xref: /openbmc/linux/mm/filemap.c (revision c7bad633e6b749b2d64e2421cc9d4ee0d1540a8a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_mutex
80  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->lock_page		(access_process_vm)
89  *
90  *  ->i_mutex			(generic_perform_write)
91  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
92  *
93  *  bdi->wb.list_lock
94  *    sb_lock			(fs/fs-writeback.c)
95  *    ->i_pages lock		(__sync_single_inode)
96  *
97  *  ->i_mmap_rwsem
98  *    ->anon_vma.lock		(vma_adjust)
99  *
100  *  ->anon_vma.lock
101  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
102  *
103  *  ->page_table_lock or pte_lock
104  *    ->swap_lock		(try_to_unmap_one)
105  *    ->private_lock		(try_to_unmap_one)
106  *    ->i_pages lock		(try_to_unmap_one)
107  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
108  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
109  *    ->private_lock		(page_remove_rmap->set_page_dirty)
110  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
111  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
112  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
113  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
114  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
115  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
116  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
117  *
118  * ->i_mmap_rwsem
119  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
120  */
121 
122 static void page_cache_delete(struct address_space *mapping,
123 				   struct page *page, void *shadow)
124 {
125 	XA_STATE(xas, &mapping->i_pages, page->index);
126 	unsigned int nr = 1;
127 
128 	mapping_set_update(&xas, mapping);
129 
130 	/* hugetlb pages are represented by a single entry in the xarray */
131 	if (!PageHuge(page)) {
132 		xas_set_order(&xas, page->index, compound_order(page));
133 		nr = compound_nr(page);
134 	}
135 
136 	VM_BUG_ON_PAGE(!PageLocked(page), page);
137 	VM_BUG_ON_PAGE(PageTail(page), page);
138 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	page->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 
146 	if (shadow) {
147 		mapping->nrexceptional += nr;
148 		/*
149 		 * Make sure the nrexceptional update is committed before
150 		 * the nrpages update so that final truncate racing
151 		 * with reclaim does not see both counters 0 at the
152 		 * same time and miss a shadow entry.
153 		 */
154 		smp_wmb();
155 	}
156 	mapping->nrpages -= nr;
157 }
158 
159 static void unaccount_page_cache_page(struct address_space *mapping,
160 				      struct page *page)
161 {
162 	int nr;
163 
164 	/*
165 	 * if we're uptodate, flush out into the cleancache, otherwise
166 	 * invalidate any existing cleancache entries.  We can't leave
167 	 * stale data around in the cleancache once our page is gone
168 	 */
169 	if (PageUptodate(page) && PageMappedToDisk(page))
170 		cleancache_put_page(page);
171 	else
172 		cleancache_invalidate_page(mapping, page);
173 
174 	VM_BUG_ON_PAGE(PageTail(page), page);
175 	VM_BUG_ON_PAGE(page_mapped(page), page);
176 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 		int mapcount;
178 
179 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
180 			 current->comm, page_to_pfn(page));
181 		dump_page(page, "still mapped when deleted");
182 		dump_stack();
183 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
184 
185 		mapcount = page_mapcount(page);
186 		if (mapping_exiting(mapping) &&
187 		    page_count(page) >= mapcount + 2) {
188 			/*
189 			 * All vmas have already been torn down, so it's
190 			 * a good bet that actually the page is unmapped,
191 			 * and we'd prefer not to leak it: if we're wrong,
192 			 * some other bad page check should catch it later.
193 			 */
194 			page_mapcount_reset(page);
195 			page_ref_sub(page, mapcount);
196 		}
197 	}
198 
199 	/* hugetlb pages do not participate in page cache accounting. */
200 	if (PageHuge(page))
201 		return;
202 
203 	nr = thp_nr_pages(page);
204 
205 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
206 	if (PageSwapBacked(page)) {
207 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
208 		if (PageTransHuge(page))
209 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
210 	} else if (PageTransHuge(page)) {
211 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
212 		filemap_nr_thps_dec(mapping);
213 	}
214 
215 	/*
216 	 * At this point page must be either written or cleaned by
217 	 * truncate.  Dirty page here signals a bug and loss of
218 	 * unwritten data.
219 	 *
220 	 * This fixes dirty accounting after removing the page entirely
221 	 * but leaves PageDirty set: it has no effect for truncated
222 	 * page and anyway will be cleared before returning page into
223 	 * buddy allocator.
224 	 */
225 	if (WARN_ON_ONCE(PageDirty(page)))
226 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227 }
228 
229 /*
230  * Delete a page from the page cache and free it. Caller has to make
231  * sure the page is locked and that nobody else uses it - or that usage
232  * is safe.  The caller must hold the i_pages lock.
233  */
234 void __delete_from_page_cache(struct page *page, void *shadow)
235 {
236 	struct address_space *mapping = page->mapping;
237 
238 	trace_mm_filemap_delete_from_page_cache(page);
239 
240 	unaccount_page_cache_page(mapping, page);
241 	page_cache_delete(mapping, page, shadow);
242 }
243 
244 static void page_cache_free_page(struct address_space *mapping,
245 				struct page *page)
246 {
247 	void (*freepage)(struct page *);
248 
249 	freepage = mapping->a_ops->freepage;
250 	if (freepage)
251 		freepage(page);
252 
253 	if (PageTransHuge(page) && !PageHuge(page)) {
254 		page_ref_sub(page, thp_nr_pages(page));
255 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
256 	} else {
257 		put_page(page);
258 	}
259 }
260 
261 /**
262  * delete_from_page_cache - delete page from page cache
263  * @page: the page which the kernel is trying to remove from page cache
264  *
265  * This must be called only on pages that have been verified to be in the page
266  * cache and locked.  It will never put the page into the free list, the caller
267  * has a reference on the page.
268  */
269 void delete_from_page_cache(struct page *page)
270 {
271 	struct address_space *mapping = page_mapping(page);
272 	unsigned long flags;
273 
274 	BUG_ON(!PageLocked(page));
275 	xa_lock_irqsave(&mapping->i_pages, flags);
276 	__delete_from_page_cache(page, NULL);
277 	xa_unlock_irqrestore(&mapping->i_pages, flags);
278 
279 	page_cache_free_page(mapping, page);
280 }
281 EXPORT_SYMBOL(delete_from_page_cache);
282 
283 /*
284  * page_cache_delete_batch - delete several pages from page cache
285  * @mapping: the mapping to which pages belong
286  * @pvec: pagevec with pages to delete
287  *
288  * The function walks over mapping->i_pages and removes pages passed in @pvec
289  * from the mapping. The function expects @pvec to be sorted by page index
290  * and is optimised for it to be dense.
291  * It tolerates holes in @pvec (mapping entries at those indices are not
292  * modified). The function expects only THP head pages to be present in the
293  * @pvec.
294  *
295  * The function expects the i_pages lock to be held.
296  */
297 static void page_cache_delete_batch(struct address_space *mapping,
298 			     struct pagevec *pvec)
299 {
300 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
301 	int total_pages = 0;
302 	int i = 0;
303 	struct page *page;
304 
305 	mapping_set_update(&xas, mapping);
306 	xas_for_each(&xas, page, ULONG_MAX) {
307 		if (i >= pagevec_count(pvec))
308 			break;
309 
310 		/* A swap/dax/shadow entry got inserted? Skip it. */
311 		if (xa_is_value(page))
312 			continue;
313 		/*
314 		 * A page got inserted in our range? Skip it. We have our
315 		 * pages locked so they are protected from being removed.
316 		 * If we see a page whose index is higher than ours, it
317 		 * means our page has been removed, which shouldn't be
318 		 * possible because we're holding the PageLock.
319 		 */
320 		if (page != pvec->pages[i]) {
321 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
322 					page);
323 			continue;
324 		}
325 
326 		WARN_ON_ONCE(!PageLocked(page));
327 
328 		if (page->index == xas.xa_index)
329 			page->mapping = NULL;
330 		/* Leave page->index set: truncation lookup relies on it */
331 
332 		/*
333 		 * Move to the next page in the vector if this is a regular
334 		 * page or the index is of the last sub-page of this compound
335 		 * page.
336 		 */
337 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
338 			i++;
339 		xas_store(&xas, NULL);
340 		total_pages++;
341 	}
342 	mapping->nrpages -= total_pages;
343 }
344 
345 void delete_from_page_cache_batch(struct address_space *mapping,
346 				  struct pagevec *pvec)
347 {
348 	int i;
349 	unsigned long flags;
350 
351 	if (!pagevec_count(pvec))
352 		return;
353 
354 	xa_lock_irqsave(&mapping->i_pages, flags);
355 	for (i = 0; i < pagevec_count(pvec); i++) {
356 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
357 
358 		unaccount_page_cache_page(mapping, pvec->pages[i]);
359 	}
360 	page_cache_delete_batch(mapping, pvec);
361 	xa_unlock_irqrestore(&mapping->i_pages, flags);
362 
363 	for (i = 0; i < pagevec_count(pvec); i++)
364 		page_cache_free_page(mapping, pvec->pages[i]);
365 }
366 
367 int filemap_check_errors(struct address_space *mapping)
368 {
369 	int ret = 0;
370 	/* Check for outstanding write errors */
371 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
373 		ret = -ENOSPC;
374 	if (test_bit(AS_EIO, &mapping->flags) &&
375 	    test_and_clear_bit(AS_EIO, &mapping->flags))
376 		ret = -EIO;
377 	return ret;
378 }
379 EXPORT_SYMBOL(filemap_check_errors);
380 
381 static int filemap_check_and_keep_errors(struct address_space *mapping)
382 {
383 	/* Check for outstanding write errors */
384 	if (test_bit(AS_EIO, &mapping->flags))
385 		return -EIO;
386 	if (test_bit(AS_ENOSPC, &mapping->flags))
387 		return -ENOSPC;
388 	return 0;
389 }
390 
391 /**
392  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
393  * @mapping:	address space structure to write
394  * @start:	offset in bytes where the range starts
395  * @end:	offset in bytes where the range ends (inclusive)
396  * @sync_mode:	enable synchronous operation
397  *
398  * Start writeback against all of a mapping's dirty pages that lie
399  * within the byte offsets <start, end> inclusive.
400  *
401  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
402  * opposed to a regular memory cleansing writeback.  The difference between
403  * these two operations is that if a dirty page/buffer is encountered, it must
404  * be waited upon, and not just skipped over.
405  *
406  * Return: %0 on success, negative error code otherwise.
407  */
408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 				loff_t end, int sync_mode)
410 {
411 	int ret;
412 	struct writeback_control wbc = {
413 		.sync_mode = sync_mode,
414 		.nr_to_write = LONG_MAX,
415 		.range_start = start,
416 		.range_end = end,
417 	};
418 
419 	if (!mapping_can_writeback(mapping) ||
420 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
421 		return 0;
422 
423 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
424 	ret = do_writepages(mapping, &wbc);
425 	wbc_detach_inode(&wbc);
426 	return ret;
427 }
428 
429 static inline int __filemap_fdatawrite(struct address_space *mapping,
430 	int sync_mode)
431 {
432 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 }
434 
435 int filemap_fdatawrite(struct address_space *mapping)
436 {
437 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438 }
439 EXPORT_SYMBOL(filemap_fdatawrite);
440 
441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 				loff_t end)
443 {
444 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445 }
446 EXPORT_SYMBOL(filemap_fdatawrite_range);
447 
448 /**
449  * filemap_flush - mostly a non-blocking flush
450  * @mapping:	target address_space
451  *
452  * This is a mostly non-blocking flush.  Not suitable for data-integrity
453  * purposes - I/O may not be started against all dirty pages.
454  *
455  * Return: %0 on success, negative error code otherwise.
456  */
457 int filemap_flush(struct address_space *mapping)
458 {
459 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460 }
461 EXPORT_SYMBOL(filemap_flush);
462 
463 /**
464  * filemap_range_has_page - check if a page exists in range.
465  * @mapping:           address space within which to check
466  * @start_byte:        offset in bytes where the range starts
467  * @end_byte:          offset in bytes where the range ends (inclusive)
468  *
469  * Find at least one page in the range supplied, usually used to check if
470  * direct writing in this range will trigger a writeback.
471  *
472  * Return: %true if at least one page exists in the specified range,
473  * %false otherwise.
474  */
475 bool filemap_range_has_page(struct address_space *mapping,
476 			   loff_t start_byte, loff_t end_byte)
477 {
478 	struct page *page;
479 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 	pgoff_t max = end_byte >> PAGE_SHIFT;
481 
482 	if (end_byte < start_byte)
483 		return false;
484 
485 	rcu_read_lock();
486 	for (;;) {
487 		page = xas_find(&xas, max);
488 		if (xas_retry(&xas, page))
489 			continue;
490 		/* Shadow entries don't count */
491 		if (xa_is_value(page))
492 			continue;
493 		/*
494 		 * We don't need to try to pin this page; we're about to
495 		 * release the RCU lock anyway.  It is enough to know that
496 		 * there was a page here recently.
497 		 */
498 		break;
499 	}
500 	rcu_read_unlock();
501 
502 	return page != NULL;
503 }
504 EXPORT_SYMBOL(filemap_range_has_page);
505 
506 static void __filemap_fdatawait_range(struct address_space *mapping,
507 				     loff_t start_byte, loff_t end_byte)
508 {
509 	pgoff_t index = start_byte >> PAGE_SHIFT;
510 	pgoff_t end = end_byte >> PAGE_SHIFT;
511 	struct pagevec pvec;
512 	int nr_pages;
513 
514 	if (end_byte < start_byte)
515 		return;
516 
517 	pagevec_init(&pvec);
518 	while (index <= end) {
519 		unsigned i;
520 
521 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
522 				end, PAGECACHE_TAG_WRITEBACK);
523 		if (!nr_pages)
524 			break;
525 
526 		for (i = 0; i < nr_pages; i++) {
527 			struct page *page = pvec.pages[i];
528 
529 			wait_on_page_writeback(page);
530 			ClearPageError(page);
531 		}
532 		pagevec_release(&pvec);
533 		cond_resched();
534 	}
535 }
536 
537 /**
538  * filemap_fdatawait_range - wait for writeback to complete
539  * @mapping:		address space structure to wait for
540  * @start_byte:		offset in bytes where the range starts
541  * @end_byte:		offset in bytes where the range ends (inclusive)
542  *
543  * Walk the list of under-writeback pages of the given address space
544  * in the given range and wait for all of them.  Check error status of
545  * the address space and return it.
546  *
547  * Since the error status of the address space is cleared by this function,
548  * callers are responsible for checking the return value and handling and/or
549  * reporting the error.
550  *
551  * Return: error status of the address space.
552  */
553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 			    loff_t end_byte)
555 {
556 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
557 	return filemap_check_errors(mapping);
558 }
559 EXPORT_SYMBOL(filemap_fdatawait_range);
560 
561 /**
562  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563  * @mapping:		address space structure to wait for
564  * @start_byte:		offset in bytes where the range starts
565  * @end_byte:		offset in bytes where the range ends (inclusive)
566  *
567  * Walk the list of under-writeback pages of the given address space in the
568  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
569  * this function does not clear error status of the address space.
570  *
571  * Use this function if callers don't handle errors themselves.  Expected
572  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573  * fsfreeze(8)
574  */
575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 		loff_t start_byte, loff_t end_byte)
577 {
578 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
579 	return filemap_check_and_keep_errors(mapping);
580 }
581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582 
583 /**
584  * file_fdatawait_range - wait for writeback to complete
585  * @file:		file pointing to address space structure to wait for
586  * @start_byte:		offset in bytes where the range starts
587  * @end_byte:		offset in bytes where the range ends (inclusive)
588  *
589  * Walk the list of under-writeback pages of the address space that file
590  * refers to, in the given range and wait for all of them.  Check error
591  * status of the address space vs. the file->f_wb_err cursor and return it.
592  *
593  * Since the error status of the file is advanced by this function,
594  * callers are responsible for checking the return value and handling and/or
595  * reporting the error.
596  *
597  * Return: error status of the address space vs. the file->f_wb_err cursor.
598  */
599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
600 {
601 	struct address_space *mapping = file->f_mapping;
602 
603 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
604 	return file_check_and_advance_wb_err(file);
605 }
606 EXPORT_SYMBOL(file_fdatawait_range);
607 
608 /**
609  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610  * @mapping: address space structure to wait for
611  *
612  * Walk the list of under-writeback pages of the given address space
613  * and wait for all of them.  Unlike filemap_fdatawait(), this function
614  * does not clear error status of the address space.
615  *
616  * Use this function if callers don't handle errors themselves.  Expected
617  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618  * fsfreeze(8)
619  *
620  * Return: error status of the address space.
621  */
622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 	return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628 
629 /* Returns true if writeback might be needed or already in progress. */
630 static bool mapping_needs_writeback(struct address_space *mapping)
631 {
632 	if (dax_mapping(mapping))
633 		return mapping->nrexceptional;
634 
635 	return mapping->nrpages;
636 }
637 
638 /**
639  * filemap_write_and_wait_range - write out & wait on a file range
640  * @mapping:	the address_space for the pages
641  * @lstart:	offset in bytes where the range starts
642  * @lend:	offset in bytes where the range ends (inclusive)
643  *
644  * Write out and wait upon file offsets lstart->lend, inclusive.
645  *
646  * Note that @lend is inclusive (describes the last byte to be written) so
647  * that this function can be used to write to the very end-of-file (end = -1).
648  *
649  * Return: error status of the address space.
650  */
651 int filemap_write_and_wait_range(struct address_space *mapping,
652 				 loff_t lstart, loff_t lend)
653 {
654 	int err = 0;
655 
656 	if (mapping_needs_writeback(mapping)) {
657 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 						 WB_SYNC_ALL);
659 		/*
660 		 * Even if the above returned error, the pages may be
661 		 * written partially (e.g. -ENOSPC), so we wait for it.
662 		 * But the -EIO is special case, it may indicate the worst
663 		 * thing (e.g. bug) happened, so we avoid waiting for it.
664 		 */
665 		if (err != -EIO) {
666 			int err2 = filemap_fdatawait_range(mapping,
667 						lstart, lend);
668 			if (!err)
669 				err = err2;
670 		} else {
671 			/* Clear any previously stored errors */
672 			filemap_check_errors(mapping);
673 		}
674 	} else {
675 		err = filemap_check_errors(mapping);
676 	}
677 	return err;
678 }
679 EXPORT_SYMBOL(filemap_write_and_wait_range);
680 
681 void __filemap_set_wb_err(struct address_space *mapping, int err)
682 {
683 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
684 
685 	trace_filemap_set_wb_err(mapping, eseq);
686 }
687 EXPORT_SYMBOL(__filemap_set_wb_err);
688 
689 /**
690  * file_check_and_advance_wb_err - report wb error (if any) that was previously
691  * 				   and advance wb_err to current one
692  * @file: struct file on which the error is being reported
693  *
694  * When userland calls fsync (or something like nfsd does the equivalent), we
695  * want to report any writeback errors that occurred since the last fsync (or
696  * since the file was opened if there haven't been any).
697  *
698  * Grab the wb_err from the mapping. If it matches what we have in the file,
699  * then just quickly return 0. The file is all caught up.
700  *
701  * If it doesn't match, then take the mapping value, set the "seen" flag in
702  * it and try to swap it into place. If it works, or another task beat us
703  * to it with the new value, then update the f_wb_err and return the error
704  * portion. The error at this point must be reported via proper channels
705  * (a'la fsync, or NFS COMMIT operation, etc.).
706  *
707  * While we handle mapping->wb_err with atomic operations, the f_wb_err
708  * value is protected by the f_lock since we must ensure that it reflects
709  * the latest value swapped in for this file descriptor.
710  *
711  * Return: %0 on success, negative error code otherwise.
712  */
713 int file_check_and_advance_wb_err(struct file *file)
714 {
715 	int err = 0;
716 	errseq_t old = READ_ONCE(file->f_wb_err);
717 	struct address_space *mapping = file->f_mapping;
718 
719 	/* Locklessly handle the common case where nothing has changed */
720 	if (errseq_check(&mapping->wb_err, old)) {
721 		/* Something changed, must use slow path */
722 		spin_lock(&file->f_lock);
723 		old = file->f_wb_err;
724 		err = errseq_check_and_advance(&mapping->wb_err,
725 						&file->f_wb_err);
726 		trace_file_check_and_advance_wb_err(file, old);
727 		spin_unlock(&file->f_lock);
728 	}
729 
730 	/*
731 	 * We're mostly using this function as a drop in replacement for
732 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
733 	 * that the legacy code would have had on these flags.
734 	 */
735 	clear_bit(AS_EIO, &mapping->flags);
736 	clear_bit(AS_ENOSPC, &mapping->flags);
737 	return err;
738 }
739 EXPORT_SYMBOL(file_check_and_advance_wb_err);
740 
741 /**
742  * file_write_and_wait_range - write out & wait on a file range
743  * @file:	file pointing to address_space with pages
744  * @lstart:	offset in bytes where the range starts
745  * @lend:	offset in bytes where the range ends (inclusive)
746  *
747  * Write out and wait upon file offsets lstart->lend, inclusive.
748  *
749  * Note that @lend is inclusive (describes the last byte to be written) so
750  * that this function can be used to write to the very end-of-file (end = -1).
751  *
752  * After writing out and waiting on the data, we check and advance the
753  * f_wb_err cursor to the latest value, and return any errors detected there.
754  *
755  * Return: %0 on success, negative error code otherwise.
756  */
757 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
758 {
759 	int err = 0, err2;
760 	struct address_space *mapping = file->f_mapping;
761 
762 	if (mapping_needs_writeback(mapping)) {
763 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
764 						 WB_SYNC_ALL);
765 		/* See comment of filemap_write_and_wait() */
766 		if (err != -EIO)
767 			__filemap_fdatawait_range(mapping, lstart, lend);
768 	}
769 	err2 = file_check_and_advance_wb_err(file);
770 	if (!err)
771 		err = err2;
772 	return err;
773 }
774 EXPORT_SYMBOL(file_write_and_wait_range);
775 
776 /**
777  * replace_page_cache_page - replace a pagecache page with a new one
778  * @old:	page to be replaced
779  * @new:	page to replace with
780  *
781  * This function replaces a page in the pagecache with a new one.  On
782  * success it acquires the pagecache reference for the new page and
783  * drops it for the old page.  Both the old and new pages must be
784  * locked.  This function does not add the new page to the LRU, the
785  * caller must do that.
786  *
787  * The remove + add is atomic.  This function cannot fail.
788  */
789 void replace_page_cache_page(struct page *old, struct page *new)
790 {
791 	struct address_space *mapping = old->mapping;
792 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 	pgoff_t offset = old->index;
794 	XA_STATE(xas, &mapping->i_pages, offset);
795 	unsigned long flags;
796 
797 	VM_BUG_ON_PAGE(!PageLocked(old), old);
798 	VM_BUG_ON_PAGE(!PageLocked(new), new);
799 	VM_BUG_ON_PAGE(new->mapping, new);
800 
801 	get_page(new);
802 	new->mapping = mapping;
803 	new->index = offset;
804 
805 	mem_cgroup_migrate(old, new);
806 
807 	xas_lock_irqsave(&xas, flags);
808 	xas_store(&xas, new);
809 
810 	old->mapping = NULL;
811 	/* hugetlb pages do not participate in page cache accounting. */
812 	if (!PageHuge(old))
813 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
814 	if (!PageHuge(new))
815 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
816 	if (PageSwapBacked(old))
817 		__dec_lruvec_page_state(old, NR_SHMEM);
818 	if (PageSwapBacked(new))
819 		__inc_lruvec_page_state(new, NR_SHMEM);
820 	xas_unlock_irqrestore(&xas, flags);
821 	if (freepage)
822 		freepage(old);
823 	put_page(old);
824 }
825 EXPORT_SYMBOL_GPL(replace_page_cache_page);
826 
827 noinline int __add_to_page_cache_locked(struct page *page,
828 					struct address_space *mapping,
829 					pgoff_t offset, gfp_t gfp,
830 					void **shadowp)
831 {
832 	XA_STATE(xas, &mapping->i_pages, offset);
833 	int huge = PageHuge(page);
834 	int error;
835 	bool charged = false;
836 
837 	VM_BUG_ON_PAGE(!PageLocked(page), page);
838 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
839 	mapping_set_update(&xas, mapping);
840 
841 	get_page(page);
842 	page->mapping = mapping;
843 	page->index = offset;
844 
845 	if (!huge) {
846 		error = mem_cgroup_charge(page, current->mm, gfp);
847 		if (error)
848 			goto error;
849 		charged = true;
850 	}
851 
852 	gfp &= GFP_RECLAIM_MASK;
853 
854 	do {
855 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
856 		void *entry, *old = NULL;
857 
858 		if (order > thp_order(page))
859 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
860 					order, gfp);
861 		xas_lock_irq(&xas);
862 		xas_for_each_conflict(&xas, entry) {
863 			old = entry;
864 			if (!xa_is_value(entry)) {
865 				xas_set_err(&xas, -EEXIST);
866 				goto unlock;
867 			}
868 		}
869 
870 		if (old) {
871 			if (shadowp)
872 				*shadowp = old;
873 			/* entry may have been split before we acquired lock */
874 			order = xa_get_order(xas.xa, xas.xa_index);
875 			if (order > thp_order(page)) {
876 				xas_split(&xas, old, order);
877 				xas_reset(&xas);
878 			}
879 		}
880 
881 		xas_store(&xas, page);
882 		if (xas_error(&xas))
883 			goto unlock;
884 
885 		if (old)
886 			mapping->nrexceptional--;
887 		mapping->nrpages++;
888 
889 		/* hugetlb pages do not participate in page cache accounting */
890 		if (!huge)
891 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
892 unlock:
893 		xas_unlock_irq(&xas);
894 	} while (xas_nomem(&xas, gfp));
895 
896 	if (xas_error(&xas)) {
897 		error = xas_error(&xas);
898 		if (charged)
899 			mem_cgroup_uncharge(page);
900 		goto error;
901 	}
902 
903 	trace_mm_filemap_add_to_page_cache(page);
904 	return 0;
905 error:
906 	page->mapping = NULL;
907 	/* Leave page->index set: truncation relies upon it */
908 	put_page(page);
909 	return error;
910 }
911 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
912 
913 /**
914  * add_to_page_cache_locked - add a locked page to the pagecache
915  * @page:	page to add
916  * @mapping:	the page's address_space
917  * @offset:	page index
918  * @gfp_mask:	page allocation mode
919  *
920  * This function is used to add a page to the pagecache. It must be locked.
921  * This function does not add the page to the LRU.  The caller must do that.
922  *
923  * Return: %0 on success, negative error code otherwise.
924  */
925 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
926 		pgoff_t offset, gfp_t gfp_mask)
927 {
928 	return __add_to_page_cache_locked(page, mapping, offset,
929 					  gfp_mask, NULL);
930 }
931 EXPORT_SYMBOL(add_to_page_cache_locked);
932 
933 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
934 				pgoff_t offset, gfp_t gfp_mask)
935 {
936 	void *shadow = NULL;
937 	int ret;
938 
939 	__SetPageLocked(page);
940 	ret = __add_to_page_cache_locked(page, mapping, offset,
941 					 gfp_mask, &shadow);
942 	if (unlikely(ret))
943 		__ClearPageLocked(page);
944 	else {
945 		/*
946 		 * The page might have been evicted from cache only
947 		 * recently, in which case it should be activated like
948 		 * any other repeatedly accessed page.
949 		 * The exception is pages getting rewritten; evicting other
950 		 * data from the working set, only to cache data that will
951 		 * get overwritten with something else, is a waste of memory.
952 		 */
953 		WARN_ON_ONCE(PageActive(page));
954 		if (!(gfp_mask & __GFP_WRITE) && shadow)
955 			workingset_refault(page, shadow);
956 		lru_cache_add(page);
957 	}
958 	return ret;
959 }
960 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
961 
962 #ifdef CONFIG_NUMA
963 struct page *__page_cache_alloc(gfp_t gfp)
964 {
965 	int n;
966 	struct page *page;
967 
968 	if (cpuset_do_page_mem_spread()) {
969 		unsigned int cpuset_mems_cookie;
970 		do {
971 			cpuset_mems_cookie = read_mems_allowed_begin();
972 			n = cpuset_mem_spread_node();
973 			page = __alloc_pages_node(n, gfp, 0);
974 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
975 
976 		return page;
977 	}
978 	return alloc_pages(gfp, 0);
979 }
980 EXPORT_SYMBOL(__page_cache_alloc);
981 #endif
982 
983 /*
984  * In order to wait for pages to become available there must be
985  * waitqueues associated with pages. By using a hash table of
986  * waitqueues where the bucket discipline is to maintain all
987  * waiters on the same queue and wake all when any of the pages
988  * become available, and for the woken contexts to check to be
989  * sure the appropriate page became available, this saves space
990  * at a cost of "thundering herd" phenomena during rare hash
991  * collisions.
992  */
993 #define PAGE_WAIT_TABLE_BITS 8
994 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
995 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
996 
997 static wait_queue_head_t *page_waitqueue(struct page *page)
998 {
999 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1000 }
1001 
1002 void __init pagecache_init(void)
1003 {
1004 	int i;
1005 
1006 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1007 		init_waitqueue_head(&page_wait_table[i]);
1008 
1009 	page_writeback_init();
1010 }
1011 
1012 /*
1013  * The page wait code treats the "wait->flags" somewhat unusually, because
1014  * we have multiple different kinds of waits, not just the usual "exclusive"
1015  * one.
1016  *
1017  * We have:
1018  *
1019  *  (a) no special bits set:
1020  *
1021  *	We're just waiting for the bit to be released, and when a waker
1022  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1023  *	and remove it from the wait queue.
1024  *
1025  *	Simple and straightforward.
1026  *
1027  *  (b) WQ_FLAG_EXCLUSIVE:
1028  *
1029  *	The waiter is waiting to get the lock, and only one waiter should
1030  *	be woken up to avoid any thundering herd behavior. We'll set the
1031  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1032  *
1033  *	This is the traditional exclusive wait.
1034  *
1035  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1036  *
1037  *	The waiter is waiting to get the bit, and additionally wants the
1038  *	lock to be transferred to it for fair lock behavior. If the lock
1039  *	cannot be taken, we stop walking the wait queue without waking
1040  *	the waiter.
1041  *
1042  *	This is the "fair lock handoff" case, and in addition to setting
1043  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1044  *	that it now has the lock.
1045  */
1046 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1047 {
1048 	unsigned int flags;
1049 	struct wait_page_key *key = arg;
1050 	struct wait_page_queue *wait_page
1051 		= container_of(wait, struct wait_page_queue, wait);
1052 
1053 	if (!wake_page_match(wait_page, key))
1054 		return 0;
1055 
1056 	/*
1057 	 * If it's a lock handoff wait, we get the bit for it, and
1058 	 * stop walking (and do not wake it up) if we can't.
1059 	 */
1060 	flags = wait->flags;
1061 	if (flags & WQ_FLAG_EXCLUSIVE) {
1062 		if (test_bit(key->bit_nr, &key->page->flags))
1063 			return -1;
1064 		if (flags & WQ_FLAG_CUSTOM) {
1065 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1066 				return -1;
1067 			flags |= WQ_FLAG_DONE;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * We are holding the wait-queue lock, but the waiter that
1073 	 * is waiting for this will be checking the flags without
1074 	 * any locking.
1075 	 *
1076 	 * So update the flags atomically, and wake up the waiter
1077 	 * afterwards to avoid any races. This store-release pairs
1078 	 * with the load-acquire in wait_on_page_bit_common().
1079 	 */
1080 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1081 	wake_up_state(wait->private, mode);
1082 
1083 	/*
1084 	 * Ok, we have successfully done what we're waiting for,
1085 	 * and we can unconditionally remove the wait entry.
1086 	 *
1087 	 * Note that this pairs with the "finish_wait()" in the
1088 	 * waiter, and has to be the absolute last thing we do.
1089 	 * After this list_del_init(&wait->entry) the wait entry
1090 	 * might be de-allocated and the process might even have
1091 	 * exited.
1092 	 */
1093 	list_del_init_careful(&wait->entry);
1094 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1095 }
1096 
1097 static void wake_up_page_bit(struct page *page, int bit_nr)
1098 {
1099 	wait_queue_head_t *q = page_waitqueue(page);
1100 	struct wait_page_key key;
1101 	unsigned long flags;
1102 	wait_queue_entry_t bookmark;
1103 
1104 	key.page = page;
1105 	key.bit_nr = bit_nr;
1106 	key.page_match = 0;
1107 
1108 	bookmark.flags = 0;
1109 	bookmark.private = NULL;
1110 	bookmark.func = NULL;
1111 	INIT_LIST_HEAD(&bookmark.entry);
1112 
1113 	spin_lock_irqsave(&q->lock, flags);
1114 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1115 
1116 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1117 		/*
1118 		 * Take a breather from holding the lock,
1119 		 * allow pages that finish wake up asynchronously
1120 		 * to acquire the lock and remove themselves
1121 		 * from wait queue
1122 		 */
1123 		spin_unlock_irqrestore(&q->lock, flags);
1124 		cpu_relax();
1125 		spin_lock_irqsave(&q->lock, flags);
1126 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1127 	}
1128 
1129 	/*
1130 	 * It is possible for other pages to have collided on the waitqueue
1131 	 * hash, so in that case check for a page match. That prevents a long-
1132 	 * term waiter
1133 	 *
1134 	 * It is still possible to miss a case here, when we woke page waiters
1135 	 * and removed them from the waitqueue, but there are still other
1136 	 * page waiters.
1137 	 */
1138 	if (!waitqueue_active(q) || !key.page_match) {
1139 		ClearPageWaiters(page);
1140 		/*
1141 		 * It's possible to miss clearing Waiters here, when we woke
1142 		 * our page waiters, but the hashed waitqueue has waiters for
1143 		 * other pages on it.
1144 		 *
1145 		 * That's okay, it's a rare case. The next waker will clear it.
1146 		 */
1147 	}
1148 	spin_unlock_irqrestore(&q->lock, flags);
1149 }
1150 
1151 static void wake_up_page(struct page *page, int bit)
1152 {
1153 	if (!PageWaiters(page))
1154 		return;
1155 	wake_up_page_bit(page, bit);
1156 }
1157 
1158 /*
1159  * A choice of three behaviors for wait_on_page_bit_common():
1160  */
1161 enum behavior {
1162 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1163 			 * __lock_page() waiting on then setting PG_locked.
1164 			 */
1165 	SHARED,		/* Hold ref to page and check the bit when woken, like
1166 			 * wait_on_page_writeback() waiting on PG_writeback.
1167 			 */
1168 	DROP,		/* Drop ref to page before wait, no check when woken,
1169 			 * like put_and_wait_on_page_locked() on PG_locked.
1170 			 */
1171 };
1172 
1173 /*
1174  * Attempt to check (or get) the page bit, and mark us done
1175  * if successful.
1176  */
1177 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1178 					struct wait_queue_entry *wait)
1179 {
1180 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1181 		if (test_and_set_bit(bit_nr, &page->flags))
1182 			return false;
1183 	} else if (test_bit(bit_nr, &page->flags))
1184 		return false;
1185 
1186 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1187 	return true;
1188 }
1189 
1190 /* How many times do we accept lock stealing from under a waiter? */
1191 int sysctl_page_lock_unfairness = 5;
1192 
1193 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1194 	struct page *page, int bit_nr, int state, enum behavior behavior)
1195 {
1196 	int unfairness = sysctl_page_lock_unfairness;
1197 	struct wait_page_queue wait_page;
1198 	wait_queue_entry_t *wait = &wait_page.wait;
1199 	bool thrashing = false;
1200 	bool delayacct = false;
1201 	unsigned long pflags;
1202 
1203 	if (bit_nr == PG_locked &&
1204 	    !PageUptodate(page) && PageWorkingset(page)) {
1205 		if (!PageSwapBacked(page)) {
1206 			delayacct_thrashing_start();
1207 			delayacct = true;
1208 		}
1209 		psi_memstall_enter(&pflags);
1210 		thrashing = true;
1211 	}
1212 
1213 	init_wait(wait);
1214 	wait->func = wake_page_function;
1215 	wait_page.page = page;
1216 	wait_page.bit_nr = bit_nr;
1217 
1218 repeat:
1219 	wait->flags = 0;
1220 	if (behavior == EXCLUSIVE) {
1221 		wait->flags = WQ_FLAG_EXCLUSIVE;
1222 		if (--unfairness < 0)
1223 			wait->flags |= WQ_FLAG_CUSTOM;
1224 	}
1225 
1226 	/*
1227 	 * Do one last check whether we can get the
1228 	 * page bit synchronously.
1229 	 *
1230 	 * Do the SetPageWaiters() marking before that
1231 	 * to let any waker we _just_ missed know they
1232 	 * need to wake us up (otherwise they'll never
1233 	 * even go to the slow case that looks at the
1234 	 * page queue), and add ourselves to the wait
1235 	 * queue if we need to sleep.
1236 	 *
1237 	 * This part needs to be done under the queue
1238 	 * lock to avoid races.
1239 	 */
1240 	spin_lock_irq(&q->lock);
1241 	SetPageWaiters(page);
1242 	if (!trylock_page_bit_common(page, bit_nr, wait))
1243 		__add_wait_queue_entry_tail(q, wait);
1244 	spin_unlock_irq(&q->lock);
1245 
1246 	/*
1247 	 * From now on, all the logic will be based on
1248 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 	 * see whether the page bit testing has already
1250 	 * been done by the wake function.
1251 	 *
1252 	 * We can drop our reference to the page.
1253 	 */
1254 	if (behavior == DROP)
1255 		put_page(page);
1256 
1257 	/*
1258 	 * Note that until the "finish_wait()", or until
1259 	 * we see the WQ_FLAG_WOKEN flag, we need to
1260 	 * be very careful with the 'wait->flags', because
1261 	 * we may race with a waker that sets them.
1262 	 */
1263 	for (;;) {
1264 		unsigned int flags;
1265 
1266 		set_current_state(state);
1267 
1268 		/* Loop until we've been woken or interrupted */
1269 		flags = smp_load_acquire(&wait->flags);
1270 		if (!(flags & WQ_FLAG_WOKEN)) {
1271 			if (signal_pending_state(state, current))
1272 				break;
1273 
1274 			io_schedule();
1275 			continue;
1276 		}
1277 
1278 		/* If we were non-exclusive, we're done */
1279 		if (behavior != EXCLUSIVE)
1280 			break;
1281 
1282 		/* If the waker got the lock for us, we're done */
1283 		if (flags & WQ_FLAG_DONE)
1284 			break;
1285 
1286 		/*
1287 		 * Otherwise, if we're getting the lock, we need to
1288 		 * try to get it ourselves.
1289 		 *
1290 		 * And if that fails, we'll have to retry this all.
1291 		 */
1292 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1293 			goto repeat;
1294 
1295 		wait->flags |= WQ_FLAG_DONE;
1296 		break;
1297 	}
1298 
1299 	/*
1300 	 * If a signal happened, this 'finish_wait()' may remove the last
1301 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1302 	 * set. That's ok. The next wakeup will take care of it, and trying
1303 	 * to do it here would be difficult and prone to races.
1304 	 */
1305 	finish_wait(q, wait);
1306 
1307 	if (thrashing) {
1308 		if (delayacct)
1309 			delayacct_thrashing_end();
1310 		psi_memstall_leave(&pflags);
1311 	}
1312 
1313 	/*
1314 	 * NOTE! The wait->flags weren't stable until we've done the
1315 	 * 'finish_wait()', and we could have exited the loop above due
1316 	 * to a signal, and had a wakeup event happen after the signal
1317 	 * test but before the 'finish_wait()'.
1318 	 *
1319 	 * So only after the finish_wait() can we reliably determine
1320 	 * if we got woken up or not, so we can now figure out the final
1321 	 * return value based on that state without races.
1322 	 *
1323 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1324 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1325 	 */
1326 	if (behavior == EXCLUSIVE)
1327 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1328 
1329 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1330 }
1331 
1332 void wait_on_page_bit(struct page *page, int bit_nr)
1333 {
1334 	wait_queue_head_t *q = page_waitqueue(page);
1335 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1336 }
1337 EXPORT_SYMBOL(wait_on_page_bit);
1338 
1339 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1340 {
1341 	wait_queue_head_t *q = page_waitqueue(page);
1342 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1343 }
1344 EXPORT_SYMBOL(wait_on_page_bit_killable);
1345 
1346 /**
1347  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1348  * @page: The page to wait for.
1349  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1350  *
1351  * The caller should hold a reference on @page.  They expect the page to
1352  * become unlocked relatively soon, but do not wish to hold up migration
1353  * (for example) by holding the reference while waiting for the page to
1354  * come unlocked.  After this function returns, the caller should not
1355  * dereference @page.
1356  *
1357  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1358  */
1359 int put_and_wait_on_page_locked(struct page *page, int state)
1360 {
1361 	wait_queue_head_t *q;
1362 
1363 	page = compound_head(page);
1364 	q = page_waitqueue(page);
1365 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1366 }
1367 
1368 /**
1369  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1370  * @page: Page defining the wait queue of interest
1371  * @waiter: Waiter to add to the queue
1372  *
1373  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1374  */
1375 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1376 {
1377 	wait_queue_head_t *q = page_waitqueue(page);
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&q->lock, flags);
1381 	__add_wait_queue_entry_tail(q, waiter);
1382 	SetPageWaiters(page);
1383 	spin_unlock_irqrestore(&q->lock, flags);
1384 }
1385 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1386 
1387 #ifndef clear_bit_unlock_is_negative_byte
1388 
1389 /*
1390  * PG_waiters is the high bit in the same byte as PG_lock.
1391  *
1392  * On x86 (and on many other architectures), we can clear PG_lock and
1393  * test the sign bit at the same time. But if the architecture does
1394  * not support that special operation, we just do this all by hand
1395  * instead.
1396  *
1397  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1398  * being cleared, but a memory barrier should be unnecessary since it is
1399  * in the same byte as PG_locked.
1400  */
1401 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1402 {
1403 	clear_bit_unlock(nr, mem);
1404 	/* smp_mb__after_atomic(); */
1405 	return test_bit(PG_waiters, mem);
1406 }
1407 
1408 #endif
1409 
1410 /**
1411  * unlock_page - unlock a locked page
1412  * @page: the page
1413  *
1414  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1415  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1416  * mechanism between PageLocked pages and PageWriteback pages is shared.
1417  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1418  *
1419  * Note that this depends on PG_waiters being the sign bit in the byte
1420  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1421  * clear the PG_locked bit and test PG_waiters at the same time fairly
1422  * portably (architectures that do LL/SC can test any bit, while x86 can
1423  * test the sign bit).
1424  */
1425 void unlock_page(struct page *page)
1426 {
1427 	BUILD_BUG_ON(PG_waiters != 7);
1428 	page = compound_head(page);
1429 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1430 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1431 		wake_up_page_bit(page, PG_locked);
1432 }
1433 EXPORT_SYMBOL(unlock_page);
1434 
1435 /**
1436  * end_page_writeback - end writeback against a page
1437  * @page: the page
1438  */
1439 void end_page_writeback(struct page *page)
1440 {
1441 	/*
1442 	 * TestClearPageReclaim could be used here but it is an atomic
1443 	 * operation and overkill in this particular case. Failing to
1444 	 * shuffle a page marked for immediate reclaim is too mild to
1445 	 * justify taking an atomic operation penalty at the end of
1446 	 * ever page writeback.
1447 	 */
1448 	if (PageReclaim(page)) {
1449 		ClearPageReclaim(page);
1450 		rotate_reclaimable_page(page);
1451 	}
1452 
1453 	/*
1454 	 * Writeback does not hold a page reference of its own, relying
1455 	 * on truncation to wait for the clearing of PG_writeback.
1456 	 * But here we must make sure that the page is not freed and
1457 	 * reused before the wake_up_page().
1458 	 */
1459 	get_page(page);
1460 	if (!test_clear_page_writeback(page))
1461 		BUG();
1462 
1463 	smp_mb__after_atomic();
1464 	wake_up_page(page, PG_writeback);
1465 	put_page(page);
1466 }
1467 EXPORT_SYMBOL(end_page_writeback);
1468 
1469 /*
1470  * After completing I/O on a page, call this routine to update the page
1471  * flags appropriately
1472  */
1473 void page_endio(struct page *page, bool is_write, int err)
1474 {
1475 	if (!is_write) {
1476 		if (!err) {
1477 			SetPageUptodate(page);
1478 		} else {
1479 			ClearPageUptodate(page);
1480 			SetPageError(page);
1481 		}
1482 		unlock_page(page);
1483 	} else {
1484 		if (err) {
1485 			struct address_space *mapping;
1486 
1487 			SetPageError(page);
1488 			mapping = page_mapping(page);
1489 			if (mapping)
1490 				mapping_set_error(mapping, err);
1491 		}
1492 		end_page_writeback(page);
1493 	}
1494 }
1495 EXPORT_SYMBOL_GPL(page_endio);
1496 
1497 /**
1498  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1499  * @__page: the page to lock
1500  */
1501 void __lock_page(struct page *__page)
1502 {
1503 	struct page *page = compound_head(__page);
1504 	wait_queue_head_t *q = page_waitqueue(page);
1505 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1506 				EXCLUSIVE);
1507 }
1508 EXPORT_SYMBOL(__lock_page);
1509 
1510 int __lock_page_killable(struct page *__page)
1511 {
1512 	struct page *page = compound_head(__page);
1513 	wait_queue_head_t *q = page_waitqueue(page);
1514 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1515 					EXCLUSIVE);
1516 }
1517 EXPORT_SYMBOL_GPL(__lock_page_killable);
1518 
1519 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1520 {
1521 	struct wait_queue_head *q = page_waitqueue(page);
1522 	int ret = 0;
1523 
1524 	wait->page = page;
1525 	wait->bit_nr = PG_locked;
1526 
1527 	spin_lock_irq(&q->lock);
1528 	__add_wait_queue_entry_tail(q, &wait->wait);
1529 	SetPageWaiters(page);
1530 	ret = !trylock_page(page);
1531 	/*
1532 	 * If we were successful now, we know we're still on the
1533 	 * waitqueue as we're still under the lock. This means it's
1534 	 * safe to remove and return success, we know the callback
1535 	 * isn't going to trigger.
1536 	 */
1537 	if (!ret)
1538 		__remove_wait_queue(q, &wait->wait);
1539 	else
1540 		ret = -EIOCBQUEUED;
1541 	spin_unlock_irq(&q->lock);
1542 	return ret;
1543 }
1544 
1545 /*
1546  * Return values:
1547  * 1 - page is locked; mmap_lock is still held.
1548  * 0 - page is not locked.
1549  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1550  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1551  *     which case mmap_lock is still held.
1552  *
1553  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1554  * with the page locked and the mmap_lock unperturbed.
1555  */
1556 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1557 			 unsigned int flags)
1558 {
1559 	if (fault_flag_allow_retry_first(flags)) {
1560 		/*
1561 		 * CAUTION! In this case, mmap_lock is not released
1562 		 * even though return 0.
1563 		 */
1564 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1565 			return 0;
1566 
1567 		mmap_read_unlock(mm);
1568 		if (flags & FAULT_FLAG_KILLABLE)
1569 			wait_on_page_locked_killable(page);
1570 		else
1571 			wait_on_page_locked(page);
1572 		return 0;
1573 	}
1574 	if (flags & FAULT_FLAG_KILLABLE) {
1575 		int ret;
1576 
1577 		ret = __lock_page_killable(page);
1578 		if (ret) {
1579 			mmap_read_unlock(mm);
1580 			return 0;
1581 		}
1582 	} else {
1583 		__lock_page(page);
1584 	}
1585 	return 1;
1586 
1587 }
1588 
1589 /**
1590  * page_cache_next_miss() - Find the next gap in the page cache.
1591  * @mapping: Mapping.
1592  * @index: Index.
1593  * @max_scan: Maximum range to search.
1594  *
1595  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1596  * gap with the lowest index.
1597  *
1598  * This function may be called under the rcu_read_lock.  However, this will
1599  * not atomically search a snapshot of the cache at a single point in time.
1600  * For example, if a gap is created at index 5, then subsequently a gap is
1601  * created at index 10, page_cache_next_miss covering both indices may
1602  * return 10 if called under the rcu_read_lock.
1603  *
1604  * Return: The index of the gap if found, otherwise an index outside the
1605  * range specified (in which case 'return - index >= max_scan' will be true).
1606  * In the rare case of index wrap-around, 0 will be returned.
1607  */
1608 pgoff_t page_cache_next_miss(struct address_space *mapping,
1609 			     pgoff_t index, unsigned long max_scan)
1610 {
1611 	XA_STATE(xas, &mapping->i_pages, index);
1612 
1613 	while (max_scan--) {
1614 		void *entry = xas_next(&xas);
1615 		if (!entry || xa_is_value(entry))
1616 			break;
1617 		if (xas.xa_index == 0)
1618 			break;
1619 	}
1620 
1621 	return xas.xa_index;
1622 }
1623 EXPORT_SYMBOL(page_cache_next_miss);
1624 
1625 /**
1626  * page_cache_prev_miss() - Find the previous gap in the page cache.
1627  * @mapping: Mapping.
1628  * @index: Index.
1629  * @max_scan: Maximum range to search.
1630  *
1631  * Search the range [max(index - max_scan + 1, 0), index] for the
1632  * gap with the highest index.
1633  *
1634  * This function may be called under the rcu_read_lock.  However, this will
1635  * not atomically search a snapshot of the cache at a single point in time.
1636  * For example, if a gap is created at index 10, then subsequently a gap is
1637  * created at index 5, page_cache_prev_miss() covering both indices may
1638  * return 5 if called under the rcu_read_lock.
1639  *
1640  * Return: The index of the gap if found, otherwise an index outside the
1641  * range specified (in which case 'index - return >= max_scan' will be true).
1642  * In the rare case of wrap-around, ULONG_MAX will be returned.
1643  */
1644 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1645 			     pgoff_t index, unsigned long max_scan)
1646 {
1647 	XA_STATE(xas, &mapping->i_pages, index);
1648 
1649 	while (max_scan--) {
1650 		void *entry = xas_prev(&xas);
1651 		if (!entry || xa_is_value(entry))
1652 			break;
1653 		if (xas.xa_index == ULONG_MAX)
1654 			break;
1655 	}
1656 
1657 	return xas.xa_index;
1658 }
1659 EXPORT_SYMBOL(page_cache_prev_miss);
1660 
1661 /*
1662  * mapping_get_entry - Get a page cache entry.
1663  * @mapping: the address_space to search
1664  * @index: The page cache index.
1665  *
1666  * Looks up the page cache slot at @mapping & @offset.  If there is a
1667  * page cache page, the head page is returned with an increased refcount.
1668  *
1669  * If the slot holds a shadow entry of a previously evicted page, or a
1670  * swap entry from shmem/tmpfs, it is returned.
1671  *
1672  * Return: The head page or shadow entry, %NULL if nothing is found.
1673  */
1674 static struct page *mapping_get_entry(struct address_space *mapping,
1675 		pgoff_t index)
1676 {
1677 	XA_STATE(xas, &mapping->i_pages, index);
1678 	struct page *page;
1679 
1680 	rcu_read_lock();
1681 repeat:
1682 	xas_reset(&xas);
1683 	page = xas_load(&xas);
1684 	if (xas_retry(&xas, page))
1685 		goto repeat;
1686 	/*
1687 	 * A shadow entry of a recently evicted page, or a swap entry from
1688 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1689 	 */
1690 	if (!page || xa_is_value(page))
1691 		goto out;
1692 
1693 	if (!page_cache_get_speculative(page))
1694 		goto repeat;
1695 
1696 	/*
1697 	 * Has the page moved or been split?
1698 	 * This is part of the lockless pagecache protocol. See
1699 	 * include/linux/pagemap.h for details.
1700 	 */
1701 	if (unlikely(page != xas_reload(&xas))) {
1702 		put_page(page);
1703 		goto repeat;
1704 	}
1705 out:
1706 	rcu_read_unlock();
1707 
1708 	return page;
1709 }
1710 
1711 /**
1712  * pagecache_get_page - Find and get a reference to a page.
1713  * @mapping: The address_space to search.
1714  * @index: The page index.
1715  * @fgp_flags: %FGP flags modify how the page is returned.
1716  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1717  *
1718  * Looks up the page cache entry at @mapping & @index.
1719  *
1720  * @fgp_flags can be zero or more of these flags:
1721  *
1722  * * %FGP_ACCESSED - The page will be marked accessed.
1723  * * %FGP_LOCK - The page is returned locked.
1724  * * %FGP_HEAD - If the page is present and a THP, return the head page
1725  *   rather than the exact page specified by the index.
1726  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1727  *   instead of allocating a new page to replace it.
1728  * * %FGP_CREAT - If no page is present then a new page is allocated using
1729  *   @gfp_mask and added to the page cache and the VM's LRU list.
1730  *   The page is returned locked and with an increased refcount.
1731  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1732  *   page is already in cache.  If the page was allocated, unlock it before
1733  *   returning so the caller can do the same dance.
1734  * * %FGP_WRITE - The page will be written
1735  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1736  * * %FGP_NOWAIT - Don't get blocked by page lock
1737  *
1738  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1739  * if the %GFP flags specified for %FGP_CREAT are atomic.
1740  *
1741  * If there is a page cache page, it is returned with an increased refcount.
1742  *
1743  * Return: The found page or %NULL otherwise.
1744  */
1745 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1746 		int fgp_flags, gfp_t gfp_mask)
1747 {
1748 	struct page *page;
1749 
1750 repeat:
1751 	page = mapping_get_entry(mapping, index);
1752 	if (xa_is_value(page)) {
1753 		if (fgp_flags & FGP_ENTRY)
1754 			return page;
1755 		page = NULL;
1756 	}
1757 	if (!page)
1758 		goto no_page;
1759 
1760 	if (fgp_flags & FGP_LOCK) {
1761 		if (fgp_flags & FGP_NOWAIT) {
1762 			if (!trylock_page(page)) {
1763 				put_page(page);
1764 				return NULL;
1765 			}
1766 		} else {
1767 			lock_page(page);
1768 		}
1769 
1770 		/* Has the page been truncated? */
1771 		if (unlikely(page->mapping != mapping)) {
1772 			unlock_page(page);
1773 			put_page(page);
1774 			goto repeat;
1775 		}
1776 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1777 	}
1778 
1779 	if (fgp_flags & FGP_ACCESSED)
1780 		mark_page_accessed(page);
1781 	else if (fgp_flags & FGP_WRITE) {
1782 		/* Clear idle flag for buffer write */
1783 		if (page_is_idle(page))
1784 			clear_page_idle(page);
1785 	}
1786 	if (!(fgp_flags & FGP_HEAD))
1787 		page = find_subpage(page, index);
1788 
1789 no_page:
1790 	if (!page && (fgp_flags & FGP_CREAT)) {
1791 		int err;
1792 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1793 			gfp_mask |= __GFP_WRITE;
1794 		if (fgp_flags & FGP_NOFS)
1795 			gfp_mask &= ~__GFP_FS;
1796 
1797 		page = __page_cache_alloc(gfp_mask);
1798 		if (!page)
1799 			return NULL;
1800 
1801 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1802 			fgp_flags |= FGP_LOCK;
1803 
1804 		/* Init accessed so avoid atomic mark_page_accessed later */
1805 		if (fgp_flags & FGP_ACCESSED)
1806 			__SetPageReferenced(page);
1807 
1808 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1809 		if (unlikely(err)) {
1810 			put_page(page);
1811 			page = NULL;
1812 			if (err == -EEXIST)
1813 				goto repeat;
1814 		}
1815 
1816 		/*
1817 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1818 		 * an unlocked page.
1819 		 */
1820 		if (page && (fgp_flags & FGP_FOR_MMAP))
1821 			unlock_page(page);
1822 	}
1823 
1824 	return page;
1825 }
1826 EXPORT_SYMBOL(pagecache_get_page);
1827 
1828 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1829 		xa_mark_t mark)
1830 {
1831 	struct page *page;
1832 
1833 retry:
1834 	if (mark == XA_PRESENT)
1835 		page = xas_find(xas, max);
1836 	else
1837 		page = xas_find_marked(xas, max, mark);
1838 
1839 	if (xas_retry(xas, page))
1840 		goto retry;
1841 	/*
1842 	 * A shadow entry of a recently evicted page, a swap
1843 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1844 	 * without attempting to raise page count.
1845 	 */
1846 	if (!page || xa_is_value(page))
1847 		return page;
1848 
1849 	if (!page_cache_get_speculative(page))
1850 		goto reset;
1851 
1852 	/* Has the page moved or been split? */
1853 	if (unlikely(page != xas_reload(xas))) {
1854 		put_page(page);
1855 		goto reset;
1856 	}
1857 
1858 	return page;
1859 reset:
1860 	xas_reset(xas);
1861 	goto retry;
1862 }
1863 
1864 /**
1865  * find_get_entries - gang pagecache lookup
1866  * @mapping:	The address_space to search
1867  * @start:	The starting page cache index
1868  * @nr_entries:	The maximum number of entries
1869  * @entries:	Where the resulting entries are placed
1870  * @indices:	The cache indices corresponding to the entries in @entries
1871  *
1872  * find_get_entries() will search for and return a group of up to
1873  * @nr_entries entries in the mapping.  The entries are placed at
1874  * @entries.  find_get_entries() takes a reference against any actual
1875  * pages it returns.
1876  *
1877  * The search returns a group of mapping-contiguous page cache entries
1878  * with ascending indexes.  There may be holes in the indices due to
1879  * not-present pages.
1880  *
1881  * Any shadow entries of evicted pages, or swap entries from
1882  * shmem/tmpfs, are included in the returned array.
1883  *
1884  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1885  * stops at that page: the caller is likely to have a better way to handle
1886  * the compound page as a whole, and then skip its extent, than repeatedly
1887  * calling find_get_entries() to return all its tails.
1888  *
1889  * Return: the number of pages and shadow entries which were found.
1890  */
1891 unsigned find_get_entries(struct address_space *mapping,
1892 			  pgoff_t start, unsigned int nr_entries,
1893 			  struct page **entries, pgoff_t *indices)
1894 {
1895 	XA_STATE(xas, &mapping->i_pages, start);
1896 	struct page *page;
1897 	unsigned int ret = 0;
1898 
1899 	if (!nr_entries)
1900 		return 0;
1901 
1902 	rcu_read_lock();
1903 	while ((page = find_get_entry(&xas, ULONG_MAX, XA_PRESENT))) {
1904 		/*
1905 		 * Terminate early on finding a THP, to allow the caller to
1906 		 * handle it all at once; but continue if this is hugetlbfs.
1907 		 */
1908 		if (!xa_is_value(page) && PageTransHuge(page) &&
1909 				!PageHuge(page)) {
1910 			page = find_subpage(page, xas.xa_index);
1911 			nr_entries = ret + 1;
1912 		}
1913 
1914 		indices[ret] = xas.xa_index;
1915 		entries[ret] = page;
1916 		if (++ret == nr_entries)
1917 			break;
1918 	}
1919 	rcu_read_unlock();
1920 	return ret;
1921 }
1922 
1923 /**
1924  * find_get_pages_range - gang pagecache lookup
1925  * @mapping:	The address_space to search
1926  * @start:	The starting page index
1927  * @end:	The final page index (inclusive)
1928  * @nr_pages:	The maximum number of pages
1929  * @pages:	Where the resulting pages are placed
1930  *
1931  * find_get_pages_range() will search for and return a group of up to @nr_pages
1932  * pages in the mapping starting at index @start and up to index @end
1933  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1934  * a reference against the returned pages.
1935  *
1936  * The search returns a group of mapping-contiguous pages with ascending
1937  * indexes.  There may be holes in the indices due to not-present pages.
1938  * We also update @start to index the next page for the traversal.
1939  *
1940  * Return: the number of pages which were found. If this number is
1941  * smaller than @nr_pages, the end of specified range has been
1942  * reached.
1943  */
1944 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1945 			      pgoff_t end, unsigned int nr_pages,
1946 			      struct page **pages)
1947 {
1948 	XA_STATE(xas, &mapping->i_pages, *start);
1949 	struct page *page;
1950 	unsigned ret = 0;
1951 
1952 	if (unlikely(!nr_pages))
1953 		return 0;
1954 
1955 	rcu_read_lock();
1956 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1957 		/* Skip over shadow, swap and DAX entries */
1958 		if (xa_is_value(page))
1959 			continue;
1960 
1961 		pages[ret] = find_subpage(page, xas.xa_index);
1962 		if (++ret == nr_pages) {
1963 			*start = xas.xa_index + 1;
1964 			goto out;
1965 		}
1966 	}
1967 
1968 	/*
1969 	 * We come here when there is no page beyond @end. We take care to not
1970 	 * overflow the index @start as it confuses some of the callers. This
1971 	 * breaks the iteration when there is a page at index -1 but that is
1972 	 * already broken anyway.
1973 	 */
1974 	if (end == (pgoff_t)-1)
1975 		*start = (pgoff_t)-1;
1976 	else
1977 		*start = end + 1;
1978 out:
1979 	rcu_read_unlock();
1980 
1981 	return ret;
1982 }
1983 
1984 /**
1985  * find_get_pages_contig - gang contiguous pagecache lookup
1986  * @mapping:	The address_space to search
1987  * @index:	The starting page index
1988  * @nr_pages:	The maximum number of pages
1989  * @pages:	Where the resulting pages are placed
1990  *
1991  * find_get_pages_contig() works exactly like find_get_pages(), except
1992  * that the returned number of pages are guaranteed to be contiguous.
1993  *
1994  * Return: the number of pages which were found.
1995  */
1996 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1997 			       unsigned int nr_pages, struct page **pages)
1998 {
1999 	XA_STATE(xas, &mapping->i_pages, index);
2000 	struct page *page;
2001 	unsigned int ret = 0;
2002 
2003 	if (unlikely(!nr_pages))
2004 		return 0;
2005 
2006 	rcu_read_lock();
2007 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2008 		if (xas_retry(&xas, page))
2009 			continue;
2010 		/*
2011 		 * If the entry has been swapped out, we can stop looking.
2012 		 * No current caller is looking for DAX entries.
2013 		 */
2014 		if (xa_is_value(page))
2015 			break;
2016 
2017 		if (!page_cache_get_speculative(page))
2018 			goto retry;
2019 
2020 		/* Has the page moved or been split? */
2021 		if (unlikely(page != xas_reload(&xas)))
2022 			goto put_page;
2023 
2024 		pages[ret] = find_subpage(page, xas.xa_index);
2025 		if (++ret == nr_pages)
2026 			break;
2027 		continue;
2028 put_page:
2029 		put_page(page);
2030 retry:
2031 		xas_reset(&xas);
2032 	}
2033 	rcu_read_unlock();
2034 	return ret;
2035 }
2036 EXPORT_SYMBOL(find_get_pages_contig);
2037 
2038 /**
2039  * find_get_pages_range_tag - Find and return head pages matching @tag.
2040  * @mapping:	the address_space to search
2041  * @index:	the starting page index
2042  * @end:	The final page index (inclusive)
2043  * @tag:	the tag index
2044  * @nr_pages:	the maximum number of pages
2045  * @pages:	where the resulting pages are placed
2046  *
2047  * Like find_get_pages(), except we only return head pages which are tagged
2048  * with @tag.  @index is updated to the index immediately after the last
2049  * page we return, ready for the next iteration.
2050  *
2051  * Return: the number of pages which were found.
2052  */
2053 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2054 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2055 			struct page **pages)
2056 {
2057 	XA_STATE(xas, &mapping->i_pages, *index);
2058 	struct page *page;
2059 	unsigned ret = 0;
2060 
2061 	if (unlikely(!nr_pages))
2062 		return 0;
2063 
2064 	rcu_read_lock();
2065 	while ((page = find_get_entry(&xas, end, tag))) {
2066 		/*
2067 		 * Shadow entries should never be tagged, but this iteration
2068 		 * is lockless so there is a window for page reclaim to evict
2069 		 * a page we saw tagged.  Skip over it.
2070 		 */
2071 		if (xa_is_value(page))
2072 			continue;
2073 
2074 		pages[ret] = page;
2075 		if (++ret == nr_pages) {
2076 			*index = page->index + thp_nr_pages(page);
2077 			goto out;
2078 		}
2079 	}
2080 
2081 	/*
2082 	 * We come here when we got to @end. We take care to not overflow the
2083 	 * index @index as it confuses some of the callers. This breaks the
2084 	 * iteration when there is a page at index -1 but that is already
2085 	 * broken anyway.
2086 	 */
2087 	if (end == (pgoff_t)-1)
2088 		*index = (pgoff_t)-1;
2089 	else
2090 		*index = end + 1;
2091 out:
2092 	rcu_read_unlock();
2093 
2094 	return ret;
2095 }
2096 EXPORT_SYMBOL(find_get_pages_range_tag);
2097 
2098 /*
2099  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2100  * a _large_ part of the i/o request. Imagine the worst scenario:
2101  *
2102  *      ---R__________________________________________B__________
2103  *         ^ reading here                             ^ bad block(assume 4k)
2104  *
2105  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2106  * => failing the whole request => read(R) => read(R+1) =>
2107  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2108  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2109  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2110  *
2111  * It is going insane. Fix it by quickly scaling down the readahead size.
2112  */
2113 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2114 {
2115 	ra->ra_pages /= 4;
2116 }
2117 
2118 /*
2119  * filemap_get_read_batch - Get a batch of pages for read
2120  *
2121  * Get a batch of pages which represent a contiguous range of bytes
2122  * in the file.  No tail pages will be returned.  If @index is in the
2123  * middle of a THP, the entire THP will be returned.  The last page in
2124  * the batch may have Readahead set or be not Uptodate so that the
2125  * caller can take the appropriate action.
2126  */
2127 static void filemap_get_read_batch(struct address_space *mapping,
2128 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2129 {
2130 	XA_STATE(xas, &mapping->i_pages, index);
2131 	struct page *head;
2132 
2133 	rcu_read_lock();
2134 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2135 		if (xas_retry(&xas, head))
2136 			continue;
2137 		if (xas.xa_index > max || xa_is_value(head))
2138 			break;
2139 		if (!page_cache_get_speculative(head))
2140 			goto retry;
2141 
2142 		/* Has the page moved or been split? */
2143 		if (unlikely(head != xas_reload(&xas)))
2144 			goto put_page;
2145 
2146 		if (!pagevec_add(pvec, head))
2147 			break;
2148 		if (!PageUptodate(head))
2149 			break;
2150 		if (PageReadahead(head))
2151 			break;
2152 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2153 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2154 		continue;
2155 put_page:
2156 		put_page(head);
2157 retry:
2158 		xas_reset(&xas);
2159 	}
2160 	rcu_read_unlock();
2161 }
2162 
2163 static int filemap_read_page(struct file *file, struct address_space *mapping,
2164 		struct page *page)
2165 {
2166 	int error;
2167 
2168 	/*
2169 	 * A previous I/O error may have been due to temporary failures,
2170 	 * eg. multipath errors.  PG_error will be set again if readpage
2171 	 * fails.
2172 	 */
2173 	ClearPageError(page);
2174 	/* Start the actual read. The read will unlock the page. */
2175 	error = mapping->a_ops->readpage(file, page);
2176 	if (error)
2177 		return error;
2178 
2179 	error = wait_on_page_locked_killable(page);
2180 	if (error)
2181 		return error;
2182 	if (PageUptodate(page))
2183 		return 0;
2184 	if (!page->mapping)	/* page truncated */
2185 		return AOP_TRUNCATED_PAGE;
2186 	shrink_readahead_size_eio(&file->f_ra);
2187 	return -EIO;
2188 }
2189 
2190 static bool filemap_range_uptodate(struct address_space *mapping,
2191 		loff_t pos, struct iov_iter *iter, struct page *page)
2192 {
2193 	int count;
2194 
2195 	if (PageUptodate(page))
2196 		return true;
2197 	/* pipes can't handle partially uptodate pages */
2198 	if (iov_iter_is_pipe(iter))
2199 		return false;
2200 	if (!mapping->a_ops->is_partially_uptodate)
2201 		return false;
2202 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2203 		return false;
2204 
2205 	count = iter->count;
2206 	if (page_offset(page) > pos) {
2207 		count -= page_offset(page) - pos;
2208 		pos = 0;
2209 	} else {
2210 		pos -= page_offset(page);
2211 	}
2212 
2213 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2214 }
2215 
2216 static int filemap_update_page(struct kiocb *iocb,
2217 		struct address_space *mapping, struct iov_iter *iter,
2218 		struct page *page)
2219 {
2220 	int error;
2221 
2222 	if (!trylock_page(page)) {
2223 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2224 			return -EAGAIN;
2225 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2226 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2227 			return AOP_TRUNCATED_PAGE;
2228 		}
2229 		error = __lock_page_async(page, iocb->ki_waitq);
2230 		if (error)
2231 			return error;
2232 	}
2233 
2234 	if (!page->mapping)
2235 		goto truncated;
2236 
2237 	error = 0;
2238 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2239 		goto unlock;
2240 
2241 	error = -EAGAIN;
2242 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2243 		goto unlock;
2244 
2245 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2246 	if (error == AOP_TRUNCATED_PAGE)
2247 		put_page(page);
2248 	return error;
2249 truncated:
2250 	unlock_page(page);
2251 	put_page(page);
2252 	return AOP_TRUNCATED_PAGE;
2253 unlock:
2254 	unlock_page(page);
2255 	return error;
2256 }
2257 
2258 static int filemap_create_page(struct file *file,
2259 		struct address_space *mapping, pgoff_t index,
2260 		struct pagevec *pvec)
2261 {
2262 	struct page *page;
2263 	int error;
2264 
2265 	page = page_cache_alloc(mapping);
2266 	if (!page)
2267 		return -ENOMEM;
2268 
2269 	error = add_to_page_cache_lru(page, mapping, index,
2270 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2271 	if (error == -EEXIST)
2272 		error = AOP_TRUNCATED_PAGE;
2273 	if (error)
2274 		goto error;
2275 
2276 	error = filemap_read_page(file, mapping, page);
2277 	if (error)
2278 		goto error;
2279 
2280 	pagevec_add(pvec, page);
2281 	return 0;
2282 error:
2283 	put_page(page);
2284 	return error;
2285 }
2286 
2287 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2288 		struct address_space *mapping, struct page *page,
2289 		pgoff_t last_index)
2290 {
2291 	if (iocb->ki_flags & IOCB_NOIO)
2292 		return -EAGAIN;
2293 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2294 			page->index, last_index - page->index);
2295 	return 0;
2296 }
2297 
2298 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2299 		struct pagevec *pvec)
2300 {
2301 	struct file *filp = iocb->ki_filp;
2302 	struct address_space *mapping = filp->f_mapping;
2303 	struct file_ra_state *ra = &filp->f_ra;
2304 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2305 	pgoff_t last_index;
2306 	struct page *page;
2307 	int err = 0;
2308 
2309 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2310 retry:
2311 	if (fatal_signal_pending(current))
2312 		return -EINTR;
2313 
2314 	filemap_get_read_batch(mapping, index, last_index, pvec);
2315 	if (!pagevec_count(pvec)) {
2316 		if (iocb->ki_flags & IOCB_NOIO)
2317 			return -EAGAIN;
2318 		page_cache_sync_readahead(mapping, ra, filp, index,
2319 				last_index - index);
2320 		filemap_get_read_batch(mapping, index, last_index, pvec);
2321 	}
2322 	if (!pagevec_count(pvec)) {
2323 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2324 			return -EAGAIN;
2325 		err = filemap_create_page(filp, mapping,
2326 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2327 		if (err == AOP_TRUNCATED_PAGE)
2328 			goto retry;
2329 		return err;
2330 	}
2331 
2332 	page = pvec->pages[pagevec_count(pvec) - 1];
2333 	if (PageReadahead(page)) {
2334 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2335 		if (err)
2336 			goto err;
2337 	}
2338 	if (!PageUptodate(page)) {
2339 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2340 			iocb->ki_flags |= IOCB_NOWAIT;
2341 		err = filemap_update_page(iocb, mapping, iter, page);
2342 		if (err)
2343 			goto err;
2344 	}
2345 
2346 	return 0;
2347 err:
2348 	if (err < 0)
2349 		put_page(page);
2350 	if (likely(--pvec->nr))
2351 		return 0;
2352 	if (err == AOP_TRUNCATED_PAGE)
2353 		goto retry;
2354 	return err;
2355 }
2356 
2357 /**
2358  * filemap_read - Read data from the page cache.
2359  * @iocb: The iocb to read.
2360  * @iter: Destination for the data.
2361  * @already_read: Number of bytes already read by the caller.
2362  *
2363  * Copies data from the page cache.  If the data is not currently present,
2364  * uses the readahead and readpage address_space operations to fetch it.
2365  *
2366  * Return: Total number of bytes copied, including those already read by
2367  * the caller.  If an error happens before any bytes are copied, returns
2368  * a negative error number.
2369  */
2370 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2371 		ssize_t already_read)
2372 {
2373 	struct file *filp = iocb->ki_filp;
2374 	struct file_ra_state *ra = &filp->f_ra;
2375 	struct address_space *mapping = filp->f_mapping;
2376 	struct inode *inode = mapping->host;
2377 	struct pagevec pvec;
2378 	int i, error = 0;
2379 	bool writably_mapped;
2380 	loff_t isize, end_offset;
2381 
2382 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2383 		return 0;
2384 	if (unlikely(!iov_iter_count(iter)))
2385 		return 0;
2386 
2387 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2388 	pagevec_init(&pvec);
2389 
2390 	do {
2391 		cond_resched();
2392 
2393 		/*
2394 		 * If we've already successfully copied some data, then we
2395 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2396 		 * an async read NOWAIT at that point.
2397 		 */
2398 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2399 			iocb->ki_flags |= IOCB_NOWAIT;
2400 
2401 		error = filemap_get_pages(iocb, iter, &pvec);
2402 		if (error < 0)
2403 			break;
2404 
2405 		/*
2406 		 * i_size must be checked after we know the pages are Uptodate.
2407 		 *
2408 		 * Checking i_size after the check allows us to calculate
2409 		 * the correct value for "nr", which means the zero-filled
2410 		 * part of the page is not copied back to userspace (unless
2411 		 * another truncate extends the file - this is desired though).
2412 		 */
2413 		isize = i_size_read(inode);
2414 		if (unlikely(iocb->ki_pos >= isize))
2415 			goto put_pages;
2416 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2417 
2418 		/*
2419 		 * Once we start copying data, we don't want to be touching any
2420 		 * cachelines that might be contended:
2421 		 */
2422 		writably_mapped = mapping_writably_mapped(mapping);
2423 
2424 		/*
2425 		 * When a sequential read accesses a page several times, only
2426 		 * mark it as accessed the first time.
2427 		 */
2428 		if (iocb->ki_pos >> PAGE_SHIFT !=
2429 		    ra->prev_pos >> PAGE_SHIFT)
2430 			mark_page_accessed(pvec.pages[0]);
2431 
2432 		for (i = 0; i < pagevec_count(&pvec); i++) {
2433 			struct page *page = pvec.pages[i];
2434 			size_t page_size = thp_size(page);
2435 			size_t offset = iocb->ki_pos & (page_size - 1);
2436 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2437 					     page_size - offset);
2438 			size_t copied;
2439 
2440 			if (end_offset < page_offset(page))
2441 				break;
2442 			if (i > 0)
2443 				mark_page_accessed(page);
2444 			/*
2445 			 * If users can be writing to this page using arbitrary
2446 			 * virtual addresses, take care about potential aliasing
2447 			 * before reading the page on the kernel side.
2448 			 */
2449 			if (writably_mapped) {
2450 				int j;
2451 
2452 				for (j = 0; j < thp_nr_pages(page); j++)
2453 					flush_dcache_page(page + j);
2454 			}
2455 
2456 			copied = copy_page_to_iter(page, offset, bytes, iter);
2457 
2458 			already_read += copied;
2459 			iocb->ki_pos += copied;
2460 			ra->prev_pos = iocb->ki_pos;
2461 
2462 			if (copied < bytes) {
2463 				error = -EFAULT;
2464 				break;
2465 			}
2466 		}
2467 put_pages:
2468 		for (i = 0; i < pagevec_count(&pvec); i++)
2469 			put_page(pvec.pages[i]);
2470 		pagevec_reinit(&pvec);
2471 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2472 
2473 	file_accessed(filp);
2474 
2475 	return already_read ? already_read : error;
2476 }
2477 EXPORT_SYMBOL_GPL(filemap_read);
2478 
2479 /**
2480  * generic_file_read_iter - generic filesystem read routine
2481  * @iocb:	kernel I/O control block
2482  * @iter:	destination for the data read
2483  *
2484  * This is the "read_iter()" routine for all filesystems
2485  * that can use the page cache directly.
2486  *
2487  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2488  * be returned when no data can be read without waiting for I/O requests
2489  * to complete; it doesn't prevent readahead.
2490  *
2491  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2492  * requests shall be made for the read or for readahead.  When no data
2493  * can be read, -EAGAIN shall be returned.  When readahead would be
2494  * triggered, a partial, possibly empty read shall be returned.
2495  *
2496  * Return:
2497  * * number of bytes copied, even for partial reads
2498  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2499  */
2500 ssize_t
2501 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2502 {
2503 	size_t count = iov_iter_count(iter);
2504 	ssize_t retval = 0;
2505 
2506 	if (!count)
2507 		return 0; /* skip atime */
2508 
2509 	if (iocb->ki_flags & IOCB_DIRECT) {
2510 		struct file *file = iocb->ki_filp;
2511 		struct address_space *mapping = file->f_mapping;
2512 		struct inode *inode = mapping->host;
2513 		loff_t size;
2514 
2515 		size = i_size_read(inode);
2516 		if (iocb->ki_flags & IOCB_NOWAIT) {
2517 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2518 						   iocb->ki_pos + count - 1))
2519 				return -EAGAIN;
2520 		} else {
2521 			retval = filemap_write_and_wait_range(mapping,
2522 						iocb->ki_pos,
2523 					        iocb->ki_pos + count - 1);
2524 			if (retval < 0)
2525 				return retval;
2526 		}
2527 
2528 		file_accessed(file);
2529 
2530 		retval = mapping->a_ops->direct_IO(iocb, iter);
2531 		if (retval >= 0) {
2532 			iocb->ki_pos += retval;
2533 			count -= retval;
2534 		}
2535 		if (retval != -EIOCBQUEUED)
2536 			iov_iter_revert(iter, count - iov_iter_count(iter));
2537 
2538 		/*
2539 		 * Btrfs can have a short DIO read if we encounter
2540 		 * compressed extents, so if there was an error, or if
2541 		 * we've already read everything we wanted to, or if
2542 		 * there was a short read because we hit EOF, go ahead
2543 		 * and return.  Otherwise fallthrough to buffered io for
2544 		 * the rest of the read.  Buffered reads will not work for
2545 		 * DAX files, so don't bother trying.
2546 		 */
2547 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2548 		    IS_DAX(inode))
2549 			return retval;
2550 	}
2551 
2552 	return filemap_read(iocb, iter, retval);
2553 }
2554 EXPORT_SYMBOL(generic_file_read_iter);
2555 
2556 #ifdef CONFIG_MMU
2557 #define MMAP_LOTSAMISS  (100)
2558 /*
2559  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2560  * @vmf - the vm_fault for this fault.
2561  * @page - the page to lock.
2562  * @fpin - the pointer to the file we may pin (or is already pinned).
2563  *
2564  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2565  * It differs in that it actually returns the page locked if it returns 1 and 0
2566  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2567  * will point to the pinned file and needs to be fput()'ed at a later point.
2568  */
2569 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2570 				     struct file **fpin)
2571 {
2572 	if (trylock_page(page))
2573 		return 1;
2574 
2575 	/*
2576 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2577 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2578 	 * is supposed to work. We have way too many special cases..
2579 	 */
2580 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2581 		return 0;
2582 
2583 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2584 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2585 		if (__lock_page_killable(page)) {
2586 			/*
2587 			 * We didn't have the right flags to drop the mmap_lock,
2588 			 * but all fault_handlers only check for fatal signals
2589 			 * if we return VM_FAULT_RETRY, so we need to drop the
2590 			 * mmap_lock here and return 0 if we don't have a fpin.
2591 			 */
2592 			if (*fpin == NULL)
2593 				mmap_read_unlock(vmf->vma->vm_mm);
2594 			return 0;
2595 		}
2596 	} else
2597 		__lock_page(page);
2598 	return 1;
2599 }
2600 
2601 
2602 /*
2603  * Synchronous readahead happens when we don't even find a page in the page
2604  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2605  * to drop the mmap sem we return the file that was pinned in order for us to do
2606  * that.  If we didn't pin a file then we return NULL.  The file that is
2607  * returned needs to be fput()'ed when we're done with it.
2608  */
2609 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2610 {
2611 	struct file *file = vmf->vma->vm_file;
2612 	struct file_ra_state *ra = &file->f_ra;
2613 	struct address_space *mapping = file->f_mapping;
2614 	DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2615 	struct file *fpin = NULL;
2616 	unsigned int mmap_miss;
2617 
2618 	/* If we don't want any read-ahead, don't bother */
2619 	if (vmf->vma->vm_flags & VM_RAND_READ)
2620 		return fpin;
2621 	if (!ra->ra_pages)
2622 		return fpin;
2623 
2624 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2625 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2626 		page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2627 		return fpin;
2628 	}
2629 
2630 	/* Avoid banging the cache line if not needed */
2631 	mmap_miss = READ_ONCE(ra->mmap_miss);
2632 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2633 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2634 
2635 	/*
2636 	 * Do we miss much more than hit in this file? If so,
2637 	 * stop bothering with read-ahead. It will only hurt.
2638 	 */
2639 	if (mmap_miss > MMAP_LOTSAMISS)
2640 		return fpin;
2641 
2642 	/*
2643 	 * mmap read-around
2644 	 */
2645 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2646 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2647 	ra->size = ra->ra_pages;
2648 	ra->async_size = ra->ra_pages / 4;
2649 	ractl._index = ra->start;
2650 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2651 	return fpin;
2652 }
2653 
2654 /*
2655  * Asynchronous readahead happens when we find the page and PG_readahead,
2656  * so we want to possibly extend the readahead further.  We return the file that
2657  * was pinned if we have to drop the mmap_lock in order to do IO.
2658  */
2659 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2660 					    struct page *page)
2661 {
2662 	struct file *file = vmf->vma->vm_file;
2663 	struct file_ra_state *ra = &file->f_ra;
2664 	struct address_space *mapping = file->f_mapping;
2665 	struct file *fpin = NULL;
2666 	unsigned int mmap_miss;
2667 	pgoff_t offset = vmf->pgoff;
2668 
2669 	/* If we don't want any read-ahead, don't bother */
2670 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2671 		return fpin;
2672 	mmap_miss = READ_ONCE(ra->mmap_miss);
2673 	if (mmap_miss)
2674 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2675 	if (PageReadahead(page)) {
2676 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2677 		page_cache_async_readahead(mapping, ra, file,
2678 					   page, offset, ra->ra_pages);
2679 	}
2680 	return fpin;
2681 }
2682 
2683 /**
2684  * filemap_fault - read in file data for page fault handling
2685  * @vmf:	struct vm_fault containing details of the fault
2686  *
2687  * filemap_fault() is invoked via the vma operations vector for a
2688  * mapped memory region to read in file data during a page fault.
2689  *
2690  * The goto's are kind of ugly, but this streamlines the normal case of having
2691  * it in the page cache, and handles the special cases reasonably without
2692  * having a lot of duplicated code.
2693  *
2694  * vma->vm_mm->mmap_lock must be held on entry.
2695  *
2696  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2697  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2698  *
2699  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2700  * has not been released.
2701  *
2702  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2703  *
2704  * Return: bitwise-OR of %VM_FAULT_ codes.
2705  */
2706 vm_fault_t filemap_fault(struct vm_fault *vmf)
2707 {
2708 	int error;
2709 	struct file *file = vmf->vma->vm_file;
2710 	struct file *fpin = NULL;
2711 	struct address_space *mapping = file->f_mapping;
2712 	struct file_ra_state *ra = &file->f_ra;
2713 	struct inode *inode = mapping->host;
2714 	pgoff_t offset = vmf->pgoff;
2715 	pgoff_t max_off;
2716 	struct page *page;
2717 	vm_fault_t ret = 0;
2718 
2719 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2720 	if (unlikely(offset >= max_off))
2721 		return VM_FAULT_SIGBUS;
2722 
2723 	/*
2724 	 * Do we have something in the page cache already?
2725 	 */
2726 	page = find_get_page(mapping, offset);
2727 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2728 		/*
2729 		 * We found the page, so try async readahead before
2730 		 * waiting for the lock.
2731 		 */
2732 		fpin = do_async_mmap_readahead(vmf, page);
2733 	} else if (!page) {
2734 		/* No page in the page cache at all */
2735 		count_vm_event(PGMAJFAULT);
2736 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2737 		ret = VM_FAULT_MAJOR;
2738 		fpin = do_sync_mmap_readahead(vmf);
2739 retry_find:
2740 		page = pagecache_get_page(mapping, offset,
2741 					  FGP_CREAT|FGP_FOR_MMAP,
2742 					  vmf->gfp_mask);
2743 		if (!page) {
2744 			if (fpin)
2745 				goto out_retry;
2746 			return VM_FAULT_OOM;
2747 		}
2748 	}
2749 
2750 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2751 		goto out_retry;
2752 
2753 	/* Did it get truncated? */
2754 	if (unlikely(compound_head(page)->mapping != mapping)) {
2755 		unlock_page(page);
2756 		put_page(page);
2757 		goto retry_find;
2758 	}
2759 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2760 
2761 	/*
2762 	 * We have a locked page in the page cache, now we need to check
2763 	 * that it's up-to-date. If not, it is going to be due to an error.
2764 	 */
2765 	if (unlikely(!PageUptodate(page)))
2766 		goto page_not_uptodate;
2767 
2768 	/*
2769 	 * We've made it this far and we had to drop our mmap_lock, now is the
2770 	 * time to return to the upper layer and have it re-find the vma and
2771 	 * redo the fault.
2772 	 */
2773 	if (fpin) {
2774 		unlock_page(page);
2775 		goto out_retry;
2776 	}
2777 
2778 	/*
2779 	 * Found the page and have a reference on it.
2780 	 * We must recheck i_size under page lock.
2781 	 */
2782 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2783 	if (unlikely(offset >= max_off)) {
2784 		unlock_page(page);
2785 		put_page(page);
2786 		return VM_FAULT_SIGBUS;
2787 	}
2788 
2789 	vmf->page = page;
2790 	return ret | VM_FAULT_LOCKED;
2791 
2792 page_not_uptodate:
2793 	/*
2794 	 * Umm, take care of errors if the page isn't up-to-date.
2795 	 * Try to re-read it _once_. We do this synchronously,
2796 	 * because there really aren't any performance issues here
2797 	 * and we need to check for errors.
2798 	 */
2799 	ClearPageError(page);
2800 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2801 	error = mapping->a_ops->readpage(file, page);
2802 	if (!error) {
2803 		wait_on_page_locked(page);
2804 		if (!PageUptodate(page))
2805 			error = -EIO;
2806 	}
2807 	if (fpin)
2808 		goto out_retry;
2809 	put_page(page);
2810 
2811 	if (!error || error == AOP_TRUNCATED_PAGE)
2812 		goto retry_find;
2813 
2814 	shrink_readahead_size_eio(ra);
2815 	return VM_FAULT_SIGBUS;
2816 
2817 out_retry:
2818 	/*
2819 	 * We dropped the mmap_lock, we need to return to the fault handler to
2820 	 * re-find the vma and come back and find our hopefully still populated
2821 	 * page.
2822 	 */
2823 	if (page)
2824 		put_page(page);
2825 	if (fpin)
2826 		fput(fpin);
2827 	return ret | VM_FAULT_RETRY;
2828 }
2829 EXPORT_SYMBOL(filemap_fault);
2830 
2831 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
2832 {
2833 	struct mm_struct *mm = vmf->vma->vm_mm;
2834 
2835 	/* Huge page is mapped? No need to proceed. */
2836 	if (pmd_trans_huge(*vmf->pmd)) {
2837 		unlock_page(page);
2838 		put_page(page);
2839 		return true;
2840 	}
2841 
2842 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
2843 	    vm_fault_t ret = do_set_pmd(vmf, page);
2844 	    if (!ret) {
2845 		    /* The page is mapped successfully, reference consumed. */
2846 		    unlock_page(page);
2847 		    return true;
2848 	    }
2849 	}
2850 
2851 	if (pmd_none(*vmf->pmd)) {
2852 		vmf->ptl = pmd_lock(mm, vmf->pmd);
2853 		if (likely(pmd_none(*vmf->pmd))) {
2854 			mm_inc_nr_ptes(mm);
2855 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
2856 			vmf->prealloc_pte = NULL;
2857 		}
2858 		spin_unlock(vmf->ptl);
2859 	}
2860 
2861 	/* See comment in handle_pte_fault() */
2862 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
2863 		unlock_page(page);
2864 		put_page(page);
2865 		return true;
2866 	}
2867 
2868 	return false;
2869 }
2870 
2871 static struct page *next_uptodate_page(struct page *page,
2872 				       struct address_space *mapping,
2873 				       struct xa_state *xas, pgoff_t end_pgoff)
2874 {
2875 	unsigned long max_idx;
2876 
2877 	do {
2878 		if (!page)
2879 			return NULL;
2880 		if (xas_retry(xas, page))
2881 			continue;
2882 		if (xa_is_value(page))
2883 			continue;
2884 		if (PageLocked(page))
2885 			continue;
2886 		if (!page_cache_get_speculative(page))
2887 			continue;
2888 		/* Has the page moved or been split? */
2889 		if (unlikely(page != xas_reload(xas)))
2890 			goto skip;
2891 		if (!PageUptodate(page) || PageReadahead(page))
2892 			goto skip;
2893 		if (PageHWPoison(page))
2894 			goto skip;
2895 		if (!trylock_page(page))
2896 			goto skip;
2897 		if (page->mapping != mapping)
2898 			goto unlock;
2899 		if (!PageUptodate(page))
2900 			goto unlock;
2901 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2902 		if (xas->xa_index >= max_idx)
2903 			goto unlock;
2904 		return page;
2905 unlock:
2906 		unlock_page(page);
2907 skip:
2908 		put_page(page);
2909 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
2910 
2911 	return NULL;
2912 }
2913 
2914 static inline struct page *first_map_page(struct address_space *mapping,
2915 					  struct xa_state *xas,
2916 					  pgoff_t end_pgoff)
2917 {
2918 	return next_uptodate_page(xas_find(xas, end_pgoff),
2919 				  mapping, xas, end_pgoff);
2920 }
2921 
2922 static inline struct page *next_map_page(struct address_space *mapping,
2923 					 struct xa_state *xas,
2924 					 pgoff_t end_pgoff)
2925 {
2926 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
2927 				  mapping, xas, end_pgoff);
2928 }
2929 
2930 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2931 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
2932 {
2933 	struct vm_area_struct *vma = vmf->vma;
2934 	struct file *file = vma->vm_file;
2935 	struct address_space *mapping = file->f_mapping;
2936 	pgoff_t last_pgoff = start_pgoff;
2937 	unsigned long addr;
2938 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2939 	struct page *head, *page;
2940 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2941 	vm_fault_t ret = 0;
2942 
2943 	rcu_read_lock();
2944 	head = first_map_page(mapping, &xas, end_pgoff);
2945 	if (!head)
2946 		goto out;
2947 
2948 	if (filemap_map_pmd(vmf, head)) {
2949 		ret = VM_FAULT_NOPAGE;
2950 		goto out;
2951 	}
2952 
2953 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
2954 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
2955 	do {
2956 		page = find_subpage(head, xas.xa_index);
2957 		if (PageHWPoison(page))
2958 			goto unlock;
2959 
2960 		if (mmap_miss > 0)
2961 			mmap_miss--;
2962 
2963 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2964 		vmf->pte += xas.xa_index - last_pgoff;
2965 		last_pgoff = xas.xa_index;
2966 
2967 		if (!pte_none(*vmf->pte))
2968 			goto unlock;
2969 
2970 		/* We're about to handle the fault */
2971 		if (vmf->address == addr)
2972 			ret = VM_FAULT_NOPAGE;
2973 
2974 		do_set_pte(vmf, page, addr);
2975 		/* no need to invalidate: a not-present page won't be cached */
2976 		update_mmu_cache(vma, addr, vmf->pte);
2977 		unlock_page(head);
2978 		continue;
2979 unlock:
2980 		unlock_page(head);
2981 		put_page(head);
2982 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
2983 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2984 out:
2985 	rcu_read_unlock();
2986 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2987 	return ret;
2988 }
2989 EXPORT_SYMBOL(filemap_map_pages);
2990 
2991 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2992 {
2993 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2994 	struct page *page = vmf->page;
2995 	vm_fault_t ret = VM_FAULT_LOCKED;
2996 
2997 	sb_start_pagefault(mapping->host->i_sb);
2998 	file_update_time(vmf->vma->vm_file);
2999 	lock_page(page);
3000 	if (page->mapping != mapping) {
3001 		unlock_page(page);
3002 		ret = VM_FAULT_NOPAGE;
3003 		goto out;
3004 	}
3005 	/*
3006 	 * We mark the page dirty already here so that when freeze is in
3007 	 * progress, we are guaranteed that writeback during freezing will
3008 	 * see the dirty page and writeprotect it again.
3009 	 */
3010 	set_page_dirty(page);
3011 	wait_for_stable_page(page);
3012 out:
3013 	sb_end_pagefault(mapping->host->i_sb);
3014 	return ret;
3015 }
3016 
3017 const struct vm_operations_struct generic_file_vm_ops = {
3018 	.fault		= filemap_fault,
3019 	.map_pages	= filemap_map_pages,
3020 	.page_mkwrite	= filemap_page_mkwrite,
3021 };
3022 
3023 /* This is used for a general mmap of a disk file */
3024 
3025 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3026 {
3027 	struct address_space *mapping = file->f_mapping;
3028 
3029 	if (!mapping->a_ops->readpage)
3030 		return -ENOEXEC;
3031 	file_accessed(file);
3032 	vma->vm_ops = &generic_file_vm_ops;
3033 	return 0;
3034 }
3035 
3036 /*
3037  * This is for filesystems which do not implement ->writepage.
3038  */
3039 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3040 {
3041 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3042 		return -EINVAL;
3043 	return generic_file_mmap(file, vma);
3044 }
3045 #else
3046 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3047 {
3048 	return VM_FAULT_SIGBUS;
3049 }
3050 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3051 {
3052 	return -ENOSYS;
3053 }
3054 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3055 {
3056 	return -ENOSYS;
3057 }
3058 #endif /* CONFIG_MMU */
3059 
3060 EXPORT_SYMBOL(filemap_page_mkwrite);
3061 EXPORT_SYMBOL(generic_file_mmap);
3062 EXPORT_SYMBOL(generic_file_readonly_mmap);
3063 
3064 static struct page *wait_on_page_read(struct page *page)
3065 {
3066 	if (!IS_ERR(page)) {
3067 		wait_on_page_locked(page);
3068 		if (!PageUptodate(page)) {
3069 			put_page(page);
3070 			page = ERR_PTR(-EIO);
3071 		}
3072 	}
3073 	return page;
3074 }
3075 
3076 static struct page *do_read_cache_page(struct address_space *mapping,
3077 				pgoff_t index,
3078 				int (*filler)(void *, struct page *),
3079 				void *data,
3080 				gfp_t gfp)
3081 {
3082 	struct page *page;
3083 	int err;
3084 repeat:
3085 	page = find_get_page(mapping, index);
3086 	if (!page) {
3087 		page = __page_cache_alloc(gfp);
3088 		if (!page)
3089 			return ERR_PTR(-ENOMEM);
3090 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3091 		if (unlikely(err)) {
3092 			put_page(page);
3093 			if (err == -EEXIST)
3094 				goto repeat;
3095 			/* Presumably ENOMEM for xarray node */
3096 			return ERR_PTR(err);
3097 		}
3098 
3099 filler:
3100 		if (filler)
3101 			err = filler(data, page);
3102 		else
3103 			err = mapping->a_ops->readpage(data, page);
3104 
3105 		if (err < 0) {
3106 			put_page(page);
3107 			return ERR_PTR(err);
3108 		}
3109 
3110 		page = wait_on_page_read(page);
3111 		if (IS_ERR(page))
3112 			return page;
3113 		goto out;
3114 	}
3115 	if (PageUptodate(page))
3116 		goto out;
3117 
3118 	/*
3119 	 * Page is not up to date and may be locked due to one of the following
3120 	 * case a: Page is being filled and the page lock is held
3121 	 * case b: Read/write error clearing the page uptodate status
3122 	 * case c: Truncation in progress (page locked)
3123 	 * case d: Reclaim in progress
3124 	 *
3125 	 * Case a, the page will be up to date when the page is unlocked.
3126 	 *    There is no need to serialise on the page lock here as the page
3127 	 *    is pinned so the lock gives no additional protection. Even if the
3128 	 *    page is truncated, the data is still valid if PageUptodate as
3129 	 *    it's a race vs truncate race.
3130 	 * Case b, the page will not be up to date
3131 	 * Case c, the page may be truncated but in itself, the data may still
3132 	 *    be valid after IO completes as it's a read vs truncate race. The
3133 	 *    operation must restart if the page is not uptodate on unlock but
3134 	 *    otherwise serialising on page lock to stabilise the mapping gives
3135 	 *    no additional guarantees to the caller as the page lock is
3136 	 *    released before return.
3137 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3138 	 *    will be a race with remove_mapping that determines if the mapping
3139 	 *    is valid on unlock but otherwise the data is valid and there is
3140 	 *    no need to serialise with page lock.
3141 	 *
3142 	 * As the page lock gives no additional guarantee, we optimistically
3143 	 * wait on the page to be unlocked and check if it's up to date and
3144 	 * use the page if it is. Otherwise, the page lock is required to
3145 	 * distinguish between the different cases. The motivation is that we
3146 	 * avoid spurious serialisations and wakeups when multiple processes
3147 	 * wait on the same page for IO to complete.
3148 	 */
3149 	wait_on_page_locked(page);
3150 	if (PageUptodate(page))
3151 		goto out;
3152 
3153 	/* Distinguish between all the cases under the safety of the lock */
3154 	lock_page(page);
3155 
3156 	/* Case c or d, restart the operation */
3157 	if (!page->mapping) {
3158 		unlock_page(page);
3159 		put_page(page);
3160 		goto repeat;
3161 	}
3162 
3163 	/* Someone else locked and filled the page in a very small window */
3164 	if (PageUptodate(page)) {
3165 		unlock_page(page);
3166 		goto out;
3167 	}
3168 
3169 	/*
3170 	 * A previous I/O error may have been due to temporary
3171 	 * failures.
3172 	 * Clear page error before actual read, PG_error will be
3173 	 * set again if read page fails.
3174 	 */
3175 	ClearPageError(page);
3176 	goto filler;
3177 
3178 out:
3179 	mark_page_accessed(page);
3180 	return page;
3181 }
3182 
3183 /**
3184  * read_cache_page - read into page cache, fill it if needed
3185  * @mapping:	the page's address_space
3186  * @index:	the page index
3187  * @filler:	function to perform the read
3188  * @data:	first arg to filler(data, page) function, often left as NULL
3189  *
3190  * Read into the page cache. If a page already exists, and PageUptodate() is
3191  * not set, try to fill the page and wait for it to become unlocked.
3192  *
3193  * If the page does not get brought uptodate, return -EIO.
3194  *
3195  * Return: up to date page on success, ERR_PTR() on failure.
3196  */
3197 struct page *read_cache_page(struct address_space *mapping,
3198 				pgoff_t index,
3199 				int (*filler)(void *, struct page *),
3200 				void *data)
3201 {
3202 	return do_read_cache_page(mapping, index, filler, data,
3203 			mapping_gfp_mask(mapping));
3204 }
3205 EXPORT_SYMBOL(read_cache_page);
3206 
3207 /**
3208  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3209  * @mapping:	the page's address_space
3210  * @index:	the page index
3211  * @gfp:	the page allocator flags to use if allocating
3212  *
3213  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3214  * any new page allocations done using the specified allocation flags.
3215  *
3216  * If the page does not get brought uptodate, return -EIO.
3217  *
3218  * Return: up to date page on success, ERR_PTR() on failure.
3219  */
3220 struct page *read_cache_page_gfp(struct address_space *mapping,
3221 				pgoff_t index,
3222 				gfp_t gfp)
3223 {
3224 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3225 }
3226 EXPORT_SYMBOL(read_cache_page_gfp);
3227 
3228 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3229 				loff_t pos, unsigned len, unsigned flags,
3230 				struct page **pagep, void **fsdata)
3231 {
3232 	const struct address_space_operations *aops = mapping->a_ops;
3233 
3234 	return aops->write_begin(file, mapping, pos, len, flags,
3235 							pagep, fsdata);
3236 }
3237 EXPORT_SYMBOL(pagecache_write_begin);
3238 
3239 int pagecache_write_end(struct file *file, struct address_space *mapping,
3240 				loff_t pos, unsigned len, unsigned copied,
3241 				struct page *page, void *fsdata)
3242 {
3243 	const struct address_space_operations *aops = mapping->a_ops;
3244 
3245 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3246 }
3247 EXPORT_SYMBOL(pagecache_write_end);
3248 
3249 /*
3250  * Warn about a page cache invalidation failure during a direct I/O write.
3251  */
3252 void dio_warn_stale_pagecache(struct file *filp)
3253 {
3254 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3255 	char pathname[128];
3256 	char *path;
3257 
3258 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3259 	if (__ratelimit(&_rs)) {
3260 		path = file_path(filp, pathname, sizeof(pathname));
3261 		if (IS_ERR(path))
3262 			path = "(unknown)";
3263 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3264 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3265 			current->comm);
3266 	}
3267 }
3268 
3269 ssize_t
3270 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3271 {
3272 	struct file	*file = iocb->ki_filp;
3273 	struct address_space *mapping = file->f_mapping;
3274 	struct inode	*inode = mapping->host;
3275 	loff_t		pos = iocb->ki_pos;
3276 	ssize_t		written;
3277 	size_t		write_len;
3278 	pgoff_t		end;
3279 
3280 	write_len = iov_iter_count(from);
3281 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3282 
3283 	if (iocb->ki_flags & IOCB_NOWAIT) {
3284 		/* If there are pages to writeback, return */
3285 		if (filemap_range_has_page(file->f_mapping, pos,
3286 					   pos + write_len - 1))
3287 			return -EAGAIN;
3288 	} else {
3289 		written = filemap_write_and_wait_range(mapping, pos,
3290 							pos + write_len - 1);
3291 		if (written)
3292 			goto out;
3293 	}
3294 
3295 	/*
3296 	 * After a write we want buffered reads to be sure to go to disk to get
3297 	 * the new data.  We invalidate clean cached page from the region we're
3298 	 * about to write.  We do this *before* the write so that we can return
3299 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3300 	 */
3301 	written = invalidate_inode_pages2_range(mapping,
3302 					pos >> PAGE_SHIFT, end);
3303 	/*
3304 	 * If a page can not be invalidated, return 0 to fall back
3305 	 * to buffered write.
3306 	 */
3307 	if (written) {
3308 		if (written == -EBUSY)
3309 			return 0;
3310 		goto out;
3311 	}
3312 
3313 	written = mapping->a_ops->direct_IO(iocb, from);
3314 
3315 	/*
3316 	 * Finally, try again to invalidate clean pages which might have been
3317 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3318 	 * if the source of the write was an mmap'ed region of the file
3319 	 * we're writing.  Either one is a pretty crazy thing to do,
3320 	 * so we don't support it 100%.  If this invalidation
3321 	 * fails, tough, the write still worked...
3322 	 *
3323 	 * Most of the time we do not need this since dio_complete() will do
3324 	 * the invalidation for us. However there are some file systems that
3325 	 * do not end up with dio_complete() being called, so let's not break
3326 	 * them by removing it completely.
3327 	 *
3328 	 * Noticeable example is a blkdev_direct_IO().
3329 	 *
3330 	 * Skip invalidation for async writes or if mapping has no pages.
3331 	 */
3332 	if (written > 0 && mapping->nrpages &&
3333 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3334 		dio_warn_stale_pagecache(file);
3335 
3336 	if (written > 0) {
3337 		pos += written;
3338 		write_len -= written;
3339 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3340 			i_size_write(inode, pos);
3341 			mark_inode_dirty(inode);
3342 		}
3343 		iocb->ki_pos = pos;
3344 	}
3345 	if (written != -EIOCBQUEUED)
3346 		iov_iter_revert(from, write_len - iov_iter_count(from));
3347 out:
3348 	return written;
3349 }
3350 EXPORT_SYMBOL(generic_file_direct_write);
3351 
3352 /*
3353  * Find or create a page at the given pagecache position. Return the locked
3354  * page. This function is specifically for buffered writes.
3355  */
3356 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3357 					pgoff_t index, unsigned flags)
3358 {
3359 	struct page *page;
3360 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3361 
3362 	if (flags & AOP_FLAG_NOFS)
3363 		fgp_flags |= FGP_NOFS;
3364 
3365 	page = pagecache_get_page(mapping, index, fgp_flags,
3366 			mapping_gfp_mask(mapping));
3367 	if (page)
3368 		wait_for_stable_page(page);
3369 
3370 	return page;
3371 }
3372 EXPORT_SYMBOL(grab_cache_page_write_begin);
3373 
3374 ssize_t generic_perform_write(struct file *file,
3375 				struct iov_iter *i, loff_t pos)
3376 {
3377 	struct address_space *mapping = file->f_mapping;
3378 	const struct address_space_operations *a_ops = mapping->a_ops;
3379 	long status = 0;
3380 	ssize_t written = 0;
3381 	unsigned int flags = 0;
3382 
3383 	do {
3384 		struct page *page;
3385 		unsigned long offset;	/* Offset into pagecache page */
3386 		unsigned long bytes;	/* Bytes to write to page */
3387 		size_t copied;		/* Bytes copied from user */
3388 		void *fsdata;
3389 
3390 		offset = (pos & (PAGE_SIZE - 1));
3391 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3392 						iov_iter_count(i));
3393 
3394 again:
3395 		/*
3396 		 * Bring in the user page that we will copy from _first_.
3397 		 * Otherwise there's a nasty deadlock on copying from the
3398 		 * same page as we're writing to, without it being marked
3399 		 * up-to-date.
3400 		 *
3401 		 * Not only is this an optimisation, but it is also required
3402 		 * to check that the address is actually valid, when atomic
3403 		 * usercopies are used, below.
3404 		 */
3405 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3406 			status = -EFAULT;
3407 			break;
3408 		}
3409 
3410 		if (fatal_signal_pending(current)) {
3411 			status = -EINTR;
3412 			break;
3413 		}
3414 
3415 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3416 						&page, &fsdata);
3417 		if (unlikely(status < 0))
3418 			break;
3419 
3420 		if (mapping_writably_mapped(mapping))
3421 			flush_dcache_page(page);
3422 
3423 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3424 		flush_dcache_page(page);
3425 
3426 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3427 						page, fsdata);
3428 		if (unlikely(status < 0))
3429 			break;
3430 		copied = status;
3431 
3432 		cond_resched();
3433 
3434 		iov_iter_advance(i, copied);
3435 		if (unlikely(copied == 0)) {
3436 			/*
3437 			 * If we were unable to copy any data at all, we must
3438 			 * fall back to a single segment length write.
3439 			 *
3440 			 * If we didn't fallback here, we could livelock
3441 			 * because not all segments in the iov can be copied at
3442 			 * once without a pagefault.
3443 			 */
3444 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3445 						iov_iter_single_seg_count(i));
3446 			goto again;
3447 		}
3448 		pos += copied;
3449 		written += copied;
3450 
3451 		balance_dirty_pages_ratelimited(mapping);
3452 	} while (iov_iter_count(i));
3453 
3454 	return written ? written : status;
3455 }
3456 EXPORT_SYMBOL(generic_perform_write);
3457 
3458 /**
3459  * __generic_file_write_iter - write data to a file
3460  * @iocb:	IO state structure (file, offset, etc.)
3461  * @from:	iov_iter with data to write
3462  *
3463  * This function does all the work needed for actually writing data to a
3464  * file. It does all basic checks, removes SUID from the file, updates
3465  * modification times and calls proper subroutines depending on whether we
3466  * do direct IO or a standard buffered write.
3467  *
3468  * It expects i_mutex to be grabbed unless we work on a block device or similar
3469  * object which does not need locking at all.
3470  *
3471  * This function does *not* take care of syncing data in case of O_SYNC write.
3472  * A caller has to handle it. This is mainly due to the fact that we want to
3473  * avoid syncing under i_mutex.
3474  *
3475  * Return:
3476  * * number of bytes written, even for truncated writes
3477  * * negative error code if no data has been written at all
3478  */
3479 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3480 {
3481 	struct file *file = iocb->ki_filp;
3482 	struct address_space * mapping = file->f_mapping;
3483 	struct inode 	*inode = mapping->host;
3484 	ssize_t		written = 0;
3485 	ssize_t		err;
3486 	ssize_t		status;
3487 
3488 	/* We can write back this queue in page reclaim */
3489 	current->backing_dev_info = inode_to_bdi(inode);
3490 	err = file_remove_privs(file);
3491 	if (err)
3492 		goto out;
3493 
3494 	err = file_update_time(file);
3495 	if (err)
3496 		goto out;
3497 
3498 	if (iocb->ki_flags & IOCB_DIRECT) {
3499 		loff_t pos, endbyte;
3500 
3501 		written = generic_file_direct_write(iocb, from);
3502 		/*
3503 		 * If the write stopped short of completing, fall back to
3504 		 * buffered writes.  Some filesystems do this for writes to
3505 		 * holes, for example.  For DAX files, a buffered write will
3506 		 * not succeed (even if it did, DAX does not handle dirty
3507 		 * page-cache pages correctly).
3508 		 */
3509 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3510 			goto out;
3511 
3512 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3513 		/*
3514 		 * If generic_perform_write() returned a synchronous error
3515 		 * then we want to return the number of bytes which were
3516 		 * direct-written, or the error code if that was zero.  Note
3517 		 * that this differs from normal direct-io semantics, which
3518 		 * will return -EFOO even if some bytes were written.
3519 		 */
3520 		if (unlikely(status < 0)) {
3521 			err = status;
3522 			goto out;
3523 		}
3524 		/*
3525 		 * We need to ensure that the page cache pages are written to
3526 		 * disk and invalidated to preserve the expected O_DIRECT
3527 		 * semantics.
3528 		 */
3529 		endbyte = pos + status - 1;
3530 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3531 		if (err == 0) {
3532 			iocb->ki_pos = endbyte + 1;
3533 			written += status;
3534 			invalidate_mapping_pages(mapping,
3535 						 pos >> PAGE_SHIFT,
3536 						 endbyte >> PAGE_SHIFT);
3537 		} else {
3538 			/*
3539 			 * We don't know how much we wrote, so just return
3540 			 * the number of bytes which were direct-written
3541 			 */
3542 		}
3543 	} else {
3544 		written = generic_perform_write(file, from, iocb->ki_pos);
3545 		if (likely(written > 0))
3546 			iocb->ki_pos += written;
3547 	}
3548 out:
3549 	current->backing_dev_info = NULL;
3550 	return written ? written : err;
3551 }
3552 EXPORT_SYMBOL(__generic_file_write_iter);
3553 
3554 /**
3555  * generic_file_write_iter - write data to a file
3556  * @iocb:	IO state structure
3557  * @from:	iov_iter with data to write
3558  *
3559  * This is a wrapper around __generic_file_write_iter() to be used by most
3560  * filesystems. It takes care of syncing the file in case of O_SYNC file
3561  * and acquires i_mutex as needed.
3562  * Return:
3563  * * negative error code if no data has been written at all of
3564  *   vfs_fsync_range() failed for a synchronous write
3565  * * number of bytes written, even for truncated writes
3566  */
3567 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3568 {
3569 	struct file *file = iocb->ki_filp;
3570 	struct inode *inode = file->f_mapping->host;
3571 	ssize_t ret;
3572 
3573 	inode_lock(inode);
3574 	ret = generic_write_checks(iocb, from);
3575 	if (ret > 0)
3576 		ret = __generic_file_write_iter(iocb, from);
3577 	inode_unlock(inode);
3578 
3579 	if (ret > 0)
3580 		ret = generic_write_sync(iocb, ret);
3581 	return ret;
3582 }
3583 EXPORT_SYMBOL(generic_file_write_iter);
3584 
3585 /**
3586  * try_to_release_page() - release old fs-specific metadata on a page
3587  *
3588  * @page: the page which the kernel is trying to free
3589  * @gfp_mask: memory allocation flags (and I/O mode)
3590  *
3591  * The address_space is to try to release any data against the page
3592  * (presumably at page->private).
3593  *
3594  * This may also be called if PG_fscache is set on a page, indicating that the
3595  * page is known to the local caching routines.
3596  *
3597  * The @gfp_mask argument specifies whether I/O may be performed to release
3598  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3599  *
3600  * Return: %1 if the release was successful, otherwise return zero.
3601  */
3602 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3603 {
3604 	struct address_space * const mapping = page->mapping;
3605 
3606 	BUG_ON(!PageLocked(page));
3607 	if (PageWriteback(page))
3608 		return 0;
3609 
3610 	if (mapping && mapping->a_ops->releasepage)
3611 		return mapping->a_ops->releasepage(page, gfp_mask);
3612 	return try_to_free_buffers(page);
3613 }
3614 
3615 EXPORT_SYMBOL(try_to_release_page);
3616