1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_mutex 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 81 * 82 * ->mmap_lock 83 * ->i_mmap_rwsem 84 * ->page_table_lock or pte_lock (various, mainly in memory.c) 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 86 * 87 * ->mmap_lock 88 * ->lock_page (access_process_vm) 89 * 90 * ->i_mutex (generic_perform_write) 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 92 * 93 * bdi->wb.list_lock 94 * sb_lock (fs/fs-writeback.c) 95 * ->i_pages lock (__sync_single_inode) 96 * 97 * ->i_mmap_rwsem 98 * ->anon_vma.lock (vma_adjust) 99 * 100 * ->anon_vma.lock 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 102 * 103 * ->page_table_lock or pte_lock 104 * ->swap_lock (try_to_unmap_one) 105 * ->private_lock (try_to_unmap_one) 106 * ->i_pages lock (try_to_unmap_one) 107 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 109 * ->private_lock (page_remove_rmap->set_page_dirty) 110 * ->i_pages lock (page_remove_rmap->set_page_dirty) 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 115 * ->inode->i_lock (zap_pte_range->set_page_dirty) 116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 117 * 118 * ->i_mmap_rwsem 119 * ->tasklist_lock (memory_failure, collect_procs_ao) 120 */ 121 122 static void page_cache_delete(struct address_space *mapping, 123 struct page *page, void *shadow) 124 { 125 XA_STATE(xas, &mapping->i_pages, page->index); 126 unsigned int nr = 1; 127 128 mapping_set_update(&xas, mapping); 129 130 /* hugetlb pages are represented by a single entry in the xarray */ 131 if (!PageHuge(page)) { 132 xas_set_order(&xas, page->index, compound_order(page)); 133 nr = compound_nr(page); 134 } 135 136 VM_BUG_ON_PAGE(!PageLocked(page), page); 137 VM_BUG_ON_PAGE(PageTail(page), page); 138 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 page->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 146 if (shadow) { 147 mapping->nrexceptional += nr; 148 /* 149 * Make sure the nrexceptional update is committed before 150 * the nrpages update so that final truncate racing 151 * with reclaim does not see both counters 0 at the 152 * same time and miss a shadow entry. 153 */ 154 smp_wmb(); 155 } 156 mapping->nrpages -= nr; 157 } 158 159 static void unaccount_page_cache_page(struct address_space *mapping, 160 struct page *page) 161 { 162 int nr; 163 164 /* 165 * if we're uptodate, flush out into the cleancache, otherwise 166 * invalidate any existing cleancache entries. We can't leave 167 * stale data around in the cleancache once our page is gone 168 */ 169 if (PageUptodate(page) && PageMappedToDisk(page)) 170 cleancache_put_page(page); 171 else 172 cleancache_invalidate_page(mapping, page); 173 174 VM_BUG_ON_PAGE(PageTail(page), page); 175 VM_BUG_ON_PAGE(page_mapped(page), page); 176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 177 int mapcount; 178 179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 180 current->comm, page_to_pfn(page)); 181 dump_page(page, "still mapped when deleted"); 182 dump_stack(); 183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 184 185 mapcount = page_mapcount(page); 186 if (mapping_exiting(mapping) && 187 page_count(page) >= mapcount + 2) { 188 /* 189 * All vmas have already been torn down, so it's 190 * a good bet that actually the page is unmapped, 191 * and we'd prefer not to leak it: if we're wrong, 192 * some other bad page check should catch it later. 193 */ 194 page_mapcount_reset(page); 195 page_ref_sub(page, mapcount); 196 } 197 } 198 199 /* hugetlb pages do not participate in page cache accounting. */ 200 if (PageHuge(page)) 201 return; 202 203 nr = thp_nr_pages(page); 204 205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 206 if (PageSwapBacked(page)) { 207 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 208 if (PageTransHuge(page)) 209 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); 210 } else if (PageTransHuge(page)) { 211 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); 212 filemap_nr_thps_dec(mapping); 213 } 214 215 /* 216 * At this point page must be either written or cleaned by 217 * truncate. Dirty page here signals a bug and loss of 218 * unwritten data. 219 * 220 * This fixes dirty accounting after removing the page entirely 221 * but leaves PageDirty set: it has no effect for truncated 222 * page and anyway will be cleared before returning page into 223 * buddy allocator. 224 */ 225 if (WARN_ON_ONCE(PageDirty(page))) 226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 227 } 228 229 /* 230 * Delete a page from the page cache and free it. Caller has to make 231 * sure the page is locked and that nobody else uses it - or that usage 232 * is safe. The caller must hold the i_pages lock. 233 */ 234 void __delete_from_page_cache(struct page *page, void *shadow) 235 { 236 struct address_space *mapping = page->mapping; 237 238 trace_mm_filemap_delete_from_page_cache(page); 239 240 unaccount_page_cache_page(mapping, page); 241 page_cache_delete(mapping, page, shadow); 242 } 243 244 static void page_cache_free_page(struct address_space *mapping, 245 struct page *page) 246 { 247 void (*freepage)(struct page *); 248 249 freepage = mapping->a_ops->freepage; 250 if (freepage) 251 freepage(page); 252 253 if (PageTransHuge(page) && !PageHuge(page)) { 254 page_ref_sub(page, thp_nr_pages(page)); 255 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 256 } else { 257 put_page(page); 258 } 259 } 260 261 /** 262 * delete_from_page_cache - delete page from page cache 263 * @page: the page which the kernel is trying to remove from page cache 264 * 265 * This must be called only on pages that have been verified to be in the page 266 * cache and locked. It will never put the page into the free list, the caller 267 * has a reference on the page. 268 */ 269 void delete_from_page_cache(struct page *page) 270 { 271 struct address_space *mapping = page_mapping(page); 272 unsigned long flags; 273 274 BUG_ON(!PageLocked(page)); 275 xa_lock_irqsave(&mapping->i_pages, flags); 276 __delete_from_page_cache(page, NULL); 277 xa_unlock_irqrestore(&mapping->i_pages, flags); 278 279 page_cache_free_page(mapping, page); 280 } 281 EXPORT_SYMBOL(delete_from_page_cache); 282 283 /* 284 * page_cache_delete_batch - delete several pages from page cache 285 * @mapping: the mapping to which pages belong 286 * @pvec: pagevec with pages to delete 287 * 288 * The function walks over mapping->i_pages and removes pages passed in @pvec 289 * from the mapping. The function expects @pvec to be sorted by page index 290 * and is optimised for it to be dense. 291 * It tolerates holes in @pvec (mapping entries at those indices are not 292 * modified). The function expects only THP head pages to be present in the 293 * @pvec. 294 * 295 * The function expects the i_pages lock to be held. 296 */ 297 static void page_cache_delete_batch(struct address_space *mapping, 298 struct pagevec *pvec) 299 { 300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 301 int total_pages = 0; 302 int i = 0; 303 struct page *page; 304 305 mapping_set_update(&xas, mapping); 306 xas_for_each(&xas, page, ULONG_MAX) { 307 if (i >= pagevec_count(pvec)) 308 break; 309 310 /* A swap/dax/shadow entry got inserted? Skip it. */ 311 if (xa_is_value(page)) 312 continue; 313 /* 314 * A page got inserted in our range? Skip it. We have our 315 * pages locked so they are protected from being removed. 316 * If we see a page whose index is higher than ours, it 317 * means our page has been removed, which shouldn't be 318 * possible because we're holding the PageLock. 319 */ 320 if (page != pvec->pages[i]) { 321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 322 page); 323 continue; 324 } 325 326 WARN_ON_ONCE(!PageLocked(page)); 327 328 if (page->index == xas.xa_index) 329 page->mapping = NULL; 330 /* Leave page->index set: truncation lookup relies on it */ 331 332 /* 333 * Move to the next page in the vector if this is a regular 334 * page or the index is of the last sub-page of this compound 335 * page. 336 */ 337 if (page->index + compound_nr(page) - 1 == xas.xa_index) 338 i++; 339 xas_store(&xas, NULL); 340 total_pages++; 341 } 342 mapping->nrpages -= total_pages; 343 } 344 345 void delete_from_page_cache_batch(struct address_space *mapping, 346 struct pagevec *pvec) 347 { 348 int i; 349 unsigned long flags; 350 351 if (!pagevec_count(pvec)) 352 return; 353 354 xa_lock_irqsave(&mapping->i_pages, flags); 355 for (i = 0; i < pagevec_count(pvec); i++) { 356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 357 358 unaccount_page_cache_page(mapping, pvec->pages[i]); 359 } 360 page_cache_delete_batch(mapping, pvec); 361 xa_unlock_irqrestore(&mapping->i_pages, flags); 362 363 for (i = 0; i < pagevec_count(pvec); i++) 364 page_cache_free_page(mapping, pvec->pages[i]); 365 } 366 367 int filemap_check_errors(struct address_space *mapping) 368 { 369 int ret = 0; 370 /* Check for outstanding write errors */ 371 if (test_bit(AS_ENOSPC, &mapping->flags) && 372 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 373 ret = -ENOSPC; 374 if (test_bit(AS_EIO, &mapping->flags) && 375 test_and_clear_bit(AS_EIO, &mapping->flags)) 376 ret = -EIO; 377 return ret; 378 } 379 EXPORT_SYMBOL(filemap_check_errors); 380 381 static int filemap_check_and_keep_errors(struct address_space *mapping) 382 { 383 /* Check for outstanding write errors */ 384 if (test_bit(AS_EIO, &mapping->flags)) 385 return -EIO; 386 if (test_bit(AS_ENOSPC, &mapping->flags)) 387 return -ENOSPC; 388 return 0; 389 } 390 391 /** 392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 393 * @mapping: address space structure to write 394 * @start: offset in bytes where the range starts 395 * @end: offset in bytes where the range ends (inclusive) 396 * @sync_mode: enable synchronous operation 397 * 398 * Start writeback against all of a mapping's dirty pages that lie 399 * within the byte offsets <start, end> inclusive. 400 * 401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 402 * opposed to a regular memory cleansing writeback. The difference between 403 * these two operations is that if a dirty page/buffer is encountered, it must 404 * be waited upon, and not just skipped over. 405 * 406 * Return: %0 on success, negative error code otherwise. 407 */ 408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 409 loff_t end, int sync_mode) 410 { 411 int ret; 412 struct writeback_control wbc = { 413 .sync_mode = sync_mode, 414 .nr_to_write = LONG_MAX, 415 .range_start = start, 416 .range_end = end, 417 }; 418 419 if (!mapping_can_writeback(mapping) || 420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 421 return 0; 422 423 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 424 ret = do_writepages(mapping, &wbc); 425 wbc_detach_inode(&wbc); 426 return ret; 427 } 428 429 static inline int __filemap_fdatawrite(struct address_space *mapping, 430 int sync_mode) 431 { 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 433 } 434 435 int filemap_fdatawrite(struct address_space *mapping) 436 { 437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 438 } 439 EXPORT_SYMBOL(filemap_fdatawrite); 440 441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 442 loff_t end) 443 { 444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 445 } 446 EXPORT_SYMBOL(filemap_fdatawrite_range); 447 448 /** 449 * filemap_flush - mostly a non-blocking flush 450 * @mapping: target address_space 451 * 452 * This is a mostly non-blocking flush. Not suitable for data-integrity 453 * purposes - I/O may not be started against all dirty pages. 454 * 455 * Return: %0 on success, negative error code otherwise. 456 */ 457 int filemap_flush(struct address_space *mapping) 458 { 459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 460 } 461 EXPORT_SYMBOL(filemap_flush); 462 463 /** 464 * filemap_range_has_page - check if a page exists in range. 465 * @mapping: address space within which to check 466 * @start_byte: offset in bytes where the range starts 467 * @end_byte: offset in bytes where the range ends (inclusive) 468 * 469 * Find at least one page in the range supplied, usually used to check if 470 * direct writing in this range will trigger a writeback. 471 * 472 * Return: %true if at least one page exists in the specified range, 473 * %false otherwise. 474 */ 475 bool filemap_range_has_page(struct address_space *mapping, 476 loff_t start_byte, loff_t end_byte) 477 { 478 struct page *page; 479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 480 pgoff_t max = end_byte >> PAGE_SHIFT; 481 482 if (end_byte < start_byte) 483 return false; 484 485 rcu_read_lock(); 486 for (;;) { 487 page = xas_find(&xas, max); 488 if (xas_retry(&xas, page)) 489 continue; 490 /* Shadow entries don't count */ 491 if (xa_is_value(page)) 492 continue; 493 /* 494 * We don't need to try to pin this page; we're about to 495 * release the RCU lock anyway. It is enough to know that 496 * there was a page here recently. 497 */ 498 break; 499 } 500 rcu_read_unlock(); 501 502 return page != NULL; 503 } 504 EXPORT_SYMBOL(filemap_range_has_page); 505 506 static void __filemap_fdatawait_range(struct address_space *mapping, 507 loff_t start_byte, loff_t end_byte) 508 { 509 pgoff_t index = start_byte >> PAGE_SHIFT; 510 pgoff_t end = end_byte >> PAGE_SHIFT; 511 struct pagevec pvec; 512 int nr_pages; 513 514 if (end_byte < start_byte) 515 return; 516 517 pagevec_init(&pvec); 518 while (index <= end) { 519 unsigned i; 520 521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 522 end, PAGECACHE_TAG_WRITEBACK); 523 if (!nr_pages) 524 break; 525 526 for (i = 0; i < nr_pages; i++) { 527 struct page *page = pvec.pages[i]; 528 529 wait_on_page_writeback(page); 530 ClearPageError(page); 531 } 532 pagevec_release(&pvec); 533 cond_resched(); 534 } 535 } 536 537 /** 538 * filemap_fdatawait_range - wait for writeback to complete 539 * @mapping: address space structure to wait for 540 * @start_byte: offset in bytes where the range starts 541 * @end_byte: offset in bytes where the range ends (inclusive) 542 * 543 * Walk the list of under-writeback pages of the given address space 544 * in the given range and wait for all of them. Check error status of 545 * the address space and return it. 546 * 547 * Since the error status of the address space is cleared by this function, 548 * callers are responsible for checking the return value and handling and/or 549 * reporting the error. 550 * 551 * Return: error status of the address space. 552 */ 553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 554 loff_t end_byte) 555 { 556 __filemap_fdatawait_range(mapping, start_byte, end_byte); 557 return filemap_check_errors(mapping); 558 } 559 EXPORT_SYMBOL(filemap_fdatawait_range); 560 561 /** 562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 563 * @mapping: address space structure to wait for 564 * @start_byte: offset in bytes where the range starts 565 * @end_byte: offset in bytes where the range ends (inclusive) 566 * 567 * Walk the list of under-writeback pages of the given address space in the 568 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 569 * this function does not clear error status of the address space. 570 * 571 * Use this function if callers don't handle errors themselves. Expected 572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 573 * fsfreeze(8) 574 */ 575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 576 loff_t start_byte, loff_t end_byte) 577 { 578 __filemap_fdatawait_range(mapping, start_byte, end_byte); 579 return filemap_check_and_keep_errors(mapping); 580 } 581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 582 583 /** 584 * file_fdatawait_range - wait for writeback to complete 585 * @file: file pointing to address space structure to wait for 586 * @start_byte: offset in bytes where the range starts 587 * @end_byte: offset in bytes where the range ends (inclusive) 588 * 589 * Walk the list of under-writeback pages of the address space that file 590 * refers to, in the given range and wait for all of them. Check error 591 * status of the address space vs. the file->f_wb_err cursor and return it. 592 * 593 * Since the error status of the file is advanced by this function, 594 * callers are responsible for checking the return value and handling and/or 595 * reporting the error. 596 * 597 * Return: error status of the address space vs. the file->f_wb_err cursor. 598 */ 599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 600 { 601 struct address_space *mapping = file->f_mapping; 602 603 __filemap_fdatawait_range(mapping, start_byte, end_byte); 604 return file_check_and_advance_wb_err(file); 605 } 606 EXPORT_SYMBOL(file_fdatawait_range); 607 608 /** 609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 610 * @mapping: address space structure to wait for 611 * 612 * Walk the list of under-writeback pages of the given address space 613 * and wait for all of them. Unlike filemap_fdatawait(), this function 614 * does not clear error status of the address space. 615 * 616 * Use this function if callers don't handle errors themselves. Expected 617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 618 * fsfreeze(8) 619 * 620 * Return: error status of the address space. 621 */ 622 int filemap_fdatawait_keep_errors(struct address_space *mapping) 623 { 624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 625 return filemap_check_and_keep_errors(mapping); 626 } 627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 628 629 /* Returns true if writeback might be needed or already in progress. */ 630 static bool mapping_needs_writeback(struct address_space *mapping) 631 { 632 if (dax_mapping(mapping)) 633 return mapping->nrexceptional; 634 635 return mapping->nrpages; 636 } 637 638 /** 639 * filemap_write_and_wait_range - write out & wait on a file range 640 * @mapping: the address_space for the pages 641 * @lstart: offset in bytes where the range starts 642 * @lend: offset in bytes where the range ends (inclusive) 643 * 644 * Write out and wait upon file offsets lstart->lend, inclusive. 645 * 646 * Note that @lend is inclusive (describes the last byte to be written) so 647 * that this function can be used to write to the very end-of-file (end = -1). 648 * 649 * Return: error status of the address space. 650 */ 651 int filemap_write_and_wait_range(struct address_space *mapping, 652 loff_t lstart, loff_t lend) 653 { 654 int err = 0; 655 656 if (mapping_needs_writeback(mapping)) { 657 err = __filemap_fdatawrite_range(mapping, lstart, lend, 658 WB_SYNC_ALL); 659 /* 660 * Even if the above returned error, the pages may be 661 * written partially (e.g. -ENOSPC), so we wait for it. 662 * But the -EIO is special case, it may indicate the worst 663 * thing (e.g. bug) happened, so we avoid waiting for it. 664 */ 665 if (err != -EIO) { 666 int err2 = filemap_fdatawait_range(mapping, 667 lstart, lend); 668 if (!err) 669 err = err2; 670 } else { 671 /* Clear any previously stored errors */ 672 filemap_check_errors(mapping); 673 } 674 } else { 675 err = filemap_check_errors(mapping); 676 } 677 return err; 678 } 679 EXPORT_SYMBOL(filemap_write_and_wait_range); 680 681 void __filemap_set_wb_err(struct address_space *mapping, int err) 682 { 683 errseq_t eseq = errseq_set(&mapping->wb_err, err); 684 685 trace_filemap_set_wb_err(mapping, eseq); 686 } 687 EXPORT_SYMBOL(__filemap_set_wb_err); 688 689 /** 690 * file_check_and_advance_wb_err - report wb error (if any) that was previously 691 * and advance wb_err to current one 692 * @file: struct file on which the error is being reported 693 * 694 * When userland calls fsync (or something like nfsd does the equivalent), we 695 * want to report any writeback errors that occurred since the last fsync (or 696 * since the file was opened if there haven't been any). 697 * 698 * Grab the wb_err from the mapping. If it matches what we have in the file, 699 * then just quickly return 0. The file is all caught up. 700 * 701 * If it doesn't match, then take the mapping value, set the "seen" flag in 702 * it and try to swap it into place. If it works, or another task beat us 703 * to it with the new value, then update the f_wb_err and return the error 704 * portion. The error at this point must be reported via proper channels 705 * (a'la fsync, or NFS COMMIT operation, etc.). 706 * 707 * While we handle mapping->wb_err with atomic operations, the f_wb_err 708 * value is protected by the f_lock since we must ensure that it reflects 709 * the latest value swapped in for this file descriptor. 710 * 711 * Return: %0 on success, negative error code otherwise. 712 */ 713 int file_check_and_advance_wb_err(struct file *file) 714 { 715 int err = 0; 716 errseq_t old = READ_ONCE(file->f_wb_err); 717 struct address_space *mapping = file->f_mapping; 718 719 /* Locklessly handle the common case where nothing has changed */ 720 if (errseq_check(&mapping->wb_err, old)) { 721 /* Something changed, must use slow path */ 722 spin_lock(&file->f_lock); 723 old = file->f_wb_err; 724 err = errseq_check_and_advance(&mapping->wb_err, 725 &file->f_wb_err); 726 trace_file_check_and_advance_wb_err(file, old); 727 spin_unlock(&file->f_lock); 728 } 729 730 /* 731 * We're mostly using this function as a drop in replacement for 732 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 733 * that the legacy code would have had on these flags. 734 */ 735 clear_bit(AS_EIO, &mapping->flags); 736 clear_bit(AS_ENOSPC, &mapping->flags); 737 return err; 738 } 739 EXPORT_SYMBOL(file_check_and_advance_wb_err); 740 741 /** 742 * file_write_and_wait_range - write out & wait on a file range 743 * @file: file pointing to address_space with pages 744 * @lstart: offset in bytes where the range starts 745 * @lend: offset in bytes where the range ends (inclusive) 746 * 747 * Write out and wait upon file offsets lstart->lend, inclusive. 748 * 749 * Note that @lend is inclusive (describes the last byte to be written) so 750 * that this function can be used to write to the very end-of-file (end = -1). 751 * 752 * After writing out and waiting on the data, we check and advance the 753 * f_wb_err cursor to the latest value, and return any errors detected there. 754 * 755 * Return: %0 on success, negative error code otherwise. 756 */ 757 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 758 { 759 int err = 0, err2; 760 struct address_space *mapping = file->f_mapping; 761 762 if (mapping_needs_writeback(mapping)) { 763 err = __filemap_fdatawrite_range(mapping, lstart, lend, 764 WB_SYNC_ALL); 765 /* See comment of filemap_write_and_wait() */ 766 if (err != -EIO) 767 __filemap_fdatawait_range(mapping, lstart, lend); 768 } 769 err2 = file_check_and_advance_wb_err(file); 770 if (!err) 771 err = err2; 772 return err; 773 } 774 EXPORT_SYMBOL(file_write_and_wait_range); 775 776 /** 777 * replace_page_cache_page - replace a pagecache page with a new one 778 * @old: page to be replaced 779 * @new: page to replace with 780 * 781 * This function replaces a page in the pagecache with a new one. On 782 * success it acquires the pagecache reference for the new page and 783 * drops it for the old page. Both the old and new pages must be 784 * locked. This function does not add the new page to the LRU, the 785 * caller must do that. 786 * 787 * The remove + add is atomic. This function cannot fail. 788 */ 789 void replace_page_cache_page(struct page *old, struct page *new) 790 { 791 struct address_space *mapping = old->mapping; 792 void (*freepage)(struct page *) = mapping->a_ops->freepage; 793 pgoff_t offset = old->index; 794 XA_STATE(xas, &mapping->i_pages, offset); 795 unsigned long flags; 796 797 VM_BUG_ON_PAGE(!PageLocked(old), old); 798 VM_BUG_ON_PAGE(!PageLocked(new), new); 799 VM_BUG_ON_PAGE(new->mapping, new); 800 801 get_page(new); 802 new->mapping = mapping; 803 new->index = offset; 804 805 mem_cgroup_migrate(old, new); 806 807 xas_lock_irqsave(&xas, flags); 808 xas_store(&xas, new); 809 810 old->mapping = NULL; 811 /* hugetlb pages do not participate in page cache accounting. */ 812 if (!PageHuge(old)) 813 __dec_lruvec_page_state(old, NR_FILE_PAGES); 814 if (!PageHuge(new)) 815 __inc_lruvec_page_state(new, NR_FILE_PAGES); 816 if (PageSwapBacked(old)) 817 __dec_lruvec_page_state(old, NR_SHMEM); 818 if (PageSwapBacked(new)) 819 __inc_lruvec_page_state(new, NR_SHMEM); 820 xas_unlock_irqrestore(&xas, flags); 821 if (freepage) 822 freepage(old); 823 put_page(old); 824 } 825 EXPORT_SYMBOL_GPL(replace_page_cache_page); 826 827 noinline int __add_to_page_cache_locked(struct page *page, 828 struct address_space *mapping, 829 pgoff_t offset, gfp_t gfp, 830 void **shadowp) 831 { 832 XA_STATE(xas, &mapping->i_pages, offset); 833 int huge = PageHuge(page); 834 int error; 835 bool charged = false; 836 837 VM_BUG_ON_PAGE(!PageLocked(page), page); 838 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 839 mapping_set_update(&xas, mapping); 840 841 get_page(page); 842 page->mapping = mapping; 843 page->index = offset; 844 845 if (!huge) { 846 error = mem_cgroup_charge(page, current->mm, gfp); 847 if (error) 848 goto error; 849 charged = true; 850 } 851 852 gfp &= GFP_RECLAIM_MASK; 853 854 do { 855 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 856 void *entry, *old = NULL; 857 858 if (order > thp_order(page)) 859 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 860 order, gfp); 861 xas_lock_irq(&xas); 862 xas_for_each_conflict(&xas, entry) { 863 old = entry; 864 if (!xa_is_value(entry)) { 865 xas_set_err(&xas, -EEXIST); 866 goto unlock; 867 } 868 } 869 870 if (old) { 871 if (shadowp) 872 *shadowp = old; 873 /* entry may have been split before we acquired lock */ 874 order = xa_get_order(xas.xa, xas.xa_index); 875 if (order > thp_order(page)) { 876 xas_split(&xas, old, order); 877 xas_reset(&xas); 878 } 879 } 880 881 xas_store(&xas, page); 882 if (xas_error(&xas)) 883 goto unlock; 884 885 if (old) 886 mapping->nrexceptional--; 887 mapping->nrpages++; 888 889 /* hugetlb pages do not participate in page cache accounting */ 890 if (!huge) 891 __inc_lruvec_page_state(page, NR_FILE_PAGES); 892 unlock: 893 xas_unlock_irq(&xas); 894 } while (xas_nomem(&xas, gfp)); 895 896 if (xas_error(&xas)) { 897 error = xas_error(&xas); 898 if (charged) 899 mem_cgroup_uncharge(page); 900 goto error; 901 } 902 903 trace_mm_filemap_add_to_page_cache(page); 904 return 0; 905 error: 906 page->mapping = NULL; 907 /* Leave page->index set: truncation relies upon it */ 908 put_page(page); 909 return error; 910 } 911 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 912 913 /** 914 * add_to_page_cache_locked - add a locked page to the pagecache 915 * @page: page to add 916 * @mapping: the page's address_space 917 * @offset: page index 918 * @gfp_mask: page allocation mode 919 * 920 * This function is used to add a page to the pagecache. It must be locked. 921 * This function does not add the page to the LRU. The caller must do that. 922 * 923 * Return: %0 on success, negative error code otherwise. 924 */ 925 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 926 pgoff_t offset, gfp_t gfp_mask) 927 { 928 return __add_to_page_cache_locked(page, mapping, offset, 929 gfp_mask, NULL); 930 } 931 EXPORT_SYMBOL(add_to_page_cache_locked); 932 933 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 934 pgoff_t offset, gfp_t gfp_mask) 935 { 936 void *shadow = NULL; 937 int ret; 938 939 __SetPageLocked(page); 940 ret = __add_to_page_cache_locked(page, mapping, offset, 941 gfp_mask, &shadow); 942 if (unlikely(ret)) 943 __ClearPageLocked(page); 944 else { 945 /* 946 * The page might have been evicted from cache only 947 * recently, in which case it should be activated like 948 * any other repeatedly accessed page. 949 * The exception is pages getting rewritten; evicting other 950 * data from the working set, only to cache data that will 951 * get overwritten with something else, is a waste of memory. 952 */ 953 WARN_ON_ONCE(PageActive(page)); 954 if (!(gfp_mask & __GFP_WRITE) && shadow) 955 workingset_refault(page, shadow); 956 lru_cache_add(page); 957 } 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 961 962 #ifdef CONFIG_NUMA 963 struct page *__page_cache_alloc(gfp_t gfp) 964 { 965 int n; 966 struct page *page; 967 968 if (cpuset_do_page_mem_spread()) { 969 unsigned int cpuset_mems_cookie; 970 do { 971 cpuset_mems_cookie = read_mems_allowed_begin(); 972 n = cpuset_mem_spread_node(); 973 page = __alloc_pages_node(n, gfp, 0); 974 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 975 976 return page; 977 } 978 return alloc_pages(gfp, 0); 979 } 980 EXPORT_SYMBOL(__page_cache_alloc); 981 #endif 982 983 /* 984 * In order to wait for pages to become available there must be 985 * waitqueues associated with pages. By using a hash table of 986 * waitqueues where the bucket discipline is to maintain all 987 * waiters on the same queue and wake all when any of the pages 988 * become available, and for the woken contexts to check to be 989 * sure the appropriate page became available, this saves space 990 * at a cost of "thundering herd" phenomena during rare hash 991 * collisions. 992 */ 993 #define PAGE_WAIT_TABLE_BITS 8 994 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 995 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 996 997 static wait_queue_head_t *page_waitqueue(struct page *page) 998 { 999 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1000 } 1001 1002 void __init pagecache_init(void) 1003 { 1004 int i; 1005 1006 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1007 init_waitqueue_head(&page_wait_table[i]); 1008 1009 page_writeback_init(); 1010 } 1011 1012 /* 1013 * The page wait code treats the "wait->flags" somewhat unusually, because 1014 * we have multiple different kinds of waits, not just the usual "exclusive" 1015 * one. 1016 * 1017 * We have: 1018 * 1019 * (a) no special bits set: 1020 * 1021 * We're just waiting for the bit to be released, and when a waker 1022 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1023 * and remove it from the wait queue. 1024 * 1025 * Simple and straightforward. 1026 * 1027 * (b) WQ_FLAG_EXCLUSIVE: 1028 * 1029 * The waiter is waiting to get the lock, and only one waiter should 1030 * be woken up to avoid any thundering herd behavior. We'll set the 1031 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1032 * 1033 * This is the traditional exclusive wait. 1034 * 1035 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1036 * 1037 * The waiter is waiting to get the bit, and additionally wants the 1038 * lock to be transferred to it for fair lock behavior. If the lock 1039 * cannot be taken, we stop walking the wait queue without waking 1040 * the waiter. 1041 * 1042 * This is the "fair lock handoff" case, and in addition to setting 1043 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1044 * that it now has the lock. 1045 */ 1046 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1047 { 1048 unsigned int flags; 1049 struct wait_page_key *key = arg; 1050 struct wait_page_queue *wait_page 1051 = container_of(wait, struct wait_page_queue, wait); 1052 1053 if (!wake_page_match(wait_page, key)) 1054 return 0; 1055 1056 /* 1057 * If it's a lock handoff wait, we get the bit for it, and 1058 * stop walking (and do not wake it up) if we can't. 1059 */ 1060 flags = wait->flags; 1061 if (flags & WQ_FLAG_EXCLUSIVE) { 1062 if (test_bit(key->bit_nr, &key->page->flags)) 1063 return -1; 1064 if (flags & WQ_FLAG_CUSTOM) { 1065 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1066 return -1; 1067 flags |= WQ_FLAG_DONE; 1068 } 1069 } 1070 1071 /* 1072 * We are holding the wait-queue lock, but the waiter that 1073 * is waiting for this will be checking the flags without 1074 * any locking. 1075 * 1076 * So update the flags atomically, and wake up the waiter 1077 * afterwards to avoid any races. This store-release pairs 1078 * with the load-acquire in wait_on_page_bit_common(). 1079 */ 1080 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1081 wake_up_state(wait->private, mode); 1082 1083 /* 1084 * Ok, we have successfully done what we're waiting for, 1085 * and we can unconditionally remove the wait entry. 1086 * 1087 * Note that this pairs with the "finish_wait()" in the 1088 * waiter, and has to be the absolute last thing we do. 1089 * After this list_del_init(&wait->entry) the wait entry 1090 * might be de-allocated and the process might even have 1091 * exited. 1092 */ 1093 list_del_init_careful(&wait->entry); 1094 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1095 } 1096 1097 static void wake_up_page_bit(struct page *page, int bit_nr) 1098 { 1099 wait_queue_head_t *q = page_waitqueue(page); 1100 struct wait_page_key key; 1101 unsigned long flags; 1102 wait_queue_entry_t bookmark; 1103 1104 key.page = page; 1105 key.bit_nr = bit_nr; 1106 key.page_match = 0; 1107 1108 bookmark.flags = 0; 1109 bookmark.private = NULL; 1110 bookmark.func = NULL; 1111 INIT_LIST_HEAD(&bookmark.entry); 1112 1113 spin_lock_irqsave(&q->lock, flags); 1114 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1115 1116 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1117 /* 1118 * Take a breather from holding the lock, 1119 * allow pages that finish wake up asynchronously 1120 * to acquire the lock and remove themselves 1121 * from wait queue 1122 */ 1123 spin_unlock_irqrestore(&q->lock, flags); 1124 cpu_relax(); 1125 spin_lock_irqsave(&q->lock, flags); 1126 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1127 } 1128 1129 /* 1130 * It is possible for other pages to have collided on the waitqueue 1131 * hash, so in that case check for a page match. That prevents a long- 1132 * term waiter 1133 * 1134 * It is still possible to miss a case here, when we woke page waiters 1135 * and removed them from the waitqueue, but there are still other 1136 * page waiters. 1137 */ 1138 if (!waitqueue_active(q) || !key.page_match) { 1139 ClearPageWaiters(page); 1140 /* 1141 * It's possible to miss clearing Waiters here, when we woke 1142 * our page waiters, but the hashed waitqueue has waiters for 1143 * other pages on it. 1144 * 1145 * That's okay, it's a rare case. The next waker will clear it. 1146 */ 1147 } 1148 spin_unlock_irqrestore(&q->lock, flags); 1149 } 1150 1151 static void wake_up_page(struct page *page, int bit) 1152 { 1153 if (!PageWaiters(page)) 1154 return; 1155 wake_up_page_bit(page, bit); 1156 } 1157 1158 /* 1159 * A choice of three behaviors for wait_on_page_bit_common(): 1160 */ 1161 enum behavior { 1162 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1163 * __lock_page() waiting on then setting PG_locked. 1164 */ 1165 SHARED, /* Hold ref to page and check the bit when woken, like 1166 * wait_on_page_writeback() waiting on PG_writeback. 1167 */ 1168 DROP, /* Drop ref to page before wait, no check when woken, 1169 * like put_and_wait_on_page_locked() on PG_locked. 1170 */ 1171 }; 1172 1173 /* 1174 * Attempt to check (or get) the page bit, and mark us done 1175 * if successful. 1176 */ 1177 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1178 struct wait_queue_entry *wait) 1179 { 1180 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1181 if (test_and_set_bit(bit_nr, &page->flags)) 1182 return false; 1183 } else if (test_bit(bit_nr, &page->flags)) 1184 return false; 1185 1186 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1187 return true; 1188 } 1189 1190 /* How many times do we accept lock stealing from under a waiter? */ 1191 int sysctl_page_lock_unfairness = 5; 1192 1193 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1194 struct page *page, int bit_nr, int state, enum behavior behavior) 1195 { 1196 int unfairness = sysctl_page_lock_unfairness; 1197 struct wait_page_queue wait_page; 1198 wait_queue_entry_t *wait = &wait_page.wait; 1199 bool thrashing = false; 1200 bool delayacct = false; 1201 unsigned long pflags; 1202 1203 if (bit_nr == PG_locked && 1204 !PageUptodate(page) && PageWorkingset(page)) { 1205 if (!PageSwapBacked(page)) { 1206 delayacct_thrashing_start(); 1207 delayacct = true; 1208 } 1209 psi_memstall_enter(&pflags); 1210 thrashing = true; 1211 } 1212 1213 init_wait(wait); 1214 wait->func = wake_page_function; 1215 wait_page.page = page; 1216 wait_page.bit_nr = bit_nr; 1217 1218 repeat: 1219 wait->flags = 0; 1220 if (behavior == EXCLUSIVE) { 1221 wait->flags = WQ_FLAG_EXCLUSIVE; 1222 if (--unfairness < 0) 1223 wait->flags |= WQ_FLAG_CUSTOM; 1224 } 1225 1226 /* 1227 * Do one last check whether we can get the 1228 * page bit synchronously. 1229 * 1230 * Do the SetPageWaiters() marking before that 1231 * to let any waker we _just_ missed know they 1232 * need to wake us up (otherwise they'll never 1233 * even go to the slow case that looks at the 1234 * page queue), and add ourselves to the wait 1235 * queue if we need to sleep. 1236 * 1237 * This part needs to be done under the queue 1238 * lock to avoid races. 1239 */ 1240 spin_lock_irq(&q->lock); 1241 SetPageWaiters(page); 1242 if (!trylock_page_bit_common(page, bit_nr, wait)) 1243 __add_wait_queue_entry_tail(q, wait); 1244 spin_unlock_irq(&q->lock); 1245 1246 /* 1247 * From now on, all the logic will be based on 1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1249 * see whether the page bit testing has already 1250 * been done by the wake function. 1251 * 1252 * We can drop our reference to the page. 1253 */ 1254 if (behavior == DROP) 1255 put_page(page); 1256 1257 /* 1258 * Note that until the "finish_wait()", or until 1259 * we see the WQ_FLAG_WOKEN flag, we need to 1260 * be very careful with the 'wait->flags', because 1261 * we may race with a waker that sets them. 1262 */ 1263 for (;;) { 1264 unsigned int flags; 1265 1266 set_current_state(state); 1267 1268 /* Loop until we've been woken or interrupted */ 1269 flags = smp_load_acquire(&wait->flags); 1270 if (!(flags & WQ_FLAG_WOKEN)) { 1271 if (signal_pending_state(state, current)) 1272 break; 1273 1274 io_schedule(); 1275 continue; 1276 } 1277 1278 /* If we were non-exclusive, we're done */ 1279 if (behavior != EXCLUSIVE) 1280 break; 1281 1282 /* If the waker got the lock for us, we're done */ 1283 if (flags & WQ_FLAG_DONE) 1284 break; 1285 1286 /* 1287 * Otherwise, if we're getting the lock, we need to 1288 * try to get it ourselves. 1289 * 1290 * And if that fails, we'll have to retry this all. 1291 */ 1292 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1293 goto repeat; 1294 1295 wait->flags |= WQ_FLAG_DONE; 1296 break; 1297 } 1298 1299 /* 1300 * If a signal happened, this 'finish_wait()' may remove the last 1301 * waiter from the wait-queues, but the PageWaiters bit will remain 1302 * set. That's ok. The next wakeup will take care of it, and trying 1303 * to do it here would be difficult and prone to races. 1304 */ 1305 finish_wait(q, wait); 1306 1307 if (thrashing) { 1308 if (delayacct) 1309 delayacct_thrashing_end(); 1310 psi_memstall_leave(&pflags); 1311 } 1312 1313 /* 1314 * NOTE! The wait->flags weren't stable until we've done the 1315 * 'finish_wait()', and we could have exited the loop above due 1316 * to a signal, and had a wakeup event happen after the signal 1317 * test but before the 'finish_wait()'. 1318 * 1319 * So only after the finish_wait() can we reliably determine 1320 * if we got woken up or not, so we can now figure out the final 1321 * return value based on that state without races. 1322 * 1323 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1324 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1325 */ 1326 if (behavior == EXCLUSIVE) 1327 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1328 1329 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1330 } 1331 1332 void wait_on_page_bit(struct page *page, int bit_nr) 1333 { 1334 wait_queue_head_t *q = page_waitqueue(page); 1335 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1336 } 1337 EXPORT_SYMBOL(wait_on_page_bit); 1338 1339 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1340 { 1341 wait_queue_head_t *q = page_waitqueue(page); 1342 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1343 } 1344 EXPORT_SYMBOL(wait_on_page_bit_killable); 1345 1346 /** 1347 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1348 * @page: The page to wait for. 1349 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1350 * 1351 * The caller should hold a reference on @page. They expect the page to 1352 * become unlocked relatively soon, but do not wish to hold up migration 1353 * (for example) by holding the reference while waiting for the page to 1354 * come unlocked. After this function returns, the caller should not 1355 * dereference @page. 1356 * 1357 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. 1358 */ 1359 int put_and_wait_on_page_locked(struct page *page, int state) 1360 { 1361 wait_queue_head_t *q; 1362 1363 page = compound_head(page); 1364 q = page_waitqueue(page); 1365 return wait_on_page_bit_common(q, page, PG_locked, state, DROP); 1366 } 1367 1368 /** 1369 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1370 * @page: Page defining the wait queue of interest 1371 * @waiter: Waiter to add to the queue 1372 * 1373 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1374 */ 1375 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1376 { 1377 wait_queue_head_t *q = page_waitqueue(page); 1378 unsigned long flags; 1379 1380 spin_lock_irqsave(&q->lock, flags); 1381 __add_wait_queue_entry_tail(q, waiter); 1382 SetPageWaiters(page); 1383 spin_unlock_irqrestore(&q->lock, flags); 1384 } 1385 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1386 1387 #ifndef clear_bit_unlock_is_negative_byte 1388 1389 /* 1390 * PG_waiters is the high bit in the same byte as PG_lock. 1391 * 1392 * On x86 (and on many other architectures), we can clear PG_lock and 1393 * test the sign bit at the same time. But if the architecture does 1394 * not support that special operation, we just do this all by hand 1395 * instead. 1396 * 1397 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1398 * being cleared, but a memory barrier should be unnecessary since it is 1399 * in the same byte as PG_locked. 1400 */ 1401 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1402 { 1403 clear_bit_unlock(nr, mem); 1404 /* smp_mb__after_atomic(); */ 1405 return test_bit(PG_waiters, mem); 1406 } 1407 1408 #endif 1409 1410 /** 1411 * unlock_page - unlock a locked page 1412 * @page: the page 1413 * 1414 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1415 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1416 * mechanism between PageLocked pages and PageWriteback pages is shared. 1417 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1418 * 1419 * Note that this depends on PG_waiters being the sign bit in the byte 1420 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1421 * clear the PG_locked bit and test PG_waiters at the same time fairly 1422 * portably (architectures that do LL/SC can test any bit, while x86 can 1423 * test the sign bit). 1424 */ 1425 void unlock_page(struct page *page) 1426 { 1427 BUILD_BUG_ON(PG_waiters != 7); 1428 page = compound_head(page); 1429 VM_BUG_ON_PAGE(!PageLocked(page), page); 1430 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1431 wake_up_page_bit(page, PG_locked); 1432 } 1433 EXPORT_SYMBOL(unlock_page); 1434 1435 /** 1436 * end_page_writeback - end writeback against a page 1437 * @page: the page 1438 */ 1439 void end_page_writeback(struct page *page) 1440 { 1441 /* 1442 * TestClearPageReclaim could be used here but it is an atomic 1443 * operation and overkill in this particular case. Failing to 1444 * shuffle a page marked for immediate reclaim is too mild to 1445 * justify taking an atomic operation penalty at the end of 1446 * ever page writeback. 1447 */ 1448 if (PageReclaim(page)) { 1449 ClearPageReclaim(page); 1450 rotate_reclaimable_page(page); 1451 } 1452 1453 /* 1454 * Writeback does not hold a page reference of its own, relying 1455 * on truncation to wait for the clearing of PG_writeback. 1456 * But here we must make sure that the page is not freed and 1457 * reused before the wake_up_page(). 1458 */ 1459 get_page(page); 1460 if (!test_clear_page_writeback(page)) 1461 BUG(); 1462 1463 smp_mb__after_atomic(); 1464 wake_up_page(page, PG_writeback); 1465 put_page(page); 1466 } 1467 EXPORT_SYMBOL(end_page_writeback); 1468 1469 /* 1470 * After completing I/O on a page, call this routine to update the page 1471 * flags appropriately 1472 */ 1473 void page_endio(struct page *page, bool is_write, int err) 1474 { 1475 if (!is_write) { 1476 if (!err) { 1477 SetPageUptodate(page); 1478 } else { 1479 ClearPageUptodate(page); 1480 SetPageError(page); 1481 } 1482 unlock_page(page); 1483 } else { 1484 if (err) { 1485 struct address_space *mapping; 1486 1487 SetPageError(page); 1488 mapping = page_mapping(page); 1489 if (mapping) 1490 mapping_set_error(mapping, err); 1491 } 1492 end_page_writeback(page); 1493 } 1494 } 1495 EXPORT_SYMBOL_GPL(page_endio); 1496 1497 /** 1498 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1499 * @__page: the page to lock 1500 */ 1501 void __lock_page(struct page *__page) 1502 { 1503 struct page *page = compound_head(__page); 1504 wait_queue_head_t *q = page_waitqueue(page); 1505 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1506 EXCLUSIVE); 1507 } 1508 EXPORT_SYMBOL(__lock_page); 1509 1510 int __lock_page_killable(struct page *__page) 1511 { 1512 struct page *page = compound_head(__page); 1513 wait_queue_head_t *q = page_waitqueue(page); 1514 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1515 EXCLUSIVE); 1516 } 1517 EXPORT_SYMBOL_GPL(__lock_page_killable); 1518 1519 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1520 { 1521 struct wait_queue_head *q = page_waitqueue(page); 1522 int ret = 0; 1523 1524 wait->page = page; 1525 wait->bit_nr = PG_locked; 1526 1527 spin_lock_irq(&q->lock); 1528 __add_wait_queue_entry_tail(q, &wait->wait); 1529 SetPageWaiters(page); 1530 ret = !trylock_page(page); 1531 /* 1532 * If we were successful now, we know we're still on the 1533 * waitqueue as we're still under the lock. This means it's 1534 * safe to remove and return success, we know the callback 1535 * isn't going to trigger. 1536 */ 1537 if (!ret) 1538 __remove_wait_queue(q, &wait->wait); 1539 else 1540 ret = -EIOCBQUEUED; 1541 spin_unlock_irq(&q->lock); 1542 return ret; 1543 } 1544 1545 /* 1546 * Return values: 1547 * 1 - page is locked; mmap_lock is still held. 1548 * 0 - page is not locked. 1549 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1550 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1551 * which case mmap_lock is still held. 1552 * 1553 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1554 * with the page locked and the mmap_lock unperturbed. 1555 */ 1556 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1557 unsigned int flags) 1558 { 1559 if (fault_flag_allow_retry_first(flags)) { 1560 /* 1561 * CAUTION! In this case, mmap_lock is not released 1562 * even though return 0. 1563 */ 1564 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1565 return 0; 1566 1567 mmap_read_unlock(mm); 1568 if (flags & FAULT_FLAG_KILLABLE) 1569 wait_on_page_locked_killable(page); 1570 else 1571 wait_on_page_locked(page); 1572 return 0; 1573 } 1574 if (flags & FAULT_FLAG_KILLABLE) { 1575 int ret; 1576 1577 ret = __lock_page_killable(page); 1578 if (ret) { 1579 mmap_read_unlock(mm); 1580 return 0; 1581 } 1582 } else { 1583 __lock_page(page); 1584 } 1585 return 1; 1586 1587 } 1588 1589 /** 1590 * page_cache_next_miss() - Find the next gap in the page cache. 1591 * @mapping: Mapping. 1592 * @index: Index. 1593 * @max_scan: Maximum range to search. 1594 * 1595 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1596 * gap with the lowest index. 1597 * 1598 * This function may be called under the rcu_read_lock. However, this will 1599 * not atomically search a snapshot of the cache at a single point in time. 1600 * For example, if a gap is created at index 5, then subsequently a gap is 1601 * created at index 10, page_cache_next_miss covering both indices may 1602 * return 10 if called under the rcu_read_lock. 1603 * 1604 * Return: The index of the gap if found, otherwise an index outside the 1605 * range specified (in which case 'return - index >= max_scan' will be true). 1606 * In the rare case of index wrap-around, 0 will be returned. 1607 */ 1608 pgoff_t page_cache_next_miss(struct address_space *mapping, 1609 pgoff_t index, unsigned long max_scan) 1610 { 1611 XA_STATE(xas, &mapping->i_pages, index); 1612 1613 while (max_scan--) { 1614 void *entry = xas_next(&xas); 1615 if (!entry || xa_is_value(entry)) 1616 break; 1617 if (xas.xa_index == 0) 1618 break; 1619 } 1620 1621 return xas.xa_index; 1622 } 1623 EXPORT_SYMBOL(page_cache_next_miss); 1624 1625 /** 1626 * page_cache_prev_miss() - Find the previous gap in the page cache. 1627 * @mapping: Mapping. 1628 * @index: Index. 1629 * @max_scan: Maximum range to search. 1630 * 1631 * Search the range [max(index - max_scan + 1, 0), index] for the 1632 * gap with the highest index. 1633 * 1634 * This function may be called under the rcu_read_lock. However, this will 1635 * not atomically search a snapshot of the cache at a single point in time. 1636 * For example, if a gap is created at index 10, then subsequently a gap is 1637 * created at index 5, page_cache_prev_miss() covering both indices may 1638 * return 5 if called under the rcu_read_lock. 1639 * 1640 * Return: The index of the gap if found, otherwise an index outside the 1641 * range specified (in which case 'index - return >= max_scan' will be true). 1642 * In the rare case of wrap-around, ULONG_MAX will be returned. 1643 */ 1644 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1645 pgoff_t index, unsigned long max_scan) 1646 { 1647 XA_STATE(xas, &mapping->i_pages, index); 1648 1649 while (max_scan--) { 1650 void *entry = xas_prev(&xas); 1651 if (!entry || xa_is_value(entry)) 1652 break; 1653 if (xas.xa_index == ULONG_MAX) 1654 break; 1655 } 1656 1657 return xas.xa_index; 1658 } 1659 EXPORT_SYMBOL(page_cache_prev_miss); 1660 1661 /* 1662 * mapping_get_entry - Get a page cache entry. 1663 * @mapping: the address_space to search 1664 * @index: The page cache index. 1665 * 1666 * Looks up the page cache slot at @mapping & @offset. If there is a 1667 * page cache page, the head page is returned with an increased refcount. 1668 * 1669 * If the slot holds a shadow entry of a previously evicted page, or a 1670 * swap entry from shmem/tmpfs, it is returned. 1671 * 1672 * Return: The head page or shadow entry, %NULL if nothing is found. 1673 */ 1674 static struct page *mapping_get_entry(struct address_space *mapping, 1675 pgoff_t index) 1676 { 1677 XA_STATE(xas, &mapping->i_pages, index); 1678 struct page *page; 1679 1680 rcu_read_lock(); 1681 repeat: 1682 xas_reset(&xas); 1683 page = xas_load(&xas); 1684 if (xas_retry(&xas, page)) 1685 goto repeat; 1686 /* 1687 * A shadow entry of a recently evicted page, or a swap entry from 1688 * shmem/tmpfs. Return it without attempting to raise page count. 1689 */ 1690 if (!page || xa_is_value(page)) 1691 goto out; 1692 1693 if (!page_cache_get_speculative(page)) 1694 goto repeat; 1695 1696 /* 1697 * Has the page moved or been split? 1698 * This is part of the lockless pagecache protocol. See 1699 * include/linux/pagemap.h for details. 1700 */ 1701 if (unlikely(page != xas_reload(&xas))) { 1702 put_page(page); 1703 goto repeat; 1704 } 1705 out: 1706 rcu_read_unlock(); 1707 1708 return page; 1709 } 1710 1711 /** 1712 * pagecache_get_page - Find and get a reference to a page. 1713 * @mapping: The address_space to search. 1714 * @index: The page index. 1715 * @fgp_flags: %FGP flags modify how the page is returned. 1716 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1717 * 1718 * Looks up the page cache entry at @mapping & @index. 1719 * 1720 * @fgp_flags can be zero or more of these flags: 1721 * 1722 * * %FGP_ACCESSED - The page will be marked accessed. 1723 * * %FGP_LOCK - The page is returned locked. 1724 * * %FGP_HEAD - If the page is present and a THP, return the head page 1725 * rather than the exact page specified by the index. 1726 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1727 * instead of allocating a new page to replace it. 1728 * * %FGP_CREAT - If no page is present then a new page is allocated using 1729 * @gfp_mask and added to the page cache and the VM's LRU list. 1730 * The page is returned locked and with an increased refcount. 1731 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1732 * page is already in cache. If the page was allocated, unlock it before 1733 * returning so the caller can do the same dance. 1734 * * %FGP_WRITE - The page will be written 1735 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1736 * * %FGP_NOWAIT - Don't get blocked by page lock 1737 * 1738 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1739 * if the %GFP flags specified for %FGP_CREAT are atomic. 1740 * 1741 * If there is a page cache page, it is returned with an increased refcount. 1742 * 1743 * Return: The found page or %NULL otherwise. 1744 */ 1745 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1746 int fgp_flags, gfp_t gfp_mask) 1747 { 1748 struct page *page; 1749 1750 repeat: 1751 page = mapping_get_entry(mapping, index); 1752 if (xa_is_value(page)) { 1753 if (fgp_flags & FGP_ENTRY) 1754 return page; 1755 page = NULL; 1756 } 1757 if (!page) 1758 goto no_page; 1759 1760 if (fgp_flags & FGP_LOCK) { 1761 if (fgp_flags & FGP_NOWAIT) { 1762 if (!trylock_page(page)) { 1763 put_page(page); 1764 return NULL; 1765 } 1766 } else { 1767 lock_page(page); 1768 } 1769 1770 /* Has the page been truncated? */ 1771 if (unlikely(page->mapping != mapping)) { 1772 unlock_page(page); 1773 put_page(page); 1774 goto repeat; 1775 } 1776 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1777 } 1778 1779 if (fgp_flags & FGP_ACCESSED) 1780 mark_page_accessed(page); 1781 else if (fgp_flags & FGP_WRITE) { 1782 /* Clear idle flag for buffer write */ 1783 if (page_is_idle(page)) 1784 clear_page_idle(page); 1785 } 1786 if (!(fgp_flags & FGP_HEAD)) 1787 page = find_subpage(page, index); 1788 1789 no_page: 1790 if (!page && (fgp_flags & FGP_CREAT)) { 1791 int err; 1792 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1793 gfp_mask |= __GFP_WRITE; 1794 if (fgp_flags & FGP_NOFS) 1795 gfp_mask &= ~__GFP_FS; 1796 1797 page = __page_cache_alloc(gfp_mask); 1798 if (!page) 1799 return NULL; 1800 1801 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1802 fgp_flags |= FGP_LOCK; 1803 1804 /* Init accessed so avoid atomic mark_page_accessed later */ 1805 if (fgp_flags & FGP_ACCESSED) 1806 __SetPageReferenced(page); 1807 1808 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1809 if (unlikely(err)) { 1810 put_page(page); 1811 page = NULL; 1812 if (err == -EEXIST) 1813 goto repeat; 1814 } 1815 1816 /* 1817 * add_to_page_cache_lru locks the page, and for mmap we expect 1818 * an unlocked page. 1819 */ 1820 if (page && (fgp_flags & FGP_FOR_MMAP)) 1821 unlock_page(page); 1822 } 1823 1824 return page; 1825 } 1826 EXPORT_SYMBOL(pagecache_get_page); 1827 1828 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, 1829 xa_mark_t mark) 1830 { 1831 struct page *page; 1832 1833 retry: 1834 if (mark == XA_PRESENT) 1835 page = xas_find(xas, max); 1836 else 1837 page = xas_find_marked(xas, max, mark); 1838 1839 if (xas_retry(xas, page)) 1840 goto retry; 1841 /* 1842 * A shadow entry of a recently evicted page, a swap 1843 * entry from shmem/tmpfs or a DAX entry. Return it 1844 * without attempting to raise page count. 1845 */ 1846 if (!page || xa_is_value(page)) 1847 return page; 1848 1849 if (!page_cache_get_speculative(page)) 1850 goto reset; 1851 1852 /* Has the page moved or been split? */ 1853 if (unlikely(page != xas_reload(xas))) { 1854 put_page(page); 1855 goto reset; 1856 } 1857 1858 return page; 1859 reset: 1860 xas_reset(xas); 1861 goto retry; 1862 } 1863 1864 /** 1865 * find_get_entries - gang pagecache lookup 1866 * @mapping: The address_space to search 1867 * @start: The starting page cache index 1868 * @nr_entries: The maximum number of entries 1869 * @entries: Where the resulting entries are placed 1870 * @indices: The cache indices corresponding to the entries in @entries 1871 * 1872 * find_get_entries() will search for and return a group of up to 1873 * @nr_entries entries in the mapping. The entries are placed at 1874 * @entries. find_get_entries() takes a reference against any actual 1875 * pages it returns. 1876 * 1877 * The search returns a group of mapping-contiguous page cache entries 1878 * with ascending indexes. There may be holes in the indices due to 1879 * not-present pages. 1880 * 1881 * Any shadow entries of evicted pages, or swap entries from 1882 * shmem/tmpfs, are included in the returned array. 1883 * 1884 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1885 * stops at that page: the caller is likely to have a better way to handle 1886 * the compound page as a whole, and then skip its extent, than repeatedly 1887 * calling find_get_entries() to return all its tails. 1888 * 1889 * Return: the number of pages and shadow entries which were found. 1890 */ 1891 unsigned find_get_entries(struct address_space *mapping, 1892 pgoff_t start, unsigned int nr_entries, 1893 struct page **entries, pgoff_t *indices) 1894 { 1895 XA_STATE(xas, &mapping->i_pages, start); 1896 struct page *page; 1897 unsigned int ret = 0; 1898 1899 if (!nr_entries) 1900 return 0; 1901 1902 rcu_read_lock(); 1903 while ((page = find_get_entry(&xas, ULONG_MAX, XA_PRESENT))) { 1904 /* 1905 * Terminate early on finding a THP, to allow the caller to 1906 * handle it all at once; but continue if this is hugetlbfs. 1907 */ 1908 if (!xa_is_value(page) && PageTransHuge(page) && 1909 !PageHuge(page)) { 1910 page = find_subpage(page, xas.xa_index); 1911 nr_entries = ret + 1; 1912 } 1913 1914 indices[ret] = xas.xa_index; 1915 entries[ret] = page; 1916 if (++ret == nr_entries) 1917 break; 1918 } 1919 rcu_read_unlock(); 1920 return ret; 1921 } 1922 1923 /** 1924 * find_get_pages_range - gang pagecache lookup 1925 * @mapping: The address_space to search 1926 * @start: The starting page index 1927 * @end: The final page index (inclusive) 1928 * @nr_pages: The maximum number of pages 1929 * @pages: Where the resulting pages are placed 1930 * 1931 * find_get_pages_range() will search for and return a group of up to @nr_pages 1932 * pages in the mapping starting at index @start and up to index @end 1933 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1934 * a reference against the returned pages. 1935 * 1936 * The search returns a group of mapping-contiguous pages with ascending 1937 * indexes. There may be holes in the indices due to not-present pages. 1938 * We also update @start to index the next page for the traversal. 1939 * 1940 * Return: the number of pages which were found. If this number is 1941 * smaller than @nr_pages, the end of specified range has been 1942 * reached. 1943 */ 1944 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1945 pgoff_t end, unsigned int nr_pages, 1946 struct page **pages) 1947 { 1948 XA_STATE(xas, &mapping->i_pages, *start); 1949 struct page *page; 1950 unsigned ret = 0; 1951 1952 if (unlikely(!nr_pages)) 1953 return 0; 1954 1955 rcu_read_lock(); 1956 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 1957 /* Skip over shadow, swap and DAX entries */ 1958 if (xa_is_value(page)) 1959 continue; 1960 1961 pages[ret] = find_subpage(page, xas.xa_index); 1962 if (++ret == nr_pages) { 1963 *start = xas.xa_index + 1; 1964 goto out; 1965 } 1966 } 1967 1968 /* 1969 * We come here when there is no page beyond @end. We take care to not 1970 * overflow the index @start as it confuses some of the callers. This 1971 * breaks the iteration when there is a page at index -1 but that is 1972 * already broken anyway. 1973 */ 1974 if (end == (pgoff_t)-1) 1975 *start = (pgoff_t)-1; 1976 else 1977 *start = end + 1; 1978 out: 1979 rcu_read_unlock(); 1980 1981 return ret; 1982 } 1983 1984 /** 1985 * find_get_pages_contig - gang contiguous pagecache lookup 1986 * @mapping: The address_space to search 1987 * @index: The starting page index 1988 * @nr_pages: The maximum number of pages 1989 * @pages: Where the resulting pages are placed 1990 * 1991 * find_get_pages_contig() works exactly like find_get_pages(), except 1992 * that the returned number of pages are guaranteed to be contiguous. 1993 * 1994 * Return: the number of pages which were found. 1995 */ 1996 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1997 unsigned int nr_pages, struct page **pages) 1998 { 1999 XA_STATE(xas, &mapping->i_pages, index); 2000 struct page *page; 2001 unsigned int ret = 0; 2002 2003 if (unlikely(!nr_pages)) 2004 return 0; 2005 2006 rcu_read_lock(); 2007 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2008 if (xas_retry(&xas, page)) 2009 continue; 2010 /* 2011 * If the entry has been swapped out, we can stop looking. 2012 * No current caller is looking for DAX entries. 2013 */ 2014 if (xa_is_value(page)) 2015 break; 2016 2017 if (!page_cache_get_speculative(page)) 2018 goto retry; 2019 2020 /* Has the page moved or been split? */ 2021 if (unlikely(page != xas_reload(&xas))) 2022 goto put_page; 2023 2024 pages[ret] = find_subpage(page, xas.xa_index); 2025 if (++ret == nr_pages) 2026 break; 2027 continue; 2028 put_page: 2029 put_page(page); 2030 retry: 2031 xas_reset(&xas); 2032 } 2033 rcu_read_unlock(); 2034 return ret; 2035 } 2036 EXPORT_SYMBOL(find_get_pages_contig); 2037 2038 /** 2039 * find_get_pages_range_tag - Find and return head pages matching @tag. 2040 * @mapping: the address_space to search 2041 * @index: the starting page index 2042 * @end: The final page index (inclusive) 2043 * @tag: the tag index 2044 * @nr_pages: the maximum number of pages 2045 * @pages: where the resulting pages are placed 2046 * 2047 * Like find_get_pages(), except we only return head pages which are tagged 2048 * with @tag. @index is updated to the index immediately after the last 2049 * page we return, ready for the next iteration. 2050 * 2051 * Return: the number of pages which were found. 2052 */ 2053 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2054 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2055 struct page **pages) 2056 { 2057 XA_STATE(xas, &mapping->i_pages, *index); 2058 struct page *page; 2059 unsigned ret = 0; 2060 2061 if (unlikely(!nr_pages)) 2062 return 0; 2063 2064 rcu_read_lock(); 2065 while ((page = find_get_entry(&xas, end, tag))) { 2066 /* 2067 * Shadow entries should never be tagged, but this iteration 2068 * is lockless so there is a window for page reclaim to evict 2069 * a page we saw tagged. Skip over it. 2070 */ 2071 if (xa_is_value(page)) 2072 continue; 2073 2074 pages[ret] = page; 2075 if (++ret == nr_pages) { 2076 *index = page->index + thp_nr_pages(page); 2077 goto out; 2078 } 2079 } 2080 2081 /* 2082 * We come here when we got to @end. We take care to not overflow the 2083 * index @index as it confuses some of the callers. This breaks the 2084 * iteration when there is a page at index -1 but that is already 2085 * broken anyway. 2086 */ 2087 if (end == (pgoff_t)-1) 2088 *index = (pgoff_t)-1; 2089 else 2090 *index = end + 1; 2091 out: 2092 rcu_read_unlock(); 2093 2094 return ret; 2095 } 2096 EXPORT_SYMBOL(find_get_pages_range_tag); 2097 2098 /* 2099 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2100 * a _large_ part of the i/o request. Imagine the worst scenario: 2101 * 2102 * ---R__________________________________________B__________ 2103 * ^ reading here ^ bad block(assume 4k) 2104 * 2105 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2106 * => failing the whole request => read(R) => read(R+1) => 2107 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2108 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2109 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2110 * 2111 * It is going insane. Fix it by quickly scaling down the readahead size. 2112 */ 2113 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2114 { 2115 ra->ra_pages /= 4; 2116 } 2117 2118 /* 2119 * filemap_get_read_batch - Get a batch of pages for read 2120 * 2121 * Get a batch of pages which represent a contiguous range of bytes 2122 * in the file. No tail pages will be returned. If @index is in the 2123 * middle of a THP, the entire THP will be returned. The last page in 2124 * the batch may have Readahead set or be not Uptodate so that the 2125 * caller can take the appropriate action. 2126 */ 2127 static void filemap_get_read_batch(struct address_space *mapping, 2128 pgoff_t index, pgoff_t max, struct pagevec *pvec) 2129 { 2130 XA_STATE(xas, &mapping->i_pages, index); 2131 struct page *head; 2132 2133 rcu_read_lock(); 2134 for (head = xas_load(&xas); head; head = xas_next(&xas)) { 2135 if (xas_retry(&xas, head)) 2136 continue; 2137 if (xas.xa_index > max || xa_is_value(head)) 2138 break; 2139 if (!page_cache_get_speculative(head)) 2140 goto retry; 2141 2142 /* Has the page moved or been split? */ 2143 if (unlikely(head != xas_reload(&xas))) 2144 goto put_page; 2145 2146 if (!pagevec_add(pvec, head)) 2147 break; 2148 if (!PageUptodate(head)) 2149 break; 2150 if (PageReadahead(head)) 2151 break; 2152 xas.xa_index = head->index + thp_nr_pages(head) - 1; 2153 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; 2154 continue; 2155 put_page: 2156 put_page(head); 2157 retry: 2158 xas_reset(&xas); 2159 } 2160 rcu_read_unlock(); 2161 } 2162 2163 static int filemap_read_page(struct file *file, struct address_space *mapping, 2164 struct page *page) 2165 { 2166 int error; 2167 2168 /* 2169 * A previous I/O error may have been due to temporary failures, 2170 * eg. multipath errors. PG_error will be set again if readpage 2171 * fails. 2172 */ 2173 ClearPageError(page); 2174 /* Start the actual read. The read will unlock the page. */ 2175 error = mapping->a_ops->readpage(file, page); 2176 if (error) 2177 return error; 2178 2179 error = wait_on_page_locked_killable(page); 2180 if (error) 2181 return error; 2182 if (PageUptodate(page)) 2183 return 0; 2184 if (!page->mapping) /* page truncated */ 2185 return AOP_TRUNCATED_PAGE; 2186 shrink_readahead_size_eio(&file->f_ra); 2187 return -EIO; 2188 } 2189 2190 static bool filemap_range_uptodate(struct address_space *mapping, 2191 loff_t pos, struct iov_iter *iter, struct page *page) 2192 { 2193 int count; 2194 2195 if (PageUptodate(page)) 2196 return true; 2197 /* pipes can't handle partially uptodate pages */ 2198 if (iov_iter_is_pipe(iter)) 2199 return false; 2200 if (!mapping->a_ops->is_partially_uptodate) 2201 return false; 2202 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) 2203 return false; 2204 2205 count = iter->count; 2206 if (page_offset(page) > pos) { 2207 count -= page_offset(page) - pos; 2208 pos = 0; 2209 } else { 2210 pos -= page_offset(page); 2211 } 2212 2213 return mapping->a_ops->is_partially_uptodate(page, pos, count); 2214 } 2215 2216 static int filemap_update_page(struct kiocb *iocb, 2217 struct address_space *mapping, struct iov_iter *iter, 2218 struct page *page) 2219 { 2220 int error; 2221 2222 if (!trylock_page(page)) { 2223 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2224 return -EAGAIN; 2225 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2226 put_and_wait_on_page_locked(page, TASK_KILLABLE); 2227 return AOP_TRUNCATED_PAGE; 2228 } 2229 error = __lock_page_async(page, iocb->ki_waitq); 2230 if (error) 2231 return error; 2232 } 2233 2234 if (!page->mapping) 2235 goto truncated; 2236 2237 error = 0; 2238 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page)) 2239 goto unlock; 2240 2241 error = -EAGAIN; 2242 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2243 goto unlock; 2244 2245 error = filemap_read_page(iocb->ki_filp, mapping, page); 2246 if (error == AOP_TRUNCATED_PAGE) 2247 put_page(page); 2248 return error; 2249 truncated: 2250 unlock_page(page); 2251 put_page(page); 2252 return AOP_TRUNCATED_PAGE; 2253 unlock: 2254 unlock_page(page); 2255 return error; 2256 } 2257 2258 static int filemap_create_page(struct file *file, 2259 struct address_space *mapping, pgoff_t index, 2260 struct pagevec *pvec) 2261 { 2262 struct page *page; 2263 int error; 2264 2265 page = page_cache_alloc(mapping); 2266 if (!page) 2267 return -ENOMEM; 2268 2269 error = add_to_page_cache_lru(page, mapping, index, 2270 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2271 if (error == -EEXIST) 2272 error = AOP_TRUNCATED_PAGE; 2273 if (error) 2274 goto error; 2275 2276 error = filemap_read_page(file, mapping, page); 2277 if (error) 2278 goto error; 2279 2280 pagevec_add(pvec, page); 2281 return 0; 2282 error: 2283 put_page(page); 2284 return error; 2285 } 2286 2287 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2288 struct address_space *mapping, struct page *page, 2289 pgoff_t last_index) 2290 { 2291 if (iocb->ki_flags & IOCB_NOIO) 2292 return -EAGAIN; 2293 page_cache_async_readahead(mapping, &file->f_ra, file, page, 2294 page->index, last_index - page->index); 2295 return 0; 2296 } 2297 2298 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2299 struct pagevec *pvec) 2300 { 2301 struct file *filp = iocb->ki_filp; 2302 struct address_space *mapping = filp->f_mapping; 2303 struct file_ra_state *ra = &filp->f_ra; 2304 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2305 pgoff_t last_index; 2306 struct page *page; 2307 int err = 0; 2308 2309 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2310 retry: 2311 if (fatal_signal_pending(current)) 2312 return -EINTR; 2313 2314 filemap_get_read_batch(mapping, index, last_index, pvec); 2315 if (!pagevec_count(pvec)) { 2316 if (iocb->ki_flags & IOCB_NOIO) 2317 return -EAGAIN; 2318 page_cache_sync_readahead(mapping, ra, filp, index, 2319 last_index - index); 2320 filemap_get_read_batch(mapping, index, last_index, pvec); 2321 } 2322 if (!pagevec_count(pvec)) { 2323 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2324 return -EAGAIN; 2325 err = filemap_create_page(filp, mapping, 2326 iocb->ki_pos >> PAGE_SHIFT, pvec); 2327 if (err == AOP_TRUNCATED_PAGE) 2328 goto retry; 2329 return err; 2330 } 2331 2332 page = pvec->pages[pagevec_count(pvec) - 1]; 2333 if (PageReadahead(page)) { 2334 err = filemap_readahead(iocb, filp, mapping, page, last_index); 2335 if (err) 2336 goto err; 2337 } 2338 if (!PageUptodate(page)) { 2339 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) 2340 iocb->ki_flags |= IOCB_NOWAIT; 2341 err = filemap_update_page(iocb, mapping, iter, page); 2342 if (err) 2343 goto err; 2344 } 2345 2346 return 0; 2347 err: 2348 if (err < 0) 2349 put_page(page); 2350 if (likely(--pvec->nr)) 2351 return 0; 2352 if (err == AOP_TRUNCATED_PAGE) 2353 goto retry; 2354 return err; 2355 } 2356 2357 /** 2358 * filemap_read - Read data from the page cache. 2359 * @iocb: The iocb to read. 2360 * @iter: Destination for the data. 2361 * @already_read: Number of bytes already read by the caller. 2362 * 2363 * Copies data from the page cache. If the data is not currently present, 2364 * uses the readahead and readpage address_space operations to fetch it. 2365 * 2366 * Return: Total number of bytes copied, including those already read by 2367 * the caller. If an error happens before any bytes are copied, returns 2368 * a negative error number. 2369 */ 2370 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2371 ssize_t already_read) 2372 { 2373 struct file *filp = iocb->ki_filp; 2374 struct file_ra_state *ra = &filp->f_ra; 2375 struct address_space *mapping = filp->f_mapping; 2376 struct inode *inode = mapping->host; 2377 struct pagevec pvec; 2378 int i, error = 0; 2379 bool writably_mapped; 2380 loff_t isize, end_offset; 2381 2382 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2383 return 0; 2384 if (unlikely(!iov_iter_count(iter))) 2385 return 0; 2386 2387 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2388 pagevec_init(&pvec); 2389 2390 do { 2391 cond_resched(); 2392 2393 /* 2394 * If we've already successfully copied some data, then we 2395 * can no longer safely return -EIOCBQUEUED. Hence mark 2396 * an async read NOWAIT at that point. 2397 */ 2398 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2399 iocb->ki_flags |= IOCB_NOWAIT; 2400 2401 error = filemap_get_pages(iocb, iter, &pvec); 2402 if (error < 0) 2403 break; 2404 2405 /* 2406 * i_size must be checked after we know the pages are Uptodate. 2407 * 2408 * Checking i_size after the check allows us to calculate 2409 * the correct value for "nr", which means the zero-filled 2410 * part of the page is not copied back to userspace (unless 2411 * another truncate extends the file - this is desired though). 2412 */ 2413 isize = i_size_read(inode); 2414 if (unlikely(iocb->ki_pos >= isize)) 2415 goto put_pages; 2416 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2417 2418 /* 2419 * Once we start copying data, we don't want to be touching any 2420 * cachelines that might be contended: 2421 */ 2422 writably_mapped = mapping_writably_mapped(mapping); 2423 2424 /* 2425 * When a sequential read accesses a page several times, only 2426 * mark it as accessed the first time. 2427 */ 2428 if (iocb->ki_pos >> PAGE_SHIFT != 2429 ra->prev_pos >> PAGE_SHIFT) 2430 mark_page_accessed(pvec.pages[0]); 2431 2432 for (i = 0; i < pagevec_count(&pvec); i++) { 2433 struct page *page = pvec.pages[i]; 2434 size_t page_size = thp_size(page); 2435 size_t offset = iocb->ki_pos & (page_size - 1); 2436 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2437 page_size - offset); 2438 size_t copied; 2439 2440 if (end_offset < page_offset(page)) 2441 break; 2442 if (i > 0) 2443 mark_page_accessed(page); 2444 /* 2445 * If users can be writing to this page using arbitrary 2446 * virtual addresses, take care about potential aliasing 2447 * before reading the page on the kernel side. 2448 */ 2449 if (writably_mapped) { 2450 int j; 2451 2452 for (j = 0; j < thp_nr_pages(page); j++) 2453 flush_dcache_page(page + j); 2454 } 2455 2456 copied = copy_page_to_iter(page, offset, bytes, iter); 2457 2458 already_read += copied; 2459 iocb->ki_pos += copied; 2460 ra->prev_pos = iocb->ki_pos; 2461 2462 if (copied < bytes) { 2463 error = -EFAULT; 2464 break; 2465 } 2466 } 2467 put_pages: 2468 for (i = 0; i < pagevec_count(&pvec); i++) 2469 put_page(pvec.pages[i]); 2470 pagevec_reinit(&pvec); 2471 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2472 2473 file_accessed(filp); 2474 2475 return already_read ? already_read : error; 2476 } 2477 EXPORT_SYMBOL_GPL(filemap_read); 2478 2479 /** 2480 * generic_file_read_iter - generic filesystem read routine 2481 * @iocb: kernel I/O control block 2482 * @iter: destination for the data read 2483 * 2484 * This is the "read_iter()" routine for all filesystems 2485 * that can use the page cache directly. 2486 * 2487 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2488 * be returned when no data can be read without waiting for I/O requests 2489 * to complete; it doesn't prevent readahead. 2490 * 2491 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2492 * requests shall be made for the read or for readahead. When no data 2493 * can be read, -EAGAIN shall be returned. When readahead would be 2494 * triggered, a partial, possibly empty read shall be returned. 2495 * 2496 * Return: 2497 * * number of bytes copied, even for partial reads 2498 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2499 */ 2500 ssize_t 2501 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2502 { 2503 size_t count = iov_iter_count(iter); 2504 ssize_t retval = 0; 2505 2506 if (!count) 2507 return 0; /* skip atime */ 2508 2509 if (iocb->ki_flags & IOCB_DIRECT) { 2510 struct file *file = iocb->ki_filp; 2511 struct address_space *mapping = file->f_mapping; 2512 struct inode *inode = mapping->host; 2513 loff_t size; 2514 2515 size = i_size_read(inode); 2516 if (iocb->ki_flags & IOCB_NOWAIT) { 2517 if (filemap_range_has_page(mapping, iocb->ki_pos, 2518 iocb->ki_pos + count - 1)) 2519 return -EAGAIN; 2520 } else { 2521 retval = filemap_write_and_wait_range(mapping, 2522 iocb->ki_pos, 2523 iocb->ki_pos + count - 1); 2524 if (retval < 0) 2525 return retval; 2526 } 2527 2528 file_accessed(file); 2529 2530 retval = mapping->a_ops->direct_IO(iocb, iter); 2531 if (retval >= 0) { 2532 iocb->ki_pos += retval; 2533 count -= retval; 2534 } 2535 if (retval != -EIOCBQUEUED) 2536 iov_iter_revert(iter, count - iov_iter_count(iter)); 2537 2538 /* 2539 * Btrfs can have a short DIO read if we encounter 2540 * compressed extents, so if there was an error, or if 2541 * we've already read everything we wanted to, or if 2542 * there was a short read because we hit EOF, go ahead 2543 * and return. Otherwise fallthrough to buffered io for 2544 * the rest of the read. Buffered reads will not work for 2545 * DAX files, so don't bother trying. 2546 */ 2547 if (retval < 0 || !count || iocb->ki_pos >= size || 2548 IS_DAX(inode)) 2549 return retval; 2550 } 2551 2552 return filemap_read(iocb, iter, retval); 2553 } 2554 EXPORT_SYMBOL(generic_file_read_iter); 2555 2556 #ifdef CONFIG_MMU 2557 #define MMAP_LOTSAMISS (100) 2558 /* 2559 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2560 * @vmf - the vm_fault for this fault. 2561 * @page - the page to lock. 2562 * @fpin - the pointer to the file we may pin (or is already pinned). 2563 * 2564 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2565 * It differs in that it actually returns the page locked if it returns 1 and 0 2566 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2567 * will point to the pinned file and needs to be fput()'ed at a later point. 2568 */ 2569 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2570 struct file **fpin) 2571 { 2572 if (trylock_page(page)) 2573 return 1; 2574 2575 /* 2576 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2577 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2578 * is supposed to work. We have way too many special cases.. 2579 */ 2580 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2581 return 0; 2582 2583 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2584 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2585 if (__lock_page_killable(page)) { 2586 /* 2587 * We didn't have the right flags to drop the mmap_lock, 2588 * but all fault_handlers only check for fatal signals 2589 * if we return VM_FAULT_RETRY, so we need to drop the 2590 * mmap_lock here and return 0 if we don't have a fpin. 2591 */ 2592 if (*fpin == NULL) 2593 mmap_read_unlock(vmf->vma->vm_mm); 2594 return 0; 2595 } 2596 } else 2597 __lock_page(page); 2598 return 1; 2599 } 2600 2601 2602 /* 2603 * Synchronous readahead happens when we don't even find a page in the page 2604 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2605 * to drop the mmap sem we return the file that was pinned in order for us to do 2606 * that. If we didn't pin a file then we return NULL. The file that is 2607 * returned needs to be fput()'ed when we're done with it. 2608 */ 2609 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2610 { 2611 struct file *file = vmf->vma->vm_file; 2612 struct file_ra_state *ra = &file->f_ra; 2613 struct address_space *mapping = file->f_mapping; 2614 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff); 2615 struct file *fpin = NULL; 2616 unsigned int mmap_miss; 2617 2618 /* If we don't want any read-ahead, don't bother */ 2619 if (vmf->vma->vm_flags & VM_RAND_READ) 2620 return fpin; 2621 if (!ra->ra_pages) 2622 return fpin; 2623 2624 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2625 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2626 page_cache_sync_ra(&ractl, ra, ra->ra_pages); 2627 return fpin; 2628 } 2629 2630 /* Avoid banging the cache line if not needed */ 2631 mmap_miss = READ_ONCE(ra->mmap_miss); 2632 if (mmap_miss < MMAP_LOTSAMISS * 10) 2633 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2634 2635 /* 2636 * Do we miss much more than hit in this file? If so, 2637 * stop bothering with read-ahead. It will only hurt. 2638 */ 2639 if (mmap_miss > MMAP_LOTSAMISS) 2640 return fpin; 2641 2642 /* 2643 * mmap read-around 2644 */ 2645 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2646 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2647 ra->size = ra->ra_pages; 2648 ra->async_size = ra->ra_pages / 4; 2649 ractl._index = ra->start; 2650 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2651 return fpin; 2652 } 2653 2654 /* 2655 * Asynchronous readahead happens when we find the page and PG_readahead, 2656 * so we want to possibly extend the readahead further. We return the file that 2657 * was pinned if we have to drop the mmap_lock in order to do IO. 2658 */ 2659 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2660 struct page *page) 2661 { 2662 struct file *file = vmf->vma->vm_file; 2663 struct file_ra_state *ra = &file->f_ra; 2664 struct address_space *mapping = file->f_mapping; 2665 struct file *fpin = NULL; 2666 unsigned int mmap_miss; 2667 pgoff_t offset = vmf->pgoff; 2668 2669 /* If we don't want any read-ahead, don't bother */ 2670 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2671 return fpin; 2672 mmap_miss = READ_ONCE(ra->mmap_miss); 2673 if (mmap_miss) 2674 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2675 if (PageReadahead(page)) { 2676 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2677 page_cache_async_readahead(mapping, ra, file, 2678 page, offset, ra->ra_pages); 2679 } 2680 return fpin; 2681 } 2682 2683 /** 2684 * filemap_fault - read in file data for page fault handling 2685 * @vmf: struct vm_fault containing details of the fault 2686 * 2687 * filemap_fault() is invoked via the vma operations vector for a 2688 * mapped memory region to read in file data during a page fault. 2689 * 2690 * The goto's are kind of ugly, but this streamlines the normal case of having 2691 * it in the page cache, and handles the special cases reasonably without 2692 * having a lot of duplicated code. 2693 * 2694 * vma->vm_mm->mmap_lock must be held on entry. 2695 * 2696 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2697 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2698 * 2699 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2700 * has not been released. 2701 * 2702 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2703 * 2704 * Return: bitwise-OR of %VM_FAULT_ codes. 2705 */ 2706 vm_fault_t filemap_fault(struct vm_fault *vmf) 2707 { 2708 int error; 2709 struct file *file = vmf->vma->vm_file; 2710 struct file *fpin = NULL; 2711 struct address_space *mapping = file->f_mapping; 2712 struct file_ra_state *ra = &file->f_ra; 2713 struct inode *inode = mapping->host; 2714 pgoff_t offset = vmf->pgoff; 2715 pgoff_t max_off; 2716 struct page *page; 2717 vm_fault_t ret = 0; 2718 2719 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2720 if (unlikely(offset >= max_off)) 2721 return VM_FAULT_SIGBUS; 2722 2723 /* 2724 * Do we have something in the page cache already? 2725 */ 2726 page = find_get_page(mapping, offset); 2727 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2728 /* 2729 * We found the page, so try async readahead before 2730 * waiting for the lock. 2731 */ 2732 fpin = do_async_mmap_readahead(vmf, page); 2733 } else if (!page) { 2734 /* No page in the page cache at all */ 2735 count_vm_event(PGMAJFAULT); 2736 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2737 ret = VM_FAULT_MAJOR; 2738 fpin = do_sync_mmap_readahead(vmf); 2739 retry_find: 2740 page = pagecache_get_page(mapping, offset, 2741 FGP_CREAT|FGP_FOR_MMAP, 2742 vmf->gfp_mask); 2743 if (!page) { 2744 if (fpin) 2745 goto out_retry; 2746 return VM_FAULT_OOM; 2747 } 2748 } 2749 2750 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2751 goto out_retry; 2752 2753 /* Did it get truncated? */ 2754 if (unlikely(compound_head(page)->mapping != mapping)) { 2755 unlock_page(page); 2756 put_page(page); 2757 goto retry_find; 2758 } 2759 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2760 2761 /* 2762 * We have a locked page in the page cache, now we need to check 2763 * that it's up-to-date. If not, it is going to be due to an error. 2764 */ 2765 if (unlikely(!PageUptodate(page))) 2766 goto page_not_uptodate; 2767 2768 /* 2769 * We've made it this far and we had to drop our mmap_lock, now is the 2770 * time to return to the upper layer and have it re-find the vma and 2771 * redo the fault. 2772 */ 2773 if (fpin) { 2774 unlock_page(page); 2775 goto out_retry; 2776 } 2777 2778 /* 2779 * Found the page and have a reference on it. 2780 * We must recheck i_size under page lock. 2781 */ 2782 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2783 if (unlikely(offset >= max_off)) { 2784 unlock_page(page); 2785 put_page(page); 2786 return VM_FAULT_SIGBUS; 2787 } 2788 2789 vmf->page = page; 2790 return ret | VM_FAULT_LOCKED; 2791 2792 page_not_uptodate: 2793 /* 2794 * Umm, take care of errors if the page isn't up-to-date. 2795 * Try to re-read it _once_. We do this synchronously, 2796 * because there really aren't any performance issues here 2797 * and we need to check for errors. 2798 */ 2799 ClearPageError(page); 2800 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2801 error = mapping->a_ops->readpage(file, page); 2802 if (!error) { 2803 wait_on_page_locked(page); 2804 if (!PageUptodate(page)) 2805 error = -EIO; 2806 } 2807 if (fpin) 2808 goto out_retry; 2809 put_page(page); 2810 2811 if (!error || error == AOP_TRUNCATED_PAGE) 2812 goto retry_find; 2813 2814 shrink_readahead_size_eio(ra); 2815 return VM_FAULT_SIGBUS; 2816 2817 out_retry: 2818 /* 2819 * We dropped the mmap_lock, we need to return to the fault handler to 2820 * re-find the vma and come back and find our hopefully still populated 2821 * page. 2822 */ 2823 if (page) 2824 put_page(page); 2825 if (fpin) 2826 fput(fpin); 2827 return ret | VM_FAULT_RETRY; 2828 } 2829 EXPORT_SYMBOL(filemap_fault); 2830 2831 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 2832 { 2833 struct mm_struct *mm = vmf->vma->vm_mm; 2834 2835 /* Huge page is mapped? No need to proceed. */ 2836 if (pmd_trans_huge(*vmf->pmd)) { 2837 unlock_page(page); 2838 put_page(page); 2839 return true; 2840 } 2841 2842 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 2843 vm_fault_t ret = do_set_pmd(vmf, page); 2844 if (!ret) { 2845 /* The page is mapped successfully, reference consumed. */ 2846 unlock_page(page); 2847 return true; 2848 } 2849 } 2850 2851 if (pmd_none(*vmf->pmd)) { 2852 vmf->ptl = pmd_lock(mm, vmf->pmd); 2853 if (likely(pmd_none(*vmf->pmd))) { 2854 mm_inc_nr_ptes(mm); 2855 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte); 2856 vmf->prealloc_pte = NULL; 2857 } 2858 spin_unlock(vmf->ptl); 2859 } 2860 2861 /* See comment in handle_pte_fault() */ 2862 if (pmd_devmap_trans_unstable(vmf->pmd)) { 2863 unlock_page(page); 2864 put_page(page); 2865 return true; 2866 } 2867 2868 return false; 2869 } 2870 2871 static struct page *next_uptodate_page(struct page *page, 2872 struct address_space *mapping, 2873 struct xa_state *xas, pgoff_t end_pgoff) 2874 { 2875 unsigned long max_idx; 2876 2877 do { 2878 if (!page) 2879 return NULL; 2880 if (xas_retry(xas, page)) 2881 continue; 2882 if (xa_is_value(page)) 2883 continue; 2884 if (PageLocked(page)) 2885 continue; 2886 if (!page_cache_get_speculative(page)) 2887 continue; 2888 /* Has the page moved or been split? */ 2889 if (unlikely(page != xas_reload(xas))) 2890 goto skip; 2891 if (!PageUptodate(page) || PageReadahead(page)) 2892 goto skip; 2893 if (PageHWPoison(page)) 2894 goto skip; 2895 if (!trylock_page(page)) 2896 goto skip; 2897 if (page->mapping != mapping) 2898 goto unlock; 2899 if (!PageUptodate(page)) 2900 goto unlock; 2901 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2902 if (xas->xa_index >= max_idx) 2903 goto unlock; 2904 return page; 2905 unlock: 2906 unlock_page(page); 2907 skip: 2908 put_page(page); 2909 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 2910 2911 return NULL; 2912 } 2913 2914 static inline struct page *first_map_page(struct address_space *mapping, 2915 struct xa_state *xas, 2916 pgoff_t end_pgoff) 2917 { 2918 return next_uptodate_page(xas_find(xas, end_pgoff), 2919 mapping, xas, end_pgoff); 2920 } 2921 2922 static inline struct page *next_map_page(struct address_space *mapping, 2923 struct xa_state *xas, 2924 pgoff_t end_pgoff) 2925 { 2926 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 2927 mapping, xas, end_pgoff); 2928 } 2929 2930 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2931 pgoff_t start_pgoff, pgoff_t end_pgoff) 2932 { 2933 struct vm_area_struct *vma = vmf->vma; 2934 struct file *file = vma->vm_file; 2935 struct address_space *mapping = file->f_mapping; 2936 pgoff_t last_pgoff = start_pgoff; 2937 unsigned long addr; 2938 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2939 struct page *head, *page; 2940 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 2941 vm_fault_t ret = 0; 2942 2943 rcu_read_lock(); 2944 head = first_map_page(mapping, &xas, end_pgoff); 2945 if (!head) 2946 goto out; 2947 2948 if (filemap_map_pmd(vmf, head)) { 2949 ret = VM_FAULT_NOPAGE; 2950 goto out; 2951 } 2952 2953 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 2954 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 2955 do { 2956 page = find_subpage(head, xas.xa_index); 2957 if (PageHWPoison(page)) 2958 goto unlock; 2959 2960 if (mmap_miss > 0) 2961 mmap_miss--; 2962 2963 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2964 vmf->pte += xas.xa_index - last_pgoff; 2965 last_pgoff = xas.xa_index; 2966 2967 if (!pte_none(*vmf->pte)) 2968 goto unlock; 2969 2970 /* We're about to handle the fault */ 2971 if (vmf->address == addr) 2972 ret = VM_FAULT_NOPAGE; 2973 2974 do_set_pte(vmf, page, addr); 2975 /* no need to invalidate: a not-present page won't be cached */ 2976 update_mmu_cache(vma, addr, vmf->pte); 2977 unlock_page(head); 2978 continue; 2979 unlock: 2980 unlock_page(head); 2981 put_page(head); 2982 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 2983 pte_unmap_unlock(vmf->pte, vmf->ptl); 2984 out: 2985 rcu_read_unlock(); 2986 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 2987 return ret; 2988 } 2989 EXPORT_SYMBOL(filemap_map_pages); 2990 2991 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2992 { 2993 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 2994 struct page *page = vmf->page; 2995 vm_fault_t ret = VM_FAULT_LOCKED; 2996 2997 sb_start_pagefault(mapping->host->i_sb); 2998 file_update_time(vmf->vma->vm_file); 2999 lock_page(page); 3000 if (page->mapping != mapping) { 3001 unlock_page(page); 3002 ret = VM_FAULT_NOPAGE; 3003 goto out; 3004 } 3005 /* 3006 * We mark the page dirty already here so that when freeze is in 3007 * progress, we are guaranteed that writeback during freezing will 3008 * see the dirty page and writeprotect it again. 3009 */ 3010 set_page_dirty(page); 3011 wait_for_stable_page(page); 3012 out: 3013 sb_end_pagefault(mapping->host->i_sb); 3014 return ret; 3015 } 3016 3017 const struct vm_operations_struct generic_file_vm_ops = { 3018 .fault = filemap_fault, 3019 .map_pages = filemap_map_pages, 3020 .page_mkwrite = filemap_page_mkwrite, 3021 }; 3022 3023 /* This is used for a general mmap of a disk file */ 3024 3025 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3026 { 3027 struct address_space *mapping = file->f_mapping; 3028 3029 if (!mapping->a_ops->readpage) 3030 return -ENOEXEC; 3031 file_accessed(file); 3032 vma->vm_ops = &generic_file_vm_ops; 3033 return 0; 3034 } 3035 3036 /* 3037 * This is for filesystems which do not implement ->writepage. 3038 */ 3039 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3040 { 3041 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3042 return -EINVAL; 3043 return generic_file_mmap(file, vma); 3044 } 3045 #else 3046 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3047 { 3048 return VM_FAULT_SIGBUS; 3049 } 3050 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3051 { 3052 return -ENOSYS; 3053 } 3054 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3055 { 3056 return -ENOSYS; 3057 } 3058 #endif /* CONFIG_MMU */ 3059 3060 EXPORT_SYMBOL(filemap_page_mkwrite); 3061 EXPORT_SYMBOL(generic_file_mmap); 3062 EXPORT_SYMBOL(generic_file_readonly_mmap); 3063 3064 static struct page *wait_on_page_read(struct page *page) 3065 { 3066 if (!IS_ERR(page)) { 3067 wait_on_page_locked(page); 3068 if (!PageUptodate(page)) { 3069 put_page(page); 3070 page = ERR_PTR(-EIO); 3071 } 3072 } 3073 return page; 3074 } 3075 3076 static struct page *do_read_cache_page(struct address_space *mapping, 3077 pgoff_t index, 3078 int (*filler)(void *, struct page *), 3079 void *data, 3080 gfp_t gfp) 3081 { 3082 struct page *page; 3083 int err; 3084 repeat: 3085 page = find_get_page(mapping, index); 3086 if (!page) { 3087 page = __page_cache_alloc(gfp); 3088 if (!page) 3089 return ERR_PTR(-ENOMEM); 3090 err = add_to_page_cache_lru(page, mapping, index, gfp); 3091 if (unlikely(err)) { 3092 put_page(page); 3093 if (err == -EEXIST) 3094 goto repeat; 3095 /* Presumably ENOMEM for xarray node */ 3096 return ERR_PTR(err); 3097 } 3098 3099 filler: 3100 if (filler) 3101 err = filler(data, page); 3102 else 3103 err = mapping->a_ops->readpage(data, page); 3104 3105 if (err < 0) { 3106 put_page(page); 3107 return ERR_PTR(err); 3108 } 3109 3110 page = wait_on_page_read(page); 3111 if (IS_ERR(page)) 3112 return page; 3113 goto out; 3114 } 3115 if (PageUptodate(page)) 3116 goto out; 3117 3118 /* 3119 * Page is not up to date and may be locked due to one of the following 3120 * case a: Page is being filled and the page lock is held 3121 * case b: Read/write error clearing the page uptodate status 3122 * case c: Truncation in progress (page locked) 3123 * case d: Reclaim in progress 3124 * 3125 * Case a, the page will be up to date when the page is unlocked. 3126 * There is no need to serialise on the page lock here as the page 3127 * is pinned so the lock gives no additional protection. Even if the 3128 * page is truncated, the data is still valid if PageUptodate as 3129 * it's a race vs truncate race. 3130 * Case b, the page will not be up to date 3131 * Case c, the page may be truncated but in itself, the data may still 3132 * be valid after IO completes as it's a read vs truncate race. The 3133 * operation must restart if the page is not uptodate on unlock but 3134 * otherwise serialising on page lock to stabilise the mapping gives 3135 * no additional guarantees to the caller as the page lock is 3136 * released before return. 3137 * Case d, similar to truncation. If reclaim holds the page lock, it 3138 * will be a race with remove_mapping that determines if the mapping 3139 * is valid on unlock but otherwise the data is valid and there is 3140 * no need to serialise with page lock. 3141 * 3142 * As the page lock gives no additional guarantee, we optimistically 3143 * wait on the page to be unlocked and check if it's up to date and 3144 * use the page if it is. Otherwise, the page lock is required to 3145 * distinguish between the different cases. The motivation is that we 3146 * avoid spurious serialisations and wakeups when multiple processes 3147 * wait on the same page for IO to complete. 3148 */ 3149 wait_on_page_locked(page); 3150 if (PageUptodate(page)) 3151 goto out; 3152 3153 /* Distinguish between all the cases under the safety of the lock */ 3154 lock_page(page); 3155 3156 /* Case c or d, restart the operation */ 3157 if (!page->mapping) { 3158 unlock_page(page); 3159 put_page(page); 3160 goto repeat; 3161 } 3162 3163 /* Someone else locked and filled the page in a very small window */ 3164 if (PageUptodate(page)) { 3165 unlock_page(page); 3166 goto out; 3167 } 3168 3169 /* 3170 * A previous I/O error may have been due to temporary 3171 * failures. 3172 * Clear page error before actual read, PG_error will be 3173 * set again if read page fails. 3174 */ 3175 ClearPageError(page); 3176 goto filler; 3177 3178 out: 3179 mark_page_accessed(page); 3180 return page; 3181 } 3182 3183 /** 3184 * read_cache_page - read into page cache, fill it if needed 3185 * @mapping: the page's address_space 3186 * @index: the page index 3187 * @filler: function to perform the read 3188 * @data: first arg to filler(data, page) function, often left as NULL 3189 * 3190 * Read into the page cache. If a page already exists, and PageUptodate() is 3191 * not set, try to fill the page and wait for it to become unlocked. 3192 * 3193 * If the page does not get brought uptodate, return -EIO. 3194 * 3195 * Return: up to date page on success, ERR_PTR() on failure. 3196 */ 3197 struct page *read_cache_page(struct address_space *mapping, 3198 pgoff_t index, 3199 int (*filler)(void *, struct page *), 3200 void *data) 3201 { 3202 return do_read_cache_page(mapping, index, filler, data, 3203 mapping_gfp_mask(mapping)); 3204 } 3205 EXPORT_SYMBOL(read_cache_page); 3206 3207 /** 3208 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3209 * @mapping: the page's address_space 3210 * @index: the page index 3211 * @gfp: the page allocator flags to use if allocating 3212 * 3213 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3214 * any new page allocations done using the specified allocation flags. 3215 * 3216 * If the page does not get brought uptodate, return -EIO. 3217 * 3218 * Return: up to date page on success, ERR_PTR() on failure. 3219 */ 3220 struct page *read_cache_page_gfp(struct address_space *mapping, 3221 pgoff_t index, 3222 gfp_t gfp) 3223 { 3224 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3225 } 3226 EXPORT_SYMBOL(read_cache_page_gfp); 3227 3228 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3229 loff_t pos, unsigned len, unsigned flags, 3230 struct page **pagep, void **fsdata) 3231 { 3232 const struct address_space_operations *aops = mapping->a_ops; 3233 3234 return aops->write_begin(file, mapping, pos, len, flags, 3235 pagep, fsdata); 3236 } 3237 EXPORT_SYMBOL(pagecache_write_begin); 3238 3239 int pagecache_write_end(struct file *file, struct address_space *mapping, 3240 loff_t pos, unsigned len, unsigned copied, 3241 struct page *page, void *fsdata) 3242 { 3243 const struct address_space_operations *aops = mapping->a_ops; 3244 3245 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3246 } 3247 EXPORT_SYMBOL(pagecache_write_end); 3248 3249 /* 3250 * Warn about a page cache invalidation failure during a direct I/O write. 3251 */ 3252 void dio_warn_stale_pagecache(struct file *filp) 3253 { 3254 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3255 char pathname[128]; 3256 char *path; 3257 3258 errseq_set(&filp->f_mapping->wb_err, -EIO); 3259 if (__ratelimit(&_rs)) { 3260 path = file_path(filp, pathname, sizeof(pathname)); 3261 if (IS_ERR(path)) 3262 path = "(unknown)"; 3263 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3264 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3265 current->comm); 3266 } 3267 } 3268 3269 ssize_t 3270 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3271 { 3272 struct file *file = iocb->ki_filp; 3273 struct address_space *mapping = file->f_mapping; 3274 struct inode *inode = mapping->host; 3275 loff_t pos = iocb->ki_pos; 3276 ssize_t written; 3277 size_t write_len; 3278 pgoff_t end; 3279 3280 write_len = iov_iter_count(from); 3281 end = (pos + write_len - 1) >> PAGE_SHIFT; 3282 3283 if (iocb->ki_flags & IOCB_NOWAIT) { 3284 /* If there are pages to writeback, return */ 3285 if (filemap_range_has_page(file->f_mapping, pos, 3286 pos + write_len - 1)) 3287 return -EAGAIN; 3288 } else { 3289 written = filemap_write_and_wait_range(mapping, pos, 3290 pos + write_len - 1); 3291 if (written) 3292 goto out; 3293 } 3294 3295 /* 3296 * After a write we want buffered reads to be sure to go to disk to get 3297 * the new data. We invalidate clean cached page from the region we're 3298 * about to write. We do this *before* the write so that we can return 3299 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3300 */ 3301 written = invalidate_inode_pages2_range(mapping, 3302 pos >> PAGE_SHIFT, end); 3303 /* 3304 * If a page can not be invalidated, return 0 to fall back 3305 * to buffered write. 3306 */ 3307 if (written) { 3308 if (written == -EBUSY) 3309 return 0; 3310 goto out; 3311 } 3312 3313 written = mapping->a_ops->direct_IO(iocb, from); 3314 3315 /* 3316 * Finally, try again to invalidate clean pages which might have been 3317 * cached by non-direct readahead, or faulted in by get_user_pages() 3318 * if the source of the write was an mmap'ed region of the file 3319 * we're writing. Either one is a pretty crazy thing to do, 3320 * so we don't support it 100%. If this invalidation 3321 * fails, tough, the write still worked... 3322 * 3323 * Most of the time we do not need this since dio_complete() will do 3324 * the invalidation for us. However there are some file systems that 3325 * do not end up with dio_complete() being called, so let's not break 3326 * them by removing it completely. 3327 * 3328 * Noticeable example is a blkdev_direct_IO(). 3329 * 3330 * Skip invalidation for async writes or if mapping has no pages. 3331 */ 3332 if (written > 0 && mapping->nrpages && 3333 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3334 dio_warn_stale_pagecache(file); 3335 3336 if (written > 0) { 3337 pos += written; 3338 write_len -= written; 3339 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3340 i_size_write(inode, pos); 3341 mark_inode_dirty(inode); 3342 } 3343 iocb->ki_pos = pos; 3344 } 3345 if (written != -EIOCBQUEUED) 3346 iov_iter_revert(from, write_len - iov_iter_count(from)); 3347 out: 3348 return written; 3349 } 3350 EXPORT_SYMBOL(generic_file_direct_write); 3351 3352 /* 3353 * Find or create a page at the given pagecache position. Return the locked 3354 * page. This function is specifically for buffered writes. 3355 */ 3356 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3357 pgoff_t index, unsigned flags) 3358 { 3359 struct page *page; 3360 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3361 3362 if (flags & AOP_FLAG_NOFS) 3363 fgp_flags |= FGP_NOFS; 3364 3365 page = pagecache_get_page(mapping, index, fgp_flags, 3366 mapping_gfp_mask(mapping)); 3367 if (page) 3368 wait_for_stable_page(page); 3369 3370 return page; 3371 } 3372 EXPORT_SYMBOL(grab_cache_page_write_begin); 3373 3374 ssize_t generic_perform_write(struct file *file, 3375 struct iov_iter *i, loff_t pos) 3376 { 3377 struct address_space *mapping = file->f_mapping; 3378 const struct address_space_operations *a_ops = mapping->a_ops; 3379 long status = 0; 3380 ssize_t written = 0; 3381 unsigned int flags = 0; 3382 3383 do { 3384 struct page *page; 3385 unsigned long offset; /* Offset into pagecache page */ 3386 unsigned long bytes; /* Bytes to write to page */ 3387 size_t copied; /* Bytes copied from user */ 3388 void *fsdata; 3389 3390 offset = (pos & (PAGE_SIZE - 1)); 3391 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3392 iov_iter_count(i)); 3393 3394 again: 3395 /* 3396 * Bring in the user page that we will copy from _first_. 3397 * Otherwise there's a nasty deadlock on copying from the 3398 * same page as we're writing to, without it being marked 3399 * up-to-date. 3400 * 3401 * Not only is this an optimisation, but it is also required 3402 * to check that the address is actually valid, when atomic 3403 * usercopies are used, below. 3404 */ 3405 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3406 status = -EFAULT; 3407 break; 3408 } 3409 3410 if (fatal_signal_pending(current)) { 3411 status = -EINTR; 3412 break; 3413 } 3414 3415 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3416 &page, &fsdata); 3417 if (unlikely(status < 0)) 3418 break; 3419 3420 if (mapping_writably_mapped(mapping)) 3421 flush_dcache_page(page); 3422 3423 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3424 flush_dcache_page(page); 3425 3426 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3427 page, fsdata); 3428 if (unlikely(status < 0)) 3429 break; 3430 copied = status; 3431 3432 cond_resched(); 3433 3434 iov_iter_advance(i, copied); 3435 if (unlikely(copied == 0)) { 3436 /* 3437 * If we were unable to copy any data at all, we must 3438 * fall back to a single segment length write. 3439 * 3440 * If we didn't fallback here, we could livelock 3441 * because not all segments in the iov can be copied at 3442 * once without a pagefault. 3443 */ 3444 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3445 iov_iter_single_seg_count(i)); 3446 goto again; 3447 } 3448 pos += copied; 3449 written += copied; 3450 3451 balance_dirty_pages_ratelimited(mapping); 3452 } while (iov_iter_count(i)); 3453 3454 return written ? written : status; 3455 } 3456 EXPORT_SYMBOL(generic_perform_write); 3457 3458 /** 3459 * __generic_file_write_iter - write data to a file 3460 * @iocb: IO state structure (file, offset, etc.) 3461 * @from: iov_iter with data to write 3462 * 3463 * This function does all the work needed for actually writing data to a 3464 * file. It does all basic checks, removes SUID from the file, updates 3465 * modification times and calls proper subroutines depending on whether we 3466 * do direct IO or a standard buffered write. 3467 * 3468 * It expects i_mutex to be grabbed unless we work on a block device or similar 3469 * object which does not need locking at all. 3470 * 3471 * This function does *not* take care of syncing data in case of O_SYNC write. 3472 * A caller has to handle it. This is mainly due to the fact that we want to 3473 * avoid syncing under i_mutex. 3474 * 3475 * Return: 3476 * * number of bytes written, even for truncated writes 3477 * * negative error code if no data has been written at all 3478 */ 3479 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3480 { 3481 struct file *file = iocb->ki_filp; 3482 struct address_space * mapping = file->f_mapping; 3483 struct inode *inode = mapping->host; 3484 ssize_t written = 0; 3485 ssize_t err; 3486 ssize_t status; 3487 3488 /* We can write back this queue in page reclaim */ 3489 current->backing_dev_info = inode_to_bdi(inode); 3490 err = file_remove_privs(file); 3491 if (err) 3492 goto out; 3493 3494 err = file_update_time(file); 3495 if (err) 3496 goto out; 3497 3498 if (iocb->ki_flags & IOCB_DIRECT) { 3499 loff_t pos, endbyte; 3500 3501 written = generic_file_direct_write(iocb, from); 3502 /* 3503 * If the write stopped short of completing, fall back to 3504 * buffered writes. Some filesystems do this for writes to 3505 * holes, for example. For DAX files, a buffered write will 3506 * not succeed (even if it did, DAX does not handle dirty 3507 * page-cache pages correctly). 3508 */ 3509 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3510 goto out; 3511 3512 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3513 /* 3514 * If generic_perform_write() returned a synchronous error 3515 * then we want to return the number of bytes which were 3516 * direct-written, or the error code if that was zero. Note 3517 * that this differs from normal direct-io semantics, which 3518 * will return -EFOO even if some bytes were written. 3519 */ 3520 if (unlikely(status < 0)) { 3521 err = status; 3522 goto out; 3523 } 3524 /* 3525 * We need to ensure that the page cache pages are written to 3526 * disk and invalidated to preserve the expected O_DIRECT 3527 * semantics. 3528 */ 3529 endbyte = pos + status - 1; 3530 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3531 if (err == 0) { 3532 iocb->ki_pos = endbyte + 1; 3533 written += status; 3534 invalidate_mapping_pages(mapping, 3535 pos >> PAGE_SHIFT, 3536 endbyte >> PAGE_SHIFT); 3537 } else { 3538 /* 3539 * We don't know how much we wrote, so just return 3540 * the number of bytes which were direct-written 3541 */ 3542 } 3543 } else { 3544 written = generic_perform_write(file, from, iocb->ki_pos); 3545 if (likely(written > 0)) 3546 iocb->ki_pos += written; 3547 } 3548 out: 3549 current->backing_dev_info = NULL; 3550 return written ? written : err; 3551 } 3552 EXPORT_SYMBOL(__generic_file_write_iter); 3553 3554 /** 3555 * generic_file_write_iter - write data to a file 3556 * @iocb: IO state structure 3557 * @from: iov_iter with data to write 3558 * 3559 * This is a wrapper around __generic_file_write_iter() to be used by most 3560 * filesystems. It takes care of syncing the file in case of O_SYNC file 3561 * and acquires i_mutex as needed. 3562 * Return: 3563 * * negative error code if no data has been written at all of 3564 * vfs_fsync_range() failed for a synchronous write 3565 * * number of bytes written, even for truncated writes 3566 */ 3567 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3568 { 3569 struct file *file = iocb->ki_filp; 3570 struct inode *inode = file->f_mapping->host; 3571 ssize_t ret; 3572 3573 inode_lock(inode); 3574 ret = generic_write_checks(iocb, from); 3575 if (ret > 0) 3576 ret = __generic_file_write_iter(iocb, from); 3577 inode_unlock(inode); 3578 3579 if (ret > 0) 3580 ret = generic_write_sync(iocb, ret); 3581 return ret; 3582 } 3583 EXPORT_SYMBOL(generic_file_write_iter); 3584 3585 /** 3586 * try_to_release_page() - release old fs-specific metadata on a page 3587 * 3588 * @page: the page which the kernel is trying to free 3589 * @gfp_mask: memory allocation flags (and I/O mode) 3590 * 3591 * The address_space is to try to release any data against the page 3592 * (presumably at page->private). 3593 * 3594 * This may also be called if PG_fscache is set on a page, indicating that the 3595 * page is known to the local caching routines. 3596 * 3597 * The @gfp_mask argument specifies whether I/O may be performed to release 3598 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3599 * 3600 * Return: %1 if the release was successful, otherwise return zero. 3601 */ 3602 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3603 { 3604 struct address_space * const mapping = page->mapping; 3605 3606 BUG_ON(!PageLocked(page)); 3607 if (PageWriteback(page)) 3608 return 0; 3609 3610 if (mapping && mapping->a_ops->releasepage) 3611 return mapping->a_ops->releasepage(page, gfp_mask); 3612 return try_to_free_buffers(page); 3613 } 3614 3615 EXPORT_SYMBOL(try_to_release_page); 3616