1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_mutex 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 81 * 82 * ->mmap_lock 83 * ->i_mmap_rwsem 84 * ->page_table_lock or pte_lock (various, mainly in memory.c) 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 86 * 87 * ->mmap_lock 88 * ->lock_page (access_process_vm) 89 * 90 * ->i_mutex (generic_perform_write) 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 92 * 93 * bdi->wb.list_lock 94 * sb_lock (fs/fs-writeback.c) 95 * ->i_pages lock (__sync_single_inode) 96 * 97 * ->i_mmap_rwsem 98 * ->anon_vma.lock (vma_adjust) 99 * 100 * ->anon_vma.lock 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 102 * 103 * ->page_table_lock or pte_lock 104 * ->swap_lock (try_to_unmap_one) 105 * ->private_lock (try_to_unmap_one) 106 * ->i_pages lock (try_to_unmap_one) 107 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 109 * ->private_lock (page_remove_rmap->set_page_dirty) 110 * ->i_pages lock (page_remove_rmap->set_page_dirty) 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 115 * ->inode->i_lock (zap_pte_range->set_page_dirty) 116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 117 * 118 * ->i_mmap_rwsem 119 * ->tasklist_lock (memory_failure, collect_procs_ao) 120 */ 121 122 static void page_cache_delete(struct address_space *mapping, 123 struct page *page, void *shadow) 124 { 125 XA_STATE(xas, &mapping->i_pages, page->index); 126 unsigned int nr = 1; 127 128 mapping_set_update(&xas, mapping); 129 130 /* hugetlb pages are represented by a single entry in the xarray */ 131 if (!PageHuge(page)) { 132 xas_set_order(&xas, page->index, compound_order(page)); 133 nr = compound_nr(page); 134 } 135 136 VM_BUG_ON_PAGE(!PageLocked(page), page); 137 VM_BUG_ON_PAGE(PageTail(page), page); 138 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 page->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 146 if (shadow) { 147 mapping->nrexceptional += nr; 148 /* 149 * Make sure the nrexceptional update is committed before 150 * the nrpages update so that final truncate racing 151 * with reclaim does not see both counters 0 at the 152 * same time and miss a shadow entry. 153 */ 154 smp_wmb(); 155 } 156 mapping->nrpages -= nr; 157 } 158 159 static void unaccount_page_cache_page(struct address_space *mapping, 160 struct page *page) 161 { 162 int nr; 163 164 /* 165 * if we're uptodate, flush out into the cleancache, otherwise 166 * invalidate any existing cleancache entries. We can't leave 167 * stale data around in the cleancache once our page is gone 168 */ 169 if (PageUptodate(page) && PageMappedToDisk(page)) 170 cleancache_put_page(page); 171 else 172 cleancache_invalidate_page(mapping, page); 173 174 VM_BUG_ON_PAGE(PageTail(page), page); 175 VM_BUG_ON_PAGE(page_mapped(page), page); 176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 177 int mapcount; 178 179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 180 current->comm, page_to_pfn(page)); 181 dump_page(page, "still mapped when deleted"); 182 dump_stack(); 183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 184 185 mapcount = page_mapcount(page); 186 if (mapping_exiting(mapping) && 187 page_count(page) >= mapcount + 2) { 188 /* 189 * All vmas have already been torn down, so it's 190 * a good bet that actually the page is unmapped, 191 * and we'd prefer not to leak it: if we're wrong, 192 * some other bad page check should catch it later. 193 */ 194 page_mapcount_reset(page); 195 page_ref_sub(page, mapcount); 196 } 197 } 198 199 /* hugetlb pages do not participate in page cache accounting. */ 200 if (PageHuge(page)) 201 return; 202 203 nr = thp_nr_pages(page); 204 205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 206 if (PageSwapBacked(page)) { 207 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 208 if (PageTransHuge(page)) 209 __dec_lruvec_page_state(page, NR_SHMEM_THPS); 210 } else if (PageTransHuge(page)) { 211 __dec_lruvec_page_state(page, NR_FILE_THPS); 212 filemap_nr_thps_dec(mapping); 213 } 214 215 /* 216 * At this point page must be either written or cleaned by 217 * truncate. Dirty page here signals a bug and loss of 218 * unwritten data. 219 * 220 * This fixes dirty accounting after removing the page entirely 221 * but leaves PageDirty set: it has no effect for truncated 222 * page and anyway will be cleared before returning page into 223 * buddy allocator. 224 */ 225 if (WARN_ON_ONCE(PageDirty(page))) 226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 227 } 228 229 /* 230 * Delete a page from the page cache and free it. Caller has to make 231 * sure the page is locked and that nobody else uses it - or that usage 232 * is safe. The caller must hold the i_pages lock. 233 */ 234 void __delete_from_page_cache(struct page *page, void *shadow) 235 { 236 struct address_space *mapping = page->mapping; 237 238 trace_mm_filemap_delete_from_page_cache(page); 239 240 unaccount_page_cache_page(mapping, page); 241 page_cache_delete(mapping, page, shadow); 242 } 243 244 static void page_cache_free_page(struct address_space *mapping, 245 struct page *page) 246 { 247 void (*freepage)(struct page *); 248 249 freepage = mapping->a_ops->freepage; 250 if (freepage) 251 freepage(page); 252 253 if (PageTransHuge(page) && !PageHuge(page)) { 254 page_ref_sub(page, thp_nr_pages(page)); 255 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 256 } else { 257 put_page(page); 258 } 259 } 260 261 /** 262 * delete_from_page_cache - delete page from page cache 263 * @page: the page which the kernel is trying to remove from page cache 264 * 265 * This must be called only on pages that have been verified to be in the page 266 * cache and locked. It will never put the page into the free list, the caller 267 * has a reference on the page. 268 */ 269 void delete_from_page_cache(struct page *page) 270 { 271 struct address_space *mapping = page_mapping(page); 272 unsigned long flags; 273 274 BUG_ON(!PageLocked(page)); 275 xa_lock_irqsave(&mapping->i_pages, flags); 276 __delete_from_page_cache(page, NULL); 277 xa_unlock_irqrestore(&mapping->i_pages, flags); 278 279 page_cache_free_page(mapping, page); 280 } 281 EXPORT_SYMBOL(delete_from_page_cache); 282 283 /* 284 * page_cache_delete_batch - delete several pages from page cache 285 * @mapping: the mapping to which pages belong 286 * @pvec: pagevec with pages to delete 287 * 288 * The function walks over mapping->i_pages and removes pages passed in @pvec 289 * from the mapping. The function expects @pvec to be sorted by page index 290 * and is optimised for it to be dense. 291 * It tolerates holes in @pvec (mapping entries at those indices are not 292 * modified). The function expects only THP head pages to be present in the 293 * @pvec. 294 * 295 * The function expects the i_pages lock to be held. 296 */ 297 static void page_cache_delete_batch(struct address_space *mapping, 298 struct pagevec *pvec) 299 { 300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 301 int total_pages = 0; 302 int i = 0; 303 struct page *page; 304 305 mapping_set_update(&xas, mapping); 306 xas_for_each(&xas, page, ULONG_MAX) { 307 if (i >= pagevec_count(pvec)) 308 break; 309 310 /* A swap/dax/shadow entry got inserted? Skip it. */ 311 if (xa_is_value(page)) 312 continue; 313 /* 314 * A page got inserted in our range? Skip it. We have our 315 * pages locked so they are protected from being removed. 316 * If we see a page whose index is higher than ours, it 317 * means our page has been removed, which shouldn't be 318 * possible because we're holding the PageLock. 319 */ 320 if (page != pvec->pages[i]) { 321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 322 page); 323 continue; 324 } 325 326 WARN_ON_ONCE(!PageLocked(page)); 327 328 if (page->index == xas.xa_index) 329 page->mapping = NULL; 330 /* Leave page->index set: truncation lookup relies on it */ 331 332 /* 333 * Move to the next page in the vector if this is a regular 334 * page or the index is of the last sub-page of this compound 335 * page. 336 */ 337 if (page->index + compound_nr(page) - 1 == xas.xa_index) 338 i++; 339 xas_store(&xas, NULL); 340 total_pages++; 341 } 342 mapping->nrpages -= total_pages; 343 } 344 345 void delete_from_page_cache_batch(struct address_space *mapping, 346 struct pagevec *pvec) 347 { 348 int i; 349 unsigned long flags; 350 351 if (!pagevec_count(pvec)) 352 return; 353 354 xa_lock_irqsave(&mapping->i_pages, flags); 355 for (i = 0; i < pagevec_count(pvec); i++) { 356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 357 358 unaccount_page_cache_page(mapping, pvec->pages[i]); 359 } 360 page_cache_delete_batch(mapping, pvec); 361 xa_unlock_irqrestore(&mapping->i_pages, flags); 362 363 for (i = 0; i < pagevec_count(pvec); i++) 364 page_cache_free_page(mapping, pvec->pages[i]); 365 } 366 367 int filemap_check_errors(struct address_space *mapping) 368 { 369 int ret = 0; 370 /* Check for outstanding write errors */ 371 if (test_bit(AS_ENOSPC, &mapping->flags) && 372 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 373 ret = -ENOSPC; 374 if (test_bit(AS_EIO, &mapping->flags) && 375 test_and_clear_bit(AS_EIO, &mapping->flags)) 376 ret = -EIO; 377 return ret; 378 } 379 EXPORT_SYMBOL(filemap_check_errors); 380 381 static int filemap_check_and_keep_errors(struct address_space *mapping) 382 { 383 /* Check for outstanding write errors */ 384 if (test_bit(AS_EIO, &mapping->flags)) 385 return -EIO; 386 if (test_bit(AS_ENOSPC, &mapping->flags)) 387 return -ENOSPC; 388 return 0; 389 } 390 391 /** 392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 393 * @mapping: address space structure to write 394 * @start: offset in bytes where the range starts 395 * @end: offset in bytes where the range ends (inclusive) 396 * @sync_mode: enable synchronous operation 397 * 398 * Start writeback against all of a mapping's dirty pages that lie 399 * within the byte offsets <start, end> inclusive. 400 * 401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 402 * opposed to a regular memory cleansing writeback. The difference between 403 * these two operations is that if a dirty page/buffer is encountered, it must 404 * be waited upon, and not just skipped over. 405 * 406 * Return: %0 on success, negative error code otherwise. 407 */ 408 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 409 loff_t end, int sync_mode) 410 { 411 int ret; 412 struct writeback_control wbc = { 413 .sync_mode = sync_mode, 414 .nr_to_write = LONG_MAX, 415 .range_start = start, 416 .range_end = end, 417 }; 418 419 if (!mapping_can_writeback(mapping) || 420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 421 return 0; 422 423 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 424 ret = do_writepages(mapping, &wbc); 425 wbc_detach_inode(&wbc); 426 return ret; 427 } 428 429 static inline int __filemap_fdatawrite(struct address_space *mapping, 430 int sync_mode) 431 { 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 433 } 434 435 int filemap_fdatawrite(struct address_space *mapping) 436 { 437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 438 } 439 EXPORT_SYMBOL(filemap_fdatawrite); 440 441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 442 loff_t end) 443 { 444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 445 } 446 EXPORT_SYMBOL(filemap_fdatawrite_range); 447 448 /** 449 * filemap_flush - mostly a non-blocking flush 450 * @mapping: target address_space 451 * 452 * This is a mostly non-blocking flush. Not suitable for data-integrity 453 * purposes - I/O may not be started against all dirty pages. 454 * 455 * Return: %0 on success, negative error code otherwise. 456 */ 457 int filemap_flush(struct address_space *mapping) 458 { 459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 460 } 461 EXPORT_SYMBOL(filemap_flush); 462 463 /** 464 * filemap_range_has_page - check if a page exists in range. 465 * @mapping: address space within which to check 466 * @start_byte: offset in bytes where the range starts 467 * @end_byte: offset in bytes where the range ends (inclusive) 468 * 469 * Find at least one page in the range supplied, usually used to check if 470 * direct writing in this range will trigger a writeback. 471 * 472 * Return: %true if at least one page exists in the specified range, 473 * %false otherwise. 474 */ 475 bool filemap_range_has_page(struct address_space *mapping, 476 loff_t start_byte, loff_t end_byte) 477 { 478 struct page *page; 479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 480 pgoff_t max = end_byte >> PAGE_SHIFT; 481 482 if (end_byte < start_byte) 483 return false; 484 485 rcu_read_lock(); 486 for (;;) { 487 page = xas_find(&xas, max); 488 if (xas_retry(&xas, page)) 489 continue; 490 /* Shadow entries don't count */ 491 if (xa_is_value(page)) 492 continue; 493 /* 494 * We don't need to try to pin this page; we're about to 495 * release the RCU lock anyway. It is enough to know that 496 * there was a page here recently. 497 */ 498 break; 499 } 500 rcu_read_unlock(); 501 502 return page != NULL; 503 } 504 EXPORT_SYMBOL(filemap_range_has_page); 505 506 static void __filemap_fdatawait_range(struct address_space *mapping, 507 loff_t start_byte, loff_t end_byte) 508 { 509 pgoff_t index = start_byte >> PAGE_SHIFT; 510 pgoff_t end = end_byte >> PAGE_SHIFT; 511 struct pagevec pvec; 512 int nr_pages; 513 514 if (end_byte < start_byte) 515 return; 516 517 pagevec_init(&pvec); 518 while (index <= end) { 519 unsigned i; 520 521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 522 end, PAGECACHE_TAG_WRITEBACK); 523 if (!nr_pages) 524 break; 525 526 for (i = 0; i < nr_pages; i++) { 527 struct page *page = pvec.pages[i]; 528 529 wait_on_page_writeback(page); 530 ClearPageError(page); 531 } 532 pagevec_release(&pvec); 533 cond_resched(); 534 } 535 } 536 537 /** 538 * filemap_fdatawait_range - wait for writeback to complete 539 * @mapping: address space structure to wait for 540 * @start_byte: offset in bytes where the range starts 541 * @end_byte: offset in bytes where the range ends (inclusive) 542 * 543 * Walk the list of under-writeback pages of the given address space 544 * in the given range and wait for all of them. Check error status of 545 * the address space and return it. 546 * 547 * Since the error status of the address space is cleared by this function, 548 * callers are responsible for checking the return value and handling and/or 549 * reporting the error. 550 * 551 * Return: error status of the address space. 552 */ 553 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 554 loff_t end_byte) 555 { 556 __filemap_fdatawait_range(mapping, start_byte, end_byte); 557 return filemap_check_errors(mapping); 558 } 559 EXPORT_SYMBOL(filemap_fdatawait_range); 560 561 /** 562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 563 * @mapping: address space structure to wait for 564 * @start_byte: offset in bytes where the range starts 565 * @end_byte: offset in bytes where the range ends (inclusive) 566 * 567 * Walk the list of under-writeback pages of the given address space in the 568 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 569 * this function does not clear error status of the address space. 570 * 571 * Use this function if callers don't handle errors themselves. Expected 572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 573 * fsfreeze(8) 574 */ 575 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 576 loff_t start_byte, loff_t end_byte) 577 { 578 __filemap_fdatawait_range(mapping, start_byte, end_byte); 579 return filemap_check_and_keep_errors(mapping); 580 } 581 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 582 583 /** 584 * file_fdatawait_range - wait for writeback to complete 585 * @file: file pointing to address space structure to wait for 586 * @start_byte: offset in bytes where the range starts 587 * @end_byte: offset in bytes where the range ends (inclusive) 588 * 589 * Walk the list of under-writeback pages of the address space that file 590 * refers to, in the given range and wait for all of them. Check error 591 * status of the address space vs. the file->f_wb_err cursor and return it. 592 * 593 * Since the error status of the file is advanced by this function, 594 * callers are responsible for checking the return value and handling and/or 595 * reporting the error. 596 * 597 * Return: error status of the address space vs. the file->f_wb_err cursor. 598 */ 599 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 600 { 601 struct address_space *mapping = file->f_mapping; 602 603 __filemap_fdatawait_range(mapping, start_byte, end_byte); 604 return file_check_and_advance_wb_err(file); 605 } 606 EXPORT_SYMBOL(file_fdatawait_range); 607 608 /** 609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 610 * @mapping: address space structure to wait for 611 * 612 * Walk the list of under-writeback pages of the given address space 613 * and wait for all of them. Unlike filemap_fdatawait(), this function 614 * does not clear error status of the address space. 615 * 616 * Use this function if callers don't handle errors themselves. Expected 617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 618 * fsfreeze(8) 619 * 620 * Return: error status of the address space. 621 */ 622 int filemap_fdatawait_keep_errors(struct address_space *mapping) 623 { 624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 625 return filemap_check_and_keep_errors(mapping); 626 } 627 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 628 629 /* Returns true if writeback might be needed or already in progress. */ 630 static bool mapping_needs_writeback(struct address_space *mapping) 631 { 632 if (dax_mapping(mapping)) 633 return mapping->nrexceptional; 634 635 return mapping->nrpages; 636 } 637 638 /** 639 * filemap_write_and_wait_range - write out & wait on a file range 640 * @mapping: the address_space for the pages 641 * @lstart: offset in bytes where the range starts 642 * @lend: offset in bytes where the range ends (inclusive) 643 * 644 * Write out and wait upon file offsets lstart->lend, inclusive. 645 * 646 * Note that @lend is inclusive (describes the last byte to be written) so 647 * that this function can be used to write to the very end-of-file (end = -1). 648 * 649 * Return: error status of the address space. 650 */ 651 int filemap_write_and_wait_range(struct address_space *mapping, 652 loff_t lstart, loff_t lend) 653 { 654 int err = 0; 655 656 if (mapping_needs_writeback(mapping)) { 657 err = __filemap_fdatawrite_range(mapping, lstart, lend, 658 WB_SYNC_ALL); 659 /* 660 * Even if the above returned error, the pages may be 661 * written partially (e.g. -ENOSPC), so we wait for it. 662 * But the -EIO is special case, it may indicate the worst 663 * thing (e.g. bug) happened, so we avoid waiting for it. 664 */ 665 if (err != -EIO) { 666 int err2 = filemap_fdatawait_range(mapping, 667 lstart, lend); 668 if (!err) 669 err = err2; 670 } else { 671 /* Clear any previously stored errors */ 672 filemap_check_errors(mapping); 673 } 674 } else { 675 err = filemap_check_errors(mapping); 676 } 677 return err; 678 } 679 EXPORT_SYMBOL(filemap_write_and_wait_range); 680 681 void __filemap_set_wb_err(struct address_space *mapping, int err) 682 { 683 errseq_t eseq = errseq_set(&mapping->wb_err, err); 684 685 trace_filemap_set_wb_err(mapping, eseq); 686 } 687 EXPORT_SYMBOL(__filemap_set_wb_err); 688 689 /** 690 * file_check_and_advance_wb_err - report wb error (if any) that was previously 691 * and advance wb_err to current one 692 * @file: struct file on which the error is being reported 693 * 694 * When userland calls fsync (or something like nfsd does the equivalent), we 695 * want to report any writeback errors that occurred since the last fsync (or 696 * since the file was opened if there haven't been any). 697 * 698 * Grab the wb_err from the mapping. If it matches what we have in the file, 699 * then just quickly return 0. The file is all caught up. 700 * 701 * If it doesn't match, then take the mapping value, set the "seen" flag in 702 * it and try to swap it into place. If it works, or another task beat us 703 * to it with the new value, then update the f_wb_err and return the error 704 * portion. The error at this point must be reported via proper channels 705 * (a'la fsync, or NFS COMMIT operation, etc.). 706 * 707 * While we handle mapping->wb_err with atomic operations, the f_wb_err 708 * value is protected by the f_lock since we must ensure that it reflects 709 * the latest value swapped in for this file descriptor. 710 * 711 * Return: %0 on success, negative error code otherwise. 712 */ 713 int file_check_and_advance_wb_err(struct file *file) 714 { 715 int err = 0; 716 errseq_t old = READ_ONCE(file->f_wb_err); 717 struct address_space *mapping = file->f_mapping; 718 719 /* Locklessly handle the common case where nothing has changed */ 720 if (errseq_check(&mapping->wb_err, old)) { 721 /* Something changed, must use slow path */ 722 spin_lock(&file->f_lock); 723 old = file->f_wb_err; 724 err = errseq_check_and_advance(&mapping->wb_err, 725 &file->f_wb_err); 726 trace_file_check_and_advance_wb_err(file, old); 727 spin_unlock(&file->f_lock); 728 } 729 730 /* 731 * We're mostly using this function as a drop in replacement for 732 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 733 * that the legacy code would have had on these flags. 734 */ 735 clear_bit(AS_EIO, &mapping->flags); 736 clear_bit(AS_ENOSPC, &mapping->flags); 737 return err; 738 } 739 EXPORT_SYMBOL(file_check_and_advance_wb_err); 740 741 /** 742 * file_write_and_wait_range - write out & wait on a file range 743 * @file: file pointing to address_space with pages 744 * @lstart: offset in bytes where the range starts 745 * @lend: offset in bytes where the range ends (inclusive) 746 * 747 * Write out and wait upon file offsets lstart->lend, inclusive. 748 * 749 * Note that @lend is inclusive (describes the last byte to be written) so 750 * that this function can be used to write to the very end-of-file (end = -1). 751 * 752 * After writing out and waiting on the data, we check and advance the 753 * f_wb_err cursor to the latest value, and return any errors detected there. 754 * 755 * Return: %0 on success, negative error code otherwise. 756 */ 757 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 758 { 759 int err = 0, err2; 760 struct address_space *mapping = file->f_mapping; 761 762 if (mapping_needs_writeback(mapping)) { 763 err = __filemap_fdatawrite_range(mapping, lstart, lend, 764 WB_SYNC_ALL); 765 /* See comment of filemap_write_and_wait() */ 766 if (err != -EIO) 767 __filemap_fdatawait_range(mapping, lstart, lend); 768 } 769 err2 = file_check_and_advance_wb_err(file); 770 if (!err) 771 err = err2; 772 return err; 773 } 774 EXPORT_SYMBOL(file_write_and_wait_range); 775 776 /** 777 * replace_page_cache_page - replace a pagecache page with a new one 778 * @old: page to be replaced 779 * @new: page to replace with 780 * @gfp_mask: allocation mode 781 * 782 * This function replaces a page in the pagecache with a new one. On 783 * success it acquires the pagecache reference for the new page and 784 * drops it for the old page. Both the old and new pages must be 785 * locked. This function does not add the new page to the LRU, the 786 * caller must do that. 787 * 788 * The remove + add is atomic. This function cannot fail. 789 * 790 * Return: %0 791 */ 792 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 793 { 794 struct address_space *mapping = old->mapping; 795 void (*freepage)(struct page *) = mapping->a_ops->freepage; 796 pgoff_t offset = old->index; 797 XA_STATE(xas, &mapping->i_pages, offset); 798 unsigned long flags; 799 800 VM_BUG_ON_PAGE(!PageLocked(old), old); 801 VM_BUG_ON_PAGE(!PageLocked(new), new); 802 VM_BUG_ON_PAGE(new->mapping, new); 803 804 get_page(new); 805 new->mapping = mapping; 806 new->index = offset; 807 808 mem_cgroup_migrate(old, new); 809 810 xas_lock_irqsave(&xas, flags); 811 xas_store(&xas, new); 812 813 old->mapping = NULL; 814 /* hugetlb pages do not participate in page cache accounting. */ 815 if (!PageHuge(old)) 816 __dec_lruvec_page_state(old, NR_FILE_PAGES); 817 if (!PageHuge(new)) 818 __inc_lruvec_page_state(new, NR_FILE_PAGES); 819 if (PageSwapBacked(old)) 820 __dec_lruvec_page_state(old, NR_SHMEM); 821 if (PageSwapBacked(new)) 822 __inc_lruvec_page_state(new, NR_SHMEM); 823 xas_unlock_irqrestore(&xas, flags); 824 if (freepage) 825 freepage(old); 826 put_page(old); 827 828 return 0; 829 } 830 EXPORT_SYMBOL_GPL(replace_page_cache_page); 831 832 noinline int __add_to_page_cache_locked(struct page *page, 833 struct address_space *mapping, 834 pgoff_t offset, gfp_t gfp, 835 void **shadowp) 836 { 837 XA_STATE(xas, &mapping->i_pages, offset); 838 int huge = PageHuge(page); 839 int error; 840 bool charged = false; 841 842 VM_BUG_ON_PAGE(!PageLocked(page), page); 843 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 844 mapping_set_update(&xas, mapping); 845 846 get_page(page); 847 page->mapping = mapping; 848 page->index = offset; 849 850 if (!huge) { 851 error = mem_cgroup_charge(page, current->mm, gfp); 852 if (error) 853 goto error; 854 charged = true; 855 } 856 857 gfp &= GFP_RECLAIM_MASK; 858 859 do { 860 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 861 void *entry, *old = NULL; 862 863 if (order > thp_order(page)) 864 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 865 order, gfp); 866 xas_lock_irq(&xas); 867 xas_for_each_conflict(&xas, entry) { 868 old = entry; 869 if (!xa_is_value(entry)) { 870 xas_set_err(&xas, -EEXIST); 871 goto unlock; 872 } 873 } 874 875 if (old) { 876 if (shadowp) 877 *shadowp = old; 878 /* entry may have been split before we acquired lock */ 879 order = xa_get_order(xas.xa, xas.xa_index); 880 if (order > thp_order(page)) { 881 xas_split(&xas, old, order); 882 xas_reset(&xas); 883 } 884 } 885 886 xas_store(&xas, page); 887 if (xas_error(&xas)) 888 goto unlock; 889 890 if (old) 891 mapping->nrexceptional--; 892 mapping->nrpages++; 893 894 /* hugetlb pages do not participate in page cache accounting */ 895 if (!huge) 896 __inc_lruvec_page_state(page, NR_FILE_PAGES); 897 unlock: 898 xas_unlock_irq(&xas); 899 } while (xas_nomem(&xas, gfp)); 900 901 if (xas_error(&xas)) { 902 error = xas_error(&xas); 903 if (charged) 904 mem_cgroup_uncharge(page); 905 goto error; 906 } 907 908 trace_mm_filemap_add_to_page_cache(page); 909 return 0; 910 error: 911 page->mapping = NULL; 912 /* Leave page->index set: truncation relies upon it */ 913 put_page(page); 914 return error; 915 } 916 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 917 918 /** 919 * add_to_page_cache_locked - add a locked page to the pagecache 920 * @page: page to add 921 * @mapping: the page's address_space 922 * @offset: page index 923 * @gfp_mask: page allocation mode 924 * 925 * This function is used to add a page to the pagecache. It must be locked. 926 * This function does not add the page to the LRU. The caller must do that. 927 * 928 * Return: %0 on success, negative error code otherwise. 929 */ 930 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 931 pgoff_t offset, gfp_t gfp_mask) 932 { 933 return __add_to_page_cache_locked(page, mapping, offset, 934 gfp_mask, NULL); 935 } 936 EXPORT_SYMBOL(add_to_page_cache_locked); 937 938 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 939 pgoff_t offset, gfp_t gfp_mask) 940 { 941 void *shadow = NULL; 942 int ret; 943 944 __SetPageLocked(page); 945 ret = __add_to_page_cache_locked(page, mapping, offset, 946 gfp_mask, &shadow); 947 if (unlikely(ret)) 948 __ClearPageLocked(page); 949 else { 950 /* 951 * The page might have been evicted from cache only 952 * recently, in which case it should be activated like 953 * any other repeatedly accessed page. 954 * The exception is pages getting rewritten; evicting other 955 * data from the working set, only to cache data that will 956 * get overwritten with something else, is a waste of memory. 957 */ 958 WARN_ON_ONCE(PageActive(page)); 959 if (!(gfp_mask & __GFP_WRITE) && shadow) 960 workingset_refault(page, shadow); 961 lru_cache_add(page); 962 } 963 return ret; 964 } 965 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 966 967 #ifdef CONFIG_NUMA 968 struct page *__page_cache_alloc(gfp_t gfp) 969 { 970 int n; 971 struct page *page; 972 973 if (cpuset_do_page_mem_spread()) { 974 unsigned int cpuset_mems_cookie; 975 do { 976 cpuset_mems_cookie = read_mems_allowed_begin(); 977 n = cpuset_mem_spread_node(); 978 page = __alloc_pages_node(n, gfp, 0); 979 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 980 981 return page; 982 } 983 return alloc_pages(gfp, 0); 984 } 985 EXPORT_SYMBOL(__page_cache_alloc); 986 #endif 987 988 /* 989 * In order to wait for pages to become available there must be 990 * waitqueues associated with pages. By using a hash table of 991 * waitqueues where the bucket discipline is to maintain all 992 * waiters on the same queue and wake all when any of the pages 993 * become available, and for the woken contexts to check to be 994 * sure the appropriate page became available, this saves space 995 * at a cost of "thundering herd" phenomena during rare hash 996 * collisions. 997 */ 998 #define PAGE_WAIT_TABLE_BITS 8 999 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1000 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1001 1002 static wait_queue_head_t *page_waitqueue(struct page *page) 1003 { 1004 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1005 } 1006 1007 void __init pagecache_init(void) 1008 { 1009 int i; 1010 1011 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1012 init_waitqueue_head(&page_wait_table[i]); 1013 1014 page_writeback_init(); 1015 } 1016 1017 /* 1018 * The page wait code treats the "wait->flags" somewhat unusually, because 1019 * we have multiple different kinds of waits, not just the usual "exclusive" 1020 * one. 1021 * 1022 * We have: 1023 * 1024 * (a) no special bits set: 1025 * 1026 * We're just waiting for the bit to be released, and when a waker 1027 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1028 * and remove it from the wait queue. 1029 * 1030 * Simple and straightforward. 1031 * 1032 * (b) WQ_FLAG_EXCLUSIVE: 1033 * 1034 * The waiter is waiting to get the lock, and only one waiter should 1035 * be woken up to avoid any thundering herd behavior. We'll set the 1036 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1037 * 1038 * This is the traditional exclusive wait. 1039 * 1040 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1041 * 1042 * The waiter is waiting to get the bit, and additionally wants the 1043 * lock to be transferred to it for fair lock behavior. If the lock 1044 * cannot be taken, we stop walking the wait queue without waking 1045 * the waiter. 1046 * 1047 * This is the "fair lock handoff" case, and in addition to setting 1048 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1049 * that it now has the lock. 1050 */ 1051 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1052 { 1053 unsigned int flags; 1054 struct wait_page_key *key = arg; 1055 struct wait_page_queue *wait_page 1056 = container_of(wait, struct wait_page_queue, wait); 1057 1058 if (!wake_page_match(wait_page, key)) 1059 return 0; 1060 1061 /* 1062 * If it's a lock handoff wait, we get the bit for it, and 1063 * stop walking (and do not wake it up) if we can't. 1064 */ 1065 flags = wait->flags; 1066 if (flags & WQ_FLAG_EXCLUSIVE) { 1067 if (test_bit(key->bit_nr, &key->page->flags)) 1068 return -1; 1069 if (flags & WQ_FLAG_CUSTOM) { 1070 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1071 return -1; 1072 flags |= WQ_FLAG_DONE; 1073 } 1074 } 1075 1076 /* 1077 * We are holding the wait-queue lock, but the waiter that 1078 * is waiting for this will be checking the flags without 1079 * any locking. 1080 * 1081 * So update the flags atomically, and wake up the waiter 1082 * afterwards to avoid any races. This store-release pairs 1083 * with the load-acquire in wait_on_page_bit_common(). 1084 */ 1085 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1086 wake_up_state(wait->private, mode); 1087 1088 /* 1089 * Ok, we have successfully done what we're waiting for, 1090 * and we can unconditionally remove the wait entry. 1091 * 1092 * Note that this pairs with the "finish_wait()" in the 1093 * waiter, and has to be the absolute last thing we do. 1094 * After this list_del_init(&wait->entry) the wait entry 1095 * might be de-allocated and the process might even have 1096 * exited. 1097 */ 1098 list_del_init_careful(&wait->entry); 1099 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1100 } 1101 1102 static void wake_up_page_bit(struct page *page, int bit_nr) 1103 { 1104 wait_queue_head_t *q = page_waitqueue(page); 1105 struct wait_page_key key; 1106 unsigned long flags; 1107 wait_queue_entry_t bookmark; 1108 1109 key.page = page; 1110 key.bit_nr = bit_nr; 1111 key.page_match = 0; 1112 1113 bookmark.flags = 0; 1114 bookmark.private = NULL; 1115 bookmark.func = NULL; 1116 INIT_LIST_HEAD(&bookmark.entry); 1117 1118 spin_lock_irqsave(&q->lock, flags); 1119 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1120 1121 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1122 /* 1123 * Take a breather from holding the lock, 1124 * allow pages that finish wake up asynchronously 1125 * to acquire the lock and remove themselves 1126 * from wait queue 1127 */ 1128 spin_unlock_irqrestore(&q->lock, flags); 1129 cpu_relax(); 1130 spin_lock_irqsave(&q->lock, flags); 1131 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1132 } 1133 1134 /* 1135 * It is possible for other pages to have collided on the waitqueue 1136 * hash, so in that case check for a page match. That prevents a long- 1137 * term waiter 1138 * 1139 * It is still possible to miss a case here, when we woke page waiters 1140 * and removed them from the waitqueue, but there are still other 1141 * page waiters. 1142 */ 1143 if (!waitqueue_active(q) || !key.page_match) { 1144 ClearPageWaiters(page); 1145 /* 1146 * It's possible to miss clearing Waiters here, when we woke 1147 * our page waiters, but the hashed waitqueue has waiters for 1148 * other pages on it. 1149 * 1150 * That's okay, it's a rare case. The next waker will clear it. 1151 */ 1152 } 1153 spin_unlock_irqrestore(&q->lock, flags); 1154 } 1155 1156 static void wake_up_page(struct page *page, int bit) 1157 { 1158 if (!PageWaiters(page)) 1159 return; 1160 wake_up_page_bit(page, bit); 1161 } 1162 1163 /* 1164 * A choice of three behaviors for wait_on_page_bit_common(): 1165 */ 1166 enum behavior { 1167 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1168 * __lock_page() waiting on then setting PG_locked. 1169 */ 1170 SHARED, /* Hold ref to page and check the bit when woken, like 1171 * wait_on_page_writeback() waiting on PG_writeback. 1172 */ 1173 DROP, /* Drop ref to page before wait, no check when woken, 1174 * like put_and_wait_on_page_locked() on PG_locked. 1175 */ 1176 }; 1177 1178 /* 1179 * Attempt to check (or get) the page bit, and mark us done 1180 * if successful. 1181 */ 1182 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1183 struct wait_queue_entry *wait) 1184 { 1185 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1186 if (test_and_set_bit(bit_nr, &page->flags)) 1187 return false; 1188 } else if (test_bit(bit_nr, &page->flags)) 1189 return false; 1190 1191 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1192 return true; 1193 } 1194 1195 /* How many times do we accept lock stealing from under a waiter? */ 1196 int sysctl_page_lock_unfairness = 5; 1197 1198 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1199 struct page *page, int bit_nr, int state, enum behavior behavior) 1200 { 1201 int unfairness = sysctl_page_lock_unfairness; 1202 struct wait_page_queue wait_page; 1203 wait_queue_entry_t *wait = &wait_page.wait; 1204 bool thrashing = false; 1205 bool delayacct = false; 1206 unsigned long pflags; 1207 1208 if (bit_nr == PG_locked && 1209 !PageUptodate(page) && PageWorkingset(page)) { 1210 if (!PageSwapBacked(page)) { 1211 delayacct_thrashing_start(); 1212 delayacct = true; 1213 } 1214 psi_memstall_enter(&pflags); 1215 thrashing = true; 1216 } 1217 1218 init_wait(wait); 1219 wait->func = wake_page_function; 1220 wait_page.page = page; 1221 wait_page.bit_nr = bit_nr; 1222 1223 repeat: 1224 wait->flags = 0; 1225 if (behavior == EXCLUSIVE) { 1226 wait->flags = WQ_FLAG_EXCLUSIVE; 1227 if (--unfairness < 0) 1228 wait->flags |= WQ_FLAG_CUSTOM; 1229 } 1230 1231 /* 1232 * Do one last check whether we can get the 1233 * page bit synchronously. 1234 * 1235 * Do the SetPageWaiters() marking before that 1236 * to let any waker we _just_ missed know they 1237 * need to wake us up (otherwise they'll never 1238 * even go to the slow case that looks at the 1239 * page queue), and add ourselves to the wait 1240 * queue if we need to sleep. 1241 * 1242 * This part needs to be done under the queue 1243 * lock to avoid races. 1244 */ 1245 spin_lock_irq(&q->lock); 1246 SetPageWaiters(page); 1247 if (!trylock_page_bit_common(page, bit_nr, wait)) 1248 __add_wait_queue_entry_tail(q, wait); 1249 spin_unlock_irq(&q->lock); 1250 1251 /* 1252 * From now on, all the logic will be based on 1253 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1254 * see whether the page bit testing has already 1255 * been done by the wake function. 1256 * 1257 * We can drop our reference to the page. 1258 */ 1259 if (behavior == DROP) 1260 put_page(page); 1261 1262 /* 1263 * Note that until the "finish_wait()", or until 1264 * we see the WQ_FLAG_WOKEN flag, we need to 1265 * be very careful with the 'wait->flags', because 1266 * we may race with a waker that sets them. 1267 */ 1268 for (;;) { 1269 unsigned int flags; 1270 1271 set_current_state(state); 1272 1273 /* Loop until we've been woken or interrupted */ 1274 flags = smp_load_acquire(&wait->flags); 1275 if (!(flags & WQ_FLAG_WOKEN)) { 1276 if (signal_pending_state(state, current)) 1277 break; 1278 1279 io_schedule(); 1280 continue; 1281 } 1282 1283 /* If we were non-exclusive, we're done */ 1284 if (behavior != EXCLUSIVE) 1285 break; 1286 1287 /* If the waker got the lock for us, we're done */ 1288 if (flags & WQ_FLAG_DONE) 1289 break; 1290 1291 /* 1292 * Otherwise, if we're getting the lock, we need to 1293 * try to get it ourselves. 1294 * 1295 * And if that fails, we'll have to retry this all. 1296 */ 1297 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1298 goto repeat; 1299 1300 wait->flags |= WQ_FLAG_DONE; 1301 break; 1302 } 1303 1304 /* 1305 * If a signal happened, this 'finish_wait()' may remove the last 1306 * waiter from the wait-queues, but the PageWaiters bit will remain 1307 * set. That's ok. The next wakeup will take care of it, and trying 1308 * to do it here would be difficult and prone to races. 1309 */ 1310 finish_wait(q, wait); 1311 1312 if (thrashing) { 1313 if (delayacct) 1314 delayacct_thrashing_end(); 1315 psi_memstall_leave(&pflags); 1316 } 1317 1318 /* 1319 * NOTE! The wait->flags weren't stable until we've done the 1320 * 'finish_wait()', and we could have exited the loop above due 1321 * to a signal, and had a wakeup event happen after the signal 1322 * test but before the 'finish_wait()'. 1323 * 1324 * So only after the finish_wait() can we reliably determine 1325 * if we got woken up or not, so we can now figure out the final 1326 * return value based on that state without races. 1327 * 1328 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1329 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1330 */ 1331 if (behavior == EXCLUSIVE) 1332 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1333 1334 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1335 } 1336 1337 void wait_on_page_bit(struct page *page, int bit_nr) 1338 { 1339 wait_queue_head_t *q = page_waitqueue(page); 1340 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1341 } 1342 EXPORT_SYMBOL(wait_on_page_bit); 1343 1344 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1345 { 1346 wait_queue_head_t *q = page_waitqueue(page); 1347 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1348 } 1349 EXPORT_SYMBOL(wait_on_page_bit_killable); 1350 1351 static int __wait_on_page_locked_async(struct page *page, 1352 struct wait_page_queue *wait, bool set) 1353 { 1354 struct wait_queue_head *q = page_waitqueue(page); 1355 int ret = 0; 1356 1357 wait->page = page; 1358 wait->bit_nr = PG_locked; 1359 1360 spin_lock_irq(&q->lock); 1361 __add_wait_queue_entry_tail(q, &wait->wait); 1362 SetPageWaiters(page); 1363 if (set) 1364 ret = !trylock_page(page); 1365 else 1366 ret = PageLocked(page); 1367 /* 1368 * If we were successful now, we know we're still on the 1369 * waitqueue as we're still under the lock. This means it's 1370 * safe to remove and return success, we know the callback 1371 * isn't going to trigger. 1372 */ 1373 if (!ret) 1374 __remove_wait_queue(q, &wait->wait); 1375 else 1376 ret = -EIOCBQUEUED; 1377 spin_unlock_irq(&q->lock); 1378 return ret; 1379 } 1380 1381 static int wait_on_page_locked_async(struct page *page, 1382 struct wait_page_queue *wait) 1383 { 1384 if (!PageLocked(page)) 1385 return 0; 1386 return __wait_on_page_locked_async(compound_head(page), wait, false); 1387 } 1388 1389 /** 1390 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1391 * @page: The page to wait for. 1392 * 1393 * The caller should hold a reference on @page. They expect the page to 1394 * become unlocked relatively soon, but do not wish to hold up migration 1395 * (for example) by holding the reference while waiting for the page to 1396 * come unlocked. After this function returns, the caller should not 1397 * dereference @page. 1398 */ 1399 void put_and_wait_on_page_locked(struct page *page) 1400 { 1401 wait_queue_head_t *q; 1402 1403 page = compound_head(page); 1404 q = page_waitqueue(page); 1405 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1406 } 1407 1408 /** 1409 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1410 * @page: Page defining the wait queue of interest 1411 * @waiter: Waiter to add to the queue 1412 * 1413 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1414 */ 1415 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1416 { 1417 wait_queue_head_t *q = page_waitqueue(page); 1418 unsigned long flags; 1419 1420 spin_lock_irqsave(&q->lock, flags); 1421 __add_wait_queue_entry_tail(q, waiter); 1422 SetPageWaiters(page); 1423 spin_unlock_irqrestore(&q->lock, flags); 1424 } 1425 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1426 1427 #ifndef clear_bit_unlock_is_negative_byte 1428 1429 /* 1430 * PG_waiters is the high bit in the same byte as PG_lock. 1431 * 1432 * On x86 (and on many other architectures), we can clear PG_lock and 1433 * test the sign bit at the same time. But if the architecture does 1434 * not support that special operation, we just do this all by hand 1435 * instead. 1436 * 1437 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1438 * being cleared, but a memory barrier should be unnecessary since it is 1439 * in the same byte as PG_locked. 1440 */ 1441 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1442 { 1443 clear_bit_unlock(nr, mem); 1444 /* smp_mb__after_atomic(); */ 1445 return test_bit(PG_waiters, mem); 1446 } 1447 1448 #endif 1449 1450 /** 1451 * unlock_page - unlock a locked page 1452 * @page: the page 1453 * 1454 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1455 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1456 * mechanism between PageLocked pages and PageWriteback pages is shared. 1457 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1458 * 1459 * Note that this depends on PG_waiters being the sign bit in the byte 1460 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1461 * clear the PG_locked bit and test PG_waiters at the same time fairly 1462 * portably (architectures that do LL/SC can test any bit, while x86 can 1463 * test the sign bit). 1464 */ 1465 void unlock_page(struct page *page) 1466 { 1467 BUILD_BUG_ON(PG_waiters != 7); 1468 page = compound_head(page); 1469 VM_BUG_ON_PAGE(!PageLocked(page), page); 1470 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1471 wake_up_page_bit(page, PG_locked); 1472 } 1473 EXPORT_SYMBOL(unlock_page); 1474 1475 /** 1476 * end_page_writeback - end writeback against a page 1477 * @page: the page 1478 */ 1479 void end_page_writeback(struct page *page) 1480 { 1481 /* 1482 * TestClearPageReclaim could be used here but it is an atomic 1483 * operation and overkill in this particular case. Failing to 1484 * shuffle a page marked for immediate reclaim is too mild to 1485 * justify taking an atomic operation penalty at the end of 1486 * ever page writeback. 1487 */ 1488 if (PageReclaim(page)) { 1489 ClearPageReclaim(page); 1490 rotate_reclaimable_page(page); 1491 } 1492 1493 /* 1494 * Writeback does not hold a page reference of its own, relying 1495 * on truncation to wait for the clearing of PG_writeback. 1496 * But here we must make sure that the page is not freed and 1497 * reused before the wake_up_page(). 1498 */ 1499 get_page(page); 1500 if (!test_clear_page_writeback(page)) 1501 BUG(); 1502 1503 smp_mb__after_atomic(); 1504 wake_up_page(page, PG_writeback); 1505 put_page(page); 1506 } 1507 EXPORT_SYMBOL(end_page_writeback); 1508 1509 /* 1510 * After completing I/O on a page, call this routine to update the page 1511 * flags appropriately 1512 */ 1513 void page_endio(struct page *page, bool is_write, int err) 1514 { 1515 if (!is_write) { 1516 if (!err) { 1517 SetPageUptodate(page); 1518 } else { 1519 ClearPageUptodate(page); 1520 SetPageError(page); 1521 } 1522 unlock_page(page); 1523 } else { 1524 if (err) { 1525 struct address_space *mapping; 1526 1527 SetPageError(page); 1528 mapping = page_mapping(page); 1529 if (mapping) 1530 mapping_set_error(mapping, err); 1531 } 1532 end_page_writeback(page); 1533 } 1534 } 1535 EXPORT_SYMBOL_GPL(page_endio); 1536 1537 /** 1538 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1539 * @__page: the page to lock 1540 */ 1541 void __lock_page(struct page *__page) 1542 { 1543 struct page *page = compound_head(__page); 1544 wait_queue_head_t *q = page_waitqueue(page); 1545 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1546 EXCLUSIVE); 1547 } 1548 EXPORT_SYMBOL(__lock_page); 1549 1550 int __lock_page_killable(struct page *__page) 1551 { 1552 struct page *page = compound_head(__page); 1553 wait_queue_head_t *q = page_waitqueue(page); 1554 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1555 EXCLUSIVE); 1556 } 1557 EXPORT_SYMBOL_GPL(__lock_page_killable); 1558 1559 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1560 { 1561 return __wait_on_page_locked_async(page, wait, true); 1562 } 1563 1564 /* 1565 * Return values: 1566 * 1 - page is locked; mmap_lock is still held. 1567 * 0 - page is not locked. 1568 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1569 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1570 * which case mmap_lock is still held. 1571 * 1572 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1573 * with the page locked and the mmap_lock unperturbed. 1574 */ 1575 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1576 unsigned int flags) 1577 { 1578 if (fault_flag_allow_retry_first(flags)) { 1579 /* 1580 * CAUTION! In this case, mmap_lock is not released 1581 * even though return 0. 1582 */ 1583 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1584 return 0; 1585 1586 mmap_read_unlock(mm); 1587 if (flags & FAULT_FLAG_KILLABLE) 1588 wait_on_page_locked_killable(page); 1589 else 1590 wait_on_page_locked(page); 1591 return 0; 1592 } 1593 if (flags & FAULT_FLAG_KILLABLE) { 1594 int ret; 1595 1596 ret = __lock_page_killable(page); 1597 if (ret) { 1598 mmap_read_unlock(mm); 1599 return 0; 1600 } 1601 } else { 1602 __lock_page(page); 1603 } 1604 return 1; 1605 1606 } 1607 1608 /** 1609 * page_cache_next_miss() - Find the next gap in the page cache. 1610 * @mapping: Mapping. 1611 * @index: Index. 1612 * @max_scan: Maximum range to search. 1613 * 1614 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1615 * gap with the lowest index. 1616 * 1617 * This function may be called under the rcu_read_lock. However, this will 1618 * not atomically search a snapshot of the cache at a single point in time. 1619 * For example, if a gap is created at index 5, then subsequently a gap is 1620 * created at index 10, page_cache_next_miss covering both indices may 1621 * return 10 if called under the rcu_read_lock. 1622 * 1623 * Return: The index of the gap if found, otherwise an index outside the 1624 * range specified (in which case 'return - index >= max_scan' will be true). 1625 * In the rare case of index wrap-around, 0 will be returned. 1626 */ 1627 pgoff_t page_cache_next_miss(struct address_space *mapping, 1628 pgoff_t index, unsigned long max_scan) 1629 { 1630 XA_STATE(xas, &mapping->i_pages, index); 1631 1632 while (max_scan--) { 1633 void *entry = xas_next(&xas); 1634 if (!entry || xa_is_value(entry)) 1635 break; 1636 if (xas.xa_index == 0) 1637 break; 1638 } 1639 1640 return xas.xa_index; 1641 } 1642 EXPORT_SYMBOL(page_cache_next_miss); 1643 1644 /** 1645 * page_cache_prev_miss() - Find the previous gap in the page cache. 1646 * @mapping: Mapping. 1647 * @index: Index. 1648 * @max_scan: Maximum range to search. 1649 * 1650 * Search the range [max(index - max_scan + 1, 0), index] for the 1651 * gap with the highest index. 1652 * 1653 * This function may be called under the rcu_read_lock. However, this will 1654 * not atomically search a snapshot of the cache at a single point in time. 1655 * For example, if a gap is created at index 10, then subsequently a gap is 1656 * created at index 5, page_cache_prev_miss() covering both indices may 1657 * return 5 if called under the rcu_read_lock. 1658 * 1659 * Return: The index of the gap if found, otherwise an index outside the 1660 * range specified (in which case 'index - return >= max_scan' will be true). 1661 * In the rare case of wrap-around, ULONG_MAX will be returned. 1662 */ 1663 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1664 pgoff_t index, unsigned long max_scan) 1665 { 1666 XA_STATE(xas, &mapping->i_pages, index); 1667 1668 while (max_scan--) { 1669 void *entry = xas_prev(&xas); 1670 if (!entry || xa_is_value(entry)) 1671 break; 1672 if (xas.xa_index == ULONG_MAX) 1673 break; 1674 } 1675 1676 return xas.xa_index; 1677 } 1678 EXPORT_SYMBOL(page_cache_prev_miss); 1679 1680 /** 1681 * find_get_entry - find and get a page cache entry 1682 * @mapping: the address_space to search 1683 * @index: The page cache index. 1684 * 1685 * Looks up the page cache slot at @mapping & @offset. If there is a 1686 * page cache page, the head page is returned with an increased refcount. 1687 * 1688 * If the slot holds a shadow entry of a previously evicted page, or a 1689 * swap entry from shmem/tmpfs, it is returned. 1690 * 1691 * Return: The head page or shadow entry, %NULL if nothing is found. 1692 */ 1693 struct page *find_get_entry(struct address_space *mapping, pgoff_t index) 1694 { 1695 XA_STATE(xas, &mapping->i_pages, index); 1696 struct page *page; 1697 1698 rcu_read_lock(); 1699 repeat: 1700 xas_reset(&xas); 1701 page = xas_load(&xas); 1702 if (xas_retry(&xas, page)) 1703 goto repeat; 1704 /* 1705 * A shadow entry of a recently evicted page, or a swap entry from 1706 * shmem/tmpfs. Return it without attempting to raise page count. 1707 */ 1708 if (!page || xa_is_value(page)) 1709 goto out; 1710 1711 if (!page_cache_get_speculative(page)) 1712 goto repeat; 1713 1714 /* 1715 * Has the page moved or been split? 1716 * This is part of the lockless pagecache protocol. See 1717 * include/linux/pagemap.h for details. 1718 */ 1719 if (unlikely(page != xas_reload(&xas))) { 1720 put_page(page); 1721 goto repeat; 1722 } 1723 out: 1724 rcu_read_unlock(); 1725 1726 return page; 1727 } 1728 1729 /** 1730 * find_lock_entry - Locate and lock a page cache entry. 1731 * @mapping: The address_space to search. 1732 * @index: The page cache index. 1733 * 1734 * Looks up the page at @mapping & @index. If there is a page in the 1735 * cache, the head page is returned locked and with an increased refcount. 1736 * 1737 * If the slot holds a shadow entry of a previously evicted page, or a 1738 * swap entry from shmem/tmpfs, it is returned. 1739 * 1740 * Context: May sleep. 1741 * Return: The head page or shadow entry, %NULL if nothing is found. 1742 */ 1743 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index) 1744 { 1745 struct page *page; 1746 1747 repeat: 1748 page = find_get_entry(mapping, index); 1749 if (page && !xa_is_value(page)) { 1750 lock_page(page); 1751 /* Has the page been truncated? */ 1752 if (unlikely(page->mapping != mapping)) { 1753 unlock_page(page); 1754 put_page(page); 1755 goto repeat; 1756 } 1757 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1758 } 1759 return page; 1760 } 1761 1762 /** 1763 * pagecache_get_page - Find and get a reference to a page. 1764 * @mapping: The address_space to search. 1765 * @index: The page index. 1766 * @fgp_flags: %FGP flags modify how the page is returned. 1767 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1768 * 1769 * Looks up the page cache entry at @mapping & @index. 1770 * 1771 * @fgp_flags can be zero or more of these flags: 1772 * 1773 * * %FGP_ACCESSED - The page will be marked accessed. 1774 * * %FGP_LOCK - The page is returned locked. 1775 * * %FGP_HEAD - If the page is present and a THP, return the head page 1776 * rather than the exact page specified by the index. 1777 * * %FGP_CREAT - If no page is present then a new page is allocated using 1778 * @gfp_mask and added to the page cache and the VM's LRU list. 1779 * The page is returned locked and with an increased refcount. 1780 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1781 * page is already in cache. If the page was allocated, unlock it before 1782 * returning so the caller can do the same dance. 1783 * * %FGP_WRITE - The page will be written 1784 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1785 * * %FGP_NOWAIT - Don't get blocked by page lock 1786 * 1787 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1788 * if the %GFP flags specified for %FGP_CREAT are atomic. 1789 * 1790 * If there is a page cache page, it is returned with an increased refcount. 1791 * 1792 * Return: The found page or %NULL otherwise. 1793 */ 1794 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1795 int fgp_flags, gfp_t gfp_mask) 1796 { 1797 struct page *page; 1798 1799 repeat: 1800 page = find_get_entry(mapping, index); 1801 if (xa_is_value(page)) 1802 page = NULL; 1803 if (!page) 1804 goto no_page; 1805 1806 if (fgp_flags & FGP_LOCK) { 1807 if (fgp_flags & FGP_NOWAIT) { 1808 if (!trylock_page(page)) { 1809 put_page(page); 1810 return NULL; 1811 } 1812 } else { 1813 lock_page(page); 1814 } 1815 1816 /* Has the page been truncated? */ 1817 if (unlikely(page->mapping != mapping)) { 1818 unlock_page(page); 1819 put_page(page); 1820 goto repeat; 1821 } 1822 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1823 } 1824 1825 if (fgp_flags & FGP_ACCESSED) 1826 mark_page_accessed(page); 1827 else if (fgp_flags & FGP_WRITE) { 1828 /* Clear idle flag for buffer write */ 1829 if (page_is_idle(page)) 1830 clear_page_idle(page); 1831 } 1832 if (!(fgp_flags & FGP_HEAD)) 1833 page = find_subpage(page, index); 1834 1835 no_page: 1836 if (!page && (fgp_flags & FGP_CREAT)) { 1837 int err; 1838 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1839 gfp_mask |= __GFP_WRITE; 1840 if (fgp_flags & FGP_NOFS) 1841 gfp_mask &= ~__GFP_FS; 1842 1843 page = __page_cache_alloc(gfp_mask); 1844 if (!page) 1845 return NULL; 1846 1847 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1848 fgp_flags |= FGP_LOCK; 1849 1850 /* Init accessed so avoid atomic mark_page_accessed later */ 1851 if (fgp_flags & FGP_ACCESSED) 1852 __SetPageReferenced(page); 1853 1854 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1855 if (unlikely(err)) { 1856 put_page(page); 1857 page = NULL; 1858 if (err == -EEXIST) 1859 goto repeat; 1860 } 1861 1862 /* 1863 * add_to_page_cache_lru locks the page, and for mmap we expect 1864 * an unlocked page. 1865 */ 1866 if (page && (fgp_flags & FGP_FOR_MMAP)) 1867 unlock_page(page); 1868 } 1869 1870 return page; 1871 } 1872 EXPORT_SYMBOL(pagecache_get_page); 1873 1874 /** 1875 * find_get_entries - gang pagecache lookup 1876 * @mapping: The address_space to search 1877 * @start: The starting page cache index 1878 * @nr_entries: The maximum number of entries 1879 * @entries: Where the resulting entries are placed 1880 * @indices: The cache indices corresponding to the entries in @entries 1881 * 1882 * find_get_entries() will search for and return a group of up to 1883 * @nr_entries entries in the mapping. The entries are placed at 1884 * @entries. find_get_entries() takes a reference against any actual 1885 * pages it returns. 1886 * 1887 * The search returns a group of mapping-contiguous page cache entries 1888 * with ascending indexes. There may be holes in the indices due to 1889 * not-present pages. 1890 * 1891 * Any shadow entries of evicted pages, or swap entries from 1892 * shmem/tmpfs, are included in the returned array. 1893 * 1894 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1895 * stops at that page: the caller is likely to have a better way to handle 1896 * the compound page as a whole, and then skip its extent, than repeatedly 1897 * calling find_get_entries() to return all its tails. 1898 * 1899 * Return: the number of pages and shadow entries which were found. 1900 */ 1901 unsigned find_get_entries(struct address_space *mapping, 1902 pgoff_t start, unsigned int nr_entries, 1903 struct page **entries, pgoff_t *indices) 1904 { 1905 XA_STATE(xas, &mapping->i_pages, start); 1906 struct page *page; 1907 unsigned int ret = 0; 1908 1909 if (!nr_entries) 1910 return 0; 1911 1912 rcu_read_lock(); 1913 xas_for_each(&xas, page, ULONG_MAX) { 1914 if (xas_retry(&xas, page)) 1915 continue; 1916 /* 1917 * A shadow entry of a recently evicted page, a swap 1918 * entry from shmem/tmpfs or a DAX entry. Return it 1919 * without attempting to raise page count. 1920 */ 1921 if (xa_is_value(page)) 1922 goto export; 1923 1924 if (!page_cache_get_speculative(page)) 1925 goto retry; 1926 1927 /* Has the page moved or been split? */ 1928 if (unlikely(page != xas_reload(&xas))) 1929 goto put_page; 1930 1931 /* 1932 * Terminate early on finding a THP, to allow the caller to 1933 * handle it all at once; but continue if this is hugetlbfs. 1934 */ 1935 if (PageTransHuge(page) && !PageHuge(page)) { 1936 page = find_subpage(page, xas.xa_index); 1937 nr_entries = ret + 1; 1938 } 1939 export: 1940 indices[ret] = xas.xa_index; 1941 entries[ret] = page; 1942 if (++ret == nr_entries) 1943 break; 1944 continue; 1945 put_page: 1946 put_page(page); 1947 retry: 1948 xas_reset(&xas); 1949 } 1950 rcu_read_unlock(); 1951 return ret; 1952 } 1953 1954 /** 1955 * find_get_pages_range - gang pagecache lookup 1956 * @mapping: The address_space to search 1957 * @start: The starting page index 1958 * @end: The final page index (inclusive) 1959 * @nr_pages: The maximum number of pages 1960 * @pages: Where the resulting pages are placed 1961 * 1962 * find_get_pages_range() will search for and return a group of up to @nr_pages 1963 * pages in the mapping starting at index @start and up to index @end 1964 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1965 * a reference against the returned pages. 1966 * 1967 * The search returns a group of mapping-contiguous pages with ascending 1968 * indexes. There may be holes in the indices due to not-present pages. 1969 * We also update @start to index the next page for the traversal. 1970 * 1971 * Return: the number of pages which were found. If this number is 1972 * smaller than @nr_pages, the end of specified range has been 1973 * reached. 1974 */ 1975 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1976 pgoff_t end, unsigned int nr_pages, 1977 struct page **pages) 1978 { 1979 XA_STATE(xas, &mapping->i_pages, *start); 1980 struct page *page; 1981 unsigned ret = 0; 1982 1983 if (unlikely(!nr_pages)) 1984 return 0; 1985 1986 rcu_read_lock(); 1987 xas_for_each(&xas, page, end) { 1988 if (xas_retry(&xas, page)) 1989 continue; 1990 /* Skip over shadow, swap and DAX entries */ 1991 if (xa_is_value(page)) 1992 continue; 1993 1994 if (!page_cache_get_speculative(page)) 1995 goto retry; 1996 1997 /* Has the page moved or been split? */ 1998 if (unlikely(page != xas_reload(&xas))) 1999 goto put_page; 2000 2001 pages[ret] = find_subpage(page, xas.xa_index); 2002 if (++ret == nr_pages) { 2003 *start = xas.xa_index + 1; 2004 goto out; 2005 } 2006 continue; 2007 put_page: 2008 put_page(page); 2009 retry: 2010 xas_reset(&xas); 2011 } 2012 2013 /* 2014 * We come here when there is no page beyond @end. We take care to not 2015 * overflow the index @start as it confuses some of the callers. This 2016 * breaks the iteration when there is a page at index -1 but that is 2017 * already broken anyway. 2018 */ 2019 if (end == (pgoff_t)-1) 2020 *start = (pgoff_t)-1; 2021 else 2022 *start = end + 1; 2023 out: 2024 rcu_read_unlock(); 2025 2026 return ret; 2027 } 2028 2029 /** 2030 * find_get_pages_contig - gang contiguous pagecache lookup 2031 * @mapping: The address_space to search 2032 * @index: The starting page index 2033 * @nr_pages: The maximum number of pages 2034 * @pages: Where the resulting pages are placed 2035 * 2036 * find_get_pages_contig() works exactly like find_get_pages(), except 2037 * that the returned number of pages are guaranteed to be contiguous. 2038 * 2039 * Return: the number of pages which were found. 2040 */ 2041 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2042 unsigned int nr_pages, struct page **pages) 2043 { 2044 XA_STATE(xas, &mapping->i_pages, index); 2045 struct page *page; 2046 unsigned int ret = 0; 2047 2048 if (unlikely(!nr_pages)) 2049 return 0; 2050 2051 rcu_read_lock(); 2052 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2053 if (xas_retry(&xas, page)) 2054 continue; 2055 /* 2056 * If the entry has been swapped out, we can stop looking. 2057 * No current caller is looking for DAX entries. 2058 */ 2059 if (xa_is_value(page)) 2060 break; 2061 2062 if (!page_cache_get_speculative(page)) 2063 goto retry; 2064 2065 /* Has the page moved or been split? */ 2066 if (unlikely(page != xas_reload(&xas))) 2067 goto put_page; 2068 2069 pages[ret] = find_subpage(page, xas.xa_index); 2070 if (++ret == nr_pages) 2071 break; 2072 continue; 2073 put_page: 2074 put_page(page); 2075 retry: 2076 xas_reset(&xas); 2077 } 2078 rcu_read_unlock(); 2079 return ret; 2080 } 2081 EXPORT_SYMBOL(find_get_pages_contig); 2082 2083 /** 2084 * find_get_pages_range_tag - find and return pages in given range matching @tag 2085 * @mapping: the address_space to search 2086 * @index: the starting page index 2087 * @end: The final page index (inclusive) 2088 * @tag: the tag index 2089 * @nr_pages: the maximum number of pages 2090 * @pages: where the resulting pages are placed 2091 * 2092 * Like find_get_pages, except we only return pages which are tagged with 2093 * @tag. We update @index to index the next page for the traversal. 2094 * 2095 * Return: the number of pages which were found. 2096 */ 2097 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2098 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2099 struct page **pages) 2100 { 2101 XA_STATE(xas, &mapping->i_pages, *index); 2102 struct page *page; 2103 unsigned ret = 0; 2104 2105 if (unlikely(!nr_pages)) 2106 return 0; 2107 2108 rcu_read_lock(); 2109 xas_for_each_marked(&xas, page, end, tag) { 2110 if (xas_retry(&xas, page)) 2111 continue; 2112 /* 2113 * Shadow entries should never be tagged, but this iteration 2114 * is lockless so there is a window for page reclaim to evict 2115 * a page we saw tagged. Skip over it. 2116 */ 2117 if (xa_is_value(page)) 2118 continue; 2119 2120 if (!page_cache_get_speculative(page)) 2121 goto retry; 2122 2123 /* Has the page moved or been split? */ 2124 if (unlikely(page != xas_reload(&xas))) 2125 goto put_page; 2126 2127 pages[ret] = find_subpage(page, xas.xa_index); 2128 if (++ret == nr_pages) { 2129 *index = xas.xa_index + 1; 2130 goto out; 2131 } 2132 continue; 2133 put_page: 2134 put_page(page); 2135 retry: 2136 xas_reset(&xas); 2137 } 2138 2139 /* 2140 * We come here when we got to @end. We take care to not overflow the 2141 * index @index as it confuses some of the callers. This breaks the 2142 * iteration when there is a page at index -1 but that is already 2143 * broken anyway. 2144 */ 2145 if (end == (pgoff_t)-1) 2146 *index = (pgoff_t)-1; 2147 else 2148 *index = end + 1; 2149 out: 2150 rcu_read_unlock(); 2151 2152 return ret; 2153 } 2154 EXPORT_SYMBOL(find_get_pages_range_tag); 2155 2156 /* 2157 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2158 * a _large_ part of the i/o request. Imagine the worst scenario: 2159 * 2160 * ---R__________________________________________B__________ 2161 * ^ reading here ^ bad block(assume 4k) 2162 * 2163 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2164 * => failing the whole request => read(R) => read(R+1) => 2165 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2166 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2167 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2168 * 2169 * It is going insane. Fix it by quickly scaling down the readahead size. 2170 */ 2171 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2172 { 2173 ra->ra_pages /= 4; 2174 } 2175 2176 static int lock_page_for_iocb(struct kiocb *iocb, struct page *page) 2177 { 2178 if (iocb->ki_flags & IOCB_WAITQ) 2179 return lock_page_async(page, iocb->ki_waitq); 2180 else if (iocb->ki_flags & IOCB_NOWAIT) 2181 return trylock_page(page) ? 0 : -EAGAIN; 2182 else 2183 return lock_page_killable(page); 2184 } 2185 2186 static struct page * 2187 generic_file_buffered_read_readpage(struct kiocb *iocb, 2188 struct file *filp, 2189 struct address_space *mapping, 2190 struct page *page) 2191 { 2192 struct file_ra_state *ra = &filp->f_ra; 2193 int error; 2194 2195 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) { 2196 unlock_page(page); 2197 put_page(page); 2198 return ERR_PTR(-EAGAIN); 2199 } 2200 2201 /* 2202 * A previous I/O error may have been due to temporary 2203 * failures, eg. multipath errors. 2204 * PG_error will be set again if readpage fails. 2205 */ 2206 ClearPageError(page); 2207 /* Start the actual read. The read will unlock the page. */ 2208 error = mapping->a_ops->readpage(filp, page); 2209 2210 if (unlikely(error)) { 2211 put_page(page); 2212 return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL; 2213 } 2214 2215 if (!PageUptodate(page)) { 2216 error = lock_page_for_iocb(iocb, page); 2217 if (unlikely(error)) { 2218 put_page(page); 2219 return ERR_PTR(error); 2220 } 2221 if (!PageUptodate(page)) { 2222 if (page->mapping == NULL) { 2223 /* 2224 * invalidate_mapping_pages got it 2225 */ 2226 unlock_page(page); 2227 put_page(page); 2228 return NULL; 2229 } 2230 unlock_page(page); 2231 shrink_readahead_size_eio(ra); 2232 put_page(page); 2233 return ERR_PTR(-EIO); 2234 } 2235 unlock_page(page); 2236 } 2237 2238 return page; 2239 } 2240 2241 static struct page * 2242 generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb, 2243 struct file *filp, 2244 struct iov_iter *iter, 2245 struct page *page, 2246 loff_t pos, loff_t count) 2247 { 2248 struct address_space *mapping = filp->f_mapping; 2249 struct inode *inode = mapping->host; 2250 int error; 2251 2252 /* 2253 * See comment in do_read_cache_page on why 2254 * wait_on_page_locked is used to avoid unnecessarily 2255 * serialisations and why it's safe. 2256 */ 2257 if (iocb->ki_flags & IOCB_WAITQ) { 2258 error = wait_on_page_locked_async(page, 2259 iocb->ki_waitq); 2260 } else { 2261 error = wait_on_page_locked_killable(page); 2262 } 2263 if (unlikely(error)) { 2264 put_page(page); 2265 return ERR_PTR(error); 2266 } 2267 if (PageUptodate(page)) 2268 return page; 2269 2270 if (inode->i_blkbits == PAGE_SHIFT || 2271 !mapping->a_ops->is_partially_uptodate) 2272 goto page_not_up_to_date; 2273 /* pipes can't handle partially uptodate pages */ 2274 if (unlikely(iov_iter_is_pipe(iter))) 2275 goto page_not_up_to_date; 2276 if (!trylock_page(page)) 2277 goto page_not_up_to_date; 2278 /* Did it get truncated before we got the lock? */ 2279 if (!page->mapping) 2280 goto page_not_up_to_date_locked; 2281 if (!mapping->a_ops->is_partially_uptodate(page, 2282 pos & ~PAGE_MASK, count)) 2283 goto page_not_up_to_date_locked; 2284 unlock_page(page); 2285 return page; 2286 2287 page_not_up_to_date: 2288 /* Get exclusive access to the page ... */ 2289 error = lock_page_for_iocb(iocb, page); 2290 if (unlikely(error)) { 2291 put_page(page); 2292 return ERR_PTR(error); 2293 } 2294 2295 page_not_up_to_date_locked: 2296 /* Did it get truncated before we got the lock? */ 2297 if (!page->mapping) { 2298 unlock_page(page); 2299 put_page(page); 2300 return NULL; 2301 } 2302 2303 /* Did somebody else fill it already? */ 2304 if (PageUptodate(page)) { 2305 unlock_page(page); 2306 return page; 2307 } 2308 2309 return generic_file_buffered_read_readpage(iocb, filp, mapping, page); 2310 } 2311 2312 static struct page * 2313 generic_file_buffered_read_no_cached_page(struct kiocb *iocb, 2314 struct iov_iter *iter) 2315 { 2316 struct file *filp = iocb->ki_filp; 2317 struct address_space *mapping = filp->f_mapping; 2318 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2319 struct page *page; 2320 int error; 2321 2322 if (iocb->ki_flags & IOCB_NOIO) 2323 return ERR_PTR(-EAGAIN); 2324 2325 /* 2326 * Ok, it wasn't cached, so we need to create a new 2327 * page.. 2328 */ 2329 page = page_cache_alloc(mapping); 2330 if (!page) 2331 return ERR_PTR(-ENOMEM); 2332 2333 error = add_to_page_cache_lru(page, mapping, index, 2334 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2335 if (error) { 2336 put_page(page); 2337 return error != -EEXIST ? ERR_PTR(error) : NULL; 2338 } 2339 2340 return generic_file_buffered_read_readpage(iocb, filp, mapping, page); 2341 } 2342 2343 static int generic_file_buffered_read_get_pages(struct kiocb *iocb, 2344 struct iov_iter *iter, 2345 struct page **pages, 2346 unsigned int nr) 2347 { 2348 struct file *filp = iocb->ki_filp; 2349 struct address_space *mapping = filp->f_mapping; 2350 struct file_ra_state *ra = &filp->f_ra; 2351 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2352 pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2353 int i, j, nr_got, err = 0; 2354 2355 nr = min_t(unsigned long, last_index - index, nr); 2356 find_page: 2357 if (fatal_signal_pending(current)) 2358 return -EINTR; 2359 2360 nr_got = find_get_pages_contig(mapping, index, nr, pages); 2361 if (nr_got) 2362 goto got_pages; 2363 2364 if (iocb->ki_flags & IOCB_NOIO) 2365 return -EAGAIN; 2366 2367 page_cache_sync_readahead(mapping, ra, filp, index, last_index - index); 2368 2369 nr_got = find_get_pages_contig(mapping, index, nr, pages); 2370 if (nr_got) 2371 goto got_pages; 2372 2373 pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter); 2374 err = PTR_ERR_OR_ZERO(pages[0]); 2375 if (!IS_ERR_OR_NULL(pages[0])) 2376 nr_got = 1; 2377 got_pages: 2378 for (i = 0; i < nr_got; i++) { 2379 struct page *page = pages[i]; 2380 pgoff_t pg_index = index + i; 2381 loff_t pg_pos = max(iocb->ki_pos, 2382 (loff_t) pg_index << PAGE_SHIFT); 2383 loff_t pg_count = iocb->ki_pos + iter->count - pg_pos; 2384 2385 if (PageReadahead(page)) { 2386 if (iocb->ki_flags & IOCB_NOIO) { 2387 for (j = i; j < nr_got; j++) 2388 put_page(pages[j]); 2389 nr_got = i; 2390 err = -EAGAIN; 2391 break; 2392 } 2393 page_cache_async_readahead(mapping, ra, filp, page, 2394 pg_index, last_index - pg_index); 2395 } 2396 2397 if (!PageUptodate(page)) { 2398 if ((iocb->ki_flags & IOCB_NOWAIT) || 2399 ((iocb->ki_flags & IOCB_WAITQ) && i)) { 2400 for (j = i; j < nr_got; j++) 2401 put_page(pages[j]); 2402 nr_got = i; 2403 err = -EAGAIN; 2404 break; 2405 } 2406 2407 page = generic_file_buffered_read_pagenotuptodate(iocb, 2408 filp, iter, page, pg_pos, pg_count); 2409 if (IS_ERR_OR_NULL(page)) { 2410 for (j = i + 1; j < nr_got; j++) 2411 put_page(pages[j]); 2412 nr_got = i; 2413 err = PTR_ERR_OR_ZERO(page); 2414 break; 2415 } 2416 } 2417 } 2418 2419 if (likely(nr_got)) 2420 return nr_got; 2421 if (err) 2422 return err; 2423 /* 2424 * No pages and no error means we raced and should retry: 2425 */ 2426 goto find_page; 2427 } 2428 2429 /** 2430 * generic_file_buffered_read - generic file read routine 2431 * @iocb: the iocb to read 2432 * @iter: data destination 2433 * @written: already copied 2434 * 2435 * This is a generic file read routine, and uses the 2436 * mapping->a_ops->readpage() function for the actual low-level stuff. 2437 * 2438 * This is really ugly. But the goto's actually try to clarify some 2439 * of the logic when it comes to error handling etc. 2440 * 2441 * Return: 2442 * * total number of bytes copied, including those the were already @written 2443 * * negative error code if nothing was copied 2444 */ 2445 ssize_t generic_file_buffered_read(struct kiocb *iocb, 2446 struct iov_iter *iter, ssize_t written) 2447 { 2448 struct file *filp = iocb->ki_filp; 2449 struct file_ra_state *ra = &filp->f_ra; 2450 struct address_space *mapping = filp->f_mapping; 2451 struct inode *inode = mapping->host; 2452 struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL; 2453 unsigned int nr_pages = min_t(unsigned int, 512, 2454 ((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) - 2455 (iocb->ki_pos >> PAGE_SHIFT)); 2456 int i, pg_nr, error = 0; 2457 bool writably_mapped; 2458 loff_t isize, end_offset; 2459 2460 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2461 return 0; 2462 if (unlikely(!iov_iter_count(iter))) 2463 return 0; 2464 2465 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2466 2467 if (nr_pages > ARRAY_SIZE(pages_onstack)) 2468 pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); 2469 2470 if (!pages) { 2471 pages = pages_onstack; 2472 nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack)); 2473 } 2474 2475 do { 2476 cond_resched(); 2477 2478 /* 2479 * If we've already successfully copied some data, then we 2480 * can no longer safely return -EIOCBQUEUED. Hence mark 2481 * an async read NOWAIT at that point. 2482 */ 2483 if ((iocb->ki_flags & IOCB_WAITQ) && written) 2484 iocb->ki_flags |= IOCB_NOWAIT; 2485 2486 i = 0; 2487 pg_nr = generic_file_buffered_read_get_pages(iocb, iter, 2488 pages, nr_pages); 2489 if (pg_nr < 0) { 2490 error = pg_nr; 2491 break; 2492 } 2493 2494 /* 2495 * i_size must be checked after we know the pages are Uptodate. 2496 * 2497 * Checking i_size after the check allows us to calculate 2498 * the correct value for "nr", which means the zero-filled 2499 * part of the page is not copied back to userspace (unless 2500 * another truncate extends the file - this is desired though). 2501 */ 2502 isize = i_size_read(inode); 2503 if (unlikely(iocb->ki_pos >= isize)) 2504 goto put_pages; 2505 2506 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2507 2508 while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr > 2509 (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT) 2510 put_page(pages[--pg_nr]); 2511 2512 /* 2513 * Once we start copying data, we don't want to be touching any 2514 * cachelines that might be contended: 2515 */ 2516 writably_mapped = mapping_writably_mapped(mapping); 2517 2518 /* 2519 * When a sequential read accesses a page several times, only 2520 * mark it as accessed the first time. 2521 */ 2522 if (iocb->ki_pos >> PAGE_SHIFT != 2523 ra->prev_pos >> PAGE_SHIFT) 2524 mark_page_accessed(pages[0]); 2525 for (i = 1; i < pg_nr; i++) 2526 mark_page_accessed(pages[i]); 2527 2528 for (i = 0; i < pg_nr; i++) { 2529 unsigned int offset = iocb->ki_pos & ~PAGE_MASK; 2530 unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2531 PAGE_SIZE - offset); 2532 unsigned int copied; 2533 2534 /* 2535 * If users can be writing to this page using arbitrary 2536 * virtual addresses, take care about potential aliasing 2537 * before reading the page on the kernel side. 2538 */ 2539 if (writably_mapped) 2540 flush_dcache_page(pages[i]); 2541 2542 copied = copy_page_to_iter(pages[i], offset, bytes, iter); 2543 2544 written += copied; 2545 iocb->ki_pos += copied; 2546 ra->prev_pos = iocb->ki_pos; 2547 2548 if (copied < bytes) { 2549 error = -EFAULT; 2550 break; 2551 } 2552 } 2553 put_pages: 2554 for (i = 0; i < pg_nr; i++) 2555 put_page(pages[i]); 2556 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2557 2558 file_accessed(filp); 2559 2560 if (pages != pages_onstack) 2561 kfree(pages); 2562 2563 return written ? written : error; 2564 } 2565 EXPORT_SYMBOL_GPL(generic_file_buffered_read); 2566 2567 /** 2568 * generic_file_read_iter - generic filesystem read routine 2569 * @iocb: kernel I/O control block 2570 * @iter: destination for the data read 2571 * 2572 * This is the "read_iter()" routine for all filesystems 2573 * that can use the page cache directly. 2574 * 2575 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2576 * be returned when no data can be read without waiting for I/O requests 2577 * to complete; it doesn't prevent readahead. 2578 * 2579 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2580 * requests shall be made for the read or for readahead. When no data 2581 * can be read, -EAGAIN shall be returned. When readahead would be 2582 * triggered, a partial, possibly empty read shall be returned. 2583 * 2584 * Return: 2585 * * number of bytes copied, even for partial reads 2586 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2587 */ 2588 ssize_t 2589 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2590 { 2591 size_t count = iov_iter_count(iter); 2592 ssize_t retval = 0; 2593 2594 if (!count) 2595 goto out; /* skip atime */ 2596 2597 if (iocb->ki_flags & IOCB_DIRECT) { 2598 struct file *file = iocb->ki_filp; 2599 struct address_space *mapping = file->f_mapping; 2600 struct inode *inode = mapping->host; 2601 loff_t size; 2602 2603 size = i_size_read(inode); 2604 if (iocb->ki_flags & IOCB_NOWAIT) { 2605 if (filemap_range_has_page(mapping, iocb->ki_pos, 2606 iocb->ki_pos + count - 1)) 2607 return -EAGAIN; 2608 } else { 2609 retval = filemap_write_and_wait_range(mapping, 2610 iocb->ki_pos, 2611 iocb->ki_pos + count - 1); 2612 if (retval < 0) 2613 goto out; 2614 } 2615 2616 file_accessed(file); 2617 2618 retval = mapping->a_ops->direct_IO(iocb, iter); 2619 if (retval >= 0) { 2620 iocb->ki_pos += retval; 2621 count -= retval; 2622 } 2623 iov_iter_revert(iter, count - iov_iter_count(iter)); 2624 2625 /* 2626 * Btrfs can have a short DIO read if we encounter 2627 * compressed extents, so if there was an error, or if 2628 * we've already read everything we wanted to, or if 2629 * there was a short read because we hit EOF, go ahead 2630 * and return. Otherwise fallthrough to buffered io for 2631 * the rest of the read. Buffered reads will not work for 2632 * DAX files, so don't bother trying. 2633 */ 2634 if (retval < 0 || !count || iocb->ki_pos >= size || 2635 IS_DAX(inode)) 2636 goto out; 2637 } 2638 2639 retval = generic_file_buffered_read(iocb, iter, retval); 2640 out: 2641 return retval; 2642 } 2643 EXPORT_SYMBOL(generic_file_read_iter); 2644 2645 #ifdef CONFIG_MMU 2646 #define MMAP_LOTSAMISS (100) 2647 /* 2648 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2649 * @vmf - the vm_fault for this fault. 2650 * @page - the page to lock. 2651 * @fpin - the pointer to the file we may pin (or is already pinned). 2652 * 2653 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2654 * It differs in that it actually returns the page locked if it returns 1 and 0 2655 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2656 * will point to the pinned file and needs to be fput()'ed at a later point. 2657 */ 2658 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2659 struct file **fpin) 2660 { 2661 if (trylock_page(page)) 2662 return 1; 2663 2664 /* 2665 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2666 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2667 * is supposed to work. We have way too many special cases.. 2668 */ 2669 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2670 return 0; 2671 2672 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2673 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2674 if (__lock_page_killable(page)) { 2675 /* 2676 * We didn't have the right flags to drop the mmap_lock, 2677 * but all fault_handlers only check for fatal signals 2678 * if we return VM_FAULT_RETRY, so we need to drop the 2679 * mmap_lock here and return 0 if we don't have a fpin. 2680 */ 2681 if (*fpin == NULL) 2682 mmap_read_unlock(vmf->vma->vm_mm); 2683 return 0; 2684 } 2685 } else 2686 __lock_page(page); 2687 return 1; 2688 } 2689 2690 2691 /* 2692 * Synchronous readahead happens when we don't even find a page in the page 2693 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2694 * to drop the mmap sem we return the file that was pinned in order for us to do 2695 * that. If we didn't pin a file then we return NULL. The file that is 2696 * returned needs to be fput()'ed when we're done with it. 2697 */ 2698 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2699 { 2700 struct file *file = vmf->vma->vm_file; 2701 struct file_ra_state *ra = &file->f_ra; 2702 struct address_space *mapping = file->f_mapping; 2703 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff); 2704 struct file *fpin = NULL; 2705 unsigned int mmap_miss; 2706 2707 /* If we don't want any read-ahead, don't bother */ 2708 if (vmf->vma->vm_flags & VM_RAND_READ) 2709 return fpin; 2710 if (!ra->ra_pages) 2711 return fpin; 2712 2713 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2714 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2715 page_cache_sync_ra(&ractl, ra, ra->ra_pages); 2716 return fpin; 2717 } 2718 2719 /* Avoid banging the cache line if not needed */ 2720 mmap_miss = READ_ONCE(ra->mmap_miss); 2721 if (mmap_miss < MMAP_LOTSAMISS * 10) 2722 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2723 2724 /* 2725 * Do we miss much more than hit in this file? If so, 2726 * stop bothering with read-ahead. It will only hurt. 2727 */ 2728 if (mmap_miss > MMAP_LOTSAMISS) 2729 return fpin; 2730 2731 /* 2732 * mmap read-around 2733 */ 2734 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2735 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2736 ra->size = ra->ra_pages; 2737 ra->async_size = ra->ra_pages / 4; 2738 ractl._index = ra->start; 2739 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2740 return fpin; 2741 } 2742 2743 /* 2744 * Asynchronous readahead happens when we find the page and PG_readahead, 2745 * so we want to possibly extend the readahead further. We return the file that 2746 * was pinned if we have to drop the mmap_lock in order to do IO. 2747 */ 2748 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2749 struct page *page) 2750 { 2751 struct file *file = vmf->vma->vm_file; 2752 struct file_ra_state *ra = &file->f_ra; 2753 struct address_space *mapping = file->f_mapping; 2754 struct file *fpin = NULL; 2755 unsigned int mmap_miss; 2756 pgoff_t offset = vmf->pgoff; 2757 2758 /* If we don't want any read-ahead, don't bother */ 2759 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2760 return fpin; 2761 mmap_miss = READ_ONCE(ra->mmap_miss); 2762 if (mmap_miss) 2763 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2764 if (PageReadahead(page)) { 2765 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2766 page_cache_async_readahead(mapping, ra, file, 2767 page, offset, ra->ra_pages); 2768 } 2769 return fpin; 2770 } 2771 2772 /** 2773 * filemap_fault - read in file data for page fault handling 2774 * @vmf: struct vm_fault containing details of the fault 2775 * 2776 * filemap_fault() is invoked via the vma operations vector for a 2777 * mapped memory region to read in file data during a page fault. 2778 * 2779 * The goto's are kind of ugly, but this streamlines the normal case of having 2780 * it in the page cache, and handles the special cases reasonably without 2781 * having a lot of duplicated code. 2782 * 2783 * vma->vm_mm->mmap_lock must be held on entry. 2784 * 2785 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2786 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2787 * 2788 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2789 * has not been released. 2790 * 2791 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2792 * 2793 * Return: bitwise-OR of %VM_FAULT_ codes. 2794 */ 2795 vm_fault_t filemap_fault(struct vm_fault *vmf) 2796 { 2797 int error; 2798 struct file *file = vmf->vma->vm_file; 2799 struct file *fpin = NULL; 2800 struct address_space *mapping = file->f_mapping; 2801 struct file_ra_state *ra = &file->f_ra; 2802 struct inode *inode = mapping->host; 2803 pgoff_t offset = vmf->pgoff; 2804 pgoff_t max_off; 2805 struct page *page; 2806 vm_fault_t ret = 0; 2807 2808 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2809 if (unlikely(offset >= max_off)) 2810 return VM_FAULT_SIGBUS; 2811 2812 /* 2813 * Do we have something in the page cache already? 2814 */ 2815 page = find_get_page(mapping, offset); 2816 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2817 /* 2818 * We found the page, so try async readahead before 2819 * waiting for the lock. 2820 */ 2821 fpin = do_async_mmap_readahead(vmf, page); 2822 } else if (!page) { 2823 /* No page in the page cache at all */ 2824 count_vm_event(PGMAJFAULT); 2825 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2826 ret = VM_FAULT_MAJOR; 2827 fpin = do_sync_mmap_readahead(vmf); 2828 retry_find: 2829 page = pagecache_get_page(mapping, offset, 2830 FGP_CREAT|FGP_FOR_MMAP, 2831 vmf->gfp_mask); 2832 if (!page) { 2833 if (fpin) 2834 goto out_retry; 2835 return VM_FAULT_OOM; 2836 } 2837 } 2838 2839 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2840 goto out_retry; 2841 2842 /* Did it get truncated? */ 2843 if (unlikely(compound_head(page)->mapping != mapping)) { 2844 unlock_page(page); 2845 put_page(page); 2846 goto retry_find; 2847 } 2848 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2849 2850 /* 2851 * We have a locked page in the page cache, now we need to check 2852 * that it's up-to-date. If not, it is going to be due to an error. 2853 */ 2854 if (unlikely(!PageUptodate(page))) 2855 goto page_not_uptodate; 2856 2857 /* 2858 * We've made it this far and we had to drop our mmap_lock, now is the 2859 * time to return to the upper layer and have it re-find the vma and 2860 * redo the fault. 2861 */ 2862 if (fpin) { 2863 unlock_page(page); 2864 goto out_retry; 2865 } 2866 2867 /* 2868 * Found the page and have a reference on it. 2869 * We must recheck i_size under page lock. 2870 */ 2871 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2872 if (unlikely(offset >= max_off)) { 2873 unlock_page(page); 2874 put_page(page); 2875 return VM_FAULT_SIGBUS; 2876 } 2877 2878 vmf->page = page; 2879 return ret | VM_FAULT_LOCKED; 2880 2881 page_not_uptodate: 2882 /* 2883 * Umm, take care of errors if the page isn't up-to-date. 2884 * Try to re-read it _once_. We do this synchronously, 2885 * because there really aren't any performance issues here 2886 * and we need to check for errors. 2887 */ 2888 ClearPageError(page); 2889 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2890 error = mapping->a_ops->readpage(file, page); 2891 if (!error) { 2892 wait_on_page_locked(page); 2893 if (!PageUptodate(page)) 2894 error = -EIO; 2895 } 2896 if (fpin) 2897 goto out_retry; 2898 put_page(page); 2899 2900 if (!error || error == AOP_TRUNCATED_PAGE) 2901 goto retry_find; 2902 2903 shrink_readahead_size_eio(ra); 2904 return VM_FAULT_SIGBUS; 2905 2906 out_retry: 2907 /* 2908 * We dropped the mmap_lock, we need to return to the fault handler to 2909 * re-find the vma and come back and find our hopefully still populated 2910 * page. 2911 */ 2912 if (page) 2913 put_page(page); 2914 if (fpin) 2915 fput(fpin); 2916 return ret | VM_FAULT_RETRY; 2917 } 2918 EXPORT_SYMBOL(filemap_fault); 2919 2920 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 2921 { 2922 struct mm_struct *mm = vmf->vma->vm_mm; 2923 2924 /* Huge page is mapped? No need to proceed. */ 2925 if (pmd_trans_huge(*vmf->pmd)) { 2926 unlock_page(page); 2927 put_page(page); 2928 return true; 2929 } 2930 2931 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 2932 vm_fault_t ret = do_set_pmd(vmf, page); 2933 if (!ret) { 2934 /* The page is mapped successfully, reference consumed. */ 2935 unlock_page(page); 2936 return true; 2937 } 2938 } 2939 2940 if (pmd_none(*vmf->pmd)) { 2941 vmf->ptl = pmd_lock(mm, vmf->pmd); 2942 if (likely(pmd_none(*vmf->pmd))) { 2943 mm_inc_nr_ptes(mm); 2944 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte); 2945 vmf->prealloc_pte = NULL; 2946 } 2947 spin_unlock(vmf->ptl); 2948 } 2949 2950 /* See comment in handle_pte_fault() */ 2951 if (pmd_devmap_trans_unstable(vmf->pmd)) { 2952 unlock_page(page); 2953 put_page(page); 2954 return true; 2955 } 2956 2957 return false; 2958 } 2959 2960 static struct page *next_uptodate_page(struct page *page, 2961 struct address_space *mapping, 2962 struct xa_state *xas, pgoff_t end_pgoff) 2963 { 2964 unsigned long max_idx; 2965 2966 do { 2967 if (!page) 2968 return NULL; 2969 if (xas_retry(xas, page)) 2970 continue; 2971 if (xa_is_value(page)) 2972 continue; 2973 if (PageLocked(page)) 2974 continue; 2975 if (!page_cache_get_speculative(page)) 2976 continue; 2977 /* Has the page moved or been split? */ 2978 if (unlikely(page != xas_reload(xas))) 2979 goto skip; 2980 if (!PageUptodate(page) || PageReadahead(page)) 2981 goto skip; 2982 if (PageHWPoison(page)) 2983 goto skip; 2984 if (!trylock_page(page)) 2985 goto skip; 2986 if (page->mapping != mapping) 2987 goto unlock; 2988 if (!PageUptodate(page)) 2989 goto unlock; 2990 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2991 if (xas->xa_index >= max_idx) 2992 goto unlock; 2993 return page; 2994 unlock: 2995 unlock_page(page); 2996 skip: 2997 put_page(page); 2998 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 2999 3000 return NULL; 3001 } 3002 3003 static inline struct page *first_map_page(struct address_space *mapping, 3004 struct xa_state *xas, 3005 pgoff_t end_pgoff) 3006 { 3007 return next_uptodate_page(xas_find(xas, end_pgoff), 3008 mapping, xas, end_pgoff); 3009 } 3010 3011 static inline struct page *next_map_page(struct address_space *mapping, 3012 struct xa_state *xas, 3013 pgoff_t end_pgoff) 3014 { 3015 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3016 mapping, xas, end_pgoff); 3017 } 3018 3019 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3020 pgoff_t start_pgoff, pgoff_t end_pgoff) 3021 { 3022 struct vm_area_struct *vma = vmf->vma; 3023 struct file *file = vma->vm_file; 3024 struct address_space *mapping = file->f_mapping; 3025 pgoff_t last_pgoff = start_pgoff; 3026 unsigned long addr; 3027 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3028 struct page *head, *page; 3029 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3030 vm_fault_t ret = 0; 3031 3032 rcu_read_lock(); 3033 head = first_map_page(mapping, &xas, end_pgoff); 3034 if (!head) 3035 goto out; 3036 3037 if (filemap_map_pmd(vmf, head)) { 3038 ret = VM_FAULT_NOPAGE; 3039 goto out; 3040 } 3041 3042 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3043 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3044 do { 3045 page = find_subpage(head, xas.xa_index); 3046 if (PageHWPoison(page)) 3047 goto unlock; 3048 3049 if (mmap_miss > 0) 3050 mmap_miss--; 3051 3052 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3053 vmf->pte += xas.xa_index - last_pgoff; 3054 last_pgoff = xas.xa_index; 3055 3056 if (!pte_none(*vmf->pte)) 3057 goto unlock; 3058 3059 /* We're about to handle the fault */ 3060 if (vmf->address == addr) 3061 ret = VM_FAULT_NOPAGE; 3062 3063 do_set_pte(vmf, page, addr); 3064 /* no need to invalidate: a not-present page won't be cached */ 3065 update_mmu_cache(vma, addr, vmf->pte); 3066 unlock_page(head); 3067 continue; 3068 unlock: 3069 unlock_page(head); 3070 put_page(head); 3071 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3072 pte_unmap_unlock(vmf->pte, vmf->ptl); 3073 out: 3074 rcu_read_unlock(); 3075 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3076 return ret; 3077 } 3078 EXPORT_SYMBOL(filemap_map_pages); 3079 3080 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3081 { 3082 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3083 struct page *page = vmf->page; 3084 vm_fault_t ret = VM_FAULT_LOCKED; 3085 3086 sb_start_pagefault(mapping->host->i_sb); 3087 file_update_time(vmf->vma->vm_file); 3088 lock_page(page); 3089 if (page->mapping != mapping) { 3090 unlock_page(page); 3091 ret = VM_FAULT_NOPAGE; 3092 goto out; 3093 } 3094 /* 3095 * We mark the page dirty already here so that when freeze is in 3096 * progress, we are guaranteed that writeback during freezing will 3097 * see the dirty page and writeprotect it again. 3098 */ 3099 set_page_dirty(page); 3100 wait_for_stable_page(page); 3101 out: 3102 sb_end_pagefault(mapping->host->i_sb); 3103 return ret; 3104 } 3105 3106 const struct vm_operations_struct generic_file_vm_ops = { 3107 .fault = filemap_fault, 3108 .map_pages = filemap_map_pages, 3109 .page_mkwrite = filemap_page_mkwrite, 3110 }; 3111 3112 /* This is used for a general mmap of a disk file */ 3113 3114 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3115 { 3116 struct address_space *mapping = file->f_mapping; 3117 3118 if (!mapping->a_ops->readpage) 3119 return -ENOEXEC; 3120 file_accessed(file); 3121 vma->vm_ops = &generic_file_vm_ops; 3122 return 0; 3123 } 3124 3125 /* 3126 * This is for filesystems which do not implement ->writepage. 3127 */ 3128 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3129 { 3130 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3131 return -EINVAL; 3132 return generic_file_mmap(file, vma); 3133 } 3134 #else 3135 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3136 { 3137 return VM_FAULT_SIGBUS; 3138 } 3139 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 3140 { 3141 return -ENOSYS; 3142 } 3143 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 3144 { 3145 return -ENOSYS; 3146 } 3147 #endif /* CONFIG_MMU */ 3148 3149 EXPORT_SYMBOL(filemap_page_mkwrite); 3150 EXPORT_SYMBOL(generic_file_mmap); 3151 EXPORT_SYMBOL(generic_file_readonly_mmap); 3152 3153 static struct page *wait_on_page_read(struct page *page) 3154 { 3155 if (!IS_ERR(page)) { 3156 wait_on_page_locked(page); 3157 if (!PageUptodate(page)) { 3158 put_page(page); 3159 page = ERR_PTR(-EIO); 3160 } 3161 } 3162 return page; 3163 } 3164 3165 static struct page *do_read_cache_page(struct address_space *mapping, 3166 pgoff_t index, 3167 int (*filler)(void *, struct page *), 3168 void *data, 3169 gfp_t gfp) 3170 { 3171 struct page *page; 3172 int err; 3173 repeat: 3174 page = find_get_page(mapping, index); 3175 if (!page) { 3176 page = __page_cache_alloc(gfp); 3177 if (!page) 3178 return ERR_PTR(-ENOMEM); 3179 err = add_to_page_cache_lru(page, mapping, index, gfp); 3180 if (unlikely(err)) { 3181 put_page(page); 3182 if (err == -EEXIST) 3183 goto repeat; 3184 /* Presumably ENOMEM for xarray node */ 3185 return ERR_PTR(err); 3186 } 3187 3188 filler: 3189 if (filler) 3190 err = filler(data, page); 3191 else 3192 err = mapping->a_ops->readpage(data, page); 3193 3194 if (err < 0) { 3195 put_page(page); 3196 return ERR_PTR(err); 3197 } 3198 3199 page = wait_on_page_read(page); 3200 if (IS_ERR(page)) 3201 return page; 3202 goto out; 3203 } 3204 if (PageUptodate(page)) 3205 goto out; 3206 3207 /* 3208 * Page is not up to date and may be locked due to one of the following 3209 * case a: Page is being filled and the page lock is held 3210 * case b: Read/write error clearing the page uptodate status 3211 * case c: Truncation in progress (page locked) 3212 * case d: Reclaim in progress 3213 * 3214 * Case a, the page will be up to date when the page is unlocked. 3215 * There is no need to serialise on the page lock here as the page 3216 * is pinned so the lock gives no additional protection. Even if the 3217 * page is truncated, the data is still valid if PageUptodate as 3218 * it's a race vs truncate race. 3219 * Case b, the page will not be up to date 3220 * Case c, the page may be truncated but in itself, the data may still 3221 * be valid after IO completes as it's a read vs truncate race. The 3222 * operation must restart if the page is not uptodate on unlock but 3223 * otherwise serialising on page lock to stabilise the mapping gives 3224 * no additional guarantees to the caller as the page lock is 3225 * released before return. 3226 * Case d, similar to truncation. If reclaim holds the page lock, it 3227 * will be a race with remove_mapping that determines if the mapping 3228 * is valid on unlock but otherwise the data is valid and there is 3229 * no need to serialise with page lock. 3230 * 3231 * As the page lock gives no additional guarantee, we optimistically 3232 * wait on the page to be unlocked and check if it's up to date and 3233 * use the page if it is. Otherwise, the page lock is required to 3234 * distinguish between the different cases. The motivation is that we 3235 * avoid spurious serialisations and wakeups when multiple processes 3236 * wait on the same page for IO to complete. 3237 */ 3238 wait_on_page_locked(page); 3239 if (PageUptodate(page)) 3240 goto out; 3241 3242 /* Distinguish between all the cases under the safety of the lock */ 3243 lock_page(page); 3244 3245 /* Case c or d, restart the operation */ 3246 if (!page->mapping) { 3247 unlock_page(page); 3248 put_page(page); 3249 goto repeat; 3250 } 3251 3252 /* Someone else locked and filled the page in a very small window */ 3253 if (PageUptodate(page)) { 3254 unlock_page(page); 3255 goto out; 3256 } 3257 3258 /* 3259 * A previous I/O error may have been due to temporary 3260 * failures. 3261 * Clear page error before actual read, PG_error will be 3262 * set again if read page fails. 3263 */ 3264 ClearPageError(page); 3265 goto filler; 3266 3267 out: 3268 mark_page_accessed(page); 3269 return page; 3270 } 3271 3272 /** 3273 * read_cache_page - read into page cache, fill it if needed 3274 * @mapping: the page's address_space 3275 * @index: the page index 3276 * @filler: function to perform the read 3277 * @data: first arg to filler(data, page) function, often left as NULL 3278 * 3279 * Read into the page cache. If a page already exists, and PageUptodate() is 3280 * not set, try to fill the page and wait for it to become unlocked. 3281 * 3282 * If the page does not get brought uptodate, return -EIO. 3283 * 3284 * Return: up to date page on success, ERR_PTR() on failure. 3285 */ 3286 struct page *read_cache_page(struct address_space *mapping, 3287 pgoff_t index, 3288 int (*filler)(void *, struct page *), 3289 void *data) 3290 { 3291 return do_read_cache_page(mapping, index, filler, data, 3292 mapping_gfp_mask(mapping)); 3293 } 3294 EXPORT_SYMBOL(read_cache_page); 3295 3296 /** 3297 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3298 * @mapping: the page's address_space 3299 * @index: the page index 3300 * @gfp: the page allocator flags to use if allocating 3301 * 3302 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3303 * any new page allocations done using the specified allocation flags. 3304 * 3305 * If the page does not get brought uptodate, return -EIO. 3306 * 3307 * Return: up to date page on success, ERR_PTR() on failure. 3308 */ 3309 struct page *read_cache_page_gfp(struct address_space *mapping, 3310 pgoff_t index, 3311 gfp_t gfp) 3312 { 3313 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3314 } 3315 EXPORT_SYMBOL(read_cache_page_gfp); 3316 3317 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3318 loff_t pos, unsigned len, unsigned flags, 3319 struct page **pagep, void **fsdata) 3320 { 3321 const struct address_space_operations *aops = mapping->a_ops; 3322 3323 return aops->write_begin(file, mapping, pos, len, flags, 3324 pagep, fsdata); 3325 } 3326 EXPORT_SYMBOL(pagecache_write_begin); 3327 3328 int pagecache_write_end(struct file *file, struct address_space *mapping, 3329 loff_t pos, unsigned len, unsigned copied, 3330 struct page *page, void *fsdata) 3331 { 3332 const struct address_space_operations *aops = mapping->a_ops; 3333 3334 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3335 } 3336 EXPORT_SYMBOL(pagecache_write_end); 3337 3338 /* 3339 * Warn about a page cache invalidation failure during a direct I/O write. 3340 */ 3341 void dio_warn_stale_pagecache(struct file *filp) 3342 { 3343 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3344 char pathname[128]; 3345 char *path; 3346 3347 errseq_set(&filp->f_mapping->wb_err, -EIO); 3348 if (__ratelimit(&_rs)) { 3349 path = file_path(filp, pathname, sizeof(pathname)); 3350 if (IS_ERR(path)) 3351 path = "(unknown)"; 3352 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3353 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3354 current->comm); 3355 } 3356 } 3357 3358 ssize_t 3359 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3360 { 3361 struct file *file = iocb->ki_filp; 3362 struct address_space *mapping = file->f_mapping; 3363 struct inode *inode = mapping->host; 3364 loff_t pos = iocb->ki_pos; 3365 ssize_t written; 3366 size_t write_len; 3367 pgoff_t end; 3368 3369 write_len = iov_iter_count(from); 3370 end = (pos + write_len - 1) >> PAGE_SHIFT; 3371 3372 if (iocb->ki_flags & IOCB_NOWAIT) { 3373 /* If there are pages to writeback, return */ 3374 if (filemap_range_has_page(file->f_mapping, pos, 3375 pos + write_len - 1)) 3376 return -EAGAIN; 3377 } else { 3378 written = filemap_write_and_wait_range(mapping, pos, 3379 pos + write_len - 1); 3380 if (written) 3381 goto out; 3382 } 3383 3384 /* 3385 * After a write we want buffered reads to be sure to go to disk to get 3386 * the new data. We invalidate clean cached page from the region we're 3387 * about to write. We do this *before* the write so that we can return 3388 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3389 */ 3390 written = invalidate_inode_pages2_range(mapping, 3391 pos >> PAGE_SHIFT, end); 3392 /* 3393 * If a page can not be invalidated, return 0 to fall back 3394 * to buffered write. 3395 */ 3396 if (written) { 3397 if (written == -EBUSY) 3398 return 0; 3399 goto out; 3400 } 3401 3402 written = mapping->a_ops->direct_IO(iocb, from); 3403 3404 /* 3405 * Finally, try again to invalidate clean pages which might have been 3406 * cached by non-direct readahead, or faulted in by get_user_pages() 3407 * if the source of the write was an mmap'ed region of the file 3408 * we're writing. Either one is a pretty crazy thing to do, 3409 * so we don't support it 100%. If this invalidation 3410 * fails, tough, the write still worked... 3411 * 3412 * Most of the time we do not need this since dio_complete() will do 3413 * the invalidation for us. However there are some file systems that 3414 * do not end up with dio_complete() being called, so let's not break 3415 * them by removing it completely. 3416 * 3417 * Noticeable example is a blkdev_direct_IO(). 3418 * 3419 * Skip invalidation for async writes or if mapping has no pages. 3420 */ 3421 if (written > 0 && mapping->nrpages && 3422 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3423 dio_warn_stale_pagecache(file); 3424 3425 if (written > 0) { 3426 pos += written; 3427 write_len -= written; 3428 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3429 i_size_write(inode, pos); 3430 mark_inode_dirty(inode); 3431 } 3432 iocb->ki_pos = pos; 3433 } 3434 iov_iter_revert(from, write_len - iov_iter_count(from)); 3435 out: 3436 return written; 3437 } 3438 EXPORT_SYMBOL(generic_file_direct_write); 3439 3440 /* 3441 * Find or create a page at the given pagecache position. Return the locked 3442 * page. This function is specifically for buffered writes. 3443 */ 3444 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3445 pgoff_t index, unsigned flags) 3446 { 3447 struct page *page; 3448 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3449 3450 if (flags & AOP_FLAG_NOFS) 3451 fgp_flags |= FGP_NOFS; 3452 3453 page = pagecache_get_page(mapping, index, fgp_flags, 3454 mapping_gfp_mask(mapping)); 3455 if (page) 3456 wait_for_stable_page(page); 3457 3458 return page; 3459 } 3460 EXPORT_SYMBOL(grab_cache_page_write_begin); 3461 3462 ssize_t generic_perform_write(struct file *file, 3463 struct iov_iter *i, loff_t pos) 3464 { 3465 struct address_space *mapping = file->f_mapping; 3466 const struct address_space_operations *a_ops = mapping->a_ops; 3467 long status = 0; 3468 ssize_t written = 0; 3469 unsigned int flags = 0; 3470 3471 do { 3472 struct page *page; 3473 unsigned long offset; /* Offset into pagecache page */ 3474 unsigned long bytes; /* Bytes to write to page */ 3475 size_t copied; /* Bytes copied from user */ 3476 void *fsdata; 3477 3478 offset = (pos & (PAGE_SIZE - 1)); 3479 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3480 iov_iter_count(i)); 3481 3482 again: 3483 /* 3484 * Bring in the user page that we will copy from _first_. 3485 * Otherwise there's a nasty deadlock on copying from the 3486 * same page as we're writing to, without it being marked 3487 * up-to-date. 3488 * 3489 * Not only is this an optimisation, but it is also required 3490 * to check that the address is actually valid, when atomic 3491 * usercopies are used, below. 3492 */ 3493 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3494 status = -EFAULT; 3495 break; 3496 } 3497 3498 if (fatal_signal_pending(current)) { 3499 status = -EINTR; 3500 break; 3501 } 3502 3503 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3504 &page, &fsdata); 3505 if (unlikely(status < 0)) 3506 break; 3507 3508 if (mapping_writably_mapped(mapping)) 3509 flush_dcache_page(page); 3510 3511 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3512 flush_dcache_page(page); 3513 3514 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3515 page, fsdata); 3516 if (unlikely(status < 0)) 3517 break; 3518 copied = status; 3519 3520 cond_resched(); 3521 3522 iov_iter_advance(i, copied); 3523 if (unlikely(copied == 0)) { 3524 /* 3525 * If we were unable to copy any data at all, we must 3526 * fall back to a single segment length write. 3527 * 3528 * If we didn't fallback here, we could livelock 3529 * because not all segments in the iov can be copied at 3530 * once without a pagefault. 3531 */ 3532 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3533 iov_iter_single_seg_count(i)); 3534 goto again; 3535 } 3536 pos += copied; 3537 written += copied; 3538 3539 balance_dirty_pages_ratelimited(mapping); 3540 } while (iov_iter_count(i)); 3541 3542 return written ? written : status; 3543 } 3544 EXPORT_SYMBOL(generic_perform_write); 3545 3546 /** 3547 * __generic_file_write_iter - write data to a file 3548 * @iocb: IO state structure (file, offset, etc.) 3549 * @from: iov_iter with data to write 3550 * 3551 * This function does all the work needed for actually writing data to a 3552 * file. It does all basic checks, removes SUID from the file, updates 3553 * modification times and calls proper subroutines depending on whether we 3554 * do direct IO or a standard buffered write. 3555 * 3556 * It expects i_mutex to be grabbed unless we work on a block device or similar 3557 * object which does not need locking at all. 3558 * 3559 * This function does *not* take care of syncing data in case of O_SYNC write. 3560 * A caller has to handle it. This is mainly due to the fact that we want to 3561 * avoid syncing under i_mutex. 3562 * 3563 * Return: 3564 * * number of bytes written, even for truncated writes 3565 * * negative error code if no data has been written at all 3566 */ 3567 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3568 { 3569 struct file *file = iocb->ki_filp; 3570 struct address_space * mapping = file->f_mapping; 3571 struct inode *inode = mapping->host; 3572 ssize_t written = 0; 3573 ssize_t err; 3574 ssize_t status; 3575 3576 /* We can write back this queue in page reclaim */ 3577 current->backing_dev_info = inode_to_bdi(inode); 3578 err = file_remove_privs(file); 3579 if (err) 3580 goto out; 3581 3582 err = file_update_time(file); 3583 if (err) 3584 goto out; 3585 3586 if (iocb->ki_flags & IOCB_DIRECT) { 3587 loff_t pos, endbyte; 3588 3589 written = generic_file_direct_write(iocb, from); 3590 /* 3591 * If the write stopped short of completing, fall back to 3592 * buffered writes. Some filesystems do this for writes to 3593 * holes, for example. For DAX files, a buffered write will 3594 * not succeed (even if it did, DAX does not handle dirty 3595 * page-cache pages correctly). 3596 */ 3597 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3598 goto out; 3599 3600 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3601 /* 3602 * If generic_perform_write() returned a synchronous error 3603 * then we want to return the number of bytes which were 3604 * direct-written, or the error code if that was zero. Note 3605 * that this differs from normal direct-io semantics, which 3606 * will return -EFOO even if some bytes were written. 3607 */ 3608 if (unlikely(status < 0)) { 3609 err = status; 3610 goto out; 3611 } 3612 /* 3613 * We need to ensure that the page cache pages are written to 3614 * disk and invalidated to preserve the expected O_DIRECT 3615 * semantics. 3616 */ 3617 endbyte = pos + status - 1; 3618 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3619 if (err == 0) { 3620 iocb->ki_pos = endbyte + 1; 3621 written += status; 3622 invalidate_mapping_pages(mapping, 3623 pos >> PAGE_SHIFT, 3624 endbyte >> PAGE_SHIFT); 3625 } else { 3626 /* 3627 * We don't know how much we wrote, so just return 3628 * the number of bytes which were direct-written 3629 */ 3630 } 3631 } else { 3632 written = generic_perform_write(file, from, iocb->ki_pos); 3633 if (likely(written > 0)) 3634 iocb->ki_pos += written; 3635 } 3636 out: 3637 current->backing_dev_info = NULL; 3638 return written ? written : err; 3639 } 3640 EXPORT_SYMBOL(__generic_file_write_iter); 3641 3642 /** 3643 * generic_file_write_iter - write data to a file 3644 * @iocb: IO state structure 3645 * @from: iov_iter with data to write 3646 * 3647 * This is a wrapper around __generic_file_write_iter() to be used by most 3648 * filesystems. It takes care of syncing the file in case of O_SYNC file 3649 * and acquires i_mutex as needed. 3650 * Return: 3651 * * negative error code if no data has been written at all of 3652 * vfs_fsync_range() failed for a synchronous write 3653 * * number of bytes written, even for truncated writes 3654 */ 3655 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3656 { 3657 struct file *file = iocb->ki_filp; 3658 struct inode *inode = file->f_mapping->host; 3659 ssize_t ret; 3660 3661 inode_lock(inode); 3662 ret = generic_write_checks(iocb, from); 3663 if (ret > 0) 3664 ret = __generic_file_write_iter(iocb, from); 3665 inode_unlock(inode); 3666 3667 if (ret > 0) 3668 ret = generic_write_sync(iocb, ret); 3669 return ret; 3670 } 3671 EXPORT_SYMBOL(generic_file_write_iter); 3672 3673 /** 3674 * try_to_release_page() - release old fs-specific metadata on a page 3675 * 3676 * @page: the page which the kernel is trying to free 3677 * @gfp_mask: memory allocation flags (and I/O mode) 3678 * 3679 * The address_space is to try to release any data against the page 3680 * (presumably at page->private). 3681 * 3682 * This may also be called if PG_fscache is set on a page, indicating that the 3683 * page is known to the local caching routines. 3684 * 3685 * The @gfp_mask argument specifies whether I/O may be performed to release 3686 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3687 * 3688 * Return: %1 if the release was successful, otherwise return zero. 3689 */ 3690 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3691 { 3692 struct address_space * const mapping = page->mapping; 3693 3694 BUG_ON(!PageLocked(page)); 3695 if (PageWriteback(page)) 3696 return 0; 3697 3698 if (mapping && mapping->a_ops->releasepage) 3699 return mapping->a_ops->releasepage(page, gfp_mask); 3700 return try_to_free_buffers(page); 3701 } 3702 3703 EXPORT_SYMBOL(try_to_release_page); 3704