1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/config.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/compiler.h> 16 #include <linux/fs.h> 17 #include <linux/aio.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/file.h> 24 #include <linux/uio.h> 25 #include <linux/hash.h> 26 #include <linux/writeback.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 /* 32 * This is needed for the following functions: 33 * - try_to_release_page 34 * - block_invalidatepage 35 * - generic_osync_inode 36 * 37 * FIXME: remove all knowledge of the buffer layer from the core VM 38 */ 39 #include <linux/buffer_head.h> /* for generic_osync_inode */ 40 41 #include <asm/uaccess.h> 42 #include <asm/mman.h> 43 44 /* 45 * Shared mappings implemented 30.11.1994. It's not fully working yet, 46 * though. 47 * 48 * Shared mappings now work. 15.8.1995 Bruno. 49 * 50 * finished 'unifying' the page and buffer cache and SMP-threaded the 51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 52 * 53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 54 */ 55 56 /* 57 * Lock ordering: 58 * 59 * ->i_mmap_lock (vmtruncate) 60 * ->private_lock (__free_pte->__set_page_dirty_buffers) 61 * ->swap_list_lock 62 * ->swap_device_lock (exclusive_swap_page, others) 63 * ->mapping->tree_lock 64 * 65 * ->i_sem 66 * ->i_mmap_lock (truncate->unmap_mapping_range) 67 * 68 * ->mmap_sem 69 * ->i_mmap_lock 70 * ->page_table_lock (various places, mainly in mmap.c) 71 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 72 * 73 * ->mmap_sem 74 * ->lock_page (access_process_vm) 75 * 76 * ->mmap_sem 77 * ->i_sem (msync) 78 * 79 * ->i_sem 80 * ->i_alloc_sem (various) 81 * 82 * ->inode_lock 83 * ->sb_lock (fs/fs-writeback.c) 84 * ->mapping->tree_lock (__sync_single_inode) 85 * 86 * ->i_mmap_lock 87 * ->anon_vma.lock (vma_adjust) 88 * 89 * ->anon_vma.lock 90 * ->page_table_lock (anon_vma_prepare and various) 91 * 92 * ->page_table_lock 93 * ->swap_device_lock (try_to_unmap_one) 94 * ->private_lock (try_to_unmap_one) 95 * ->tree_lock (try_to_unmap_one) 96 * ->zone.lru_lock (follow_page->mark_page_accessed) 97 * ->private_lock (page_remove_rmap->set_page_dirty) 98 * ->tree_lock (page_remove_rmap->set_page_dirty) 99 * ->inode_lock (page_remove_rmap->set_page_dirty) 100 * ->inode_lock (zap_pte_range->set_page_dirty) 101 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 102 * 103 * ->task->proc_lock 104 * ->dcache_lock (proc_pid_lookup) 105 */ 106 107 /* 108 * Remove a page from the page cache and free it. Caller has to make 109 * sure the page is locked and that nobody else uses it - or that usage 110 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 111 */ 112 void __remove_from_page_cache(struct page *page) 113 { 114 struct address_space *mapping = page->mapping; 115 116 radix_tree_delete(&mapping->page_tree, page->index); 117 page->mapping = NULL; 118 mapping->nrpages--; 119 pagecache_acct(-1); 120 } 121 122 void remove_from_page_cache(struct page *page) 123 { 124 struct address_space *mapping = page->mapping; 125 126 if (unlikely(!PageLocked(page))) 127 PAGE_BUG(page); 128 129 write_lock_irq(&mapping->tree_lock); 130 __remove_from_page_cache(page); 131 write_unlock_irq(&mapping->tree_lock); 132 } 133 134 static int sync_page(void *word) 135 { 136 struct address_space *mapping; 137 struct page *page; 138 139 page = container_of((page_flags_t *)word, struct page, flags); 140 141 /* 142 * FIXME, fercrissake. What is this barrier here for? 143 */ 144 smp_mb(); 145 mapping = page_mapping(page); 146 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 147 mapping->a_ops->sync_page(page); 148 io_schedule(); 149 return 0; 150 } 151 152 /** 153 * filemap_fdatawrite_range - start writeback against all of a mapping's 154 * dirty pages that lie within the byte offsets <start, end> 155 * @mapping: address space structure to write 156 * @start: offset in bytes where the range starts 157 * @end : offset in bytes where the range ends 158 * 159 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 160 * opposed to a regular memory * cleansing writeback. The difference between 161 * these two operations is that if a dirty page/buffer is encountered, it must 162 * be waited upon, and not just skipped over. 163 */ 164 static int __filemap_fdatawrite_range(struct address_space *mapping, 165 loff_t start, loff_t end, int sync_mode) 166 { 167 int ret; 168 struct writeback_control wbc = { 169 .sync_mode = sync_mode, 170 .nr_to_write = mapping->nrpages * 2, 171 .start = start, 172 .end = end, 173 }; 174 175 if (!mapping_cap_writeback_dirty(mapping)) 176 return 0; 177 178 ret = do_writepages(mapping, &wbc); 179 return ret; 180 } 181 182 static inline int __filemap_fdatawrite(struct address_space *mapping, 183 int sync_mode) 184 { 185 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode); 186 } 187 188 int filemap_fdatawrite(struct address_space *mapping) 189 { 190 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 191 } 192 EXPORT_SYMBOL(filemap_fdatawrite); 193 194 static int filemap_fdatawrite_range(struct address_space *mapping, 195 loff_t start, loff_t end) 196 { 197 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 198 } 199 200 /* 201 * This is a mostly non-blocking flush. Not suitable for data-integrity 202 * purposes - I/O may not be started against all dirty pages. 203 */ 204 int filemap_flush(struct address_space *mapping) 205 { 206 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 207 } 208 EXPORT_SYMBOL(filemap_flush); 209 210 /* 211 * Wait for writeback to complete against pages indexed by start->end 212 * inclusive 213 */ 214 static int wait_on_page_writeback_range(struct address_space *mapping, 215 pgoff_t start, pgoff_t end) 216 { 217 struct pagevec pvec; 218 int nr_pages; 219 int ret = 0; 220 pgoff_t index; 221 222 if (end < start) 223 return 0; 224 225 pagevec_init(&pvec, 0); 226 index = start; 227 while ((index <= end) && 228 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 229 PAGECACHE_TAG_WRITEBACK, 230 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 231 unsigned i; 232 233 for (i = 0; i < nr_pages; i++) { 234 struct page *page = pvec.pages[i]; 235 236 /* until radix tree lookup accepts end_index */ 237 if (page->index > end) 238 continue; 239 240 wait_on_page_writeback(page); 241 if (PageError(page)) 242 ret = -EIO; 243 } 244 pagevec_release(&pvec); 245 cond_resched(); 246 } 247 248 /* Check for outstanding write errors */ 249 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 250 ret = -ENOSPC; 251 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 252 ret = -EIO; 253 254 return ret; 255 } 256 257 /* 258 * Write and wait upon all the pages in the passed range. This is a "data 259 * integrity" operation. It waits upon in-flight writeout before starting and 260 * waiting upon new writeout. If there was an IO error, return it. 261 * 262 * We need to re-take i_sem during the generic_osync_inode list walk because 263 * it is otherwise livelockable. 264 */ 265 int sync_page_range(struct inode *inode, struct address_space *mapping, 266 loff_t pos, size_t count) 267 { 268 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 269 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 270 int ret; 271 272 if (!mapping_cap_writeback_dirty(mapping) || !count) 273 return 0; 274 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 275 if (ret == 0) { 276 down(&inode->i_sem); 277 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 278 up(&inode->i_sem); 279 } 280 if (ret == 0) 281 ret = wait_on_page_writeback_range(mapping, start, end); 282 return ret; 283 } 284 EXPORT_SYMBOL(sync_page_range); 285 286 /* 287 * Note: Holding i_sem across sync_page_range_nolock is not a good idea 288 * as it forces O_SYNC writers to different parts of the same file 289 * to be serialised right until io completion. 290 */ 291 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 292 loff_t pos, size_t count) 293 { 294 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 295 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 296 int ret; 297 298 if (!mapping_cap_writeback_dirty(mapping) || !count) 299 return 0; 300 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 301 if (ret == 0) 302 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 303 if (ret == 0) 304 ret = wait_on_page_writeback_range(mapping, start, end); 305 return ret; 306 } 307 EXPORT_SYMBOL(sync_page_range_nolock); 308 309 /** 310 * filemap_fdatawait - walk the list of under-writeback pages of the given 311 * address space and wait for all of them. 312 * 313 * @mapping: address space structure to wait for 314 */ 315 int filemap_fdatawait(struct address_space *mapping) 316 { 317 loff_t i_size = i_size_read(mapping->host); 318 319 if (i_size == 0) 320 return 0; 321 322 return wait_on_page_writeback_range(mapping, 0, 323 (i_size - 1) >> PAGE_CACHE_SHIFT); 324 } 325 EXPORT_SYMBOL(filemap_fdatawait); 326 327 int filemap_write_and_wait(struct address_space *mapping) 328 { 329 int retval = 0; 330 331 if (mapping->nrpages) { 332 retval = filemap_fdatawrite(mapping); 333 if (retval == 0) 334 retval = filemap_fdatawait(mapping); 335 } 336 return retval; 337 } 338 339 int filemap_write_and_wait_range(struct address_space *mapping, 340 loff_t lstart, loff_t lend) 341 { 342 int retval = 0; 343 344 if (mapping->nrpages) { 345 retval = __filemap_fdatawrite_range(mapping, lstart, lend, 346 WB_SYNC_ALL); 347 if (retval == 0) 348 retval = wait_on_page_writeback_range(mapping, 349 lstart >> PAGE_CACHE_SHIFT, 350 lend >> PAGE_CACHE_SHIFT); 351 } 352 return retval; 353 } 354 355 /* 356 * This function is used to add newly allocated pagecache pages: 357 * the page is new, so we can just run SetPageLocked() against it. 358 * The other page state flags were set by rmqueue(). 359 * 360 * This function does not add the page to the LRU. The caller must do that. 361 */ 362 int add_to_page_cache(struct page *page, struct address_space *mapping, 363 pgoff_t offset, int gfp_mask) 364 { 365 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 366 367 if (error == 0) { 368 write_lock_irq(&mapping->tree_lock); 369 error = radix_tree_insert(&mapping->page_tree, offset, page); 370 if (!error) { 371 page_cache_get(page); 372 SetPageLocked(page); 373 page->mapping = mapping; 374 page->index = offset; 375 mapping->nrpages++; 376 pagecache_acct(1); 377 } 378 write_unlock_irq(&mapping->tree_lock); 379 radix_tree_preload_end(); 380 } 381 return error; 382 } 383 384 EXPORT_SYMBOL(add_to_page_cache); 385 386 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 387 pgoff_t offset, int gfp_mask) 388 { 389 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 390 if (ret == 0) 391 lru_cache_add(page); 392 return ret; 393 } 394 395 /* 396 * In order to wait for pages to become available there must be 397 * waitqueues associated with pages. By using a hash table of 398 * waitqueues where the bucket discipline is to maintain all 399 * waiters on the same queue and wake all when any of the pages 400 * become available, and for the woken contexts to check to be 401 * sure the appropriate page became available, this saves space 402 * at a cost of "thundering herd" phenomena during rare hash 403 * collisions. 404 */ 405 static wait_queue_head_t *page_waitqueue(struct page *page) 406 { 407 const struct zone *zone = page_zone(page); 408 409 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 410 } 411 412 static inline void wake_up_page(struct page *page, int bit) 413 { 414 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 415 } 416 417 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 418 { 419 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 420 421 if (test_bit(bit_nr, &page->flags)) 422 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 423 TASK_UNINTERRUPTIBLE); 424 } 425 EXPORT_SYMBOL(wait_on_page_bit); 426 427 /** 428 * unlock_page() - unlock a locked page 429 * 430 * @page: the page 431 * 432 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 433 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 434 * mechananism between PageLocked pages and PageWriteback pages is shared. 435 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 436 * 437 * The first mb is necessary to safely close the critical section opened by the 438 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 439 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 440 * parallel wait_on_page_locked()). 441 */ 442 void fastcall unlock_page(struct page *page) 443 { 444 smp_mb__before_clear_bit(); 445 if (!TestClearPageLocked(page)) 446 BUG(); 447 smp_mb__after_clear_bit(); 448 wake_up_page(page, PG_locked); 449 } 450 EXPORT_SYMBOL(unlock_page); 451 452 /* 453 * End writeback against a page. 454 */ 455 void end_page_writeback(struct page *page) 456 { 457 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 458 if (!test_clear_page_writeback(page)) 459 BUG(); 460 } 461 smp_mb__after_clear_bit(); 462 wake_up_page(page, PG_writeback); 463 } 464 EXPORT_SYMBOL(end_page_writeback); 465 466 /* 467 * Get a lock on the page, assuming we need to sleep to get it. 468 * 469 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 470 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 471 * chances are that on the second loop, the block layer's plug list is empty, 472 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 473 */ 474 void fastcall __lock_page(struct page *page) 475 { 476 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 477 478 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 479 TASK_UNINTERRUPTIBLE); 480 } 481 EXPORT_SYMBOL(__lock_page); 482 483 /* 484 * a rather lightweight function, finding and getting a reference to a 485 * hashed page atomically. 486 */ 487 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 488 { 489 struct page *page; 490 491 read_lock_irq(&mapping->tree_lock); 492 page = radix_tree_lookup(&mapping->page_tree, offset); 493 if (page) 494 page_cache_get(page); 495 read_unlock_irq(&mapping->tree_lock); 496 return page; 497 } 498 499 EXPORT_SYMBOL(find_get_page); 500 501 /* 502 * Same as above, but trylock it instead of incrementing the count. 503 */ 504 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) 505 { 506 struct page *page; 507 508 read_lock_irq(&mapping->tree_lock); 509 page = radix_tree_lookup(&mapping->page_tree, offset); 510 if (page && TestSetPageLocked(page)) 511 page = NULL; 512 read_unlock_irq(&mapping->tree_lock); 513 return page; 514 } 515 516 EXPORT_SYMBOL(find_trylock_page); 517 518 /** 519 * find_lock_page - locate, pin and lock a pagecache page 520 * 521 * @mapping - the address_space to search 522 * @offset - the page index 523 * 524 * Locates the desired pagecache page, locks it, increments its reference 525 * count and returns its address. 526 * 527 * Returns zero if the page was not present. find_lock_page() may sleep. 528 */ 529 struct page *find_lock_page(struct address_space *mapping, 530 unsigned long offset) 531 { 532 struct page *page; 533 534 read_lock_irq(&mapping->tree_lock); 535 repeat: 536 page = radix_tree_lookup(&mapping->page_tree, offset); 537 if (page) { 538 page_cache_get(page); 539 if (TestSetPageLocked(page)) { 540 read_unlock_irq(&mapping->tree_lock); 541 lock_page(page); 542 read_lock_irq(&mapping->tree_lock); 543 544 /* Has the page been truncated while we slept? */ 545 if (page->mapping != mapping || page->index != offset) { 546 unlock_page(page); 547 page_cache_release(page); 548 goto repeat; 549 } 550 } 551 } 552 read_unlock_irq(&mapping->tree_lock); 553 return page; 554 } 555 556 EXPORT_SYMBOL(find_lock_page); 557 558 /** 559 * find_or_create_page - locate or add a pagecache page 560 * 561 * @mapping - the page's address_space 562 * @index - the page's index into the mapping 563 * @gfp_mask - page allocation mode 564 * 565 * Locates a page in the pagecache. If the page is not present, a new page 566 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 567 * LRU list. The returned page is locked and has its reference count 568 * incremented. 569 * 570 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 571 * allocation! 572 * 573 * find_or_create_page() returns the desired page's address, or zero on 574 * memory exhaustion. 575 */ 576 struct page *find_or_create_page(struct address_space *mapping, 577 unsigned long index, unsigned int gfp_mask) 578 { 579 struct page *page, *cached_page = NULL; 580 int err; 581 repeat: 582 page = find_lock_page(mapping, index); 583 if (!page) { 584 if (!cached_page) { 585 cached_page = alloc_page(gfp_mask); 586 if (!cached_page) 587 return NULL; 588 } 589 err = add_to_page_cache_lru(cached_page, mapping, 590 index, gfp_mask); 591 if (!err) { 592 page = cached_page; 593 cached_page = NULL; 594 } else if (err == -EEXIST) 595 goto repeat; 596 } 597 if (cached_page) 598 page_cache_release(cached_page); 599 return page; 600 } 601 602 EXPORT_SYMBOL(find_or_create_page); 603 604 /** 605 * find_get_pages - gang pagecache lookup 606 * @mapping: The address_space to search 607 * @start: The starting page index 608 * @nr_pages: The maximum number of pages 609 * @pages: Where the resulting pages are placed 610 * 611 * find_get_pages() will search for and return a group of up to 612 * @nr_pages pages in the mapping. The pages are placed at @pages. 613 * find_get_pages() takes a reference against the returned pages. 614 * 615 * The search returns a group of mapping-contiguous pages with ascending 616 * indexes. There may be holes in the indices due to not-present pages. 617 * 618 * find_get_pages() returns the number of pages which were found. 619 */ 620 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 621 unsigned int nr_pages, struct page **pages) 622 { 623 unsigned int i; 624 unsigned int ret; 625 626 read_lock_irq(&mapping->tree_lock); 627 ret = radix_tree_gang_lookup(&mapping->page_tree, 628 (void **)pages, start, nr_pages); 629 for (i = 0; i < ret; i++) 630 page_cache_get(pages[i]); 631 read_unlock_irq(&mapping->tree_lock); 632 return ret; 633 } 634 635 /* 636 * Like find_get_pages, except we only return pages which are tagged with 637 * `tag'. We update *index to index the next page for the traversal. 638 */ 639 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 640 int tag, unsigned int nr_pages, struct page **pages) 641 { 642 unsigned int i; 643 unsigned int ret; 644 645 read_lock_irq(&mapping->tree_lock); 646 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 647 (void **)pages, *index, nr_pages, tag); 648 for (i = 0; i < ret; i++) 649 page_cache_get(pages[i]); 650 if (ret) 651 *index = pages[ret - 1]->index + 1; 652 read_unlock_irq(&mapping->tree_lock); 653 return ret; 654 } 655 656 /* 657 * Same as grab_cache_page, but do not wait if the page is unavailable. 658 * This is intended for speculative data generators, where the data can 659 * be regenerated if the page couldn't be grabbed. This routine should 660 * be safe to call while holding the lock for another page. 661 * 662 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 663 * and deadlock against the caller's locked page. 664 */ 665 struct page * 666 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 667 { 668 struct page *page = find_get_page(mapping, index); 669 unsigned int gfp_mask; 670 671 if (page) { 672 if (!TestSetPageLocked(page)) 673 return page; 674 page_cache_release(page); 675 return NULL; 676 } 677 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS; 678 page = alloc_pages(gfp_mask, 0); 679 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) { 680 page_cache_release(page); 681 page = NULL; 682 } 683 return page; 684 } 685 686 EXPORT_SYMBOL(grab_cache_page_nowait); 687 688 /* 689 * This is a generic file read routine, and uses the 690 * mapping->a_ops->readpage() function for the actual low-level 691 * stuff. 692 * 693 * This is really ugly. But the goto's actually try to clarify some 694 * of the logic when it comes to error handling etc. 695 * 696 * Note the struct file* is only passed for the use of readpage. It may be 697 * NULL. 698 */ 699 void do_generic_mapping_read(struct address_space *mapping, 700 struct file_ra_state *_ra, 701 struct file *filp, 702 loff_t *ppos, 703 read_descriptor_t *desc, 704 read_actor_t actor) 705 { 706 struct inode *inode = mapping->host; 707 unsigned long index; 708 unsigned long end_index; 709 unsigned long offset; 710 unsigned long last_index; 711 unsigned long next_index; 712 unsigned long prev_index; 713 loff_t isize; 714 struct page *cached_page; 715 int error; 716 struct file_ra_state ra = *_ra; 717 718 cached_page = NULL; 719 index = *ppos >> PAGE_CACHE_SHIFT; 720 next_index = index; 721 prev_index = ra.prev_page; 722 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 723 offset = *ppos & ~PAGE_CACHE_MASK; 724 725 isize = i_size_read(inode); 726 if (!isize) 727 goto out; 728 729 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 730 for (;;) { 731 struct page *page; 732 unsigned long nr, ret; 733 734 /* nr is the maximum number of bytes to copy from this page */ 735 nr = PAGE_CACHE_SIZE; 736 if (index >= end_index) { 737 if (index > end_index) 738 goto out; 739 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 740 if (nr <= offset) { 741 goto out; 742 } 743 } 744 nr = nr - offset; 745 746 cond_resched(); 747 if (index == next_index) 748 next_index = page_cache_readahead(mapping, &ra, filp, 749 index, last_index - index); 750 751 find_page: 752 page = find_get_page(mapping, index); 753 if (unlikely(page == NULL)) { 754 handle_ra_miss(mapping, &ra, index); 755 goto no_cached_page; 756 } 757 if (!PageUptodate(page)) 758 goto page_not_up_to_date; 759 page_ok: 760 761 /* If users can be writing to this page using arbitrary 762 * virtual addresses, take care about potential aliasing 763 * before reading the page on the kernel side. 764 */ 765 if (mapping_writably_mapped(mapping)) 766 flush_dcache_page(page); 767 768 /* 769 * When (part of) the same page is read multiple times 770 * in succession, only mark it as accessed the first time. 771 */ 772 if (prev_index != index) 773 mark_page_accessed(page); 774 prev_index = index; 775 776 /* 777 * Ok, we have the page, and it's up-to-date, so 778 * now we can copy it to user space... 779 * 780 * The actor routine returns how many bytes were actually used.. 781 * NOTE! This may not be the same as how much of a user buffer 782 * we filled up (we may be padding etc), so we can only update 783 * "pos" here (the actor routine has to update the user buffer 784 * pointers and the remaining count). 785 */ 786 ret = actor(desc, page, offset, nr); 787 offset += ret; 788 index += offset >> PAGE_CACHE_SHIFT; 789 offset &= ~PAGE_CACHE_MASK; 790 791 page_cache_release(page); 792 if (ret == nr && desc->count) 793 continue; 794 goto out; 795 796 page_not_up_to_date: 797 /* Get exclusive access to the page ... */ 798 lock_page(page); 799 800 /* Did it get unhashed before we got the lock? */ 801 if (!page->mapping) { 802 unlock_page(page); 803 page_cache_release(page); 804 continue; 805 } 806 807 /* Did somebody else fill it already? */ 808 if (PageUptodate(page)) { 809 unlock_page(page); 810 goto page_ok; 811 } 812 813 readpage: 814 /* Start the actual read. The read will unlock the page. */ 815 error = mapping->a_ops->readpage(filp, page); 816 817 if (unlikely(error)) 818 goto readpage_error; 819 820 if (!PageUptodate(page)) { 821 lock_page(page); 822 if (!PageUptodate(page)) { 823 if (page->mapping == NULL) { 824 /* 825 * invalidate_inode_pages got it 826 */ 827 unlock_page(page); 828 page_cache_release(page); 829 goto find_page; 830 } 831 unlock_page(page); 832 error = -EIO; 833 goto readpage_error; 834 } 835 unlock_page(page); 836 } 837 838 /* 839 * i_size must be checked after we have done ->readpage. 840 * 841 * Checking i_size after the readpage allows us to calculate 842 * the correct value for "nr", which means the zero-filled 843 * part of the page is not copied back to userspace (unless 844 * another truncate extends the file - this is desired though). 845 */ 846 isize = i_size_read(inode); 847 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 848 if (unlikely(!isize || index > end_index)) { 849 page_cache_release(page); 850 goto out; 851 } 852 853 /* nr is the maximum number of bytes to copy from this page */ 854 nr = PAGE_CACHE_SIZE; 855 if (index == end_index) { 856 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 857 if (nr <= offset) { 858 page_cache_release(page); 859 goto out; 860 } 861 } 862 nr = nr - offset; 863 goto page_ok; 864 865 readpage_error: 866 /* UHHUH! A synchronous read error occurred. Report it */ 867 desc->error = error; 868 page_cache_release(page); 869 goto out; 870 871 no_cached_page: 872 /* 873 * Ok, it wasn't cached, so we need to create a new 874 * page.. 875 */ 876 if (!cached_page) { 877 cached_page = page_cache_alloc_cold(mapping); 878 if (!cached_page) { 879 desc->error = -ENOMEM; 880 goto out; 881 } 882 } 883 error = add_to_page_cache_lru(cached_page, mapping, 884 index, GFP_KERNEL); 885 if (error) { 886 if (error == -EEXIST) 887 goto find_page; 888 desc->error = error; 889 goto out; 890 } 891 page = cached_page; 892 cached_page = NULL; 893 goto readpage; 894 } 895 896 out: 897 *_ra = ra; 898 899 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 900 if (cached_page) 901 page_cache_release(cached_page); 902 if (filp) 903 file_accessed(filp); 904 } 905 906 EXPORT_SYMBOL(do_generic_mapping_read); 907 908 int file_read_actor(read_descriptor_t *desc, struct page *page, 909 unsigned long offset, unsigned long size) 910 { 911 char *kaddr; 912 unsigned long left, count = desc->count; 913 914 if (size > count) 915 size = count; 916 917 /* 918 * Faults on the destination of a read are common, so do it before 919 * taking the kmap. 920 */ 921 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 922 kaddr = kmap_atomic(page, KM_USER0); 923 left = __copy_to_user_inatomic(desc->arg.buf, 924 kaddr + offset, size); 925 kunmap_atomic(kaddr, KM_USER0); 926 if (left == 0) 927 goto success; 928 } 929 930 /* Do it the slow way */ 931 kaddr = kmap(page); 932 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 933 kunmap(page); 934 935 if (left) { 936 size -= left; 937 desc->error = -EFAULT; 938 } 939 success: 940 desc->count = count - size; 941 desc->written += size; 942 desc->arg.buf += size; 943 return size; 944 } 945 946 /* 947 * This is the "read()" routine for all filesystems 948 * that can use the page cache directly. 949 */ 950 ssize_t 951 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 952 unsigned long nr_segs, loff_t *ppos) 953 { 954 struct file *filp = iocb->ki_filp; 955 ssize_t retval; 956 unsigned long seg; 957 size_t count; 958 959 count = 0; 960 for (seg = 0; seg < nr_segs; seg++) { 961 const struct iovec *iv = &iov[seg]; 962 963 /* 964 * If any segment has a negative length, or the cumulative 965 * length ever wraps negative then return -EINVAL. 966 */ 967 count += iv->iov_len; 968 if (unlikely((ssize_t)(count|iv->iov_len) < 0)) 969 return -EINVAL; 970 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) 971 continue; 972 if (seg == 0) 973 return -EFAULT; 974 nr_segs = seg; 975 count -= iv->iov_len; /* This segment is no good */ 976 break; 977 } 978 979 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 980 if (filp->f_flags & O_DIRECT) { 981 loff_t pos = *ppos, size; 982 struct address_space *mapping; 983 struct inode *inode; 984 985 mapping = filp->f_mapping; 986 inode = mapping->host; 987 retval = 0; 988 if (!count) 989 goto out; /* skip atime */ 990 size = i_size_read(inode); 991 if (pos < size) { 992 retval = generic_file_direct_IO(READ, iocb, 993 iov, pos, nr_segs); 994 if (retval >= 0 && !is_sync_kiocb(iocb)) 995 retval = -EIOCBQUEUED; 996 if (retval > 0) 997 *ppos = pos + retval; 998 } 999 file_accessed(filp); 1000 goto out; 1001 } 1002 1003 retval = 0; 1004 if (count) { 1005 for (seg = 0; seg < nr_segs; seg++) { 1006 read_descriptor_t desc; 1007 1008 desc.written = 0; 1009 desc.arg.buf = iov[seg].iov_base; 1010 desc.count = iov[seg].iov_len; 1011 if (desc.count == 0) 1012 continue; 1013 desc.error = 0; 1014 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1015 retval += desc.written; 1016 if (!retval) { 1017 retval = desc.error; 1018 break; 1019 } 1020 } 1021 } 1022 out: 1023 return retval; 1024 } 1025 1026 EXPORT_SYMBOL(__generic_file_aio_read); 1027 1028 ssize_t 1029 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) 1030 { 1031 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1032 1033 BUG_ON(iocb->ki_pos != pos); 1034 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); 1035 } 1036 1037 EXPORT_SYMBOL(generic_file_aio_read); 1038 1039 ssize_t 1040 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1041 { 1042 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1043 struct kiocb kiocb; 1044 ssize_t ret; 1045 1046 init_sync_kiocb(&kiocb, filp); 1047 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); 1048 if (-EIOCBQUEUED == ret) 1049 ret = wait_on_sync_kiocb(&kiocb); 1050 return ret; 1051 } 1052 1053 EXPORT_SYMBOL(generic_file_read); 1054 1055 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1056 { 1057 ssize_t written; 1058 unsigned long count = desc->count; 1059 struct file *file = desc->arg.data; 1060 1061 if (size > count) 1062 size = count; 1063 1064 written = file->f_op->sendpage(file, page, offset, 1065 size, &file->f_pos, size<count); 1066 if (written < 0) { 1067 desc->error = written; 1068 written = 0; 1069 } 1070 desc->count = count - written; 1071 desc->written += written; 1072 return written; 1073 } 1074 1075 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, 1076 size_t count, read_actor_t actor, void *target) 1077 { 1078 read_descriptor_t desc; 1079 1080 if (!count) 1081 return 0; 1082 1083 desc.written = 0; 1084 desc.count = count; 1085 desc.arg.data = target; 1086 desc.error = 0; 1087 1088 do_generic_file_read(in_file, ppos, &desc, actor); 1089 if (desc.written) 1090 return desc.written; 1091 return desc.error; 1092 } 1093 1094 EXPORT_SYMBOL(generic_file_sendfile); 1095 1096 static ssize_t 1097 do_readahead(struct address_space *mapping, struct file *filp, 1098 unsigned long index, unsigned long nr) 1099 { 1100 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1101 return -EINVAL; 1102 1103 force_page_cache_readahead(mapping, filp, index, 1104 max_sane_readahead(nr)); 1105 return 0; 1106 } 1107 1108 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1109 { 1110 ssize_t ret; 1111 struct file *file; 1112 1113 ret = -EBADF; 1114 file = fget(fd); 1115 if (file) { 1116 if (file->f_mode & FMODE_READ) { 1117 struct address_space *mapping = file->f_mapping; 1118 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1119 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1120 unsigned long len = end - start + 1; 1121 ret = do_readahead(mapping, file, start, len); 1122 } 1123 fput(file); 1124 } 1125 return ret; 1126 } 1127 1128 #ifdef CONFIG_MMU 1129 /* 1130 * This adds the requested page to the page cache if it isn't already there, 1131 * and schedules an I/O to read in its contents from disk. 1132 */ 1133 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1134 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1135 { 1136 struct address_space *mapping = file->f_mapping; 1137 struct page *page; 1138 int error; 1139 1140 page = page_cache_alloc_cold(mapping); 1141 if (!page) 1142 return -ENOMEM; 1143 1144 error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1145 if (!error) { 1146 error = mapping->a_ops->readpage(file, page); 1147 page_cache_release(page); 1148 return error; 1149 } 1150 1151 /* 1152 * We arrive here in the unlikely event that someone 1153 * raced with us and added our page to the cache first 1154 * or we are out of memory for radix-tree nodes. 1155 */ 1156 page_cache_release(page); 1157 return error == -EEXIST ? 0 : error; 1158 } 1159 1160 #define MMAP_LOTSAMISS (100) 1161 1162 /* 1163 * filemap_nopage() is invoked via the vma operations vector for a 1164 * mapped memory region to read in file data during a page fault. 1165 * 1166 * The goto's are kind of ugly, but this streamlines the normal case of having 1167 * it in the page cache, and handles the special cases reasonably without 1168 * having a lot of duplicated code. 1169 */ 1170 struct page *filemap_nopage(struct vm_area_struct *area, 1171 unsigned long address, int *type) 1172 { 1173 int error; 1174 struct file *file = area->vm_file; 1175 struct address_space *mapping = file->f_mapping; 1176 struct file_ra_state *ra = &file->f_ra; 1177 struct inode *inode = mapping->host; 1178 struct page *page; 1179 unsigned long size, pgoff; 1180 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1181 1182 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1183 1184 retry_all: 1185 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1186 if (pgoff >= size) 1187 goto outside_data_content; 1188 1189 /* If we don't want any read-ahead, don't bother */ 1190 if (VM_RandomReadHint(area)) 1191 goto no_cached_page; 1192 1193 /* 1194 * The readahead code wants to be told about each and every page 1195 * so it can build and shrink its windows appropriately 1196 * 1197 * For sequential accesses, we use the generic readahead logic. 1198 */ 1199 if (VM_SequentialReadHint(area)) 1200 page_cache_readahead(mapping, ra, file, pgoff, 1); 1201 1202 /* 1203 * Do we have something in the page cache already? 1204 */ 1205 retry_find: 1206 page = find_get_page(mapping, pgoff); 1207 if (!page) { 1208 unsigned long ra_pages; 1209 1210 if (VM_SequentialReadHint(area)) { 1211 handle_ra_miss(mapping, ra, pgoff); 1212 goto no_cached_page; 1213 } 1214 ra->mmap_miss++; 1215 1216 /* 1217 * Do we miss much more than hit in this file? If so, 1218 * stop bothering with read-ahead. It will only hurt. 1219 */ 1220 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1221 goto no_cached_page; 1222 1223 /* 1224 * To keep the pgmajfault counter straight, we need to 1225 * check did_readaround, as this is an inner loop. 1226 */ 1227 if (!did_readaround) { 1228 majmin = VM_FAULT_MAJOR; 1229 inc_page_state(pgmajfault); 1230 } 1231 did_readaround = 1; 1232 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1233 if (ra_pages) { 1234 pgoff_t start = 0; 1235 1236 if (pgoff > ra_pages / 2) 1237 start = pgoff - ra_pages / 2; 1238 do_page_cache_readahead(mapping, file, start, ra_pages); 1239 } 1240 page = find_get_page(mapping, pgoff); 1241 if (!page) 1242 goto no_cached_page; 1243 } 1244 1245 if (!did_readaround) 1246 ra->mmap_hit++; 1247 1248 /* 1249 * Ok, found a page in the page cache, now we need to check 1250 * that it's up-to-date. 1251 */ 1252 if (!PageUptodate(page)) 1253 goto page_not_uptodate; 1254 1255 success: 1256 /* 1257 * Found the page and have a reference on it. 1258 */ 1259 mark_page_accessed(page); 1260 if (type) 1261 *type = majmin; 1262 return page; 1263 1264 outside_data_content: 1265 /* 1266 * An external ptracer can access pages that normally aren't 1267 * accessible.. 1268 */ 1269 if (area->vm_mm == current->mm) 1270 return NULL; 1271 /* Fall through to the non-read-ahead case */ 1272 no_cached_page: 1273 /* 1274 * We're only likely to ever get here if MADV_RANDOM is in 1275 * effect. 1276 */ 1277 error = page_cache_read(file, pgoff); 1278 grab_swap_token(); 1279 1280 /* 1281 * The page we want has now been added to the page cache. 1282 * In the unlikely event that someone removed it in the 1283 * meantime, we'll just come back here and read it again. 1284 */ 1285 if (error >= 0) 1286 goto retry_find; 1287 1288 /* 1289 * An error return from page_cache_read can result if the 1290 * system is low on memory, or a problem occurs while trying 1291 * to schedule I/O. 1292 */ 1293 if (error == -ENOMEM) 1294 return NOPAGE_OOM; 1295 return NULL; 1296 1297 page_not_uptodate: 1298 if (!did_readaround) { 1299 majmin = VM_FAULT_MAJOR; 1300 inc_page_state(pgmajfault); 1301 } 1302 lock_page(page); 1303 1304 /* Did it get unhashed while we waited for it? */ 1305 if (!page->mapping) { 1306 unlock_page(page); 1307 page_cache_release(page); 1308 goto retry_all; 1309 } 1310 1311 /* Did somebody else get it up-to-date? */ 1312 if (PageUptodate(page)) { 1313 unlock_page(page); 1314 goto success; 1315 } 1316 1317 if (!mapping->a_ops->readpage(file, page)) { 1318 wait_on_page_locked(page); 1319 if (PageUptodate(page)) 1320 goto success; 1321 } 1322 1323 /* 1324 * Umm, take care of errors if the page isn't up-to-date. 1325 * Try to re-read it _once_. We do this synchronously, 1326 * because there really aren't any performance issues here 1327 * and we need to check for errors. 1328 */ 1329 lock_page(page); 1330 1331 /* Somebody truncated the page on us? */ 1332 if (!page->mapping) { 1333 unlock_page(page); 1334 page_cache_release(page); 1335 goto retry_all; 1336 } 1337 1338 /* Somebody else successfully read it in? */ 1339 if (PageUptodate(page)) { 1340 unlock_page(page); 1341 goto success; 1342 } 1343 ClearPageError(page); 1344 if (!mapping->a_ops->readpage(file, page)) { 1345 wait_on_page_locked(page); 1346 if (PageUptodate(page)) 1347 goto success; 1348 } 1349 1350 /* 1351 * Things didn't work out. Return zero to tell the 1352 * mm layer so, possibly freeing the page cache page first. 1353 */ 1354 page_cache_release(page); 1355 return NULL; 1356 } 1357 1358 EXPORT_SYMBOL(filemap_nopage); 1359 1360 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1361 int nonblock) 1362 { 1363 struct address_space *mapping = file->f_mapping; 1364 struct page *page; 1365 int error; 1366 1367 /* 1368 * Do we have something in the page cache already? 1369 */ 1370 retry_find: 1371 page = find_get_page(mapping, pgoff); 1372 if (!page) { 1373 if (nonblock) 1374 return NULL; 1375 goto no_cached_page; 1376 } 1377 1378 /* 1379 * Ok, found a page in the page cache, now we need to check 1380 * that it's up-to-date. 1381 */ 1382 if (!PageUptodate(page)) 1383 goto page_not_uptodate; 1384 1385 success: 1386 /* 1387 * Found the page and have a reference on it. 1388 */ 1389 mark_page_accessed(page); 1390 return page; 1391 1392 no_cached_page: 1393 error = page_cache_read(file, pgoff); 1394 1395 /* 1396 * The page we want has now been added to the page cache. 1397 * In the unlikely event that someone removed it in the 1398 * meantime, we'll just come back here and read it again. 1399 */ 1400 if (error >= 0) 1401 goto retry_find; 1402 1403 /* 1404 * An error return from page_cache_read can result if the 1405 * system is low on memory, or a problem occurs while trying 1406 * to schedule I/O. 1407 */ 1408 return NULL; 1409 1410 page_not_uptodate: 1411 lock_page(page); 1412 1413 /* Did it get unhashed while we waited for it? */ 1414 if (!page->mapping) { 1415 unlock_page(page); 1416 goto err; 1417 } 1418 1419 /* Did somebody else get it up-to-date? */ 1420 if (PageUptodate(page)) { 1421 unlock_page(page); 1422 goto success; 1423 } 1424 1425 if (!mapping->a_ops->readpage(file, page)) { 1426 wait_on_page_locked(page); 1427 if (PageUptodate(page)) 1428 goto success; 1429 } 1430 1431 /* 1432 * Umm, take care of errors if the page isn't up-to-date. 1433 * Try to re-read it _once_. We do this synchronously, 1434 * because there really aren't any performance issues here 1435 * and we need to check for errors. 1436 */ 1437 lock_page(page); 1438 1439 /* Somebody truncated the page on us? */ 1440 if (!page->mapping) { 1441 unlock_page(page); 1442 goto err; 1443 } 1444 /* Somebody else successfully read it in? */ 1445 if (PageUptodate(page)) { 1446 unlock_page(page); 1447 goto success; 1448 } 1449 1450 ClearPageError(page); 1451 if (!mapping->a_ops->readpage(file, page)) { 1452 wait_on_page_locked(page); 1453 if (PageUptodate(page)) 1454 goto success; 1455 } 1456 1457 /* 1458 * Things didn't work out. Return zero to tell the 1459 * mm layer so, possibly freeing the page cache page first. 1460 */ 1461 err: 1462 page_cache_release(page); 1463 1464 return NULL; 1465 } 1466 1467 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1468 unsigned long len, pgprot_t prot, unsigned long pgoff, 1469 int nonblock) 1470 { 1471 struct file *file = vma->vm_file; 1472 struct address_space *mapping = file->f_mapping; 1473 struct inode *inode = mapping->host; 1474 unsigned long size; 1475 struct mm_struct *mm = vma->vm_mm; 1476 struct page *page; 1477 int err; 1478 1479 if (!nonblock) 1480 force_page_cache_readahead(mapping, vma->vm_file, 1481 pgoff, len >> PAGE_CACHE_SHIFT); 1482 1483 repeat: 1484 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1485 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1486 return -EINVAL; 1487 1488 page = filemap_getpage(file, pgoff, nonblock); 1489 if (!page && !nonblock) 1490 return -ENOMEM; 1491 if (page) { 1492 err = install_page(mm, vma, addr, page, prot); 1493 if (err) { 1494 page_cache_release(page); 1495 return err; 1496 } 1497 } else { 1498 err = install_file_pte(mm, vma, addr, pgoff, prot); 1499 if (err) 1500 return err; 1501 } 1502 1503 len -= PAGE_SIZE; 1504 addr += PAGE_SIZE; 1505 pgoff++; 1506 if (len) 1507 goto repeat; 1508 1509 return 0; 1510 } 1511 1512 struct vm_operations_struct generic_file_vm_ops = { 1513 .nopage = filemap_nopage, 1514 .populate = filemap_populate, 1515 }; 1516 1517 /* This is used for a general mmap of a disk file */ 1518 1519 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1520 { 1521 struct address_space *mapping = file->f_mapping; 1522 1523 if (!mapping->a_ops->readpage) 1524 return -ENOEXEC; 1525 file_accessed(file); 1526 vma->vm_ops = &generic_file_vm_ops; 1527 return 0; 1528 } 1529 EXPORT_SYMBOL(filemap_populate); 1530 1531 /* 1532 * This is for filesystems which do not implement ->writepage. 1533 */ 1534 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1535 { 1536 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1537 return -EINVAL; 1538 return generic_file_mmap(file, vma); 1539 } 1540 #else 1541 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1542 { 1543 return -ENOSYS; 1544 } 1545 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1546 { 1547 return -ENOSYS; 1548 } 1549 #endif /* CONFIG_MMU */ 1550 1551 EXPORT_SYMBOL(generic_file_mmap); 1552 EXPORT_SYMBOL(generic_file_readonly_mmap); 1553 1554 static inline struct page *__read_cache_page(struct address_space *mapping, 1555 unsigned long index, 1556 int (*filler)(void *,struct page*), 1557 void *data) 1558 { 1559 struct page *page, *cached_page = NULL; 1560 int err; 1561 repeat: 1562 page = find_get_page(mapping, index); 1563 if (!page) { 1564 if (!cached_page) { 1565 cached_page = page_cache_alloc_cold(mapping); 1566 if (!cached_page) 1567 return ERR_PTR(-ENOMEM); 1568 } 1569 err = add_to_page_cache_lru(cached_page, mapping, 1570 index, GFP_KERNEL); 1571 if (err == -EEXIST) 1572 goto repeat; 1573 if (err < 0) { 1574 /* Presumably ENOMEM for radix tree node */ 1575 page_cache_release(cached_page); 1576 return ERR_PTR(err); 1577 } 1578 page = cached_page; 1579 cached_page = NULL; 1580 err = filler(data, page); 1581 if (err < 0) { 1582 page_cache_release(page); 1583 page = ERR_PTR(err); 1584 } 1585 } 1586 if (cached_page) 1587 page_cache_release(cached_page); 1588 return page; 1589 } 1590 1591 /* 1592 * Read into the page cache. If a page already exists, 1593 * and PageUptodate() is not set, try to fill the page. 1594 */ 1595 struct page *read_cache_page(struct address_space *mapping, 1596 unsigned long index, 1597 int (*filler)(void *,struct page*), 1598 void *data) 1599 { 1600 struct page *page; 1601 int err; 1602 1603 retry: 1604 page = __read_cache_page(mapping, index, filler, data); 1605 if (IS_ERR(page)) 1606 goto out; 1607 mark_page_accessed(page); 1608 if (PageUptodate(page)) 1609 goto out; 1610 1611 lock_page(page); 1612 if (!page->mapping) { 1613 unlock_page(page); 1614 page_cache_release(page); 1615 goto retry; 1616 } 1617 if (PageUptodate(page)) { 1618 unlock_page(page); 1619 goto out; 1620 } 1621 err = filler(data, page); 1622 if (err < 0) { 1623 page_cache_release(page); 1624 page = ERR_PTR(err); 1625 } 1626 out: 1627 return page; 1628 } 1629 1630 EXPORT_SYMBOL(read_cache_page); 1631 1632 /* 1633 * If the page was newly created, increment its refcount and add it to the 1634 * caller's lru-buffering pagevec. This function is specifically for 1635 * generic_file_write(). 1636 */ 1637 static inline struct page * 1638 __grab_cache_page(struct address_space *mapping, unsigned long index, 1639 struct page **cached_page, struct pagevec *lru_pvec) 1640 { 1641 int err; 1642 struct page *page; 1643 repeat: 1644 page = find_lock_page(mapping, index); 1645 if (!page) { 1646 if (!*cached_page) { 1647 *cached_page = page_cache_alloc(mapping); 1648 if (!*cached_page) 1649 return NULL; 1650 } 1651 err = add_to_page_cache(*cached_page, mapping, 1652 index, GFP_KERNEL); 1653 if (err == -EEXIST) 1654 goto repeat; 1655 if (err == 0) { 1656 page = *cached_page; 1657 page_cache_get(page); 1658 if (!pagevec_add(lru_pvec, page)) 1659 __pagevec_lru_add(lru_pvec); 1660 *cached_page = NULL; 1661 } 1662 } 1663 return page; 1664 } 1665 1666 /* 1667 * The logic we want is 1668 * 1669 * if suid or (sgid and xgrp) 1670 * remove privs 1671 */ 1672 int remove_suid(struct dentry *dentry) 1673 { 1674 mode_t mode = dentry->d_inode->i_mode; 1675 int kill = 0; 1676 int result = 0; 1677 1678 /* suid always must be killed */ 1679 if (unlikely(mode & S_ISUID)) 1680 kill = ATTR_KILL_SUID; 1681 1682 /* 1683 * sgid without any exec bits is just a mandatory locking mark; leave 1684 * it alone. If some exec bits are set, it's a real sgid; kill it. 1685 */ 1686 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1687 kill |= ATTR_KILL_SGID; 1688 1689 if (unlikely(kill && !capable(CAP_FSETID))) { 1690 struct iattr newattrs; 1691 1692 newattrs.ia_valid = ATTR_FORCE | kill; 1693 result = notify_change(dentry, &newattrs); 1694 } 1695 return result; 1696 } 1697 EXPORT_SYMBOL(remove_suid); 1698 1699 /* 1700 * Copy as much as we can into the page and return the number of bytes which 1701 * were sucessfully copied. If a fault is encountered then clear the page 1702 * out to (offset+bytes) and return the number of bytes which were copied. 1703 */ 1704 static inline size_t 1705 filemap_copy_from_user(struct page *page, unsigned long offset, 1706 const char __user *buf, unsigned bytes) 1707 { 1708 char *kaddr; 1709 int left; 1710 1711 kaddr = kmap_atomic(page, KM_USER0); 1712 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1713 kunmap_atomic(kaddr, KM_USER0); 1714 1715 if (left != 0) { 1716 /* Do it the slow way */ 1717 kaddr = kmap(page); 1718 left = __copy_from_user(kaddr + offset, buf, bytes); 1719 kunmap(page); 1720 } 1721 return bytes - left; 1722 } 1723 1724 static size_t 1725 __filemap_copy_from_user_iovec(char *vaddr, 1726 const struct iovec *iov, size_t base, size_t bytes) 1727 { 1728 size_t copied = 0, left = 0; 1729 1730 while (bytes) { 1731 char __user *buf = iov->iov_base + base; 1732 int copy = min(bytes, iov->iov_len - base); 1733 1734 base = 0; 1735 left = __copy_from_user_inatomic(vaddr, buf, copy); 1736 copied += copy; 1737 bytes -= copy; 1738 vaddr += copy; 1739 iov++; 1740 1741 if (unlikely(left)) { 1742 /* zero the rest of the target like __copy_from_user */ 1743 if (bytes) 1744 memset(vaddr, 0, bytes); 1745 break; 1746 } 1747 } 1748 return copied - left; 1749 } 1750 1751 /* 1752 * This has the same sideeffects and return value as filemap_copy_from_user(). 1753 * The difference is that on a fault we need to memset the remainder of the 1754 * page (out to offset+bytes), to emulate filemap_copy_from_user()'s 1755 * single-segment behaviour. 1756 */ 1757 static inline size_t 1758 filemap_copy_from_user_iovec(struct page *page, unsigned long offset, 1759 const struct iovec *iov, size_t base, size_t bytes) 1760 { 1761 char *kaddr; 1762 size_t copied; 1763 1764 kaddr = kmap_atomic(page, KM_USER0); 1765 copied = __filemap_copy_from_user_iovec(kaddr + offset, iov, 1766 base, bytes); 1767 kunmap_atomic(kaddr, KM_USER0); 1768 if (copied != bytes) { 1769 kaddr = kmap(page); 1770 copied = __filemap_copy_from_user_iovec(kaddr + offset, iov, 1771 base, bytes); 1772 kunmap(page); 1773 } 1774 return copied; 1775 } 1776 1777 static inline void 1778 filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes) 1779 { 1780 const struct iovec *iov = *iovp; 1781 size_t base = *basep; 1782 1783 while (bytes) { 1784 int copy = min(bytes, iov->iov_len - base); 1785 1786 bytes -= copy; 1787 base += copy; 1788 if (iov->iov_len == base) { 1789 iov++; 1790 base = 0; 1791 } 1792 } 1793 *iovp = iov; 1794 *basep = base; 1795 } 1796 1797 /* 1798 * Performs necessary checks before doing a write 1799 * 1800 * Can adjust writing position aor amount of bytes to write. 1801 * Returns appropriate error code that caller should return or 1802 * zero in case that write should be allowed. 1803 */ 1804 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1805 { 1806 struct inode *inode = file->f_mapping->host; 1807 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1808 1809 if (unlikely(*pos < 0)) 1810 return -EINVAL; 1811 1812 if (unlikely(file->f_error)) { 1813 int err = file->f_error; 1814 file->f_error = 0; 1815 return err; 1816 } 1817 1818 if (!isblk) { 1819 /* FIXME: this is for backwards compatibility with 2.4 */ 1820 if (file->f_flags & O_APPEND) 1821 *pos = i_size_read(inode); 1822 1823 if (limit != RLIM_INFINITY) { 1824 if (*pos >= limit) { 1825 send_sig(SIGXFSZ, current, 0); 1826 return -EFBIG; 1827 } 1828 if (*count > limit - (typeof(limit))*pos) { 1829 *count = limit - (typeof(limit))*pos; 1830 } 1831 } 1832 } 1833 1834 /* 1835 * LFS rule 1836 */ 1837 if (unlikely(*pos + *count > MAX_NON_LFS && 1838 !(file->f_flags & O_LARGEFILE))) { 1839 if (*pos >= MAX_NON_LFS) { 1840 send_sig(SIGXFSZ, current, 0); 1841 return -EFBIG; 1842 } 1843 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1844 *count = MAX_NON_LFS - (unsigned long)*pos; 1845 } 1846 } 1847 1848 /* 1849 * Are we about to exceed the fs block limit ? 1850 * 1851 * If we have written data it becomes a short write. If we have 1852 * exceeded without writing data we send a signal and return EFBIG. 1853 * Linus frestrict idea will clean these up nicely.. 1854 */ 1855 if (likely(!isblk)) { 1856 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1857 if (*count || *pos > inode->i_sb->s_maxbytes) { 1858 send_sig(SIGXFSZ, current, 0); 1859 return -EFBIG; 1860 } 1861 /* zero-length writes at ->s_maxbytes are OK */ 1862 } 1863 1864 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1865 *count = inode->i_sb->s_maxbytes - *pos; 1866 } else { 1867 loff_t isize; 1868 if (bdev_read_only(I_BDEV(inode))) 1869 return -EPERM; 1870 isize = i_size_read(inode); 1871 if (*pos >= isize) { 1872 if (*count || *pos > isize) 1873 return -ENOSPC; 1874 } 1875 1876 if (*pos + *count > isize) 1877 *count = isize - *pos; 1878 } 1879 return 0; 1880 } 1881 EXPORT_SYMBOL(generic_write_checks); 1882 1883 ssize_t 1884 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 1885 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 1886 size_t count, size_t ocount) 1887 { 1888 struct file *file = iocb->ki_filp; 1889 struct address_space *mapping = file->f_mapping; 1890 struct inode *inode = mapping->host; 1891 ssize_t written; 1892 1893 if (count != ocount) 1894 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 1895 1896 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 1897 if (written > 0) { 1898 loff_t end = pos + written; 1899 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 1900 i_size_write(inode, end); 1901 mark_inode_dirty(inode); 1902 } 1903 *ppos = end; 1904 } 1905 1906 /* 1907 * Sync the fs metadata but not the minor inode changes and 1908 * of course not the data as we did direct DMA for the IO. 1909 * i_sem is held, which protects generic_osync_inode() from 1910 * livelocking. 1911 */ 1912 if (written >= 0 && file->f_flags & O_SYNC) 1913 generic_osync_inode(inode, mapping, OSYNC_METADATA); 1914 if (written == count && !is_sync_kiocb(iocb)) 1915 written = -EIOCBQUEUED; 1916 return written; 1917 } 1918 EXPORT_SYMBOL(generic_file_direct_write); 1919 1920 ssize_t 1921 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 1922 unsigned long nr_segs, loff_t pos, loff_t *ppos, 1923 size_t count, ssize_t written) 1924 { 1925 struct file *file = iocb->ki_filp; 1926 struct address_space * mapping = file->f_mapping; 1927 struct address_space_operations *a_ops = mapping->a_ops; 1928 struct inode *inode = mapping->host; 1929 long status = 0; 1930 struct page *page; 1931 struct page *cached_page = NULL; 1932 size_t bytes; 1933 struct pagevec lru_pvec; 1934 const struct iovec *cur_iov = iov; /* current iovec */ 1935 size_t iov_base = 0; /* offset in the current iovec */ 1936 char __user *buf; 1937 1938 pagevec_init(&lru_pvec, 0); 1939 1940 /* 1941 * handle partial DIO write. Adjust cur_iov if needed. 1942 */ 1943 if (likely(nr_segs == 1)) 1944 buf = iov->iov_base + written; 1945 else { 1946 filemap_set_next_iovec(&cur_iov, &iov_base, written); 1947 buf = iov->iov_base + iov_base; 1948 } 1949 1950 do { 1951 unsigned long index; 1952 unsigned long offset; 1953 size_t copied; 1954 1955 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 1956 index = pos >> PAGE_CACHE_SHIFT; 1957 bytes = PAGE_CACHE_SIZE - offset; 1958 if (bytes > count) 1959 bytes = count; 1960 1961 /* 1962 * Bring in the user page that we will copy from _first_. 1963 * Otherwise there's a nasty deadlock on copying from the 1964 * same page as we're writing to, without it being marked 1965 * up-to-date. 1966 */ 1967 fault_in_pages_readable(buf, bytes); 1968 1969 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 1970 if (!page) { 1971 status = -ENOMEM; 1972 break; 1973 } 1974 1975 status = a_ops->prepare_write(file, page, offset, offset+bytes); 1976 if (unlikely(status)) { 1977 loff_t isize = i_size_read(inode); 1978 /* 1979 * prepare_write() may have instantiated a few blocks 1980 * outside i_size. Trim these off again. 1981 */ 1982 unlock_page(page); 1983 page_cache_release(page); 1984 if (pos + bytes > isize) 1985 vmtruncate(inode, isize); 1986 break; 1987 } 1988 if (likely(nr_segs == 1)) 1989 copied = filemap_copy_from_user(page, offset, 1990 buf, bytes); 1991 else 1992 copied = filemap_copy_from_user_iovec(page, offset, 1993 cur_iov, iov_base, bytes); 1994 flush_dcache_page(page); 1995 status = a_ops->commit_write(file, page, offset, offset+bytes); 1996 if (likely(copied > 0)) { 1997 if (!status) 1998 status = copied; 1999 2000 if (status >= 0) { 2001 written += status; 2002 count -= status; 2003 pos += status; 2004 buf += status; 2005 if (unlikely(nr_segs > 1)) 2006 filemap_set_next_iovec(&cur_iov, 2007 &iov_base, status); 2008 } 2009 } 2010 if (unlikely(copied != bytes)) 2011 if (status >= 0) 2012 status = -EFAULT; 2013 unlock_page(page); 2014 mark_page_accessed(page); 2015 page_cache_release(page); 2016 if (status < 0) 2017 break; 2018 balance_dirty_pages_ratelimited(mapping); 2019 cond_resched(); 2020 } while (count); 2021 *ppos = pos; 2022 2023 if (cached_page) 2024 page_cache_release(cached_page); 2025 2026 /* 2027 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2028 */ 2029 if (likely(status >= 0)) { 2030 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2031 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2032 status = generic_osync_inode(inode, mapping, 2033 OSYNC_METADATA|OSYNC_DATA); 2034 } 2035 } 2036 2037 /* 2038 * If we get here for O_DIRECT writes then we must have fallen through 2039 * to buffered writes (block instantiation inside i_size). So we sync 2040 * the file data here, to try to honour O_DIRECT expectations. 2041 */ 2042 if (unlikely(file->f_flags & O_DIRECT) && written) 2043 status = filemap_write_and_wait(mapping); 2044 2045 pagevec_lru_add(&lru_pvec); 2046 return written ? written : status; 2047 } 2048 EXPORT_SYMBOL(generic_file_buffered_write); 2049 2050 ssize_t 2051 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2052 unsigned long nr_segs, loff_t *ppos) 2053 { 2054 struct file *file = iocb->ki_filp; 2055 struct address_space * mapping = file->f_mapping; 2056 size_t ocount; /* original count */ 2057 size_t count; /* after file limit checks */ 2058 struct inode *inode = mapping->host; 2059 unsigned long seg; 2060 loff_t pos; 2061 ssize_t written; 2062 ssize_t err; 2063 2064 ocount = 0; 2065 for (seg = 0; seg < nr_segs; seg++) { 2066 const struct iovec *iv = &iov[seg]; 2067 2068 /* 2069 * If any segment has a negative length, or the cumulative 2070 * length ever wraps negative then return -EINVAL. 2071 */ 2072 ocount += iv->iov_len; 2073 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) 2074 return -EINVAL; 2075 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) 2076 continue; 2077 if (seg == 0) 2078 return -EFAULT; 2079 nr_segs = seg; 2080 ocount -= iv->iov_len; /* This segment is no good */ 2081 break; 2082 } 2083 2084 count = ocount; 2085 pos = *ppos; 2086 2087 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2088 2089 /* We can write back this queue in page reclaim */ 2090 current->backing_dev_info = mapping->backing_dev_info; 2091 written = 0; 2092 2093 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2094 if (err) 2095 goto out; 2096 2097 if (count == 0) 2098 goto out; 2099 2100 err = remove_suid(file->f_dentry); 2101 if (err) 2102 goto out; 2103 2104 inode_update_time(inode, 1); 2105 2106 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2107 if (unlikely(file->f_flags & O_DIRECT)) { 2108 written = generic_file_direct_write(iocb, iov, 2109 &nr_segs, pos, ppos, count, ocount); 2110 if (written < 0 || written == count) 2111 goto out; 2112 /* 2113 * direct-io write to a hole: fall through to buffered I/O 2114 * for completing the rest of the request. 2115 */ 2116 pos += written; 2117 count -= written; 2118 } 2119 2120 written = generic_file_buffered_write(iocb, iov, nr_segs, 2121 pos, ppos, count, written); 2122 out: 2123 current->backing_dev_info = NULL; 2124 return written ? written : err; 2125 } 2126 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2127 2128 ssize_t 2129 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2130 unsigned long nr_segs, loff_t *ppos) 2131 { 2132 struct file *file = iocb->ki_filp; 2133 struct address_space *mapping = file->f_mapping; 2134 struct inode *inode = mapping->host; 2135 ssize_t ret; 2136 loff_t pos = *ppos; 2137 2138 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos); 2139 2140 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2141 int err; 2142 2143 err = sync_page_range_nolock(inode, mapping, pos, ret); 2144 if (err < 0) 2145 ret = err; 2146 } 2147 return ret; 2148 } 2149 2150 ssize_t 2151 __generic_file_write_nolock(struct file *file, const struct iovec *iov, 2152 unsigned long nr_segs, loff_t *ppos) 2153 { 2154 struct kiocb kiocb; 2155 ssize_t ret; 2156 2157 init_sync_kiocb(&kiocb, file); 2158 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2159 if (ret == -EIOCBQUEUED) 2160 ret = wait_on_sync_kiocb(&kiocb); 2161 return ret; 2162 } 2163 2164 ssize_t 2165 generic_file_write_nolock(struct file *file, const struct iovec *iov, 2166 unsigned long nr_segs, loff_t *ppos) 2167 { 2168 struct kiocb kiocb; 2169 ssize_t ret; 2170 2171 init_sync_kiocb(&kiocb, file); 2172 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2173 if (-EIOCBQUEUED == ret) 2174 ret = wait_on_sync_kiocb(&kiocb); 2175 return ret; 2176 } 2177 EXPORT_SYMBOL(generic_file_write_nolock); 2178 2179 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf, 2180 size_t count, loff_t pos) 2181 { 2182 struct file *file = iocb->ki_filp; 2183 struct address_space *mapping = file->f_mapping; 2184 struct inode *inode = mapping->host; 2185 ssize_t ret; 2186 struct iovec local_iov = { .iov_base = (void __user *)buf, 2187 .iov_len = count }; 2188 2189 BUG_ON(iocb->ki_pos != pos); 2190 2191 down(&inode->i_sem); 2192 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1, 2193 &iocb->ki_pos); 2194 up(&inode->i_sem); 2195 2196 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2197 ssize_t err; 2198 2199 err = sync_page_range(inode, mapping, pos, ret); 2200 if (err < 0) 2201 ret = err; 2202 } 2203 return ret; 2204 } 2205 EXPORT_SYMBOL(generic_file_aio_write); 2206 2207 ssize_t generic_file_write(struct file *file, const char __user *buf, 2208 size_t count, loff_t *ppos) 2209 { 2210 struct address_space *mapping = file->f_mapping; 2211 struct inode *inode = mapping->host; 2212 ssize_t ret; 2213 struct iovec local_iov = { .iov_base = (void __user *)buf, 2214 .iov_len = count }; 2215 2216 down(&inode->i_sem); 2217 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos); 2218 up(&inode->i_sem); 2219 2220 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2221 ssize_t err; 2222 2223 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2224 if (err < 0) 2225 ret = err; 2226 } 2227 return ret; 2228 } 2229 EXPORT_SYMBOL(generic_file_write); 2230 2231 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, 2232 unsigned long nr_segs, loff_t *ppos) 2233 { 2234 struct kiocb kiocb; 2235 ssize_t ret; 2236 2237 init_sync_kiocb(&kiocb, filp); 2238 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); 2239 if (-EIOCBQUEUED == ret) 2240 ret = wait_on_sync_kiocb(&kiocb); 2241 return ret; 2242 } 2243 EXPORT_SYMBOL(generic_file_readv); 2244 2245 ssize_t generic_file_writev(struct file *file, const struct iovec *iov, 2246 unsigned long nr_segs, loff_t *ppos) 2247 { 2248 struct address_space *mapping = file->f_mapping; 2249 struct inode *inode = mapping->host; 2250 ssize_t ret; 2251 2252 down(&inode->i_sem); 2253 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos); 2254 up(&inode->i_sem); 2255 2256 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2257 int err; 2258 2259 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2260 if (err < 0) 2261 ret = err; 2262 } 2263 return ret; 2264 } 2265 EXPORT_SYMBOL(generic_file_writev); 2266 2267 /* 2268 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something 2269 * went wrong during pagecache shootdown. 2270 */ 2271 ssize_t 2272 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2273 loff_t offset, unsigned long nr_segs) 2274 { 2275 struct file *file = iocb->ki_filp; 2276 struct address_space *mapping = file->f_mapping; 2277 ssize_t retval; 2278 size_t write_len = 0; 2279 2280 /* 2281 * If it's a write, unmap all mmappings of the file up-front. This 2282 * will cause any pte dirty bits to be propagated into the pageframes 2283 * for the subsequent filemap_write_and_wait(). 2284 */ 2285 if (rw == WRITE) { 2286 write_len = iov_length(iov, nr_segs); 2287 if (mapping_mapped(mapping)) 2288 unmap_mapping_range(mapping, offset, write_len, 0); 2289 } 2290 2291 retval = filemap_write_and_wait(mapping); 2292 if (retval == 0) { 2293 retval = mapping->a_ops->direct_IO(rw, iocb, iov, 2294 offset, nr_segs); 2295 if (rw == WRITE && mapping->nrpages) { 2296 pgoff_t end = (offset + write_len - 1) 2297 >> PAGE_CACHE_SHIFT; 2298 int err = invalidate_inode_pages2_range(mapping, 2299 offset >> PAGE_CACHE_SHIFT, end); 2300 if (err) 2301 retval = err; 2302 } 2303 } 2304 return retval; 2305 } 2306 EXPORT_SYMBOL_GPL(generic_file_direct_IO); 2307