xref: /openbmc/linux/mm/filemap.c (revision 2cf938aae17203426a89b5955bd1c9668657bfa8)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static void page_cache_tree_delete(struct address_space *mapping,
114 				   struct page *page, void *shadow)
115 {
116 	struct radix_tree_node *node;
117 	unsigned long index;
118 	unsigned int offset;
119 	unsigned int tag;
120 	void **slot;
121 
122 	VM_BUG_ON(!PageLocked(page));
123 
124 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125 
126 	if (shadow) {
127 		mapping->nrexceptional++;
128 		/*
129 		 * Make sure the nrexceptional update is committed before
130 		 * the nrpages update so that final truncate racing
131 		 * with reclaim does not see both counters 0 at the
132 		 * same time and miss a shadow entry.
133 		 */
134 		smp_wmb();
135 	}
136 	mapping->nrpages--;
137 
138 	if (!node) {
139 		/* Clear direct pointer tags in root node */
140 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 		radix_tree_replace_slot(slot, shadow);
142 		return;
143 	}
144 
145 	/* Clear tree tags for the removed page */
146 	index = page->index;
147 	offset = index & RADIX_TREE_MAP_MASK;
148 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 		if (test_bit(offset, node->tags[tag]))
150 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 	}
152 
153 	/* Delete page, swap shadow entry */
154 	radix_tree_replace_slot(slot, shadow);
155 	workingset_node_pages_dec(node);
156 	if (shadow)
157 		workingset_node_shadows_inc(node);
158 	else
159 		if (__radix_tree_delete_node(&mapping->page_tree, node))
160 			return;
161 
162 	/*
163 	 * Track node that only contains shadow entries.
164 	 *
165 	 * Avoid acquiring the list_lru lock if already tracked.  The
166 	 * list_empty() test is safe as node->private_list is
167 	 * protected by mapping->tree_lock.
168 	 */
169 	if (!workingset_node_pages(node) &&
170 	    list_empty(&node->private_list)) {
171 		node->private_data = mapping;
172 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 	}
174 }
175 
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock.
180  */
181 void __delete_from_page_cache(struct page *page, void *shadow)
182 {
183 	struct address_space *mapping = page->mapping;
184 
185 	trace_mm_filemap_delete_from_page_cache(page);
186 	/*
187 	 * if we're uptodate, flush out into the cleancache, otherwise
188 	 * invalidate any existing cleancache entries.  We can't leave
189 	 * stale data around in the cleancache once our page is gone
190 	 */
191 	if (PageUptodate(page) && PageMappedToDisk(page))
192 		cleancache_put_page(page);
193 	else
194 		cleancache_invalidate_page(mapping, page);
195 
196 	VM_BUG_ON_PAGE(page_mapped(page), page);
197 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198 		int mapcount;
199 
200 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
201 			 current->comm, page_to_pfn(page));
202 		dump_page(page, "still mapped when deleted");
203 		dump_stack();
204 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205 
206 		mapcount = page_mapcount(page);
207 		if (mapping_exiting(mapping) &&
208 		    page_count(page) >= mapcount + 2) {
209 			/*
210 			 * All vmas have already been torn down, so it's
211 			 * a good bet that actually the page is unmapped,
212 			 * and we'd prefer not to leak it: if we're wrong,
213 			 * some other bad page check should catch it later.
214 			 */
215 			page_mapcount_reset(page);
216 			atomic_sub(mapcount, &page->_count);
217 		}
218 	}
219 
220 	page_cache_tree_delete(mapping, page, shadow);
221 
222 	page->mapping = NULL;
223 	/* Leave page->index set: truncation lookup relies upon it */
224 
225 	/* hugetlb pages do not participate in page cache accounting. */
226 	if (!PageHuge(page))
227 		__dec_zone_page_state(page, NR_FILE_PAGES);
228 	if (PageSwapBacked(page))
229 		__dec_zone_page_state(page, NR_SHMEM);
230 
231 	/*
232 	 * At this point page must be either written or cleaned by truncate.
233 	 * Dirty page here signals a bug and loss of unwritten data.
234 	 *
235 	 * This fixes dirty accounting after removing the page entirely but
236 	 * leaves PageDirty set: it has no effect for truncated page and
237 	 * anyway will be cleared before returning page into buddy allocator.
238 	 */
239 	if (WARN_ON_ONCE(PageDirty(page)))
240 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
241 }
242 
243 /**
244  * delete_from_page_cache - delete page from page cache
245  * @page: the page which the kernel is trying to remove from page cache
246  *
247  * This must be called only on pages that have been verified to be in the page
248  * cache and locked.  It will never put the page into the free list, the caller
249  * has a reference on the page.
250  */
251 void delete_from_page_cache(struct page *page)
252 {
253 	struct address_space *mapping = page->mapping;
254 	unsigned long flags;
255 
256 	void (*freepage)(struct page *);
257 
258 	BUG_ON(!PageLocked(page));
259 
260 	freepage = mapping->a_ops->freepage;
261 
262 	spin_lock_irqsave(&mapping->tree_lock, flags);
263 	__delete_from_page_cache(page, NULL);
264 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
265 
266 	if (freepage)
267 		freepage(page);
268 	page_cache_release(page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271 
272 static int filemap_check_errors(struct address_space *mapping)
273 {
274 	int ret = 0;
275 	/* Check for outstanding write errors */
276 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
277 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
278 		ret = -ENOSPC;
279 	if (test_bit(AS_EIO, &mapping->flags) &&
280 	    test_and_clear_bit(AS_EIO, &mapping->flags))
281 		ret = -EIO;
282 	return ret;
283 }
284 
285 /**
286  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
287  * @mapping:	address space structure to write
288  * @start:	offset in bytes where the range starts
289  * @end:	offset in bytes where the range ends (inclusive)
290  * @sync_mode:	enable synchronous operation
291  *
292  * Start writeback against all of a mapping's dirty pages that lie
293  * within the byte offsets <start, end> inclusive.
294  *
295  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
296  * opposed to a regular memory cleansing writeback.  The difference between
297  * these two operations is that if a dirty page/buffer is encountered, it must
298  * be waited upon, and not just skipped over.
299  */
300 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301 				loff_t end, int sync_mode)
302 {
303 	int ret;
304 	struct writeback_control wbc = {
305 		.sync_mode = sync_mode,
306 		.nr_to_write = LONG_MAX,
307 		.range_start = start,
308 		.range_end = end,
309 	};
310 
311 	if (!mapping_cap_writeback_dirty(mapping))
312 		return 0;
313 
314 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
315 	ret = do_writepages(mapping, &wbc);
316 	wbc_detach_inode(&wbc);
317 	return ret;
318 }
319 
320 static inline int __filemap_fdatawrite(struct address_space *mapping,
321 	int sync_mode)
322 {
323 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
324 }
325 
326 int filemap_fdatawrite(struct address_space *mapping)
327 {
328 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329 }
330 EXPORT_SYMBOL(filemap_fdatawrite);
331 
332 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 				loff_t end)
334 {
335 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336 }
337 EXPORT_SYMBOL(filemap_fdatawrite_range);
338 
339 /**
340  * filemap_flush - mostly a non-blocking flush
341  * @mapping:	target address_space
342  *
343  * This is a mostly non-blocking flush.  Not suitable for data-integrity
344  * purposes - I/O may not be started against all dirty pages.
345  */
346 int filemap_flush(struct address_space *mapping)
347 {
348 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349 }
350 EXPORT_SYMBOL(filemap_flush);
351 
352 static int __filemap_fdatawait_range(struct address_space *mapping,
353 				     loff_t start_byte, loff_t end_byte)
354 {
355 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
356 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
357 	struct pagevec pvec;
358 	int nr_pages;
359 	int ret = 0;
360 
361 	if (end_byte < start_byte)
362 		goto out;
363 
364 	pagevec_init(&pvec, 0);
365 	while ((index <= end) &&
366 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367 			PAGECACHE_TAG_WRITEBACK,
368 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369 		unsigned i;
370 
371 		for (i = 0; i < nr_pages; i++) {
372 			struct page *page = pvec.pages[i];
373 
374 			/* until radix tree lookup accepts end_index */
375 			if (page->index > end)
376 				continue;
377 
378 			wait_on_page_writeback(page);
379 			if (TestClearPageError(page))
380 				ret = -EIO;
381 		}
382 		pagevec_release(&pvec);
383 		cond_resched();
384 	}
385 out:
386 	return ret;
387 }
388 
389 /**
390  * filemap_fdatawait_range - wait for writeback to complete
391  * @mapping:		address space structure to wait for
392  * @start_byte:		offset in bytes where the range starts
393  * @end_byte:		offset in bytes where the range ends (inclusive)
394  *
395  * Walk the list of under-writeback pages of the given address space
396  * in the given range and wait for all of them.  Check error status of
397  * the address space and return it.
398  *
399  * Since the error status of the address space is cleared by this function,
400  * callers are responsible for checking the return value and handling and/or
401  * reporting the error.
402  */
403 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404 			    loff_t end_byte)
405 {
406 	int ret, ret2;
407 
408 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
409 	ret2 = filemap_check_errors(mapping);
410 	if (!ret)
411 		ret = ret2;
412 
413 	return ret;
414 }
415 EXPORT_SYMBOL(filemap_fdatawait_range);
416 
417 /**
418  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419  * @mapping: address space structure to wait for
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * and wait for all of them.  Unlike filemap_fdatawait(), this function
423  * does not clear error status of the address space.
424  *
425  * Use this function if callers don't handle errors themselves.  Expected
426  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427  * fsfreeze(8)
428  */
429 void filemap_fdatawait_keep_errors(struct address_space *mapping)
430 {
431 	loff_t i_size = i_size_read(mapping->host);
432 
433 	if (i_size == 0)
434 		return;
435 
436 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
437 }
438 
439 /**
440  * filemap_fdatawait - wait for all under-writeback pages to complete
441  * @mapping: address space structure to wait for
442  *
443  * Walk the list of under-writeback pages of the given address space
444  * and wait for all of them.  Check error status of the address space
445  * and return it.
446  *
447  * Since the error status of the address space is cleared by this function,
448  * callers are responsible for checking the return value and handling and/or
449  * reporting the error.
450  */
451 int filemap_fdatawait(struct address_space *mapping)
452 {
453 	loff_t i_size = i_size_read(mapping->host);
454 
455 	if (i_size == 0)
456 		return 0;
457 
458 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
459 }
460 EXPORT_SYMBOL(filemap_fdatawait);
461 
462 int filemap_write_and_wait(struct address_space *mapping)
463 {
464 	int err = 0;
465 
466 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
467 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
468 		err = filemap_fdatawrite(mapping);
469 		/*
470 		 * Even if the above returned error, the pages may be
471 		 * written partially (e.g. -ENOSPC), so we wait for it.
472 		 * But the -EIO is special case, it may indicate the worst
473 		 * thing (e.g. bug) happened, so we avoid waiting for it.
474 		 */
475 		if (err != -EIO) {
476 			int err2 = filemap_fdatawait(mapping);
477 			if (!err)
478 				err = err2;
479 		}
480 	} else {
481 		err = filemap_check_errors(mapping);
482 	}
483 	return err;
484 }
485 EXPORT_SYMBOL(filemap_write_and_wait);
486 
487 /**
488  * filemap_write_and_wait_range - write out & wait on a file range
489  * @mapping:	the address_space for the pages
490  * @lstart:	offset in bytes where the range starts
491  * @lend:	offset in bytes where the range ends (inclusive)
492  *
493  * Write out and wait upon file offsets lstart->lend, inclusive.
494  *
495  * Note that `lend' is inclusive (describes the last byte to be written) so
496  * that this function can be used to write to the very end-of-file (end = -1).
497  */
498 int filemap_write_and_wait_range(struct address_space *mapping,
499 				 loff_t lstart, loff_t lend)
500 {
501 	int err = 0;
502 
503 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
504 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
505 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
506 						 WB_SYNC_ALL);
507 		/* See comment of filemap_write_and_wait() */
508 		if (err != -EIO) {
509 			int err2 = filemap_fdatawait_range(mapping,
510 						lstart, lend);
511 			if (!err)
512 				err = err2;
513 		}
514 	} else {
515 		err = filemap_check_errors(mapping);
516 	}
517 	return err;
518 }
519 EXPORT_SYMBOL(filemap_write_and_wait_range);
520 
521 /**
522  * replace_page_cache_page - replace a pagecache page with a new one
523  * @old:	page to be replaced
524  * @new:	page to replace with
525  * @gfp_mask:	allocation mode
526  *
527  * This function replaces a page in the pagecache with a new one.  On
528  * success it acquires the pagecache reference for the new page and
529  * drops it for the old page.  Both the old and new pages must be
530  * locked.  This function does not add the new page to the LRU, the
531  * caller must do that.
532  *
533  * The remove + add is atomic.  The only way this function can fail is
534  * memory allocation failure.
535  */
536 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537 {
538 	int error;
539 
540 	VM_BUG_ON_PAGE(!PageLocked(old), old);
541 	VM_BUG_ON_PAGE(!PageLocked(new), new);
542 	VM_BUG_ON_PAGE(new->mapping, new);
543 
544 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545 	if (!error) {
546 		struct address_space *mapping = old->mapping;
547 		void (*freepage)(struct page *);
548 		unsigned long flags;
549 
550 		pgoff_t offset = old->index;
551 		freepage = mapping->a_ops->freepage;
552 
553 		page_cache_get(new);
554 		new->mapping = mapping;
555 		new->index = offset;
556 
557 		spin_lock_irqsave(&mapping->tree_lock, flags);
558 		__delete_from_page_cache(old, NULL);
559 		error = radix_tree_insert(&mapping->page_tree, offset, new);
560 		BUG_ON(error);
561 		mapping->nrpages++;
562 
563 		/*
564 		 * hugetlb pages do not participate in page cache accounting.
565 		 */
566 		if (!PageHuge(new))
567 			__inc_zone_page_state(new, NR_FILE_PAGES);
568 		if (PageSwapBacked(new))
569 			__inc_zone_page_state(new, NR_SHMEM);
570 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
571 		mem_cgroup_migrate(old, new);
572 		radix_tree_preload_end();
573 		if (freepage)
574 			freepage(old);
575 		page_cache_release(old);
576 	}
577 
578 	return error;
579 }
580 EXPORT_SYMBOL_GPL(replace_page_cache_page);
581 
582 static int page_cache_tree_insert(struct address_space *mapping,
583 				  struct page *page, void **shadowp)
584 {
585 	struct radix_tree_node *node;
586 	void **slot;
587 	int error;
588 
589 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
590 				    &node, &slot);
591 	if (error)
592 		return error;
593 	if (*slot) {
594 		void *p;
595 
596 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597 		if (!radix_tree_exceptional_entry(p))
598 			return -EEXIST;
599 
600 		if (WARN_ON(dax_mapping(mapping)))
601 			return -EINVAL;
602 
603 		if (shadowp)
604 			*shadowp = p;
605 		mapping->nrexceptional--;
606 		if (node)
607 			workingset_node_shadows_dec(node);
608 	}
609 	radix_tree_replace_slot(slot, page);
610 	mapping->nrpages++;
611 	if (node) {
612 		workingset_node_pages_inc(node);
613 		/*
614 		 * Don't track node that contains actual pages.
615 		 *
616 		 * Avoid acquiring the list_lru lock if already
617 		 * untracked.  The list_empty() test is safe as
618 		 * node->private_list is protected by
619 		 * mapping->tree_lock.
620 		 */
621 		if (!list_empty(&node->private_list))
622 			list_lru_del(&workingset_shadow_nodes,
623 				     &node->private_list);
624 	}
625 	return 0;
626 }
627 
628 static int __add_to_page_cache_locked(struct page *page,
629 				      struct address_space *mapping,
630 				      pgoff_t offset, gfp_t gfp_mask,
631 				      void **shadowp)
632 {
633 	int huge = PageHuge(page);
634 	struct mem_cgroup *memcg;
635 	int error;
636 
637 	VM_BUG_ON_PAGE(!PageLocked(page), page);
638 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
639 
640 	if (!huge) {
641 		error = mem_cgroup_try_charge(page, current->mm,
642 					      gfp_mask, &memcg, false);
643 		if (error)
644 			return error;
645 	}
646 
647 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
648 	if (error) {
649 		if (!huge)
650 			mem_cgroup_cancel_charge(page, memcg, false);
651 		return error;
652 	}
653 
654 	page_cache_get(page);
655 	page->mapping = mapping;
656 	page->index = offset;
657 
658 	spin_lock_irq(&mapping->tree_lock);
659 	error = page_cache_tree_insert(mapping, page, shadowp);
660 	radix_tree_preload_end();
661 	if (unlikely(error))
662 		goto err_insert;
663 
664 	/* hugetlb pages do not participate in page cache accounting. */
665 	if (!huge)
666 		__inc_zone_page_state(page, NR_FILE_PAGES);
667 	spin_unlock_irq(&mapping->tree_lock);
668 	if (!huge)
669 		mem_cgroup_commit_charge(page, memcg, false, false);
670 	trace_mm_filemap_add_to_page_cache(page);
671 	return 0;
672 err_insert:
673 	page->mapping = NULL;
674 	/* Leave page->index set: truncation relies upon it */
675 	spin_unlock_irq(&mapping->tree_lock);
676 	if (!huge)
677 		mem_cgroup_cancel_charge(page, memcg, false);
678 	page_cache_release(page);
679 	return error;
680 }
681 
682 /**
683  * add_to_page_cache_locked - add a locked page to the pagecache
684  * @page:	page to add
685  * @mapping:	the page's address_space
686  * @offset:	page index
687  * @gfp_mask:	page allocation mode
688  *
689  * This function is used to add a page to the pagecache. It must be locked.
690  * This function does not add the page to the LRU.  The caller must do that.
691  */
692 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693 		pgoff_t offset, gfp_t gfp_mask)
694 {
695 	return __add_to_page_cache_locked(page, mapping, offset,
696 					  gfp_mask, NULL);
697 }
698 EXPORT_SYMBOL(add_to_page_cache_locked);
699 
700 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
701 				pgoff_t offset, gfp_t gfp_mask)
702 {
703 	void *shadow = NULL;
704 	int ret;
705 
706 	__SetPageLocked(page);
707 	ret = __add_to_page_cache_locked(page, mapping, offset,
708 					 gfp_mask, &shadow);
709 	if (unlikely(ret))
710 		__ClearPageLocked(page);
711 	else {
712 		/*
713 		 * The page might have been evicted from cache only
714 		 * recently, in which case it should be activated like
715 		 * any other repeatedly accessed page.
716 		 */
717 		if (shadow && workingset_refault(shadow)) {
718 			SetPageActive(page);
719 			workingset_activation(page);
720 		} else
721 			ClearPageActive(page);
722 		lru_cache_add(page);
723 	}
724 	return ret;
725 }
726 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
727 
728 #ifdef CONFIG_NUMA
729 struct page *__page_cache_alloc(gfp_t gfp)
730 {
731 	int n;
732 	struct page *page;
733 
734 	if (cpuset_do_page_mem_spread()) {
735 		unsigned int cpuset_mems_cookie;
736 		do {
737 			cpuset_mems_cookie = read_mems_allowed_begin();
738 			n = cpuset_mem_spread_node();
739 			page = __alloc_pages_node(n, gfp, 0);
740 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
741 
742 		return page;
743 	}
744 	return alloc_pages(gfp, 0);
745 }
746 EXPORT_SYMBOL(__page_cache_alloc);
747 #endif
748 
749 /*
750  * In order to wait for pages to become available there must be
751  * waitqueues associated with pages. By using a hash table of
752  * waitqueues where the bucket discipline is to maintain all
753  * waiters on the same queue and wake all when any of the pages
754  * become available, and for the woken contexts to check to be
755  * sure the appropriate page became available, this saves space
756  * at a cost of "thundering herd" phenomena during rare hash
757  * collisions.
758  */
759 wait_queue_head_t *page_waitqueue(struct page *page)
760 {
761 	const struct zone *zone = page_zone(page);
762 
763 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
764 }
765 EXPORT_SYMBOL(page_waitqueue);
766 
767 void wait_on_page_bit(struct page *page, int bit_nr)
768 {
769 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
770 
771 	if (test_bit(bit_nr, &page->flags))
772 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
773 							TASK_UNINTERRUPTIBLE);
774 }
775 EXPORT_SYMBOL(wait_on_page_bit);
776 
777 int wait_on_page_bit_killable(struct page *page, int bit_nr)
778 {
779 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
780 
781 	if (!test_bit(bit_nr, &page->flags))
782 		return 0;
783 
784 	return __wait_on_bit(page_waitqueue(page), &wait,
785 			     bit_wait_io, TASK_KILLABLE);
786 }
787 
788 int wait_on_page_bit_killable_timeout(struct page *page,
789 				       int bit_nr, unsigned long timeout)
790 {
791 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
792 
793 	wait.key.timeout = jiffies + timeout;
794 	if (!test_bit(bit_nr, &page->flags))
795 		return 0;
796 	return __wait_on_bit(page_waitqueue(page), &wait,
797 			     bit_wait_io_timeout, TASK_KILLABLE);
798 }
799 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
800 
801 /**
802  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
803  * @page: Page defining the wait queue of interest
804  * @waiter: Waiter to add to the queue
805  *
806  * Add an arbitrary @waiter to the wait queue for the nominated @page.
807  */
808 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
809 {
810 	wait_queue_head_t *q = page_waitqueue(page);
811 	unsigned long flags;
812 
813 	spin_lock_irqsave(&q->lock, flags);
814 	__add_wait_queue(q, waiter);
815 	spin_unlock_irqrestore(&q->lock, flags);
816 }
817 EXPORT_SYMBOL_GPL(add_page_wait_queue);
818 
819 /**
820  * unlock_page - unlock a locked page
821  * @page: the page
822  *
823  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
824  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
825  * mechanism between PageLocked pages and PageWriteback pages is shared.
826  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
827  *
828  * The mb is necessary to enforce ordering between the clear_bit and the read
829  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
830  */
831 void unlock_page(struct page *page)
832 {
833 	page = compound_head(page);
834 	VM_BUG_ON_PAGE(!PageLocked(page), page);
835 	clear_bit_unlock(PG_locked, &page->flags);
836 	smp_mb__after_atomic();
837 	wake_up_page(page, PG_locked);
838 }
839 EXPORT_SYMBOL(unlock_page);
840 
841 /**
842  * end_page_writeback - end writeback against a page
843  * @page: the page
844  */
845 void end_page_writeback(struct page *page)
846 {
847 	/*
848 	 * TestClearPageReclaim could be used here but it is an atomic
849 	 * operation and overkill in this particular case. Failing to
850 	 * shuffle a page marked for immediate reclaim is too mild to
851 	 * justify taking an atomic operation penalty at the end of
852 	 * ever page writeback.
853 	 */
854 	if (PageReclaim(page)) {
855 		ClearPageReclaim(page);
856 		rotate_reclaimable_page(page);
857 	}
858 
859 	if (!test_clear_page_writeback(page))
860 		BUG();
861 
862 	smp_mb__after_atomic();
863 	wake_up_page(page, PG_writeback);
864 }
865 EXPORT_SYMBOL(end_page_writeback);
866 
867 /*
868  * After completing I/O on a page, call this routine to update the page
869  * flags appropriately
870  */
871 void page_endio(struct page *page, int rw, int err)
872 {
873 	if (rw == READ) {
874 		if (!err) {
875 			SetPageUptodate(page);
876 		} else {
877 			ClearPageUptodate(page);
878 			SetPageError(page);
879 		}
880 		unlock_page(page);
881 	} else { /* rw == WRITE */
882 		if (err) {
883 			SetPageError(page);
884 			if (page->mapping)
885 				mapping_set_error(page->mapping, err);
886 		}
887 		end_page_writeback(page);
888 	}
889 }
890 EXPORT_SYMBOL_GPL(page_endio);
891 
892 /**
893  * __lock_page - get a lock on the page, assuming we need to sleep to get it
894  * @page: the page to lock
895  */
896 void __lock_page(struct page *page)
897 {
898 	struct page *page_head = compound_head(page);
899 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
900 
901 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
902 							TASK_UNINTERRUPTIBLE);
903 }
904 EXPORT_SYMBOL(__lock_page);
905 
906 int __lock_page_killable(struct page *page)
907 {
908 	struct page *page_head = compound_head(page);
909 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
910 
911 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
912 					bit_wait_io, TASK_KILLABLE);
913 }
914 EXPORT_SYMBOL_GPL(__lock_page_killable);
915 
916 /*
917  * Return values:
918  * 1 - page is locked; mmap_sem is still held.
919  * 0 - page is not locked.
920  *     mmap_sem has been released (up_read()), unless flags had both
921  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
922  *     which case mmap_sem is still held.
923  *
924  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
925  * with the page locked and the mmap_sem unperturbed.
926  */
927 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
928 			 unsigned int flags)
929 {
930 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
931 		/*
932 		 * CAUTION! In this case, mmap_sem is not released
933 		 * even though return 0.
934 		 */
935 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
936 			return 0;
937 
938 		up_read(&mm->mmap_sem);
939 		if (flags & FAULT_FLAG_KILLABLE)
940 			wait_on_page_locked_killable(page);
941 		else
942 			wait_on_page_locked(page);
943 		return 0;
944 	} else {
945 		if (flags & FAULT_FLAG_KILLABLE) {
946 			int ret;
947 
948 			ret = __lock_page_killable(page);
949 			if (ret) {
950 				up_read(&mm->mmap_sem);
951 				return 0;
952 			}
953 		} else
954 			__lock_page(page);
955 		return 1;
956 	}
957 }
958 
959 /**
960  * page_cache_next_hole - find the next hole (not-present entry)
961  * @mapping: mapping
962  * @index: index
963  * @max_scan: maximum range to search
964  *
965  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
966  * lowest indexed hole.
967  *
968  * Returns: the index of the hole if found, otherwise returns an index
969  * outside of the set specified (in which case 'return - index >=
970  * max_scan' will be true). In rare cases of index wrap-around, 0 will
971  * be returned.
972  *
973  * page_cache_next_hole may be called under rcu_read_lock. However,
974  * like radix_tree_gang_lookup, this will not atomically search a
975  * snapshot of the tree at a single point in time. For example, if a
976  * hole is created at index 5, then subsequently a hole is created at
977  * index 10, page_cache_next_hole covering both indexes may return 10
978  * if called under rcu_read_lock.
979  */
980 pgoff_t page_cache_next_hole(struct address_space *mapping,
981 			     pgoff_t index, unsigned long max_scan)
982 {
983 	unsigned long i;
984 
985 	for (i = 0; i < max_scan; i++) {
986 		struct page *page;
987 
988 		page = radix_tree_lookup(&mapping->page_tree, index);
989 		if (!page || radix_tree_exceptional_entry(page))
990 			break;
991 		index++;
992 		if (index == 0)
993 			break;
994 	}
995 
996 	return index;
997 }
998 EXPORT_SYMBOL(page_cache_next_hole);
999 
1000 /**
1001  * page_cache_prev_hole - find the prev hole (not-present entry)
1002  * @mapping: mapping
1003  * @index: index
1004  * @max_scan: maximum range to search
1005  *
1006  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007  * the first hole.
1008  *
1009  * Returns: the index of the hole if found, otherwise returns an index
1010  * outside of the set specified (in which case 'index - return >=
1011  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012  * will be returned.
1013  *
1014  * page_cache_prev_hole may be called under rcu_read_lock. However,
1015  * like radix_tree_gang_lookup, this will not atomically search a
1016  * snapshot of the tree at a single point in time. For example, if a
1017  * hole is created at index 10, then subsequently a hole is created at
1018  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019  * called under rcu_read_lock.
1020  */
1021 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022 			     pgoff_t index, unsigned long max_scan)
1023 {
1024 	unsigned long i;
1025 
1026 	for (i = 0; i < max_scan; i++) {
1027 		struct page *page;
1028 
1029 		page = radix_tree_lookup(&mapping->page_tree, index);
1030 		if (!page || radix_tree_exceptional_entry(page))
1031 			break;
1032 		index--;
1033 		if (index == ULONG_MAX)
1034 			break;
1035 	}
1036 
1037 	return index;
1038 }
1039 EXPORT_SYMBOL(page_cache_prev_hole);
1040 
1041 /**
1042  * find_get_entry - find and get a page cache entry
1043  * @mapping: the address_space to search
1044  * @offset: the page cache index
1045  *
1046  * Looks up the page cache slot at @mapping & @offset.  If there is a
1047  * page cache page, it is returned with an increased refcount.
1048  *
1049  * If the slot holds a shadow entry of a previously evicted page, or a
1050  * swap entry from shmem/tmpfs, it is returned.
1051  *
1052  * Otherwise, %NULL is returned.
1053  */
1054 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055 {
1056 	void **pagep;
1057 	struct page *page;
1058 
1059 	rcu_read_lock();
1060 repeat:
1061 	page = NULL;
1062 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063 	if (pagep) {
1064 		page = radix_tree_deref_slot(pagep);
1065 		if (unlikely(!page))
1066 			goto out;
1067 		if (radix_tree_exception(page)) {
1068 			if (radix_tree_deref_retry(page))
1069 				goto repeat;
1070 			/*
1071 			 * A shadow entry of a recently evicted page,
1072 			 * or a swap entry from shmem/tmpfs.  Return
1073 			 * it without attempting to raise page count.
1074 			 */
1075 			goto out;
1076 		}
1077 		if (!page_cache_get_speculative(page))
1078 			goto repeat;
1079 
1080 		/*
1081 		 * Has the page moved?
1082 		 * This is part of the lockless pagecache protocol. See
1083 		 * include/linux/pagemap.h for details.
1084 		 */
1085 		if (unlikely(page != *pagep)) {
1086 			page_cache_release(page);
1087 			goto repeat;
1088 		}
1089 	}
1090 out:
1091 	rcu_read_unlock();
1092 
1093 	return page;
1094 }
1095 EXPORT_SYMBOL(find_get_entry);
1096 
1097 /**
1098  * find_lock_entry - locate, pin and lock a page cache entry
1099  * @mapping: the address_space to search
1100  * @offset: the page cache index
1101  *
1102  * Looks up the page cache slot at @mapping & @offset.  If there is a
1103  * page cache page, it is returned locked and with an increased
1104  * refcount.
1105  *
1106  * If the slot holds a shadow entry of a previously evicted page, or a
1107  * swap entry from shmem/tmpfs, it is returned.
1108  *
1109  * Otherwise, %NULL is returned.
1110  *
1111  * find_lock_entry() may sleep.
1112  */
1113 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1114 {
1115 	struct page *page;
1116 
1117 repeat:
1118 	page = find_get_entry(mapping, offset);
1119 	if (page && !radix_tree_exception(page)) {
1120 		lock_page(page);
1121 		/* Has the page been truncated? */
1122 		if (unlikely(page->mapping != mapping)) {
1123 			unlock_page(page);
1124 			page_cache_release(page);
1125 			goto repeat;
1126 		}
1127 		VM_BUG_ON_PAGE(page->index != offset, page);
1128 	}
1129 	return page;
1130 }
1131 EXPORT_SYMBOL(find_lock_entry);
1132 
1133 /**
1134  * pagecache_get_page - find and get a page reference
1135  * @mapping: the address_space to search
1136  * @offset: the page index
1137  * @fgp_flags: PCG flags
1138  * @gfp_mask: gfp mask to use for the page cache data page allocation
1139  *
1140  * Looks up the page cache slot at @mapping & @offset.
1141  *
1142  * PCG flags modify how the page is returned.
1143  *
1144  * FGP_ACCESSED: the page will be marked accessed
1145  * FGP_LOCK: Page is return locked
1146  * FGP_CREAT: If page is not present then a new page is allocated using
1147  *		@gfp_mask and added to the page cache and the VM's LRU
1148  *		list. The page is returned locked and with an increased
1149  *		refcount. Otherwise, %NULL is returned.
1150  *
1151  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152  * if the GFP flags specified for FGP_CREAT are atomic.
1153  *
1154  * If there is a page cache page, it is returned with an increased refcount.
1155  */
1156 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157 	int fgp_flags, gfp_t gfp_mask)
1158 {
1159 	struct page *page;
1160 
1161 repeat:
1162 	page = find_get_entry(mapping, offset);
1163 	if (radix_tree_exceptional_entry(page))
1164 		page = NULL;
1165 	if (!page)
1166 		goto no_page;
1167 
1168 	if (fgp_flags & FGP_LOCK) {
1169 		if (fgp_flags & FGP_NOWAIT) {
1170 			if (!trylock_page(page)) {
1171 				page_cache_release(page);
1172 				return NULL;
1173 			}
1174 		} else {
1175 			lock_page(page);
1176 		}
1177 
1178 		/* Has the page been truncated? */
1179 		if (unlikely(page->mapping != mapping)) {
1180 			unlock_page(page);
1181 			page_cache_release(page);
1182 			goto repeat;
1183 		}
1184 		VM_BUG_ON_PAGE(page->index != offset, page);
1185 	}
1186 
1187 	if (page && (fgp_flags & FGP_ACCESSED))
1188 		mark_page_accessed(page);
1189 
1190 no_page:
1191 	if (!page && (fgp_flags & FGP_CREAT)) {
1192 		int err;
1193 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194 			gfp_mask |= __GFP_WRITE;
1195 		if (fgp_flags & FGP_NOFS)
1196 			gfp_mask &= ~__GFP_FS;
1197 
1198 		page = __page_cache_alloc(gfp_mask);
1199 		if (!page)
1200 			return NULL;
1201 
1202 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203 			fgp_flags |= FGP_LOCK;
1204 
1205 		/* Init accessed so avoid atomic mark_page_accessed later */
1206 		if (fgp_flags & FGP_ACCESSED)
1207 			__SetPageReferenced(page);
1208 
1209 		err = add_to_page_cache_lru(page, mapping, offset,
1210 				gfp_mask & GFP_RECLAIM_MASK);
1211 		if (unlikely(err)) {
1212 			page_cache_release(page);
1213 			page = NULL;
1214 			if (err == -EEXIST)
1215 				goto repeat;
1216 		}
1217 	}
1218 
1219 	return page;
1220 }
1221 EXPORT_SYMBOL(pagecache_get_page);
1222 
1223 /**
1224  * find_get_entries - gang pagecache lookup
1225  * @mapping:	The address_space to search
1226  * @start:	The starting page cache index
1227  * @nr_entries:	The maximum number of entries
1228  * @entries:	Where the resulting entries are placed
1229  * @indices:	The cache indices corresponding to the entries in @entries
1230  *
1231  * find_get_entries() will search for and return a group of up to
1232  * @nr_entries entries in the mapping.  The entries are placed at
1233  * @entries.  find_get_entries() takes a reference against any actual
1234  * pages it returns.
1235  *
1236  * The search returns a group of mapping-contiguous page cache entries
1237  * with ascending indexes.  There may be holes in the indices due to
1238  * not-present pages.
1239  *
1240  * Any shadow entries of evicted pages, or swap entries from
1241  * shmem/tmpfs, are included in the returned array.
1242  *
1243  * find_get_entries() returns the number of pages and shadow entries
1244  * which were found.
1245  */
1246 unsigned find_get_entries(struct address_space *mapping,
1247 			  pgoff_t start, unsigned int nr_entries,
1248 			  struct page **entries, pgoff_t *indices)
1249 {
1250 	void **slot;
1251 	unsigned int ret = 0;
1252 	struct radix_tree_iter iter;
1253 
1254 	if (!nr_entries)
1255 		return 0;
1256 
1257 	rcu_read_lock();
1258 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1259 		struct page *page;
1260 repeat:
1261 		page = radix_tree_deref_slot(slot);
1262 		if (unlikely(!page))
1263 			continue;
1264 		if (radix_tree_exception(page)) {
1265 			if (radix_tree_deref_retry(page)) {
1266 				slot = radix_tree_iter_retry(&iter);
1267 				continue;
1268 			}
1269 			/*
1270 			 * A shadow entry of a recently evicted page, a swap
1271 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1272 			 * without attempting to raise page count.
1273 			 */
1274 			goto export;
1275 		}
1276 		if (!page_cache_get_speculative(page))
1277 			goto repeat;
1278 
1279 		/* Has the page moved? */
1280 		if (unlikely(page != *slot)) {
1281 			page_cache_release(page);
1282 			goto repeat;
1283 		}
1284 export:
1285 		indices[ret] = iter.index;
1286 		entries[ret] = page;
1287 		if (++ret == nr_entries)
1288 			break;
1289 	}
1290 	rcu_read_unlock();
1291 	return ret;
1292 }
1293 
1294 /**
1295  * find_get_pages - gang pagecache lookup
1296  * @mapping:	The address_space to search
1297  * @start:	The starting page index
1298  * @nr_pages:	The maximum number of pages
1299  * @pages:	Where the resulting pages are placed
1300  *
1301  * find_get_pages() will search for and return a group of up to
1302  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1303  * find_get_pages() takes a reference against the returned pages.
1304  *
1305  * The search returns a group of mapping-contiguous pages with ascending
1306  * indexes.  There may be holes in the indices due to not-present pages.
1307  *
1308  * find_get_pages() returns the number of pages which were found.
1309  */
1310 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1311 			    unsigned int nr_pages, struct page **pages)
1312 {
1313 	struct radix_tree_iter iter;
1314 	void **slot;
1315 	unsigned ret = 0;
1316 
1317 	if (unlikely(!nr_pages))
1318 		return 0;
1319 
1320 	rcu_read_lock();
1321 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322 		struct page *page;
1323 repeat:
1324 		page = radix_tree_deref_slot(slot);
1325 		if (unlikely(!page))
1326 			continue;
1327 
1328 		if (radix_tree_exception(page)) {
1329 			if (radix_tree_deref_retry(page)) {
1330 				slot = radix_tree_iter_retry(&iter);
1331 				continue;
1332 			}
1333 			/*
1334 			 * A shadow entry of a recently evicted page,
1335 			 * or a swap entry from shmem/tmpfs.  Skip
1336 			 * over it.
1337 			 */
1338 			continue;
1339 		}
1340 
1341 		if (!page_cache_get_speculative(page))
1342 			goto repeat;
1343 
1344 		/* Has the page moved? */
1345 		if (unlikely(page != *slot)) {
1346 			page_cache_release(page);
1347 			goto repeat;
1348 		}
1349 
1350 		pages[ret] = page;
1351 		if (++ret == nr_pages)
1352 			break;
1353 	}
1354 
1355 	rcu_read_unlock();
1356 	return ret;
1357 }
1358 
1359 /**
1360  * find_get_pages_contig - gang contiguous pagecache lookup
1361  * @mapping:	The address_space to search
1362  * @index:	The starting page index
1363  * @nr_pages:	The maximum number of pages
1364  * @pages:	Where the resulting pages are placed
1365  *
1366  * find_get_pages_contig() works exactly like find_get_pages(), except
1367  * that the returned number of pages are guaranteed to be contiguous.
1368  *
1369  * find_get_pages_contig() returns the number of pages which were found.
1370  */
1371 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1372 			       unsigned int nr_pages, struct page **pages)
1373 {
1374 	struct radix_tree_iter iter;
1375 	void **slot;
1376 	unsigned int ret = 0;
1377 
1378 	if (unlikely(!nr_pages))
1379 		return 0;
1380 
1381 	rcu_read_lock();
1382 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1383 		struct page *page;
1384 repeat:
1385 		page = radix_tree_deref_slot(slot);
1386 		/* The hole, there no reason to continue */
1387 		if (unlikely(!page))
1388 			break;
1389 
1390 		if (radix_tree_exception(page)) {
1391 			if (radix_tree_deref_retry(page)) {
1392 				slot = radix_tree_iter_retry(&iter);
1393 				continue;
1394 			}
1395 			/*
1396 			 * A shadow entry of a recently evicted page,
1397 			 * or a swap entry from shmem/tmpfs.  Stop
1398 			 * looking for contiguous pages.
1399 			 */
1400 			break;
1401 		}
1402 
1403 		if (!page_cache_get_speculative(page))
1404 			goto repeat;
1405 
1406 		/* Has the page moved? */
1407 		if (unlikely(page != *slot)) {
1408 			page_cache_release(page);
1409 			goto repeat;
1410 		}
1411 
1412 		/*
1413 		 * must check mapping and index after taking the ref.
1414 		 * otherwise we can get both false positives and false
1415 		 * negatives, which is just confusing to the caller.
1416 		 */
1417 		if (page->mapping == NULL || page->index != iter.index) {
1418 			page_cache_release(page);
1419 			break;
1420 		}
1421 
1422 		pages[ret] = page;
1423 		if (++ret == nr_pages)
1424 			break;
1425 	}
1426 	rcu_read_unlock();
1427 	return ret;
1428 }
1429 EXPORT_SYMBOL(find_get_pages_contig);
1430 
1431 /**
1432  * find_get_pages_tag - find and return pages that match @tag
1433  * @mapping:	the address_space to search
1434  * @index:	the starting page index
1435  * @tag:	the tag index
1436  * @nr_pages:	the maximum number of pages
1437  * @pages:	where the resulting pages are placed
1438  *
1439  * Like find_get_pages, except we only return pages which are tagged with
1440  * @tag.   We update @index to index the next page for the traversal.
1441  */
1442 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443 			int tag, unsigned int nr_pages, struct page **pages)
1444 {
1445 	struct radix_tree_iter iter;
1446 	void **slot;
1447 	unsigned ret = 0;
1448 
1449 	if (unlikely(!nr_pages))
1450 		return 0;
1451 
1452 	rcu_read_lock();
1453 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1454 				   &iter, *index, tag) {
1455 		struct page *page;
1456 repeat:
1457 		page = radix_tree_deref_slot(slot);
1458 		if (unlikely(!page))
1459 			continue;
1460 
1461 		if (radix_tree_exception(page)) {
1462 			if (radix_tree_deref_retry(page)) {
1463 				slot = radix_tree_iter_retry(&iter);
1464 				continue;
1465 			}
1466 			/*
1467 			 * A shadow entry of a recently evicted page.
1468 			 *
1469 			 * Those entries should never be tagged, but
1470 			 * this tree walk is lockless and the tags are
1471 			 * looked up in bulk, one radix tree node at a
1472 			 * time, so there is a sizable window for page
1473 			 * reclaim to evict a page we saw tagged.
1474 			 *
1475 			 * Skip over it.
1476 			 */
1477 			continue;
1478 		}
1479 
1480 		if (!page_cache_get_speculative(page))
1481 			goto repeat;
1482 
1483 		/* Has the page moved? */
1484 		if (unlikely(page != *slot)) {
1485 			page_cache_release(page);
1486 			goto repeat;
1487 		}
1488 
1489 		pages[ret] = page;
1490 		if (++ret == nr_pages)
1491 			break;
1492 	}
1493 
1494 	rcu_read_unlock();
1495 
1496 	if (ret)
1497 		*index = pages[ret - 1]->index + 1;
1498 
1499 	return ret;
1500 }
1501 EXPORT_SYMBOL(find_get_pages_tag);
1502 
1503 /**
1504  * find_get_entries_tag - find and return entries that match @tag
1505  * @mapping:	the address_space to search
1506  * @start:	the starting page cache index
1507  * @tag:	the tag index
1508  * @nr_entries:	the maximum number of entries
1509  * @entries:	where the resulting entries are placed
1510  * @indices:	the cache indices corresponding to the entries in @entries
1511  *
1512  * Like find_get_entries, except we only return entries which are tagged with
1513  * @tag.
1514  */
1515 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1516 			int tag, unsigned int nr_entries,
1517 			struct page **entries, pgoff_t *indices)
1518 {
1519 	void **slot;
1520 	unsigned int ret = 0;
1521 	struct radix_tree_iter iter;
1522 
1523 	if (!nr_entries)
1524 		return 0;
1525 
1526 	rcu_read_lock();
1527 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1528 				   &iter, start, tag) {
1529 		struct page *page;
1530 repeat:
1531 		page = radix_tree_deref_slot(slot);
1532 		if (unlikely(!page))
1533 			continue;
1534 		if (radix_tree_exception(page)) {
1535 			if (radix_tree_deref_retry(page)) {
1536 				slot = radix_tree_iter_retry(&iter);
1537 				continue;
1538 			}
1539 
1540 			/*
1541 			 * A shadow entry of a recently evicted page, a swap
1542 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1543 			 * without attempting to raise page count.
1544 			 */
1545 			goto export;
1546 		}
1547 		if (!page_cache_get_speculative(page))
1548 			goto repeat;
1549 
1550 		/* Has the page moved? */
1551 		if (unlikely(page != *slot)) {
1552 			page_cache_release(page);
1553 			goto repeat;
1554 		}
1555 export:
1556 		indices[ret] = iter.index;
1557 		entries[ret] = page;
1558 		if (++ret == nr_entries)
1559 			break;
1560 	}
1561 	rcu_read_unlock();
1562 	return ret;
1563 }
1564 EXPORT_SYMBOL(find_get_entries_tag);
1565 
1566 /*
1567  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1568  * a _large_ part of the i/o request. Imagine the worst scenario:
1569  *
1570  *      ---R__________________________________________B__________
1571  *         ^ reading here                             ^ bad block(assume 4k)
1572  *
1573  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1574  * => failing the whole request => read(R) => read(R+1) =>
1575  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1576  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1577  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578  *
1579  * It is going insane. Fix it by quickly scaling down the readahead size.
1580  */
1581 static void shrink_readahead_size_eio(struct file *filp,
1582 					struct file_ra_state *ra)
1583 {
1584 	ra->ra_pages /= 4;
1585 }
1586 
1587 /**
1588  * do_generic_file_read - generic file read routine
1589  * @filp:	the file to read
1590  * @ppos:	current file position
1591  * @iter:	data destination
1592  * @written:	already copied
1593  *
1594  * This is a generic file read routine, and uses the
1595  * mapping->a_ops->readpage() function for the actual low-level stuff.
1596  *
1597  * This is really ugly. But the goto's actually try to clarify some
1598  * of the logic when it comes to error handling etc.
1599  */
1600 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1601 		struct iov_iter *iter, ssize_t written)
1602 {
1603 	struct address_space *mapping = filp->f_mapping;
1604 	struct inode *inode = mapping->host;
1605 	struct file_ra_state *ra = &filp->f_ra;
1606 	pgoff_t index;
1607 	pgoff_t last_index;
1608 	pgoff_t prev_index;
1609 	unsigned long offset;      /* offset into pagecache page */
1610 	unsigned int prev_offset;
1611 	int error = 0;
1612 
1613 	index = *ppos >> PAGE_CACHE_SHIFT;
1614 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1615 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1616 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1617 	offset = *ppos & ~PAGE_CACHE_MASK;
1618 
1619 	for (;;) {
1620 		struct page *page;
1621 		pgoff_t end_index;
1622 		loff_t isize;
1623 		unsigned long nr, ret;
1624 
1625 		cond_resched();
1626 find_page:
1627 		page = find_get_page(mapping, index);
1628 		if (!page) {
1629 			page_cache_sync_readahead(mapping,
1630 					ra, filp,
1631 					index, last_index - index);
1632 			page = find_get_page(mapping, index);
1633 			if (unlikely(page == NULL))
1634 				goto no_cached_page;
1635 		}
1636 		if (PageReadahead(page)) {
1637 			page_cache_async_readahead(mapping,
1638 					ra, filp, page,
1639 					index, last_index - index);
1640 		}
1641 		if (!PageUptodate(page)) {
1642 			/*
1643 			 * See comment in do_read_cache_page on why
1644 			 * wait_on_page_locked is used to avoid unnecessarily
1645 			 * serialisations and why it's safe.
1646 			 */
1647 			wait_on_page_locked_killable(page);
1648 			if (PageUptodate(page))
1649 				goto page_ok;
1650 
1651 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1652 					!mapping->a_ops->is_partially_uptodate)
1653 				goto page_not_up_to_date;
1654 			if (!trylock_page(page))
1655 				goto page_not_up_to_date;
1656 			/* Did it get truncated before we got the lock? */
1657 			if (!page->mapping)
1658 				goto page_not_up_to_date_locked;
1659 			if (!mapping->a_ops->is_partially_uptodate(page,
1660 							offset, iter->count))
1661 				goto page_not_up_to_date_locked;
1662 			unlock_page(page);
1663 		}
1664 page_ok:
1665 		/*
1666 		 * i_size must be checked after we know the page is Uptodate.
1667 		 *
1668 		 * Checking i_size after the check allows us to calculate
1669 		 * the correct value for "nr", which means the zero-filled
1670 		 * part of the page is not copied back to userspace (unless
1671 		 * another truncate extends the file - this is desired though).
1672 		 */
1673 
1674 		isize = i_size_read(inode);
1675 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1676 		if (unlikely(!isize || index > end_index)) {
1677 			page_cache_release(page);
1678 			goto out;
1679 		}
1680 
1681 		/* nr is the maximum number of bytes to copy from this page */
1682 		nr = PAGE_CACHE_SIZE;
1683 		if (index == end_index) {
1684 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1685 			if (nr <= offset) {
1686 				page_cache_release(page);
1687 				goto out;
1688 			}
1689 		}
1690 		nr = nr - offset;
1691 
1692 		/* If users can be writing to this page using arbitrary
1693 		 * virtual addresses, take care about potential aliasing
1694 		 * before reading the page on the kernel side.
1695 		 */
1696 		if (mapping_writably_mapped(mapping))
1697 			flush_dcache_page(page);
1698 
1699 		/*
1700 		 * When a sequential read accesses a page several times,
1701 		 * only mark it as accessed the first time.
1702 		 */
1703 		if (prev_index != index || offset != prev_offset)
1704 			mark_page_accessed(page);
1705 		prev_index = index;
1706 
1707 		/*
1708 		 * Ok, we have the page, and it's up-to-date, so
1709 		 * now we can copy it to user space...
1710 		 */
1711 
1712 		ret = copy_page_to_iter(page, offset, nr, iter);
1713 		offset += ret;
1714 		index += offset >> PAGE_CACHE_SHIFT;
1715 		offset &= ~PAGE_CACHE_MASK;
1716 		prev_offset = offset;
1717 
1718 		page_cache_release(page);
1719 		written += ret;
1720 		if (!iov_iter_count(iter))
1721 			goto out;
1722 		if (ret < nr) {
1723 			error = -EFAULT;
1724 			goto out;
1725 		}
1726 		continue;
1727 
1728 page_not_up_to_date:
1729 		/* Get exclusive access to the page ... */
1730 		error = lock_page_killable(page);
1731 		if (unlikely(error))
1732 			goto readpage_error;
1733 
1734 page_not_up_to_date_locked:
1735 		/* Did it get truncated before we got the lock? */
1736 		if (!page->mapping) {
1737 			unlock_page(page);
1738 			page_cache_release(page);
1739 			continue;
1740 		}
1741 
1742 		/* Did somebody else fill it already? */
1743 		if (PageUptodate(page)) {
1744 			unlock_page(page);
1745 			goto page_ok;
1746 		}
1747 
1748 readpage:
1749 		/*
1750 		 * A previous I/O error may have been due to temporary
1751 		 * failures, eg. multipath errors.
1752 		 * PG_error will be set again if readpage fails.
1753 		 */
1754 		ClearPageError(page);
1755 		/* Start the actual read. The read will unlock the page. */
1756 		error = mapping->a_ops->readpage(filp, page);
1757 
1758 		if (unlikely(error)) {
1759 			if (error == AOP_TRUNCATED_PAGE) {
1760 				page_cache_release(page);
1761 				error = 0;
1762 				goto find_page;
1763 			}
1764 			goto readpage_error;
1765 		}
1766 
1767 		if (!PageUptodate(page)) {
1768 			error = lock_page_killable(page);
1769 			if (unlikely(error))
1770 				goto readpage_error;
1771 			if (!PageUptodate(page)) {
1772 				if (page->mapping == NULL) {
1773 					/*
1774 					 * invalidate_mapping_pages got it
1775 					 */
1776 					unlock_page(page);
1777 					page_cache_release(page);
1778 					goto find_page;
1779 				}
1780 				unlock_page(page);
1781 				shrink_readahead_size_eio(filp, ra);
1782 				error = -EIO;
1783 				goto readpage_error;
1784 			}
1785 			unlock_page(page);
1786 		}
1787 
1788 		goto page_ok;
1789 
1790 readpage_error:
1791 		/* UHHUH! A synchronous read error occurred. Report it */
1792 		page_cache_release(page);
1793 		goto out;
1794 
1795 no_cached_page:
1796 		/*
1797 		 * Ok, it wasn't cached, so we need to create a new
1798 		 * page..
1799 		 */
1800 		page = page_cache_alloc_cold(mapping);
1801 		if (!page) {
1802 			error = -ENOMEM;
1803 			goto out;
1804 		}
1805 		error = add_to_page_cache_lru(page, mapping, index,
1806 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1807 		if (error) {
1808 			page_cache_release(page);
1809 			if (error == -EEXIST) {
1810 				error = 0;
1811 				goto find_page;
1812 			}
1813 			goto out;
1814 		}
1815 		goto readpage;
1816 	}
1817 
1818 out:
1819 	ra->prev_pos = prev_index;
1820 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1821 	ra->prev_pos |= prev_offset;
1822 
1823 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1824 	file_accessed(filp);
1825 	return written ? written : error;
1826 }
1827 
1828 /**
1829  * generic_file_read_iter - generic filesystem read routine
1830  * @iocb:	kernel I/O control block
1831  * @iter:	destination for the data read
1832  *
1833  * This is the "read_iter()" routine for all filesystems
1834  * that can use the page cache directly.
1835  */
1836 ssize_t
1837 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1838 {
1839 	struct file *file = iocb->ki_filp;
1840 	ssize_t retval = 0;
1841 	loff_t *ppos = &iocb->ki_pos;
1842 	loff_t pos = *ppos;
1843 
1844 	if (iocb->ki_flags & IOCB_DIRECT) {
1845 		struct address_space *mapping = file->f_mapping;
1846 		struct inode *inode = mapping->host;
1847 		size_t count = iov_iter_count(iter);
1848 		loff_t size;
1849 
1850 		if (!count)
1851 			goto out; /* skip atime */
1852 		size = i_size_read(inode);
1853 		retval = filemap_write_and_wait_range(mapping, pos,
1854 					pos + count - 1);
1855 		if (!retval) {
1856 			struct iov_iter data = *iter;
1857 			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1858 		}
1859 
1860 		if (retval > 0) {
1861 			*ppos = pos + retval;
1862 			iov_iter_advance(iter, retval);
1863 		}
1864 
1865 		/*
1866 		 * Btrfs can have a short DIO read if we encounter
1867 		 * compressed extents, so if there was an error, or if
1868 		 * we've already read everything we wanted to, or if
1869 		 * there was a short read because we hit EOF, go ahead
1870 		 * and return.  Otherwise fallthrough to buffered io for
1871 		 * the rest of the read.  Buffered reads will not work for
1872 		 * DAX files, so don't bother trying.
1873 		 */
1874 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1875 		    IS_DAX(inode)) {
1876 			file_accessed(file);
1877 			goto out;
1878 		}
1879 	}
1880 
1881 	retval = do_generic_file_read(file, ppos, iter, retval);
1882 out:
1883 	return retval;
1884 }
1885 EXPORT_SYMBOL(generic_file_read_iter);
1886 
1887 #ifdef CONFIG_MMU
1888 /**
1889  * page_cache_read - adds requested page to the page cache if not already there
1890  * @file:	file to read
1891  * @offset:	page index
1892  * @gfp_mask:	memory allocation flags
1893  *
1894  * This adds the requested page to the page cache if it isn't already there,
1895  * and schedules an I/O to read in its contents from disk.
1896  */
1897 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1898 {
1899 	struct address_space *mapping = file->f_mapping;
1900 	struct page *page;
1901 	int ret;
1902 
1903 	do {
1904 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1905 		if (!page)
1906 			return -ENOMEM;
1907 
1908 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1909 		if (ret == 0)
1910 			ret = mapping->a_ops->readpage(file, page);
1911 		else if (ret == -EEXIST)
1912 			ret = 0; /* losing race to add is OK */
1913 
1914 		page_cache_release(page);
1915 
1916 	} while (ret == AOP_TRUNCATED_PAGE);
1917 
1918 	return ret;
1919 }
1920 
1921 #define MMAP_LOTSAMISS  (100)
1922 
1923 /*
1924  * Synchronous readahead happens when we don't even find
1925  * a page in the page cache at all.
1926  */
1927 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1928 				   struct file_ra_state *ra,
1929 				   struct file *file,
1930 				   pgoff_t offset)
1931 {
1932 	struct address_space *mapping = file->f_mapping;
1933 
1934 	/* If we don't want any read-ahead, don't bother */
1935 	if (vma->vm_flags & VM_RAND_READ)
1936 		return;
1937 	if (!ra->ra_pages)
1938 		return;
1939 
1940 	if (vma->vm_flags & VM_SEQ_READ) {
1941 		page_cache_sync_readahead(mapping, ra, file, offset,
1942 					  ra->ra_pages);
1943 		return;
1944 	}
1945 
1946 	/* Avoid banging the cache line if not needed */
1947 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1948 		ra->mmap_miss++;
1949 
1950 	/*
1951 	 * Do we miss much more than hit in this file? If so,
1952 	 * stop bothering with read-ahead. It will only hurt.
1953 	 */
1954 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1955 		return;
1956 
1957 	/*
1958 	 * mmap read-around
1959 	 */
1960 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1961 	ra->size = ra->ra_pages;
1962 	ra->async_size = ra->ra_pages / 4;
1963 	ra_submit(ra, mapping, file);
1964 }
1965 
1966 /*
1967  * Asynchronous readahead happens when we find the page and PG_readahead,
1968  * so we want to possibly extend the readahead further..
1969  */
1970 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1971 				    struct file_ra_state *ra,
1972 				    struct file *file,
1973 				    struct page *page,
1974 				    pgoff_t offset)
1975 {
1976 	struct address_space *mapping = file->f_mapping;
1977 
1978 	/* If we don't want any read-ahead, don't bother */
1979 	if (vma->vm_flags & VM_RAND_READ)
1980 		return;
1981 	if (ra->mmap_miss > 0)
1982 		ra->mmap_miss--;
1983 	if (PageReadahead(page))
1984 		page_cache_async_readahead(mapping, ra, file,
1985 					   page, offset, ra->ra_pages);
1986 }
1987 
1988 /**
1989  * filemap_fault - read in file data for page fault handling
1990  * @vma:	vma in which the fault was taken
1991  * @vmf:	struct vm_fault containing details of the fault
1992  *
1993  * filemap_fault() is invoked via the vma operations vector for a
1994  * mapped memory region to read in file data during a page fault.
1995  *
1996  * The goto's are kind of ugly, but this streamlines the normal case of having
1997  * it in the page cache, and handles the special cases reasonably without
1998  * having a lot of duplicated code.
1999  *
2000  * vma->vm_mm->mmap_sem must be held on entry.
2001  *
2002  * If our return value has VM_FAULT_RETRY set, it's because
2003  * lock_page_or_retry() returned 0.
2004  * The mmap_sem has usually been released in this case.
2005  * See __lock_page_or_retry() for the exception.
2006  *
2007  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2008  * has not been released.
2009  *
2010  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2011  */
2012 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2013 {
2014 	int error;
2015 	struct file *file = vma->vm_file;
2016 	struct address_space *mapping = file->f_mapping;
2017 	struct file_ra_state *ra = &file->f_ra;
2018 	struct inode *inode = mapping->host;
2019 	pgoff_t offset = vmf->pgoff;
2020 	struct page *page;
2021 	loff_t size;
2022 	int ret = 0;
2023 
2024 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2025 	if (offset >= size >> PAGE_CACHE_SHIFT)
2026 		return VM_FAULT_SIGBUS;
2027 
2028 	/*
2029 	 * Do we have something in the page cache already?
2030 	 */
2031 	page = find_get_page(mapping, offset);
2032 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2033 		/*
2034 		 * We found the page, so try async readahead before
2035 		 * waiting for the lock.
2036 		 */
2037 		do_async_mmap_readahead(vma, ra, file, page, offset);
2038 	} else if (!page) {
2039 		/* No page in the page cache at all */
2040 		do_sync_mmap_readahead(vma, ra, file, offset);
2041 		count_vm_event(PGMAJFAULT);
2042 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2043 		ret = VM_FAULT_MAJOR;
2044 retry_find:
2045 		page = find_get_page(mapping, offset);
2046 		if (!page)
2047 			goto no_cached_page;
2048 	}
2049 
2050 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2051 		page_cache_release(page);
2052 		return ret | VM_FAULT_RETRY;
2053 	}
2054 
2055 	/* Did it get truncated? */
2056 	if (unlikely(page->mapping != mapping)) {
2057 		unlock_page(page);
2058 		put_page(page);
2059 		goto retry_find;
2060 	}
2061 	VM_BUG_ON_PAGE(page->index != offset, page);
2062 
2063 	/*
2064 	 * We have a locked page in the page cache, now we need to check
2065 	 * that it's up-to-date. If not, it is going to be due to an error.
2066 	 */
2067 	if (unlikely(!PageUptodate(page)))
2068 		goto page_not_uptodate;
2069 
2070 	/*
2071 	 * Found the page and have a reference on it.
2072 	 * We must recheck i_size under page lock.
2073 	 */
2074 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2075 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2076 		unlock_page(page);
2077 		page_cache_release(page);
2078 		return VM_FAULT_SIGBUS;
2079 	}
2080 
2081 	vmf->page = page;
2082 	return ret | VM_FAULT_LOCKED;
2083 
2084 no_cached_page:
2085 	/*
2086 	 * We're only likely to ever get here if MADV_RANDOM is in
2087 	 * effect.
2088 	 */
2089 	error = page_cache_read(file, offset, vmf->gfp_mask);
2090 
2091 	/*
2092 	 * The page we want has now been added to the page cache.
2093 	 * In the unlikely event that someone removed it in the
2094 	 * meantime, we'll just come back here and read it again.
2095 	 */
2096 	if (error >= 0)
2097 		goto retry_find;
2098 
2099 	/*
2100 	 * An error return from page_cache_read can result if the
2101 	 * system is low on memory, or a problem occurs while trying
2102 	 * to schedule I/O.
2103 	 */
2104 	if (error == -ENOMEM)
2105 		return VM_FAULT_OOM;
2106 	return VM_FAULT_SIGBUS;
2107 
2108 page_not_uptodate:
2109 	/*
2110 	 * Umm, take care of errors if the page isn't up-to-date.
2111 	 * Try to re-read it _once_. We do this synchronously,
2112 	 * because there really aren't any performance issues here
2113 	 * and we need to check for errors.
2114 	 */
2115 	ClearPageError(page);
2116 	error = mapping->a_ops->readpage(file, page);
2117 	if (!error) {
2118 		wait_on_page_locked(page);
2119 		if (!PageUptodate(page))
2120 			error = -EIO;
2121 	}
2122 	page_cache_release(page);
2123 
2124 	if (!error || error == AOP_TRUNCATED_PAGE)
2125 		goto retry_find;
2126 
2127 	/* Things didn't work out. Return zero to tell the mm layer so. */
2128 	shrink_readahead_size_eio(file, ra);
2129 	return VM_FAULT_SIGBUS;
2130 }
2131 EXPORT_SYMBOL(filemap_fault);
2132 
2133 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2134 {
2135 	struct radix_tree_iter iter;
2136 	void **slot;
2137 	struct file *file = vma->vm_file;
2138 	struct address_space *mapping = file->f_mapping;
2139 	loff_t size;
2140 	struct page *page;
2141 	unsigned long address = (unsigned long) vmf->virtual_address;
2142 	unsigned long addr;
2143 	pte_t *pte;
2144 
2145 	rcu_read_lock();
2146 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2147 		if (iter.index > vmf->max_pgoff)
2148 			break;
2149 repeat:
2150 		page = radix_tree_deref_slot(slot);
2151 		if (unlikely(!page))
2152 			goto next;
2153 		if (radix_tree_exception(page)) {
2154 			if (radix_tree_deref_retry(page)) {
2155 				slot = radix_tree_iter_retry(&iter);
2156 				continue;
2157 			}
2158 			goto next;
2159 		}
2160 
2161 		if (!page_cache_get_speculative(page))
2162 			goto repeat;
2163 
2164 		/* Has the page moved? */
2165 		if (unlikely(page != *slot)) {
2166 			page_cache_release(page);
2167 			goto repeat;
2168 		}
2169 
2170 		if (!PageUptodate(page) ||
2171 				PageReadahead(page) ||
2172 				PageHWPoison(page))
2173 			goto skip;
2174 		if (!trylock_page(page))
2175 			goto skip;
2176 
2177 		if (page->mapping != mapping || !PageUptodate(page))
2178 			goto unlock;
2179 
2180 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2181 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2182 			goto unlock;
2183 
2184 		pte = vmf->pte + page->index - vmf->pgoff;
2185 		if (!pte_none(*pte))
2186 			goto unlock;
2187 
2188 		if (file->f_ra.mmap_miss > 0)
2189 			file->f_ra.mmap_miss--;
2190 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2191 		do_set_pte(vma, addr, page, pte, false, false);
2192 		unlock_page(page);
2193 		goto next;
2194 unlock:
2195 		unlock_page(page);
2196 skip:
2197 		page_cache_release(page);
2198 next:
2199 		if (iter.index == vmf->max_pgoff)
2200 			break;
2201 	}
2202 	rcu_read_unlock();
2203 }
2204 EXPORT_SYMBOL(filemap_map_pages);
2205 
2206 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2207 {
2208 	struct page *page = vmf->page;
2209 	struct inode *inode = file_inode(vma->vm_file);
2210 	int ret = VM_FAULT_LOCKED;
2211 
2212 	sb_start_pagefault(inode->i_sb);
2213 	file_update_time(vma->vm_file);
2214 	lock_page(page);
2215 	if (page->mapping != inode->i_mapping) {
2216 		unlock_page(page);
2217 		ret = VM_FAULT_NOPAGE;
2218 		goto out;
2219 	}
2220 	/*
2221 	 * We mark the page dirty already here so that when freeze is in
2222 	 * progress, we are guaranteed that writeback during freezing will
2223 	 * see the dirty page and writeprotect it again.
2224 	 */
2225 	set_page_dirty(page);
2226 	wait_for_stable_page(page);
2227 out:
2228 	sb_end_pagefault(inode->i_sb);
2229 	return ret;
2230 }
2231 EXPORT_SYMBOL(filemap_page_mkwrite);
2232 
2233 const struct vm_operations_struct generic_file_vm_ops = {
2234 	.fault		= filemap_fault,
2235 	.map_pages	= filemap_map_pages,
2236 	.page_mkwrite	= filemap_page_mkwrite,
2237 };
2238 
2239 /* This is used for a general mmap of a disk file */
2240 
2241 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2242 {
2243 	struct address_space *mapping = file->f_mapping;
2244 
2245 	if (!mapping->a_ops->readpage)
2246 		return -ENOEXEC;
2247 	file_accessed(file);
2248 	vma->vm_ops = &generic_file_vm_ops;
2249 	return 0;
2250 }
2251 
2252 /*
2253  * This is for filesystems which do not implement ->writepage.
2254  */
2255 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2256 {
2257 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2258 		return -EINVAL;
2259 	return generic_file_mmap(file, vma);
2260 }
2261 #else
2262 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2263 {
2264 	return -ENOSYS;
2265 }
2266 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2267 {
2268 	return -ENOSYS;
2269 }
2270 #endif /* CONFIG_MMU */
2271 
2272 EXPORT_SYMBOL(generic_file_mmap);
2273 EXPORT_SYMBOL(generic_file_readonly_mmap);
2274 
2275 static struct page *wait_on_page_read(struct page *page)
2276 {
2277 	if (!IS_ERR(page)) {
2278 		wait_on_page_locked(page);
2279 		if (!PageUptodate(page)) {
2280 			page_cache_release(page);
2281 			page = ERR_PTR(-EIO);
2282 		}
2283 	}
2284 	return page;
2285 }
2286 
2287 static struct page *do_read_cache_page(struct address_space *mapping,
2288 				pgoff_t index,
2289 				int (*filler)(void *, struct page *),
2290 				void *data,
2291 				gfp_t gfp)
2292 {
2293 	struct page *page;
2294 	int err;
2295 repeat:
2296 	page = find_get_page(mapping, index);
2297 	if (!page) {
2298 		page = __page_cache_alloc(gfp | __GFP_COLD);
2299 		if (!page)
2300 			return ERR_PTR(-ENOMEM);
2301 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2302 		if (unlikely(err)) {
2303 			page_cache_release(page);
2304 			if (err == -EEXIST)
2305 				goto repeat;
2306 			/* Presumably ENOMEM for radix tree node */
2307 			return ERR_PTR(err);
2308 		}
2309 
2310 filler:
2311 		err = filler(data, page);
2312 		if (err < 0) {
2313 			page_cache_release(page);
2314 			return ERR_PTR(err);
2315 		}
2316 
2317 		page = wait_on_page_read(page);
2318 		if (IS_ERR(page))
2319 			return page;
2320 		goto out;
2321 	}
2322 	if (PageUptodate(page))
2323 		goto out;
2324 
2325 	/*
2326 	 * Page is not up to date and may be locked due one of the following
2327 	 * case a: Page is being filled and the page lock is held
2328 	 * case b: Read/write error clearing the page uptodate status
2329 	 * case c: Truncation in progress (page locked)
2330 	 * case d: Reclaim in progress
2331 	 *
2332 	 * Case a, the page will be up to date when the page is unlocked.
2333 	 *    There is no need to serialise on the page lock here as the page
2334 	 *    is pinned so the lock gives no additional protection. Even if the
2335 	 *    the page is truncated, the data is still valid if PageUptodate as
2336 	 *    it's a race vs truncate race.
2337 	 * Case b, the page will not be up to date
2338 	 * Case c, the page may be truncated but in itself, the data may still
2339 	 *    be valid after IO completes as it's a read vs truncate race. The
2340 	 *    operation must restart if the page is not uptodate on unlock but
2341 	 *    otherwise serialising on page lock to stabilise the mapping gives
2342 	 *    no additional guarantees to the caller as the page lock is
2343 	 *    released before return.
2344 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2345 	 *    will be a race with remove_mapping that determines if the mapping
2346 	 *    is valid on unlock but otherwise the data is valid and there is
2347 	 *    no need to serialise with page lock.
2348 	 *
2349 	 * As the page lock gives no additional guarantee, we optimistically
2350 	 * wait on the page to be unlocked and check if it's up to date and
2351 	 * use the page if it is. Otherwise, the page lock is required to
2352 	 * distinguish between the different cases. The motivation is that we
2353 	 * avoid spurious serialisations and wakeups when multiple processes
2354 	 * wait on the same page for IO to complete.
2355 	 */
2356 	wait_on_page_locked(page);
2357 	if (PageUptodate(page))
2358 		goto out;
2359 
2360 	/* Distinguish between all the cases under the safety of the lock */
2361 	lock_page(page);
2362 
2363 	/* Case c or d, restart the operation */
2364 	if (!page->mapping) {
2365 		unlock_page(page);
2366 		page_cache_release(page);
2367 		goto repeat;
2368 	}
2369 
2370 	/* Someone else locked and filled the page in a very small window */
2371 	if (PageUptodate(page)) {
2372 		unlock_page(page);
2373 		goto out;
2374 	}
2375 	goto filler;
2376 
2377 out:
2378 	mark_page_accessed(page);
2379 	return page;
2380 }
2381 
2382 /**
2383  * read_cache_page - read into page cache, fill it if needed
2384  * @mapping:	the page's address_space
2385  * @index:	the page index
2386  * @filler:	function to perform the read
2387  * @data:	first arg to filler(data, page) function, often left as NULL
2388  *
2389  * Read into the page cache. If a page already exists, and PageUptodate() is
2390  * not set, try to fill the page and wait for it to become unlocked.
2391  *
2392  * If the page does not get brought uptodate, return -EIO.
2393  */
2394 struct page *read_cache_page(struct address_space *mapping,
2395 				pgoff_t index,
2396 				int (*filler)(void *, struct page *),
2397 				void *data)
2398 {
2399 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2400 }
2401 EXPORT_SYMBOL(read_cache_page);
2402 
2403 /**
2404  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2405  * @mapping:	the page's address_space
2406  * @index:	the page index
2407  * @gfp:	the page allocator flags to use if allocating
2408  *
2409  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2410  * any new page allocations done using the specified allocation flags.
2411  *
2412  * If the page does not get brought uptodate, return -EIO.
2413  */
2414 struct page *read_cache_page_gfp(struct address_space *mapping,
2415 				pgoff_t index,
2416 				gfp_t gfp)
2417 {
2418 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2419 
2420 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2421 }
2422 EXPORT_SYMBOL(read_cache_page_gfp);
2423 
2424 /*
2425  * Performs necessary checks before doing a write
2426  *
2427  * Can adjust writing position or amount of bytes to write.
2428  * Returns appropriate error code that caller should return or
2429  * zero in case that write should be allowed.
2430  */
2431 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2432 {
2433 	struct file *file = iocb->ki_filp;
2434 	struct inode *inode = file->f_mapping->host;
2435 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2436 	loff_t pos;
2437 
2438 	if (!iov_iter_count(from))
2439 		return 0;
2440 
2441 	/* FIXME: this is for backwards compatibility with 2.4 */
2442 	if (iocb->ki_flags & IOCB_APPEND)
2443 		iocb->ki_pos = i_size_read(inode);
2444 
2445 	pos = iocb->ki_pos;
2446 
2447 	if (limit != RLIM_INFINITY) {
2448 		if (iocb->ki_pos >= limit) {
2449 			send_sig(SIGXFSZ, current, 0);
2450 			return -EFBIG;
2451 		}
2452 		iov_iter_truncate(from, limit - (unsigned long)pos);
2453 	}
2454 
2455 	/*
2456 	 * LFS rule
2457 	 */
2458 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2459 				!(file->f_flags & O_LARGEFILE))) {
2460 		if (pos >= MAX_NON_LFS)
2461 			return -EFBIG;
2462 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2463 	}
2464 
2465 	/*
2466 	 * Are we about to exceed the fs block limit ?
2467 	 *
2468 	 * If we have written data it becomes a short write.  If we have
2469 	 * exceeded without writing data we send a signal and return EFBIG.
2470 	 * Linus frestrict idea will clean these up nicely..
2471 	 */
2472 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2473 		return -EFBIG;
2474 
2475 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2476 	return iov_iter_count(from);
2477 }
2478 EXPORT_SYMBOL(generic_write_checks);
2479 
2480 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2481 				loff_t pos, unsigned len, unsigned flags,
2482 				struct page **pagep, void **fsdata)
2483 {
2484 	const struct address_space_operations *aops = mapping->a_ops;
2485 
2486 	return aops->write_begin(file, mapping, pos, len, flags,
2487 							pagep, fsdata);
2488 }
2489 EXPORT_SYMBOL(pagecache_write_begin);
2490 
2491 int pagecache_write_end(struct file *file, struct address_space *mapping,
2492 				loff_t pos, unsigned len, unsigned copied,
2493 				struct page *page, void *fsdata)
2494 {
2495 	const struct address_space_operations *aops = mapping->a_ops;
2496 
2497 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2498 }
2499 EXPORT_SYMBOL(pagecache_write_end);
2500 
2501 ssize_t
2502 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2503 {
2504 	struct file	*file = iocb->ki_filp;
2505 	struct address_space *mapping = file->f_mapping;
2506 	struct inode	*inode = mapping->host;
2507 	ssize_t		written;
2508 	size_t		write_len;
2509 	pgoff_t		end;
2510 	struct iov_iter data;
2511 
2512 	write_len = iov_iter_count(from);
2513 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2514 
2515 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2516 	if (written)
2517 		goto out;
2518 
2519 	/*
2520 	 * After a write we want buffered reads to be sure to go to disk to get
2521 	 * the new data.  We invalidate clean cached page from the region we're
2522 	 * about to write.  We do this *before* the write so that we can return
2523 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2524 	 */
2525 	if (mapping->nrpages) {
2526 		written = invalidate_inode_pages2_range(mapping,
2527 					pos >> PAGE_CACHE_SHIFT, end);
2528 		/*
2529 		 * If a page can not be invalidated, return 0 to fall back
2530 		 * to buffered write.
2531 		 */
2532 		if (written) {
2533 			if (written == -EBUSY)
2534 				return 0;
2535 			goto out;
2536 		}
2537 	}
2538 
2539 	data = *from;
2540 	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2541 
2542 	/*
2543 	 * Finally, try again to invalidate clean pages which might have been
2544 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2545 	 * if the source of the write was an mmap'ed region of the file
2546 	 * we're writing.  Either one is a pretty crazy thing to do,
2547 	 * so we don't support it 100%.  If this invalidation
2548 	 * fails, tough, the write still worked...
2549 	 */
2550 	if (mapping->nrpages) {
2551 		invalidate_inode_pages2_range(mapping,
2552 					      pos >> PAGE_CACHE_SHIFT, end);
2553 	}
2554 
2555 	if (written > 0) {
2556 		pos += written;
2557 		iov_iter_advance(from, written);
2558 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2559 			i_size_write(inode, pos);
2560 			mark_inode_dirty(inode);
2561 		}
2562 		iocb->ki_pos = pos;
2563 	}
2564 out:
2565 	return written;
2566 }
2567 EXPORT_SYMBOL(generic_file_direct_write);
2568 
2569 /*
2570  * Find or create a page at the given pagecache position. Return the locked
2571  * page. This function is specifically for buffered writes.
2572  */
2573 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2574 					pgoff_t index, unsigned flags)
2575 {
2576 	struct page *page;
2577 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2578 
2579 	if (flags & AOP_FLAG_NOFS)
2580 		fgp_flags |= FGP_NOFS;
2581 
2582 	page = pagecache_get_page(mapping, index, fgp_flags,
2583 			mapping_gfp_mask(mapping));
2584 	if (page)
2585 		wait_for_stable_page(page);
2586 
2587 	return page;
2588 }
2589 EXPORT_SYMBOL(grab_cache_page_write_begin);
2590 
2591 ssize_t generic_perform_write(struct file *file,
2592 				struct iov_iter *i, loff_t pos)
2593 {
2594 	struct address_space *mapping = file->f_mapping;
2595 	const struct address_space_operations *a_ops = mapping->a_ops;
2596 	long status = 0;
2597 	ssize_t written = 0;
2598 	unsigned int flags = 0;
2599 
2600 	/*
2601 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2602 	 */
2603 	if (!iter_is_iovec(i))
2604 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2605 
2606 	do {
2607 		struct page *page;
2608 		unsigned long offset;	/* Offset into pagecache page */
2609 		unsigned long bytes;	/* Bytes to write to page */
2610 		size_t copied;		/* Bytes copied from user */
2611 		void *fsdata;
2612 
2613 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2614 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2615 						iov_iter_count(i));
2616 
2617 again:
2618 		/*
2619 		 * Bring in the user page that we will copy from _first_.
2620 		 * Otherwise there's a nasty deadlock on copying from the
2621 		 * same page as we're writing to, without it being marked
2622 		 * up-to-date.
2623 		 *
2624 		 * Not only is this an optimisation, but it is also required
2625 		 * to check that the address is actually valid, when atomic
2626 		 * usercopies are used, below.
2627 		 */
2628 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2629 			status = -EFAULT;
2630 			break;
2631 		}
2632 
2633 		if (fatal_signal_pending(current)) {
2634 			status = -EINTR;
2635 			break;
2636 		}
2637 
2638 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2639 						&page, &fsdata);
2640 		if (unlikely(status < 0))
2641 			break;
2642 
2643 		if (mapping_writably_mapped(mapping))
2644 			flush_dcache_page(page);
2645 
2646 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2647 		flush_dcache_page(page);
2648 
2649 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2650 						page, fsdata);
2651 		if (unlikely(status < 0))
2652 			break;
2653 		copied = status;
2654 
2655 		cond_resched();
2656 
2657 		iov_iter_advance(i, copied);
2658 		if (unlikely(copied == 0)) {
2659 			/*
2660 			 * If we were unable to copy any data at all, we must
2661 			 * fall back to a single segment length write.
2662 			 *
2663 			 * If we didn't fallback here, we could livelock
2664 			 * because not all segments in the iov can be copied at
2665 			 * once without a pagefault.
2666 			 */
2667 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2668 						iov_iter_single_seg_count(i));
2669 			goto again;
2670 		}
2671 		pos += copied;
2672 		written += copied;
2673 
2674 		balance_dirty_pages_ratelimited(mapping);
2675 	} while (iov_iter_count(i));
2676 
2677 	return written ? written : status;
2678 }
2679 EXPORT_SYMBOL(generic_perform_write);
2680 
2681 /**
2682  * __generic_file_write_iter - write data to a file
2683  * @iocb:	IO state structure (file, offset, etc.)
2684  * @from:	iov_iter with data to write
2685  *
2686  * This function does all the work needed for actually writing data to a
2687  * file. It does all basic checks, removes SUID from the file, updates
2688  * modification times and calls proper subroutines depending on whether we
2689  * do direct IO or a standard buffered write.
2690  *
2691  * It expects i_mutex to be grabbed unless we work on a block device or similar
2692  * object which does not need locking at all.
2693  *
2694  * This function does *not* take care of syncing data in case of O_SYNC write.
2695  * A caller has to handle it. This is mainly due to the fact that we want to
2696  * avoid syncing under i_mutex.
2697  */
2698 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2699 {
2700 	struct file *file = iocb->ki_filp;
2701 	struct address_space * mapping = file->f_mapping;
2702 	struct inode 	*inode = mapping->host;
2703 	ssize_t		written = 0;
2704 	ssize_t		err;
2705 	ssize_t		status;
2706 
2707 	/* We can write back this queue in page reclaim */
2708 	current->backing_dev_info = inode_to_bdi(inode);
2709 	err = file_remove_privs(file);
2710 	if (err)
2711 		goto out;
2712 
2713 	err = file_update_time(file);
2714 	if (err)
2715 		goto out;
2716 
2717 	if (iocb->ki_flags & IOCB_DIRECT) {
2718 		loff_t pos, endbyte;
2719 
2720 		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2721 		/*
2722 		 * If the write stopped short of completing, fall back to
2723 		 * buffered writes.  Some filesystems do this for writes to
2724 		 * holes, for example.  For DAX files, a buffered write will
2725 		 * not succeed (even if it did, DAX does not handle dirty
2726 		 * page-cache pages correctly).
2727 		 */
2728 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2729 			goto out;
2730 
2731 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2732 		/*
2733 		 * If generic_perform_write() returned a synchronous error
2734 		 * then we want to return the number of bytes which were
2735 		 * direct-written, or the error code if that was zero.  Note
2736 		 * that this differs from normal direct-io semantics, which
2737 		 * will return -EFOO even if some bytes were written.
2738 		 */
2739 		if (unlikely(status < 0)) {
2740 			err = status;
2741 			goto out;
2742 		}
2743 		/*
2744 		 * We need to ensure that the page cache pages are written to
2745 		 * disk and invalidated to preserve the expected O_DIRECT
2746 		 * semantics.
2747 		 */
2748 		endbyte = pos + status - 1;
2749 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2750 		if (err == 0) {
2751 			iocb->ki_pos = endbyte + 1;
2752 			written += status;
2753 			invalidate_mapping_pages(mapping,
2754 						 pos >> PAGE_CACHE_SHIFT,
2755 						 endbyte >> PAGE_CACHE_SHIFT);
2756 		} else {
2757 			/*
2758 			 * We don't know how much we wrote, so just return
2759 			 * the number of bytes which were direct-written
2760 			 */
2761 		}
2762 	} else {
2763 		written = generic_perform_write(file, from, iocb->ki_pos);
2764 		if (likely(written > 0))
2765 			iocb->ki_pos += written;
2766 	}
2767 out:
2768 	current->backing_dev_info = NULL;
2769 	return written ? written : err;
2770 }
2771 EXPORT_SYMBOL(__generic_file_write_iter);
2772 
2773 /**
2774  * generic_file_write_iter - write data to a file
2775  * @iocb:	IO state structure
2776  * @from:	iov_iter with data to write
2777  *
2778  * This is a wrapper around __generic_file_write_iter() to be used by most
2779  * filesystems. It takes care of syncing the file in case of O_SYNC file
2780  * and acquires i_mutex as needed.
2781  */
2782 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2783 {
2784 	struct file *file = iocb->ki_filp;
2785 	struct inode *inode = file->f_mapping->host;
2786 	ssize_t ret;
2787 
2788 	inode_lock(inode);
2789 	ret = generic_write_checks(iocb, from);
2790 	if (ret > 0)
2791 		ret = __generic_file_write_iter(iocb, from);
2792 	inode_unlock(inode);
2793 
2794 	if (ret > 0) {
2795 		ssize_t err;
2796 
2797 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2798 		if (err < 0)
2799 			ret = err;
2800 	}
2801 	return ret;
2802 }
2803 EXPORT_SYMBOL(generic_file_write_iter);
2804 
2805 /**
2806  * try_to_release_page() - release old fs-specific metadata on a page
2807  *
2808  * @page: the page which the kernel is trying to free
2809  * @gfp_mask: memory allocation flags (and I/O mode)
2810  *
2811  * The address_space is to try to release any data against the page
2812  * (presumably at page->private).  If the release was successful, return `1'.
2813  * Otherwise return zero.
2814  *
2815  * This may also be called if PG_fscache is set on a page, indicating that the
2816  * page is known to the local caching routines.
2817  *
2818  * The @gfp_mask argument specifies whether I/O may be performed to release
2819  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2820  *
2821  */
2822 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2823 {
2824 	struct address_space * const mapping = page->mapping;
2825 
2826 	BUG_ON(!PageLocked(page));
2827 	if (PageWriteback(page))
2828 		return 0;
2829 
2830 	if (mapping && mapping->a_ops->releasepage)
2831 		return mapping->a_ops->releasepage(page, gfp_mask);
2832 	return try_to_free_buffers(page);
2833 }
2834 
2835 EXPORT_SYMBOL(try_to_release_page);
2836