1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include "internal.h" 36 37 /* 38 * FIXME: remove all knowledge of the buffer layer from the core VM 39 */ 40 #include <linux/buffer_head.h> /* for generic_osync_inode */ 41 42 #include <asm/mman.h> 43 44 static ssize_t 45 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 46 loff_t offset, unsigned long nr_segs); 47 48 /* 49 * Shared mappings implemented 30.11.1994. It's not fully working yet, 50 * though. 51 * 52 * Shared mappings now work. 15.8.1995 Bruno. 53 * 54 * finished 'unifying' the page and buffer cache and SMP-threaded the 55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 56 * 57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 58 */ 59 60 /* 61 * Lock ordering: 62 * 63 * ->i_mmap_lock (vmtruncate) 64 * ->private_lock (__free_pte->__set_page_dirty_buffers) 65 * ->swap_lock (exclusive_swap_page, others) 66 * ->mapping->tree_lock 67 * ->zone.lock 68 * 69 * ->i_mutex 70 * ->i_mmap_lock (truncate->unmap_mapping_range) 71 * 72 * ->mmap_sem 73 * ->i_mmap_lock 74 * ->page_table_lock or pte_lock (various, mainly in memory.c) 75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 76 * 77 * ->mmap_sem 78 * ->lock_page (access_process_vm) 79 * 80 * ->i_mutex (generic_file_buffered_write) 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 82 * 83 * ->i_mutex 84 * ->i_alloc_sem (various) 85 * 86 * ->inode_lock 87 * ->sb_lock (fs/fs-writeback.c) 88 * ->mapping->tree_lock (__sync_single_inode) 89 * 90 * ->i_mmap_lock 91 * ->anon_vma.lock (vma_adjust) 92 * 93 * ->anon_vma.lock 94 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 95 * 96 * ->page_table_lock or pte_lock 97 * ->swap_lock (try_to_unmap_one) 98 * ->private_lock (try_to_unmap_one) 99 * ->tree_lock (try_to_unmap_one) 100 * ->zone.lru_lock (follow_page->mark_page_accessed) 101 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 102 * ->private_lock (page_remove_rmap->set_page_dirty) 103 * ->tree_lock (page_remove_rmap->set_page_dirty) 104 * ->inode_lock (page_remove_rmap->set_page_dirty) 105 * ->inode_lock (zap_pte_range->set_page_dirty) 106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 107 * 108 * ->task->proc_lock 109 * ->dcache_lock (proc_pid_lookup) 110 */ 111 112 /* 113 * Remove a page from the page cache and free it. Caller has to make 114 * sure the page is locked and that nobody else uses it - or that usage 115 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 116 */ 117 void __remove_from_page_cache(struct page *page) 118 { 119 struct address_space *mapping = page->mapping; 120 121 radix_tree_delete(&mapping->page_tree, page->index); 122 page->mapping = NULL; 123 mapping->nrpages--; 124 __dec_zone_page_state(page, NR_FILE_PAGES); 125 BUG_ON(page_mapped(page)); 126 } 127 128 void remove_from_page_cache(struct page *page) 129 { 130 struct address_space *mapping = page->mapping; 131 132 BUG_ON(!PageLocked(page)); 133 134 write_lock_irq(&mapping->tree_lock); 135 __remove_from_page_cache(page); 136 write_unlock_irq(&mapping->tree_lock); 137 } 138 139 static int sync_page(void *word) 140 { 141 struct address_space *mapping; 142 struct page *page; 143 144 page = container_of((unsigned long *)word, struct page, flags); 145 146 /* 147 * page_mapping() is being called without PG_locked held. 148 * Some knowledge of the state and use of the page is used to 149 * reduce the requirements down to a memory barrier. 150 * The danger here is of a stale page_mapping() return value 151 * indicating a struct address_space different from the one it's 152 * associated with when it is associated with one. 153 * After smp_mb(), it's either the correct page_mapping() for 154 * the page, or an old page_mapping() and the page's own 155 * page_mapping() has gone NULL. 156 * The ->sync_page() address_space operation must tolerate 157 * page_mapping() going NULL. By an amazing coincidence, 158 * this comes about because none of the users of the page 159 * in the ->sync_page() methods make essential use of the 160 * page_mapping(), merely passing the page down to the backing 161 * device's unplug functions when it's non-NULL, which in turn 162 * ignore it for all cases but swap, where only page_private(page) is 163 * of interest. When page_mapping() does go NULL, the entire 164 * call stack gracefully ignores the page and returns. 165 * -- wli 166 */ 167 smp_mb(); 168 mapping = page_mapping(page); 169 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 170 mapping->a_ops->sync_page(page); 171 io_schedule(); 172 return 0; 173 } 174 175 /** 176 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 177 * @mapping: address space structure to write 178 * @start: offset in bytes where the range starts 179 * @end: offset in bytes where the range ends (inclusive) 180 * @sync_mode: enable synchronous operation 181 * 182 * Start writeback against all of a mapping's dirty pages that lie 183 * within the byte offsets <start, end> inclusive. 184 * 185 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 186 * opposed to a regular memory cleansing writeback. The difference between 187 * these two operations is that if a dirty page/buffer is encountered, it must 188 * be waited upon, and not just skipped over. 189 */ 190 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 191 loff_t end, int sync_mode) 192 { 193 int ret; 194 struct writeback_control wbc = { 195 .sync_mode = sync_mode, 196 .nr_to_write = mapping->nrpages * 2, 197 .range_start = start, 198 .range_end = end, 199 }; 200 201 if (!mapping_cap_writeback_dirty(mapping)) 202 return 0; 203 204 ret = do_writepages(mapping, &wbc); 205 return ret; 206 } 207 208 static inline int __filemap_fdatawrite(struct address_space *mapping, 209 int sync_mode) 210 { 211 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 212 } 213 214 int filemap_fdatawrite(struct address_space *mapping) 215 { 216 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 217 } 218 EXPORT_SYMBOL(filemap_fdatawrite); 219 220 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 221 loff_t end) 222 { 223 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 224 } 225 226 /** 227 * filemap_flush - mostly a non-blocking flush 228 * @mapping: target address_space 229 * 230 * This is a mostly non-blocking flush. Not suitable for data-integrity 231 * purposes - I/O may not be started against all dirty pages. 232 */ 233 int filemap_flush(struct address_space *mapping) 234 { 235 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 236 } 237 EXPORT_SYMBOL(filemap_flush); 238 239 /** 240 * wait_on_page_writeback_range - wait for writeback to complete 241 * @mapping: target address_space 242 * @start: beginning page index 243 * @end: ending page index 244 * 245 * Wait for writeback to complete against pages indexed by start->end 246 * inclusive 247 */ 248 int wait_on_page_writeback_range(struct address_space *mapping, 249 pgoff_t start, pgoff_t end) 250 { 251 struct pagevec pvec; 252 int nr_pages; 253 int ret = 0; 254 pgoff_t index; 255 256 if (end < start) 257 return 0; 258 259 pagevec_init(&pvec, 0); 260 index = start; 261 while ((index <= end) && 262 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 263 PAGECACHE_TAG_WRITEBACK, 264 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 265 unsigned i; 266 267 for (i = 0; i < nr_pages; i++) { 268 struct page *page = pvec.pages[i]; 269 270 /* until radix tree lookup accepts end_index */ 271 if (page->index > end) 272 continue; 273 274 wait_on_page_writeback(page); 275 if (PageError(page)) 276 ret = -EIO; 277 } 278 pagevec_release(&pvec); 279 cond_resched(); 280 } 281 282 /* Check for outstanding write errors */ 283 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 284 ret = -ENOSPC; 285 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 286 ret = -EIO; 287 288 return ret; 289 } 290 291 /** 292 * sync_page_range - write and wait on all pages in the passed range 293 * @inode: target inode 294 * @mapping: target address_space 295 * @pos: beginning offset in pages to write 296 * @count: number of bytes to write 297 * 298 * Write and wait upon all the pages in the passed range. This is a "data 299 * integrity" operation. It waits upon in-flight writeout before starting and 300 * waiting upon new writeout. If there was an IO error, return it. 301 * 302 * We need to re-take i_mutex during the generic_osync_inode list walk because 303 * it is otherwise livelockable. 304 */ 305 int sync_page_range(struct inode *inode, struct address_space *mapping, 306 loff_t pos, loff_t count) 307 { 308 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 309 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 310 int ret; 311 312 if (!mapping_cap_writeback_dirty(mapping) || !count) 313 return 0; 314 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 315 if (ret == 0) { 316 mutex_lock(&inode->i_mutex); 317 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 318 mutex_unlock(&inode->i_mutex); 319 } 320 if (ret == 0) 321 ret = wait_on_page_writeback_range(mapping, start, end); 322 return ret; 323 } 324 EXPORT_SYMBOL(sync_page_range); 325 326 /** 327 * sync_page_range_nolock 328 * @inode: target inode 329 * @mapping: target address_space 330 * @pos: beginning offset in pages to write 331 * @count: number of bytes to write 332 * 333 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 334 * as it forces O_SYNC writers to different parts of the same file 335 * to be serialised right until io completion. 336 */ 337 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 338 loff_t pos, loff_t count) 339 { 340 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 341 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 342 int ret; 343 344 if (!mapping_cap_writeback_dirty(mapping) || !count) 345 return 0; 346 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 347 if (ret == 0) 348 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 349 if (ret == 0) 350 ret = wait_on_page_writeback_range(mapping, start, end); 351 return ret; 352 } 353 EXPORT_SYMBOL(sync_page_range_nolock); 354 355 /** 356 * filemap_fdatawait - wait for all under-writeback pages to complete 357 * @mapping: address space structure to wait for 358 * 359 * Walk the list of under-writeback pages of the given address space 360 * and wait for all of them. 361 */ 362 int filemap_fdatawait(struct address_space *mapping) 363 { 364 loff_t i_size = i_size_read(mapping->host); 365 366 if (i_size == 0) 367 return 0; 368 369 return wait_on_page_writeback_range(mapping, 0, 370 (i_size - 1) >> PAGE_CACHE_SHIFT); 371 } 372 EXPORT_SYMBOL(filemap_fdatawait); 373 374 int filemap_write_and_wait(struct address_space *mapping) 375 { 376 int err = 0; 377 378 if (mapping->nrpages) { 379 err = filemap_fdatawrite(mapping); 380 /* 381 * Even if the above returned error, the pages may be 382 * written partially (e.g. -ENOSPC), so we wait for it. 383 * But the -EIO is special case, it may indicate the worst 384 * thing (e.g. bug) happened, so we avoid waiting for it. 385 */ 386 if (err != -EIO) { 387 int err2 = filemap_fdatawait(mapping); 388 if (!err) 389 err = err2; 390 } 391 } 392 return err; 393 } 394 EXPORT_SYMBOL(filemap_write_and_wait); 395 396 /** 397 * filemap_write_and_wait_range - write out & wait on a file range 398 * @mapping: the address_space for the pages 399 * @lstart: offset in bytes where the range starts 400 * @lend: offset in bytes where the range ends (inclusive) 401 * 402 * Write out and wait upon file offsets lstart->lend, inclusive. 403 * 404 * Note that `lend' is inclusive (describes the last byte to be written) so 405 * that this function can be used to write to the very end-of-file (end = -1). 406 */ 407 int filemap_write_and_wait_range(struct address_space *mapping, 408 loff_t lstart, loff_t lend) 409 { 410 int err = 0; 411 412 if (mapping->nrpages) { 413 err = __filemap_fdatawrite_range(mapping, lstart, lend, 414 WB_SYNC_ALL); 415 /* See comment of filemap_write_and_wait() */ 416 if (err != -EIO) { 417 int err2 = wait_on_page_writeback_range(mapping, 418 lstart >> PAGE_CACHE_SHIFT, 419 lend >> PAGE_CACHE_SHIFT); 420 if (!err) 421 err = err2; 422 } 423 } 424 return err; 425 } 426 427 /** 428 * add_to_page_cache - add newly allocated pagecache pages 429 * @page: page to add 430 * @mapping: the page's address_space 431 * @offset: page index 432 * @gfp_mask: page allocation mode 433 * 434 * This function is used to add newly allocated pagecache pages; 435 * the page is new, so we can just run SetPageLocked() against it. 436 * The other page state flags were set by rmqueue(). 437 * 438 * This function does not add the page to the LRU. The caller must do that. 439 */ 440 int add_to_page_cache(struct page *page, struct address_space *mapping, 441 pgoff_t offset, gfp_t gfp_mask) 442 { 443 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 444 445 if (error == 0) { 446 write_lock_irq(&mapping->tree_lock); 447 error = radix_tree_insert(&mapping->page_tree, offset, page); 448 if (!error) { 449 page_cache_get(page); 450 SetPageLocked(page); 451 page->mapping = mapping; 452 page->index = offset; 453 mapping->nrpages++; 454 __inc_zone_page_state(page, NR_FILE_PAGES); 455 } 456 write_unlock_irq(&mapping->tree_lock); 457 radix_tree_preload_end(); 458 } 459 return error; 460 } 461 EXPORT_SYMBOL(add_to_page_cache); 462 463 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 464 pgoff_t offset, gfp_t gfp_mask) 465 { 466 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 467 if (ret == 0) 468 lru_cache_add(page); 469 return ret; 470 } 471 472 #ifdef CONFIG_NUMA 473 struct page *__page_cache_alloc(gfp_t gfp) 474 { 475 if (cpuset_do_page_mem_spread()) { 476 int n = cpuset_mem_spread_node(); 477 return alloc_pages_node(n, gfp, 0); 478 } 479 return alloc_pages(gfp, 0); 480 } 481 EXPORT_SYMBOL(__page_cache_alloc); 482 #endif 483 484 static int __sleep_on_page_lock(void *word) 485 { 486 io_schedule(); 487 return 0; 488 } 489 490 /* 491 * In order to wait for pages to become available there must be 492 * waitqueues associated with pages. By using a hash table of 493 * waitqueues where the bucket discipline is to maintain all 494 * waiters on the same queue and wake all when any of the pages 495 * become available, and for the woken contexts to check to be 496 * sure the appropriate page became available, this saves space 497 * at a cost of "thundering herd" phenomena during rare hash 498 * collisions. 499 */ 500 static wait_queue_head_t *page_waitqueue(struct page *page) 501 { 502 const struct zone *zone = page_zone(page); 503 504 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 505 } 506 507 static inline void wake_up_page(struct page *page, int bit) 508 { 509 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 510 } 511 512 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 513 { 514 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 515 516 if (test_bit(bit_nr, &page->flags)) 517 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 518 TASK_UNINTERRUPTIBLE); 519 } 520 EXPORT_SYMBOL(wait_on_page_bit); 521 522 /** 523 * unlock_page - unlock a locked page 524 * @page: the page 525 * 526 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 527 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 528 * mechananism between PageLocked pages and PageWriteback pages is shared. 529 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 530 * 531 * The first mb is necessary to safely close the critical section opened by the 532 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 533 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 534 * parallel wait_on_page_locked()). 535 */ 536 void fastcall unlock_page(struct page *page) 537 { 538 smp_mb__before_clear_bit(); 539 if (!TestClearPageLocked(page)) 540 BUG(); 541 smp_mb__after_clear_bit(); 542 wake_up_page(page, PG_locked); 543 } 544 EXPORT_SYMBOL(unlock_page); 545 546 /** 547 * end_page_writeback - end writeback against a page 548 * @page: the page 549 */ 550 void end_page_writeback(struct page *page) 551 { 552 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 553 if (!test_clear_page_writeback(page)) 554 BUG(); 555 } 556 smp_mb__after_clear_bit(); 557 wake_up_page(page, PG_writeback); 558 } 559 EXPORT_SYMBOL(end_page_writeback); 560 561 /** 562 * __lock_page - get a lock on the page, assuming we need to sleep to get it 563 * @page: the page to lock 564 * 565 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 566 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 567 * chances are that on the second loop, the block layer's plug list is empty, 568 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 569 */ 570 void fastcall __lock_page(struct page *page) 571 { 572 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 573 574 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 575 TASK_UNINTERRUPTIBLE); 576 } 577 EXPORT_SYMBOL(__lock_page); 578 579 /* 580 * Variant of lock_page that does not require the caller to hold a reference 581 * on the page's mapping. 582 */ 583 void fastcall __lock_page_nosync(struct page *page) 584 { 585 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 586 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 587 TASK_UNINTERRUPTIBLE); 588 } 589 590 /** 591 * find_get_page - find and get a page reference 592 * @mapping: the address_space to search 593 * @offset: the page index 594 * 595 * Is there a pagecache struct page at the given (mapping, offset) tuple? 596 * If yes, increment its refcount and return it; if no, return NULL. 597 */ 598 struct page * find_get_page(struct address_space *mapping, pgoff_t offset) 599 { 600 struct page *page; 601 602 read_lock_irq(&mapping->tree_lock); 603 page = radix_tree_lookup(&mapping->page_tree, offset); 604 if (page) 605 page_cache_get(page); 606 read_unlock_irq(&mapping->tree_lock); 607 return page; 608 } 609 EXPORT_SYMBOL(find_get_page); 610 611 /** 612 * find_lock_page - locate, pin and lock a pagecache page 613 * @mapping: the address_space to search 614 * @offset: the page index 615 * 616 * Locates the desired pagecache page, locks it, increments its reference 617 * count and returns its address. 618 * 619 * Returns zero if the page was not present. find_lock_page() may sleep. 620 */ 621 struct page *find_lock_page(struct address_space *mapping, 622 pgoff_t offset) 623 { 624 struct page *page; 625 626 repeat: 627 read_lock_irq(&mapping->tree_lock); 628 page = radix_tree_lookup(&mapping->page_tree, offset); 629 if (page) { 630 page_cache_get(page); 631 if (TestSetPageLocked(page)) { 632 read_unlock_irq(&mapping->tree_lock); 633 __lock_page(page); 634 635 /* Has the page been truncated while we slept? */ 636 if (unlikely(page->mapping != mapping)) { 637 unlock_page(page); 638 page_cache_release(page); 639 goto repeat; 640 } 641 VM_BUG_ON(page->index != offset); 642 goto out; 643 } 644 } 645 read_unlock_irq(&mapping->tree_lock); 646 out: 647 return page; 648 } 649 EXPORT_SYMBOL(find_lock_page); 650 651 /** 652 * find_or_create_page - locate or add a pagecache page 653 * @mapping: the page's address_space 654 * @index: the page's index into the mapping 655 * @gfp_mask: page allocation mode 656 * 657 * Locates a page in the pagecache. If the page is not present, a new page 658 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 659 * LRU list. The returned page is locked and has its reference count 660 * incremented. 661 * 662 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 663 * allocation! 664 * 665 * find_or_create_page() returns the desired page's address, or zero on 666 * memory exhaustion. 667 */ 668 struct page *find_or_create_page(struct address_space *mapping, 669 pgoff_t index, gfp_t gfp_mask) 670 { 671 struct page *page; 672 int err; 673 repeat: 674 page = find_lock_page(mapping, index); 675 if (!page) { 676 page = __page_cache_alloc(gfp_mask); 677 if (!page) 678 return NULL; 679 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 680 if (unlikely(err)) { 681 page_cache_release(page); 682 page = NULL; 683 if (err == -EEXIST) 684 goto repeat; 685 } 686 } 687 return page; 688 } 689 EXPORT_SYMBOL(find_or_create_page); 690 691 /** 692 * find_get_pages - gang pagecache lookup 693 * @mapping: The address_space to search 694 * @start: The starting page index 695 * @nr_pages: The maximum number of pages 696 * @pages: Where the resulting pages are placed 697 * 698 * find_get_pages() will search for and return a group of up to 699 * @nr_pages pages in the mapping. The pages are placed at @pages. 700 * find_get_pages() takes a reference against the returned pages. 701 * 702 * The search returns a group of mapping-contiguous pages with ascending 703 * indexes. There may be holes in the indices due to not-present pages. 704 * 705 * find_get_pages() returns the number of pages which were found. 706 */ 707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 708 unsigned int nr_pages, struct page **pages) 709 { 710 unsigned int i; 711 unsigned int ret; 712 713 read_lock_irq(&mapping->tree_lock); 714 ret = radix_tree_gang_lookup(&mapping->page_tree, 715 (void **)pages, start, nr_pages); 716 for (i = 0; i < ret; i++) 717 page_cache_get(pages[i]); 718 read_unlock_irq(&mapping->tree_lock); 719 return ret; 720 } 721 722 /** 723 * find_get_pages_contig - gang contiguous pagecache lookup 724 * @mapping: The address_space to search 725 * @index: The starting page index 726 * @nr_pages: The maximum number of pages 727 * @pages: Where the resulting pages are placed 728 * 729 * find_get_pages_contig() works exactly like find_get_pages(), except 730 * that the returned number of pages are guaranteed to be contiguous. 731 * 732 * find_get_pages_contig() returns the number of pages which were found. 733 */ 734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 735 unsigned int nr_pages, struct page **pages) 736 { 737 unsigned int i; 738 unsigned int ret; 739 740 read_lock_irq(&mapping->tree_lock); 741 ret = radix_tree_gang_lookup(&mapping->page_tree, 742 (void **)pages, index, nr_pages); 743 for (i = 0; i < ret; i++) { 744 if (pages[i]->mapping == NULL || pages[i]->index != index) 745 break; 746 747 page_cache_get(pages[i]); 748 index++; 749 } 750 read_unlock_irq(&mapping->tree_lock); 751 return i; 752 } 753 EXPORT_SYMBOL(find_get_pages_contig); 754 755 /** 756 * find_get_pages_tag - find and return pages that match @tag 757 * @mapping: the address_space to search 758 * @index: the starting page index 759 * @tag: the tag index 760 * @nr_pages: the maximum number of pages 761 * @pages: where the resulting pages are placed 762 * 763 * Like find_get_pages, except we only return pages which are tagged with 764 * @tag. We update @index to index the next page for the traversal. 765 */ 766 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 767 int tag, unsigned int nr_pages, struct page **pages) 768 { 769 unsigned int i; 770 unsigned int ret; 771 772 read_lock_irq(&mapping->tree_lock); 773 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 774 (void **)pages, *index, nr_pages, tag); 775 for (i = 0; i < ret; i++) 776 page_cache_get(pages[i]); 777 if (ret) 778 *index = pages[ret - 1]->index + 1; 779 read_unlock_irq(&mapping->tree_lock); 780 return ret; 781 } 782 EXPORT_SYMBOL(find_get_pages_tag); 783 784 /** 785 * grab_cache_page_nowait - returns locked page at given index in given cache 786 * @mapping: target address_space 787 * @index: the page index 788 * 789 * Same as grab_cache_page(), but do not wait if the page is unavailable. 790 * This is intended for speculative data generators, where the data can 791 * be regenerated if the page couldn't be grabbed. This routine should 792 * be safe to call while holding the lock for another page. 793 * 794 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 795 * and deadlock against the caller's locked page. 796 */ 797 struct page * 798 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 799 { 800 struct page *page = find_get_page(mapping, index); 801 802 if (page) { 803 if (!TestSetPageLocked(page)) 804 return page; 805 page_cache_release(page); 806 return NULL; 807 } 808 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 809 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 810 page_cache_release(page); 811 page = NULL; 812 } 813 return page; 814 } 815 EXPORT_SYMBOL(grab_cache_page_nowait); 816 817 /* 818 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 819 * a _large_ part of the i/o request. Imagine the worst scenario: 820 * 821 * ---R__________________________________________B__________ 822 * ^ reading here ^ bad block(assume 4k) 823 * 824 * read(R) => miss => readahead(R...B) => media error => frustrating retries 825 * => failing the whole request => read(R) => read(R+1) => 826 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 827 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 828 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 829 * 830 * It is going insane. Fix it by quickly scaling down the readahead size. 831 */ 832 static void shrink_readahead_size_eio(struct file *filp, 833 struct file_ra_state *ra) 834 { 835 if (!ra->ra_pages) 836 return; 837 838 ra->ra_pages /= 4; 839 } 840 841 /** 842 * do_generic_mapping_read - generic file read routine 843 * @mapping: address_space to be read 844 * @ra: file's readahead state 845 * @filp: the file to read 846 * @ppos: current file position 847 * @desc: read_descriptor 848 * @actor: read method 849 * 850 * This is a generic file read routine, and uses the 851 * mapping->a_ops->readpage() function for the actual low-level stuff. 852 * 853 * This is really ugly. But the goto's actually try to clarify some 854 * of the logic when it comes to error handling etc. 855 * 856 * Note the struct file* is only passed for the use of readpage. 857 * It may be NULL. 858 */ 859 void do_generic_mapping_read(struct address_space *mapping, 860 struct file_ra_state *ra, 861 struct file *filp, 862 loff_t *ppos, 863 read_descriptor_t *desc, 864 read_actor_t actor) 865 { 866 struct inode *inode = mapping->host; 867 pgoff_t index; 868 pgoff_t last_index; 869 pgoff_t prev_index; 870 unsigned long offset; /* offset into pagecache page */ 871 unsigned int prev_offset; 872 int error; 873 874 index = *ppos >> PAGE_CACHE_SHIFT; 875 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 876 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 877 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 878 offset = *ppos & ~PAGE_CACHE_MASK; 879 880 for (;;) { 881 struct page *page; 882 pgoff_t end_index; 883 loff_t isize; 884 unsigned long nr, ret; 885 886 cond_resched(); 887 find_page: 888 page = find_get_page(mapping, index); 889 if (!page) { 890 page_cache_sync_readahead(mapping, 891 ra, filp, 892 index, last_index - index); 893 page = find_get_page(mapping, index); 894 if (unlikely(page == NULL)) 895 goto no_cached_page; 896 } 897 if (PageReadahead(page)) { 898 page_cache_async_readahead(mapping, 899 ra, filp, page, 900 index, last_index - index); 901 } 902 if (!PageUptodate(page)) 903 goto page_not_up_to_date; 904 page_ok: 905 /* 906 * i_size must be checked after we know the page is Uptodate. 907 * 908 * Checking i_size after the check allows us to calculate 909 * the correct value for "nr", which means the zero-filled 910 * part of the page is not copied back to userspace (unless 911 * another truncate extends the file - this is desired though). 912 */ 913 914 isize = i_size_read(inode); 915 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 916 if (unlikely(!isize || index > end_index)) { 917 page_cache_release(page); 918 goto out; 919 } 920 921 /* nr is the maximum number of bytes to copy from this page */ 922 nr = PAGE_CACHE_SIZE; 923 if (index == end_index) { 924 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 925 if (nr <= offset) { 926 page_cache_release(page); 927 goto out; 928 } 929 } 930 nr = nr - offset; 931 932 /* If users can be writing to this page using arbitrary 933 * virtual addresses, take care about potential aliasing 934 * before reading the page on the kernel side. 935 */ 936 if (mapping_writably_mapped(mapping)) 937 flush_dcache_page(page); 938 939 /* 940 * When a sequential read accesses a page several times, 941 * only mark it as accessed the first time. 942 */ 943 if (prev_index != index || offset != prev_offset) 944 mark_page_accessed(page); 945 prev_index = index; 946 947 /* 948 * Ok, we have the page, and it's up-to-date, so 949 * now we can copy it to user space... 950 * 951 * The actor routine returns how many bytes were actually used.. 952 * NOTE! This may not be the same as how much of a user buffer 953 * we filled up (we may be padding etc), so we can only update 954 * "pos" here (the actor routine has to update the user buffer 955 * pointers and the remaining count). 956 */ 957 ret = actor(desc, page, offset, nr); 958 offset += ret; 959 index += offset >> PAGE_CACHE_SHIFT; 960 offset &= ~PAGE_CACHE_MASK; 961 prev_offset = offset; 962 963 page_cache_release(page); 964 if (ret == nr && desc->count) 965 continue; 966 goto out; 967 968 page_not_up_to_date: 969 /* Get exclusive access to the page ... */ 970 lock_page(page); 971 972 /* Did it get truncated before we got the lock? */ 973 if (!page->mapping) { 974 unlock_page(page); 975 page_cache_release(page); 976 continue; 977 } 978 979 /* Did somebody else fill it already? */ 980 if (PageUptodate(page)) { 981 unlock_page(page); 982 goto page_ok; 983 } 984 985 readpage: 986 /* Start the actual read. The read will unlock the page. */ 987 error = mapping->a_ops->readpage(filp, page); 988 989 if (unlikely(error)) { 990 if (error == AOP_TRUNCATED_PAGE) { 991 page_cache_release(page); 992 goto find_page; 993 } 994 goto readpage_error; 995 } 996 997 if (!PageUptodate(page)) { 998 lock_page(page); 999 if (!PageUptodate(page)) { 1000 if (page->mapping == NULL) { 1001 /* 1002 * invalidate_inode_pages got it 1003 */ 1004 unlock_page(page); 1005 page_cache_release(page); 1006 goto find_page; 1007 } 1008 unlock_page(page); 1009 error = -EIO; 1010 shrink_readahead_size_eio(filp, ra); 1011 goto readpage_error; 1012 } 1013 unlock_page(page); 1014 } 1015 1016 goto page_ok; 1017 1018 readpage_error: 1019 /* UHHUH! A synchronous read error occurred. Report it */ 1020 desc->error = error; 1021 page_cache_release(page); 1022 goto out; 1023 1024 no_cached_page: 1025 /* 1026 * Ok, it wasn't cached, so we need to create a new 1027 * page.. 1028 */ 1029 page = page_cache_alloc_cold(mapping); 1030 if (!page) { 1031 desc->error = -ENOMEM; 1032 goto out; 1033 } 1034 error = add_to_page_cache_lru(page, mapping, 1035 index, GFP_KERNEL); 1036 if (error) { 1037 page_cache_release(page); 1038 if (error == -EEXIST) 1039 goto find_page; 1040 desc->error = error; 1041 goto out; 1042 } 1043 goto readpage; 1044 } 1045 1046 out: 1047 ra->prev_pos = prev_index; 1048 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1049 ra->prev_pos |= prev_offset; 1050 1051 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1052 if (filp) 1053 file_accessed(filp); 1054 } 1055 EXPORT_SYMBOL(do_generic_mapping_read); 1056 1057 int file_read_actor(read_descriptor_t *desc, struct page *page, 1058 unsigned long offset, unsigned long size) 1059 { 1060 char *kaddr; 1061 unsigned long left, count = desc->count; 1062 1063 if (size > count) 1064 size = count; 1065 1066 /* 1067 * Faults on the destination of a read are common, so do it before 1068 * taking the kmap. 1069 */ 1070 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1071 kaddr = kmap_atomic(page, KM_USER0); 1072 left = __copy_to_user_inatomic(desc->arg.buf, 1073 kaddr + offset, size); 1074 kunmap_atomic(kaddr, KM_USER0); 1075 if (left == 0) 1076 goto success; 1077 } 1078 1079 /* Do it the slow way */ 1080 kaddr = kmap(page); 1081 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1082 kunmap(page); 1083 1084 if (left) { 1085 size -= left; 1086 desc->error = -EFAULT; 1087 } 1088 success: 1089 desc->count = count - size; 1090 desc->written += size; 1091 desc->arg.buf += size; 1092 return size; 1093 } 1094 1095 /* 1096 * Performs necessary checks before doing a write 1097 * @iov: io vector request 1098 * @nr_segs: number of segments in the iovec 1099 * @count: number of bytes to write 1100 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1101 * 1102 * Adjust number of segments and amount of bytes to write (nr_segs should be 1103 * properly initialized first). Returns appropriate error code that caller 1104 * should return or zero in case that write should be allowed. 1105 */ 1106 int generic_segment_checks(const struct iovec *iov, 1107 unsigned long *nr_segs, size_t *count, int access_flags) 1108 { 1109 unsigned long seg; 1110 size_t cnt = 0; 1111 for (seg = 0; seg < *nr_segs; seg++) { 1112 const struct iovec *iv = &iov[seg]; 1113 1114 /* 1115 * If any segment has a negative length, or the cumulative 1116 * length ever wraps negative then return -EINVAL. 1117 */ 1118 cnt += iv->iov_len; 1119 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1120 return -EINVAL; 1121 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1122 continue; 1123 if (seg == 0) 1124 return -EFAULT; 1125 *nr_segs = seg; 1126 cnt -= iv->iov_len; /* This segment is no good */ 1127 break; 1128 } 1129 *count = cnt; 1130 return 0; 1131 } 1132 EXPORT_SYMBOL(generic_segment_checks); 1133 1134 /** 1135 * generic_file_aio_read - generic filesystem read routine 1136 * @iocb: kernel I/O control block 1137 * @iov: io vector request 1138 * @nr_segs: number of segments in the iovec 1139 * @pos: current file position 1140 * 1141 * This is the "read()" routine for all filesystems 1142 * that can use the page cache directly. 1143 */ 1144 ssize_t 1145 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1146 unsigned long nr_segs, loff_t pos) 1147 { 1148 struct file *filp = iocb->ki_filp; 1149 ssize_t retval; 1150 unsigned long seg; 1151 size_t count; 1152 loff_t *ppos = &iocb->ki_pos; 1153 1154 count = 0; 1155 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1156 if (retval) 1157 return retval; 1158 1159 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1160 if (filp->f_flags & O_DIRECT) { 1161 loff_t size; 1162 struct address_space *mapping; 1163 struct inode *inode; 1164 1165 mapping = filp->f_mapping; 1166 inode = mapping->host; 1167 retval = 0; 1168 if (!count) 1169 goto out; /* skip atime */ 1170 size = i_size_read(inode); 1171 if (pos < size) { 1172 retval = generic_file_direct_IO(READ, iocb, 1173 iov, pos, nr_segs); 1174 if (retval > 0) 1175 *ppos = pos + retval; 1176 } 1177 if (likely(retval != 0)) { 1178 file_accessed(filp); 1179 goto out; 1180 } 1181 } 1182 1183 retval = 0; 1184 if (count) { 1185 for (seg = 0; seg < nr_segs; seg++) { 1186 read_descriptor_t desc; 1187 1188 desc.written = 0; 1189 desc.arg.buf = iov[seg].iov_base; 1190 desc.count = iov[seg].iov_len; 1191 if (desc.count == 0) 1192 continue; 1193 desc.error = 0; 1194 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1195 retval += desc.written; 1196 if (desc.error) { 1197 retval = retval ?: desc.error; 1198 break; 1199 } 1200 if (desc.count > 0) 1201 break; 1202 } 1203 } 1204 out: 1205 return retval; 1206 } 1207 EXPORT_SYMBOL(generic_file_aio_read); 1208 1209 static ssize_t 1210 do_readahead(struct address_space *mapping, struct file *filp, 1211 pgoff_t index, unsigned long nr) 1212 { 1213 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1214 return -EINVAL; 1215 1216 force_page_cache_readahead(mapping, filp, index, 1217 max_sane_readahead(nr)); 1218 return 0; 1219 } 1220 1221 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1222 { 1223 ssize_t ret; 1224 struct file *file; 1225 1226 ret = -EBADF; 1227 file = fget(fd); 1228 if (file) { 1229 if (file->f_mode & FMODE_READ) { 1230 struct address_space *mapping = file->f_mapping; 1231 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1232 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1233 unsigned long len = end - start + 1; 1234 ret = do_readahead(mapping, file, start, len); 1235 } 1236 fput(file); 1237 } 1238 return ret; 1239 } 1240 1241 #ifdef CONFIG_MMU 1242 /** 1243 * page_cache_read - adds requested page to the page cache if not already there 1244 * @file: file to read 1245 * @offset: page index 1246 * 1247 * This adds the requested page to the page cache if it isn't already there, 1248 * and schedules an I/O to read in its contents from disk. 1249 */ 1250 static int fastcall page_cache_read(struct file * file, pgoff_t offset) 1251 { 1252 struct address_space *mapping = file->f_mapping; 1253 struct page *page; 1254 int ret; 1255 1256 do { 1257 page = page_cache_alloc_cold(mapping); 1258 if (!page) 1259 return -ENOMEM; 1260 1261 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1262 if (ret == 0) 1263 ret = mapping->a_ops->readpage(file, page); 1264 else if (ret == -EEXIST) 1265 ret = 0; /* losing race to add is OK */ 1266 1267 page_cache_release(page); 1268 1269 } while (ret == AOP_TRUNCATED_PAGE); 1270 1271 return ret; 1272 } 1273 1274 #define MMAP_LOTSAMISS (100) 1275 1276 /** 1277 * filemap_fault - read in file data for page fault handling 1278 * @vma: vma in which the fault was taken 1279 * @vmf: struct vm_fault containing details of the fault 1280 * 1281 * filemap_fault() is invoked via the vma operations vector for a 1282 * mapped memory region to read in file data during a page fault. 1283 * 1284 * The goto's are kind of ugly, but this streamlines the normal case of having 1285 * it in the page cache, and handles the special cases reasonably without 1286 * having a lot of duplicated code. 1287 */ 1288 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1289 { 1290 int error; 1291 struct file *file = vma->vm_file; 1292 struct address_space *mapping = file->f_mapping; 1293 struct file_ra_state *ra = &file->f_ra; 1294 struct inode *inode = mapping->host; 1295 struct page *page; 1296 unsigned long size; 1297 int did_readaround = 0; 1298 int ret = 0; 1299 1300 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1301 if (vmf->pgoff >= size) 1302 goto outside_data_content; 1303 1304 /* If we don't want any read-ahead, don't bother */ 1305 if (VM_RandomReadHint(vma)) 1306 goto no_cached_page; 1307 1308 /* 1309 * Do we have something in the page cache already? 1310 */ 1311 retry_find: 1312 page = find_lock_page(mapping, vmf->pgoff); 1313 /* 1314 * For sequential accesses, we use the generic readahead logic. 1315 */ 1316 if (VM_SequentialReadHint(vma)) { 1317 if (!page) { 1318 page_cache_sync_readahead(mapping, ra, file, 1319 vmf->pgoff, 1); 1320 page = find_lock_page(mapping, vmf->pgoff); 1321 if (!page) 1322 goto no_cached_page; 1323 } 1324 if (PageReadahead(page)) { 1325 page_cache_async_readahead(mapping, ra, file, page, 1326 vmf->pgoff, 1); 1327 } 1328 } 1329 1330 if (!page) { 1331 unsigned long ra_pages; 1332 1333 ra->mmap_miss++; 1334 1335 /* 1336 * Do we miss much more than hit in this file? If so, 1337 * stop bothering with read-ahead. It will only hurt. 1338 */ 1339 if (ra->mmap_miss > MMAP_LOTSAMISS) 1340 goto no_cached_page; 1341 1342 /* 1343 * To keep the pgmajfault counter straight, we need to 1344 * check did_readaround, as this is an inner loop. 1345 */ 1346 if (!did_readaround) { 1347 ret = VM_FAULT_MAJOR; 1348 count_vm_event(PGMAJFAULT); 1349 } 1350 did_readaround = 1; 1351 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1352 if (ra_pages) { 1353 pgoff_t start = 0; 1354 1355 if (vmf->pgoff > ra_pages / 2) 1356 start = vmf->pgoff - ra_pages / 2; 1357 do_page_cache_readahead(mapping, file, start, ra_pages); 1358 } 1359 page = find_lock_page(mapping, vmf->pgoff); 1360 if (!page) 1361 goto no_cached_page; 1362 } 1363 1364 if (!did_readaround) 1365 ra->mmap_miss--; 1366 1367 /* 1368 * We have a locked page in the page cache, now we need to check 1369 * that it's up-to-date. If not, it is going to be due to an error. 1370 */ 1371 if (unlikely(!PageUptodate(page))) 1372 goto page_not_uptodate; 1373 1374 /* Must recheck i_size under page lock */ 1375 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1376 if (unlikely(vmf->pgoff >= size)) { 1377 unlock_page(page); 1378 page_cache_release(page); 1379 goto outside_data_content; 1380 } 1381 1382 /* 1383 * Found the page and have a reference on it. 1384 */ 1385 mark_page_accessed(page); 1386 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT; 1387 vmf->page = page; 1388 return ret | VM_FAULT_LOCKED; 1389 1390 outside_data_content: 1391 /* 1392 * An external ptracer can access pages that normally aren't 1393 * accessible.. 1394 */ 1395 if (vma->vm_mm == current->mm) 1396 return VM_FAULT_SIGBUS; 1397 1398 /* Fall through to the non-read-ahead case */ 1399 no_cached_page: 1400 /* 1401 * We're only likely to ever get here if MADV_RANDOM is in 1402 * effect. 1403 */ 1404 error = page_cache_read(file, vmf->pgoff); 1405 1406 /* 1407 * The page we want has now been added to the page cache. 1408 * In the unlikely event that someone removed it in the 1409 * meantime, we'll just come back here and read it again. 1410 */ 1411 if (error >= 0) 1412 goto retry_find; 1413 1414 /* 1415 * An error return from page_cache_read can result if the 1416 * system is low on memory, or a problem occurs while trying 1417 * to schedule I/O. 1418 */ 1419 if (error == -ENOMEM) 1420 return VM_FAULT_OOM; 1421 return VM_FAULT_SIGBUS; 1422 1423 page_not_uptodate: 1424 /* IO error path */ 1425 if (!did_readaround) { 1426 ret = VM_FAULT_MAJOR; 1427 count_vm_event(PGMAJFAULT); 1428 } 1429 1430 /* 1431 * Umm, take care of errors if the page isn't up-to-date. 1432 * Try to re-read it _once_. We do this synchronously, 1433 * because there really aren't any performance issues here 1434 * and we need to check for errors. 1435 */ 1436 ClearPageError(page); 1437 error = mapping->a_ops->readpage(file, page); 1438 page_cache_release(page); 1439 1440 if (!error || error == AOP_TRUNCATED_PAGE) 1441 goto retry_find; 1442 1443 /* Things didn't work out. Return zero to tell the mm layer so. */ 1444 shrink_readahead_size_eio(file, ra); 1445 return VM_FAULT_SIGBUS; 1446 } 1447 EXPORT_SYMBOL(filemap_fault); 1448 1449 struct vm_operations_struct generic_file_vm_ops = { 1450 .fault = filemap_fault, 1451 }; 1452 1453 /* This is used for a general mmap of a disk file */ 1454 1455 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1456 { 1457 struct address_space *mapping = file->f_mapping; 1458 1459 if (!mapping->a_ops->readpage) 1460 return -ENOEXEC; 1461 file_accessed(file); 1462 vma->vm_ops = &generic_file_vm_ops; 1463 vma->vm_flags |= VM_CAN_NONLINEAR; 1464 return 0; 1465 } 1466 1467 /* 1468 * This is for filesystems which do not implement ->writepage. 1469 */ 1470 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1471 { 1472 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1473 return -EINVAL; 1474 return generic_file_mmap(file, vma); 1475 } 1476 #else 1477 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1478 { 1479 return -ENOSYS; 1480 } 1481 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1482 { 1483 return -ENOSYS; 1484 } 1485 #endif /* CONFIG_MMU */ 1486 1487 EXPORT_SYMBOL(generic_file_mmap); 1488 EXPORT_SYMBOL(generic_file_readonly_mmap); 1489 1490 static struct page *__read_cache_page(struct address_space *mapping, 1491 pgoff_t index, 1492 int (*filler)(void *,struct page*), 1493 void *data) 1494 { 1495 struct page *page; 1496 int err; 1497 repeat: 1498 page = find_get_page(mapping, index); 1499 if (!page) { 1500 page = page_cache_alloc_cold(mapping); 1501 if (!page) 1502 return ERR_PTR(-ENOMEM); 1503 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1504 if (unlikely(err)) { 1505 page_cache_release(page); 1506 if (err == -EEXIST) 1507 goto repeat; 1508 /* Presumably ENOMEM for radix tree node */ 1509 return ERR_PTR(err); 1510 } 1511 err = filler(data, page); 1512 if (err < 0) { 1513 page_cache_release(page); 1514 page = ERR_PTR(err); 1515 } 1516 } 1517 return page; 1518 } 1519 1520 /* 1521 * Same as read_cache_page, but don't wait for page to become unlocked 1522 * after submitting it to the filler. 1523 */ 1524 struct page *read_cache_page_async(struct address_space *mapping, 1525 pgoff_t index, 1526 int (*filler)(void *,struct page*), 1527 void *data) 1528 { 1529 struct page *page; 1530 int err; 1531 1532 retry: 1533 page = __read_cache_page(mapping, index, filler, data); 1534 if (IS_ERR(page)) 1535 return page; 1536 if (PageUptodate(page)) 1537 goto out; 1538 1539 lock_page(page); 1540 if (!page->mapping) { 1541 unlock_page(page); 1542 page_cache_release(page); 1543 goto retry; 1544 } 1545 if (PageUptodate(page)) { 1546 unlock_page(page); 1547 goto out; 1548 } 1549 err = filler(data, page); 1550 if (err < 0) { 1551 page_cache_release(page); 1552 return ERR_PTR(err); 1553 } 1554 out: 1555 mark_page_accessed(page); 1556 return page; 1557 } 1558 EXPORT_SYMBOL(read_cache_page_async); 1559 1560 /** 1561 * read_cache_page - read into page cache, fill it if needed 1562 * @mapping: the page's address_space 1563 * @index: the page index 1564 * @filler: function to perform the read 1565 * @data: destination for read data 1566 * 1567 * Read into the page cache. If a page already exists, and PageUptodate() is 1568 * not set, try to fill the page then wait for it to become unlocked. 1569 * 1570 * If the page does not get brought uptodate, return -EIO. 1571 */ 1572 struct page *read_cache_page(struct address_space *mapping, 1573 pgoff_t index, 1574 int (*filler)(void *,struct page*), 1575 void *data) 1576 { 1577 struct page *page; 1578 1579 page = read_cache_page_async(mapping, index, filler, data); 1580 if (IS_ERR(page)) 1581 goto out; 1582 wait_on_page_locked(page); 1583 if (!PageUptodate(page)) { 1584 page_cache_release(page); 1585 page = ERR_PTR(-EIO); 1586 } 1587 out: 1588 return page; 1589 } 1590 EXPORT_SYMBOL(read_cache_page); 1591 1592 /* 1593 * The logic we want is 1594 * 1595 * if suid or (sgid and xgrp) 1596 * remove privs 1597 */ 1598 int should_remove_suid(struct dentry *dentry) 1599 { 1600 mode_t mode = dentry->d_inode->i_mode; 1601 int kill = 0; 1602 1603 /* suid always must be killed */ 1604 if (unlikely(mode & S_ISUID)) 1605 kill = ATTR_KILL_SUID; 1606 1607 /* 1608 * sgid without any exec bits is just a mandatory locking mark; leave 1609 * it alone. If some exec bits are set, it's a real sgid; kill it. 1610 */ 1611 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1612 kill |= ATTR_KILL_SGID; 1613 1614 if (unlikely(kill && !capable(CAP_FSETID))) 1615 return kill; 1616 1617 return 0; 1618 } 1619 EXPORT_SYMBOL(should_remove_suid); 1620 1621 int __remove_suid(struct dentry *dentry, int kill) 1622 { 1623 struct iattr newattrs; 1624 1625 newattrs.ia_valid = ATTR_FORCE | kill; 1626 return notify_change(dentry, &newattrs); 1627 } 1628 1629 int remove_suid(struct dentry *dentry) 1630 { 1631 int killsuid = should_remove_suid(dentry); 1632 int killpriv = security_inode_need_killpriv(dentry); 1633 int error = 0; 1634 1635 if (killpriv < 0) 1636 return killpriv; 1637 if (killpriv) 1638 error = security_inode_killpriv(dentry); 1639 if (!error && killsuid) 1640 error = __remove_suid(dentry, killsuid); 1641 1642 return error; 1643 } 1644 EXPORT_SYMBOL(remove_suid); 1645 1646 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1647 const struct iovec *iov, size_t base, size_t bytes) 1648 { 1649 size_t copied = 0, left = 0; 1650 1651 while (bytes) { 1652 char __user *buf = iov->iov_base + base; 1653 int copy = min(bytes, iov->iov_len - base); 1654 1655 base = 0; 1656 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1657 copied += copy; 1658 bytes -= copy; 1659 vaddr += copy; 1660 iov++; 1661 1662 if (unlikely(left)) 1663 break; 1664 } 1665 return copied - left; 1666 } 1667 1668 /* 1669 * Copy as much as we can into the page and return the number of bytes which 1670 * were sucessfully copied. If a fault is encountered then return the number of 1671 * bytes which were copied. 1672 */ 1673 size_t iov_iter_copy_from_user_atomic(struct page *page, 1674 struct iov_iter *i, unsigned long offset, size_t bytes) 1675 { 1676 char *kaddr; 1677 size_t copied; 1678 1679 BUG_ON(!in_atomic()); 1680 kaddr = kmap_atomic(page, KM_USER0); 1681 if (likely(i->nr_segs == 1)) { 1682 int left; 1683 char __user *buf = i->iov->iov_base + i->iov_offset; 1684 left = __copy_from_user_inatomic_nocache(kaddr + offset, 1685 buf, bytes); 1686 copied = bytes - left; 1687 } else { 1688 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1689 i->iov, i->iov_offset, bytes); 1690 } 1691 kunmap_atomic(kaddr, KM_USER0); 1692 1693 return copied; 1694 } 1695 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1696 1697 /* 1698 * This has the same sideeffects and return value as 1699 * iov_iter_copy_from_user_atomic(). 1700 * The difference is that it attempts to resolve faults. 1701 * Page must not be locked. 1702 */ 1703 size_t iov_iter_copy_from_user(struct page *page, 1704 struct iov_iter *i, unsigned long offset, size_t bytes) 1705 { 1706 char *kaddr; 1707 size_t copied; 1708 1709 kaddr = kmap(page); 1710 if (likely(i->nr_segs == 1)) { 1711 int left; 1712 char __user *buf = i->iov->iov_base + i->iov_offset; 1713 left = __copy_from_user_nocache(kaddr + offset, buf, bytes); 1714 copied = bytes - left; 1715 } else { 1716 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1717 i->iov, i->iov_offset, bytes); 1718 } 1719 kunmap(page); 1720 return copied; 1721 } 1722 EXPORT_SYMBOL(iov_iter_copy_from_user); 1723 1724 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes) 1725 { 1726 if (likely(i->nr_segs == 1)) { 1727 i->iov_offset += bytes; 1728 } else { 1729 const struct iovec *iov = i->iov; 1730 size_t base = i->iov_offset; 1731 1732 while (bytes) { 1733 int copy = min(bytes, iov->iov_len - base); 1734 1735 bytes -= copy; 1736 base += copy; 1737 if (iov->iov_len == base) { 1738 iov++; 1739 base = 0; 1740 } 1741 } 1742 i->iov = iov; 1743 i->iov_offset = base; 1744 } 1745 } 1746 1747 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1748 { 1749 BUG_ON(i->count < bytes); 1750 1751 __iov_iter_advance_iov(i, bytes); 1752 i->count -= bytes; 1753 } 1754 EXPORT_SYMBOL(iov_iter_advance); 1755 1756 /* 1757 * Fault in the first iovec of the given iov_iter, to a maximum length 1758 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1759 * accessed (ie. because it is an invalid address). 1760 * 1761 * writev-intensive code may want this to prefault several iovecs -- that 1762 * would be possible (callers must not rely on the fact that _only_ the 1763 * first iovec will be faulted with the current implementation). 1764 */ 1765 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1766 { 1767 char __user *buf = i->iov->iov_base + i->iov_offset; 1768 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1769 return fault_in_pages_readable(buf, bytes); 1770 } 1771 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1772 1773 /* 1774 * Return the count of just the current iov_iter segment. 1775 */ 1776 size_t iov_iter_single_seg_count(struct iov_iter *i) 1777 { 1778 const struct iovec *iov = i->iov; 1779 if (i->nr_segs == 1) 1780 return i->count; 1781 else 1782 return min(i->count, iov->iov_len - i->iov_offset); 1783 } 1784 EXPORT_SYMBOL(iov_iter_single_seg_count); 1785 1786 /* 1787 * Performs necessary checks before doing a write 1788 * 1789 * Can adjust writing position or amount of bytes to write. 1790 * Returns appropriate error code that caller should return or 1791 * zero in case that write should be allowed. 1792 */ 1793 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1794 { 1795 struct inode *inode = file->f_mapping->host; 1796 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1797 1798 if (unlikely(*pos < 0)) 1799 return -EINVAL; 1800 1801 if (!isblk) { 1802 /* FIXME: this is for backwards compatibility with 2.4 */ 1803 if (file->f_flags & O_APPEND) 1804 *pos = i_size_read(inode); 1805 1806 if (limit != RLIM_INFINITY) { 1807 if (*pos >= limit) { 1808 send_sig(SIGXFSZ, current, 0); 1809 return -EFBIG; 1810 } 1811 if (*count > limit - (typeof(limit))*pos) { 1812 *count = limit - (typeof(limit))*pos; 1813 } 1814 } 1815 } 1816 1817 /* 1818 * LFS rule 1819 */ 1820 if (unlikely(*pos + *count > MAX_NON_LFS && 1821 !(file->f_flags & O_LARGEFILE))) { 1822 if (*pos >= MAX_NON_LFS) { 1823 return -EFBIG; 1824 } 1825 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1826 *count = MAX_NON_LFS - (unsigned long)*pos; 1827 } 1828 } 1829 1830 /* 1831 * Are we about to exceed the fs block limit ? 1832 * 1833 * If we have written data it becomes a short write. If we have 1834 * exceeded without writing data we send a signal and return EFBIG. 1835 * Linus frestrict idea will clean these up nicely.. 1836 */ 1837 if (likely(!isblk)) { 1838 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1839 if (*count || *pos > inode->i_sb->s_maxbytes) { 1840 return -EFBIG; 1841 } 1842 /* zero-length writes at ->s_maxbytes are OK */ 1843 } 1844 1845 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1846 *count = inode->i_sb->s_maxbytes - *pos; 1847 } else { 1848 #ifdef CONFIG_BLOCK 1849 loff_t isize; 1850 if (bdev_read_only(I_BDEV(inode))) 1851 return -EPERM; 1852 isize = i_size_read(inode); 1853 if (*pos >= isize) { 1854 if (*count || *pos > isize) 1855 return -ENOSPC; 1856 } 1857 1858 if (*pos + *count > isize) 1859 *count = isize - *pos; 1860 #else 1861 return -EPERM; 1862 #endif 1863 } 1864 return 0; 1865 } 1866 EXPORT_SYMBOL(generic_write_checks); 1867 1868 int pagecache_write_begin(struct file *file, struct address_space *mapping, 1869 loff_t pos, unsigned len, unsigned flags, 1870 struct page **pagep, void **fsdata) 1871 { 1872 const struct address_space_operations *aops = mapping->a_ops; 1873 1874 if (aops->write_begin) { 1875 return aops->write_begin(file, mapping, pos, len, flags, 1876 pagep, fsdata); 1877 } else { 1878 int ret; 1879 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1880 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1881 struct inode *inode = mapping->host; 1882 struct page *page; 1883 again: 1884 page = __grab_cache_page(mapping, index); 1885 *pagep = page; 1886 if (!page) 1887 return -ENOMEM; 1888 1889 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) { 1890 /* 1891 * There is no way to resolve a short write situation 1892 * for a !Uptodate page (except by double copying in 1893 * the caller done by generic_perform_write_2copy). 1894 * 1895 * Instead, we have to bring it uptodate here. 1896 */ 1897 ret = aops->readpage(file, page); 1898 page_cache_release(page); 1899 if (ret) { 1900 if (ret == AOP_TRUNCATED_PAGE) 1901 goto again; 1902 return ret; 1903 } 1904 goto again; 1905 } 1906 1907 ret = aops->prepare_write(file, page, offset, offset+len); 1908 if (ret) { 1909 unlock_page(page); 1910 page_cache_release(page); 1911 if (pos + len > inode->i_size) 1912 vmtruncate(inode, inode->i_size); 1913 } 1914 return ret; 1915 } 1916 } 1917 EXPORT_SYMBOL(pagecache_write_begin); 1918 1919 int pagecache_write_end(struct file *file, struct address_space *mapping, 1920 loff_t pos, unsigned len, unsigned copied, 1921 struct page *page, void *fsdata) 1922 { 1923 const struct address_space_operations *aops = mapping->a_ops; 1924 int ret; 1925 1926 if (aops->write_end) { 1927 mark_page_accessed(page); 1928 ret = aops->write_end(file, mapping, pos, len, copied, 1929 page, fsdata); 1930 } else { 1931 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1932 struct inode *inode = mapping->host; 1933 1934 flush_dcache_page(page); 1935 ret = aops->commit_write(file, page, offset, offset+len); 1936 unlock_page(page); 1937 mark_page_accessed(page); 1938 page_cache_release(page); 1939 1940 if (ret < 0) { 1941 if (pos + len > inode->i_size) 1942 vmtruncate(inode, inode->i_size); 1943 } else if (ret > 0) 1944 ret = min_t(size_t, copied, ret); 1945 else 1946 ret = copied; 1947 } 1948 1949 return ret; 1950 } 1951 EXPORT_SYMBOL(pagecache_write_end); 1952 1953 ssize_t 1954 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 1955 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 1956 size_t count, size_t ocount) 1957 { 1958 struct file *file = iocb->ki_filp; 1959 struct address_space *mapping = file->f_mapping; 1960 struct inode *inode = mapping->host; 1961 ssize_t written; 1962 1963 if (count != ocount) 1964 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 1965 1966 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 1967 if (written > 0) { 1968 loff_t end = pos + written; 1969 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 1970 i_size_write(inode, end); 1971 mark_inode_dirty(inode); 1972 } 1973 *ppos = end; 1974 } 1975 1976 /* 1977 * Sync the fs metadata but not the minor inode changes and 1978 * of course not the data as we did direct DMA for the IO. 1979 * i_mutex is held, which protects generic_osync_inode() from 1980 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 1981 */ 1982 if ((written >= 0 || written == -EIOCBQUEUED) && 1983 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 1984 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 1985 if (err < 0) 1986 written = err; 1987 } 1988 return written; 1989 } 1990 EXPORT_SYMBOL(generic_file_direct_write); 1991 1992 /* 1993 * Find or create a page at the given pagecache position. Return the locked 1994 * page. This function is specifically for buffered writes. 1995 */ 1996 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index) 1997 { 1998 int status; 1999 struct page *page; 2000 repeat: 2001 page = find_lock_page(mapping, index); 2002 if (likely(page)) 2003 return page; 2004 2005 page = page_cache_alloc(mapping); 2006 if (!page) 2007 return NULL; 2008 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 2009 if (unlikely(status)) { 2010 page_cache_release(page); 2011 if (status == -EEXIST) 2012 goto repeat; 2013 return NULL; 2014 } 2015 return page; 2016 } 2017 EXPORT_SYMBOL(__grab_cache_page); 2018 2019 static ssize_t generic_perform_write_2copy(struct file *file, 2020 struct iov_iter *i, loff_t pos) 2021 { 2022 struct address_space *mapping = file->f_mapping; 2023 const struct address_space_operations *a_ops = mapping->a_ops; 2024 struct inode *inode = mapping->host; 2025 long status = 0; 2026 ssize_t written = 0; 2027 2028 do { 2029 struct page *src_page; 2030 struct page *page; 2031 pgoff_t index; /* Pagecache index for current page */ 2032 unsigned long offset; /* Offset into pagecache page */ 2033 unsigned long bytes; /* Bytes to write to page */ 2034 size_t copied; /* Bytes copied from user */ 2035 2036 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2037 index = pos >> PAGE_CACHE_SHIFT; 2038 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2039 iov_iter_count(i)); 2040 2041 /* 2042 * a non-NULL src_page indicates that we're doing the 2043 * copy via get_user_pages and kmap. 2044 */ 2045 src_page = NULL; 2046 2047 /* 2048 * Bring in the user page that we will copy from _first_. 2049 * Otherwise there's a nasty deadlock on copying from the 2050 * same page as we're writing to, without it being marked 2051 * up-to-date. 2052 * 2053 * Not only is this an optimisation, but it is also required 2054 * to check that the address is actually valid, when atomic 2055 * usercopies are used, below. 2056 */ 2057 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2058 status = -EFAULT; 2059 break; 2060 } 2061 2062 page = __grab_cache_page(mapping, index); 2063 if (!page) { 2064 status = -ENOMEM; 2065 break; 2066 } 2067 2068 /* 2069 * non-uptodate pages cannot cope with short copies, and we 2070 * cannot take a pagefault with the destination page locked. 2071 * So pin the source page to copy it. 2072 */ 2073 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) { 2074 unlock_page(page); 2075 2076 src_page = alloc_page(GFP_KERNEL); 2077 if (!src_page) { 2078 page_cache_release(page); 2079 status = -ENOMEM; 2080 break; 2081 } 2082 2083 /* 2084 * Cannot get_user_pages with a page locked for the 2085 * same reason as we can't take a page fault with a 2086 * page locked (as explained below). 2087 */ 2088 copied = iov_iter_copy_from_user(src_page, i, 2089 offset, bytes); 2090 if (unlikely(copied == 0)) { 2091 status = -EFAULT; 2092 page_cache_release(page); 2093 page_cache_release(src_page); 2094 break; 2095 } 2096 bytes = copied; 2097 2098 lock_page(page); 2099 /* 2100 * Can't handle the page going uptodate here, because 2101 * that means we would use non-atomic usercopies, which 2102 * zero out the tail of the page, which can cause 2103 * zeroes to become transiently visible. We could just 2104 * use a non-zeroing copy, but the APIs aren't too 2105 * consistent. 2106 */ 2107 if (unlikely(!page->mapping || PageUptodate(page))) { 2108 unlock_page(page); 2109 page_cache_release(page); 2110 page_cache_release(src_page); 2111 continue; 2112 } 2113 } 2114 2115 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2116 if (unlikely(status)) 2117 goto fs_write_aop_error; 2118 2119 if (!src_page) { 2120 /* 2121 * Must not enter the pagefault handler here, because 2122 * we hold the page lock, so we might recursively 2123 * deadlock on the same lock, or get an ABBA deadlock 2124 * against a different lock, or against the mmap_sem 2125 * (which nests outside the page lock). So increment 2126 * preempt count, and use _atomic usercopies. 2127 * 2128 * The page is uptodate so we are OK to encounter a 2129 * short copy: if unmodified parts of the page are 2130 * marked dirty and written out to disk, it doesn't 2131 * really matter. 2132 */ 2133 pagefault_disable(); 2134 copied = iov_iter_copy_from_user_atomic(page, i, 2135 offset, bytes); 2136 pagefault_enable(); 2137 } else { 2138 void *src, *dst; 2139 src = kmap_atomic(src_page, KM_USER0); 2140 dst = kmap_atomic(page, KM_USER1); 2141 memcpy(dst + offset, src + offset, bytes); 2142 kunmap_atomic(dst, KM_USER1); 2143 kunmap_atomic(src, KM_USER0); 2144 copied = bytes; 2145 } 2146 flush_dcache_page(page); 2147 2148 status = a_ops->commit_write(file, page, offset, offset+bytes); 2149 if (unlikely(status < 0)) 2150 goto fs_write_aop_error; 2151 if (unlikely(status > 0)) /* filesystem did partial write */ 2152 copied = min_t(size_t, copied, status); 2153 2154 unlock_page(page); 2155 mark_page_accessed(page); 2156 page_cache_release(page); 2157 if (src_page) 2158 page_cache_release(src_page); 2159 2160 iov_iter_advance(i, copied); 2161 pos += copied; 2162 written += copied; 2163 2164 balance_dirty_pages_ratelimited(mapping); 2165 cond_resched(); 2166 continue; 2167 2168 fs_write_aop_error: 2169 unlock_page(page); 2170 page_cache_release(page); 2171 if (src_page) 2172 page_cache_release(src_page); 2173 2174 /* 2175 * prepare_write() may have instantiated a few blocks 2176 * outside i_size. Trim these off again. Don't need 2177 * i_size_read because we hold i_mutex. 2178 */ 2179 if (pos + bytes > inode->i_size) 2180 vmtruncate(inode, inode->i_size); 2181 break; 2182 } while (iov_iter_count(i)); 2183 2184 return written ? written : status; 2185 } 2186 2187 static ssize_t generic_perform_write(struct file *file, 2188 struct iov_iter *i, loff_t pos) 2189 { 2190 struct address_space *mapping = file->f_mapping; 2191 const struct address_space_operations *a_ops = mapping->a_ops; 2192 long status = 0; 2193 ssize_t written = 0; 2194 unsigned int flags = 0; 2195 2196 /* 2197 * Copies from kernel address space cannot fail (NFSD is a big user). 2198 */ 2199 if (segment_eq(get_fs(), KERNEL_DS)) 2200 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2201 2202 do { 2203 struct page *page; 2204 pgoff_t index; /* Pagecache index for current page */ 2205 unsigned long offset; /* Offset into pagecache page */ 2206 unsigned long bytes; /* Bytes to write to page */ 2207 size_t copied; /* Bytes copied from user */ 2208 void *fsdata; 2209 2210 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2211 index = pos >> PAGE_CACHE_SHIFT; 2212 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2213 iov_iter_count(i)); 2214 2215 again: 2216 2217 /* 2218 * Bring in the user page that we will copy from _first_. 2219 * Otherwise there's a nasty deadlock on copying from the 2220 * same page as we're writing to, without it being marked 2221 * up-to-date. 2222 * 2223 * Not only is this an optimisation, but it is also required 2224 * to check that the address is actually valid, when atomic 2225 * usercopies are used, below. 2226 */ 2227 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2228 status = -EFAULT; 2229 break; 2230 } 2231 2232 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2233 &page, &fsdata); 2234 if (unlikely(status)) 2235 break; 2236 2237 pagefault_disable(); 2238 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2239 pagefault_enable(); 2240 flush_dcache_page(page); 2241 2242 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2243 page, fsdata); 2244 if (unlikely(status < 0)) 2245 break; 2246 copied = status; 2247 2248 cond_resched(); 2249 2250 if (unlikely(copied == 0)) { 2251 /* 2252 * If we were unable to copy any data at all, we must 2253 * fall back to a single segment length write. 2254 * 2255 * If we didn't fallback here, we could livelock 2256 * because not all segments in the iov can be copied at 2257 * once without a pagefault. 2258 */ 2259 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2260 iov_iter_single_seg_count(i)); 2261 goto again; 2262 } 2263 iov_iter_advance(i, copied); 2264 pos += copied; 2265 written += copied; 2266 2267 balance_dirty_pages_ratelimited(mapping); 2268 2269 } while (iov_iter_count(i)); 2270 2271 return written ? written : status; 2272 } 2273 2274 ssize_t 2275 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2276 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2277 size_t count, ssize_t written) 2278 { 2279 struct file *file = iocb->ki_filp; 2280 struct address_space *mapping = file->f_mapping; 2281 const struct address_space_operations *a_ops = mapping->a_ops; 2282 struct inode *inode = mapping->host; 2283 ssize_t status; 2284 struct iov_iter i; 2285 2286 iov_iter_init(&i, iov, nr_segs, count, written); 2287 if (a_ops->write_begin) 2288 status = generic_perform_write(file, &i, pos); 2289 else 2290 status = generic_perform_write_2copy(file, &i, pos); 2291 2292 if (likely(status >= 0)) { 2293 written += status; 2294 *ppos = pos + status; 2295 2296 /* 2297 * For now, when the user asks for O_SYNC, we'll actually give 2298 * O_DSYNC 2299 */ 2300 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2301 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2302 status = generic_osync_inode(inode, mapping, 2303 OSYNC_METADATA|OSYNC_DATA); 2304 } 2305 } 2306 2307 /* 2308 * If we get here for O_DIRECT writes then we must have fallen through 2309 * to buffered writes (block instantiation inside i_size). So we sync 2310 * the file data here, to try to honour O_DIRECT expectations. 2311 */ 2312 if (unlikely(file->f_flags & O_DIRECT) && written) 2313 status = filemap_write_and_wait(mapping); 2314 2315 return written ? written : status; 2316 } 2317 EXPORT_SYMBOL(generic_file_buffered_write); 2318 2319 static ssize_t 2320 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2321 unsigned long nr_segs, loff_t *ppos) 2322 { 2323 struct file *file = iocb->ki_filp; 2324 struct address_space * mapping = file->f_mapping; 2325 size_t ocount; /* original count */ 2326 size_t count; /* after file limit checks */ 2327 struct inode *inode = mapping->host; 2328 loff_t pos; 2329 ssize_t written; 2330 ssize_t err; 2331 2332 ocount = 0; 2333 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2334 if (err) 2335 return err; 2336 2337 count = ocount; 2338 pos = *ppos; 2339 2340 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2341 2342 /* We can write back this queue in page reclaim */ 2343 current->backing_dev_info = mapping->backing_dev_info; 2344 written = 0; 2345 2346 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2347 if (err) 2348 goto out; 2349 2350 if (count == 0) 2351 goto out; 2352 2353 err = remove_suid(file->f_path.dentry); 2354 if (err) 2355 goto out; 2356 2357 file_update_time(file); 2358 2359 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2360 if (unlikely(file->f_flags & O_DIRECT)) { 2361 loff_t endbyte; 2362 ssize_t written_buffered; 2363 2364 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2365 ppos, count, ocount); 2366 if (written < 0 || written == count) 2367 goto out; 2368 /* 2369 * direct-io write to a hole: fall through to buffered I/O 2370 * for completing the rest of the request. 2371 */ 2372 pos += written; 2373 count -= written; 2374 written_buffered = generic_file_buffered_write(iocb, iov, 2375 nr_segs, pos, ppos, count, 2376 written); 2377 /* 2378 * If generic_file_buffered_write() retuned a synchronous error 2379 * then we want to return the number of bytes which were 2380 * direct-written, or the error code if that was zero. Note 2381 * that this differs from normal direct-io semantics, which 2382 * will return -EFOO even if some bytes were written. 2383 */ 2384 if (written_buffered < 0) { 2385 err = written_buffered; 2386 goto out; 2387 } 2388 2389 /* 2390 * We need to ensure that the page cache pages are written to 2391 * disk and invalidated to preserve the expected O_DIRECT 2392 * semantics. 2393 */ 2394 endbyte = pos + written_buffered - written - 1; 2395 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2396 SYNC_FILE_RANGE_WAIT_BEFORE| 2397 SYNC_FILE_RANGE_WRITE| 2398 SYNC_FILE_RANGE_WAIT_AFTER); 2399 if (err == 0) { 2400 written = written_buffered; 2401 invalidate_mapping_pages(mapping, 2402 pos >> PAGE_CACHE_SHIFT, 2403 endbyte >> PAGE_CACHE_SHIFT); 2404 } else { 2405 /* 2406 * We don't know how much we wrote, so just return 2407 * the number of bytes which were direct-written 2408 */ 2409 } 2410 } else { 2411 written = generic_file_buffered_write(iocb, iov, nr_segs, 2412 pos, ppos, count, written); 2413 } 2414 out: 2415 current->backing_dev_info = NULL; 2416 return written ? written : err; 2417 } 2418 2419 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2420 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2421 { 2422 struct file *file = iocb->ki_filp; 2423 struct address_space *mapping = file->f_mapping; 2424 struct inode *inode = mapping->host; 2425 ssize_t ret; 2426 2427 BUG_ON(iocb->ki_pos != pos); 2428 2429 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2430 &iocb->ki_pos); 2431 2432 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2433 ssize_t err; 2434 2435 err = sync_page_range_nolock(inode, mapping, pos, ret); 2436 if (err < 0) 2437 ret = err; 2438 } 2439 return ret; 2440 } 2441 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2442 2443 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2444 unsigned long nr_segs, loff_t pos) 2445 { 2446 struct file *file = iocb->ki_filp; 2447 struct address_space *mapping = file->f_mapping; 2448 struct inode *inode = mapping->host; 2449 ssize_t ret; 2450 2451 BUG_ON(iocb->ki_pos != pos); 2452 2453 mutex_lock(&inode->i_mutex); 2454 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2455 &iocb->ki_pos); 2456 mutex_unlock(&inode->i_mutex); 2457 2458 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2459 ssize_t err; 2460 2461 err = sync_page_range(inode, mapping, pos, ret); 2462 if (err < 0) 2463 ret = err; 2464 } 2465 return ret; 2466 } 2467 EXPORT_SYMBOL(generic_file_aio_write); 2468 2469 /* 2470 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2471 * went wrong during pagecache shootdown. 2472 */ 2473 static ssize_t 2474 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2475 loff_t offset, unsigned long nr_segs) 2476 { 2477 struct file *file = iocb->ki_filp; 2478 struct address_space *mapping = file->f_mapping; 2479 ssize_t retval; 2480 size_t write_len; 2481 pgoff_t end = 0; /* silence gcc */ 2482 2483 /* 2484 * If it's a write, unmap all mmappings of the file up-front. This 2485 * will cause any pte dirty bits to be propagated into the pageframes 2486 * for the subsequent filemap_write_and_wait(). 2487 */ 2488 if (rw == WRITE) { 2489 write_len = iov_length(iov, nr_segs); 2490 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT; 2491 if (mapping_mapped(mapping)) 2492 unmap_mapping_range(mapping, offset, write_len, 0); 2493 } 2494 2495 retval = filemap_write_and_wait(mapping); 2496 if (retval) 2497 goto out; 2498 2499 /* 2500 * After a write we want buffered reads to be sure to go to disk to get 2501 * the new data. We invalidate clean cached page from the region we're 2502 * about to write. We do this *before* the write so that we can return 2503 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). 2504 */ 2505 if (rw == WRITE && mapping->nrpages) { 2506 retval = invalidate_inode_pages2_range(mapping, 2507 offset >> PAGE_CACHE_SHIFT, end); 2508 if (retval) 2509 goto out; 2510 } 2511 2512 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs); 2513 if (retval) 2514 goto out; 2515 2516 /* 2517 * Finally, try again to invalidate clean pages which might have been 2518 * faulted in by get_user_pages() if the source of the write was an 2519 * mmap()ed region of the file we're writing. That's a pretty crazy 2520 * thing to do, so we don't support it 100%. If this invalidation 2521 * fails and we have -EIOCBQUEUED we ignore the failure. 2522 */ 2523 if (rw == WRITE && mapping->nrpages) { 2524 int err = invalidate_inode_pages2_range(mapping, 2525 offset >> PAGE_CACHE_SHIFT, end); 2526 if (err && retval >= 0) 2527 retval = err; 2528 } 2529 out: 2530 return retval; 2531 } 2532 2533 /** 2534 * try_to_release_page() - release old fs-specific metadata on a page 2535 * 2536 * @page: the page which the kernel is trying to free 2537 * @gfp_mask: memory allocation flags (and I/O mode) 2538 * 2539 * The address_space is to try to release any data against the page 2540 * (presumably at page->private). If the release was successful, return `1'. 2541 * Otherwise return zero. 2542 * 2543 * The @gfp_mask argument specifies whether I/O may be performed to release 2544 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 2545 * 2546 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 2547 */ 2548 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2549 { 2550 struct address_space * const mapping = page->mapping; 2551 2552 BUG_ON(!PageLocked(page)); 2553 if (PageWriteback(page)) 2554 return 0; 2555 2556 if (mapping && mapping->a_ops->releasepage) 2557 return mapping->a_ops->releasepage(page, gfp_mask); 2558 return try_to_free_buffers(page); 2559 } 2560 2561 EXPORT_SYMBOL(try_to_release_page); 2562