xref: /openbmc/linux/mm/filemap.c (revision 3aa139aa9fdc138a84243dc49dc18d9b40e1c6e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_mutex
80  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->lock_page		(access_process_vm)
89  *
90  *  ->i_mutex			(generic_perform_write)
91  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
92  *
93  *  bdi->wb.list_lock
94  *    sb_lock			(fs/fs-writeback.c)
95  *    ->i_pages lock		(__sync_single_inode)
96  *
97  *  ->i_mmap_rwsem
98  *    ->anon_vma.lock		(vma_adjust)
99  *
100  *  ->anon_vma.lock
101  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
102  *
103  *  ->page_table_lock or pte_lock
104  *    ->swap_lock		(try_to_unmap_one)
105  *    ->private_lock		(try_to_unmap_one)
106  *    ->i_pages lock		(try_to_unmap_one)
107  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
108  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
109  *    ->private_lock		(page_remove_rmap->set_page_dirty)
110  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
111  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
112  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
113  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
114  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
115  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
116  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
117  *
118  * ->i_mmap_rwsem
119  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
120  */
121 
122 static void page_cache_delete(struct address_space *mapping,
123 				   struct page *page, void *shadow)
124 {
125 	XA_STATE(xas, &mapping->i_pages, page->index);
126 	unsigned int nr = 1;
127 
128 	mapping_set_update(&xas, mapping);
129 
130 	/* hugetlb pages are represented by a single entry in the xarray */
131 	if (!PageHuge(page)) {
132 		xas_set_order(&xas, page->index, compound_order(page));
133 		nr = compound_nr(page);
134 	}
135 
136 	VM_BUG_ON_PAGE(!PageLocked(page), page);
137 	VM_BUG_ON_PAGE(PageTail(page), page);
138 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	page->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 
146 	if (shadow) {
147 		mapping->nrexceptional += nr;
148 		/*
149 		 * Make sure the nrexceptional update is committed before
150 		 * the nrpages update so that final truncate racing
151 		 * with reclaim does not see both counters 0 at the
152 		 * same time and miss a shadow entry.
153 		 */
154 		smp_wmb();
155 	}
156 	mapping->nrpages -= nr;
157 }
158 
159 static void unaccount_page_cache_page(struct address_space *mapping,
160 				      struct page *page)
161 {
162 	int nr;
163 
164 	/*
165 	 * if we're uptodate, flush out into the cleancache, otherwise
166 	 * invalidate any existing cleancache entries.  We can't leave
167 	 * stale data around in the cleancache once our page is gone
168 	 */
169 	if (PageUptodate(page) && PageMappedToDisk(page))
170 		cleancache_put_page(page);
171 	else
172 		cleancache_invalidate_page(mapping, page);
173 
174 	VM_BUG_ON_PAGE(PageTail(page), page);
175 	VM_BUG_ON_PAGE(page_mapped(page), page);
176 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 		int mapcount;
178 
179 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
180 			 current->comm, page_to_pfn(page));
181 		dump_page(page, "still mapped when deleted");
182 		dump_stack();
183 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
184 
185 		mapcount = page_mapcount(page);
186 		if (mapping_exiting(mapping) &&
187 		    page_count(page) >= mapcount + 2) {
188 			/*
189 			 * All vmas have already been torn down, so it's
190 			 * a good bet that actually the page is unmapped,
191 			 * and we'd prefer not to leak it: if we're wrong,
192 			 * some other bad page check should catch it later.
193 			 */
194 			page_mapcount_reset(page);
195 			page_ref_sub(page, mapcount);
196 		}
197 	}
198 
199 	/* hugetlb pages do not participate in page cache accounting. */
200 	if (PageHuge(page))
201 		return;
202 
203 	nr = thp_nr_pages(page);
204 
205 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
206 	if (PageSwapBacked(page)) {
207 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
208 		if (PageTransHuge(page))
209 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
210 	} else if (PageTransHuge(page)) {
211 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
212 		filemap_nr_thps_dec(mapping);
213 	}
214 
215 	/*
216 	 * At this point page must be either written or cleaned by
217 	 * truncate.  Dirty page here signals a bug and loss of
218 	 * unwritten data.
219 	 *
220 	 * This fixes dirty accounting after removing the page entirely
221 	 * but leaves PageDirty set: it has no effect for truncated
222 	 * page and anyway will be cleared before returning page into
223 	 * buddy allocator.
224 	 */
225 	if (WARN_ON_ONCE(PageDirty(page)))
226 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227 }
228 
229 /*
230  * Delete a page from the page cache and free it. Caller has to make
231  * sure the page is locked and that nobody else uses it - or that usage
232  * is safe.  The caller must hold the i_pages lock.
233  */
234 void __delete_from_page_cache(struct page *page, void *shadow)
235 {
236 	struct address_space *mapping = page->mapping;
237 
238 	trace_mm_filemap_delete_from_page_cache(page);
239 
240 	unaccount_page_cache_page(mapping, page);
241 	page_cache_delete(mapping, page, shadow);
242 }
243 
244 static void page_cache_free_page(struct address_space *mapping,
245 				struct page *page)
246 {
247 	void (*freepage)(struct page *);
248 
249 	freepage = mapping->a_ops->freepage;
250 	if (freepage)
251 		freepage(page);
252 
253 	if (PageTransHuge(page) && !PageHuge(page)) {
254 		page_ref_sub(page, thp_nr_pages(page));
255 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
256 	} else {
257 		put_page(page);
258 	}
259 }
260 
261 /**
262  * delete_from_page_cache - delete page from page cache
263  * @page: the page which the kernel is trying to remove from page cache
264  *
265  * This must be called only on pages that have been verified to be in the page
266  * cache and locked.  It will never put the page into the free list, the caller
267  * has a reference on the page.
268  */
269 void delete_from_page_cache(struct page *page)
270 {
271 	struct address_space *mapping = page_mapping(page);
272 	unsigned long flags;
273 
274 	BUG_ON(!PageLocked(page));
275 	xa_lock_irqsave(&mapping->i_pages, flags);
276 	__delete_from_page_cache(page, NULL);
277 	xa_unlock_irqrestore(&mapping->i_pages, flags);
278 
279 	page_cache_free_page(mapping, page);
280 }
281 EXPORT_SYMBOL(delete_from_page_cache);
282 
283 /*
284  * page_cache_delete_batch - delete several pages from page cache
285  * @mapping: the mapping to which pages belong
286  * @pvec: pagevec with pages to delete
287  *
288  * The function walks over mapping->i_pages and removes pages passed in @pvec
289  * from the mapping. The function expects @pvec to be sorted by page index
290  * and is optimised for it to be dense.
291  * It tolerates holes in @pvec (mapping entries at those indices are not
292  * modified). The function expects only THP head pages to be present in the
293  * @pvec.
294  *
295  * The function expects the i_pages lock to be held.
296  */
297 static void page_cache_delete_batch(struct address_space *mapping,
298 			     struct pagevec *pvec)
299 {
300 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
301 	int total_pages = 0;
302 	int i = 0;
303 	struct page *page;
304 
305 	mapping_set_update(&xas, mapping);
306 	xas_for_each(&xas, page, ULONG_MAX) {
307 		if (i >= pagevec_count(pvec))
308 			break;
309 
310 		/* A swap/dax/shadow entry got inserted? Skip it. */
311 		if (xa_is_value(page))
312 			continue;
313 		/*
314 		 * A page got inserted in our range? Skip it. We have our
315 		 * pages locked so they are protected from being removed.
316 		 * If we see a page whose index is higher than ours, it
317 		 * means our page has been removed, which shouldn't be
318 		 * possible because we're holding the PageLock.
319 		 */
320 		if (page != pvec->pages[i]) {
321 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
322 					page);
323 			continue;
324 		}
325 
326 		WARN_ON_ONCE(!PageLocked(page));
327 
328 		if (page->index == xas.xa_index)
329 			page->mapping = NULL;
330 		/* Leave page->index set: truncation lookup relies on it */
331 
332 		/*
333 		 * Move to the next page in the vector if this is a regular
334 		 * page or the index is of the last sub-page of this compound
335 		 * page.
336 		 */
337 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
338 			i++;
339 		xas_store(&xas, NULL);
340 		total_pages++;
341 	}
342 	mapping->nrpages -= total_pages;
343 }
344 
345 void delete_from_page_cache_batch(struct address_space *mapping,
346 				  struct pagevec *pvec)
347 {
348 	int i;
349 	unsigned long flags;
350 
351 	if (!pagevec_count(pvec))
352 		return;
353 
354 	xa_lock_irqsave(&mapping->i_pages, flags);
355 	for (i = 0; i < pagevec_count(pvec); i++) {
356 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
357 
358 		unaccount_page_cache_page(mapping, pvec->pages[i]);
359 	}
360 	page_cache_delete_batch(mapping, pvec);
361 	xa_unlock_irqrestore(&mapping->i_pages, flags);
362 
363 	for (i = 0; i < pagevec_count(pvec); i++)
364 		page_cache_free_page(mapping, pvec->pages[i]);
365 }
366 
367 int filemap_check_errors(struct address_space *mapping)
368 {
369 	int ret = 0;
370 	/* Check for outstanding write errors */
371 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
373 		ret = -ENOSPC;
374 	if (test_bit(AS_EIO, &mapping->flags) &&
375 	    test_and_clear_bit(AS_EIO, &mapping->flags))
376 		ret = -EIO;
377 	return ret;
378 }
379 EXPORT_SYMBOL(filemap_check_errors);
380 
381 static int filemap_check_and_keep_errors(struct address_space *mapping)
382 {
383 	/* Check for outstanding write errors */
384 	if (test_bit(AS_EIO, &mapping->flags))
385 		return -EIO;
386 	if (test_bit(AS_ENOSPC, &mapping->flags))
387 		return -ENOSPC;
388 	return 0;
389 }
390 
391 /**
392  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
393  * @mapping:	address space structure to write
394  * @start:	offset in bytes where the range starts
395  * @end:	offset in bytes where the range ends (inclusive)
396  * @sync_mode:	enable synchronous operation
397  *
398  * Start writeback against all of a mapping's dirty pages that lie
399  * within the byte offsets <start, end> inclusive.
400  *
401  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
402  * opposed to a regular memory cleansing writeback.  The difference between
403  * these two operations is that if a dirty page/buffer is encountered, it must
404  * be waited upon, and not just skipped over.
405  *
406  * Return: %0 on success, negative error code otherwise.
407  */
408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 				loff_t end, int sync_mode)
410 {
411 	int ret;
412 	struct writeback_control wbc = {
413 		.sync_mode = sync_mode,
414 		.nr_to_write = LONG_MAX,
415 		.range_start = start,
416 		.range_end = end,
417 	};
418 
419 	if (!mapping_can_writeback(mapping) ||
420 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
421 		return 0;
422 
423 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
424 	ret = do_writepages(mapping, &wbc);
425 	wbc_detach_inode(&wbc);
426 	return ret;
427 }
428 
429 static inline int __filemap_fdatawrite(struct address_space *mapping,
430 	int sync_mode)
431 {
432 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 }
434 
435 int filemap_fdatawrite(struct address_space *mapping)
436 {
437 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438 }
439 EXPORT_SYMBOL(filemap_fdatawrite);
440 
441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 				loff_t end)
443 {
444 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445 }
446 EXPORT_SYMBOL(filemap_fdatawrite_range);
447 
448 /**
449  * filemap_flush - mostly a non-blocking flush
450  * @mapping:	target address_space
451  *
452  * This is a mostly non-blocking flush.  Not suitable for data-integrity
453  * purposes - I/O may not be started against all dirty pages.
454  *
455  * Return: %0 on success, negative error code otherwise.
456  */
457 int filemap_flush(struct address_space *mapping)
458 {
459 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460 }
461 EXPORT_SYMBOL(filemap_flush);
462 
463 /**
464  * filemap_range_has_page - check if a page exists in range.
465  * @mapping:           address space within which to check
466  * @start_byte:        offset in bytes where the range starts
467  * @end_byte:          offset in bytes where the range ends (inclusive)
468  *
469  * Find at least one page in the range supplied, usually used to check if
470  * direct writing in this range will trigger a writeback.
471  *
472  * Return: %true if at least one page exists in the specified range,
473  * %false otherwise.
474  */
475 bool filemap_range_has_page(struct address_space *mapping,
476 			   loff_t start_byte, loff_t end_byte)
477 {
478 	struct page *page;
479 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 	pgoff_t max = end_byte >> PAGE_SHIFT;
481 
482 	if (end_byte < start_byte)
483 		return false;
484 
485 	rcu_read_lock();
486 	for (;;) {
487 		page = xas_find(&xas, max);
488 		if (xas_retry(&xas, page))
489 			continue;
490 		/* Shadow entries don't count */
491 		if (xa_is_value(page))
492 			continue;
493 		/*
494 		 * We don't need to try to pin this page; we're about to
495 		 * release the RCU lock anyway.  It is enough to know that
496 		 * there was a page here recently.
497 		 */
498 		break;
499 	}
500 	rcu_read_unlock();
501 
502 	return page != NULL;
503 }
504 EXPORT_SYMBOL(filemap_range_has_page);
505 
506 static void __filemap_fdatawait_range(struct address_space *mapping,
507 				     loff_t start_byte, loff_t end_byte)
508 {
509 	pgoff_t index = start_byte >> PAGE_SHIFT;
510 	pgoff_t end = end_byte >> PAGE_SHIFT;
511 	struct pagevec pvec;
512 	int nr_pages;
513 
514 	if (end_byte < start_byte)
515 		return;
516 
517 	pagevec_init(&pvec);
518 	while (index <= end) {
519 		unsigned i;
520 
521 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
522 				end, PAGECACHE_TAG_WRITEBACK);
523 		if (!nr_pages)
524 			break;
525 
526 		for (i = 0; i < nr_pages; i++) {
527 			struct page *page = pvec.pages[i];
528 
529 			wait_on_page_writeback(page);
530 			ClearPageError(page);
531 		}
532 		pagevec_release(&pvec);
533 		cond_resched();
534 	}
535 }
536 
537 /**
538  * filemap_fdatawait_range - wait for writeback to complete
539  * @mapping:		address space structure to wait for
540  * @start_byte:		offset in bytes where the range starts
541  * @end_byte:		offset in bytes where the range ends (inclusive)
542  *
543  * Walk the list of under-writeback pages of the given address space
544  * in the given range and wait for all of them.  Check error status of
545  * the address space and return it.
546  *
547  * Since the error status of the address space is cleared by this function,
548  * callers are responsible for checking the return value and handling and/or
549  * reporting the error.
550  *
551  * Return: error status of the address space.
552  */
553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 			    loff_t end_byte)
555 {
556 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
557 	return filemap_check_errors(mapping);
558 }
559 EXPORT_SYMBOL(filemap_fdatawait_range);
560 
561 /**
562  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563  * @mapping:		address space structure to wait for
564  * @start_byte:		offset in bytes where the range starts
565  * @end_byte:		offset in bytes where the range ends (inclusive)
566  *
567  * Walk the list of under-writeback pages of the given address space in the
568  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
569  * this function does not clear error status of the address space.
570  *
571  * Use this function if callers don't handle errors themselves.  Expected
572  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573  * fsfreeze(8)
574  */
575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 		loff_t start_byte, loff_t end_byte)
577 {
578 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
579 	return filemap_check_and_keep_errors(mapping);
580 }
581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582 
583 /**
584  * file_fdatawait_range - wait for writeback to complete
585  * @file:		file pointing to address space structure to wait for
586  * @start_byte:		offset in bytes where the range starts
587  * @end_byte:		offset in bytes where the range ends (inclusive)
588  *
589  * Walk the list of under-writeback pages of the address space that file
590  * refers to, in the given range and wait for all of them.  Check error
591  * status of the address space vs. the file->f_wb_err cursor and return it.
592  *
593  * Since the error status of the file is advanced by this function,
594  * callers are responsible for checking the return value and handling and/or
595  * reporting the error.
596  *
597  * Return: error status of the address space vs. the file->f_wb_err cursor.
598  */
599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
600 {
601 	struct address_space *mapping = file->f_mapping;
602 
603 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
604 	return file_check_and_advance_wb_err(file);
605 }
606 EXPORT_SYMBOL(file_fdatawait_range);
607 
608 /**
609  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610  * @mapping: address space structure to wait for
611  *
612  * Walk the list of under-writeback pages of the given address space
613  * and wait for all of them.  Unlike filemap_fdatawait(), this function
614  * does not clear error status of the address space.
615  *
616  * Use this function if callers don't handle errors themselves.  Expected
617  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618  * fsfreeze(8)
619  *
620  * Return: error status of the address space.
621  */
622 int filemap_fdatawait_keep_errors(struct address_space *mapping)
623 {
624 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
625 	return filemap_check_and_keep_errors(mapping);
626 }
627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
628 
629 /* Returns true if writeback might be needed or already in progress. */
630 static bool mapping_needs_writeback(struct address_space *mapping)
631 {
632 	if (dax_mapping(mapping))
633 		return mapping->nrexceptional;
634 
635 	return mapping->nrpages;
636 }
637 
638 /**
639  * filemap_write_and_wait_range - write out & wait on a file range
640  * @mapping:	the address_space for the pages
641  * @lstart:	offset in bytes where the range starts
642  * @lend:	offset in bytes where the range ends (inclusive)
643  *
644  * Write out and wait upon file offsets lstart->lend, inclusive.
645  *
646  * Note that @lend is inclusive (describes the last byte to be written) so
647  * that this function can be used to write to the very end-of-file (end = -1).
648  *
649  * Return: error status of the address space.
650  */
651 int filemap_write_and_wait_range(struct address_space *mapping,
652 				 loff_t lstart, loff_t lend)
653 {
654 	int err = 0;
655 
656 	if (mapping_needs_writeback(mapping)) {
657 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 						 WB_SYNC_ALL);
659 		/*
660 		 * Even if the above returned error, the pages may be
661 		 * written partially (e.g. -ENOSPC), so we wait for it.
662 		 * But the -EIO is special case, it may indicate the worst
663 		 * thing (e.g. bug) happened, so we avoid waiting for it.
664 		 */
665 		if (err != -EIO) {
666 			int err2 = filemap_fdatawait_range(mapping,
667 						lstart, lend);
668 			if (!err)
669 				err = err2;
670 		} else {
671 			/* Clear any previously stored errors */
672 			filemap_check_errors(mapping);
673 		}
674 	} else {
675 		err = filemap_check_errors(mapping);
676 	}
677 	return err;
678 }
679 EXPORT_SYMBOL(filemap_write_and_wait_range);
680 
681 void __filemap_set_wb_err(struct address_space *mapping, int err)
682 {
683 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
684 
685 	trace_filemap_set_wb_err(mapping, eseq);
686 }
687 EXPORT_SYMBOL(__filemap_set_wb_err);
688 
689 /**
690  * file_check_and_advance_wb_err - report wb error (if any) that was previously
691  * 				   and advance wb_err to current one
692  * @file: struct file on which the error is being reported
693  *
694  * When userland calls fsync (or something like nfsd does the equivalent), we
695  * want to report any writeback errors that occurred since the last fsync (or
696  * since the file was opened if there haven't been any).
697  *
698  * Grab the wb_err from the mapping. If it matches what we have in the file,
699  * then just quickly return 0. The file is all caught up.
700  *
701  * If it doesn't match, then take the mapping value, set the "seen" flag in
702  * it and try to swap it into place. If it works, or another task beat us
703  * to it with the new value, then update the f_wb_err and return the error
704  * portion. The error at this point must be reported via proper channels
705  * (a'la fsync, or NFS COMMIT operation, etc.).
706  *
707  * While we handle mapping->wb_err with atomic operations, the f_wb_err
708  * value is protected by the f_lock since we must ensure that it reflects
709  * the latest value swapped in for this file descriptor.
710  *
711  * Return: %0 on success, negative error code otherwise.
712  */
713 int file_check_and_advance_wb_err(struct file *file)
714 {
715 	int err = 0;
716 	errseq_t old = READ_ONCE(file->f_wb_err);
717 	struct address_space *mapping = file->f_mapping;
718 
719 	/* Locklessly handle the common case where nothing has changed */
720 	if (errseq_check(&mapping->wb_err, old)) {
721 		/* Something changed, must use slow path */
722 		spin_lock(&file->f_lock);
723 		old = file->f_wb_err;
724 		err = errseq_check_and_advance(&mapping->wb_err,
725 						&file->f_wb_err);
726 		trace_file_check_and_advance_wb_err(file, old);
727 		spin_unlock(&file->f_lock);
728 	}
729 
730 	/*
731 	 * We're mostly using this function as a drop in replacement for
732 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
733 	 * that the legacy code would have had on these flags.
734 	 */
735 	clear_bit(AS_EIO, &mapping->flags);
736 	clear_bit(AS_ENOSPC, &mapping->flags);
737 	return err;
738 }
739 EXPORT_SYMBOL(file_check_and_advance_wb_err);
740 
741 /**
742  * file_write_and_wait_range - write out & wait on a file range
743  * @file:	file pointing to address_space with pages
744  * @lstart:	offset in bytes where the range starts
745  * @lend:	offset in bytes where the range ends (inclusive)
746  *
747  * Write out and wait upon file offsets lstart->lend, inclusive.
748  *
749  * Note that @lend is inclusive (describes the last byte to be written) so
750  * that this function can be used to write to the very end-of-file (end = -1).
751  *
752  * After writing out and waiting on the data, we check and advance the
753  * f_wb_err cursor to the latest value, and return any errors detected there.
754  *
755  * Return: %0 on success, negative error code otherwise.
756  */
757 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
758 {
759 	int err = 0, err2;
760 	struct address_space *mapping = file->f_mapping;
761 
762 	if (mapping_needs_writeback(mapping)) {
763 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
764 						 WB_SYNC_ALL);
765 		/* See comment of filemap_write_and_wait() */
766 		if (err != -EIO)
767 			__filemap_fdatawait_range(mapping, lstart, lend);
768 	}
769 	err2 = file_check_and_advance_wb_err(file);
770 	if (!err)
771 		err = err2;
772 	return err;
773 }
774 EXPORT_SYMBOL(file_write_and_wait_range);
775 
776 /**
777  * replace_page_cache_page - replace a pagecache page with a new one
778  * @old:	page to be replaced
779  * @new:	page to replace with
780  *
781  * This function replaces a page in the pagecache with a new one.  On
782  * success it acquires the pagecache reference for the new page and
783  * drops it for the old page.  Both the old and new pages must be
784  * locked.  This function does not add the new page to the LRU, the
785  * caller must do that.
786  *
787  * The remove + add is atomic.  This function cannot fail.
788  */
789 void replace_page_cache_page(struct page *old, struct page *new)
790 {
791 	struct address_space *mapping = old->mapping;
792 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 	pgoff_t offset = old->index;
794 	XA_STATE(xas, &mapping->i_pages, offset);
795 	unsigned long flags;
796 
797 	VM_BUG_ON_PAGE(!PageLocked(old), old);
798 	VM_BUG_ON_PAGE(!PageLocked(new), new);
799 	VM_BUG_ON_PAGE(new->mapping, new);
800 
801 	get_page(new);
802 	new->mapping = mapping;
803 	new->index = offset;
804 
805 	mem_cgroup_migrate(old, new);
806 
807 	xas_lock_irqsave(&xas, flags);
808 	xas_store(&xas, new);
809 
810 	old->mapping = NULL;
811 	/* hugetlb pages do not participate in page cache accounting. */
812 	if (!PageHuge(old))
813 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
814 	if (!PageHuge(new))
815 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
816 	if (PageSwapBacked(old))
817 		__dec_lruvec_page_state(old, NR_SHMEM);
818 	if (PageSwapBacked(new))
819 		__inc_lruvec_page_state(new, NR_SHMEM);
820 	xas_unlock_irqrestore(&xas, flags);
821 	if (freepage)
822 		freepage(old);
823 	put_page(old);
824 }
825 EXPORT_SYMBOL_GPL(replace_page_cache_page);
826 
827 noinline int __add_to_page_cache_locked(struct page *page,
828 					struct address_space *mapping,
829 					pgoff_t offset, gfp_t gfp,
830 					void **shadowp)
831 {
832 	XA_STATE(xas, &mapping->i_pages, offset);
833 	int huge = PageHuge(page);
834 	int error;
835 	bool charged = false;
836 
837 	VM_BUG_ON_PAGE(!PageLocked(page), page);
838 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
839 	mapping_set_update(&xas, mapping);
840 
841 	get_page(page);
842 	page->mapping = mapping;
843 	page->index = offset;
844 
845 	if (!huge) {
846 		error = mem_cgroup_charge(page, current->mm, gfp);
847 		if (error)
848 			goto error;
849 		charged = true;
850 	}
851 
852 	gfp &= GFP_RECLAIM_MASK;
853 
854 	do {
855 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
856 		void *entry, *old = NULL;
857 
858 		if (order > thp_order(page))
859 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
860 					order, gfp);
861 		xas_lock_irq(&xas);
862 		xas_for_each_conflict(&xas, entry) {
863 			old = entry;
864 			if (!xa_is_value(entry)) {
865 				xas_set_err(&xas, -EEXIST);
866 				goto unlock;
867 			}
868 		}
869 
870 		if (old) {
871 			if (shadowp)
872 				*shadowp = old;
873 			/* entry may have been split before we acquired lock */
874 			order = xa_get_order(xas.xa, xas.xa_index);
875 			if (order > thp_order(page)) {
876 				xas_split(&xas, old, order);
877 				xas_reset(&xas);
878 			}
879 		}
880 
881 		xas_store(&xas, page);
882 		if (xas_error(&xas))
883 			goto unlock;
884 
885 		if (old)
886 			mapping->nrexceptional--;
887 		mapping->nrpages++;
888 
889 		/* hugetlb pages do not participate in page cache accounting */
890 		if (!huge)
891 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
892 unlock:
893 		xas_unlock_irq(&xas);
894 	} while (xas_nomem(&xas, gfp));
895 
896 	if (xas_error(&xas)) {
897 		error = xas_error(&xas);
898 		if (charged)
899 			mem_cgroup_uncharge(page);
900 		goto error;
901 	}
902 
903 	trace_mm_filemap_add_to_page_cache(page);
904 	return 0;
905 error:
906 	page->mapping = NULL;
907 	/* Leave page->index set: truncation relies upon it */
908 	put_page(page);
909 	return error;
910 }
911 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
912 
913 /**
914  * add_to_page_cache_locked - add a locked page to the pagecache
915  * @page:	page to add
916  * @mapping:	the page's address_space
917  * @offset:	page index
918  * @gfp_mask:	page allocation mode
919  *
920  * This function is used to add a page to the pagecache. It must be locked.
921  * This function does not add the page to the LRU.  The caller must do that.
922  *
923  * Return: %0 on success, negative error code otherwise.
924  */
925 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
926 		pgoff_t offset, gfp_t gfp_mask)
927 {
928 	return __add_to_page_cache_locked(page, mapping, offset,
929 					  gfp_mask, NULL);
930 }
931 EXPORT_SYMBOL(add_to_page_cache_locked);
932 
933 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
934 				pgoff_t offset, gfp_t gfp_mask)
935 {
936 	void *shadow = NULL;
937 	int ret;
938 
939 	__SetPageLocked(page);
940 	ret = __add_to_page_cache_locked(page, mapping, offset,
941 					 gfp_mask, &shadow);
942 	if (unlikely(ret))
943 		__ClearPageLocked(page);
944 	else {
945 		/*
946 		 * The page might have been evicted from cache only
947 		 * recently, in which case it should be activated like
948 		 * any other repeatedly accessed page.
949 		 * The exception is pages getting rewritten; evicting other
950 		 * data from the working set, only to cache data that will
951 		 * get overwritten with something else, is a waste of memory.
952 		 */
953 		WARN_ON_ONCE(PageActive(page));
954 		if (!(gfp_mask & __GFP_WRITE) && shadow)
955 			workingset_refault(page, shadow);
956 		lru_cache_add(page);
957 	}
958 	return ret;
959 }
960 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
961 
962 #ifdef CONFIG_NUMA
963 struct page *__page_cache_alloc(gfp_t gfp)
964 {
965 	int n;
966 	struct page *page;
967 
968 	if (cpuset_do_page_mem_spread()) {
969 		unsigned int cpuset_mems_cookie;
970 		do {
971 			cpuset_mems_cookie = read_mems_allowed_begin();
972 			n = cpuset_mem_spread_node();
973 			page = __alloc_pages_node(n, gfp, 0);
974 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
975 
976 		return page;
977 	}
978 	return alloc_pages(gfp, 0);
979 }
980 EXPORT_SYMBOL(__page_cache_alloc);
981 #endif
982 
983 /*
984  * In order to wait for pages to become available there must be
985  * waitqueues associated with pages. By using a hash table of
986  * waitqueues where the bucket discipline is to maintain all
987  * waiters on the same queue and wake all when any of the pages
988  * become available, and for the woken contexts to check to be
989  * sure the appropriate page became available, this saves space
990  * at a cost of "thundering herd" phenomena during rare hash
991  * collisions.
992  */
993 #define PAGE_WAIT_TABLE_BITS 8
994 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
995 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
996 
997 static wait_queue_head_t *page_waitqueue(struct page *page)
998 {
999 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1000 }
1001 
1002 void __init pagecache_init(void)
1003 {
1004 	int i;
1005 
1006 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1007 		init_waitqueue_head(&page_wait_table[i]);
1008 
1009 	page_writeback_init();
1010 }
1011 
1012 /*
1013  * The page wait code treats the "wait->flags" somewhat unusually, because
1014  * we have multiple different kinds of waits, not just the usual "exclusive"
1015  * one.
1016  *
1017  * We have:
1018  *
1019  *  (a) no special bits set:
1020  *
1021  *	We're just waiting for the bit to be released, and when a waker
1022  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1023  *	and remove it from the wait queue.
1024  *
1025  *	Simple and straightforward.
1026  *
1027  *  (b) WQ_FLAG_EXCLUSIVE:
1028  *
1029  *	The waiter is waiting to get the lock, and only one waiter should
1030  *	be woken up to avoid any thundering herd behavior. We'll set the
1031  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1032  *
1033  *	This is the traditional exclusive wait.
1034  *
1035  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1036  *
1037  *	The waiter is waiting to get the bit, and additionally wants the
1038  *	lock to be transferred to it for fair lock behavior. If the lock
1039  *	cannot be taken, we stop walking the wait queue without waking
1040  *	the waiter.
1041  *
1042  *	This is the "fair lock handoff" case, and in addition to setting
1043  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1044  *	that it now has the lock.
1045  */
1046 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1047 {
1048 	unsigned int flags;
1049 	struct wait_page_key *key = arg;
1050 	struct wait_page_queue *wait_page
1051 		= container_of(wait, struct wait_page_queue, wait);
1052 
1053 	if (!wake_page_match(wait_page, key))
1054 		return 0;
1055 
1056 	/*
1057 	 * If it's a lock handoff wait, we get the bit for it, and
1058 	 * stop walking (and do not wake it up) if we can't.
1059 	 */
1060 	flags = wait->flags;
1061 	if (flags & WQ_FLAG_EXCLUSIVE) {
1062 		if (test_bit(key->bit_nr, &key->page->flags))
1063 			return -1;
1064 		if (flags & WQ_FLAG_CUSTOM) {
1065 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1066 				return -1;
1067 			flags |= WQ_FLAG_DONE;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * We are holding the wait-queue lock, but the waiter that
1073 	 * is waiting for this will be checking the flags without
1074 	 * any locking.
1075 	 *
1076 	 * So update the flags atomically, and wake up the waiter
1077 	 * afterwards to avoid any races. This store-release pairs
1078 	 * with the load-acquire in wait_on_page_bit_common().
1079 	 */
1080 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1081 	wake_up_state(wait->private, mode);
1082 
1083 	/*
1084 	 * Ok, we have successfully done what we're waiting for,
1085 	 * and we can unconditionally remove the wait entry.
1086 	 *
1087 	 * Note that this pairs with the "finish_wait()" in the
1088 	 * waiter, and has to be the absolute last thing we do.
1089 	 * After this list_del_init(&wait->entry) the wait entry
1090 	 * might be de-allocated and the process might even have
1091 	 * exited.
1092 	 */
1093 	list_del_init_careful(&wait->entry);
1094 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1095 }
1096 
1097 static void wake_up_page_bit(struct page *page, int bit_nr)
1098 {
1099 	wait_queue_head_t *q = page_waitqueue(page);
1100 	struct wait_page_key key;
1101 	unsigned long flags;
1102 	wait_queue_entry_t bookmark;
1103 
1104 	key.page = page;
1105 	key.bit_nr = bit_nr;
1106 	key.page_match = 0;
1107 
1108 	bookmark.flags = 0;
1109 	bookmark.private = NULL;
1110 	bookmark.func = NULL;
1111 	INIT_LIST_HEAD(&bookmark.entry);
1112 
1113 	spin_lock_irqsave(&q->lock, flags);
1114 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1115 
1116 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1117 		/*
1118 		 * Take a breather from holding the lock,
1119 		 * allow pages that finish wake up asynchronously
1120 		 * to acquire the lock and remove themselves
1121 		 * from wait queue
1122 		 */
1123 		spin_unlock_irqrestore(&q->lock, flags);
1124 		cpu_relax();
1125 		spin_lock_irqsave(&q->lock, flags);
1126 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1127 	}
1128 
1129 	/*
1130 	 * It is possible for other pages to have collided on the waitqueue
1131 	 * hash, so in that case check for a page match. That prevents a long-
1132 	 * term waiter
1133 	 *
1134 	 * It is still possible to miss a case here, when we woke page waiters
1135 	 * and removed them from the waitqueue, but there are still other
1136 	 * page waiters.
1137 	 */
1138 	if (!waitqueue_active(q) || !key.page_match) {
1139 		ClearPageWaiters(page);
1140 		/*
1141 		 * It's possible to miss clearing Waiters here, when we woke
1142 		 * our page waiters, but the hashed waitqueue has waiters for
1143 		 * other pages on it.
1144 		 *
1145 		 * That's okay, it's a rare case. The next waker will clear it.
1146 		 */
1147 	}
1148 	spin_unlock_irqrestore(&q->lock, flags);
1149 }
1150 
1151 static void wake_up_page(struct page *page, int bit)
1152 {
1153 	if (!PageWaiters(page))
1154 		return;
1155 	wake_up_page_bit(page, bit);
1156 }
1157 
1158 /*
1159  * A choice of three behaviors for wait_on_page_bit_common():
1160  */
1161 enum behavior {
1162 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1163 			 * __lock_page() waiting on then setting PG_locked.
1164 			 */
1165 	SHARED,		/* Hold ref to page and check the bit when woken, like
1166 			 * wait_on_page_writeback() waiting on PG_writeback.
1167 			 */
1168 	DROP,		/* Drop ref to page before wait, no check when woken,
1169 			 * like put_and_wait_on_page_locked() on PG_locked.
1170 			 */
1171 };
1172 
1173 /*
1174  * Attempt to check (or get) the page bit, and mark us done
1175  * if successful.
1176  */
1177 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1178 					struct wait_queue_entry *wait)
1179 {
1180 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1181 		if (test_and_set_bit(bit_nr, &page->flags))
1182 			return false;
1183 	} else if (test_bit(bit_nr, &page->flags))
1184 		return false;
1185 
1186 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1187 	return true;
1188 }
1189 
1190 /* How many times do we accept lock stealing from under a waiter? */
1191 int sysctl_page_lock_unfairness = 5;
1192 
1193 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1194 	struct page *page, int bit_nr, int state, enum behavior behavior)
1195 {
1196 	int unfairness = sysctl_page_lock_unfairness;
1197 	struct wait_page_queue wait_page;
1198 	wait_queue_entry_t *wait = &wait_page.wait;
1199 	bool thrashing = false;
1200 	bool delayacct = false;
1201 	unsigned long pflags;
1202 
1203 	if (bit_nr == PG_locked &&
1204 	    !PageUptodate(page) && PageWorkingset(page)) {
1205 		if (!PageSwapBacked(page)) {
1206 			delayacct_thrashing_start();
1207 			delayacct = true;
1208 		}
1209 		psi_memstall_enter(&pflags);
1210 		thrashing = true;
1211 	}
1212 
1213 	init_wait(wait);
1214 	wait->func = wake_page_function;
1215 	wait_page.page = page;
1216 	wait_page.bit_nr = bit_nr;
1217 
1218 repeat:
1219 	wait->flags = 0;
1220 	if (behavior == EXCLUSIVE) {
1221 		wait->flags = WQ_FLAG_EXCLUSIVE;
1222 		if (--unfairness < 0)
1223 			wait->flags |= WQ_FLAG_CUSTOM;
1224 	}
1225 
1226 	/*
1227 	 * Do one last check whether we can get the
1228 	 * page bit synchronously.
1229 	 *
1230 	 * Do the SetPageWaiters() marking before that
1231 	 * to let any waker we _just_ missed know they
1232 	 * need to wake us up (otherwise they'll never
1233 	 * even go to the slow case that looks at the
1234 	 * page queue), and add ourselves to the wait
1235 	 * queue if we need to sleep.
1236 	 *
1237 	 * This part needs to be done under the queue
1238 	 * lock to avoid races.
1239 	 */
1240 	spin_lock_irq(&q->lock);
1241 	SetPageWaiters(page);
1242 	if (!trylock_page_bit_common(page, bit_nr, wait))
1243 		__add_wait_queue_entry_tail(q, wait);
1244 	spin_unlock_irq(&q->lock);
1245 
1246 	/*
1247 	 * From now on, all the logic will be based on
1248 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 	 * see whether the page bit testing has already
1250 	 * been done by the wake function.
1251 	 *
1252 	 * We can drop our reference to the page.
1253 	 */
1254 	if (behavior == DROP)
1255 		put_page(page);
1256 
1257 	/*
1258 	 * Note that until the "finish_wait()", or until
1259 	 * we see the WQ_FLAG_WOKEN flag, we need to
1260 	 * be very careful with the 'wait->flags', because
1261 	 * we may race with a waker that sets them.
1262 	 */
1263 	for (;;) {
1264 		unsigned int flags;
1265 
1266 		set_current_state(state);
1267 
1268 		/* Loop until we've been woken or interrupted */
1269 		flags = smp_load_acquire(&wait->flags);
1270 		if (!(flags & WQ_FLAG_WOKEN)) {
1271 			if (signal_pending_state(state, current))
1272 				break;
1273 
1274 			io_schedule();
1275 			continue;
1276 		}
1277 
1278 		/* If we were non-exclusive, we're done */
1279 		if (behavior != EXCLUSIVE)
1280 			break;
1281 
1282 		/* If the waker got the lock for us, we're done */
1283 		if (flags & WQ_FLAG_DONE)
1284 			break;
1285 
1286 		/*
1287 		 * Otherwise, if we're getting the lock, we need to
1288 		 * try to get it ourselves.
1289 		 *
1290 		 * And if that fails, we'll have to retry this all.
1291 		 */
1292 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1293 			goto repeat;
1294 
1295 		wait->flags |= WQ_FLAG_DONE;
1296 		break;
1297 	}
1298 
1299 	/*
1300 	 * If a signal happened, this 'finish_wait()' may remove the last
1301 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1302 	 * set. That's ok. The next wakeup will take care of it, and trying
1303 	 * to do it here would be difficult and prone to races.
1304 	 */
1305 	finish_wait(q, wait);
1306 
1307 	if (thrashing) {
1308 		if (delayacct)
1309 			delayacct_thrashing_end();
1310 		psi_memstall_leave(&pflags);
1311 	}
1312 
1313 	/*
1314 	 * NOTE! The wait->flags weren't stable until we've done the
1315 	 * 'finish_wait()', and we could have exited the loop above due
1316 	 * to a signal, and had a wakeup event happen after the signal
1317 	 * test but before the 'finish_wait()'.
1318 	 *
1319 	 * So only after the finish_wait() can we reliably determine
1320 	 * if we got woken up or not, so we can now figure out the final
1321 	 * return value based on that state without races.
1322 	 *
1323 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1324 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1325 	 */
1326 	if (behavior == EXCLUSIVE)
1327 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1328 
1329 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1330 }
1331 
1332 void wait_on_page_bit(struct page *page, int bit_nr)
1333 {
1334 	wait_queue_head_t *q = page_waitqueue(page);
1335 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1336 }
1337 EXPORT_SYMBOL(wait_on_page_bit);
1338 
1339 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1340 {
1341 	wait_queue_head_t *q = page_waitqueue(page);
1342 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1343 }
1344 EXPORT_SYMBOL(wait_on_page_bit_killable);
1345 
1346 /**
1347  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1348  * @page: The page to wait for.
1349  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1350  *
1351  * The caller should hold a reference on @page.  They expect the page to
1352  * become unlocked relatively soon, but do not wish to hold up migration
1353  * (for example) by holding the reference while waiting for the page to
1354  * come unlocked.  After this function returns, the caller should not
1355  * dereference @page.
1356  *
1357  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1358  */
1359 int put_and_wait_on_page_locked(struct page *page, int state)
1360 {
1361 	wait_queue_head_t *q;
1362 
1363 	page = compound_head(page);
1364 	q = page_waitqueue(page);
1365 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1366 }
1367 
1368 /**
1369  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1370  * @page: Page defining the wait queue of interest
1371  * @waiter: Waiter to add to the queue
1372  *
1373  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1374  */
1375 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1376 {
1377 	wait_queue_head_t *q = page_waitqueue(page);
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&q->lock, flags);
1381 	__add_wait_queue_entry_tail(q, waiter);
1382 	SetPageWaiters(page);
1383 	spin_unlock_irqrestore(&q->lock, flags);
1384 }
1385 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1386 
1387 #ifndef clear_bit_unlock_is_negative_byte
1388 
1389 /*
1390  * PG_waiters is the high bit in the same byte as PG_lock.
1391  *
1392  * On x86 (and on many other architectures), we can clear PG_lock and
1393  * test the sign bit at the same time. But if the architecture does
1394  * not support that special operation, we just do this all by hand
1395  * instead.
1396  *
1397  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1398  * being cleared, but a memory barrier should be unnecessary since it is
1399  * in the same byte as PG_locked.
1400  */
1401 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1402 {
1403 	clear_bit_unlock(nr, mem);
1404 	/* smp_mb__after_atomic(); */
1405 	return test_bit(PG_waiters, mem);
1406 }
1407 
1408 #endif
1409 
1410 /**
1411  * unlock_page - unlock a locked page
1412  * @page: the page
1413  *
1414  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1415  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1416  * mechanism between PageLocked pages and PageWriteback pages is shared.
1417  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1418  *
1419  * Note that this depends on PG_waiters being the sign bit in the byte
1420  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1421  * clear the PG_locked bit and test PG_waiters at the same time fairly
1422  * portably (architectures that do LL/SC can test any bit, while x86 can
1423  * test the sign bit).
1424  */
1425 void unlock_page(struct page *page)
1426 {
1427 	BUILD_BUG_ON(PG_waiters != 7);
1428 	page = compound_head(page);
1429 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1430 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1431 		wake_up_page_bit(page, PG_locked);
1432 }
1433 EXPORT_SYMBOL(unlock_page);
1434 
1435 /**
1436  * end_page_private_2 - Clear PG_private_2 and release any waiters
1437  * @page: The page
1438  *
1439  * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1440  * this.  The page ref held for PG_private_2 being set is released.
1441  *
1442  * This is, for example, used when a netfs page is being written to a local
1443  * disk cache, thereby allowing writes to the cache for the same page to be
1444  * serialised.
1445  */
1446 void end_page_private_2(struct page *page)
1447 {
1448 	page = compound_head(page);
1449 	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1450 	clear_bit_unlock(PG_private_2, &page->flags);
1451 	wake_up_page_bit(page, PG_private_2);
1452 	put_page(page);
1453 }
1454 EXPORT_SYMBOL(end_page_private_2);
1455 
1456 /**
1457  * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1458  * @page: The page to wait on
1459  *
1460  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1461  */
1462 void wait_on_page_private_2(struct page *page)
1463 {
1464 	page = compound_head(page);
1465 	while (PagePrivate2(page))
1466 		wait_on_page_bit(page, PG_private_2);
1467 }
1468 EXPORT_SYMBOL(wait_on_page_private_2);
1469 
1470 /**
1471  * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1472  * @page: The page to wait on
1473  *
1474  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1475  * fatal signal is received by the calling task.
1476  *
1477  * Return:
1478  * - 0 if successful.
1479  * - -EINTR if a fatal signal was encountered.
1480  */
1481 int wait_on_page_private_2_killable(struct page *page)
1482 {
1483 	int ret = 0;
1484 
1485 	page = compound_head(page);
1486 	while (PagePrivate2(page)) {
1487 		ret = wait_on_page_bit_killable(page, PG_private_2);
1488 		if (ret < 0)
1489 			break;
1490 	}
1491 
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1495 
1496 /**
1497  * end_page_writeback - end writeback against a page
1498  * @page: the page
1499  */
1500 void end_page_writeback(struct page *page)
1501 {
1502 	/*
1503 	 * TestClearPageReclaim could be used here but it is an atomic
1504 	 * operation and overkill in this particular case. Failing to
1505 	 * shuffle a page marked for immediate reclaim is too mild to
1506 	 * justify taking an atomic operation penalty at the end of
1507 	 * ever page writeback.
1508 	 */
1509 	if (PageReclaim(page)) {
1510 		ClearPageReclaim(page);
1511 		rotate_reclaimable_page(page);
1512 	}
1513 
1514 	/*
1515 	 * Writeback does not hold a page reference of its own, relying
1516 	 * on truncation to wait for the clearing of PG_writeback.
1517 	 * But here we must make sure that the page is not freed and
1518 	 * reused before the wake_up_page().
1519 	 */
1520 	get_page(page);
1521 	if (!test_clear_page_writeback(page))
1522 		BUG();
1523 
1524 	smp_mb__after_atomic();
1525 	wake_up_page(page, PG_writeback);
1526 	put_page(page);
1527 }
1528 EXPORT_SYMBOL(end_page_writeback);
1529 
1530 /*
1531  * After completing I/O on a page, call this routine to update the page
1532  * flags appropriately
1533  */
1534 void page_endio(struct page *page, bool is_write, int err)
1535 {
1536 	if (!is_write) {
1537 		if (!err) {
1538 			SetPageUptodate(page);
1539 		} else {
1540 			ClearPageUptodate(page);
1541 			SetPageError(page);
1542 		}
1543 		unlock_page(page);
1544 	} else {
1545 		if (err) {
1546 			struct address_space *mapping;
1547 
1548 			SetPageError(page);
1549 			mapping = page_mapping(page);
1550 			if (mapping)
1551 				mapping_set_error(mapping, err);
1552 		}
1553 		end_page_writeback(page);
1554 	}
1555 }
1556 EXPORT_SYMBOL_GPL(page_endio);
1557 
1558 /**
1559  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1560  * @__page: the page to lock
1561  */
1562 void __lock_page(struct page *__page)
1563 {
1564 	struct page *page = compound_head(__page);
1565 	wait_queue_head_t *q = page_waitqueue(page);
1566 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1567 				EXCLUSIVE);
1568 }
1569 EXPORT_SYMBOL(__lock_page);
1570 
1571 int __lock_page_killable(struct page *__page)
1572 {
1573 	struct page *page = compound_head(__page);
1574 	wait_queue_head_t *q = page_waitqueue(page);
1575 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1576 					EXCLUSIVE);
1577 }
1578 EXPORT_SYMBOL_GPL(__lock_page_killable);
1579 
1580 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1581 {
1582 	struct wait_queue_head *q = page_waitqueue(page);
1583 	int ret = 0;
1584 
1585 	wait->page = page;
1586 	wait->bit_nr = PG_locked;
1587 
1588 	spin_lock_irq(&q->lock);
1589 	__add_wait_queue_entry_tail(q, &wait->wait);
1590 	SetPageWaiters(page);
1591 	ret = !trylock_page(page);
1592 	/*
1593 	 * If we were successful now, we know we're still on the
1594 	 * waitqueue as we're still under the lock. This means it's
1595 	 * safe to remove and return success, we know the callback
1596 	 * isn't going to trigger.
1597 	 */
1598 	if (!ret)
1599 		__remove_wait_queue(q, &wait->wait);
1600 	else
1601 		ret = -EIOCBQUEUED;
1602 	spin_unlock_irq(&q->lock);
1603 	return ret;
1604 }
1605 
1606 /*
1607  * Return values:
1608  * 1 - page is locked; mmap_lock is still held.
1609  * 0 - page is not locked.
1610  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1611  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1612  *     which case mmap_lock is still held.
1613  *
1614  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1615  * with the page locked and the mmap_lock unperturbed.
1616  */
1617 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1618 			 unsigned int flags)
1619 {
1620 	if (fault_flag_allow_retry_first(flags)) {
1621 		/*
1622 		 * CAUTION! In this case, mmap_lock is not released
1623 		 * even though return 0.
1624 		 */
1625 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1626 			return 0;
1627 
1628 		mmap_read_unlock(mm);
1629 		if (flags & FAULT_FLAG_KILLABLE)
1630 			wait_on_page_locked_killable(page);
1631 		else
1632 			wait_on_page_locked(page);
1633 		return 0;
1634 	}
1635 	if (flags & FAULT_FLAG_KILLABLE) {
1636 		int ret;
1637 
1638 		ret = __lock_page_killable(page);
1639 		if (ret) {
1640 			mmap_read_unlock(mm);
1641 			return 0;
1642 		}
1643 	} else {
1644 		__lock_page(page);
1645 	}
1646 	return 1;
1647 
1648 }
1649 
1650 /**
1651  * page_cache_next_miss() - Find the next gap in the page cache.
1652  * @mapping: Mapping.
1653  * @index: Index.
1654  * @max_scan: Maximum range to search.
1655  *
1656  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1657  * gap with the lowest index.
1658  *
1659  * This function may be called under the rcu_read_lock.  However, this will
1660  * not atomically search a snapshot of the cache at a single point in time.
1661  * For example, if a gap is created at index 5, then subsequently a gap is
1662  * created at index 10, page_cache_next_miss covering both indices may
1663  * return 10 if called under the rcu_read_lock.
1664  *
1665  * Return: The index of the gap if found, otherwise an index outside the
1666  * range specified (in which case 'return - index >= max_scan' will be true).
1667  * In the rare case of index wrap-around, 0 will be returned.
1668  */
1669 pgoff_t page_cache_next_miss(struct address_space *mapping,
1670 			     pgoff_t index, unsigned long max_scan)
1671 {
1672 	XA_STATE(xas, &mapping->i_pages, index);
1673 
1674 	while (max_scan--) {
1675 		void *entry = xas_next(&xas);
1676 		if (!entry || xa_is_value(entry))
1677 			break;
1678 		if (xas.xa_index == 0)
1679 			break;
1680 	}
1681 
1682 	return xas.xa_index;
1683 }
1684 EXPORT_SYMBOL(page_cache_next_miss);
1685 
1686 /**
1687  * page_cache_prev_miss() - Find the previous gap in the page cache.
1688  * @mapping: Mapping.
1689  * @index: Index.
1690  * @max_scan: Maximum range to search.
1691  *
1692  * Search the range [max(index - max_scan + 1, 0), index] for the
1693  * gap with the highest index.
1694  *
1695  * This function may be called under the rcu_read_lock.  However, this will
1696  * not atomically search a snapshot of the cache at a single point in time.
1697  * For example, if a gap is created at index 10, then subsequently a gap is
1698  * created at index 5, page_cache_prev_miss() covering both indices may
1699  * return 5 if called under the rcu_read_lock.
1700  *
1701  * Return: The index of the gap if found, otherwise an index outside the
1702  * range specified (in which case 'index - return >= max_scan' will be true).
1703  * In the rare case of wrap-around, ULONG_MAX will be returned.
1704  */
1705 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1706 			     pgoff_t index, unsigned long max_scan)
1707 {
1708 	XA_STATE(xas, &mapping->i_pages, index);
1709 
1710 	while (max_scan--) {
1711 		void *entry = xas_prev(&xas);
1712 		if (!entry || xa_is_value(entry))
1713 			break;
1714 		if (xas.xa_index == ULONG_MAX)
1715 			break;
1716 	}
1717 
1718 	return xas.xa_index;
1719 }
1720 EXPORT_SYMBOL(page_cache_prev_miss);
1721 
1722 /*
1723  * mapping_get_entry - Get a page cache entry.
1724  * @mapping: the address_space to search
1725  * @index: The page cache index.
1726  *
1727  * Looks up the page cache slot at @mapping & @offset.  If there is a
1728  * page cache page, the head page is returned with an increased refcount.
1729  *
1730  * If the slot holds a shadow entry of a previously evicted page, or a
1731  * swap entry from shmem/tmpfs, it is returned.
1732  *
1733  * Return: The head page or shadow entry, %NULL if nothing is found.
1734  */
1735 static struct page *mapping_get_entry(struct address_space *mapping,
1736 		pgoff_t index)
1737 {
1738 	XA_STATE(xas, &mapping->i_pages, index);
1739 	struct page *page;
1740 
1741 	rcu_read_lock();
1742 repeat:
1743 	xas_reset(&xas);
1744 	page = xas_load(&xas);
1745 	if (xas_retry(&xas, page))
1746 		goto repeat;
1747 	/*
1748 	 * A shadow entry of a recently evicted page, or a swap entry from
1749 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1750 	 */
1751 	if (!page || xa_is_value(page))
1752 		goto out;
1753 
1754 	if (!page_cache_get_speculative(page))
1755 		goto repeat;
1756 
1757 	/*
1758 	 * Has the page moved or been split?
1759 	 * This is part of the lockless pagecache protocol. See
1760 	 * include/linux/pagemap.h for details.
1761 	 */
1762 	if (unlikely(page != xas_reload(&xas))) {
1763 		put_page(page);
1764 		goto repeat;
1765 	}
1766 out:
1767 	rcu_read_unlock();
1768 
1769 	return page;
1770 }
1771 
1772 /**
1773  * pagecache_get_page - Find and get a reference to a page.
1774  * @mapping: The address_space to search.
1775  * @index: The page index.
1776  * @fgp_flags: %FGP flags modify how the page is returned.
1777  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1778  *
1779  * Looks up the page cache entry at @mapping & @index.
1780  *
1781  * @fgp_flags can be zero or more of these flags:
1782  *
1783  * * %FGP_ACCESSED - The page will be marked accessed.
1784  * * %FGP_LOCK - The page is returned locked.
1785  * * %FGP_HEAD - If the page is present and a THP, return the head page
1786  *   rather than the exact page specified by the index.
1787  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1788  *   instead of allocating a new page to replace it.
1789  * * %FGP_CREAT - If no page is present then a new page is allocated using
1790  *   @gfp_mask and added to the page cache and the VM's LRU list.
1791  *   The page is returned locked and with an increased refcount.
1792  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1793  *   page is already in cache.  If the page was allocated, unlock it before
1794  *   returning so the caller can do the same dance.
1795  * * %FGP_WRITE - The page will be written
1796  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1797  * * %FGP_NOWAIT - Don't get blocked by page lock
1798  *
1799  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1800  * if the %GFP flags specified for %FGP_CREAT are atomic.
1801  *
1802  * If there is a page cache page, it is returned with an increased refcount.
1803  *
1804  * Return: The found page or %NULL otherwise.
1805  */
1806 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1807 		int fgp_flags, gfp_t gfp_mask)
1808 {
1809 	struct page *page;
1810 
1811 repeat:
1812 	page = mapping_get_entry(mapping, index);
1813 	if (xa_is_value(page)) {
1814 		if (fgp_flags & FGP_ENTRY)
1815 			return page;
1816 		page = NULL;
1817 	}
1818 	if (!page)
1819 		goto no_page;
1820 
1821 	if (fgp_flags & FGP_LOCK) {
1822 		if (fgp_flags & FGP_NOWAIT) {
1823 			if (!trylock_page(page)) {
1824 				put_page(page);
1825 				return NULL;
1826 			}
1827 		} else {
1828 			lock_page(page);
1829 		}
1830 
1831 		/* Has the page been truncated? */
1832 		if (unlikely(page->mapping != mapping)) {
1833 			unlock_page(page);
1834 			put_page(page);
1835 			goto repeat;
1836 		}
1837 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1838 	}
1839 
1840 	if (fgp_flags & FGP_ACCESSED)
1841 		mark_page_accessed(page);
1842 	else if (fgp_flags & FGP_WRITE) {
1843 		/* Clear idle flag for buffer write */
1844 		if (page_is_idle(page))
1845 			clear_page_idle(page);
1846 	}
1847 	if (!(fgp_flags & FGP_HEAD))
1848 		page = find_subpage(page, index);
1849 
1850 no_page:
1851 	if (!page && (fgp_flags & FGP_CREAT)) {
1852 		int err;
1853 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1854 			gfp_mask |= __GFP_WRITE;
1855 		if (fgp_flags & FGP_NOFS)
1856 			gfp_mask &= ~__GFP_FS;
1857 
1858 		page = __page_cache_alloc(gfp_mask);
1859 		if (!page)
1860 			return NULL;
1861 
1862 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1863 			fgp_flags |= FGP_LOCK;
1864 
1865 		/* Init accessed so avoid atomic mark_page_accessed later */
1866 		if (fgp_flags & FGP_ACCESSED)
1867 			__SetPageReferenced(page);
1868 
1869 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1870 		if (unlikely(err)) {
1871 			put_page(page);
1872 			page = NULL;
1873 			if (err == -EEXIST)
1874 				goto repeat;
1875 		}
1876 
1877 		/*
1878 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1879 		 * an unlocked page.
1880 		 */
1881 		if (page && (fgp_flags & FGP_FOR_MMAP))
1882 			unlock_page(page);
1883 	}
1884 
1885 	return page;
1886 }
1887 EXPORT_SYMBOL(pagecache_get_page);
1888 
1889 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1890 		xa_mark_t mark)
1891 {
1892 	struct page *page;
1893 
1894 retry:
1895 	if (mark == XA_PRESENT)
1896 		page = xas_find(xas, max);
1897 	else
1898 		page = xas_find_marked(xas, max, mark);
1899 
1900 	if (xas_retry(xas, page))
1901 		goto retry;
1902 	/*
1903 	 * A shadow entry of a recently evicted page, a swap
1904 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1905 	 * without attempting to raise page count.
1906 	 */
1907 	if (!page || xa_is_value(page))
1908 		return page;
1909 
1910 	if (!page_cache_get_speculative(page))
1911 		goto reset;
1912 
1913 	/* Has the page moved or been split? */
1914 	if (unlikely(page != xas_reload(xas))) {
1915 		put_page(page);
1916 		goto reset;
1917 	}
1918 
1919 	return page;
1920 reset:
1921 	xas_reset(xas);
1922 	goto retry;
1923 }
1924 
1925 /**
1926  * find_get_entries - gang pagecache lookup
1927  * @mapping:	The address_space to search
1928  * @start:	The starting page cache index
1929  * @end:	The final page index (inclusive).
1930  * @pvec:	Where the resulting entries are placed.
1931  * @indices:	The cache indices corresponding to the entries in @entries
1932  *
1933  * find_get_entries() will search for and return a batch of entries in
1934  * the mapping.  The entries are placed in @pvec.  find_get_entries()
1935  * takes a reference on any actual pages it returns.
1936  *
1937  * The search returns a group of mapping-contiguous page cache entries
1938  * with ascending indexes.  There may be holes in the indices due to
1939  * not-present pages.
1940  *
1941  * Any shadow entries of evicted pages, or swap entries from
1942  * shmem/tmpfs, are included in the returned array.
1943  *
1944  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1945  * stops at that page: the caller is likely to have a better way to handle
1946  * the compound page as a whole, and then skip its extent, than repeatedly
1947  * calling find_get_entries() to return all its tails.
1948  *
1949  * Return: the number of pages and shadow entries which were found.
1950  */
1951 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1952 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1953 {
1954 	XA_STATE(xas, &mapping->i_pages, start);
1955 	struct page *page;
1956 	unsigned int ret = 0;
1957 	unsigned nr_entries = PAGEVEC_SIZE;
1958 
1959 	rcu_read_lock();
1960 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1961 		/*
1962 		 * Terminate early on finding a THP, to allow the caller to
1963 		 * handle it all at once; but continue if this is hugetlbfs.
1964 		 */
1965 		if (!xa_is_value(page) && PageTransHuge(page) &&
1966 				!PageHuge(page)) {
1967 			page = find_subpage(page, xas.xa_index);
1968 			nr_entries = ret + 1;
1969 		}
1970 
1971 		indices[ret] = xas.xa_index;
1972 		pvec->pages[ret] = page;
1973 		if (++ret == nr_entries)
1974 			break;
1975 	}
1976 	rcu_read_unlock();
1977 
1978 	pvec->nr = ret;
1979 	return ret;
1980 }
1981 
1982 /**
1983  * find_lock_entries - Find a batch of pagecache entries.
1984  * @mapping:	The address_space to search.
1985  * @start:	The starting page cache index.
1986  * @end:	The final page index (inclusive).
1987  * @pvec:	Where the resulting entries are placed.
1988  * @indices:	The cache indices of the entries in @pvec.
1989  *
1990  * find_lock_entries() will return a batch of entries from @mapping.
1991  * Swap, shadow and DAX entries are included.  Pages are returned
1992  * locked and with an incremented refcount.  Pages which are locked by
1993  * somebody else or under writeback are skipped.  Only the head page of
1994  * a THP is returned.  Pages which are partially outside the range are
1995  * not returned.
1996  *
1997  * The entries have ascending indexes.  The indices may not be consecutive
1998  * due to not-present entries, THP pages, pages which could not be locked
1999  * or pages under writeback.
2000  *
2001  * Return: The number of entries which were found.
2002  */
2003 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2004 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2005 {
2006 	XA_STATE(xas, &mapping->i_pages, start);
2007 	struct page *page;
2008 
2009 	rcu_read_lock();
2010 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2011 		if (!xa_is_value(page)) {
2012 			if (page->index < start)
2013 				goto put;
2014 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2015 			if (page->index + thp_nr_pages(page) - 1 > end)
2016 				goto put;
2017 			if (!trylock_page(page))
2018 				goto put;
2019 			if (page->mapping != mapping || PageWriteback(page))
2020 				goto unlock;
2021 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2022 					page);
2023 		}
2024 		indices[pvec->nr] = xas.xa_index;
2025 		if (!pagevec_add(pvec, page))
2026 			break;
2027 		goto next;
2028 unlock:
2029 		unlock_page(page);
2030 put:
2031 		put_page(page);
2032 next:
2033 		if (!xa_is_value(page) && PageTransHuge(page)) {
2034 			unsigned int nr_pages = thp_nr_pages(page);
2035 
2036 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2037 			xas_set(&xas, page->index + nr_pages);
2038 			if (xas.xa_index < nr_pages)
2039 				break;
2040 		}
2041 	}
2042 	rcu_read_unlock();
2043 
2044 	return pagevec_count(pvec);
2045 }
2046 
2047 /**
2048  * find_get_pages_range - gang pagecache lookup
2049  * @mapping:	The address_space to search
2050  * @start:	The starting page index
2051  * @end:	The final page index (inclusive)
2052  * @nr_pages:	The maximum number of pages
2053  * @pages:	Where the resulting pages are placed
2054  *
2055  * find_get_pages_range() will search for and return a group of up to @nr_pages
2056  * pages in the mapping starting at index @start and up to index @end
2057  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2058  * a reference against the returned pages.
2059  *
2060  * The search returns a group of mapping-contiguous pages with ascending
2061  * indexes.  There may be holes in the indices due to not-present pages.
2062  * We also update @start to index the next page for the traversal.
2063  *
2064  * Return: the number of pages which were found. If this number is
2065  * smaller than @nr_pages, the end of specified range has been
2066  * reached.
2067  */
2068 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2069 			      pgoff_t end, unsigned int nr_pages,
2070 			      struct page **pages)
2071 {
2072 	XA_STATE(xas, &mapping->i_pages, *start);
2073 	struct page *page;
2074 	unsigned ret = 0;
2075 
2076 	if (unlikely(!nr_pages))
2077 		return 0;
2078 
2079 	rcu_read_lock();
2080 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2081 		/* Skip over shadow, swap and DAX entries */
2082 		if (xa_is_value(page))
2083 			continue;
2084 
2085 		pages[ret] = find_subpage(page, xas.xa_index);
2086 		if (++ret == nr_pages) {
2087 			*start = xas.xa_index + 1;
2088 			goto out;
2089 		}
2090 	}
2091 
2092 	/*
2093 	 * We come here when there is no page beyond @end. We take care to not
2094 	 * overflow the index @start as it confuses some of the callers. This
2095 	 * breaks the iteration when there is a page at index -1 but that is
2096 	 * already broken anyway.
2097 	 */
2098 	if (end == (pgoff_t)-1)
2099 		*start = (pgoff_t)-1;
2100 	else
2101 		*start = end + 1;
2102 out:
2103 	rcu_read_unlock();
2104 
2105 	return ret;
2106 }
2107 
2108 /**
2109  * find_get_pages_contig - gang contiguous pagecache lookup
2110  * @mapping:	The address_space to search
2111  * @index:	The starting page index
2112  * @nr_pages:	The maximum number of pages
2113  * @pages:	Where the resulting pages are placed
2114  *
2115  * find_get_pages_contig() works exactly like find_get_pages(), except
2116  * that the returned number of pages are guaranteed to be contiguous.
2117  *
2118  * Return: the number of pages which were found.
2119  */
2120 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2121 			       unsigned int nr_pages, struct page **pages)
2122 {
2123 	XA_STATE(xas, &mapping->i_pages, index);
2124 	struct page *page;
2125 	unsigned int ret = 0;
2126 
2127 	if (unlikely(!nr_pages))
2128 		return 0;
2129 
2130 	rcu_read_lock();
2131 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2132 		if (xas_retry(&xas, page))
2133 			continue;
2134 		/*
2135 		 * If the entry has been swapped out, we can stop looking.
2136 		 * No current caller is looking for DAX entries.
2137 		 */
2138 		if (xa_is_value(page))
2139 			break;
2140 
2141 		if (!page_cache_get_speculative(page))
2142 			goto retry;
2143 
2144 		/* Has the page moved or been split? */
2145 		if (unlikely(page != xas_reload(&xas)))
2146 			goto put_page;
2147 
2148 		pages[ret] = find_subpage(page, xas.xa_index);
2149 		if (++ret == nr_pages)
2150 			break;
2151 		continue;
2152 put_page:
2153 		put_page(page);
2154 retry:
2155 		xas_reset(&xas);
2156 	}
2157 	rcu_read_unlock();
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL(find_get_pages_contig);
2161 
2162 /**
2163  * find_get_pages_range_tag - Find and return head pages matching @tag.
2164  * @mapping:	the address_space to search
2165  * @index:	the starting page index
2166  * @end:	The final page index (inclusive)
2167  * @tag:	the tag index
2168  * @nr_pages:	the maximum number of pages
2169  * @pages:	where the resulting pages are placed
2170  *
2171  * Like find_get_pages(), except we only return head pages which are tagged
2172  * with @tag.  @index is updated to the index immediately after the last
2173  * page we return, ready for the next iteration.
2174  *
2175  * Return: the number of pages which were found.
2176  */
2177 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2178 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2179 			struct page **pages)
2180 {
2181 	XA_STATE(xas, &mapping->i_pages, *index);
2182 	struct page *page;
2183 	unsigned ret = 0;
2184 
2185 	if (unlikely(!nr_pages))
2186 		return 0;
2187 
2188 	rcu_read_lock();
2189 	while ((page = find_get_entry(&xas, end, tag))) {
2190 		/*
2191 		 * Shadow entries should never be tagged, but this iteration
2192 		 * is lockless so there is a window for page reclaim to evict
2193 		 * a page we saw tagged.  Skip over it.
2194 		 */
2195 		if (xa_is_value(page))
2196 			continue;
2197 
2198 		pages[ret] = page;
2199 		if (++ret == nr_pages) {
2200 			*index = page->index + thp_nr_pages(page);
2201 			goto out;
2202 		}
2203 	}
2204 
2205 	/*
2206 	 * We come here when we got to @end. We take care to not overflow the
2207 	 * index @index as it confuses some of the callers. This breaks the
2208 	 * iteration when there is a page at index -1 but that is already
2209 	 * broken anyway.
2210 	 */
2211 	if (end == (pgoff_t)-1)
2212 		*index = (pgoff_t)-1;
2213 	else
2214 		*index = end + 1;
2215 out:
2216 	rcu_read_unlock();
2217 
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL(find_get_pages_range_tag);
2221 
2222 /*
2223  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2224  * a _large_ part of the i/o request. Imagine the worst scenario:
2225  *
2226  *      ---R__________________________________________B__________
2227  *         ^ reading here                             ^ bad block(assume 4k)
2228  *
2229  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2230  * => failing the whole request => read(R) => read(R+1) =>
2231  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2232  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2233  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2234  *
2235  * It is going insane. Fix it by quickly scaling down the readahead size.
2236  */
2237 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2238 {
2239 	ra->ra_pages /= 4;
2240 }
2241 
2242 /*
2243  * filemap_get_read_batch - Get a batch of pages for read
2244  *
2245  * Get a batch of pages which represent a contiguous range of bytes
2246  * in the file.  No tail pages will be returned.  If @index is in the
2247  * middle of a THP, the entire THP will be returned.  The last page in
2248  * the batch may have Readahead set or be not Uptodate so that the
2249  * caller can take the appropriate action.
2250  */
2251 static void filemap_get_read_batch(struct address_space *mapping,
2252 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2253 {
2254 	XA_STATE(xas, &mapping->i_pages, index);
2255 	struct page *head;
2256 
2257 	rcu_read_lock();
2258 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2259 		if (xas_retry(&xas, head))
2260 			continue;
2261 		if (xas.xa_index > max || xa_is_value(head))
2262 			break;
2263 		if (!page_cache_get_speculative(head))
2264 			goto retry;
2265 
2266 		/* Has the page moved or been split? */
2267 		if (unlikely(head != xas_reload(&xas)))
2268 			goto put_page;
2269 
2270 		if (!pagevec_add(pvec, head))
2271 			break;
2272 		if (!PageUptodate(head))
2273 			break;
2274 		if (PageReadahead(head))
2275 			break;
2276 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2277 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2278 		continue;
2279 put_page:
2280 		put_page(head);
2281 retry:
2282 		xas_reset(&xas);
2283 	}
2284 	rcu_read_unlock();
2285 }
2286 
2287 static int filemap_read_page(struct file *file, struct address_space *mapping,
2288 		struct page *page)
2289 {
2290 	int error;
2291 
2292 	/*
2293 	 * A previous I/O error may have been due to temporary failures,
2294 	 * eg. multipath errors.  PG_error will be set again if readpage
2295 	 * fails.
2296 	 */
2297 	ClearPageError(page);
2298 	/* Start the actual read. The read will unlock the page. */
2299 	error = mapping->a_ops->readpage(file, page);
2300 	if (error)
2301 		return error;
2302 
2303 	error = wait_on_page_locked_killable(page);
2304 	if (error)
2305 		return error;
2306 	if (PageUptodate(page))
2307 		return 0;
2308 	if (!page->mapping)	/* page truncated */
2309 		return AOP_TRUNCATED_PAGE;
2310 	shrink_readahead_size_eio(&file->f_ra);
2311 	return -EIO;
2312 }
2313 
2314 static bool filemap_range_uptodate(struct address_space *mapping,
2315 		loff_t pos, struct iov_iter *iter, struct page *page)
2316 {
2317 	int count;
2318 
2319 	if (PageUptodate(page))
2320 		return true;
2321 	/* pipes can't handle partially uptodate pages */
2322 	if (iov_iter_is_pipe(iter))
2323 		return false;
2324 	if (!mapping->a_ops->is_partially_uptodate)
2325 		return false;
2326 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2327 		return false;
2328 
2329 	count = iter->count;
2330 	if (page_offset(page) > pos) {
2331 		count -= page_offset(page) - pos;
2332 		pos = 0;
2333 	} else {
2334 		pos -= page_offset(page);
2335 	}
2336 
2337 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2338 }
2339 
2340 static int filemap_update_page(struct kiocb *iocb,
2341 		struct address_space *mapping, struct iov_iter *iter,
2342 		struct page *page)
2343 {
2344 	int error;
2345 
2346 	if (!trylock_page(page)) {
2347 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2348 			return -EAGAIN;
2349 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2350 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2351 			return AOP_TRUNCATED_PAGE;
2352 		}
2353 		error = __lock_page_async(page, iocb->ki_waitq);
2354 		if (error)
2355 			return error;
2356 	}
2357 
2358 	if (!page->mapping)
2359 		goto truncated;
2360 
2361 	error = 0;
2362 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2363 		goto unlock;
2364 
2365 	error = -EAGAIN;
2366 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2367 		goto unlock;
2368 
2369 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2370 	if (error == AOP_TRUNCATED_PAGE)
2371 		put_page(page);
2372 	return error;
2373 truncated:
2374 	unlock_page(page);
2375 	put_page(page);
2376 	return AOP_TRUNCATED_PAGE;
2377 unlock:
2378 	unlock_page(page);
2379 	return error;
2380 }
2381 
2382 static int filemap_create_page(struct file *file,
2383 		struct address_space *mapping, pgoff_t index,
2384 		struct pagevec *pvec)
2385 {
2386 	struct page *page;
2387 	int error;
2388 
2389 	page = page_cache_alloc(mapping);
2390 	if (!page)
2391 		return -ENOMEM;
2392 
2393 	error = add_to_page_cache_lru(page, mapping, index,
2394 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2395 	if (error == -EEXIST)
2396 		error = AOP_TRUNCATED_PAGE;
2397 	if (error)
2398 		goto error;
2399 
2400 	error = filemap_read_page(file, mapping, page);
2401 	if (error)
2402 		goto error;
2403 
2404 	pagevec_add(pvec, page);
2405 	return 0;
2406 error:
2407 	put_page(page);
2408 	return error;
2409 }
2410 
2411 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2412 		struct address_space *mapping, struct page *page,
2413 		pgoff_t last_index)
2414 {
2415 	if (iocb->ki_flags & IOCB_NOIO)
2416 		return -EAGAIN;
2417 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2418 			page->index, last_index - page->index);
2419 	return 0;
2420 }
2421 
2422 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2423 		struct pagevec *pvec)
2424 {
2425 	struct file *filp = iocb->ki_filp;
2426 	struct address_space *mapping = filp->f_mapping;
2427 	struct file_ra_state *ra = &filp->f_ra;
2428 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2429 	pgoff_t last_index;
2430 	struct page *page;
2431 	int err = 0;
2432 
2433 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2434 retry:
2435 	if (fatal_signal_pending(current))
2436 		return -EINTR;
2437 
2438 	filemap_get_read_batch(mapping, index, last_index, pvec);
2439 	if (!pagevec_count(pvec)) {
2440 		if (iocb->ki_flags & IOCB_NOIO)
2441 			return -EAGAIN;
2442 		page_cache_sync_readahead(mapping, ra, filp, index,
2443 				last_index - index);
2444 		filemap_get_read_batch(mapping, index, last_index, pvec);
2445 	}
2446 	if (!pagevec_count(pvec)) {
2447 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2448 			return -EAGAIN;
2449 		err = filemap_create_page(filp, mapping,
2450 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2451 		if (err == AOP_TRUNCATED_PAGE)
2452 			goto retry;
2453 		return err;
2454 	}
2455 
2456 	page = pvec->pages[pagevec_count(pvec) - 1];
2457 	if (PageReadahead(page)) {
2458 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2459 		if (err)
2460 			goto err;
2461 	}
2462 	if (!PageUptodate(page)) {
2463 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2464 			iocb->ki_flags |= IOCB_NOWAIT;
2465 		err = filemap_update_page(iocb, mapping, iter, page);
2466 		if (err)
2467 			goto err;
2468 	}
2469 
2470 	return 0;
2471 err:
2472 	if (err < 0)
2473 		put_page(page);
2474 	if (likely(--pvec->nr))
2475 		return 0;
2476 	if (err == AOP_TRUNCATED_PAGE)
2477 		goto retry;
2478 	return err;
2479 }
2480 
2481 /**
2482  * filemap_read - Read data from the page cache.
2483  * @iocb: The iocb to read.
2484  * @iter: Destination for the data.
2485  * @already_read: Number of bytes already read by the caller.
2486  *
2487  * Copies data from the page cache.  If the data is not currently present,
2488  * uses the readahead and readpage address_space operations to fetch it.
2489  *
2490  * Return: Total number of bytes copied, including those already read by
2491  * the caller.  If an error happens before any bytes are copied, returns
2492  * a negative error number.
2493  */
2494 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2495 		ssize_t already_read)
2496 {
2497 	struct file *filp = iocb->ki_filp;
2498 	struct file_ra_state *ra = &filp->f_ra;
2499 	struct address_space *mapping = filp->f_mapping;
2500 	struct inode *inode = mapping->host;
2501 	struct pagevec pvec;
2502 	int i, error = 0;
2503 	bool writably_mapped;
2504 	loff_t isize, end_offset;
2505 
2506 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2507 		return 0;
2508 	if (unlikely(!iov_iter_count(iter)))
2509 		return 0;
2510 
2511 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2512 	pagevec_init(&pvec);
2513 
2514 	do {
2515 		cond_resched();
2516 
2517 		/*
2518 		 * If we've already successfully copied some data, then we
2519 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2520 		 * an async read NOWAIT at that point.
2521 		 */
2522 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2523 			iocb->ki_flags |= IOCB_NOWAIT;
2524 
2525 		error = filemap_get_pages(iocb, iter, &pvec);
2526 		if (error < 0)
2527 			break;
2528 
2529 		/*
2530 		 * i_size must be checked after we know the pages are Uptodate.
2531 		 *
2532 		 * Checking i_size after the check allows us to calculate
2533 		 * the correct value for "nr", which means the zero-filled
2534 		 * part of the page is not copied back to userspace (unless
2535 		 * another truncate extends the file - this is desired though).
2536 		 */
2537 		isize = i_size_read(inode);
2538 		if (unlikely(iocb->ki_pos >= isize))
2539 			goto put_pages;
2540 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2541 
2542 		/*
2543 		 * Once we start copying data, we don't want to be touching any
2544 		 * cachelines that might be contended:
2545 		 */
2546 		writably_mapped = mapping_writably_mapped(mapping);
2547 
2548 		/*
2549 		 * When a sequential read accesses a page several times, only
2550 		 * mark it as accessed the first time.
2551 		 */
2552 		if (iocb->ki_pos >> PAGE_SHIFT !=
2553 		    ra->prev_pos >> PAGE_SHIFT)
2554 			mark_page_accessed(pvec.pages[0]);
2555 
2556 		for (i = 0; i < pagevec_count(&pvec); i++) {
2557 			struct page *page = pvec.pages[i];
2558 			size_t page_size = thp_size(page);
2559 			size_t offset = iocb->ki_pos & (page_size - 1);
2560 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2561 					     page_size - offset);
2562 			size_t copied;
2563 
2564 			if (end_offset < page_offset(page))
2565 				break;
2566 			if (i > 0)
2567 				mark_page_accessed(page);
2568 			/*
2569 			 * If users can be writing to this page using arbitrary
2570 			 * virtual addresses, take care about potential aliasing
2571 			 * before reading the page on the kernel side.
2572 			 */
2573 			if (writably_mapped) {
2574 				int j;
2575 
2576 				for (j = 0; j < thp_nr_pages(page); j++)
2577 					flush_dcache_page(page + j);
2578 			}
2579 
2580 			copied = copy_page_to_iter(page, offset, bytes, iter);
2581 
2582 			already_read += copied;
2583 			iocb->ki_pos += copied;
2584 			ra->prev_pos = iocb->ki_pos;
2585 
2586 			if (copied < bytes) {
2587 				error = -EFAULT;
2588 				break;
2589 			}
2590 		}
2591 put_pages:
2592 		for (i = 0; i < pagevec_count(&pvec); i++)
2593 			put_page(pvec.pages[i]);
2594 		pagevec_reinit(&pvec);
2595 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2596 
2597 	file_accessed(filp);
2598 
2599 	return already_read ? already_read : error;
2600 }
2601 EXPORT_SYMBOL_GPL(filemap_read);
2602 
2603 /**
2604  * generic_file_read_iter - generic filesystem read routine
2605  * @iocb:	kernel I/O control block
2606  * @iter:	destination for the data read
2607  *
2608  * This is the "read_iter()" routine for all filesystems
2609  * that can use the page cache directly.
2610  *
2611  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2612  * be returned when no data can be read without waiting for I/O requests
2613  * to complete; it doesn't prevent readahead.
2614  *
2615  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2616  * requests shall be made for the read or for readahead.  When no data
2617  * can be read, -EAGAIN shall be returned.  When readahead would be
2618  * triggered, a partial, possibly empty read shall be returned.
2619  *
2620  * Return:
2621  * * number of bytes copied, even for partial reads
2622  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2623  */
2624 ssize_t
2625 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2626 {
2627 	size_t count = iov_iter_count(iter);
2628 	ssize_t retval = 0;
2629 
2630 	if (!count)
2631 		return 0; /* skip atime */
2632 
2633 	if (iocb->ki_flags & IOCB_DIRECT) {
2634 		struct file *file = iocb->ki_filp;
2635 		struct address_space *mapping = file->f_mapping;
2636 		struct inode *inode = mapping->host;
2637 		loff_t size;
2638 
2639 		size = i_size_read(inode);
2640 		if (iocb->ki_flags & IOCB_NOWAIT) {
2641 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2642 						   iocb->ki_pos + count - 1))
2643 				return -EAGAIN;
2644 		} else {
2645 			retval = filemap_write_and_wait_range(mapping,
2646 						iocb->ki_pos,
2647 					        iocb->ki_pos + count - 1);
2648 			if (retval < 0)
2649 				return retval;
2650 		}
2651 
2652 		file_accessed(file);
2653 
2654 		retval = mapping->a_ops->direct_IO(iocb, iter);
2655 		if (retval >= 0) {
2656 			iocb->ki_pos += retval;
2657 			count -= retval;
2658 		}
2659 		if (retval != -EIOCBQUEUED)
2660 			iov_iter_revert(iter, count - iov_iter_count(iter));
2661 
2662 		/*
2663 		 * Btrfs can have a short DIO read if we encounter
2664 		 * compressed extents, so if there was an error, or if
2665 		 * we've already read everything we wanted to, or if
2666 		 * there was a short read because we hit EOF, go ahead
2667 		 * and return.  Otherwise fallthrough to buffered io for
2668 		 * the rest of the read.  Buffered reads will not work for
2669 		 * DAX files, so don't bother trying.
2670 		 */
2671 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2672 		    IS_DAX(inode))
2673 			return retval;
2674 	}
2675 
2676 	return filemap_read(iocb, iter, retval);
2677 }
2678 EXPORT_SYMBOL(generic_file_read_iter);
2679 
2680 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2681 		struct address_space *mapping, struct page *page,
2682 		loff_t start, loff_t end, bool seek_data)
2683 {
2684 	const struct address_space_operations *ops = mapping->a_ops;
2685 	size_t offset, bsz = i_blocksize(mapping->host);
2686 
2687 	if (xa_is_value(page) || PageUptodate(page))
2688 		return seek_data ? start : end;
2689 	if (!ops->is_partially_uptodate)
2690 		return seek_data ? end : start;
2691 
2692 	xas_pause(xas);
2693 	rcu_read_unlock();
2694 	lock_page(page);
2695 	if (unlikely(page->mapping != mapping))
2696 		goto unlock;
2697 
2698 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2699 
2700 	do {
2701 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2702 			break;
2703 		start = (start + bsz) & ~(bsz - 1);
2704 		offset += bsz;
2705 	} while (offset < thp_size(page));
2706 unlock:
2707 	unlock_page(page);
2708 	rcu_read_lock();
2709 	return start;
2710 }
2711 
2712 static inline
2713 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2714 {
2715 	if (xa_is_value(page))
2716 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2717 	return thp_size(page);
2718 }
2719 
2720 /**
2721  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2722  * @mapping: Address space to search.
2723  * @start: First byte to consider.
2724  * @end: Limit of search (exclusive).
2725  * @whence: Either SEEK_HOLE or SEEK_DATA.
2726  *
2727  * If the page cache knows which blocks contain holes and which blocks
2728  * contain data, your filesystem can use this function to implement
2729  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2730  * entirely memory-based such as tmpfs, and filesystems which support
2731  * unwritten extents.
2732  *
2733  * Return: The requested offset on successs, or -ENXIO if @whence specifies
2734  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2735  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2736  * and @end contain data.
2737  */
2738 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2739 		loff_t end, int whence)
2740 {
2741 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2742 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2743 	bool seek_data = (whence == SEEK_DATA);
2744 	struct page *page;
2745 
2746 	if (end <= start)
2747 		return -ENXIO;
2748 
2749 	rcu_read_lock();
2750 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2751 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2752 		unsigned int seek_size;
2753 
2754 		if (start < pos) {
2755 			if (!seek_data)
2756 				goto unlock;
2757 			start = pos;
2758 		}
2759 
2760 		seek_size = seek_page_size(&xas, page);
2761 		pos = round_up(pos + 1, seek_size);
2762 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2763 				seek_data);
2764 		if (start < pos)
2765 			goto unlock;
2766 		if (start >= end)
2767 			break;
2768 		if (seek_size > PAGE_SIZE)
2769 			xas_set(&xas, pos >> PAGE_SHIFT);
2770 		if (!xa_is_value(page))
2771 			put_page(page);
2772 	}
2773 	if (seek_data)
2774 		start = -ENXIO;
2775 unlock:
2776 	rcu_read_unlock();
2777 	if (page && !xa_is_value(page))
2778 		put_page(page);
2779 	if (start > end)
2780 		return end;
2781 	return start;
2782 }
2783 
2784 #ifdef CONFIG_MMU
2785 #define MMAP_LOTSAMISS  (100)
2786 /*
2787  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2788  * @vmf - the vm_fault for this fault.
2789  * @page - the page to lock.
2790  * @fpin - the pointer to the file we may pin (or is already pinned).
2791  *
2792  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2793  * It differs in that it actually returns the page locked if it returns 1 and 0
2794  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2795  * will point to the pinned file and needs to be fput()'ed at a later point.
2796  */
2797 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2798 				     struct file **fpin)
2799 {
2800 	if (trylock_page(page))
2801 		return 1;
2802 
2803 	/*
2804 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2805 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2806 	 * is supposed to work. We have way too many special cases..
2807 	 */
2808 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2809 		return 0;
2810 
2811 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2812 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2813 		if (__lock_page_killable(page)) {
2814 			/*
2815 			 * We didn't have the right flags to drop the mmap_lock,
2816 			 * but all fault_handlers only check for fatal signals
2817 			 * if we return VM_FAULT_RETRY, so we need to drop the
2818 			 * mmap_lock here and return 0 if we don't have a fpin.
2819 			 */
2820 			if (*fpin == NULL)
2821 				mmap_read_unlock(vmf->vma->vm_mm);
2822 			return 0;
2823 		}
2824 	} else
2825 		__lock_page(page);
2826 	return 1;
2827 }
2828 
2829 
2830 /*
2831  * Synchronous readahead happens when we don't even find a page in the page
2832  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2833  * to drop the mmap sem we return the file that was pinned in order for us to do
2834  * that.  If we didn't pin a file then we return NULL.  The file that is
2835  * returned needs to be fput()'ed when we're done with it.
2836  */
2837 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2838 {
2839 	struct file *file = vmf->vma->vm_file;
2840 	struct file_ra_state *ra = &file->f_ra;
2841 	struct address_space *mapping = file->f_mapping;
2842 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2843 	struct file *fpin = NULL;
2844 	unsigned int mmap_miss;
2845 
2846 	/* If we don't want any read-ahead, don't bother */
2847 	if (vmf->vma->vm_flags & VM_RAND_READ)
2848 		return fpin;
2849 	if (!ra->ra_pages)
2850 		return fpin;
2851 
2852 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2853 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2854 		page_cache_sync_ra(&ractl, ra->ra_pages);
2855 		return fpin;
2856 	}
2857 
2858 	/* Avoid banging the cache line if not needed */
2859 	mmap_miss = READ_ONCE(ra->mmap_miss);
2860 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2861 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2862 
2863 	/*
2864 	 * Do we miss much more than hit in this file? If so,
2865 	 * stop bothering with read-ahead. It will only hurt.
2866 	 */
2867 	if (mmap_miss > MMAP_LOTSAMISS)
2868 		return fpin;
2869 
2870 	/*
2871 	 * mmap read-around
2872 	 */
2873 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2874 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2875 	ra->size = ra->ra_pages;
2876 	ra->async_size = ra->ra_pages / 4;
2877 	ractl._index = ra->start;
2878 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2879 	return fpin;
2880 }
2881 
2882 /*
2883  * Asynchronous readahead happens when we find the page and PG_readahead,
2884  * so we want to possibly extend the readahead further.  We return the file that
2885  * was pinned if we have to drop the mmap_lock in order to do IO.
2886  */
2887 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2888 					    struct page *page)
2889 {
2890 	struct file *file = vmf->vma->vm_file;
2891 	struct file_ra_state *ra = &file->f_ra;
2892 	struct address_space *mapping = file->f_mapping;
2893 	struct file *fpin = NULL;
2894 	unsigned int mmap_miss;
2895 	pgoff_t offset = vmf->pgoff;
2896 
2897 	/* If we don't want any read-ahead, don't bother */
2898 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2899 		return fpin;
2900 	mmap_miss = READ_ONCE(ra->mmap_miss);
2901 	if (mmap_miss)
2902 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2903 	if (PageReadahead(page)) {
2904 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2905 		page_cache_async_readahead(mapping, ra, file,
2906 					   page, offset, ra->ra_pages);
2907 	}
2908 	return fpin;
2909 }
2910 
2911 /**
2912  * filemap_fault - read in file data for page fault handling
2913  * @vmf:	struct vm_fault containing details of the fault
2914  *
2915  * filemap_fault() is invoked via the vma operations vector for a
2916  * mapped memory region to read in file data during a page fault.
2917  *
2918  * The goto's are kind of ugly, but this streamlines the normal case of having
2919  * it in the page cache, and handles the special cases reasonably without
2920  * having a lot of duplicated code.
2921  *
2922  * vma->vm_mm->mmap_lock must be held on entry.
2923  *
2924  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2925  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2926  *
2927  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2928  * has not been released.
2929  *
2930  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2931  *
2932  * Return: bitwise-OR of %VM_FAULT_ codes.
2933  */
2934 vm_fault_t filemap_fault(struct vm_fault *vmf)
2935 {
2936 	int error;
2937 	struct file *file = vmf->vma->vm_file;
2938 	struct file *fpin = NULL;
2939 	struct address_space *mapping = file->f_mapping;
2940 	struct file_ra_state *ra = &file->f_ra;
2941 	struct inode *inode = mapping->host;
2942 	pgoff_t offset = vmf->pgoff;
2943 	pgoff_t max_off;
2944 	struct page *page;
2945 	vm_fault_t ret = 0;
2946 
2947 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2948 	if (unlikely(offset >= max_off))
2949 		return VM_FAULT_SIGBUS;
2950 
2951 	/*
2952 	 * Do we have something in the page cache already?
2953 	 */
2954 	page = find_get_page(mapping, offset);
2955 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2956 		/*
2957 		 * We found the page, so try async readahead before
2958 		 * waiting for the lock.
2959 		 */
2960 		fpin = do_async_mmap_readahead(vmf, page);
2961 	} else if (!page) {
2962 		/* No page in the page cache at all */
2963 		count_vm_event(PGMAJFAULT);
2964 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2965 		ret = VM_FAULT_MAJOR;
2966 		fpin = do_sync_mmap_readahead(vmf);
2967 retry_find:
2968 		page = pagecache_get_page(mapping, offset,
2969 					  FGP_CREAT|FGP_FOR_MMAP,
2970 					  vmf->gfp_mask);
2971 		if (!page) {
2972 			if (fpin)
2973 				goto out_retry;
2974 			return VM_FAULT_OOM;
2975 		}
2976 	}
2977 
2978 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2979 		goto out_retry;
2980 
2981 	/* Did it get truncated? */
2982 	if (unlikely(compound_head(page)->mapping != mapping)) {
2983 		unlock_page(page);
2984 		put_page(page);
2985 		goto retry_find;
2986 	}
2987 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2988 
2989 	/*
2990 	 * We have a locked page in the page cache, now we need to check
2991 	 * that it's up-to-date. If not, it is going to be due to an error.
2992 	 */
2993 	if (unlikely(!PageUptodate(page)))
2994 		goto page_not_uptodate;
2995 
2996 	/*
2997 	 * We've made it this far and we had to drop our mmap_lock, now is the
2998 	 * time to return to the upper layer and have it re-find the vma and
2999 	 * redo the fault.
3000 	 */
3001 	if (fpin) {
3002 		unlock_page(page);
3003 		goto out_retry;
3004 	}
3005 
3006 	/*
3007 	 * Found the page and have a reference on it.
3008 	 * We must recheck i_size under page lock.
3009 	 */
3010 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3011 	if (unlikely(offset >= max_off)) {
3012 		unlock_page(page);
3013 		put_page(page);
3014 		return VM_FAULT_SIGBUS;
3015 	}
3016 
3017 	vmf->page = page;
3018 	return ret | VM_FAULT_LOCKED;
3019 
3020 page_not_uptodate:
3021 	/*
3022 	 * Umm, take care of errors if the page isn't up-to-date.
3023 	 * Try to re-read it _once_. We do this synchronously,
3024 	 * because there really aren't any performance issues here
3025 	 * and we need to check for errors.
3026 	 */
3027 	ClearPageError(page);
3028 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3029 	error = mapping->a_ops->readpage(file, page);
3030 	if (!error) {
3031 		wait_on_page_locked(page);
3032 		if (!PageUptodate(page))
3033 			error = -EIO;
3034 	}
3035 	if (fpin)
3036 		goto out_retry;
3037 	put_page(page);
3038 
3039 	if (!error || error == AOP_TRUNCATED_PAGE)
3040 		goto retry_find;
3041 
3042 	shrink_readahead_size_eio(ra);
3043 	return VM_FAULT_SIGBUS;
3044 
3045 out_retry:
3046 	/*
3047 	 * We dropped the mmap_lock, we need to return to the fault handler to
3048 	 * re-find the vma and come back and find our hopefully still populated
3049 	 * page.
3050 	 */
3051 	if (page)
3052 		put_page(page);
3053 	if (fpin)
3054 		fput(fpin);
3055 	return ret | VM_FAULT_RETRY;
3056 }
3057 EXPORT_SYMBOL(filemap_fault);
3058 
3059 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3060 {
3061 	struct mm_struct *mm = vmf->vma->vm_mm;
3062 
3063 	/* Huge page is mapped? No need to proceed. */
3064 	if (pmd_trans_huge(*vmf->pmd)) {
3065 		unlock_page(page);
3066 		put_page(page);
3067 		return true;
3068 	}
3069 
3070 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3071 	    vm_fault_t ret = do_set_pmd(vmf, page);
3072 	    if (!ret) {
3073 		    /* The page is mapped successfully, reference consumed. */
3074 		    unlock_page(page);
3075 		    return true;
3076 	    }
3077 	}
3078 
3079 	if (pmd_none(*vmf->pmd)) {
3080 		vmf->ptl = pmd_lock(mm, vmf->pmd);
3081 		if (likely(pmd_none(*vmf->pmd))) {
3082 			mm_inc_nr_ptes(mm);
3083 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3084 			vmf->prealloc_pte = NULL;
3085 		}
3086 		spin_unlock(vmf->ptl);
3087 	}
3088 
3089 	/* See comment in handle_pte_fault() */
3090 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3091 		unlock_page(page);
3092 		put_page(page);
3093 		return true;
3094 	}
3095 
3096 	return false;
3097 }
3098 
3099 static struct page *next_uptodate_page(struct page *page,
3100 				       struct address_space *mapping,
3101 				       struct xa_state *xas, pgoff_t end_pgoff)
3102 {
3103 	unsigned long max_idx;
3104 
3105 	do {
3106 		if (!page)
3107 			return NULL;
3108 		if (xas_retry(xas, page))
3109 			continue;
3110 		if (xa_is_value(page))
3111 			continue;
3112 		if (PageLocked(page))
3113 			continue;
3114 		if (!page_cache_get_speculative(page))
3115 			continue;
3116 		/* Has the page moved or been split? */
3117 		if (unlikely(page != xas_reload(xas)))
3118 			goto skip;
3119 		if (!PageUptodate(page) || PageReadahead(page))
3120 			goto skip;
3121 		if (PageHWPoison(page))
3122 			goto skip;
3123 		if (!trylock_page(page))
3124 			goto skip;
3125 		if (page->mapping != mapping)
3126 			goto unlock;
3127 		if (!PageUptodate(page))
3128 			goto unlock;
3129 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3130 		if (xas->xa_index >= max_idx)
3131 			goto unlock;
3132 		return page;
3133 unlock:
3134 		unlock_page(page);
3135 skip:
3136 		put_page(page);
3137 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3138 
3139 	return NULL;
3140 }
3141 
3142 static inline struct page *first_map_page(struct address_space *mapping,
3143 					  struct xa_state *xas,
3144 					  pgoff_t end_pgoff)
3145 {
3146 	return next_uptodate_page(xas_find(xas, end_pgoff),
3147 				  mapping, xas, end_pgoff);
3148 }
3149 
3150 static inline struct page *next_map_page(struct address_space *mapping,
3151 					 struct xa_state *xas,
3152 					 pgoff_t end_pgoff)
3153 {
3154 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3155 				  mapping, xas, end_pgoff);
3156 }
3157 
3158 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3159 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3160 {
3161 	struct vm_area_struct *vma = vmf->vma;
3162 	struct file *file = vma->vm_file;
3163 	struct address_space *mapping = file->f_mapping;
3164 	pgoff_t last_pgoff = start_pgoff;
3165 	unsigned long addr;
3166 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3167 	struct page *head, *page;
3168 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3169 	vm_fault_t ret = 0;
3170 
3171 	rcu_read_lock();
3172 	head = first_map_page(mapping, &xas, end_pgoff);
3173 	if (!head)
3174 		goto out;
3175 
3176 	if (filemap_map_pmd(vmf, head)) {
3177 		ret = VM_FAULT_NOPAGE;
3178 		goto out;
3179 	}
3180 
3181 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3182 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3183 	do {
3184 		page = find_subpage(head, xas.xa_index);
3185 		if (PageHWPoison(page))
3186 			goto unlock;
3187 
3188 		if (mmap_miss > 0)
3189 			mmap_miss--;
3190 
3191 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3192 		vmf->pte += xas.xa_index - last_pgoff;
3193 		last_pgoff = xas.xa_index;
3194 
3195 		if (!pte_none(*vmf->pte))
3196 			goto unlock;
3197 
3198 		/* We're about to handle the fault */
3199 		if (vmf->address == addr)
3200 			ret = VM_FAULT_NOPAGE;
3201 
3202 		do_set_pte(vmf, page, addr);
3203 		/* no need to invalidate: a not-present page won't be cached */
3204 		update_mmu_cache(vma, addr, vmf->pte);
3205 		unlock_page(head);
3206 		continue;
3207 unlock:
3208 		unlock_page(head);
3209 		put_page(head);
3210 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3211 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3212 out:
3213 	rcu_read_unlock();
3214 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3215 	return ret;
3216 }
3217 EXPORT_SYMBOL(filemap_map_pages);
3218 
3219 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3220 {
3221 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3222 	struct page *page = vmf->page;
3223 	vm_fault_t ret = VM_FAULT_LOCKED;
3224 
3225 	sb_start_pagefault(mapping->host->i_sb);
3226 	file_update_time(vmf->vma->vm_file);
3227 	lock_page(page);
3228 	if (page->mapping != mapping) {
3229 		unlock_page(page);
3230 		ret = VM_FAULT_NOPAGE;
3231 		goto out;
3232 	}
3233 	/*
3234 	 * We mark the page dirty already here so that when freeze is in
3235 	 * progress, we are guaranteed that writeback during freezing will
3236 	 * see the dirty page and writeprotect it again.
3237 	 */
3238 	set_page_dirty(page);
3239 	wait_for_stable_page(page);
3240 out:
3241 	sb_end_pagefault(mapping->host->i_sb);
3242 	return ret;
3243 }
3244 
3245 const struct vm_operations_struct generic_file_vm_ops = {
3246 	.fault		= filemap_fault,
3247 	.map_pages	= filemap_map_pages,
3248 	.page_mkwrite	= filemap_page_mkwrite,
3249 };
3250 
3251 /* This is used for a general mmap of a disk file */
3252 
3253 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3254 {
3255 	struct address_space *mapping = file->f_mapping;
3256 
3257 	if (!mapping->a_ops->readpage)
3258 		return -ENOEXEC;
3259 	file_accessed(file);
3260 	vma->vm_ops = &generic_file_vm_ops;
3261 	return 0;
3262 }
3263 
3264 /*
3265  * This is for filesystems which do not implement ->writepage.
3266  */
3267 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3268 {
3269 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3270 		return -EINVAL;
3271 	return generic_file_mmap(file, vma);
3272 }
3273 #else
3274 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3275 {
3276 	return VM_FAULT_SIGBUS;
3277 }
3278 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3279 {
3280 	return -ENOSYS;
3281 }
3282 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3283 {
3284 	return -ENOSYS;
3285 }
3286 #endif /* CONFIG_MMU */
3287 
3288 EXPORT_SYMBOL(filemap_page_mkwrite);
3289 EXPORT_SYMBOL(generic_file_mmap);
3290 EXPORT_SYMBOL(generic_file_readonly_mmap);
3291 
3292 static struct page *wait_on_page_read(struct page *page)
3293 {
3294 	if (!IS_ERR(page)) {
3295 		wait_on_page_locked(page);
3296 		if (!PageUptodate(page)) {
3297 			put_page(page);
3298 			page = ERR_PTR(-EIO);
3299 		}
3300 	}
3301 	return page;
3302 }
3303 
3304 static struct page *do_read_cache_page(struct address_space *mapping,
3305 				pgoff_t index,
3306 				int (*filler)(void *, struct page *),
3307 				void *data,
3308 				gfp_t gfp)
3309 {
3310 	struct page *page;
3311 	int err;
3312 repeat:
3313 	page = find_get_page(mapping, index);
3314 	if (!page) {
3315 		page = __page_cache_alloc(gfp);
3316 		if (!page)
3317 			return ERR_PTR(-ENOMEM);
3318 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3319 		if (unlikely(err)) {
3320 			put_page(page);
3321 			if (err == -EEXIST)
3322 				goto repeat;
3323 			/* Presumably ENOMEM for xarray node */
3324 			return ERR_PTR(err);
3325 		}
3326 
3327 filler:
3328 		if (filler)
3329 			err = filler(data, page);
3330 		else
3331 			err = mapping->a_ops->readpage(data, page);
3332 
3333 		if (err < 0) {
3334 			put_page(page);
3335 			return ERR_PTR(err);
3336 		}
3337 
3338 		page = wait_on_page_read(page);
3339 		if (IS_ERR(page))
3340 			return page;
3341 		goto out;
3342 	}
3343 	if (PageUptodate(page))
3344 		goto out;
3345 
3346 	/*
3347 	 * Page is not up to date and may be locked due to one of the following
3348 	 * case a: Page is being filled and the page lock is held
3349 	 * case b: Read/write error clearing the page uptodate status
3350 	 * case c: Truncation in progress (page locked)
3351 	 * case d: Reclaim in progress
3352 	 *
3353 	 * Case a, the page will be up to date when the page is unlocked.
3354 	 *    There is no need to serialise on the page lock here as the page
3355 	 *    is pinned so the lock gives no additional protection. Even if the
3356 	 *    page is truncated, the data is still valid if PageUptodate as
3357 	 *    it's a race vs truncate race.
3358 	 * Case b, the page will not be up to date
3359 	 * Case c, the page may be truncated but in itself, the data may still
3360 	 *    be valid after IO completes as it's a read vs truncate race. The
3361 	 *    operation must restart if the page is not uptodate on unlock but
3362 	 *    otherwise serialising on page lock to stabilise the mapping gives
3363 	 *    no additional guarantees to the caller as the page lock is
3364 	 *    released before return.
3365 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3366 	 *    will be a race with remove_mapping that determines if the mapping
3367 	 *    is valid on unlock but otherwise the data is valid and there is
3368 	 *    no need to serialise with page lock.
3369 	 *
3370 	 * As the page lock gives no additional guarantee, we optimistically
3371 	 * wait on the page to be unlocked and check if it's up to date and
3372 	 * use the page if it is. Otherwise, the page lock is required to
3373 	 * distinguish between the different cases. The motivation is that we
3374 	 * avoid spurious serialisations and wakeups when multiple processes
3375 	 * wait on the same page for IO to complete.
3376 	 */
3377 	wait_on_page_locked(page);
3378 	if (PageUptodate(page))
3379 		goto out;
3380 
3381 	/* Distinguish between all the cases under the safety of the lock */
3382 	lock_page(page);
3383 
3384 	/* Case c or d, restart the operation */
3385 	if (!page->mapping) {
3386 		unlock_page(page);
3387 		put_page(page);
3388 		goto repeat;
3389 	}
3390 
3391 	/* Someone else locked and filled the page in a very small window */
3392 	if (PageUptodate(page)) {
3393 		unlock_page(page);
3394 		goto out;
3395 	}
3396 
3397 	/*
3398 	 * A previous I/O error may have been due to temporary
3399 	 * failures.
3400 	 * Clear page error before actual read, PG_error will be
3401 	 * set again if read page fails.
3402 	 */
3403 	ClearPageError(page);
3404 	goto filler;
3405 
3406 out:
3407 	mark_page_accessed(page);
3408 	return page;
3409 }
3410 
3411 /**
3412  * read_cache_page - read into page cache, fill it if needed
3413  * @mapping:	the page's address_space
3414  * @index:	the page index
3415  * @filler:	function to perform the read
3416  * @data:	first arg to filler(data, page) function, often left as NULL
3417  *
3418  * Read into the page cache. If a page already exists, and PageUptodate() is
3419  * not set, try to fill the page and wait for it to become unlocked.
3420  *
3421  * If the page does not get brought uptodate, return -EIO.
3422  *
3423  * Return: up to date page on success, ERR_PTR() on failure.
3424  */
3425 struct page *read_cache_page(struct address_space *mapping,
3426 				pgoff_t index,
3427 				int (*filler)(void *, struct page *),
3428 				void *data)
3429 {
3430 	return do_read_cache_page(mapping, index, filler, data,
3431 			mapping_gfp_mask(mapping));
3432 }
3433 EXPORT_SYMBOL(read_cache_page);
3434 
3435 /**
3436  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3437  * @mapping:	the page's address_space
3438  * @index:	the page index
3439  * @gfp:	the page allocator flags to use if allocating
3440  *
3441  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3442  * any new page allocations done using the specified allocation flags.
3443  *
3444  * If the page does not get brought uptodate, return -EIO.
3445  *
3446  * Return: up to date page on success, ERR_PTR() on failure.
3447  */
3448 struct page *read_cache_page_gfp(struct address_space *mapping,
3449 				pgoff_t index,
3450 				gfp_t gfp)
3451 {
3452 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3453 }
3454 EXPORT_SYMBOL(read_cache_page_gfp);
3455 
3456 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3457 				loff_t pos, unsigned len, unsigned flags,
3458 				struct page **pagep, void **fsdata)
3459 {
3460 	const struct address_space_operations *aops = mapping->a_ops;
3461 
3462 	return aops->write_begin(file, mapping, pos, len, flags,
3463 							pagep, fsdata);
3464 }
3465 EXPORT_SYMBOL(pagecache_write_begin);
3466 
3467 int pagecache_write_end(struct file *file, struct address_space *mapping,
3468 				loff_t pos, unsigned len, unsigned copied,
3469 				struct page *page, void *fsdata)
3470 {
3471 	const struct address_space_operations *aops = mapping->a_ops;
3472 
3473 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3474 }
3475 EXPORT_SYMBOL(pagecache_write_end);
3476 
3477 /*
3478  * Warn about a page cache invalidation failure during a direct I/O write.
3479  */
3480 void dio_warn_stale_pagecache(struct file *filp)
3481 {
3482 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3483 	char pathname[128];
3484 	char *path;
3485 
3486 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3487 	if (__ratelimit(&_rs)) {
3488 		path = file_path(filp, pathname, sizeof(pathname));
3489 		if (IS_ERR(path))
3490 			path = "(unknown)";
3491 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3492 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3493 			current->comm);
3494 	}
3495 }
3496 
3497 ssize_t
3498 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3499 {
3500 	struct file	*file = iocb->ki_filp;
3501 	struct address_space *mapping = file->f_mapping;
3502 	struct inode	*inode = mapping->host;
3503 	loff_t		pos = iocb->ki_pos;
3504 	ssize_t		written;
3505 	size_t		write_len;
3506 	pgoff_t		end;
3507 
3508 	write_len = iov_iter_count(from);
3509 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3510 
3511 	if (iocb->ki_flags & IOCB_NOWAIT) {
3512 		/* If there are pages to writeback, return */
3513 		if (filemap_range_has_page(file->f_mapping, pos,
3514 					   pos + write_len - 1))
3515 			return -EAGAIN;
3516 	} else {
3517 		written = filemap_write_and_wait_range(mapping, pos,
3518 							pos + write_len - 1);
3519 		if (written)
3520 			goto out;
3521 	}
3522 
3523 	/*
3524 	 * After a write we want buffered reads to be sure to go to disk to get
3525 	 * the new data.  We invalidate clean cached page from the region we're
3526 	 * about to write.  We do this *before* the write so that we can return
3527 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3528 	 */
3529 	written = invalidate_inode_pages2_range(mapping,
3530 					pos >> PAGE_SHIFT, end);
3531 	/*
3532 	 * If a page can not be invalidated, return 0 to fall back
3533 	 * to buffered write.
3534 	 */
3535 	if (written) {
3536 		if (written == -EBUSY)
3537 			return 0;
3538 		goto out;
3539 	}
3540 
3541 	written = mapping->a_ops->direct_IO(iocb, from);
3542 
3543 	/*
3544 	 * Finally, try again to invalidate clean pages which might have been
3545 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3546 	 * if the source of the write was an mmap'ed region of the file
3547 	 * we're writing.  Either one is a pretty crazy thing to do,
3548 	 * so we don't support it 100%.  If this invalidation
3549 	 * fails, tough, the write still worked...
3550 	 *
3551 	 * Most of the time we do not need this since dio_complete() will do
3552 	 * the invalidation for us. However there are some file systems that
3553 	 * do not end up with dio_complete() being called, so let's not break
3554 	 * them by removing it completely.
3555 	 *
3556 	 * Noticeable example is a blkdev_direct_IO().
3557 	 *
3558 	 * Skip invalidation for async writes or if mapping has no pages.
3559 	 */
3560 	if (written > 0 && mapping->nrpages &&
3561 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3562 		dio_warn_stale_pagecache(file);
3563 
3564 	if (written > 0) {
3565 		pos += written;
3566 		write_len -= written;
3567 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3568 			i_size_write(inode, pos);
3569 			mark_inode_dirty(inode);
3570 		}
3571 		iocb->ki_pos = pos;
3572 	}
3573 	if (written != -EIOCBQUEUED)
3574 		iov_iter_revert(from, write_len - iov_iter_count(from));
3575 out:
3576 	return written;
3577 }
3578 EXPORT_SYMBOL(generic_file_direct_write);
3579 
3580 /*
3581  * Find or create a page at the given pagecache position. Return the locked
3582  * page. This function is specifically for buffered writes.
3583  */
3584 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3585 					pgoff_t index, unsigned flags)
3586 {
3587 	struct page *page;
3588 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3589 
3590 	if (flags & AOP_FLAG_NOFS)
3591 		fgp_flags |= FGP_NOFS;
3592 
3593 	page = pagecache_get_page(mapping, index, fgp_flags,
3594 			mapping_gfp_mask(mapping));
3595 	if (page)
3596 		wait_for_stable_page(page);
3597 
3598 	return page;
3599 }
3600 EXPORT_SYMBOL(grab_cache_page_write_begin);
3601 
3602 ssize_t generic_perform_write(struct file *file,
3603 				struct iov_iter *i, loff_t pos)
3604 {
3605 	struct address_space *mapping = file->f_mapping;
3606 	const struct address_space_operations *a_ops = mapping->a_ops;
3607 	long status = 0;
3608 	ssize_t written = 0;
3609 	unsigned int flags = 0;
3610 
3611 	do {
3612 		struct page *page;
3613 		unsigned long offset;	/* Offset into pagecache page */
3614 		unsigned long bytes;	/* Bytes to write to page */
3615 		size_t copied;		/* Bytes copied from user */
3616 		void *fsdata;
3617 
3618 		offset = (pos & (PAGE_SIZE - 1));
3619 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3620 						iov_iter_count(i));
3621 
3622 again:
3623 		/*
3624 		 * Bring in the user page that we will copy from _first_.
3625 		 * Otherwise there's a nasty deadlock on copying from the
3626 		 * same page as we're writing to, without it being marked
3627 		 * up-to-date.
3628 		 *
3629 		 * Not only is this an optimisation, but it is also required
3630 		 * to check that the address is actually valid, when atomic
3631 		 * usercopies are used, below.
3632 		 */
3633 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3634 			status = -EFAULT;
3635 			break;
3636 		}
3637 
3638 		if (fatal_signal_pending(current)) {
3639 			status = -EINTR;
3640 			break;
3641 		}
3642 
3643 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3644 						&page, &fsdata);
3645 		if (unlikely(status < 0))
3646 			break;
3647 
3648 		if (mapping_writably_mapped(mapping))
3649 			flush_dcache_page(page);
3650 
3651 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3652 		flush_dcache_page(page);
3653 
3654 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3655 						page, fsdata);
3656 		if (unlikely(status < 0))
3657 			break;
3658 		copied = status;
3659 
3660 		cond_resched();
3661 
3662 		iov_iter_advance(i, copied);
3663 		if (unlikely(copied == 0)) {
3664 			/*
3665 			 * If we were unable to copy any data at all, we must
3666 			 * fall back to a single segment length write.
3667 			 *
3668 			 * If we didn't fallback here, we could livelock
3669 			 * because not all segments in the iov can be copied at
3670 			 * once without a pagefault.
3671 			 */
3672 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3673 						iov_iter_single_seg_count(i));
3674 			goto again;
3675 		}
3676 		pos += copied;
3677 		written += copied;
3678 
3679 		balance_dirty_pages_ratelimited(mapping);
3680 	} while (iov_iter_count(i));
3681 
3682 	return written ? written : status;
3683 }
3684 EXPORT_SYMBOL(generic_perform_write);
3685 
3686 /**
3687  * __generic_file_write_iter - write data to a file
3688  * @iocb:	IO state structure (file, offset, etc.)
3689  * @from:	iov_iter with data to write
3690  *
3691  * This function does all the work needed for actually writing data to a
3692  * file. It does all basic checks, removes SUID from the file, updates
3693  * modification times and calls proper subroutines depending on whether we
3694  * do direct IO or a standard buffered write.
3695  *
3696  * It expects i_mutex to be grabbed unless we work on a block device or similar
3697  * object which does not need locking at all.
3698  *
3699  * This function does *not* take care of syncing data in case of O_SYNC write.
3700  * A caller has to handle it. This is mainly due to the fact that we want to
3701  * avoid syncing under i_mutex.
3702  *
3703  * Return:
3704  * * number of bytes written, even for truncated writes
3705  * * negative error code if no data has been written at all
3706  */
3707 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3708 {
3709 	struct file *file = iocb->ki_filp;
3710 	struct address_space * mapping = file->f_mapping;
3711 	struct inode 	*inode = mapping->host;
3712 	ssize_t		written = 0;
3713 	ssize_t		err;
3714 	ssize_t		status;
3715 
3716 	/* We can write back this queue in page reclaim */
3717 	current->backing_dev_info = inode_to_bdi(inode);
3718 	err = file_remove_privs(file);
3719 	if (err)
3720 		goto out;
3721 
3722 	err = file_update_time(file);
3723 	if (err)
3724 		goto out;
3725 
3726 	if (iocb->ki_flags & IOCB_DIRECT) {
3727 		loff_t pos, endbyte;
3728 
3729 		written = generic_file_direct_write(iocb, from);
3730 		/*
3731 		 * If the write stopped short of completing, fall back to
3732 		 * buffered writes.  Some filesystems do this for writes to
3733 		 * holes, for example.  For DAX files, a buffered write will
3734 		 * not succeed (even if it did, DAX does not handle dirty
3735 		 * page-cache pages correctly).
3736 		 */
3737 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3738 			goto out;
3739 
3740 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3741 		/*
3742 		 * If generic_perform_write() returned a synchronous error
3743 		 * then we want to return the number of bytes which were
3744 		 * direct-written, or the error code if that was zero.  Note
3745 		 * that this differs from normal direct-io semantics, which
3746 		 * will return -EFOO even if some bytes were written.
3747 		 */
3748 		if (unlikely(status < 0)) {
3749 			err = status;
3750 			goto out;
3751 		}
3752 		/*
3753 		 * We need to ensure that the page cache pages are written to
3754 		 * disk and invalidated to preserve the expected O_DIRECT
3755 		 * semantics.
3756 		 */
3757 		endbyte = pos + status - 1;
3758 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3759 		if (err == 0) {
3760 			iocb->ki_pos = endbyte + 1;
3761 			written += status;
3762 			invalidate_mapping_pages(mapping,
3763 						 pos >> PAGE_SHIFT,
3764 						 endbyte >> PAGE_SHIFT);
3765 		} else {
3766 			/*
3767 			 * We don't know how much we wrote, so just return
3768 			 * the number of bytes which were direct-written
3769 			 */
3770 		}
3771 	} else {
3772 		written = generic_perform_write(file, from, iocb->ki_pos);
3773 		if (likely(written > 0))
3774 			iocb->ki_pos += written;
3775 	}
3776 out:
3777 	current->backing_dev_info = NULL;
3778 	return written ? written : err;
3779 }
3780 EXPORT_SYMBOL(__generic_file_write_iter);
3781 
3782 /**
3783  * generic_file_write_iter - write data to a file
3784  * @iocb:	IO state structure
3785  * @from:	iov_iter with data to write
3786  *
3787  * This is a wrapper around __generic_file_write_iter() to be used by most
3788  * filesystems. It takes care of syncing the file in case of O_SYNC file
3789  * and acquires i_mutex as needed.
3790  * Return:
3791  * * negative error code if no data has been written at all of
3792  *   vfs_fsync_range() failed for a synchronous write
3793  * * number of bytes written, even for truncated writes
3794  */
3795 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3796 {
3797 	struct file *file = iocb->ki_filp;
3798 	struct inode *inode = file->f_mapping->host;
3799 	ssize_t ret;
3800 
3801 	inode_lock(inode);
3802 	ret = generic_write_checks(iocb, from);
3803 	if (ret > 0)
3804 		ret = __generic_file_write_iter(iocb, from);
3805 	inode_unlock(inode);
3806 
3807 	if (ret > 0)
3808 		ret = generic_write_sync(iocb, ret);
3809 	return ret;
3810 }
3811 EXPORT_SYMBOL(generic_file_write_iter);
3812 
3813 /**
3814  * try_to_release_page() - release old fs-specific metadata on a page
3815  *
3816  * @page: the page which the kernel is trying to free
3817  * @gfp_mask: memory allocation flags (and I/O mode)
3818  *
3819  * The address_space is to try to release any data against the page
3820  * (presumably at page->private).
3821  *
3822  * This may also be called if PG_fscache is set on a page, indicating that the
3823  * page is known to the local caching routines.
3824  *
3825  * The @gfp_mask argument specifies whether I/O may be performed to release
3826  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3827  *
3828  * Return: %1 if the release was successful, otherwise return zero.
3829  */
3830 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3831 {
3832 	struct address_space * const mapping = page->mapping;
3833 
3834 	BUG_ON(!PageLocked(page));
3835 	if (PageWriteback(page))
3836 		return 0;
3837 
3838 	if (mapping && mapping->a_ops->releasepage)
3839 		return mapping->a_ops->releasepage(page, gfp_mask);
3840 	return try_to_free_buffers(page);
3841 }
3842 
3843 EXPORT_SYMBOL(try_to_release_page);
3844