xref: /openbmc/linux/mm/filemap.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include "internal.h"
36 
37 /*
38  * FIXME: remove all knowledge of the buffer layer from the core VM
39  */
40 #include <linux/buffer_head.h> /* for generic_osync_inode */
41 
42 #include <asm/mman.h>
43 
44 static ssize_t
45 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
46 	loff_t offset, unsigned long nr_segs);
47 
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59 
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_lock		(vmtruncate)
64  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock		(exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *          ->zone.lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_lock
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_file_buffered_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  ->i_mutex
84  *    ->i_alloc_sem             (various)
85  *
86  *  ->inode_lock
87  *    ->sb_lock			(fs/fs-writeback.c)
88  *    ->mapping->tree_lock	(__sync_single_inode)
89  *
90  *  ->i_mmap_lock
91  *    ->anon_vma.lock		(vma_adjust)
92  *
93  *  ->anon_vma.lock
94  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
95  *
96  *  ->page_table_lock or pte_lock
97  *    ->swap_lock		(try_to_unmap_one)
98  *    ->private_lock		(try_to_unmap_one)
99  *    ->tree_lock		(try_to_unmap_one)
100  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
101  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
102  *    ->private_lock		(page_remove_rmap->set_page_dirty)
103  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
105  *    ->inode_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  ->task->proc_lock
109  *    ->dcache_lock		(proc_pid_lookup)
110  */
111 
112 /*
113  * Remove a page from the page cache and free it. Caller has to make
114  * sure the page is locked and that nobody else uses it - or that usage
115  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
116  */
117 void __remove_from_page_cache(struct page *page)
118 {
119 	struct address_space *mapping = page->mapping;
120 
121 	radix_tree_delete(&mapping->page_tree, page->index);
122 	page->mapping = NULL;
123 	mapping->nrpages--;
124 	__dec_zone_page_state(page, NR_FILE_PAGES);
125 	BUG_ON(page_mapped(page));
126 }
127 
128 void remove_from_page_cache(struct page *page)
129 {
130 	struct address_space *mapping = page->mapping;
131 
132 	BUG_ON(!PageLocked(page));
133 
134 	write_lock_irq(&mapping->tree_lock);
135 	__remove_from_page_cache(page);
136 	write_unlock_irq(&mapping->tree_lock);
137 }
138 
139 static int sync_page(void *word)
140 {
141 	struct address_space *mapping;
142 	struct page *page;
143 
144 	page = container_of((unsigned long *)word, struct page, flags);
145 
146 	/*
147 	 * page_mapping() is being called without PG_locked held.
148 	 * Some knowledge of the state and use of the page is used to
149 	 * reduce the requirements down to a memory barrier.
150 	 * The danger here is of a stale page_mapping() return value
151 	 * indicating a struct address_space different from the one it's
152 	 * associated with when it is associated with one.
153 	 * After smp_mb(), it's either the correct page_mapping() for
154 	 * the page, or an old page_mapping() and the page's own
155 	 * page_mapping() has gone NULL.
156 	 * The ->sync_page() address_space operation must tolerate
157 	 * page_mapping() going NULL. By an amazing coincidence,
158 	 * this comes about because none of the users of the page
159 	 * in the ->sync_page() methods make essential use of the
160 	 * page_mapping(), merely passing the page down to the backing
161 	 * device's unplug functions when it's non-NULL, which in turn
162 	 * ignore it for all cases but swap, where only page_private(page) is
163 	 * of interest. When page_mapping() does go NULL, the entire
164 	 * call stack gracefully ignores the page and returns.
165 	 * -- wli
166 	 */
167 	smp_mb();
168 	mapping = page_mapping(page);
169 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
170 		mapping->a_ops->sync_page(page);
171 	io_schedule();
172 	return 0;
173 }
174 
175 /**
176  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
177  * @mapping:	address space structure to write
178  * @start:	offset in bytes where the range starts
179  * @end:	offset in bytes where the range ends (inclusive)
180  * @sync_mode:	enable synchronous operation
181  *
182  * Start writeback against all of a mapping's dirty pages that lie
183  * within the byte offsets <start, end> inclusive.
184  *
185  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
186  * opposed to a regular memory cleansing writeback.  The difference between
187  * these two operations is that if a dirty page/buffer is encountered, it must
188  * be waited upon, and not just skipped over.
189  */
190 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
191 				loff_t end, int sync_mode)
192 {
193 	int ret;
194 	struct writeback_control wbc = {
195 		.sync_mode = sync_mode,
196 		.nr_to_write = mapping->nrpages * 2,
197 		.range_start = start,
198 		.range_end = end,
199 	};
200 
201 	if (!mapping_cap_writeback_dirty(mapping))
202 		return 0;
203 
204 	ret = do_writepages(mapping, &wbc);
205 	return ret;
206 }
207 
208 static inline int __filemap_fdatawrite(struct address_space *mapping,
209 	int sync_mode)
210 {
211 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
212 }
213 
214 int filemap_fdatawrite(struct address_space *mapping)
215 {
216 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
217 }
218 EXPORT_SYMBOL(filemap_fdatawrite);
219 
220 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
221 				loff_t end)
222 {
223 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
224 }
225 
226 /**
227  * filemap_flush - mostly a non-blocking flush
228  * @mapping:	target address_space
229  *
230  * This is a mostly non-blocking flush.  Not suitable for data-integrity
231  * purposes - I/O may not be started against all dirty pages.
232  */
233 int filemap_flush(struct address_space *mapping)
234 {
235 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
236 }
237 EXPORT_SYMBOL(filemap_flush);
238 
239 /**
240  * wait_on_page_writeback_range - wait for writeback to complete
241  * @mapping:	target address_space
242  * @start:	beginning page index
243  * @end:	ending page index
244  *
245  * Wait for writeback to complete against pages indexed by start->end
246  * inclusive
247  */
248 int wait_on_page_writeback_range(struct address_space *mapping,
249 				pgoff_t start, pgoff_t end)
250 {
251 	struct pagevec pvec;
252 	int nr_pages;
253 	int ret = 0;
254 	pgoff_t index;
255 
256 	if (end < start)
257 		return 0;
258 
259 	pagevec_init(&pvec, 0);
260 	index = start;
261 	while ((index <= end) &&
262 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
263 			PAGECACHE_TAG_WRITEBACK,
264 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
265 		unsigned i;
266 
267 		for (i = 0; i < nr_pages; i++) {
268 			struct page *page = pvec.pages[i];
269 
270 			/* until radix tree lookup accepts end_index */
271 			if (page->index > end)
272 				continue;
273 
274 			wait_on_page_writeback(page);
275 			if (PageError(page))
276 				ret = -EIO;
277 		}
278 		pagevec_release(&pvec);
279 		cond_resched();
280 	}
281 
282 	/* Check for outstanding write errors */
283 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
284 		ret = -ENOSPC;
285 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
286 		ret = -EIO;
287 
288 	return ret;
289 }
290 
291 /**
292  * sync_page_range - write and wait on all pages in the passed range
293  * @inode:	target inode
294  * @mapping:	target address_space
295  * @pos:	beginning offset in pages to write
296  * @count:	number of bytes to write
297  *
298  * Write and wait upon all the pages in the passed range.  This is a "data
299  * integrity" operation.  It waits upon in-flight writeout before starting and
300  * waiting upon new writeout.  If there was an IO error, return it.
301  *
302  * We need to re-take i_mutex during the generic_osync_inode list walk because
303  * it is otherwise livelockable.
304  */
305 int sync_page_range(struct inode *inode, struct address_space *mapping,
306 			loff_t pos, loff_t count)
307 {
308 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
309 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
310 	int ret;
311 
312 	if (!mapping_cap_writeback_dirty(mapping) || !count)
313 		return 0;
314 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
315 	if (ret == 0) {
316 		mutex_lock(&inode->i_mutex);
317 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
318 		mutex_unlock(&inode->i_mutex);
319 	}
320 	if (ret == 0)
321 		ret = wait_on_page_writeback_range(mapping, start, end);
322 	return ret;
323 }
324 EXPORT_SYMBOL(sync_page_range);
325 
326 /**
327  * sync_page_range_nolock
328  * @inode:	target inode
329  * @mapping:	target address_space
330  * @pos:	beginning offset in pages to write
331  * @count:	number of bytes to write
332  *
333  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
334  * as it forces O_SYNC writers to different parts of the same file
335  * to be serialised right until io completion.
336  */
337 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
338 			   loff_t pos, loff_t count)
339 {
340 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
341 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
342 	int ret;
343 
344 	if (!mapping_cap_writeback_dirty(mapping) || !count)
345 		return 0;
346 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
347 	if (ret == 0)
348 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
349 	if (ret == 0)
350 		ret = wait_on_page_writeback_range(mapping, start, end);
351 	return ret;
352 }
353 EXPORT_SYMBOL(sync_page_range_nolock);
354 
355 /**
356  * filemap_fdatawait - wait for all under-writeback pages to complete
357  * @mapping: address space structure to wait for
358  *
359  * Walk the list of under-writeback pages of the given address space
360  * and wait for all of them.
361  */
362 int filemap_fdatawait(struct address_space *mapping)
363 {
364 	loff_t i_size = i_size_read(mapping->host);
365 
366 	if (i_size == 0)
367 		return 0;
368 
369 	return wait_on_page_writeback_range(mapping, 0,
370 				(i_size - 1) >> PAGE_CACHE_SHIFT);
371 }
372 EXPORT_SYMBOL(filemap_fdatawait);
373 
374 int filemap_write_and_wait(struct address_space *mapping)
375 {
376 	int err = 0;
377 
378 	if (mapping->nrpages) {
379 		err = filemap_fdatawrite(mapping);
380 		/*
381 		 * Even if the above returned error, the pages may be
382 		 * written partially (e.g. -ENOSPC), so we wait for it.
383 		 * But the -EIO is special case, it may indicate the worst
384 		 * thing (e.g. bug) happened, so we avoid waiting for it.
385 		 */
386 		if (err != -EIO) {
387 			int err2 = filemap_fdatawait(mapping);
388 			if (!err)
389 				err = err2;
390 		}
391 	}
392 	return err;
393 }
394 EXPORT_SYMBOL(filemap_write_and_wait);
395 
396 /**
397  * filemap_write_and_wait_range - write out & wait on a file range
398  * @mapping:	the address_space for the pages
399  * @lstart:	offset in bytes where the range starts
400  * @lend:	offset in bytes where the range ends (inclusive)
401  *
402  * Write out and wait upon file offsets lstart->lend, inclusive.
403  *
404  * Note that `lend' is inclusive (describes the last byte to be written) so
405  * that this function can be used to write to the very end-of-file (end = -1).
406  */
407 int filemap_write_and_wait_range(struct address_space *mapping,
408 				 loff_t lstart, loff_t lend)
409 {
410 	int err = 0;
411 
412 	if (mapping->nrpages) {
413 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
414 						 WB_SYNC_ALL);
415 		/* See comment of filemap_write_and_wait() */
416 		if (err != -EIO) {
417 			int err2 = wait_on_page_writeback_range(mapping,
418 						lstart >> PAGE_CACHE_SHIFT,
419 						lend >> PAGE_CACHE_SHIFT);
420 			if (!err)
421 				err = err2;
422 		}
423 	}
424 	return err;
425 }
426 
427 /**
428  * add_to_page_cache - add newly allocated pagecache pages
429  * @page:	page to add
430  * @mapping:	the page's address_space
431  * @offset:	page index
432  * @gfp_mask:	page allocation mode
433  *
434  * This function is used to add newly allocated pagecache pages;
435  * the page is new, so we can just run SetPageLocked() against it.
436  * The other page state flags were set by rmqueue().
437  *
438  * This function does not add the page to the LRU.  The caller must do that.
439  */
440 int add_to_page_cache(struct page *page, struct address_space *mapping,
441 		pgoff_t offset, gfp_t gfp_mask)
442 {
443 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
444 
445 	if (error == 0) {
446 		write_lock_irq(&mapping->tree_lock);
447 		error = radix_tree_insert(&mapping->page_tree, offset, page);
448 		if (!error) {
449 			page_cache_get(page);
450 			SetPageLocked(page);
451 			page->mapping = mapping;
452 			page->index = offset;
453 			mapping->nrpages++;
454 			__inc_zone_page_state(page, NR_FILE_PAGES);
455 		}
456 		write_unlock_irq(&mapping->tree_lock);
457 		radix_tree_preload_end();
458 	}
459 	return error;
460 }
461 EXPORT_SYMBOL(add_to_page_cache);
462 
463 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
464 				pgoff_t offset, gfp_t gfp_mask)
465 {
466 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
467 	if (ret == 0)
468 		lru_cache_add(page);
469 	return ret;
470 }
471 
472 #ifdef CONFIG_NUMA
473 struct page *__page_cache_alloc(gfp_t gfp)
474 {
475 	if (cpuset_do_page_mem_spread()) {
476 		int n = cpuset_mem_spread_node();
477 		return alloc_pages_node(n, gfp, 0);
478 	}
479 	return alloc_pages(gfp, 0);
480 }
481 EXPORT_SYMBOL(__page_cache_alloc);
482 #endif
483 
484 static int __sleep_on_page_lock(void *word)
485 {
486 	io_schedule();
487 	return 0;
488 }
489 
490 /*
491  * In order to wait for pages to become available there must be
492  * waitqueues associated with pages. By using a hash table of
493  * waitqueues where the bucket discipline is to maintain all
494  * waiters on the same queue and wake all when any of the pages
495  * become available, and for the woken contexts to check to be
496  * sure the appropriate page became available, this saves space
497  * at a cost of "thundering herd" phenomena during rare hash
498  * collisions.
499  */
500 static wait_queue_head_t *page_waitqueue(struct page *page)
501 {
502 	const struct zone *zone = page_zone(page);
503 
504 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
505 }
506 
507 static inline void wake_up_page(struct page *page, int bit)
508 {
509 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
510 }
511 
512 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
513 {
514 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
515 
516 	if (test_bit(bit_nr, &page->flags))
517 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
518 							TASK_UNINTERRUPTIBLE);
519 }
520 EXPORT_SYMBOL(wait_on_page_bit);
521 
522 /**
523  * unlock_page - unlock a locked page
524  * @page: the page
525  *
526  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
527  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
528  * mechananism between PageLocked pages and PageWriteback pages is shared.
529  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
530  *
531  * The first mb is necessary to safely close the critical section opened by the
532  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
533  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
534  * parallel wait_on_page_locked()).
535  */
536 void fastcall unlock_page(struct page *page)
537 {
538 	smp_mb__before_clear_bit();
539 	if (!TestClearPageLocked(page))
540 		BUG();
541 	smp_mb__after_clear_bit();
542 	wake_up_page(page, PG_locked);
543 }
544 EXPORT_SYMBOL(unlock_page);
545 
546 /**
547  * end_page_writeback - end writeback against a page
548  * @page: the page
549  */
550 void end_page_writeback(struct page *page)
551 {
552 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
553 		if (!test_clear_page_writeback(page))
554 			BUG();
555 	}
556 	smp_mb__after_clear_bit();
557 	wake_up_page(page, PG_writeback);
558 }
559 EXPORT_SYMBOL(end_page_writeback);
560 
561 /**
562  * __lock_page - get a lock on the page, assuming we need to sleep to get it
563  * @page: the page to lock
564  *
565  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
566  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
567  * chances are that on the second loop, the block layer's plug list is empty,
568  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
569  */
570 void fastcall __lock_page(struct page *page)
571 {
572 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
573 
574 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
575 							TASK_UNINTERRUPTIBLE);
576 }
577 EXPORT_SYMBOL(__lock_page);
578 
579 /*
580  * Variant of lock_page that does not require the caller to hold a reference
581  * on the page's mapping.
582  */
583 void fastcall __lock_page_nosync(struct page *page)
584 {
585 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
587 							TASK_UNINTERRUPTIBLE);
588 }
589 
590 /**
591  * find_get_page - find and get a page reference
592  * @mapping: the address_space to search
593  * @offset: the page index
594  *
595  * Is there a pagecache struct page at the given (mapping, offset) tuple?
596  * If yes, increment its refcount and return it; if no, return NULL.
597  */
598 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
599 {
600 	struct page *page;
601 
602 	read_lock_irq(&mapping->tree_lock);
603 	page = radix_tree_lookup(&mapping->page_tree, offset);
604 	if (page)
605 		page_cache_get(page);
606 	read_unlock_irq(&mapping->tree_lock);
607 	return page;
608 }
609 EXPORT_SYMBOL(find_get_page);
610 
611 /**
612  * find_lock_page - locate, pin and lock a pagecache page
613  * @mapping: the address_space to search
614  * @offset: the page index
615  *
616  * Locates the desired pagecache page, locks it, increments its reference
617  * count and returns its address.
618  *
619  * Returns zero if the page was not present. find_lock_page() may sleep.
620  */
621 struct page *find_lock_page(struct address_space *mapping,
622 				pgoff_t offset)
623 {
624 	struct page *page;
625 
626 repeat:
627 	read_lock_irq(&mapping->tree_lock);
628 	page = radix_tree_lookup(&mapping->page_tree, offset);
629 	if (page) {
630 		page_cache_get(page);
631 		if (TestSetPageLocked(page)) {
632 			read_unlock_irq(&mapping->tree_lock);
633 			__lock_page(page);
634 
635 			/* Has the page been truncated while we slept? */
636 			if (unlikely(page->mapping != mapping)) {
637 				unlock_page(page);
638 				page_cache_release(page);
639 				goto repeat;
640 			}
641 			VM_BUG_ON(page->index != offset);
642 			goto out;
643 		}
644 	}
645 	read_unlock_irq(&mapping->tree_lock);
646 out:
647 	return page;
648 }
649 EXPORT_SYMBOL(find_lock_page);
650 
651 /**
652  * find_or_create_page - locate or add a pagecache page
653  * @mapping: the page's address_space
654  * @index: the page's index into the mapping
655  * @gfp_mask: page allocation mode
656  *
657  * Locates a page in the pagecache.  If the page is not present, a new page
658  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
659  * LRU list.  The returned page is locked and has its reference count
660  * incremented.
661  *
662  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
663  * allocation!
664  *
665  * find_or_create_page() returns the desired page's address, or zero on
666  * memory exhaustion.
667  */
668 struct page *find_or_create_page(struct address_space *mapping,
669 		pgoff_t index, gfp_t gfp_mask)
670 {
671 	struct page *page;
672 	int err;
673 repeat:
674 	page = find_lock_page(mapping, index);
675 	if (!page) {
676 		page = __page_cache_alloc(gfp_mask);
677 		if (!page)
678 			return NULL;
679 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
680 		if (unlikely(err)) {
681 			page_cache_release(page);
682 			page = NULL;
683 			if (err == -EEXIST)
684 				goto repeat;
685 		}
686 	}
687 	return page;
688 }
689 EXPORT_SYMBOL(find_or_create_page);
690 
691 /**
692  * find_get_pages - gang pagecache lookup
693  * @mapping:	The address_space to search
694  * @start:	The starting page index
695  * @nr_pages:	The maximum number of pages
696  * @pages:	Where the resulting pages are placed
697  *
698  * find_get_pages() will search for and return a group of up to
699  * @nr_pages pages in the mapping.  The pages are placed at @pages.
700  * find_get_pages() takes a reference against the returned pages.
701  *
702  * The search returns a group of mapping-contiguous pages with ascending
703  * indexes.  There may be holes in the indices due to not-present pages.
704  *
705  * find_get_pages() returns the number of pages which were found.
706  */
707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708 			    unsigned int nr_pages, struct page **pages)
709 {
710 	unsigned int i;
711 	unsigned int ret;
712 
713 	read_lock_irq(&mapping->tree_lock);
714 	ret = radix_tree_gang_lookup(&mapping->page_tree,
715 				(void **)pages, start, nr_pages);
716 	for (i = 0; i < ret; i++)
717 		page_cache_get(pages[i]);
718 	read_unlock_irq(&mapping->tree_lock);
719 	return ret;
720 }
721 
722 /**
723  * find_get_pages_contig - gang contiguous pagecache lookup
724  * @mapping:	The address_space to search
725  * @index:	The starting page index
726  * @nr_pages:	The maximum number of pages
727  * @pages:	Where the resulting pages are placed
728  *
729  * find_get_pages_contig() works exactly like find_get_pages(), except
730  * that the returned number of pages are guaranteed to be contiguous.
731  *
732  * find_get_pages_contig() returns the number of pages which were found.
733  */
734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735 			       unsigned int nr_pages, struct page **pages)
736 {
737 	unsigned int i;
738 	unsigned int ret;
739 
740 	read_lock_irq(&mapping->tree_lock);
741 	ret = radix_tree_gang_lookup(&mapping->page_tree,
742 				(void **)pages, index, nr_pages);
743 	for (i = 0; i < ret; i++) {
744 		if (pages[i]->mapping == NULL || pages[i]->index != index)
745 			break;
746 
747 		page_cache_get(pages[i]);
748 		index++;
749 	}
750 	read_unlock_irq(&mapping->tree_lock);
751 	return i;
752 }
753 EXPORT_SYMBOL(find_get_pages_contig);
754 
755 /**
756  * find_get_pages_tag - find and return pages that match @tag
757  * @mapping:	the address_space to search
758  * @index:	the starting page index
759  * @tag:	the tag index
760  * @nr_pages:	the maximum number of pages
761  * @pages:	where the resulting pages are placed
762  *
763  * Like find_get_pages, except we only return pages which are tagged with
764  * @tag.   We update @index to index the next page for the traversal.
765  */
766 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
767 			int tag, unsigned int nr_pages, struct page **pages)
768 {
769 	unsigned int i;
770 	unsigned int ret;
771 
772 	read_lock_irq(&mapping->tree_lock);
773 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
774 				(void **)pages, *index, nr_pages, tag);
775 	for (i = 0; i < ret; i++)
776 		page_cache_get(pages[i]);
777 	if (ret)
778 		*index = pages[ret - 1]->index + 1;
779 	read_unlock_irq(&mapping->tree_lock);
780 	return ret;
781 }
782 EXPORT_SYMBOL(find_get_pages_tag);
783 
784 /**
785  * grab_cache_page_nowait - returns locked page at given index in given cache
786  * @mapping: target address_space
787  * @index: the page index
788  *
789  * Same as grab_cache_page(), but do not wait if the page is unavailable.
790  * This is intended for speculative data generators, where the data can
791  * be regenerated if the page couldn't be grabbed.  This routine should
792  * be safe to call while holding the lock for another page.
793  *
794  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
795  * and deadlock against the caller's locked page.
796  */
797 struct page *
798 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
799 {
800 	struct page *page = find_get_page(mapping, index);
801 
802 	if (page) {
803 		if (!TestSetPageLocked(page))
804 			return page;
805 		page_cache_release(page);
806 		return NULL;
807 	}
808 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
809 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
810 		page_cache_release(page);
811 		page = NULL;
812 	}
813 	return page;
814 }
815 EXPORT_SYMBOL(grab_cache_page_nowait);
816 
817 /*
818  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
819  * a _large_ part of the i/o request. Imagine the worst scenario:
820  *
821  *      ---R__________________________________________B__________
822  *         ^ reading here                             ^ bad block(assume 4k)
823  *
824  * read(R) => miss => readahead(R...B) => media error => frustrating retries
825  * => failing the whole request => read(R) => read(R+1) =>
826  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
827  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
828  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
829  *
830  * It is going insane. Fix it by quickly scaling down the readahead size.
831  */
832 static void shrink_readahead_size_eio(struct file *filp,
833 					struct file_ra_state *ra)
834 {
835 	if (!ra->ra_pages)
836 		return;
837 
838 	ra->ra_pages /= 4;
839 }
840 
841 /**
842  * do_generic_mapping_read - generic file read routine
843  * @mapping:	address_space to be read
844  * @ra:		file's readahead state
845  * @filp:	the file to read
846  * @ppos:	current file position
847  * @desc:	read_descriptor
848  * @actor:	read method
849  *
850  * This is a generic file read routine, and uses the
851  * mapping->a_ops->readpage() function for the actual low-level stuff.
852  *
853  * This is really ugly. But the goto's actually try to clarify some
854  * of the logic when it comes to error handling etc.
855  *
856  * Note the struct file* is only passed for the use of readpage.
857  * It may be NULL.
858  */
859 void do_generic_mapping_read(struct address_space *mapping,
860 			     struct file_ra_state *ra,
861 			     struct file *filp,
862 			     loff_t *ppos,
863 			     read_descriptor_t *desc,
864 			     read_actor_t actor)
865 {
866 	struct inode *inode = mapping->host;
867 	pgoff_t index;
868 	pgoff_t last_index;
869 	pgoff_t prev_index;
870 	unsigned long offset;      /* offset into pagecache page */
871 	unsigned int prev_offset;
872 	int error;
873 
874 	index = *ppos >> PAGE_CACHE_SHIFT;
875 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
876 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
877 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
878 	offset = *ppos & ~PAGE_CACHE_MASK;
879 
880 	for (;;) {
881 		struct page *page;
882 		pgoff_t end_index;
883 		loff_t isize;
884 		unsigned long nr, ret;
885 
886 		cond_resched();
887 find_page:
888 		page = find_get_page(mapping, index);
889 		if (!page) {
890 			page_cache_sync_readahead(mapping,
891 					ra, filp,
892 					index, last_index - index);
893 			page = find_get_page(mapping, index);
894 			if (unlikely(page == NULL))
895 				goto no_cached_page;
896 		}
897 		if (PageReadahead(page)) {
898 			page_cache_async_readahead(mapping,
899 					ra, filp, page,
900 					index, last_index - index);
901 		}
902 		if (!PageUptodate(page))
903 			goto page_not_up_to_date;
904 page_ok:
905 		/*
906 		 * i_size must be checked after we know the page is Uptodate.
907 		 *
908 		 * Checking i_size after the check allows us to calculate
909 		 * the correct value for "nr", which means the zero-filled
910 		 * part of the page is not copied back to userspace (unless
911 		 * another truncate extends the file - this is desired though).
912 		 */
913 
914 		isize = i_size_read(inode);
915 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
916 		if (unlikely(!isize || index > end_index)) {
917 			page_cache_release(page);
918 			goto out;
919 		}
920 
921 		/* nr is the maximum number of bytes to copy from this page */
922 		nr = PAGE_CACHE_SIZE;
923 		if (index == end_index) {
924 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
925 			if (nr <= offset) {
926 				page_cache_release(page);
927 				goto out;
928 			}
929 		}
930 		nr = nr - offset;
931 
932 		/* If users can be writing to this page using arbitrary
933 		 * virtual addresses, take care about potential aliasing
934 		 * before reading the page on the kernel side.
935 		 */
936 		if (mapping_writably_mapped(mapping))
937 			flush_dcache_page(page);
938 
939 		/*
940 		 * When a sequential read accesses a page several times,
941 		 * only mark it as accessed the first time.
942 		 */
943 		if (prev_index != index || offset != prev_offset)
944 			mark_page_accessed(page);
945 		prev_index = index;
946 
947 		/*
948 		 * Ok, we have the page, and it's up-to-date, so
949 		 * now we can copy it to user space...
950 		 *
951 		 * The actor routine returns how many bytes were actually used..
952 		 * NOTE! This may not be the same as how much of a user buffer
953 		 * we filled up (we may be padding etc), so we can only update
954 		 * "pos" here (the actor routine has to update the user buffer
955 		 * pointers and the remaining count).
956 		 */
957 		ret = actor(desc, page, offset, nr);
958 		offset += ret;
959 		index += offset >> PAGE_CACHE_SHIFT;
960 		offset &= ~PAGE_CACHE_MASK;
961 		prev_offset = offset;
962 
963 		page_cache_release(page);
964 		if (ret == nr && desc->count)
965 			continue;
966 		goto out;
967 
968 page_not_up_to_date:
969 		/* Get exclusive access to the page ... */
970 		lock_page(page);
971 
972 		/* Did it get truncated before we got the lock? */
973 		if (!page->mapping) {
974 			unlock_page(page);
975 			page_cache_release(page);
976 			continue;
977 		}
978 
979 		/* Did somebody else fill it already? */
980 		if (PageUptodate(page)) {
981 			unlock_page(page);
982 			goto page_ok;
983 		}
984 
985 readpage:
986 		/* Start the actual read. The read will unlock the page. */
987 		error = mapping->a_ops->readpage(filp, page);
988 
989 		if (unlikely(error)) {
990 			if (error == AOP_TRUNCATED_PAGE) {
991 				page_cache_release(page);
992 				goto find_page;
993 			}
994 			goto readpage_error;
995 		}
996 
997 		if (!PageUptodate(page)) {
998 			lock_page(page);
999 			if (!PageUptodate(page)) {
1000 				if (page->mapping == NULL) {
1001 					/*
1002 					 * invalidate_inode_pages got it
1003 					 */
1004 					unlock_page(page);
1005 					page_cache_release(page);
1006 					goto find_page;
1007 				}
1008 				unlock_page(page);
1009 				error = -EIO;
1010 				shrink_readahead_size_eio(filp, ra);
1011 				goto readpage_error;
1012 			}
1013 			unlock_page(page);
1014 		}
1015 
1016 		goto page_ok;
1017 
1018 readpage_error:
1019 		/* UHHUH! A synchronous read error occurred. Report it */
1020 		desc->error = error;
1021 		page_cache_release(page);
1022 		goto out;
1023 
1024 no_cached_page:
1025 		/*
1026 		 * Ok, it wasn't cached, so we need to create a new
1027 		 * page..
1028 		 */
1029 		page = page_cache_alloc_cold(mapping);
1030 		if (!page) {
1031 			desc->error = -ENOMEM;
1032 			goto out;
1033 		}
1034 		error = add_to_page_cache_lru(page, mapping,
1035 						index, GFP_KERNEL);
1036 		if (error) {
1037 			page_cache_release(page);
1038 			if (error == -EEXIST)
1039 				goto find_page;
1040 			desc->error = error;
1041 			goto out;
1042 		}
1043 		goto readpage;
1044 	}
1045 
1046 out:
1047 	ra->prev_pos = prev_index;
1048 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1049 	ra->prev_pos |= prev_offset;
1050 
1051 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1052 	if (filp)
1053 		file_accessed(filp);
1054 }
1055 EXPORT_SYMBOL(do_generic_mapping_read);
1056 
1057 int file_read_actor(read_descriptor_t *desc, struct page *page,
1058 			unsigned long offset, unsigned long size)
1059 {
1060 	char *kaddr;
1061 	unsigned long left, count = desc->count;
1062 
1063 	if (size > count)
1064 		size = count;
1065 
1066 	/*
1067 	 * Faults on the destination of a read are common, so do it before
1068 	 * taking the kmap.
1069 	 */
1070 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1071 		kaddr = kmap_atomic(page, KM_USER0);
1072 		left = __copy_to_user_inatomic(desc->arg.buf,
1073 						kaddr + offset, size);
1074 		kunmap_atomic(kaddr, KM_USER0);
1075 		if (left == 0)
1076 			goto success;
1077 	}
1078 
1079 	/* Do it the slow way */
1080 	kaddr = kmap(page);
1081 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1082 	kunmap(page);
1083 
1084 	if (left) {
1085 		size -= left;
1086 		desc->error = -EFAULT;
1087 	}
1088 success:
1089 	desc->count = count - size;
1090 	desc->written += size;
1091 	desc->arg.buf += size;
1092 	return size;
1093 }
1094 
1095 /*
1096  * Performs necessary checks before doing a write
1097  * @iov:	io vector request
1098  * @nr_segs:	number of segments in the iovec
1099  * @count:	number of bytes to write
1100  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1101  *
1102  * Adjust number of segments and amount of bytes to write (nr_segs should be
1103  * properly initialized first). Returns appropriate error code that caller
1104  * should return or zero in case that write should be allowed.
1105  */
1106 int generic_segment_checks(const struct iovec *iov,
1107 			unsigned long *nr_segs, size_t *count, int access_flags)
1108 {
1109 	unsigned long   seg;
1110 	size_t cnt = 0;
1111 	for (seg = 0; seg < *nr_segs; seg++) {
1112 		const struct iovec *iv = &iov[seg];
1113 
1114 		/*
1115 		 * If any segment has a negative length, or the cumulative
1116 		 * length ever wraps negative then return -EINVAL.
1117 		 */
1118 		cnt += iv->iov_len;
1119 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1120 			return -EINVAL;
1121 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1122 			continue;
1123 		if (seg == 0)
1124 			return -EFAULT;
1125 		*nr_segs = seg;
1126 		cnt -= iv->iov_len;	/* This segment is no good */
1127 		break;
1128 	}
1129 	*count = cnt;
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL(generic_segment_checks);
1133 
1134 /**
1135  * generic_file_aio_read - generic filesystem read routine
1136  * @iocb:	kernel I/O control block
1137  * @iov:	io vector request
1138  * @nr_segs:	number of segments in the iovec
1139  * @pos:	current file position
1140  *
1141  * This is the "read()" routine for all filesystems
1142  * that can use the page cache directly.
1143  */
1144 ssize_t
1145 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1146 		unsigned long nr_segs, loff_t pos)
1147 {
1148 	struct file *filp = iocb->ki_filp;
1149 	ssize_t retval;
1150 	unsigned long seg;
1151 	size_t count;
1152 	loff_t *ppos = &iocb->ki_pos;
1153 
1154 	count = 0;
1155 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1156 	if (retval)
1157 		return retval;
1158 
1159 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1160 	if (filp->f_flags & O_DIRECT) {
1161 		loff_t size;
1162 		struct address_space *mapping;
1163 		struct inode *inode;
1164 
1165 		mapping = filp->f_mapping;
1166 		inode = mapping->host;
1167 		retval = 0;
1168 		if (!count)
1169 			goto out; /* skip atime */
1170 		size = i_size_read(inode);
1171 		if (pos < size) {
1172 			retval = generic_file_direct_IO(READ, iocb,
1173 						iov, pos, nr_segs);
1174 			if (retval > 0)
1175 				*ppos = pos + retval;
1176 		}
1177 		if (likely(retval != 0)) {
1178 			file_accessed(filp);
1179 			goto out;
1180 		}
1181 	}
1182 
1183 	retval = 0;
1184 	if (count) {
1185 		for (seg = 0; seg < nr_segs; seg++) {
1186 			read_descriptor_t desc;
1187 
1188 			desc.written = 0;
1189 			desc.arg.buf = iov[seg].iov_base;
1190 			desc.count = iov[seg].iov_len;
1191 			if (desc.count == 0)
1192 				continue;
1193 			desc.error = 0;
1194 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1195 			retval += desc.written;
1196 			if (desc.error) {
1197 				retval = retval ?: desc.error;
1198 				break;
1199 			}
1200 			if (desc.count > 0)
1201 				break;
1202 		}
1203 	}
1204 out:
1205 	return retval;
1206 }
1207 EXPORT_SYMBOL(generic_file_aio_read);
1208 
1209 static ssize_t
1210 do_readahead(struct address_space *mapping, struct file *filp,
1211 	     pgoff_t index, unsigned long nr)
1212 {
1213 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1214 		return -EINVAL;
1215 
1216 	force_page_cache_readahead(mapping, filp, index,
1217 					max_sane_readahead(nr));
1218 	return 0;
1219 }
1220 
1221 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1222 {
1223 	ssize_t ret;
1224 	struct file *file;
1225 
1226 	ret = -EBADF;
1227 	file = fget(fd);
1228 	if (file) {
1229 		if (file->f_mode & FMODE_READ) {
1230 			struct address_space *mapping = file->f_mapping;
1231 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1232 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1233 			unsigned long len = end - start + 1;
1234 			ret = do_readahead(mapping, file, start, len);
1235 		}
1236 		fput(file);
1237 	}
1238 	return ret;
1239 }
1240 
1241 #ifdef CONFIG_MMU
1242 /**
1243  * page_cache_read - adds requested page to the page cache if not already there
1244  * @file:	file to read
1245  * @offset:	page index
1246  *
1247  * This adds the requested page to the page cache if it isn't already there,
1248  * and schedules an I/O to read in its contents from disk.
1249  */
1250 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1251 {
1252 	struct address_space *mapping = file->f_mapping;
1253 	struct page *page;
1254 	int ret;
1255 
1256 	do {
1257 		page = page_cache_alloc_cold(mapping);
1258 		if (!page)
1259 			return -ENOMEM;
1260 
1261 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1262 		if (ret == 0)
1263 			ret = mapping->a_ops->readpage(file, page);
1264 		else if (ret == -EEXIST)
1265 			ret = 0; /* losing race to add is OK */
1266 
1267 		page_cache_release(page);
1268 
1269 	} while (ret == AOP_TRUNCATED_PAGE);
1270 
1271 	return ret;
1272 }
1273 
1274 #define MMAP_LOTSAMISS  (100)
1275 
1276 /**
1277  * filemap_fault - read in file data for page fault handling
1278  * @vma:	vma in which the fault was taken
1279  * @vmf:	struct vm_fault containing details of the fault
1280  *
1281  * filemap_fault() is invoked via the vma operations vector for a
1282  * mapped memory region to read in file data during a page fault.
1283  *
1284  * The goto's are kind of ugly, but this streamlines the normal case of having
1285  * it in the page cache, and handles the special cases reasonably without
1286  * having a lot of duplicated code.
1287  */
1288 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1289 {
1290 	int error;
1291 	struct file *file = vma->vm_file;
1292 	struct address_space *mapping = file->f_mapping;
1293 	struct file_ra_state *ra = &file->f_ra;
1294 	struct inode *inode = mapping->host;
1295 	struct page *page;
1296 	unsigned long size;
1297 	int did_readaround = 0;
1298 	int ret = 0;
1299 
1300 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1301 	if (vmf->pgoff >= size)
1302 		goto outside_data_content;
1303 
1304 	/* If we don't want any read-ahead, don't bother */
1305 	if (VM_RandomReadHint(vma))
1306 		goto no_cached_page;
1307 
1308 	/*
1309 	 * Do we have something in the page cache already?
1310 	 */
1311 retry_find:
1312 	page = find_lock_page(mapping, vmf->pgoff);
1313 	/*
1314 	 * For sequential accesses, we use the generic readahead logic.
1315 	 */
1316 	if (VM_SequentialReadHint(vma)) {
1317 		if (!page) {
1318 			page_cache_sync_readahead(mapping, ra, file,
1319 							   vmf->pgoff, 1);
1320 			page = find_lock_page(mapping, vmf->pgoff);
1321 			if (!page)
1322 				goto no_cached_page;
1323 		}
1324 		if (PageReadahead(page)) {
1325 			page_cache_async_readahead(mapping, ra, file, page,
1326 							   vmf->pgoff, 1);
1327 		}
1328 	}
1329 
1330 	if (!page) {
1331 		unsigned long ra_pages;
1332 
1333 		ra->mmap_miss++;
1334 
1335 		/*
1336 		 * Do we miss much more than hit in this file? If so,
1337 		 * stop bothering with read-ahead. It will only hurt.
1338 		 */
1339 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1340 			goto no_cached_page;
1341 
1342 		/*
1343 		 * To keep the pgmajfault counter straight, we need to
1344 		 * check did_readaround, as this is an inner loop.
1345 		 */
1346 		if (!did_readaround) {
1347 			ret = VM_FAULT_MAJOR;
1348 			count_vm_event(PGMAJFAULT);
1349 		}
1350 		did_readaround = 1;
1351 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1352 		if (ra_pages) {
1353 			pgoff_t start = 0;
1354 
1355 			if (vmf->pgoff > ra_pages / 2)
1356 				start = vmf->pgoff - ra_pages / 2;
1357 			do_page_cache_readahead(mapping, file, start, ra_pages);
1358 		}
1359 		page = find_lock_page(mapping, vmf->pgoff);
1360 		if (!page)
1361 			goto no_cached_page;
1362 	}
1363 
1364 	if (!did_readaround)
1365 		ra->mmap_miss--;
1366 
1367 	/*
1368 	 * We have a locked page in the page cache, now we need to check
1369 	 * that it's up-to-date. If not, it is going to be due to an error.
1370 	 */
1371 	if (unlikely(!PageUptodate(page)))
1372 		goto page_not_uptodate;
1373 
1374 	/* Must recheck i_size under page lock */
1375 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1376 	if (unlikely(vmf->pgoff >= size)) {
1377 		unlock_page(page);
1378 		page_cache_release(page);
1379 		goto outside_data_content;
1380 	}
1381 
1382 	/*
1383 	 * Found the page and have a reference on it.
1384 	 */
1385 	mark_page_accessed(page);
1386 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1387 	vmf->page = page;
1388 	return ret | VM_FAULT_LOCKED;
1389 
1390 outside_data_content:
1391 	/*
1392 	 * An external ptracer can access pages that normally aren't
1393 	 * accessible..
1394 	 */
1395 	if (vma->vm_mm == current->mm)
1396 		return VM_FAULT_SIGBUS;
1397 
1398 	/* Fall through to the non-read-ahead case */
1399 no_cached_page:
1400 	/*
1401 	 * We're only likely to ever get here if MADV_RANDOM is in
1402 	 * effect.
1403 	 */
1404 	error = page_cache_read(file, vmf->pgoff);
1405 
1406 	/*
1407 	 * The page we want has now been added to the page cache.
1408 	 * In the unlikely event that someone removed it in the
1409 	 * meantime, we'll just come back here and read it again.
1410 	 */
1411 	if (error >= 0)
1412 		goto retry_find;
1413 
1414 	/*
1415 	 * An error return from page_cache_read can result if the
1416 	 * system is low on memory, or a problem occurs while trying
1417 	 * to schedule I/O.
1418 	 */
1419 	if (error == -ENOMEM)
1420 		return VM_FAULT_OOM;
1421 	return VM_FAULT_SIGBUS;
1422 
1423 page_not_uptodate:
1424 	/* IO error path */
1425 	if (!did_readaround) {
1426 		ret = VM_FAULT_MAJOR;
1427 		count_vm_event(PGMAJFAULT);
1428 	}
1429 
1430 	/*
1431 	 * Umm, take care of errors if the page isn't up-to-date.
1432 	 * Try to re-read it _once_. We do this synchronously,
1433 	 * because there really aren't any performance issues here
1434 	 * and we need to check for errors.
1435 	 */
1436 	ClearPageError(page);
1437 	error = mapping->a_ops->readpage(file, page);
1438 	page_cache_release(page);
1439 
1440 	if (!error || error == AOP_TRUNCATED_PAGE)
1441 		goto retry_find;
1442 
1443 	/* Things didn't work out. Return zero to tell the mm layer so. */
1444 	shrink_readahead_size_eio(file, ra);
1445 	return VM_FAULT_SIGBUS;
1446 }
1447 EXPORT_SYMBOL(filemap_fault);
1448 
1449 struct vm_operations_struct generic_file_vm_ops = {
1450 	.fault		= filemap_fault,
1451 };
1452 
1453 /* This is used for a general mmap of a disk file */
1454 
1455 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1456 {
1457 	struct address_space *mapping = file->f_mapping;
1458 
1459 	if (!mapping->a_ops->readpage)
1460 		return -ENOEXEC;
1461 	file_accessed(file);
1462 	vma->vm_ops = &generic_file_vm_ops;
1463 	vma->vm_flags |= VM_CAN_NONLINEAR;
1464 	return 0;
1465 }
1466 
1467 /*
1468  * This is for filesystems which do not implement ->writepage.
1469  */
1470 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1471 {
1472 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1473 		return -EINVAL;
1474 	return generic_file_mmap(file, vma);
1475 }
1476 #else
1477 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1478 {
1479 	return -ENOSYS;
1480 }
1481 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1482 {
1483 	return -ENOSYS;
1484 }
1485 #endif /* CONFIG_MMU */
1486 
1487 EXPORT_SYMBOL(generic_file_mmap);
1488 EXPORT_SYMBOL(generic_file_readonly_mmap);
1489 
1490 static struct page *__read_cache_page(struct address_space *mapping,
1491 				pgoff_t index,
1492 				int (*filler)(void *,struct page*),
1493 				void *data)
1494 {
1495 	struct page *page;
1496 	int err;
1497 repeat:
1498 	page = find_get_page(mapping, index);
1499 	if (!page) {
1500 		page = page_cache_alloc_cold(mapping);
1501 		if (!page)
1502 			return ERR_PTR(-ENOMEM);
1503 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1504 		if (unlikely(err)) {
1505 			page_cache_release(page);
1506 			if (err == -EEXIST)
1507 				goto repeat;
1508 			/* Presumably ENOMEM for radix tree node */
1509 			return ERR_PTR(err);
1510 		}
1511 		err = filler(data, page);
1512 		if (err < 0) {
1513 			page_cache_release(page);
1514 			page = ERR_PTR(err);
1515 		}
1516 	}
1517 	return page;
1518 }
1519 
1520 /*
1521  * Same as read_cache_page, but don't wait for page to become unlocked
1522  * after submitting it to the filler.
1523  */
1524 struct page *read_cache_page_async(struct address_space *mapping,
1525 				pgoff_t index,
1526 				int (*filler)(void *,struct page*),
1527 				void *data)
1528 {
1529 	struct page *page;
1530 	int err;
1531 
1532 retry:
1533 	page = __read_cache_page(mapping, index, filler, data);
1534 	if (IS_ERR(page))
1535 		return page;
1536 	if (PageUptodate(page))
1537 		goto out;
1538 
1539 	lock_page(page);
1540 	if (!page->mapping) {
1541 		unlock_page(page);
1542 		page_cache_release(page);
1543 		goto retry;
1544 	}
1545 	if (PageUptodate(page)) {
1546 		unlock_page(page);
1547 		goto out;
1548 	}
1549 	err = filler(data, page);
1550 	if (err < 0) {
1551 		page_cache_release(page);
1552 		return ERR_PTR(err);
1553 	}
1554 out:
1555 	mark_page_accessed(page);
1556 	return page;
1557 }
1558 EXPORT_SYMBOL(read_cache_page_async);
1559 
1560 /**
1561  * read_cache_page - read into page cache, fill it if needed
1562  * @mapping:	the page's address_space
1563  * @index:	the page index
1564  * @filler:	function to perform the read
1565  * @data:	destination for read data
1566  *
1567  * Read into the page cache. If a page already exists, and PageUptodate() is
1568  * not set, try to fill the page then wait for it to become unlocked.
1569  *
1570  * If the page does not get brought uptodate, return -EIO.
1571  */
1572 struct page *read_cache_page(struct address_space *mapping,
1573 				pgoff_t index,
1574 				int (*filler)(void *,struct page*),
1575 				void *data)
1576 {
1577 	struct page *page;
1578 
1579 	page = read_cache_page_async(mapping, index, filler, data);
1580 	if (IS_ERR(page))
1581 		goto out;
1582 	wait_on_page_locked(page);
1583 	if (!PageUptodate(page)) {
1584 		page_cache_release(page);
1585 		page = ERR_PTR(-EIO);
1586 	}
1587  out:
1588 	return page;
1589 }
1590 EXPORT_SYMBOL(read_cache_page);
1591 
1592 /*
1593  * The logic we want is
1594  *
1595  *	if suid or (sgid and xgrp)
1596  *		remove privs
1597  */
1598 int should_remove_suid(struct dentry *dentry)
1599 {
1600 	mode_t mode = dentry->d_inode->i_mode;
1601 	int kill = 0;
1602 
1603 	/* suid always must be killed */
1604 	if (unlikely(mode & S_ISUID))
1605 		kill = ATTR_KILL_SUID;
1606 
1607 	/*
1608 	 * sgid without any exec bits is just a mandatory locking mark; leave
1609 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1610 	 */
1611 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1612 		kill |= ATTR_KILL_SGID;
1613 
1614 	if (unlikely(kill && !capable(CAP_FSETID)))
1615 		return kill;
1616 
1617 	return 0;
1618 }
1619 EXPORT_SYMBOL(should_remove_suid);
1620 
1621 int __remove_suid(struct dentry *dentry, int kill)
1622 {
1623 	struct iattr newattrs;
1624 
1625 	newattrs.ia_valid = ATTR_FORCE | kill;
1626 	return notify_change(dentry, &newattrs);
1627 }
1628 
1629 int remove_suid(struct dentry *dentry)
1630 {
1631 	int killsuid = should_remove_suid(dentry);
1632 	int killpriv = security_inode_need_killpriv(dentry);
1633 	int error = 0;
1634 
1635 	if (killpriv < 0)
1636 		return killpriv;
1637 	if (killpriv)
1638 		error = security_inode_killpriv(dentry);
1639 	if (!error && killsuid)
1640 		error = __remove_suid(dentry, killsuid);
1641 
1642 	return error;
1643 }
1644 EXPORT_SYMBOL(remove_suid);
1645 
1646 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1647 			const struct iovec *iov, size_t base, size_t bytes)
1648 {
1649 	size_t copied = 0, left = 0;
1650 
1651 	while (bytes) {
1652 		char __user *buf = iov->iov_base + base;
1653 		int copy = min(bytes, iov->iov_len - base);
1654 
1655 		base = 0;
1656 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1657 		copied += copy;
1658 		bytes -= copy;
1659 		vaddr += copy;
1660 		iov++;
1661 
1662 		if (unlikely(left))
1663 			break;
1664 	}
1665 	return copied - left;
1666 }
1667 
1668 /*
1669  * Copy as much as we can into the page and return the number of bytes which
1670  * were sucessfully copied.  If a fault is encountered then return the number of
1671  * bytes which were copied.
1672  */
1673 size_t iov_iter_copy_from_user_atomic(struct page *page,
1674 		struct iov_iter *i, unsigned long offset, size_t bytes)
1675 {
1676 	char *kaddr;
1677 	size_t copied;
1678 
1679 	BUG_ON(!in_atomic());
1680 	kaddr = kmap_atomic(page, KM_USER0);
1681 	if (likely(i->nr_segs == 1)) {
1682 		int left;
1683 		char __user *buf = i->iov->iov_base + i->iov_offset;
1684 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1685 							buf, bytes);
1686 		copied = bytes - left;
1687 	} else {
1688 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1689 						i->iov, i->iov_offset, bytes);
1690 	}
1691 	kunmap_atomic(kaddr, KM_USER0);
1692 
1693 	return copied;
1694 }
1695 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1696 
1697 /*
1698  * This has the same sideeffects and return value as
1699  * iov_iter_copy_from_user_atomic().
1700  * The difference is that it attempts to resolve faults.
1701  * Page must not be locked.
1702  */
1703 size_t iov_iter_copy_from_user(struct page *page,
1704 		struct iov_iter *i, unsigned long offset, size_t bytes)
1705 {
1706 	char *kaddr;
1707 	size_t copied;
1708 
1709 	kaddr = kmap(page);
1710 	if (likely(i->nr_segs == 1)) {
1711 		int left;
1712 		char __user *buf = i->iov->iov_base + i->iov_offset;
1713 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1714 		copied = bytes - left;
1715 	} else {
1716 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1717 						i->iov, i->iov_offset, bytes);
1718 	}
1719 	kunmap(page);
1720 	return copied;
1721 }
1722 EXPORT_SYMBOL(iov_iter_copy_from_user);
1723 
1724 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1725 {
1726 	if (likely(i->nr_segs == 1)) {
1727 		i->iov_offset += bytes;
1728 	} else {
1729 		const struct iovec *iov = i->iov;
1730 		size_t base = i->iov_offset;
1731 
1732 		while (bytes) {
1733 			int copy = min(bytes, iov->iov_len - base);
1734 
1735 			bytes -= copy;
1736 			base += copy;
1737 			if (iov->iov_len == base) {
1738 				iov++;
1739 				base = 0;
1740 			}
1741 		}
1742 		i->iov = iov;
1743 		i->iov_offset = base;
1744 	}
1745 }
1746 
1747 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1748 {
1749 	BUG_ON(i->count < bytes);
1750 
1751 	__iov_iter_advance_iov(i, bytes);
1752 	i->count -= bytes;
1753 }
1754 EXPORT_SYMBOL(iov_iter_advance);
1755 
1756 /*
1757  * Fault in the first iovec of the given iov_iter, to a maximum length
1758  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1759  * accessed (ie. because it is an invalid address).
1760  *
1761  * writev-intensive code may want this to prefault several iovecs -- that
1762  * would be possible (callers must not rely on the fact that _only_ the
1763  * first iovec will be faulted with the current implementation).
1764  */
1765 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1766 {
1767 	char __user *buf = i->iov->iov_base + i->iov_offset;
1768 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1769 	return fault_in_pages_readable(buf, bytes);
1770 }
1771 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1772 
1773 /*
1774  * Return the count of just the current iov_iter segment.
1775  */
1776 size_t iov_iter_single_seg_count(struct iov_iter *i)
1777 {
1778 	const struct iovec *iov = i->iov;
1779 	if (i->nr_segs == 1)
1780 		return i->count;
1781 	else
1782 		return min(i->count, iov->iov_len - i->iov_offset);
1783 }
1784 EXPORT_SYMBOL(iov_iter_single_seg_count);
1785 
1786 /*
1787  * Performs necessary checks before doing a write
1788  *
1789  * Can adjust writing position or amount of bytes to write.
1790  * Returns appropriate error code that caller should return or
1791  * zero in case that write should be allowed.
1792  */
1793 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1794 {
1795 	struct inode *inode = file->f_mapping->host;
1796 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1797 
1798         if (unlikely(*pos < 0))
1799                 return -EINVAL;
1800 
1801 	if (!isblk) {
1802 		/* FIXME: this is for backwards compatibility with 2.4 */
1803 		if (file->f_flags & O_APPEND)
1804                         *pos = i_size_read(inode);
1805 
1806 		if (limit != RLIM_INFINITY) {
1807 			if (*pos >= limit) {
1808 				send_sig(SIGXFSZ, current, 0);
1809 				return -EFBIG;
1810 			}
1811 			if (*count > limit - (typeof(limit))*pos) {
1812 				*count = limit - (typeof(limit))*pos;
1813 			}
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * LFS rule
1819 	 */
1820 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1821 				!(file->f_flags & O_LARGEFILE))) {
1822 		if (*pos >= MAX_NON_LFS) {
1823 			return -EFBIG;
1824 		}
1825 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1826 			*count = MAX_NON_LFS - (unsigned long)*pos;
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * Are we about to exceed the fs block limit ?
1832 	 *
1833 	 * If we have written data it becomes a short write.  If we have
1834 	 * exceeded without writing data we send a signal and return EFBIG.
1835 	 * Linus frestrict idea will clean these up nicely..
1836 	 */
1837 	if (likely(!isblk)) {
1838 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1839 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1840 				return -EFBIG;
1841 			}
1842 			/* zero-length writes at ->s_maxbytes are OK */
1843 		}
1844 
1845 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1846 			*count = inode->i_sb->s_maxbytes - *pos;
1847 	} else {
1848 #ifdef CONFIG_BLOCK
1849 		loff_t isize;
1850 		if (bdev_read_only(I_BDEV(inode)))
1851 			return -EPERM;
1852 		isize = i_size_read(inode);
1853 		if (*pos >= isize) {
1854 			if (*count || *pos > isize)
1855 				return -ENOSPC;
1856 		}
1857 
1858 		if (*pos + *count > isize)
1859 			*count = isize - *pos;
1860 #else
1861 		return -EPERM;
1862 #endif
1863 	}
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL(generic_write_checks);
1867 
1868 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1869 				loff_t pos, unsigned len, unsigned flags,
1870 				struct page **pagep, void **fsdata)
1871 {
1872 	const struct address_space_operations *aops = mapping->a_ops;
1873 
1874 	if (aops->write_begin) {
1875 		return aops->write_begin(file, mapping, pos, len, flags,
1876 							pagep, fsdata);
1877 	} else {
1878 		int ret;
1879 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1880 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1881 		struct inode *inode = mapping->host;
1882 		struct page *page;
1883 again:
1884 		page = __grab_cache_page(mapping, index);
1885 		*pagep = page;
1886 		if (!page)
1887 			return -ENOMEM;
1888 
1889 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1890 			/*
1891 			 * There is no way to resolve a short write situation
1892 			 * for a !Uptodate page (except by double copying in
1893 			 * the caller done by generic_perform_write_2copy).
1894 			 *
1895 			 * Instead, we have to bring it uptodate here.
1896 			 */
1897 			ret = aops->readpage(file, page);
1898 			page_cache_release(page);
1899 			if (ret) {
1900 				if (ret == AOP_TRUNCATED_PAGE)
1901 					goto again;
1902 				return ret;
1903 			}
1904 			goto again;
1905 		}
1906 
1907 		ret = aops->prepare_write(file, page, offset, offset+len);
1908 		if (ret) {
1909 			unlock_page(page);
1910 			page_cache_release(page);
1911 			if (pos + len > inode->i_size)
1912 				vmtruncate(inode, inode->i_size);
1913 		}
1914 		return ret;
1915 	}
1916 }
1917 EXPORT_SYMBOL(pagecache_write_begin);
1918 
1919 int pagecache_write_end(struct file *file, struct address_space *mapping,
1920 				loff_t pos, unsigned len, unsigned copied,
1921 				struct page *page, void *fsdata)
1922 {
1923 	const struct address_space_operations *aops = mapping->a_ops;
1924 	int ret;
1925 
1926 	if (aops->write_end) {
1927 		mark_page_accessed(page);
1928 		ret = aops->write_end(file, mapping, pos, len, copied,
1929 							page, fsdata);
1930 	} else {
1931 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1932 		struct inode *inode = mapping->host;
1933 
1934 		flush_dcache_page(page);
1935 		ret = aops->commit_write(file, page, offset, offset+len);
1936 		unlock_page(page);
1937 		mark_page_accessed(page);
1938 		page_cache_release(page);
1939 
1940 		if (ret < 0) {
1941 			if (pos + len > inode->i_size)
1942 				vmtruncate(inode, inode->i_size);
1943 		} else if (ret > 0)
1944 			ret = min_t(size_t, copied, ret);
1945 		else
1946 			ret = copied;
1947 	}
1948 
1949 	return ret;
1950 }
1951 EXPORT_SYMBOL(pagecache_write_end);
1952 
1953 ssize_t
1954 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1955 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1956 		size_t count, size_t ocount)
1957 {
1958 	struct file	*file = iocb->ki_filp;
1959 	struct address_space *mapping = file->f_mapping;
1960 	struct inode	*inode = mapping->host;
1961 	ssize_t		written;
1962 
1963 	if (count != ocount)
1964 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1965 
1966 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1967 	if (written > 0) {
1968 		loff_t end = pos + written;
1969 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1970 			i_size_write(inode,  end);
1971 			mark_inode_dirty(inode);
1972 		}
1973 		*ppos = end;
1974 	}
1975 
1976 	/*
1977 	 * Sync the fs metadata but not the minor inode changes and
1978 	 * of course not the data as we did direct DMA for the IO.
1979 	 * i_mutex is held, which protects generic_osync_inode() from
1980 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1981 	 */
1982 	if ((written >= 0 || written == -EIOCBQUEUED) &&
1983 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1984 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1985 		if (err < 0)
1986 			written = err;
1987 	}
1988 	return written;
1989 }
1990 EXPORT_SYMBOL(generic_file_direct_write);
1991 
1992 /*
1993  * Find or create a page at the given pagecache position. Return the locked
1994  * page. This function is specifically for buffered writes.
1995  */
1996 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
1997 {
1998 	int status;
1999 	struct page *page;
2000 repeat:
2001 	page = find_lock_page(mapping, index);
2002 	if (likely(page))
2003 		return page;
2004 
2005 	page = page_cache_alloc(mapping);
2006 	if (!page)
2007 		return NULL;
2008 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2009 	if (unlikely(status)) {
2010 		page_cache_release(page);
2011 		if (status == -EEXIST)
2012 			goto repeat;
2013 		return NULL;
2014 	}
2015 	return page;
2016 }
2017 EXPORT_SYMBOL(__grab_cache_page);
2018 
2019 static ssize_t generic_perform_write_2copy(struct file *file,
2020 				struct iov_iter *i, loff_t pos)
2021 {
2022 	struct address_space *mapping = file->f_mapping;
2023 	const struct address_space_operations *a_ops = mapping->a_ops;
2024 	struct inode *inode = mapping->host;
2025 	long status = 0;
2026 	ssize_t written = 0;
2027 
2028 	do {
2029 		struct page *src_page;
2030 		struct page *page;
2031 		pgoff_t index;		/* Pagecache index for current page */
2032 		unsigned long offset;	/* Offset into pagecache page */
2033 		unsigned long bytes;	/* Bytes to write to page */
2034 		size_t copied;		/* Bytes copied from user */
2035 
2036 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2037 		index = pos >> PAGE_CACHE_SHIFT;
2038 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2039 						iov_iter_count(i));
2040 
2041 		/*
2042 		 * a non-NULL src_page indicates that we're doing the
2043 		 * copy via get_user_pages and kmap.
2044 		 */
2045 		src_page = NULL;
2046 
2047 		/*
2048 		 * Bring in the user page that we will copy from _first_.
2049 		 * Otherwise there's a nasty deadlock on copying from the
2050 		 * same page as we're writing to, without it being marked
2051 		 * up-to-date.
2052 		 *
2053 		 * Not only is this an optimisation, but it is also required
2054 		 * to check that the address is actually valid, when atomic
2055 		 * usercopies are used, below.
2056 		 */
2057 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2058 			status = -EFAULT;
2059 			break;
2060 		}
2061 
2062 		page = __grab_cache_page(mapping, index);
2063 		if (!page) {
2064 			status = -ENOMEM;
2065 			break;
2066 		}
2067 
2068 		/*
2069 		 * non-uptodate pages cannot cope with short copies, and we
2070 		 * cannot take a pagefault with the destination page locked.
2071 		 * So pin the source page to copy it.
2072 		 */
2073 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2074 			unlock_page(page);
2075 
2076 			src_page = alloc_page(GFP_KERNEL);
2077 			if (!src_page) {
2078 				page_cache_release(page);
2079 				status = -ENOMEM;
2080 				break;
2081 			}
2082 
2083 			/*
2084 			 * Cannot get_user_pages with a page locked for the
2085 			 * same reason as we can't take a page fault with a
2086 			 * page locked (as explained below).
2087 			 */
2088 			copied = iov_iter_copy_from_user(src_page, i,
2089 								offset, bytes);
2090 			if (unlikely(copied == 0)) {
2091 				status = -EFAULT;
2092 				page_cache_release(page);
2093 				page_cache_release(src_page);
2094 				break;
2095 			}
2096 			bytes = copied;
2097 
2098 			lock_page(page);
2099 			/*
2100 			 * Can't handle the page going uptodate here, because
2101 			 * that means we would use non-atomic usercopies, which
2102 			 * zero out the tail of the page, which can cause
2103 			 * zeroes to become transiently visible. We could just
2104 			 * use a non-zeroing copy, but the APIs aren't too
2105 			 * consistent.
2106 			 */
2107 			if (unlikely(!page->mapping || PageUptodate(page))) {
2108 				unlock_page(page);
2109 				page_cache_release(page);
2110 				page_cache_release(src_page);
2111 				continue;
2112 			}
2113 		}
2114 
2115 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2116 		if (unlikely(status))
2117 			goto fs_write_aop_error;
2118 
2119 		if (!src_page) {
2120 			/*
2121 			 * Must not enter the pagefault handler here, because
2122 			 * we hold the page lock, so we might recursively
2123 			 * deadlock on the same lock, or get an ABBA deadlock
2124 			 * against a different lock, or against the mmap_sem
2125 			 * (which nests outside the page lock).  So increment
2126 			 * preempt count, and use _atomic usercopies.
2127 			 *
2128 			 * The page is uptodate so we are OK to encounter a
2129 			 * short copy: if unmodified parts of the page are
2130 			 * marked dirty and written out to disk, it doesn't
2131 			 * really matter.
2132 			 */
2133 			pagefault_disable();
2134 			copied = iov_iter_copy_from_user_atomic(page, i,
2135 								offset, bytes);
2136 			pagefault_enable();
2137 		} else {
2138 			void *src, *dst;
2139 			src = kmap_atomic(src_page, KM_USER0);
2140 			dst = kmap_atomic(page, KM_USER1);
2141 			memcpy(dst + offset, src + offset, bytes);
2142 			kunmap_atomic(dst, KM_USER1);
2143 			kunmap_atomic(src, KM_USER0);
2144 			copied = bytes;
2145 		}
2146 		flush_dcache_page(page);
2147 
2148 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2149 		if (unlikely(status < 0))
2150 			goto fs_write_aop_error;
2151 		if (unlikely(status > 0)) /* filesystem did partial write */
2152 			copied = min_t(size_t, copied, status);
2153 
2154 		unlock_page(page);
2155 		mark_page_accessed(page);
2156 		page_cache_release(page);
2157 		if (src_page)
2158 			page_cache_release(src_page);
2159 
2160 		iov_iter_advance(i, copied);
2161 		pos += copied;
2162 		written += copied;
2163 
2164 		balance_dirty_pages_ratelimited(mapping);
2165 		cond_resched();
2166 		continue;
2167 
2168 fs_write_aop_error:
2169 		unlock_page(page);
2170 		page_cache_release(page);
2171 		if (src_page)
2172 			page_cache_release(src_page);
2173 
2174 		/*
2175 		 * prepare_write() may have instantiated a few blocks
2176 		 * outside i_size.  Trim these off again. Don't need
2177 		 * i_size_read because we hold i_mutex.
2178 		 */
2179 		if (pos + bytes > inode->i_size)
2180 			vmtruncate(inode, inode->i_size);
2181 		break;
2182 	} while (iov_iter_count(i));
2183 
2184 	return written ? written : status;
2185 }
2186 
2187 static ssize_t generic_perform_write(struct file *file,
2188 				struct iov_iter *i, loff_t pos)
2189 {
2190 	struct address_space *mapping = file->f_mapping;
2191 	const struct address_space_operations *a_ops = mapping->a_ops;
2192 	long status = 0;
2193 	ssize_t written = 0;
2194 	unsigned int flags = 0;
2195 
2196 	/*
2197 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2198 	 */
2199 	if (segment_eq(get_fs(), KERNEL_DS))
2200 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2201 
2202 	do {
2203 		struct page *page;
2204 		pgoff_t index;		/* Pagecache index for current page */
2205 		unsigned long offset;	/* Offset into pagecache page */
2206 		unsigned long bytes;	/* Bytes to write to page */
2207 		size_t copied;		/* Bytes copied from user */
2208 		void *fsdata;
2209 
2210 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2211 		index = pos >> PAGE_CACHE_SHIFT;
2212 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2213 						iov_iter_count(i));
2214 
2215 again:
2216 
2217 		/*
2218 		 * Bring in the user page that we will copy from _first_.
2219 		 * Otherwise there's a nasty deadlock on copying from the
2220 		 * same page as we're writing to, without it being marked
2221 		 * up-to-date.
2222 		 *
2223 		 * Not only is this an optimisation, but it is also required
2224 		 * to check that the address is actually valid, when atomic
2225 		 * usercopies are used, below.
2226 		 */
2227 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2228 			status = -EFAULT;
2229 			break;
2230 		}
2231 
2232 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2233 						&page, &fsdata);
2234 		if (unlikely(status))
2235 			break;
2236 
2237 		pagefault_disable();
2238 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2239 		pagefault_enable();
2240 		flush_dcache_page(page);
2241 
2242 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2243 						page, fsdata);
2244 		if (unlikely(status < 0))
2245 			break;
2246 		copied = status;
2247 
2248 		cond_resched();
2249 
2250 		if (unlikely(copied == 0)) {
2251 			/*
2252 			 * If we were unable to copy any data at all, we must
2253 			 * fall back to a single segment length write.
2254 			 *
2255 			 * If we didn't fallback here, we could livelock
2256 			 * because not all segments in the iov can be copied at
2257 			 * once without a pagefault.
2258 			 */
2259 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2260 						iov_iter_single_seg_count(i));
2261 			goto again;
2262 		}
2263 		iov_iter_advance(i, copied);
2264 		pos += copied;
2265 		written += copied;
2266 
2267 		balance_dirty_pages_ratelimited(mapping);
2268 
2269 	} while (iov_iter_count(i));
2270 
2271 	return written ? written : status;
2272 }
2273 
2274 ssize_t
2275 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2276 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2277 		size_t count, ssize_t written)
2278 {
2279 	struct file *file = iocb->ki_filp;
2280 	struct address_space *mapping = file->f_mapping;
2281 	const struct address_space_operations *a_ops = mapping->a_ops;
2282 	struct inode *inode = mapping->host;
2283 	ssize_t status;
2284 	struct iov_iter i;
2285 
2286 	iov_iter_init(&i, iov, nr_segs, count, written);
2287 	if (a_ops->write_begin)
2288 		status = generic_perform_write(file, &i, pos);
2289 	else
2290 		status = generic_perform_write_2copy(file, &i, pos);
2291 
2292 	if (likely(status >= 0)) {
2293 		written += status;
2294 		*ppos = pos + status;
2295 
2296 		/*
2297 		 * For now, when the user asks for O_SYNC, we'll actually give
2298 		 * O_DSYNC
2299 		 */
2300 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2301 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2302 				status = generic_osync_inode(inode, mapping,
2303 						OSYNC_METADATA|OSYNC_DATA);
2304 		}
2305   	}
2306 
2307 	/*
2308 	 * If we get here for O_DIRECT writes then we must have fallen through
2309 	 * to buffered writes (block instantiation inside i_size).  So we sync
2310 	 * the file data here, to try to honour O_DIRECT expectations.
2311 	 */
2312 	if (unlikely(file->f_flags & O_DIRECT) && written)
2313 		status = filemap_write_and_wait(mapping);
2314 
2315 	return written ? written : status;
2316 }
2317 EXPORT_SYMBOL(generic_file_buffered_write);
2318 
2319 static ssize_t
2320 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2321 				unsigned long nr_segs, loff_t *ppos)
2322 {
2323 	struct file *file = iocb->ki_filp;
2324 	struct address_space * mapping = file->f_mapping;
2325 	size_t ocount;		/* original count */
2326 	size_t count;		/* after file limit checks */
2327 	struct inode 	*inode = mapping->host;
2328 	loff_t		pos;
2329 	ssize_t		written;
2330 	ssize_t		err;
2331 
2332 	ocount = 0;
2333 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2334 	if (err)
2335 		return err;
2336 
2337 	count = ocount;
2338 	pos = *ppos;
2339 
2340 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2341 
2342 	/* We can write back this queue in page reclaim */
2343 	current->backing_dev_info = mapping->backing_dev_info;
2344 	written = 0;
2345 
2346 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2347 	if (err)
2348 		goto out;
2349 
2350 	if (count == 0)
2351 		goto out;
2352 
2353 	err = remove_suid(file->f_path.dentry);
2354 	if (err)
2355 		goto out;
2356 
2357 	file_update_time(file);
2358 
2359 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2360 	if (unlikely(file->f_flags & O_DIRECT)) {
2361 		loff_t endbyte;
2362 		ssize_t written_buffered;
2363 
2364 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2365 							ppos, count, ocount);
2366 		if (written < 0 || written == count)
2367 			goto out;
2368 		/*
2369 		 * direct-io write to a hole: fall through to buffered I/O
2370 		 * for completing the rest of the request.
2371 		 */
2372 		pos += written;
2373 		count -= written;
2374 		written_buffered = generic_file_buffered_write(iocb, iov,
2375 						nr_segs, pos, ppos, count,
2376 						written);
2377 		/*
2378 		 * If generic_file_buffered_write() retuned a synchronous error
2379 		 * then we want to return the number of bytes which were
2380 		 * direct-written, or the error code if that was zero.  Note
2381 		 * that this differs from normal direct-io semantics, which
2382 		 * will return -EFOO even if some bytes were written.
2383 		 */
2384 		if (written_buffered < 0) {
2385 			err = written_buffered;
2386 			goto out;
2387 		}
2388 
2389 		/*
2390 		 * We need to ensure that the page cache pages are written to
2391 		 * disk and invalidated to preserve the expected O_DIRECT
2392 		 * semantics.
2393 		 */
2394 		endbyte = pos + written_buffered - written - 1;
2395 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2396 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2397 					    SYNC_FILE_RANGE_WRITE|
2398 					    SYNC_FILE_RANGE_WAIT_AFTER);
2399 		if (err == 0) {
2400 			written = written_buffered;
2401 			invalidate_mapping_pages(mapping,
2402 						 pos >> PAGE_CACHE_SHIFT,
2403 						 endbyte >> PAGE_CACHE_SHIFT);
2404 		} else {
2405 			/*
2406 			 * We don't know how much we wrote, so just return
2407 			 * the number of bytes which were direct-written
2408 			 */
2409 		}
2410 	} else {
2411 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2412 				pos, ppos, count, written);
2413 	}
2414 out:
2415 	current->backing_dev_info = NULL;
2416 	return written ? written : err;
2417 }
2418 
2419 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2420 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2421 {
2422 	struct file *file = iocb->ki_filp;
2423 	struct address_space *mapping = file->f_mapping;
2424 	struct inode *inode = mapping->host;
2425 	ssize_t ret;
2426 
2427 	BUG_ON(iocb->ki_pos != pos);
2428 
2429 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2430 			&iocb->ki_pos);
2431 
2432 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2433 		ssize_t err;
2434 
2435 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2436 		if (err < 0)
2437 			ret = err;
2438 	}
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2442 
2443 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2444 		unsigned long nr_segs, loff_t pos)
2445 {
2446 	struct file *file = iocb->ki_filp;
2447 	struct address_space *mapping = file->f_mapping;
2448 	struct inode *inode = mapping->host;
2449 	ssize_t ret;
2450 
2451 	BUG_ON(iocb->ki_pos != pos);
2452 
2453 	mutex_lock(&inode->i_mutex);
2454 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2455 			&iocb->ki_pos);
2456 	mutex_unlock(&inode->i_mutex);
2457 
2458 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2459 		ssize_t err;
2460 
2461 		err = sync_page_range(inode, mapping, pos, ret);
2462 		if (err < 0)
2463 			ret = err;
2464 	}
2465 	return ret;
2466 }
2467 EXPORT_SYMBOL(generic_file_aio_write);
2468 
2469 /*
2470  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2471  * went wrong during pagecache shootdown.
2472  */
2473 static ssize_t
2474 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2475 	loff_t offset, unsigned long nr_segs)
2476 {
2477 	struct file *file = iocb->ki_filp;
2478 	struct address_space *mapping = file->f_mapping;
2479 	ssize_t retval;
2480 	size_t write_len;
2481 	pgoff_t end = 0; /* silence gcc */
2482 
2483 	/*
2484 	 * If it's a write, unmap all mmappings of the file up-front.  This
2485 	 * will cause any pte dirty bits to be propagated into the pageframes
2486 	 * for the subsequent filemap_write_and_wait().
2487 	 */
2488 	if (rw == WRITE) {
2489 		write_len = iov_length(iov, nr_segs);
2490 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2491 	       	if (mapping_mapped(mapping))
2492 			unmap_mapping_range(mapping, offset, write_len, 0);
2493 	}
2494 
2495 	retval = filemap_write_and_wait(mapping);
2496 	if (retval)
2497 		goto out;
2498 
2499 	/*
2500 	 * After a write we want buffered reads to be sure to go to disk to get
2501 	 * the new data.  We invalidate clean cached page from the region we're
2502 	 * about to write.  We do this *before* the write so that we can return
2503 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2504 	 */
2505 	if (rw == WRITE && mapping->nrpages) {
2506 		retval = invalidate_inode_pages2_range(mapping,
2507 					offset >> PAGE_CACHE_SHIFT, end);
2508 		if (retval)
2509 			goto out;
2510 	}
2511 
2512 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2513 	if (retval)
2514 		goto out;
2515 
2516 	/*
2517 	 * Finally, try again to invalidate clean pages which might have been
2518 	 * faulted in by get_user_pages() if the source of the write was an
2519 	 * mmap()ed region of the file we're writing.  That's a pretty crazy
2520 	 * thing to do, so we don't support it 100%.  If this invalidation
2521 	 * fails and we have -EIOCBQUEUED we ignore the failure.
2522 	 */
2523 	if (rw == WRITE && mapping->nrpages) {
2524 		int err = invalidate_inode_pages2_range(mapping,
2525 					      offset >> PAGE_CACHE_SHIFT, end);
2526 		if (err && retval >= 0)
2527 			retval = err;
2528 	}
2529 out:
2530 	return retval;
2531 }
2532 
2533 /**
2534  * try_to_release_page() - release old fs-specific metadata on a page
2535  *
2536  * @page: the page which the kernel is trying to free
2537  * @gfp_mask: memory allocation flags (and I/O mode)
2538  *
2539  * The address_space is to try to release any data against the page
2540  * (presumably at page->private).  If the release was successful, return `1'.
2541  * Otherwise return zero.
2542  *
2543  * The @gfp_mask argument specifies whether I/O may be performed to release
2544  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2545  *
2546  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2547  */
2548 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2549 {
2550 	struct address_space * const mapping = page->mapping;
2551 
2552 	BUG_ON(!PageLocked(page));
2553 	if (PageWriteback(page))
2554 		return 0;
2555 
2556 	if (mapping && mapping->a_ops->releasepage)
2557 		return mapping->a_ops->releasepage(page, gfp_mask);
2558 	return try_to_free_buffers(page);
2559 }
2560 
2561 EXPORT_SYMBOL(try_to_release_page);
2562