix_tree_deref_slot(slot);
1263 		if (unlikely(!page))
1264 			continue;
1265 		if (radix_tree_exception(page)) {
1266 			if (radix_tree_deref_retry(page))
1267 				goto restart;
1268 			/*
1269 			 * A shadow entry of a recently evicted page, a swap
1270 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1271 			 * without attempting to raise page count.
1272 			 */
1273 			goto export;
1274 		}
1275 		if (!page_cache_get_speculative(page))
1276 			goto repeat;
1277 
1278 		/* Has the page moved? */
1279 		if (unlikely(page != *slot)) {
1280 			page_cache_release(page);
1281 			goto repeat;
1282 		}
1283 export:
1284 		indices[ret] = iter.index;
1285 		entries[ret] = page;
1286 		if (++ret == nr_entries)
1287 			break;
1288 	}
1289 	rcu_read_unlock();
1290 	return ret;
1291 }
1292 
1293 /**
1294  * find_get_pages - gang pagecache lookup
1295  * @mapping:	The address_space to search
1296  * @start:	The starting page index
1297  * @nr_pages:	The maximum number of pages
1298  * @pages:	Where the resulting pages are placed
1299  *
1300  * find_get_pages() will search for and return a group of up to
1301  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1302  * find_get_pages() takes a reference against the returned pages.
1303  *
1304  * The search returns a group of mapping-contiguous pages with ascending
1305  * indexes.  There may be holes in the indices due to not-present pages.
1306  *
1307  * find_get_pages() returns the number of pages which were found.
1308  */
1309 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1310 			    unsigned int nr_pages, struct page **pages)
1311 {
1312 	struct radix_tree_iter iter;
1313 	void **slot;
1314 	unsigned ret = 0;
1315 
1316 	if (unlikely(!nr_pages))
1317 		return 0;
1318 
1319 	rcu_read_lock();
1320 restart:
1321 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322 		struct page *page;
1323 repeat:
1324 		page = radix_tree_deref_slot(slot);
1325 		if (unlikely(!page))
1326 			continue;
1327 
1328 		if (radix_tree_exception(page)) {
1329 			if (radix_tree_deref_retry(page)) {
1330 				/*
1331 				 * Transient condition which can only trigger
1332 				 * when entry at index 0 moves out of or back
1333 				 * to root: none yet gotten, safe to restart.
1334 				 */
1335 				WARN_ON(iter.index);
1336 				goto restart;
1337 			}
1338 			/*
1339 			 * A shadow entry of a recently evicted page,
1340 			 * or a swap entry from shmem/tmpfs.  Skip
1341 			 * over it.
1342 			 */
1343 			continue;
1344 		}
1345 
1346 		if (!page_cache_get_speculative(page))
1347 			goto repeat;
1348 
1349 		/* Has the page moved? */
1350 		if (unlikely(page != *slot)) {
1351 			page_cache_release(page);
1352 			goto repeat;
1353 		}
1354 
1355 		pages[ret] = page;
1356 		if (++ret == nr_pages)
1357 			break;
1358 	}
1359 
1360 	rcu_read_unlock();
1361 	return ret;
1362 }
1363 
1364 /**
1365  * find_get_pages_contig - gang contiguous pagecache lookup
1366  * @mapping:	The address_space to search
1367  * @index:	The starting page index
1368  * @nr_pages:	The maximum number of pages
1369  * @pages:	Where the resulting pages are placed
1370  *
1371  * find_get_pages_contig() works exactly like find_get_pages(), except
1372  * that the returned number of pages are guaranteed to be contiguous.
1373  *
1374  * find_get_pages_contig() returns the number of pages which were found.
1375  */
1376 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1377 			       unsigned int nr_pages, struct page **pages)
1378 {
1379 	struct radix_tree_iter iter;
1380 	void **slot;
1381 	unsigned int ret = 0;
1382 
1383 	if (unlikely(!nr_pages))
1384 		return 0;
1385 
1386 	rcu_read_lock();
1387 restart:
1388 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1389 		struct page *page;
1390 repeat:
1391 		page = radix_tree_deref_slot(slot);
1392 		/* The hole, there no reason to continue */
1393 		if (unlikely(!page))
1394 			break;
1395 
1396 		if (radix_tree_exception(page)) {
1397 			if (radix_tree_deref_retry(page)) {
1398 				/*
1399 				 * Transient condition which can only trigger
1400 				 * when entry at index 0 moves out of or back
1401 				 * to root: none yet gotten, safe to restart.
1402 				 */
1403 				goto restart;
1404 			}
1405 			/*
1406 			 * A shadow entry of a recently evicted page,
1407 			 * or a swap entry from shmem/tmpfs.  Stop
1408 			 * looking for contiguous pages.
1409 			 */
1410 			break;
1411 		}
1412 
1413 		if (!page_cache_get_speculative(page))
1414 			goto repeat;
1415 
1416 		/* Has the page moved? */
1417 		if (unlikely(page != *slot)) {
1418 			page_cache_release(page);
1419 			goto repeat;
1420 		}
1421 
1422 		/*
1423 		 * must check mapping and index after taking the ref.
1424 		 * otherwise we can get both false positives and false
1425 		 * negatives, which is just confusing to the caller.
1426 		 */
1427 		if (page->mapping == NULL || page->index != iter.index) {
1428 			page_cache_release(page);
1429 			break;
1430 		}
1431 
1432 		pages[ret] = page;
1433 		if (++ret == nr_pages)
1434 			break;
1435 	}
1436 	rcu_read_unlock();
1437 	return ret;
1438 }
1439 EXPORT_SYMBOL(find_get_pages_contig);
1440 
1441 /**
1442  * find_get_pages_tag - find and return pages that match @tag
1443  * @mapping:	the address_space to search
1444  * @index:	the starting page index
1445  * @tag:	the tag index
1446  * @nr_pages:	the maximum number of pages
1447  * @pages:	where the resulting pages are placed
1448  *
1449  * Like find_get_pages, except we only return pages which are tagged with
1450  * @tag.   We update @index to index the next page for the traversal.
1451  */
1452 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1453 			int tag, unsigned int nr_pages, struct page **pages)
1454 {
1455 	struct radix_tree_iter iter;
1456 	void **slot;
1457 	unsigned ret = 0;
1458 
1459 	if (unlikely(!nr_pages))
1460 		return 0;
1461 
1462 	rcu_read_lock();
1463 restart:
1464 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1465 				   &iter, *index, tag) {
1466 		struct page *page;
1467 repeat:
1468 		page = radix_tree_deref_slot(slot);
1469 		if (unlikely(!page))
1470 			continue;
1471 
1472 		if (radix_tree_exception(page)) {
1473 			if (radix_tree_deref_retry(page)) {
1474 				/*
1475 				 * Transient condition which can only trigger
1476 				 * when entry at index 0 moves out of or back
1477 				 * to root: none yet gotten, safe to restart.
1478 				 */
1479 				goto restart;
1480 			}
1481 			/*
1482 			 * A shadow entry of a recently evicted page.
1483 			 *
1484 			 * Those entries should never be tagged, but
1485 			 * this tree walk is lockless and the tags are
1486 			 * looked up in bulk, one radix tree node at a
1487 			 * time, so there is a sizable window for page
1488 			 * reclaim to evict a page we saw tagged.
1489 			 *
1490 			 * Skip over it.
1491 			 */
1492 			continue;
1493 		}
1494 
1495 		if (!page_cache_get_speculative(page))
1496 			goto repeat;
1497 
1498 		/* Has the page moved? */
1499 		if (unlikely(page != *slot)) {
1500 			page_cache_release(page);
1501 			goto repeat;
1502 		}
1503 
1504 		pages[ret] = page;
1505 		if (++ret == nr_pages)
1506 			break;
1507 	}
1508 
1509 	rcu_read_unlock();
1510 
1511 	if (ret)
1512 		*index = pages[ret - 1]->index + 1;
1513 
1514 	return ret;
1515 }
1516 EXPORT_SYMBOL(find_get_pages_tag);
1517 
1518 /**
1519  * find_get_entries_tag - find and return entries that match @tag
1520  * @mapping:	the address_space to search
1521  * @start:	the starting page cache index
1522  * @tag:	the tag index
1523  * @nr_entries:	the maximum number of entries
1524  * @entries:	where the resulting entries are placed
1525  * @indices:	the cache indices corresponding to the entries in @entries
1526  *
1527  * Like find_get_entries, except we only return entries which are tagged with
1528  * @tag.
1529  */
1530 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1531 			int tag, unsigned int nr_entries,
1532 			struct page **entries, pgoff_t *indices)
1533 {
1534 	void **slot;
1535 	unsigned int ret = 0;
1536 	struct radix_tree_iter iter;
1537 
1538 	if (!nr_entries)
1539 		return 0;
1540 
1541 	rcu_read_lock();
1542 restart:
1543 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1544 				   &iter, start, tag) {
1545 		struct page *page;
1546 repeat:
1547 		page = radix_tree_deref_slot(slot);
1548 		if (unlikely(!page))
1549 			continue;
1550 		if (radix_tree_exception(page)) {
1551 			if (radix_tree_deref_retry(page)) {
1552 				/*
1553 				 * Transient condition which can only trigger
1554 				 * when entry at index 0 moves out of or back
1555 				 * to root: none yet gotten, safe to restart.
1556 				 */
1557 				goto restart;
1558 			}
1559 
1560 			/*
1561 			 * A shadow entry of a recently evicted page, a swap
1562 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1563 			 * without attempting to raise page count.
1564 			 */
1565 			goto export;
1566 		}
1567 		if (!page_cache_get_speculative(page))
1568 			goto repeat;
1569 
1570 		/* Has the page moved? */
1571 		if (unlikely(page != *slot)) {
1572 			page_cache_release(page);
1573 			goto repeat;
1574 		}
1575 export:
1576 		indices[ret] = iter.index;
1577 		entries[ret] = page;
1578 		if (++ret == nr_entries)
1579 			break;
1580 	}
1581 	rcu_read_unlock();
1582 	return ret;
1583 }
1584 EXPORT_SYMBOL(find_get_entries_tag);
1585 
1586 /*
1587  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1588  * a _large_ part of the i/o request. Imagine the worst scenario:
1589  *
1590  *      ---R__________________________________________B__________
1591  *         ^ reading here                             ^ bad block(assume 4k)
1592  *
1593  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1594  * => failing the whole request => read(R) => read(R+1) =>
1595  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1596  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1597  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1598  *
1599  * It is going insane. Fix it by quickly scaling down the readahead size.
1600  */
1601 static void shrink_readahead_size_eio(struct file *filp,
1602 					struct file_ra_state *ra)
1603 {
1604 	ra->ra_pages /= 4;
1605 }
1606 
1607 /**
1608  * do_generic_file_read - generic file read routine
1609  * @filp:	the file to read
1610  * @ppos:	current file position
1611  * @iter:	data destination
1612  * @written:	already copied
1613  *
1614  * This is a generic file read routine, and uses the
1615  * mapping->a_ops->readpage() function for the actual low-level stuff.
1616  *
1617  * This is really ugly. But the goto's actually try to clarify some
1618  * of the logic when it comes to error handling etc.
1619  */
1620 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1621 		struct iov_iter *iter, ssize_t written)
1622 {
1623 	struct address_space *mapping = filp->f_mapping;
1624 	struct inode *inode = mapping->host;
1625 	struct file_ra_state *ra = &filp->f_ra;
1626 	pgoff_t index;
1627 	pgoff_t last_index;
1628 	pgoff_t prev_index;
1629 	unsigned long offset;      /* offset into pagecache page */
1630 	unsigned int prev_offset;
1631 	int error = 0;
1632 
1633 	index = *ppos >> PAGE_CACHE_SHIFT;
1634 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1635 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1636 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1637 	offset = *ppos & ~PAGE_CACHE_MASK;
1638 
1639 	for (;;) {
1640 		struct page *page;
1641 		pgoff_t end_index;
1642 		loff_t isize;
1643 		unsigned long nr, ret;
1644 
1645 		cond_resched();
1646 find_page:
1647 		page = find_get_page(mapping, index);
1648 		if (!page) {
1649 			page_cache_sync_readahead(mapping,
1650 					ra, filp,
1651 					index, last_index - index);
1652 			page = find_get_page(mapping, index);
1653 			if (unlikely(page == NULL))
1654 				goto no_cached_page;
1655 		}
1656 		if (PageReadahead(page)) {
1657 			page_cache_async_readahead(mapping,
1658 					ra, filp, page,
1659 					index, last_index - index);
1660 		}
1661 		if (!PageUptodate(page)) {
1662 			/*
1663 			 * See comment in do_read_cache_page on why
1664 			 * wait_on_page_locked is used to avoid unnecessarily
1665 			 * serialisations and why it's safe.
1666 			 */
1667 			wait_on_page_locked_killable(page);
1668 			if (PageUptodate(page))
1669 				goto page_ok;
1670 
1671 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1672 					!mapping->a_ops->is_partially_uptodate)
1673 				goto page_not_up_to_date;
1674 			if (!trylock_page(page))
1675 				goto page_not_up_to_date;
1676 			/* Did it get truncated before we got the lock? */
1677 			if (!page->mapping)
1678 				goto page_not_up_to_date_locked;
1679 			if (!mapping->a_ops->is_partially_uptodate(page,
1680 							offset, iter->count))
1681 				goto page_not_up_to_date_locked;
1682 			unlock_page(page);
1683 		}
1684 page_ok:
1685 		/*
1686 		 * i_size must be checked after we know the page is Uptodate.
1687 		 *
1688 		 * Checking i_size after the check allows us to calculate
1689 		 * the correct value for "nr", which means the zero-filled
1690 		 * part of the page is not copied back to userspace (unless
1691 		 * another truncate extends the file - this is desired though).
1692 		 */
1693 
1694 		isize = i_size_read(inode);
1695 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1696 		if (unlikely(!isize || index > end_index)) {
1697 			page_cache_release(page);
1698 			goto out;
1699 		}
1700 
1701 		/* nr is the maximum number of bytes to copy from this page */
1702 		nr = PAGE_CACHE_SIZE;
1703 		if (index == end_index) {
1704 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1705 			if (nr <= offset) {
1706 				page_cache_release(page);
1707 				goto out;
1708 			}
1709 		}
1710 		nr = nr - offset;
1711 
1712 		/* If users can be writing to this page using arbitrary
1713 		 * virtual addresses, take care about potential aliasing
1714 		 * before reading the page on the kernel side.
1715 		 */
1716 		if (mapping_writably_mapped(mapping))
1717 			flush_dcache_page(page);
1718 
1719 		/*
1720 		 * When a sequential read accesses a page several times,
1721 		 * only mark it as accessed the first time.
1722 		 */
1723 		if (prev_index != index || offset != prev_offset)
1724 			mark_page_accessed(page);
1725 		prev_index = index;
1726 
1727 		/*
1728 		 * Ok, we have the page, and it's up-to-date, so
1729 		 * now we can copy it to user space...
1730 		 */
1731 
1732 		ret = copy_page_to_iter(page, offset, nr, iter);
1733 		offset += ret;
1734 		index += offset >> PAGE_CACHE_SHIFT;
1735 		offset &= ~PAGE_CACHE_MASK;
1736 		prev_offset = offset;
1737 
1738 		page_cache_release(page);
1739 		written += ret;
1740 		if (!iov_iter_count(iter))
1741 			goto out;
1742 		if (ret < nr) {
1743 			error = -EFAULT;
1744 			goto out;
1745 		}
1746 		continue;
1747 
1748 page_not_up_to_date:
1749 		/* Get exclusive access to the page ... */
1750 		error = lock_page_killable(page);
1751 		if (unlikely(error))
1752 			goto readpage_error;
1753 
1754 page_not_up_to_date_locked:
1755 		/* Did it get truncated before we got the lock? */
1756 		if (!page->mapping) {
1757 			unlock_page(page);
1758 			page_cache_release(page);
1759 			continue;
1760 		}
1761 
1762 		/* Did somebody else fill it already? */
1763 		if (PageUptodate(page)) {
1764 			unlock_page(page);
1765 			goto page_ok;
1766 		}
1767 
1768 readpage:
1769 		/*
1770 		 * A previous I/O error may have been due to temporary
1771 		 * failures, eg. multipath errors.
1772 		 * PG_error will be set again if readpage fails.
1773 		 */
1774 		ClearPageError(page);
1775 		/* Start the actual read. The read will unlock the page. */
1776 		error = mapping->a_ops->readpage(filp, page);
1777 
1778 		if (unlikely(error)) {
1779 			if (error == AOP_TRUNCATED_PAGE) {
1780 				page_cache_release(page);
1781 				error = 0;
1782 				goto find_page;
1783 			}
1784 			goto readpage_error;
1785 		}
1786 
1787 		if (!PageUptodate(page)) {
1788 			error = lock_page_killable(page);
1789 			if (unlikely(error))
1790 				goto readpage_error;
1791 			if (!PageUptodate(page)) {
1792 				if (page->mapping == NULL) {
1793 					/*
1794 					 * invalidate_mapping_pages got it
1795 					 */
1796 					unlock_page(page);
1797 					page_cache_release(page);
1798 					goto find_page;
1799 				}
1800 				unlock_page(page);
1801 				shrink_readahead_size_eio(filp, ra);
1802 				error = -EIO;
1803 				goto readpage_error;
1804 			}
1805 			unlock_page(page);
1806 		}
1807 
1808 		goto page_ok;
1809 
1810 readpage_error:
1811 		/* UHHUH! A synchronous read error occurred. Report it */
1812 		page_cache_release(page);
1813 		goto out;
1814 
1815 no_cached_page:
1816 		/*
1817 		 * Ok, it wasn't cached, so we need to create a new
1818 		 * page..
1819 		 */
1820 		page = page_cache_alloc_cold(mapping);
1821 		if (!page) {
1822 			error = -ENOMEM;
1823 			goto out;
1824 		}
1825 		error = add_to_page_cache_lru(page, mapping, index,
1826 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1827 		if (error) {
1828 			page_cache_release(page);
1829 			if (error == -EEXIST) {
1830 				error = 0;
1831 				goto find_page;
1832 			}
1833 			goto out;
1834 		}
1835 		goto readpage;
1836 	}
1837 
1838 out:
1839 	ra->prev_pos = prev_index;
1840 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1841 	ra->prev_pos |= prev_offset;
1842 
1843 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1844 	file_accessed(filp);
1845 	return written ? written : error;
1846 }
1847 
1848 /**
1849  * generic_file_read_iter - generic filesystem read routine
1850  * @iocb:	kernel I/O control block
1851  * @iter:	destination for the data read
1852  *
1853  * This is the "read_iter()" routine for all filesystems
1854  * that can use the page cache directly.
1855  */
1856 ssize_t
1857 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1858 {
1859 	struct file *file = iocb->ki_filp;
1860 	ssize_t retval = 0;
1861 	loff_t *ppos = &iocb->ki_pos;
1862 	loff_t pos = *ppos;
1863 
1864 	if (iocb->ki_flags & IOCB_DIRECT) {
1865 		struct address_space *mapping = file->f_mapping;
1866 		struct inode *inode = mapping->host;
1867 		size_t count = iov_iter_count(iter);
1868 		loff_t size;
1869 
1870 		if (!count)
1871 			goto out; /* skip atime */
1872 		size = i_size_read(inode);
1873 		retval = filemap_write_and_wait_range(mapping, pos,
1874 					pos + count - 1);
1875 		if (!retval) {
1876 			struct iov_iter data = *iter;
1877 			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1878 		}
1879 
1880 		if (retval > 0) {
1881 			*ppos = pos + retval;
1882 			iov_iter_advance(iter, retval);
1883 		}
1884 
1885 		/*
1886 		 * Btrfs can have a short DIO read if we encounter
1887 		 * compressed extents, so if there was an error, or if
1888 		 * we've already read everything we wanted to, or if
1889 		 * there was a short read because we hit EOF, go ahead
1890 		 * and return.  Otherwise fallthrough to buffered io for
1891 		 * the rest of the read.  Buffered reads will not work for
1892 		 * DAX files, so don't bother trying.
1893 		 */
1894 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1895 		    IS_DAX(inode)) {
1896 			file_accessed(file);
1897 			goto out;
1898 		}
1899 	}
1900 
1901 	retval = do_generic_file_read(file, ppos, iter, retval);
1902 out:
1903 	return retval;
1904 }
1905 EXPORT_SYMBOL(generic_file_read_iter);
1906 
1907 #ifdef CONFIG_MMU
1908 /**
1909  * page_cache_read - adds requested page to the page cache if not already there
1910  * @file:	file to read
1911  * @offset:	page index
1912  * @gfp_mask:	memory allocation flags
1913  *
1914  * This adds the requested page to the page cache if it isn't already there,
1915  * and schedules an I/O to read in its contents from disk.
1916  */
1917 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1918 {
1919 	struct address_space *mapping = file->f_mapping;
1920 	struct page *page;
1921 	int ret;
1922 
1923 	do {
1924 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1925 		if (!page)
1926 			return -ENOMEM;
1927 
1928 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1929 		if (ret == 0)
1930 			ret = mapping->a_ops->readpage(file, page);
1931 		else if (ret == -EEXIST)
1932 			ret = 0; /* losing race to add is OK */
1933 
1934 		page_cache_release(page);
1935 
1936 	} while (ret == AOP_TRUNCATED_PAGE);
1937 
1938 	return ret;
1939 }
1940 
1941 #define MMAP_LOTSAMISS  (100)
1942 
1943 /*
1944  * Synchronous readahead happens when we don't even find
1945  * a page in the page cache at all.
1946  */
1947 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1948 				   struct file_ra_state *ra,
1949 				   struct file *file,
1950 				   pgoff_t offset)
1951 {
1952 	struct address_space *mapping = file->f_mapping;
1953 
1954 	/* If we don't want any read-ahead, don't bother */
1955 	if (vma->vm_flags & VM_RAND_READ)
1956 		return;
1957 	if (!ra->ra_pages)
1958 		return;
1959 
1960 	if (vma->vm_flags & VM_SEQ_READ) {
1961 		page_cache_sync_readahead(mapping, ra, file, offset,
1962 					  ra->ra_pages);
1963 		return;
1964 	}
1965 
1966 	/* Avoid banging the cache line if not needed */
1967 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1968 		ra->mmap_miss++;
1969 
1970 	/*
1971 	 * Do we miss much more than hit in this file? If so,
1972 	 * stop bothering with read-ahead. It will only hurt.
1973 	 */
1974 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1975 		return;
1976 
1977 	/*
1978 	 * mmap read-around
1979 	 */
1980 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1981 	ra->size = ra->ra_pages;
1982 	ra->async_size = ra->ra_pages / 4;
1983 	ra_submit(ra, mapping, file);
1984 }
1985 
1986 /*
1987  * Asynchronous readahead happens when we find the page and PG_readahead,
1988  * so we want to possibly extend the readahead further..
1989  */
1990 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1991 				    struct file_ra_state *ra,
1992 				    struct file *file,
1993 				    struct page *page,
1994 				    pgoff_t offset)
1995 {
1996 	struct address_space *mapping = file->f_mapping;
1997 
1998 	/* If we don't want any read-ahead, don't bother */
1999 	if (vma->vm_flags & VM_RAND_READ)
2000 		return;
2001 	if (ra->mmap_miss > 0)
2002 		ra->mmap_miss--;
2003 	if (PageReadahead(page))
2004 		page_cache_async_readahead(mapping, ra, file,
2005 					   page, offset, ra->ra_pages);
2006 }
2007 
2008 /**
2009  * filemap_fault - read in file data for page fault handling
2010  * @vma:	vma in which the fault was taken
2011  * @vmf:	struct vm_fault containing details of the fault
2012  *
2013  * filemap_fault() is invoked via the vma operations vector for a
2014  * mapped memory region to read in file data during a page fault.
2015  *
2016  * The goto's are kind of ugly, but this streamlines the normal case of having
2017  * it in the page cache, and handles the special cases reasonably without
2018  * having a lot of duplicated code.
2019  *
2020  * vma->vm_mm->mmap_sem must be held on entry.
2021  *
2022  * If our return value has VM_FAULT_RETRY set, it's because
2023  * lock_page_or_retry() returned 0.
2024  * The mmap_sem has usually been released in this case.
2025  * See __lock_page_or_retry() for the exception.
2026  *
2027  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2028  * has not been released.
2029  *
2030  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2031  */
2032 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2033 {
2034 	int error;
2035 	struct file *file = vma->vm_file;
2036 	struct address_space *mapping = file->f_mapping;
2037 	struct file_ra_state *ra = &file->f_ra;
2038 	struct inode *inode = mapping->host;
2039 	pgoff_t offset = vmf->pgoff;
2040 	struct page *page;
2041 	loff_t size;
2042 	int ret = 0;
2043 
2044 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2045 	if (offset >= size >> PAGE_CACHE_SHIFT)
2046 		return VM_FAULT_SIGBUS;
2047 
2048 	/*
2049 	 * Do we have something in the page cache already?
2050 	 */
2051 	page = find_get_page(mapping, offset);
2052 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2053 		/*
2054 		 * We found the page, so try async readahead before
2055 		 * waiting for the lock.
2056 		 */
2057 		do_async_mmap_readahead(vma, ra, file, page, offset);
2058 	} else if (!page) {
2059 		/* No page in the page cache at all */
2060 		do_sync_mmap_readahead(vma, ra, file, offset);
2061 		count_vm_event(PGMAJFAULT);
2062 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2063 		ret = VM_FAULT_MAJOR;
2064 retry_find:
2065 		page = find_get_page(mapping, offset);
2066 		if (!page)
2067 			goto no_cached_page;
2068 	}
2069 
2070 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2071 		page_cache_release(page);
2072 		return ret | VM_FAULT_RETRY;
2073 	}
2074 
2075 	/* Did it get truncated? */
2076 	if (unlikely(page->mapping != mapping)) {
2077 		unlock_page(page);
2078 		put_page(page);
2079 		goto retry_find;
2080 	}
2081 	VM_BUG_ON_PAGE(page->index != offset, page);
2082 
2083 	/*
2084 	 * We have a locked page in the page cache, now we need to check
2085 	 * that it's up-to-date. If not, it is going to be due to an error.
2086 	 */
2087 	if (unlikely(!PageUptodate(page)))
2088 		goto page_not_uptodate;
2089 
2090 	/*
2091 	 * Found the page and have a reference on it.
2092 	 * We must recheck i_size under page lock.
2093 	 */
2094 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2095 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2096 		unlock_page(page);
2097 		page_cache_release(page);
2098 		return VM_FAULT_SIGBUS;
2099 	}
2100 
2101 	vmf->page = page;
2102 	return ret | VM_FAULT_LOCKED;
2103 
2104 no_cached_page:
2105 	/*
2106 	 * We're only likely to ever get here if MADV_RANDOM is in
2107 	 * effect.
2108 	 */
2109 	error = page_cache_read(file, offset, vmf->gfp_mask);
2110 
2111 	/*
2112 	 * The page we want has now been added to the page cache.
2113 	 * In the unlikely event that someone removed it in the
2114 	 * meantime, we'll just come back here and read it again.
2115 	 */
2116 	if (error >= 0)
2117 		goto retry_find;
2118 
2119 	/*
2120 	 * An error return from page_cache_read can result if the
2121 	 * system is low on memory, or a problem occurs while trying
2122 	 * to schedule I/O.
2123 	 */
2124 	if (error == -ENOMEM)
2125 		return VM_FAULT_OOM;
2126 	return VM_FAULT_SIGBUS;
2127 
2128 page_not_uptodate:
2129 	/*
2130 	 * Umm, take care of errors if the page isn't up-to-date.
2131 	 * Try to re-read it _once_. We do this synchronously,
2132 	 * because there really aren't any performance issues here
2133 	 * and we need to check for errors.
2134 	 */
2135 	ClearPageError(page);
2136 	error = mapping->a_ops->readpage(file, page);
2137 	if (!error) {
2138 		wait_on_page_locked(page);
2139 		if (!PageUptodate(page))
2140 			error = -EIO;
2141 	}
2142 	page_cache_release(page);
2143 
2144 	if (!error || error == AOP_TRUNCATED_PAGE)
2145 		goto retry_find;
2146 
2147 	/* Things didn't work out. Return zero to tell the mm layer so. */
2148 	shrink_readahead_size_eio(file, ra);
2149 	return VM_FAULT_SIGBUS;
2150 }
2151 EXPORT_SYMBOL(filemap_fault);
2152 
2153 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2154 {
2155 	struct radix_tree_iter iter;
2156 	void **slot;
2157 	struct file *file = vma->vm_file;
2158 	struct address_space *mapping = file->f_mapping;
2159 	loff_t size;
2160 	struct page *page;
2161 	unsigned long address = (unsigned long) vmf->virtual_address;
2162 	unsigned long addr;
2163 	pte_t *pte;
2164 
2165 	rcu_read_lock();
2166 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2167 		if (iter.index > vmf->max_pgoff)
2168 			break;
2169 repeat:
2170 		page = radix_tree_deref_slot(slot);
2171 		if (unlikely(!page))
2172 			goto next;
2173 		if (radix_tree_exception(page)) {
2174 			if (radix_tree_deref_retry(page))
2175 				break;
2176 			else
2177 				goto next;
2178 		}
2179 
2180 		if (!page_cache_get_speculative(page))
2181 			goto repeat;
2182 
2183 		/* Has the page moved? */
2184 		if (unlikely(page != *slot)) {
2185 			page_cache_release(page);
2186 			goto repeat;
2187 		}
2188 
2189 		if (!PageUptodate(page) ||
2190 				PageReadahead(page) ||
2191 				PageHWPoison(page))
2192 			goto skip;
2193 		if (!trylock_page(page))
2194 			goto skip;
2195 
2196 		if (page->mapping != mapping || !PageUptodate(page))
2197 			goto unlock;
2198 
2199 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2200 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2201 			goto unlock;
2202 
2203 		pte = vmf->pte + page->index - vmf->pgoff;
2204 		if (!pte_none(*pte))
2205 			goto unlock;
2206 
2207 		if (file->f_ra.mmap_miss > 0)
2208 			file->f_ra.mmap_miss--;
2209 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2210 		do_set_pte(vma, addr, page, pte, false, false);
2211 		unlock_page(page);
2212 		goto next;
2213 unlock:
2214 		unlock_page(page);
2215 skip:
2216 		page_cache_release(page);
2217 next:
2218 		if (iter.index == vmf->max_pgoff)
2219 			break;
2220 	}
2221 	rcu_read_unlock();
2222 }
2223 EXPORT_SYMBOL(filemap_map_pages);
2224 
2225 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2226 {
2227 	struct page *page = vmf->page;
2228 	struct inode *inode = file_inode(vma->vm_file);
2229 	int ret = VM_FAULT_LOCKED;
2230 
2231 	sb_start_pagefault(inode->i_sb);
2232 	file_update_time(vma->vm_file);
2233 	lock_page(page);
2234 	if (page->mapping != inode->i_mapping) {
2235 		unlock_page(page);
2236 		ret = VM_FAULT_NOPAGE;
2237 		goto out;
2238 	}
2239 	/*
2240 	 * We mark the page dirty already here so that when freeze is in
2241 	 * progress, we are guaranteed that writeback during freezing will
2242 	 * see the dirty page and writeprotect it again.
2243 	 */
2244 	set_page_dirty(page);
2245 	wait_for_stable_page(page);
2246 out:
2247 	sb_end_pagefault(inode->i_sb);
2248 	return ret;
2249 }
2250 EXPORT_SYMBOL(filemap_page_mkwrite);
2251 
2252 const struct vm_operations_struct generic_file_vm_ops = {
2253 	.fault		= filemap_fault,
2254 	.map_pages	= filemap_map_pages,
2255 	.page_mkwrite	= filemap_page_mkwrite,
2256 };
2257 
2258 /* This is used for a general mmap of a disk file */
2259 
2260 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2261 {
2262 	struct address_space *mapping = file->f_mapping;
2263 
2264 	if (!mapping->a_ops->readpage)
2265 		return -ENOEXEC;
2266 	file_accessed(file);
2267 	vma->vm_ops = &generic_file_vm_ops;
2268 	return 0;
2269 }
2270 
2271 /*
2272  * This is for filesystems which do not implement ->writepage.
2273  */
2274 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2275 {
2276 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2277 		return -EINVAL;
2278 	return generic_file_mmap(file, vma);
2279 }
2280 #else
2281 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2282 {
2283 	return -ENOSYS;
2284 }
2285 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2286 {
2287 	return -ENOSYS;
2288 }
2289 #endif /* CONFIG_MMU */
2290 
2291 EXPORT_SYMBOL(generic_file_mmap);
2292 EXPORT_SYMBOL(generic_file_readonly_mmap);
2293 
2294 static struct page *wait_on_page_read(struct page *page)
2295 {
2296 	if (!IS_ERR(page)) {
2297 		wait_on_page_locked(page);
2298 		if (!PageUptodate(page)) {
2299 			page_cache_release(page);
2300 			page = ERR_PTR(-EIO);
2301 		}
2302 	}
2303 	return page;
2304 }
2305 
2306 static struct page *do_read_cache_page(struct address_space *mapping,
2307 				pgoff_t index,
2308 				int (*filler)(void *, struct page *),
2309 				void *data,
2310 				gfp_t gfp)
2311 {
2312 	struct page *page;
2313 	int err;
2314 repeat:
2315 	page = find_get_page(mapping, index);
2316 	if (!page) {
2317 		page = __page_cache_alloc(gfp | __GFP_COLD);
2318 		if (!page)
2319 			return ERR_PTR(-ENOMEM);
2320 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2321 		if (unlikely(err)) {
2322 			page_cache_release(page);
2323 			if (err == -EEXIST)
2324 				goto repeat;
2325 			/* Presumably ENOMEM for radix tree node */
2326 			return ERR_PTR(err);
2327 		}
2328 
2329 filler:
2330 		err = filler(data, page);
2331 		if (err < 0) {
2332 			page_cache_release(page);
2333 			return ERR_PTR(err);
2334 		}
2335 
2336 		page = wait_on_page_read(page);
2337 		if (IS_ERR(page))
2338 			return page;
2339 		goto out;
2340 	}
2341 	if (PageUptodate(page))
2342 		goto out;
2343 
2344 	/*
2345 	 * Page is not up to date and may be locked due one of the following
2346 	 * case a: Page is being filled and the page lock is held
2347 	 * case b: Read/write error clearing the page uptodate status
2348 	 * case c: Truncation in progress (page locked)
2349 	 * case d: Reclaim in progress
2350 	 *
2351 	 * Case a, the page will be up to date when the page is unlocked.
2352 	 *    There is no need to serialise on the page lock here as the page
2353 	 *    is pinned so the lock gives no additional protection. Even if the
2354 	 *    the page is truncated, the data is still valid if PageUptodate as
2355 	 *    it's a race vs truncate race.
2356 	 * Case b, the page will not be up to date
2357 	 * Case c, the page may be truncated but in itself, the data may still
2358 	 *    be valid after IO completes as it's a read vs truncate race. The
2359 	 *    operation must restart if the page is not uptodate on unlock but
2360 	 *    otherwise serialising on page lock to stabilise the mapping gives
2361 	 *    no additional guarantees to the caller as the page lock is
2362 	 *    released before return.
2363 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2364 	 *    will be a race with remove_mapping that determines if the mapping
2365 	 *    is valid on unlock but otherwise the data is valid and there is
2366 	 *    no need to serialise with page lock.
2367 	 *
2368 	 * As the page lock gives no additional guarantee, we optimistically
2369 	 * wait on the page to be unlocked and check if it's up to date and
2370 	 * use the page if it is. Otherwise, the page lock is required to
2371 	 * distinguish between the different cases. The motivation is that we
2372 	 * avoid spurious serialisations and wakeups when multiple processes
2373 	 * wait on the same page for IO to complete.
2374 	 */
2375 	wait_on_page_locked(page);
2376 	if (PageUptodate(page))
2377 		goto out;
2378 
2379 	/* Distinguish between all the cases under the safety of the lock */
2380 	lock_page(page);
2381 
2382 	/* Case c or d, restart the operation */
2383 	if (!page->mapping) {
2384 		unlock_page(page);
2385 		page_cache_release(page);
2386 		goto repeat;
2387 	}
2388 
2389 	/* Someone else locked and filled the page in a very small window */
2390 	if (PageUptodate(page)) {
2391 		unlock_page(page);
2392 		goto out;
2393 	}
2394 	goto filler;
2395 
2396 out:
2397 	mark_page_accessed(page);
2398 	return page;
2399 }
2400 
2401 /**
2402  * read_cache_page - read into page cache, fill it if needed
2403  * @mapping:	the page's address_space
2404  * @index:	the page index
2405  * @filler:	function to perform the read
2406  * @data:	first arg to filler(data, page) function, often left as NULL
2407  *
2408  * Read into the page cache. If a page already exists, and PageUptodate() is
2409  * not set, try to fill the page and wait for it to become unlocked.
2410  *
2411  * If the page does not get brought uptodate, return -EIO.
2412  */
2413 struct page *read_cache_page(struct address_space *mapping,
2414 				pgoff_t index,
2415 				int (*filler)(void *, struct page *),
2416 				void *data)
2417 {
2418 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2419 }
2420 EXPORT_SYMBOL(read_cache_page);
2421 
2422 /**
2423  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2424  * @mapping:	the page's address_space
2425  * @index:	the page index
2426  * @gfp:	the page allocator flags to use if allocating
2427  *
2428  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2429  * any new page allocations done using the specified allocation flags.
2430  *
2431  * If the page does not get brought uptodate, return -EIO.
2432  */
2433 struct page *read_cache_page_gfp(struct address_space *mapping,
2434 				pgoff_t index,
2435 				gfp_t gfp)
2436 {
2437 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2438 
2439 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2440 }
2441 EXPORT_SYMBOL(read_cache_page_gfp);
2442 
2443 /*
2444  * Performs necessary checks before doing a write
2445  *
2446  * Can adjust writing position or amount of bytes to write.
2447  * Returns appropriate error code that caller should return or
2448  * zero in case that write should be allowed.
2449  */
2450 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2451 {
2452 	struct file *file = iocb->ki_filp;
2453 	struct inode *inode = file->f_mapping->host;
2454 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2455 	loff_t pos;
2456 
2457 	if (!iov_iter_count(from))
2458 		return 0;
2459 
2460 	/* FIXME: this is for backwards compatibility with 2.4 */
2461 	if (iocb->ki_flags & IOCB_APPEND)
2462 		iocb->ki_pos = i_size_read(inode);
2463 
2464 	pos = iocb->ki_pos;
2465 
2466 	if (limit != RLIM_INFINITY) {
2467 		if (iocb->ki_pos >= limit) {
2468 			send_sig(SIGXFSZ, current, 0);
2469 			return -EFBIG;
2470 		}
2471 		iov_iter_truncate(from, limit - (unsigned long)pos);
2472 	}
2473 
2474 	/*
2475 	 * LFS rule
2476 	 */
2477 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2478 				!(file->f_flags & O_LARGEFILE))) {
2479 		if (pos >= MAX_NON_LFS)
2480 			return -EFBIG;
2481 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2482 	}
2483 
2484 	/*
2485 	 * Are we about to exceed the fs block limit ?
2486 	 *
2487 	 * If we have written data it becomes a short write.  If we have
2488 	 * exceeded without writing data we send a signal and return EFBIG.
2489 	 * Linus frestrict idea will clean these up nicely..
2490 	 */
2491 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2492 		return -EFBIG;
2493 
2494 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2495 	return iov_iter_count(from);
2496 }
2497 EXPORT_SYMBOL(generic_write_checks);
2498 
2499 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2500 				loff_t pos, unsigned len, unsigned flags,
2501 				struct page **pagep, void **fsdata)
2502 {
2503 	const struct address_space_operations *aops = mapping->a_ops;
2504 
2505 	return aops->write_begin(file, mapping, pos, len, flags,
2506 							pagep, fsdata);
2507 }
2508 EXPORT_SYMBOL(pagecache_write_begin);
2509 
2510 int pagecache_write_end(struct file *file, struct address_space *mapping,
2511 				loff_t pos, unsigned len, unsigned copied,
2512 				struct page *page, void *fsdata)
2513 {
2514 	const struct address_space_operations *aops = mapping->a_ops;
2515 
2516 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2517 }
2518 EXPORT_SYMBOL(pagecache_write_end);
2519 
2520 ssize_t
2521 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2522 {
2523 	struct file	*file = iocb->ki_filp;
2524 	struct address_space *mapping = file->f_mapping;
2525 	struct inode	*inode = mapping->host;
2526 	ssize_t		written;
2527 	size_t		write_len;
2528 	pgoff_t		end;
2529 	struct iov_iter data;
2530 
2531 	write_len = iov_iter_count(from);
2532 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2533 
2534 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2535 	if (written)
2536 		goto out;
2537 
2538 	/*
2539 	 * After a write we want buffered reads to be sure to go to disk to get
2540 	 * the new data.  We invalidate clean cached page from the region we're
2541 	 * about to write.  We do this *before* the write so that we can return
2542 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2543 	 */
2544 	if (mapping->nrpages) {
2545 		written = invalidate_inode_pages2_range(mapping,
2546 					pos >> PAGE_CACHE_SHIFT, end);
2547 		/*
2548 		 * If a page can not be invalidated, return 0 to fall back
2549 		 * to buffered write.
2550 		 */
2551 		if (written) {
2552 			if (written == -EBUSY)
2553 				return 0;
2554 			goto out;
2555 		}
2556 	}
2557 
2558 	data = *from;
2559 	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2560 
2561 	/*
2562 	 * Finally, try again to invalidate clean pages which might have been
2563 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2564 	 * if the source of the write was an mmap'ed region of the file
2565 	 * we're writing.  Either one is a pretty crazy thing to do,
2566 	 * so we don't support it 100%.  If this invalidation
2567 	 * fails, tough, the write still worked...
2568 	 */
2569 	if (mapping->nrpages) {
2570 		invalidate_inode_pages2_range(mapping,
2571 					      pos >> PAGE_CACHE_SHIFT, end);
2572 	}
2573 
2574 	if (written > 0) {
2575 		pos += written;
2576 		iov_iter_advance(from, written);
2577 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2578 			i_size_write(inode, pos);
2579 			mark_inode_dirty(inode);
2580 		}
2581 		iocb->ki_pos = pos;
2582 	}
2583 out:
2584 	return written;
2585 }
2586 EXPORT_SYMBOL(generic_file_direct_write);
2587 
2588 /*
2589  * Find or create a page at the given pagecache position. Return the locked
2590  * page. This function is specifically for buffered writes.
2591  */
2592 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2593 					pgoff_t index, unsigned flags)
2594 {
2595 	struct page *page;
2596 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2597 
2598 	if (flags & AOP_FLAG_NOFS)
2599 		fgp_flags |= FGP_NOFS;
2600 
2601 	page = pagecache_get_page(mapping, index, fgp_flags,
2602 			mapping_gfp_mask(mapping));
2603 	if (page)
2604 		wait_for_stable_page(page);
2605 
2606 	return page;
2607 }
2608 EXPORT_SYMBOL(grab_cache_page_write_begin);
2609 
2610 ssize_t generic_perform_write(struct file *file,
2611 				struct iov_iter *i, loff_t pos)
2612 {
2613 	struct address_space *mapping = file->f_mapping;
2614 	const struct address_space_operations *a_ops = mapping->a_ops;
2615 	long status = 0;
2616 	ssize_t written = 0;
2617 	unsigned int flags = 0;
2618 
2619 	/*
2620 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2621 	 */
2622 	if (!iter_is_iovec(i))
2623 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2624 
2625 	do {
2626 		struct page *page;
2627 		unsigned long offset;	/* Offset into pagecache page */
2628 		unsigned long bytes;	/* Bytes to write to page */
2629 		size_t copied;		/* Bytes copied from user */
2630 		void *fsdata;
2631 
2632 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2633 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2634 						iov_iter_count(i));
2635 
2636 again:
2637 		/*
2638 		 * Bring in the user page that we will copy from _first_.
2639 		 * Otherwise there's a nasty deadlock on copying from the
2640 		 * same page as we're writing to, without it being marked
2641 		 * up-to-date.
2642 		 *
2643 		 * Not only is this an optimisation, but it is also required
2644 		 * to check that the address is actually valid, when atomic
2645 		 * usercopies are used, below.
2646 		 */
2647 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2648 			status = -EFAULT;
2649 			break;
2650 		}
2651 
2652 		if (fatal_signal_pending(current)) {
2653 			status = -EINTR;
2654 			break;
2655 		}
2656 
2657 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2658 						&page, &fsdata);
2659 		if (unlikely(status < 0))
2660 			break;
2661 
2662 		if (mapping_writably_mapped(mapping))
2663 			flush_dcache_page(page);
2664 
2665 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2666 		flush_dcache_page(page);
2667 
2668 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2669 						page, fsdata);
2670 		if (unlikely(status < 0))
2671 			break;
2672 		copied = status;
2673 
2674 		cond_resched();
2675 
2676 		iov_iter_advance(i, copied);
2677 		if (unlikely(copied == 0)) {
2678 			/*
2679 			 * If we were unable to copy any data at all, we must
2680 			 * fall back to a single segment length write.
2681 			 *
2682 			 * If we didn't fallback here, we could livelock
2683 			 * because not all segments in the iov can be copied at
2684 			 * once without a pagefault.
2685 			 */
2686 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2687 						iov_iter_single_seg_count(i));
2688 			goto again;
2689 		}
2690 		pos += copied;
2691 		written += copied;
2692 
2693 		balance_dirty_pages_ratelimited(mapping);
2694 	} while (iov_iter_count(i));
2695 
2696 	return written ? written : status;
2697 }
2698 EXPORT_SYMBOL(generic_perform_write);
2699 
2700 /**
2701  * __generic_file_write_iter - write data to a file
2702  * @iocb:	IO state structure (file, offset, etc.)
2703  * @from:	iov_iter with data to write
2704  *
2705  * This function does all the work needed for actually writing data to a
2706  * file. It does all basic checks, removes SUID from the file, updates
2707  * modification times and calls proper subroutines depending on whether we
2708  * do direct IO or a standard buffered write.
2709  *
2710  * It expects i_mutex to be grabbed unless we work on a block device or similar
2711  * object which does not need locking at all.
2712  *
2713  * This function does *not* take care of syncing data in case of O_SYNC write.
2714  * A caller has to handle it. This is mainly due to the fact that we want to
2715  * avoid syncing under i_mutex.
2716  */
2717 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2718 {
2719 	struct file *file = iocb->ki_filp;
2720 	struct address_space * mapping = file->f_mapping;
2721 	struct inode 	*inode = mapping->host;
2722 	ssize_t		written = 0;
2723 	ssize_t		err;
2724 	ssize_t		status;
2725 
2726 	/* We can write back this queue in page reclaim */
2727 	current->backing_dev_info = inode_to_bdi(inode);
2728 	err = file_remove_privs(file);
2729 	if (err)
2730 		goto out;
2731 
2732 	err = file_update_time(file);
2733 	if (err)
2734 		goto out;
2735 
2736 	if (iocb->ki_flags & IOCB_DIRECT) {
2737 		loff_t pos, endbyte;
2738 
2739 		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2740 		/*
2741 		 * If the write stopped short of completing, fall back to
2742 		 * buffered writes.  Some filesystems do this for writes to
2743 		 * holes, for example.  For DAX files, a buffered write will
2744 		 * not succeed (even if it did, DAX does not handle dirty
2745 		 * page-cache pages correctly).
2746 		 */
2747 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2748 			goto out;
2749 
2750 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2751 		/*
2752 		 * If generic_perform_write() returned a synchronous error
2753 		 * then we want to return the number of bytes which were
2754 		 * direct-written, or the error code if that was zero.  Note
2755 		 * that this differs from normal direct-io semantics, which
2756 		 * will return -EFOO even if some bytes were written.
2757 		 */
2758 		if (unlikely(status < 0)) {
2759 			err = status;
2760 			goto out;
2761 		}
2762 		/*
2763 		 * We need to ensure that the page cache pages are written to
2764 		 * disk and invalidated to preserve the expected O_DIRECT
2765 		 * semantics.
2766 		 */
2767 		endbyte = pos + status - 1;
2768 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2769 		if (err == 0) {
2770 			iocb->ki_pos = endbyte + 1;
2771 			written += status;
2772 			invalidate_mapping_pages(mapping,
2773 						 pos >> PAGE_CACHE_SHIFT,
2774 						 endbyte >> PAGE_CACHE_SHIFT);
2775 		} else {
2776 			/*
2777 			 * We don't know how much we wrote, so just return
2778 			 * the number of bytes which were direct-written
2779 			 */
2780 		}
2781 	} else {
2782 		written = generic_perform_write(file, from, iocb->ki_pos);
2783 		if (likely(written > 0))
2784 			iocb->ki_pos += written;
2785 	}
2786 out:
2787 	current->backing_dev_info = NULL;
2788 	return written ? written : err;
2789 }
2790 EXPORT_SYMBOL(__generic_file_write_iter);
2791 
2792 /**
2793  * generic_file_write_iter - write data to a file
2794  * @iocb:	IO state structure
2795  * @from:	iov_iter with data to write
2796  *
2797  * This is a wrapper around __generic_file_write_iter() to be used by most
2798  * filesystems. It takes care of syncing the file in case of O_SYNC file
2799  * and acquires i_mutex as needed.
2800  */
2801 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2802 {
2803 	struct file *file = iocb->ki_filp;
2804 	struct inode *inode = file->f_mapping->host;
2805 	ssize_t ret;
2806 
2807 	inode_lock(inode);
2808 	ret = generic_write_checks(iocb, from);
2809 	if (ret > 0)
2810 		ret = __generic_file_write_iter(iocb, from);
2811 	inode_unlock(inode);
2812 
2813 	if (ret > 0) {
2814 		ssize_t err;
2815 
2816 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2817 		if (err < 0)
2818 			ret = err;
2819 	}
2820 	return ret;
2821 }
2822 EXPORT_SYMBOL(generic_file_write_iter);
2823 
2824 /**
2825  * try_to_release_page() - release old fs-specific metadata on a page
2826  *
2827  * @page: the page which the kernel is trying to free
2828  * @gfp_mask: memory allocation flags (and I/O mode)
2829  *
2830  * The address_space is to try to release any data against the page
2831  * (presumably at page->private).  If the release was successful, return `1'.
2832  * Otherwise return zero.
2833  *
2834  * This may also be called if PG_fscache is set on a page, indicating that the
2835  * page is known to the local caching routines.
2836  *
2837  * The @gfp_mask argument specifies whether I/O may be performed to release
2838  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2839  *
2840  */
2841 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2842 {
2843 	struct address_space * const mapping = page->mapping;
2844 
2845 	BUG_ON(!PageLocked(page));
2846 	if (PageWriteback(page))
2847 		return 0;
2848 
2849 	if (mapping && mapping->a_ops->releasepage)
2850 		return mapping->a_ops->releasepage(page, gfp_mask);
2851 	return try_to_free_buffers(page);
2852 }
2853 
2854 EXPORT_SYMBOL(try_to_release_page);
2855