xref: /openbmc/linux/mm/compaction.c (revision ec8f24b7faaf3d4799a7c3f4c1b87f6b02778ad1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
69 static void split_map_pages(struct list_head *list)
70 {
71 	unsigned int i, order, nr_pages;
72 	struct page *page, *next;
73 	LIST_HEAD(tmp_list);
74 
75 	list_for_each_entry_safe(page, next, list, lru) {
76 		list_del(&page->lru);
77 
78 		order = page_private(page);
79 		nr_pages = 1 << order;
80 
81 		post_alloc_hook(page, order, __GFP_MOVABLE);
82 		if (order)
83 			split_page(page, order);
84 
85 		for (i = 0; i < nr_pages; i++) {
86 			list_add(&page->lru, &tmp_list);
87 			page++;
88 		}
89 	}
90 
91 	list_splice(&tmp_list, list);
92 }
93 
94 #ifdef CONFIG_COMPACTION
95 
96 int PageMovable(struct page *page)
97 {
98 	struct address_space *mapping;
99 
100 	VM_BUG_ON_PAGE(!PageLocked(page), page);
101 	if (!__PageMovable(page))
102 		return 0;
103 
104 	mapping = page_mapping(page);
105 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 		return 1;
107 
108 	return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111 
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 	VM_BUG_ON_PAGE(!PageLocked(page), page);
115 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119 
120 void __ClearPageMovable(struct page *page)
121 {
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(!PageMovable(page), page);
124 	/*
125 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 	 * flag so that VM can catch up released page by driver after isolation.
127 	 * With it, VM migration doesn't try to put it back.
128 	 */
129 	page->mapping = (void *)((unsigned long)page->mapping &
130 				PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133 
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136 
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 	zone->compact_considered = 0;
145 	zone->compact_defer_shift++;
146 
147 	if (order < zone->compact_order_failed)
148 		zone->compact_order_failed = order;
149 
150 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152 
153 	trace_mm_compaction_defer_compaction(zone, order);
154 }
155 
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160 
161 	if (order < zone->compact_order_failed)
162 		return false;
163 
164 	/* Avoid possible overflow */
165 	if (++zone->compact_considered > defer_limit)
166 		zone->compact_considered = defer_limit;
167 
168 	if (zone->compact_considered >= defer_limit)
169 		return false;
170 
171 	trace_mm_compaction_deferred(zone, order);
172 
173 	return true;
174 }
175 
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182 		bool alloc_success)
183 {
184 	if (alloc_success) {
185 		zone->compact_considered = 0;
186 		zone->compact_defer_shift = 0;
187 	}
188 	if (order >= zone->compact_order_failed)
189 		zone->compact_order_failed = order + 1;
190 
191 	trace_mm_compaction_defer_reset(zone, order);
192 }
193 
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 	if (order < zone->compact_order_failed)
198 		return false;
199 
200 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203 
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 					struct page *page)
207 {
208 	if (cc->ignore_skip_hint)
209 		return true;
210 
211 	return !get_pageblock_skip(page);
212 }
213 
214 static void reset_cached_positions(struct zone *zone)
215 {
216 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 	zone->compact_cached_free_pfn =
219 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221 
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 	if (!PageCompound(page))
230 		return false;
231 
232 	page = compound_head(page);
233 
234 	if (compound_order(page) >= pageblock_order)
235 		return true;
236 
237 	return false;
238 }
239 
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 							bool check_target)
243 {
244 	struct page *page = pfn_to_online_page(pfn);
245 	struct page *block_page;
246 	struct page *end_page;
247 	unsigned long block_pfn;
248 
249 	if (!page)
250 		return false;
251 	if (zone != page_zone(page))
252 		return false;
253 	if (pageblock_skip_persistent(page))
254 		return false;
255 
256 	/*
257 	 * If skip is already cleared do no further checking once the
258 	 * restart points have been set.
259 	 */
260 	if (check_source && check_target && !get_pageblock_skip(page))
261 		return true;
262 
263 	/*
264 	 * If clearing skip for the target scanner, do not select a
265 	 * non-movable pageblock as the starting point.
266 	 */
267 	if (!check_source && check_target &&
268 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 		return false;
270 
271 	/* Ensure the start of the pageblock or zone is online and valid */
272 	block_pfn = pageblock_start_pfn(pfn);
273 	block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
274 	if (block_page) {
275 		page = block_page;
276 		pfn = block_pfn;
277 	}
278 
279 	/* Ensure the end of the pageblock or zone is online and valid */
280 	block_pfn += pageblock_nr_pages;
281 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
282 	end_page = pfn_to_online_page(block_pfn);
283 	if (!end_page)
284 		return false;
285 
286 	/*
287 	 * Only clear the hint if a sample indicates there is either a
288 	 * free page or an LRU page in the block. One or other condition
289 	 * is necessary for the block to be a migration source/target.
290 	 */
291 	do {
292 		if (pfn_valid_within(pfn)) {
293 			if (check_source && PageLRU(page)) {
294 				clear_pageblock_skip(page);
295 				return true;
296 			}
297 
298 			if (check_target && PageBuddy(page)) {
299 				clear_pageblock_skip(page);
300 				return true;
301 			}
302 		}
303 
304 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
305 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 	} while (page < end_page);
307 
308 	return false;
309 }
310 
311 /*
312  * This function is called to clear all cached information on pageblocks that
313  * should be skipped for page isolation when the migrate and free page scanner
314  * meet.
315  */
316 static void __reset_isolation_suitable(struct zone *zone)
317 {
318 	unsigned long migrate_pfn = zone->zone_start_pfn;
319 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
320 	unsigned long reset_migrate = free_pfn;
321 	unsigned long reset_free = migrate_pfn;
322 	bool source_set = false;
323 	bool free_set = false;
324 
325 	if (!zone->compact_blockskip_flush)
326 		return;
327 
328 	zone->compact_blockskip_flush = false;
329 
330 	/*
331 	 * Walk the zone and update pageblock skip information. Source looks
332 	 * for PageLRU while target looks for PageBuddy. When the scanner
333 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
334 	 * is suitable as both source and target.
335 	 */
336 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
337 					free_pfn -= pageblock_nr_pages) {
338 		cond_resched();
339 
340 		/* Update the migrate PFN */
341 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
342 		    migrate_pfn < reset_migrate) {
343 			source_set = true;
344 			reset_migrate = migrate_pfn;
345 			zone->compact_init_migrate_pfn = reset_migrate;
346 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
347 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
348 		}
349 
350 		/* Update the free PFN */
351 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
352 		    free_pfn > reset_free) {
353 			free_set = true;
354 			reset_free = free_pfn;
355 			zone->compact_init_free_pfn = reset_free;
356 			zone->compact_cached_free_pfn = reset_free;
357 		}
358 	}
359 
360 	/* Leave no distance if no suitable block was reset */
361 	if (reset_migrate >= reset_free) {
362 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
363 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
364 		zone->compact_cached_free_pfn = free_pfn;
365 	}
366 }
367 
368 void reset_isolation_suitable(pg_data_t *pgdat)
369 {
370 	int zoneid;
371 
372 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
373 		struct zone *zone = &pgdat->node_zones[zoneid];
374 		if (!populated_zone(zone))
375 			continue;
376 
377 		/* Only flush if a full compaction finished recently */
378 		if (zone->compact_blockskip_flush)
379 			__reset_isolation_suitable(zone);
380 	}
381 }
382 
383 /*
384  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
385  * locks are not required for read/writers. Returns true if it was already set.
386  */
387 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
388 							unsigned long pfn)
389 {
390 	bool skip;
391 
392 	/* Do no update if skip hint is being ignored */
393 	if (cc->ignore_skip_hint)
394 		return false;
395 
396 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
397 		return false;
398 
399 	skip = get_pageblock_skip(page);
400 	if (!skip && !cc->no_set_skip_hint)
401 		set_pageblock_skip(page);
402 
403 	return skip;
404 }
405 
406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
407 {
408 	struct zone *zone = cc->zone;
409 
410 	pfn = pageblock_end_pfn(pfn);
411 
412 	/* Set for isolation rather than compaction */
413 	if (cc->no_set_skip_hint)
414 		return;
415 
416 	if (pfn > zone->compact_cached_migrate_pfn[0])
417 		zone->compact_cached_migrate_pfn[0] = pfn;
418 	if (cc->mode != MIGRATE_ASYNC &&
419 	    pfn > zone->compact_cached_migrate_pfn[1])
420 		zone->compact_cached_migrate_pfn[1] = pfn;
421 }
422 
423 /*
424  * If no pages were isolated then mark this pageblock to be skipped in the
425  * future. The information is later cleared by __reset_isolation_suitable().
426  */
427 static void update_pageblock_skip(struct compact_control *cc,
428 			struct page *page, unsigned long pfn)
429 {
430 	struct zone *zone = cc->zone;
431 
432 	if (cc->no_set_skip_hint)
433 		return;
434 
435 	if (!page)
436 		return;
437 
438 	set_pageblock_skip(page);
439 
440 	/* Update where async and sync compaction should restart */
441 	if (pfn < zone->compact_cached_free_pfn)
442 		zone->compact_cached_free_pfn = pfn;
443 }
444 #else
445 static inline bool isolation_suitable(struct compact_control *cc,
446 					struct page *page)
447 {
448 	return true;
449 }
450 
451 static inline bool pageblock_skip_persistent(struct page *page)
452 {
453 	return false;
454 }
455 
456 static inline void update_pageblock_skip(struct compact_control *cc,
457 			struct page *page, unsigned long pfn)
458 {
459 }
460 
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463 }
464 
465 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
466 							unsigned long pfn)
467 {
468 	return false;
469 }
470 #endif /* CONFIG_COMPACTION */
471 
472 /*
473  * Compaction requires the taking of some coarse locks that are potentially
474  * very heavily contended. For async compaction, trylock and record if the
475  * lock is contended. The lock will still be acquired but compaction will
476  * abort when the current block is finished regardless of success rate.
477  * Sync compaction acquires the lock.
478  *
479  * Always returns true which makes it easier to track lock state in callers.
480  */
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482 						struct compact_control *cc)
483 {
484 	/* Track if the lock is contended in async mode */
485 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
486 		if (spin_trylock_irqsave(lock, *flags))
487 			return true;
488 
489 		cc->contended = true;
490 	}
491 
492 	spin_lock_irqsave(lock, *flags);
493 	return true;
494 }
495 
496 /*
497  * Compaction requires the taking of some coarse locks that are potentially
498  * very heavily contended. The lock should be periodically unlocked to avoid
499  * having disabled IRQs for a long time, even when there is nobody waiting on
500  * the lock. It might also be that allowing the IRQs will result in
501  * need_resched() becoming true. If scheduling is needed, async compaction
502  * aborts. Sync compaction schedules.
503  * Either compaction type will also abort if a fatal signal is pending.
504  * In either case if the lock was locked, it is dropped and not regained.
505  *
506  * Returns true if compaction should abort due to fatal signal pending, or
507  *		async compaction due to need_resched()
508  * Returns false when compaction can continue (sync compaction might have
509  *		scheduled)
510  */
511 static bool compact_unlock_should_abort(spinlock_t *lock,
512 		unsigned long flags, bool *locked, struct compact_control *cc)
513 {
514 	if (*locked) {
515 		spin_unlock_irqrestore(lock, flags);
516 		*locked = false;
517 	}
518 
519 	if (fatal_signal_pending(current)) {
520 		cc->contended = true;
521 		return true;
522 	}
523 
524 	cond_resched();
525 
526 	return false;
527 }
528 
529 /*
530  * Isolate free pages onto a private freelist. If @strict is true, will abort
531  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
532  * (even though it may still end up isolating some pages).
533  */
534 static unsigned long isolate_freepages_block(struct compact_control *cc,
535 				unsigned long *start_pfn,
536 				unsigned long end_pfn,
537 				struct list_head *freelist,
538 				unsigned int stride,
539 				bool strict)
540 {
541 	int nr_scanned = 0, total_isolated = 0;
542 	struct page *cursor;
543 	unsigned long flags = 0;
544 	bool locked = false;
545 	unsigned long blockpfn = *start_pfn;
546 	unsigned int order;
547 
548 	/* Strict mode is for isolation, speed is secondary */
549 	if (strict)
550 		stride = 1;
551 
552 	cursor = pfn_to_page(blockpfn);
553 
554 	/* Isolate free pages. */
555 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
556 		int isolated;
557 		struct page *page = cursor;
558 
559 		/*
560 		 * Periodically drop the lock (if held) regardless of its
561 		 * contention, to give chance to IRQs. Abort if fatal signal
562 		 * pending or async compaction detects need_resched()
563 		 */
564 		if (!(blockpfn % SWAP_CLUSTER_MAX)
565 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
566 								&locked, cc))
567 			break;
568 
569 		nr_scanned++;
570 		if (!pfn_valid_within(blockpfn))
571 			goto isolate_fail;
572 
573 		/*
574 		 * For compound pages such as THP and hugetlbfs, we can save
575 		 * potentially a lot of iterations if we skip them at once.
576 		 * The check is racy, but we can consider only valid values
577 		 * and the only danger is skipping too much.
578 		 */
579 		if (PageCompound(page)) {
580 			const unsigned int order = compound_order(page);
581 
582 			if (likely(order < MAX_ORDER)) {
583 				blockpfn += (1UL << order) - 1;
584 				cursor += (1UL << order) - 1;
585 			}
586 			goto isolate_fail;
587 		}
588 
589 		if (!PageBuddy(page))
590 			goto isolate_fail;
591 
592 		/*
593 		 * If we already hold the lock, we can skip some rechecking.
594 		 * Note that if we hold the lock now, checked_pageblock was
595 		 * already set in some previous iteration (or strict is true),
596 		 * so it is correct to skip the suitable migration target
597 		 * recheck as well.
598 		 */
599 		if (!locked) {
600 			locked = compact_lock_irqsave(&cc->zone->lock,
601 								&flags, cc);
602 
603 			/* Recheck this is a buddy page under lock */
604 			if (!PageBuddy(page))
605 				goto isolate_fail;
606 		}
607 
608 		/* Found a free page, will break it into order-0 pages */
609 		order = page_order(page);
610 		isolated = __isolate_free_page(page, order);
611 		if (!isolated)
612 			break;
613 		set_page_private(page, order);
614 
615 		total_isolated += isolated;
616 		cc->nr_freepages += isolated;
617 		list_add_tail(&page->lru, freelist);
618 
619 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 			blockpfn += isolated;
621 			break;
622 		}
623 		/* Advance to the end of split page */
624 		blockpfn += isolated - 1;
625 		cursor += isolated - 1;
626 		continue;
627 
628 isolate_fail:
629 		if (strict)
630 			break;
631 		else
632 			continue;
633 
634 	}
635 
636 	if (locked)
637 		spin_unlock_irqrestore(&cc->zone->lock, flags);
638 
639 	/*
640 	 * There is a tiny chance that we have read bogus compound_order(),
641 	 * so be careful to not go outside of the pageblock.
642 	 */
643 	if (unlikely(blockpfn > end_pfn))
644 		blockpfn = end_pfn;
645 
646 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 					nr_scanned, total_isolated);
648 
649 	/* Record how far we have got within the block */
650 	*start_pfn = blockpfn;
651 
652 	/*
653 	 * If strict isolation is requested by CMA then check that all the
654 	 * pages requested were isolated. If there were any failures, 0 is
655 	 * returned and CMA will fail.
656 	 */
657 	if (strict && blockpfn < end_pfn)
658 		total_isolated = 0;
659 
660 	cc->total_free_scanned += nr_scanned;
661 	if (total_isolated)
662 		count_compact_events(COMPACTISOLATED, total_isolated);
663 	return total_isolated;
664 }
665 
666 /**
667  * isolate_freepages_range() - isolate free pages.
668  * @cc:        Compaction control structure.
669  * @start_pfn: The first PFN to start isolating.
670  * @end_pfn:   The one-past-last PFN.
671  *
672  * Non-free pages, invalid PFNs, or zone boundaries within the
673  * [start_pfn, end_pfn) range are considered errors, cause function to
674  * undo its actions and return zero.
675  *
676  * Otherwise, function returns one-past-the-last PFN of isolated page
677  * (which may be greater then end_pfn if end fell in a middle of
678  * a free page).
679  */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682 			unsigned long start_pfn, unsigned long end_pfn)
683 {
684 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685 	LIST_HEAD(freelist);
686 
687 	pfn = start_pfn;
688 	block_start_pfn = pageblock_start_pfn(pfn);
689 	if (block_start_pfn < cc->zone->zone_start_pfn)
690 		block_start_pfn = cc->zone->zone_start_pfn;
691 	block_end_pfn = pageblock_end_pfn(pfn);
692 
693 	for (; pfn < end_pfn; pfn += isolated,
694 				block_start_pfn = block_end_pfn,
695 				block_end_pfn += pageblock_nr_pages) {
696 		/* Protect pfn from changing by isolate_freepages_block */
697 		unsigned long isolate_start_pfn = pfn;
698 
699 		block_end_pfn = min(block_end_pfn, end_pfn);
700 
701 		/*
702 		 * pfn could pass the block_end_pfn if isolated freepage
703 		 * is more than pageblock order. In this case, we adjust
704 		 * scanning range to right one.
705 		 */
706 		if (pfn >= block_end_pfn) {
707 			block_start_pfn = pageblock_start_pfn(pfn);
708 			block_end_pfn = pageblock_end_pfn(pfn);
709 			block_end_pfn = min(block_end_pfn, end_pfn);
710 		}
711 
712 		if (!pageblock_pfn_to_page(block_start_pfn,
713 					block_end_pfn, cc->zone))
714 			break;
715 
716 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717 					block_end_pfn, &freelist, 0, true);
718 
719 		/*
720 		 * In strict mode, isolate_freepages_block() returns 0 if
721 		 * there are any holes in the block (ie. invalid PFNs or
722 		 * non-free pages).
723 		 */
724 		if (!isolated)
725 			break;
726 
727 		/*
728 		 * If we managed to isolate pages, it is always (1 << n) *
729 		 * pageblock_nr_pages for some non-negative n.  (Max order
730 		 * page may span two pageblocks).
731 		 */
732 	}
733 
734 	/* __isolate_free_page() does not map the pages */
735 	split_map_pages(&freelist);
736 
737 	if (pfn < end_pfn) {
738 		/* Loop terminated early, cleanup. */
739 		release_freepages(&freelist);
740 		return 0;
741 	}
742 
743 	/* We don't use freelists for anything. */
744 	return pfn;
745 }
746 
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750 	unsigned long active, inactive, isolated;
751 
752 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
753 			node_page_state(pgdat, NR_INACTIVE_ANON);
754 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
755 			node_page_state(pgdat, NR_ACTIVE_ANON);
756 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
757 			node_page_state(pgdat, NR_ISOLATED_ANON);
758 
759 	return isolated > (inactive + active) / 2;
760 }
761 
762 /**
763  * isolate_migratepages_block() - isolate all migrate-able pages within
764  *				  a single pageblock
765  * @cc:		Compaction control structure.
766  * @low_pfn:	The first PFN to isolate
767  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
768  * @isolate_mode: Isolation mode to be used.
769  *
770  * Isolate all pages that can be migrated from the range specified by
771  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
772  * Returns zero if there is a fatal signal pending, otherwise PFN of the
773  * first page that was not scanned (which may be both less, equal to or more
774  * than end_pfn).
775  *
776  * The pages are isolated on cc->migratepages list (not required to be empty),
777  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
778  * is neither read nor updated.
779  */
780 static unsigned long
781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
782 			unsigned long end_pfn, isolate_mode_t isolate_mode)
783 {
784 	pg_data_t *pgdat = cc->zone->zone_pgdat;
785 	unsigned long nr_scanned = 0, nr_isolated = 0;
786 	struct lruvec *lruvec;
787 	unsigned long flags = 0;
788 	bool locked = false;
789 	struct page *page = NULL, *valid_page = NULL;
790 	unsigned long start_pfn = low_pfn;
791 	bool skip_on_failure = false;
792 	unsigned long next_skip_pfn = 0;
793 	bool skip_updated = false;
794 
795 	/*
796 	 * Ensure that there are not too many pages isolated from the LRU
797 	 * list by either parallel reclaimers or compaction. If there are,
798 	 * delay for some time until fewer pages are isolated
799 	 */
800 	while (unlikely(too_many_isolated(pgdat))) {
801 		/* async migration should just abort */
802 		if (cc->mode == MIGRATE_ASYNC)
803 			return 0;
804 
805 		congestion_wait(BLK_RW_ASYNC, HZ/10);
806 
807 		if (fatal_signal_pending(current))
808 			return 0;
809 	}
810 
811 	cond_resched();
812 
813 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
814 		skip_on_failure = true;
815 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
816 	}
817 
818 	/* Time to isolate some pages for migration */
819 	for (; low_pfn < end_pfn; low_pfn++) {
820 
821 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
822 			/*
823 			 * We have isolated all migration candidates in the
824 			 * previous order-aligned block, and did not skip it due
825 			 * to failure. We should migrate the pages now and
826 			 * hopefully succeed compaction.
827 			 */
828 			if (nr_isolated)
829 				break;
830 
831 			/*
832 			 * We failed to isolate in the previous order-aligned
833 			 * block. Set the new boundary to the end of the
834 			 * current block. Note we can't simply increase
835 			 * next_skip_pfn by 1 << order, as low_pfn might have
836 			 * been incremented by a higher number due to skipping
837 			 * a compound or a high-order buddy page in the
838 			 * previous loop iteration.
839 			 */
840 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
841 		}
842 
843 		/*
844 		 * Periodically drop the lock (if held) regardless of its
845 		 * contention, to give chance to IRQs. Abort async compaction
846 		 * if contended.
847 		 */
848 		if (!(low_pfn % SWAP_CLUSTER_MAX)
849 		    && compact_unlock_should_abort(&pgdat->lru_lock,
850 					    flags, &locked, cc))
851 			break;
852 
853 		if (!pfn_valid_within(low_pfn))
854 			goto isolate_fail;
855 		nr_scanned++;
856 
857 		page = pfn_to_page(low_pfn);
858 
859 		/*
860 		 * Check if the pageblock has already been marked skipped.
861 		 * Only the aligned PFN is checked as the caller isolates
862 		 * COMPACT_CLUSTER_MAX at a time so the second call must
863 		 * not falsely conclude that the block should be skipped.
864 		 */
865 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
866 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
867 				low_pfn = end_pfn;
868 				goto isolate_abort;
869 			}
870 			valid_page = page;
871 		}
872 
873 		/*
874 		 * Skip if free. We read page order here without zone lock
875 		 * which is generally unsafe, but the race window is small and
876 		 * the worst thing that can happen is that we skip some
877 		 * potential isolation targets.
878 		 */
879 		if (PageBuddy(page)) {
880 			unsigned long freepage_order = page_order_unsafe(page);
881 
882 			/*
883 			 * Without lock, we cannot be sure that what we got is
884 			 * a valid page order. Consider only values in the
885 			 * valid order range to prevent low_pfn overflow.
886 			 */
887 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
888 				low_pfn += (1UL << freepage_order) - 1;
889 			continue;
890 		}
891 
892 		/*
893 		 * Regardless of being on LRU, compound pages such as THP and
894 		 * hugetlbfs are not to be compacted. We can potentially save
895 		 * a lot of iterations if we skip them at once. The check is
896 		 * racy, but we can consider only valid values and the only
897 		 * danger is skipping too much.
898 		 */
899 		if (PageCompound(page)) {
900 			const unsigned int order = compound_order(page);
901 
902 			if (likely(order < MAX_ORDER))
903 				low_pfn += (1UL << order) - 1;
904 			goto isolate_fail;
905 		}
906 
907 		/*
908 		 * Check may be lockless but that's ok as we recheck later.
909 		 * It's possible to migrate LRU and non-lru movable pages.
910 		 * Skip any other type of page
911 		 */
912 		if (!PageLRU(page)) {
913 			/*
914 			 * __PageMovable can return false positive so we need
915 			 * to verify it under page_lock.
916 			 */
917 			if (unlikely(__PageMovable(page)) &&
918 					!PageIsolated(page)) {
919 				if (locked) {
920 					spin_unlock_irqrestore(&pgdat->lru_lock,
921 									flags);
922 					locked = false;
923 				}
924 
925 				if (!isolate_movable_page(page, isolate_mode))
926 					goto isolate_success;
927 			}
928 
929 			goto isolate_fail;
930 		}
931 
932 		/*
933 		 * Migration will fail if an anonymous page is pinned in memory,
934 		 * so avoid taking lru_lock and isolating it unnecessarily in an
935 		 * admittedly racy check.
936 		 */
937 		if (!page_mapping(page) &&
938 		    page_count(page) > page_mapcount(page))
939 			goto isolate_fail;
940 
941 		/*
942 		 * Only allow to migrate anonymous pages in GFP_NOFS context
943 		 * because those do not depend on fs locks.
944 		 */
945 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
946 			goto isolate_fail;
947 
948 		/* If we already hold the lock, we can skip some rechecking */
949 		if (!locked) {
950 			locked = compact_lock_irqsave(&pgdat->lru_lock,
951 								&flags, cc);
952 
953 			/* Try get exclusive access under lock */
954 			if (!skip_updated) {
955 				skip_updated = true;
956 				if (test_and_set_skip(cc, page, low_pfn))
957 					goto isolate_abort;
958 			}
959 
960 			/* Recheck PageLRU and PageCompound under lock */
961 			if (!PageLRU(page))
962 				goto isolate_fail;
963 
964 			/*
965 			 * Page become compound since the non-locked check,
966 			 * and it's on LRU. It can only be a THP so the order
967 			 * is safe to read and it's 0 for tail pages.
968 			 */
969 			if (unlikely(PageCompound(page))) {
970 				low_pfn += (1UL << compound_order(page)) - 1;
971 				goto isolate_fail;
972 			}
973 		}
974 
975 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
976 
977 		/* Try isolate the page */
978 		if (__isolate_lru_page(page, isolate_mode) != 0)
979 			goto isolate_fail;
980 
981 		VM_BUG_ON_PAGE(PageCompound(page), page);
982 
983 		/* Successfully isolated */
984 		del_page_from_lru_list(page, lruvec, page_lru(page));
985 		inc_node_page_state(page,
986 				NR_ISOLATED_ANON + page_is_file_cache(page));
987 
988 isolate_success:
989 		list_add(&page->lru, &cc->migratepages);
990 		cc->nr_migratepages++;
991 		nr_isolated++;
992 
993 		/*
994 		 * Avoid isolating too much unless this block is being
995 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
996 		 * or a lock is contended. For contention, isolate quickly to
997 		 * potentially remove one source of contention.
998 		 */
999 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1000 		    !cc->rescan && !cc->contended) {
1001 			++low_pfn;
1002 			break;
1003 		}
1004 
1005 		continue;
1006 isolate_fail:
1007 		if (!skip_on_failure)
1008 			continue;
1009 
1010 		/*
1011 		 * We have isolated some pages, but then failed. Release them
1012 		 * instead of migrating, as we cannot form the cc->order buddy
1013 		 * page anyway.
1014 		 */
1015 		if (nr_isolated) {
1016 			if (locked) {
1017 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1018 				locked = false;
1019 			}
1020 			putback_movable_pages(&cc->migratepages);
1021 			cc->nr_migratepages = 0;
1022 			nr_isolated = 0;
1023 		}
1024 
1025 		if (low_pfn < next_skip_pfn) {
1026 			low_pfn = next_skip_pfn - 1;
1027 			/*
1028 			 * The check near the loop beginning would have updated
1029 			 * next_skip_pfn too, but this is a bit simpler.
1030 			 */
1031 			next_skip_pfn += 1UL << cc->order;
1032 		}
1033 	}
1034 
1035 	/*
1036 	 * The PageBuddy() check could have potentially brought us outside
1037 	 * the range to be scanned.
1038 	 */
1039 	if (unlikely(low_pfn > end_pfn))
1040 		low_pfn = end_pfn;
1041 
1042 isolate_abort:
1043 	if (locked)
1044 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1045 
1046 	/*
1047 	 * Updated the cached scanner pfn once the pageblock has been scanned
1048 	 * Pages will either be migrated in which case there is no point
1049 	 * scanning in the near future or migration failed in which case the
1050 	 * failure reason may persist. The block is marked for skipping if
1051 	 * there were no pages isolated in the block or if the block is
1052 	 * rescanned twice in a row.
1053 	 */
1054 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1055 		if (valid_page && !skip_updated)
1056 			set_pageblock_skip(valid_page);
1057 		update_cached_migrate(cc, low_pfn);
1058 	}
1059 
1060 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1061 						nr_scanned, nr_isolated);
1062 
1063 	cc->total_migrate_scanned += nr_scanned;
1064 	if (nr_isolated)
1065 		count_compact_events(COMPACTISOLATED, nr_isolated);
1066 
1067 	return low_pfn;
1068 }
1069 
1070 /**
1071  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1072  * @cc:        Compaction control structure.
1073  * @start_pfn: The first PFN to start isolating.
1074  * @end_pfn:   The one-past-last PFN.
1075  *
1076  * Returns zero if isolation fails fatally due to e.g. pending signal.
1077  * Otherwise, function returns one-past-the-last PFN of isolated page
1078  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1079  */
1080 unsigned long
1081 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1082 							unsigned long end_pfn)
1083 {
1084 	unsigned long pfn, block_start_pfn, block_end_pfn;
1085 
1086 	/* Scan block by block. First and last block may be incomplete */
1087 	pfn = start_pfn;
1088 	block_start_pfn = pageblock_start_pfn(pfn);
1089 	if (block_start_pfn < cc->zone->zone_start_pfn)
1090 		block_start_pfn = cc->zone->zone_start_pfn;
1091 	block_end_pfn = pageblock_end_pfn(pfn);
1092 
1093 	for (; pfn < end_pfn; pfn = block_end_pfn,
1094 				block_start_pfn = block_end_pfn,
1095 				block_end_pfn += pageblock_nr_pages) {
1096 
1097 		block_end_pfn = min(block_end_pfn, end_pfn);
1098 
1099 		if (!pageblock_pfn_to_page(block_start_pfn,
1100 					block_end_pfn, cc->zone))
1101 			continue;
1102 
1103 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1104 							ISOLATE_UNEVICTABLE);
1105 
1106 		if (!pfn)
1107 			break;
1108 
1109 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1110 			break;
1111 	}
1112 
1113 	return pfn;
1114 }
1115 
1116 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1117 #ifdef CONFIG_COMPACTION
1118 
1119 static bool suitable_migration_source(struct compact_control *cc,
1120 							struct page *page)
1121 {
1122 	int block_mt;
1123 
1124 	if (pageblock_skip_persistent(page))
1125 		return false;
1126 
1127 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1128 		return true;
1129 
1130 	block_mt = get_pageblock_migratetype(page);
1131 
1132 	if (cc->migratetype == MIGRATE_MOVABLE)
1133 		return is_migrate_movable(block_mt);
1134 	else
1135 		return block_mt == cc->migratetype;
1136 }
1137 
1138 /* Returns true if the page is within a block suitable for migration to */
1139 static bool suitable_migration_target(struct compact_control *cc,
1140 							struct page *page)
1141 {
1142 	/* If the page is a large free page, then disallow migration */
1143 	if (PageBuddy(page)) {
1144 		/*
1145 		 * We are checking page_order without zone->lock taken. But
1146 		 * the only small danger is that we skip a potentially suitable
1147 		 * pageblock, so it's not worth to check order for valid range.
1148 		 */
1149 		if (page_order_unsafe(page) >= pageblock_order)
1150 			return false;
1151 	}
1152 
1153 	if (cc->ignore_block_suitable)
1154 		return true;
1155 
1156 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1157 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1158 		return true;
1159 
1160 	/* Otherwise skip the block */
1161 	return false;
1162 }
1163 
1164 static inline unsigned int
1165 freelist_scan_limit(struct compact_control *cc)
1166 {
1167 	unsigned short shift = BITS_PER_LONG - 1;
1168 
1169 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1170 }
1171 
1172 /*
1173  * Test whether the free scanner has reached the same or lower pageblock than
1174  * the migration scanner, and compaction should thus terminate.
1175  */
1176 static inline bool compact_scanners_met(struct compact_control *cc)
1177 {
1178 	return (cc->free_pfn >> pageblock_order)
1179 		<= (cc->migrate_pfn >> pageblock_order);
1180 }
1181 
1182 /*
1183  * Used when scanning for a suitable migration target which scans freelists
1184  * in reverse. Reorders the list such as the unscanned pages are scanned
1185  * first on the next iteration of the free scanner
1186  */
1187 static void
1188 move_freelist_head(struct list_head *freelist, struct page *freepage)
1189 {
1190 	LIST_HEAD(sublist);
1191 
1192 	if (!list_is_last(freelist, &freepage->lru)) {
1193 		list_cut_before(&sublist, freelist, &freepage->lru);
1194 		if (!list_empty(&sublist))
1195 			list_splice_tail(&sublist, freelist);
1196 	}
1197 }
1198 
1199 /*
1200  * Similar to move_freelist_head except used by the migration scanner
1201  * when scanning forward. It's possible for these list operations to
1202  * move against each other if they search the free list exactly in
1203  * lockstep.
1204  */
1205 static void
1206 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1207 {
1208 	LIST_HEAD(sublist);
1209 
1210 	if (!list_is_first(freelist, &freepage->lru)) {
1211 		list_cut_position(&sublist, freelist, &freepage->lru);
1212 		if (!list_empty(&sublist))
1213 			list_splice_tail(&sublist, freelist);
1214 	}
1215 }
1216 
1217 static void
1218 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1219 {
1220 	unsigned long start_pfn, end_pfn;
1221 	struct page *page = pfn_to_page(pfn);
1222 
1223 	/* Do not search around if there are enough pages already */
1224 	if (cc->nr_freepages >= cc->nr_migratepages)
1225 		return;
1226 
1227 	/* Minimise scanning during async compaction */
1228 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1229 		return;
1230 
1231 	/* Pageblock boundaries */
1232 	start_pfn = pageblock_start_pfn(pfn);
1233 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1234 
1235 	/* Scan before */
1236 	if (start_pfn != pfn) {
1237 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1238 		if (cc->nr_freepages >= cc->nr_migratepages)
1239 			return;
1240 	}
1241 
1242 	/* Scan after */
1243 	start_pfn = pfn + nr_isolated;
1244 	if (start_pfn < end_pfn)
1245 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1246 
1247 	/* Skip this pageblock in the future as it's full or nearly full */
1248 	if (cc->nr_freepages < cc->nr_migratepages)
1249 		set_pageblock_skip(page);
1250 }
1251 
1252 /* Search orders in round-robin fashion */
1253 static int next_search_order(struct compact_control *cc, int order)
1254 {
1255 	order--;
1256 	if (order < 0)
1257 		order = cc->order - 1;
1258 
1259 	/* Search wrapped around? */
1260 	if (order == cc->search_order) {
1261 		cc->search_order--;
1262 		if (cc->search_order < 0)
1263 			cc->search_order = cc->order - 1;
1264 		return -1;
1265 	}
1266 
1267 	return order;
1268 }
1269 
1270 static unsigned long
1271 fast_isolate_freepages(struct compact_control *cc)
1272 {
1273 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1274 	unsigned int nr_scanned = 0;
1275 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1276 	unsigned long nr_isolated = 0;
1277 	unsigned long distance;
1278 	struct page *page = NULL;
1279 	bool scan_start = false;
1280 	int order;
1281 
1282 	/* Full compaction passes in a negative order */
1283 	if (cc->order <= 0)
1284 		return cc->free_pfn;
1285 
1286 	/*
1287 	 * If starting the scan, use a deeper search and use the highest
1288 	 * PFN found if a suitable one is not found.
1289 	 */
1290 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1291 		limit = pageblock_nr_pages >> 1;
1292 		scan_start = true;
1293 	}
1294 
1295 	/*
1296 	 * Preferred point is in the top quarter of the scan space but take
1297 	 * a pfn from the top half if the search is problematic.
1298 	 */
1299 	distance = (cc->free_pfn - cc->migrate_pfn);
1300 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1301 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1302 
1303 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1304 		low_pfn = min_pfn;
1305 
1306 	/*
1307 	 * Search starts from the last successful isolation order or the next
1308 	 * order to search after a previous failure
1309 	 */
1310 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1311 
1312 	for (order = cc->search_order;
1313 	     !page && order >= 0;
1314 	     order = next_search_order(cc, order)) {
1315 		struct free_area *area = &cc->zone->free_area[order];
1316 		struct list_head *freelist;
1317 		struct page *freepage;
1318 		unsigned long flags;
1319 		unsigned int order_scanned = 0;
1320 
1321 		if (!area->nr_free)
1322 			continue;
1323 
1324 		spin_lock_irqsave(&cc->zone->lock, flags);
1325 		freelist = &area->free_list[MIGRATE_MOVABLE];
1326 		list_for_each_entry_reverse(freepage, freelist, lru) {
1327 			unsigned long pfn;
1328 
1329 			order_scanned++;
1330 			nr_scanned++;
1331 			pfn = page_to_pfn(freepage);
1332 
1333 			if (pfn >= highest)
1334 				highest = pageblock_start_pfn(pfn);
1335 
1336 			if (pfn >= low_pfn) {
1337 				cc->fast_search_fail = 0;
1338 				cc->search_order = order;
1339 				page = freepage;
1340 				break;
1341 			}
1342 
1343 			if (pfn >= min_pfn && pfn > high_pfn) {
1344 				high_pfn = pfn;
1345 
1346 				/* Shorten the scan if a candidate is found */
1347 				limit >>= 1;
1348 			}
1349 
1350 			if (order_scanned >= limit)
1351 				break;
1352 		}
1353 
1354 		/* Use a minimum pfn if a preferred one was not found */
1355 		if (!page && high_pfn) {
1356 			page = pfn_to_page(high_pfn);
1357 
1358 			/* Update freepage for the list reorder below */
1359 			freepage = page;
1360 		}
1361 
1362 		/* Reorder to so a future search skips recent pages */
1363 		move_freelist_head(freelist, freepage);
1364 
1365 		/* Isolate the page if available */
1366 		if (page) {
1367 			if (__isolate_free_page(page, order)) {
1368 				set_page_private(page, order);
1369 				nr_isolated = 1 << order;
1370 				cc->nr_freepages += nr_isolated;
1371 				list_add_tail(&page->lru, &cc->freepages);
1372 				count_compact_events(COMPACTISOLATED, nr_isolated);
1373 			} else {
1374 				/* If isolation fails, abort the search */
1375 				order = cc->search_order + 1;
1376 				page = NULL;
1377 			}
1378 		}
1379 
1380 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1381 
1382 		/*
1383 		 * Smaller scan on next order so the total scan ig related
1384 		 * to freelist_scan_limit.
1385 		 */
1386 		if (order_scanned >= limit)
1387 			limit = min(1U, limit >> 1);
1388 	}
1389 
1390 	if (!page) {
1391 		cc->fast_search_fail++;
1392 		if (scan_start) {
1393 			/*
1394 			 * Use the highest PFN found above min. If one was
1395 			 * not found, be pessemistic for direct compaction
1396 			 * and use the min mark.
1397 			 */
1398 			if (highest) {
1399 				page = pfn_to_page(highest);
1400 				cc->free_pfn = highest;
1401 			} else {
1402 				if (cc->direct_compaction) {
1403 					page = pfn_to_page(min_pfn);
1404 					cc->free_pfn = min_pfn;
1405 				}
1406 			}
1407 		}
1408 	}
1409 
1410 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1411 		highest -= pageblock_nr_pages;
1412 		cc->zone->compact_cached_free_pfn = highest;
1413 	}
1414 
1415 	cc->total_free_scanned += nr_scanned;
1416 	if (!page)
1417 		return cc->free_pfn;
1418 
1419 	low_pfn = page_to_pfn(page);
1420 	fast_isolate_around(cc, low_pfn, nr_isolated);
1421 	return low_pfn;
1422 }
1423 
1424 /*
1425  * Based on information in the current compact_control, find blocks
1426  * suitable for isolating free pages from and then isolate them.
1427  */
1428 static void isolate_freepages(struct compact_control *cc)
1429 {
1430 	struct zone *zone = cc->zone;
1431 	struct page *page;
1432 	unsigned long block_start_pfn;	/* start of current pageblock */
1433 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1434 	unsigned long block_end_pfn;	/* end of current pageblock */
1435 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1436 	struct list_head *freelist = &cc->freepages;
1437 	unsigned int stride;
1438 
1439 	/* Try a small search of the free lists for a candidate */
1440 	isolate_start_pfn = fast_isolate_freepages(cc);
1441 	if (cc->nr_freepages)
1442 		goto splitmap;
1443 
1444 	/*
1445 	 * Initialise the free scanner. The starting point is where we last
1446 	 * successfully isolated from, zone-cached value, or the end of the
1447 	 * zone when isolating for the first time. For looping we also need
1448 	 * this pfn aligned down to the pageblock boundary, because we do
1449 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1450 	 * For ending point, take care when isolating in last pageblock of a
1451 	 * a zone which ends in the middle of a pageblock.
1452 	 * The low boundary is the end of the pageblock the migration scanner
1453 	 * is using.
1454 	 */
1455 	isolate_start_pfn = cc->free_pfn;
1456 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1457 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1458 						zone_end_pfn(zone));
1459 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1460 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1461 
1462 	/*
1463 	 * Isolate free pages until enough are available to migrate the
1464 	 * pages on cc->migratepages. We stop searching if the migrate
1465 	 * and free page scanners meet or enough free pages are isolated.
1466 	 */
1467 	for (; block_start_pfn >= low_pfn;
1468 				block_end_pfn = block_start_pfn,
1469 				block_start_pfn -= pageblock_nr_pages,
1470 				isolate_start_pfn = block_start_pfn) {
1471 		unsigned long nr_isolated;
1472 
1473 		/*
1474 		 * This can iterate a massively long zone without finding any
1475 		 * suitable migration targets, so periodically check resched.
1476 		 */
1477 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1478 			cond_resched();
1479 
1480 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1481 									zone);
1482 		if (!page)
1483 			continue;
1484 
1485 		/* Check the block is suitable for migration */
1486 		if (!suitable_migration_target(cc, page))
1487 			continue;
1488 
1489 		/* If isolation recently failed, do not retry */
1490 		if (!isolation_suitable(cc, page))
1491 			continue;
1492 
1493 		/* Found a block suitable for isolating free pages from. */
1494 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1495 					block_end_pfn, freelist, stride, false);
1496 
1497 		/* Update the skip hint if the full pageblock was scanned */
1498 		if (isolate_start_pfn == block_end_pfn)
1499 			update_pageblock_skip(cc, page, block_start_pfn);
1500 
1501 		/* Are enough freepages isolated? */
1502 		if (cc->nr_freepages >= cc->nr_migratepages) {
1503 			if (isolate_start_pfn >= block_end_pfn) {
1504 				/*
1505 				 * Restart at previous pageblock if more
1506 				 * freepages can be isolated next time.
1507 				 */
1508 				isolate_start_pfn =
1509 					block_start_pfn - pageblock_nr_pages;
1510 			}
1511 			break;
1512 		} else if (isolate_start_pfn < block_end_pfn) {
1513 			/*
1514 			 * If isolation failed early, do not continue
1515 			 * needlessly.
1516 			 */
1517 			break;
1518 		}
1519 
1520 		/* Adjust stride depending on isolation */
1521 		if (nr_isolated) {
1522 			stride = 1;
1523 			continue;
1524 		}
1525 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1526 	}
1527 
1528 	/*
1529 	 * Record where the free scanner will restart next time. Either we
1530 	 * broke from the loop and set isolate_start_pfn based on the last
1531 	 * call to isolate_freepages_block(), or we met the migration scanner
1532 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1533 	 */
1534 	cc->free_pfn = isolate_start_pfn;
1535 
1536 splitmap:
1537 	/* __isolate_free_page() does not map the pages */
1538 	split_map_pages(freelist);
1539 }
1540 
1541 /*
1542  * This is a migrate-callback that "allocates" freepages by taking pages
1543  * from the isolated freelists in the block we are migrating to.
1544  */
1545 static struct page *compaction_alloc(struct page *migratepage,
1546 					unsigned long data)
1547 {
1548 	struct compact_control *cc = (struct compact_control *)data;
1549 	struct page *freepage;
1550 
1551 	if (list_empty(&cc->freepages)) {
1552 		isolate_freepages(cc);
1553 
1554 		if (list_empty(&cc->freepages))
1555 			return NULL;
1556 	}
1557 
1558 	freepage = list_entry(cc->freepages.next, struct page, lru);
1559 	list_del(&freepage->lru);
1560 	cc->nr_freepages--;
1561 
1562 	return freepage;
1563 }
1564 
1565 /*
1566  * This is a migrate-callback that "frees" freepages back to the isolated
1567  * freelist.  All pages on the freelist are from the same zone, so there is no
1568  * special handling needed for NUMA.
1569  */
1570 static void compaction_free(struct page *page, unsigned long data)
1571 {
1572 	struct compact_control *cc = (struct compact_control *)data;
1573 
1574 	list_add(&page->lru, &cc->freepages);
1575 	cc->nr_freepages++;
1576 }
1577 
1578 /* possible outcome of isolate_migratepages */
1579 typedef enum {
1580 	ISOLATE_ABORT,		/* Abort compaction now */
1581 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1582 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1583 } isolate_migrate_t;
1584 
1585 /*
1586  * Allow userspace to control policy on scanning the unevictable LRU for
1587  * compactable pages.
1588  */
1589 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1590 
1591 static inline void
1592 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1593 {
1594 	if (cc->fast_start_pfn == ULONG_MAX)
1595 		return;
1596 
1597 	if (!cc->fast_start_pfn)
1598 		cc->fast_start_pfn = pfn;
1599 
1600 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1601 }
1602 
1603 static inline unsigned long
1604 reinit_migrate_pfn(struct compact_control *cc)
1605 {
1606 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1607 		return cc->migrate_pfn;
1608 
1609 	cc->migrate_pfn = cc->fast_start_pfn;
1610 	cc->fast_start_pfn = ULONG_MAX;
1611 
1612 	return cc->migrate_pfn;
1613 }
1614 
1615 /*
1616  * Briefly search the free lists for a migration source that already has
1617  * some free pages to reduce the number of pages that need migration
1618  * before a pageblock is free.
1619  */
1620 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1621 {
1622 	unsigned int limit = freelist_scan_limit(cc);
1623 	unsigned int nr_scanned = 0;
1624 	unsigned long distance;
1625 	unsigned long pfn = cc->migrate_pfn;
1626 	unsigned long high_pfn;
1627 	int order;
1628 
1629 	/* Skip hints are relied on to avoid repeats on the fast search */
1630 	if (cc->ignore_skip_hint)
1631 		return pfn;
1632 
1633 	/*
1634 	 * If the migrate_pfn is not at the start of a zone or the start
1635 	 * of a pageblock then assume this is a continuation of a previous
1636 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1637 	 */
1638 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1639 		return pfn;
1640 
1641 	/*
1642 	 * For smaller orders, just linearly scan as the number of pages
1643 	 * to migrate should be relatively small and does not necessarily
1644 	 * justify freeing up a large block for a small allocation.
1645 	 */
1646 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1647 		return pfn;
1648 
1649 	/*
1650 	 * Only allow kcompactd and direct requests for movable pages to
1651 	 * quickly clear out a MOVABLE pageblock for allocation. This
1652 	 * reduces the risk that a large movable pageblock is freed for
1653 	 * an unmovable/reclaimable small allocation.
1654 	 */
1655 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1656 		return pfn;
1657 
1658 	/*
1659 	 * When starting the migration scanner, pick any pageblock within the
1660 	 * first half of the search space. Otherwise try and pick a pageblock
1661 	 * within the first eighth to reduce the chances that a migration
1662 	 * target later becomes a source.
1663 	 */
1664 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1665 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1666 		distance >>= 2;
1667 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1668 
1669 	for (order = cc->order - 1;
1670 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1671 	     order--) {
1672 		struct free_area *area = &cc->zone->free_area[order];
1673 		struct list_head *freelist;
1674 		unsigned long flags;
1675 		struct page *freepage;
1676 
1677 		if (!area->nr_free)
1678 			continue;
1679 
1680 		spin_lock_irqsave(&cc->zone->lock, flags);
1681 		freelist = &area->free_list[MIGRATE_MOVABLE];
1682 		list_for_each_entry(freepage, freelist, lru) {
1683 			unsigned long free_pfn;
1684 
1685 			nr_scanned++;
1686 			free_pfn = page_to_pfn(freepage);
1687 			if (free_pfn < high_pfn) {
1688 				/*
1689 				 * Avoid if skipped recently. Ideally it would
1690 				 * move to the tail but even safe iteration of
1691 				 * the list assumes an entry is deleted, not
1692 				 * reordered.
1693 				 */
1694 				if (get_pageblock_skip(freepage)) {
1695 					if (list_is_last(freelist, &freepage->lru))
1696 						break;
1697 
1698 					continue;
1699 				}
1700 
1701 				/* Reorder to so a future search skips recent pages */
1702 				move_freelist_tail(freelist, freepage);
1703 
1704 				update_fast_start_pfn(cc, free_pfn);
1705 				pfn = pageblock_start_pfn(free_pfn);
1706 				cc->fast_search_fail = 0;
1707 				set_pageblock_skip(freepage);
1708 				break;
1709 			}
1710 
1711 			if (nr_scanned >= limit) {
1712 				cc->fast_search_fail++;
1713 				move_freelist_tail(freelist, freepage);
1714 				break;
1715 			}
1716 		}
1717 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1718 	}
1719 
1720 	cc->total_migrate_scanned += nr_scanned;
1721 
1722 	/*
1723 	 * If fast scanning failed then use a cached entry for a page block
1724 	 * that had free pages as the basis for starting a linear scan.
1725 	 */
1726 	if (pfn == cc->migrate_pfn)
1727 		pfn = reinit_migrate_pfn(cc);
1728 
1729 	return pfn;
1730 }
1731 
1732 /*
1733  * Isolate all pages that can be migrated from the first suitable block,
1734  * starting at the block pointed to by the migrate scanner pfn within
1735  * compact_control.
1736  */
1737 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1738 					struct compact_control *cc)
1739 {
1740 	unsigned long block_start_pfn;
1741 	unsigned long block_end_pfn;
1742 	unsigned long low_pfn;
1743 	struct page *page;
1744 	const isolate_mode_t isolate_mode =
1745 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1746 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1747 	bool fast_find_block;
1748 
1749 	/*
1750 	 * Start at where we last stopped, or beginning of the zone as
1751 	 * initialized by compact_zone(). The first failure will use
1752 	 * the lowest PFN as the starting point for linear scanning.
1753 	 */
1754 	low_pfn = fast_find_migrateblock(cc);
1755 	block_start_pfn = pageblock_start_pfn(low_pfn);
1756 	if (block_start_pfn < zone->zone_start_pfn)
1757 		block_start_pfn = zone->zone_start_pfn;
1758 
1759 	/*
1760 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1761 	 * the isolation_suitable check below, check whether the fast
1762 	 * search was successful.
1763 	 */
1764 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1765 
1766 	/* Only scan within a pageblock boundary */
1767 	block_end_pfn = pageblock_end_pfn(low_pfn);
1768 
1769 	/*
1770 	 * Iterate over whole pageblocks until we find the first suitable.
1771 	 * Do not cross the free scanner.
1772 	 */
1773 	for (; block_end_pfn <= cc->free_pfn;
1774 			fast_find_block = false,
1775 			low_pfn = block_end_pfn,
1776 			block_start_pfn = block_end_pfn,
1777 			block_end_pfn += pageblock_nr_pages) {
1778 
1779 		/*
1780 		 * This can potentially iterate a massively long zone with
1781 		 * many pageblocks unsuitable, so periodically check if we
1782 		 * need to schedule.
1783 		 */
1784 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1785 			cond_resched();
1786 
1787 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1788 									zone);
1789 		if (!page)
1790 			continue;
1791 
1792 		/*
1793 		 * If isolation recently failed, do not retry. Only check the
1794 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1795 		 * to be visited multiple times. Assume skip was checked
1796 		 * before making it "skip" so other compaction instances do
1797 		 * not scan the same block.
1798 		 */
1799 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1800 		    !fast_find_block && !isolation_suitable(cc, page))
1801 			continue;
1802 
1803 		/*
1804 		 * For async compaction, also only scan in MOVABLE blocks
1805 		 * without huge pages. Async compaction is optimistic to see
1806 		 * if the minimum amount of work satisfies the allocation.
1807 		 * The cached PFN is updated as it's possible that all
1808 		 * remaining blocks between source and target are unsuitable
1809 		 * and the compaction scanners fail to meet.
1810 		 */
1811 		if (!suitable_migration_source(cc, page)) {
1812 			update_cached_migrate(cc, block_end_pfn);
1813 			continue;
1814 		}
1815 
1816 		/* Perform the isolation */
1817 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1818 						block_end_pfn, isolate_mode);
1819 
1820 		if (!low_pfn)
1821 			return ISOLATE_ABORT;
1822 
1823 		/*
1824 		 * Either we isolated something and proceed with migration. Or
1825 		 * we failed and compact_zone should decide if we should
1826 		 * continue or not.
1827 		 */
1828 		break;
1829 	}
1830 
1831 	/* Record where migration scanner will be restarted. */
1832 	cc->migrate_pfn = low_pfn;
1833 
1834 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1835 }
1836 
1837 /*
1838  * order == -1 is expected when compacting via
1839  * /proc/sys/vm/compact_memory
1840  */
1841 static inline bool is_via_compact_memory(int order)
1842 {
1843 	return order == -1;
1844 }
1845 
1846 static enum compact_result __compact_finished(struct compact_control *cc)
1847 {
1848 	unsigned int order;
1849 	const int migratetype = cc->migratetype;
1850 	int ret;
1851 
1852 	/* Compaction run completes if the migrate and free scanner meet */
1853 	if (compact_scanners_met(cc)) {
1854 		/* Let the next compaction start anew. */
1855 		reset_cached_positions(cc->zone);
1856 
1857 		/*
1858 		 * Mark that the PG_migrate_skip information should be cleared
1859 		 * by kswapd when it goes to sleep. kcompactd does not set the
1860 		 * flag itself as the decision to be clear should be directly
1861 		 * based on an allocation request.
1862 		 */
1863 		if (cc->direct_compaction)
1864 			cc->zone->compact_blockskip_flush = true;
1865 
1866 		if (cc->whole_zone)
1867 			return COMPACT_COMPLETE;
1868 		else
1869 			return COMPACT_PARTIAL_SKIPPED;
1870 	}
1871 
1872 	if (is_via_compact_memory(cc->order))
1873 		return COMPACT_CONTINUE;
1874 
1875 	/*
1876 	 * Always finish scanning a pageblock to reduce the possibility of
1877 	 * fallbacks in the future. This is particularly important when
1878 	 * migration source is unmovable/reclaimable but it's not worth
1879 	 * special casing.
1880 	 */
1881 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1882 		return COMPACT_CONTINUE;
1883 
1884 	/* Direct compactor: Is a suitable page free? */
1885 	ret = COMPACT_NO_SUITABLE_PAGE;
1886 	for (order = cc->order; order < MAX_ORDER; order++) {
1887 		struct free_area *area = &cc->zone->free_area[order];
1888 		bool can_steal;
1889 
1890 		/* Job done if page is free of the right migratetype */
1891 		if (!free_area_empty(area, migratetype))
1892 			return COMPACT_SUCCESS;
1893 
1894 #ifdef CONFIG_CMA
1895 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1896 		if (migratetype == MIGRATE_MOVABLE &&
1897 			!free_area_empty(area, MIGRATE_CMA))
1898 			return COMPACT_SUCCESS;
1899 #endif
1900 		/*
1901 		 * Job done if allocation would steal freepages from
1902 		 * other migratetype buddy lists.
1903 		 */
1904 		if (find_suitable_fallback(area, order, migratetype,
1905 						true, &can_steal) != -1) {
1906 
1907 			/* movable pages are OK in any pageblock */
1908 			if (migratetype == MIGRATE_MOVABLE)
1909 				return COMPACT_SUCCESS;
1910 
1911 			/*
1912 			 * We are stealing for a non-movable allocation. Make
1913 			 * sure we finish compacting the current pageblock
1914 			 * first so it is as free as possible and we won't
1915 			 * have to steal another one soon. This only applies
1916 			 * to sync compaction, as async compaction operates
1917 			 * on pageblocks of the same migratetype.
1918 			 */
1919 			if (cc->mode == MIGRATE_ASYNC ||
1920 					IS_ALIGNED(cc->migrate_pfn,
1921 							pageblock_nr_pages)) {
1922 				return COMPACT_SUCCESS;
1923 			}
1924 
1925 			ret = COMPACT_CONTINUE;
1926 			break;
1927 		}
1928 	}
1929 
1930 	if (cc->contended || fatal_signal_pending(current))
1931 		ret = COMPACT_CONTENDED;
1932 
1933 	return ret;
1934 }
1935 
1936 static enum compact_result compact_finished(struct compact_control *cc)
1937 {
1938 	int ret;
1939 
1940 	ret = __compact_finished(cc);
1941 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1942 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1943 		ret = COMPACT_CONTINUE;
1944 
1945 	return ret;
1946 }
1947 
1948 /*
1949  * compaction_suitable: Is this suitable to run compaction on this zone now?
1950  * Returns
1951  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1952  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1953  *   COMPACT_CONTINUE - If compaction should run now
1954  */
1955 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1956 					unsigned int alloc_flags,
1957 					int classzone_idx,
1958 					unsigned long wmark_target)
1959 {
1960 	unsigned long watermark;
1961 
1962 	if (is_via_compact_memory(order))
1963 		return COMPACT_CONTINUE;
1964 
1965 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1966 	/*
1967 	 * If watermarks for high-order allocation are already met, there
1968 	 * should be no need for compaction at all.
1969 	 */
1970 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1971 								alloc_flags))
1972 		return COMPACT_SUCCESS;
1973 
1974 	/*
1975 	 * Watermarks for order-0 must be met for compaction to be able to
1976 	 * isolate free pages for migration targets. This means that the
1977 	 * watermark and alloc_flags have to match, or be more pessimistic than
1978 	 * the check in __isolate_free_page(). We don't use the direct
1979 	 * compactor's alloc_flags, as they are not relevant for freepage
1980 	 * isolation. We however do use the direct compactor's classzone_idx to
1981 	 * skip over zones where lowmem reserves would prevent allocation even
1982 	 * if compaction succeeds.
1983 	 * For costly orders, we require low watermark instead of min for
1984 	 * compaction to proceed to increase its chances.
1985 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1986 	 * suitable migration targets
1987 	 */
1988 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1989 				low_wmark_pages(zone) : min_wmark_pages(zone);
1990 	watermark += compact_gap(order);
1991 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1992 						ALLOC_CMA, wmark_target))
1993 		return COMPACT_SKIPPED;
1994 
1995 	return COMPACT_CONTINUE;
1996 }
1997 
1998 enum compact_result compaction_suitable(struct zone *zone, int order,
1999 					unsigned int alloc_flags,
2000 					int classzone_idx)
2001 {
2002 	enum compact_result ret;
2003 	int fragindex;
2004 
2005 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2006 				    zone_page_state(zone, NR_FREE_PAGES));
2007 	/*
2008 	 * fragmentation index determines if allocation failures are due to
2009 	 * low memory or external fragmentation
2010 	 *
2011 	 * index of -1000 would imply allocations might succeed depending on
2012 	 * watermarks, but we already failed the high-order watermark check
2013 	 * index towards 0 implies failure is due to lack of memory
2014 	 * index towards 1000 implies failure is due to fragmentation
2015 	 *
2016 	 * Only compact if a failure would be due to fragmentation. Also
2017 	 * ignore fragindex for non-costly orders where the alternative to
2018 	 * a successful reclaim/compaction is OOM. Fragindex and the
2019 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2020 	 * excessive compaction for costly orders, but it should not be at the
2021 	 * expense of system stability.
2022 	 */
2023 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2024 		fragindex = fragmentation_index(zone, order);
2025 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2026 			ret = COMPACT_NOT_SUITABLE_ZONE;
2027 	}
2028 
2029 	trace_mm_compaction_suitable(zone, order, ret);
2030 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2031 		ret = COMPACT_SKIPPED;
2032 
2033 	return ret;
2034 }
2035 
2036 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2037 		int alloc_flags)
2038 {
2039 	struct zone *zone;
2040 	struct zoneref *z;
2041 
2042 	/*
2043 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2044 	 * retrying the reclaim.
2045 	 */
2046 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2047 					ac->nodemask) {
2048 		unsigned long available;
2049 		enum compact_result compact_result;
2050 
2051 		/*
2052 		 * Do not consider all the reclaimable memory because we do not
2053 		 * want to trash just for a single high order allocation which
2054 		 * is even not guaranteed to appear even if __compaction_suitable
2055 		 * is happy about the watermark check.
2056 		 */
2057 		available = zone_reclaimable_pages(zone) / order;
2058 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2059 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2060 				ac_classzone_idx(ac), available);
2061 		if (compact_result != COMPACT_SKIPPED)
2062 			return true;
2063 	}
2064 
2065 	return false;
2066 }
2067 
2068 static enum compact_result
2069 compact_zone(struct compact_control *cc, struct capture_control *capc)
2070 {
2071 	enum compact_result ret;
2072 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2073 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2074 	unsigned long last_migrated_pfn;
2075 	const bool sync = cc->mode != MIGRATE_ASYNC;
2076 	bool update_cached;
2077 
2078 	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2079 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2080 							cc->classzone_idx);
2081 	/* Compaction is likely to fail */
2082 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2083 		return ret;
2084 
2085 	/* huh, compaction_suitable is returning something unexpected */
2086 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2087 
2088 	/*
2089 	 * Clear pageblock skip if there were failures recently and compaction
2090 	 * is about to be retried after being deferred.
2091 	 */
2092 	if (compaction_restarting(cc->zone, cc->order))
2093 		__reset_isolation_suitable(cc->zone);
2094 
2095 	/*
2096 	 * Setup to move all movable pages to the end of the zone. Used cached
2097 	 * information on where the scanners should start (unless we explicitly
2098 	 * want to compact the whole zone), but check that it is initialised
2099 	 * by ensuring the values are within zone boundaries.
2100 	 */
2101 	cc->fast_start_pfn = 0;
2102 	if (cc->whole_zone) {
2103 		cc->migrate_pfn = start_pfn;
2104 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2105 	} else {
2106 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2107 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2108 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2109 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2110 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2111 		}
2112 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2113 			cc->migrate_pfn = start_pfn;
2114 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2115 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2116 		}
2117 
2118 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2119 			cc->whole_zone = true;
2120 	}
2121 
2122 	last_migrated_pfn = 0;
2123 
2124 	/*
2125 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2126 	 * the basis that some migrations will fail in ASYNC mode. However,
2127 	 * if the cached PFNs match and pageblocks are skipped due to having
2128 	 * no isolation candidates, then the sync state does not matter.
2129 	 * Until a pageblock with isolation candidates is found, keep the
2130 	 * cached PFNs in sync to avoid revisiting the same blocks.
2131 	 */
2132 	update_cached = !sync &&
2133 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2134 
2135 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2136 				cc->free_pfn, end_pfn, sync);
2137 
2138 	migrate_prep_local();
2139 
2140 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2141 		int err;
2142 		unsigned long start_pfn = cc->migrate_pfn;
2143 
2144 		/*
2145 		 * Avoid multiple rescans which can happen if a page cannot be
2146 		 * isolated (dirty/writeback in async mode) or if the migrated
2147 		 * pages are being allocated before the pageblock is cleared.
2148 		 * The first rescan will capture the entire pageblock for
2149 		 * migration. If it fails, it'll be marked skip and scanning
2150 		 * will proceed as normal.
2151 		 */
2152 		cc->rescan = false;
2153 		if (pageblock_start_pfn(last_migrated_pfn) ==
2154 		    pageblock_start_pfn(start_pfn)) {
2155 			cc->rescan = true;
2156 		}
2157 
2158 		switch (isolate_migratepages(cc->zone, cc)) {
2159 		case ISOLATE_ABORT:
2160 			ret = COMPACT_CONTENDED;
2161 			putback_movable_pages(&cc->migratepages);
2162 			cc->nr_migratepages = 0;
2163 			last_migrated_pfn = 0;
2164 			goto out;
2165 		case ISOLATE_NONE:
2166 			if (update_cached) {
2167 				cc->zone->compact_cached_migrate_pfn[1] =
2168 					cc->zone->compact_cached_migrate_pfn[0];
2169 			}
2170 
2171 			/*
2172 			 * We haven't isolated and migrated anything, but
2173 			 * there might still be unflushed migrations from
2174 			 * previous cc->order aligned block.
2175 			 */
2176 			goto check_drain;
2177 		case ISOLATE_SUCCESS:
2178 			update_cached = false;
2179 			last_migrated_pfn = start_pfn;
2180 			;
2181 		}
2182 
2183 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2184 				compaction_free, (unsigned long)cc, cc->mode,
2185 				MR_COMPACTION);
2186 
2187 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2188 							&cc->migratepages);
2189 
2190 		/* All pages were either migrated or will be released */
2191 		cc->nr_migratepages = 0;
2192 		if (err) {
2193 			putback_movable_pages(&cc->migratepages);
2194 			/*
2195 			 * migrate_pages() may return -ENOMEM when scanners meet
2196 			 * and we want compact_finished() to detect it
2197 			 */
2198 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2199 				ret = COMPACT_CONTENDED;
2200 				goto out;
2201 			}
2202 			/*
2203 			 * We failed to migrate at least one page in the current
2204 			 * order-aligned block, so skip the rest of it.
2205 			 */
2206 			if (cc->direct_compaction &&
2207 						(cc->mode == MIGRATE_ASYNC)) {
2208 				cc->migrate_pfn = block_end_pfn(
2209 						cc->migrate_pfn - 1, cc->order);
2210 				/* Draining pcplists is useless in this case */
2211 				last_migrated_pfn = 0;
2212 			}
2213 		}
2214 
2215 check_drain:
2216 		/*
2217 		 * Has the migration scanner moved away from the previous
2218 		 * cc->order aligned block where we migrated from? If yes,
2219 		 * flush the pages that were freed, so that they can merge and
2220 		 * compact_finished() can detect immediately if allocation
2221 		 * would succeed.
2222 		 */
2223 		if (cc->order > 0 && last_migrated_pfn) {
2224 			int cpu;
2225 			unsigned long current_block_start =
2226 				block_start_pfn(cc->migrate_pfn, cc->order);
2227 
2228 			if (last_migrated_pfn < current_block_start) {
2229 				cpu = get_cpu();
2230 				lru_add_drain_cpu(cpu);
2231 				drain_local_pages(cc->zone);
2232 				put_cpu();
2233 				/* No more flushing until we migrate again */
2234 				last_migrated_pfn = 0;
2235 			}
2236 		}
2237 
2238 		/* Stop if a page has been captured */
2239 		if (capc && capc->page) {
2240 			ret = COMPACT_SUCCESS;
2241 			break;
2242 		}
2243 	}
2244 
2245 out:
2246 	/*
2247 	 * Release free pages and update where the free scanner should restart,
2248 	 * so we don't leave any returned pages behind in the next attempt.
2249 	 */
2250 	if (cc->nr_freepages > 0) {
2251 		unsigned long free_pfn = release_freepages(&cc->freepages);
2252 
2253 		cc->nr_freepages = 0;
2254 		VM_BUG_ON(free_pfn == 0);
2255 		/* The cached pfn is always the first in a pageblock */
2256 		free_pfn = pageblock_start_pfn(free_pfn);
2257 		/*
2258 		 * Only go back, not forward. The cached pfn might have been
2259 		 * already reset to zone end in compact_finished()
2260 		 */
2261 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2262 			cc->zone->compact_cached_free_pfn = free_pfn;
2263 	}
2264 
2265 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2266 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2267 
2268 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2269 				cc->free_pfn, end_pfn, sync, ret);
2270 
2271 	return ret;
2272 }
2273 
2274 static enum compact_result compact_zone_order(struct zone *zone, int order,
2275 		gfp_t gfp_mask, enum compact_priority prio,
2276 		unsigned int alloc_flags, int classzone_idx,
2277 		struct page **capture)
2278 {
2279 	enum compact_result ret;
2280 	struct compact_control cc = {
2281 		.nr_freepages = 0,
2282 		.nr_migratepages = 0,
2283 		.total_migrate_scanned = 0,
2284 		.total_free_scanned = 0,
2285 		.order = order,
2286 		.search_order = order,
2287 		.gfp_mask = gfp_mask,
2288 		.zone = zone,
2289 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2290 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2291 		.alloc_flags = alloc_flags,
2292 		.classzone_idx = classzone_idx,
2293 		.direct_compaction = true,
2294 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2295 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2296 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2297 	};
2298 	struct capture_control capc = {
2299 		.cc = &cc,
2300 		.page = NULL,
2301 	};
2302 
2303 	if (capture)
2304 		current->capture_control = &capc;
2305 	INIT_LIST_HEAD(&cc.freepages);
2306 	INIT_LIST_HEAD(&cc.migratepages);
2307 
2308 	ret = compact_zone(&cc, &capc);
2309 
2310 	VM_BUG_ON(!list_empty(&cc.freepages));
2311 	VM_BUG_ON(!list_empty(&cc.migratepages));
2312 
2313 	*capture = capc.page;
2314 	current->capture_control = NULL;
2315 
2316 	return ret;
2317 }
2318 
2319 int sysctl_extfrag_threshold = 500;
2320 
2321 /**
2322  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2323  * @gfp_mask: The GFP mask of the current allocation
2324  * @order: The order of the current allocation
2325  * @alloc_flags: The allocation flags of the current allocation
2326  * @ac: The context of current allocation
2327  * @prio: Determines how hard direct compaction should try to succeed
2328  *
2329  * This is the main entry point for direct page compaction.
2330  */
2331 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2332 		unsigned int alloc_flags, const struct alloc_context *ac,
2333 		enum compact_priority prio, struct page **capture)
2334 {
2335 	int may_perform_io = gfp_mask & __GFP_IO;
2336 	struct zoneref *z;
2337 	struct zone *zone;
2338 	enum compact_result rc = COMPACT_SKIPPED;
2339 
2340 	/*
2341 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2342 	 * tricky context because the migration might require IO
2343 	 */
2344 	if (!may_perform_io)
2345 		return COMPACT_SKIPPED;
2346 
2347 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2348 
2349 	/* Compact each zone in the list */
2350 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2351 								ac->nodemask) {
2352 		enum compact_result status;
2353 
2354 		if (prio > MIN_COMPACT_PRIORITY
2355 					&& compaction_deferred(zone, order)) {
2356 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2357 			continue;
2358 		}
2359 
2360 		status = compact_zone_order(zone, order, gfp_mask, prio,
2361 				alloc_flags, ac_classzone_idx(ac), capture);
2362 		rc = max(status, rc);
2363 
2364 		/* The allocation should succeed, stop compacting */
2365 		if (status == COMPACT_SUCCESS) {
2366 			/*
2367 			 * We think the allocation will succeed in this zone,
2368 			 * but it is not certain, hence the false. The caller
2369 			 * will repeat this with true if allocation indeed
2370 			 * succeeds in this zone.
2371 			 */
2372 			compaction_defer_reset(zone, order, false);
2373 
2374 			break;
2375 		}
2376 
2377 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2378 					status == COMPACT_PARTIAL_SKIPPED))
2379 			/*
2380 			 * We think that allocation won't succeed in this zone
2381 			 * so we defer compaction there. If it ends up
2382 			 * succeeding after all, it will be reset.
2383 			 */
2384 			defer_compaction(zone, order);
2385 
2386 		/*
2387 		 * We might have stopped compacting due to need_resched() in
2388 		 * async compaction, or due to a fatal signal detected. In that
2389 		 * case do not try further zones
2390 		 */
2391 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2392 					|| fatal_signal_pending(current))
2393 			break;
2394 	}
2395 
2396 	return rc;
2397 }
2398 
2399 
2400 /* Compact all zones within a node */
2401 static void compact_node(int nid)
2402 {
2403 	pg_data_t *pgdat = NODE_DATA(nid);
2404 	int zoneid;
2405 	struct zone *zone;
2406 	struct compact_control cc = {
2407 		.order = -1,
2408 		.total_migrate_scanned = 0,
2409 		.total_free_scanned = 0,
2410 		.mode = MIGRATE_SYNC,
2411 		.ignore_skip_hint = true,
2412 		.whole_zone = true,
2413 		.gfp_mask = GFP_KERNEL,
2414 	};
2415 
2416 
2417 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2418 
2419 		zone = &pgdat->node_zones[zoneid];
2420 		if (!populated_zone(zone))
2421 			continue;
2422 
2423 		cc.nr_freepages = 0;
2424 		cc.nr_migratepages = 0;
2425 		cc.zone = zone;
2426 		INIT_LIST_HEAD(&cc.freepages);
2427 		INIT_LIST_HEAD(&cc.migratepages);
2428 
2429 		compact_zone(&cc, NULL);
2430 
2431 		VM_BUG_ON(!list_empty(&cc.freepages));
2432 		VM_BUG_ON(!list_empty(&cc.migratepages));
2433 	}
2434 }
2435 
2436 /* Compact all nodes in the system */
2437 static void compact_nodes(void)
2438 {
2439 	int nid;
2440 
2441 	/* Flush pending updates to the LRU lists */
2442 	lru_add_drain_all();
2443 
2444 	for_each_online_node(nid)
2445 		compact_node(nid);
2446 }
2447 
2448 /* The written value is actually unused, all memory is compacted */
2449 int sysctl_compact_memory;
2450 
2451 /*
2452  * This is the entry point for compacting all nodes via
2453  * /proc/sys/vm/compact_memory
2454  */
2455 int sysctl_compaction_handler(struct ctl_table *table, int write,
2456 			void __user *buffer, size_t *length, loff_t *ppos)
2457 {
2458 	if (write)
2459 		compact_nodes();
2460 
2461 	return 0;
2462 }
2463 
2464 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2465 static ssize_t sysfs_compact_node(struct device *dev,
2466 			struct device_attribute *attr,
2467 			const char *buf, size_t count)
2468 {
2469 	int nid = dev->id;
2470 
2471 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2472 		/* Flush pending updates to the LRU lists */
2473 		lru_add_drain_all();
2474 
2475 		compact_node(nid);
2476 	}
2477 
2478 	return count;
2479 }
2480 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2481 
2482 int compaction_register_node(struct node *node)
2483 {
2484 	return device_create_file(&node->dev, &dev_attr_compact);
2485 }
2486 
2487 void compaction_unregister_node(struct node *node)
2488 {
2489 	return device_remove_file(&node->dev, &dev_attr_compact);
2490 }
2491 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2492 
2493 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2494 {
2495 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2496 }
2497 
2498 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2499 {
2500 	int zoneid;
2501 	struct zone *zone;
2502 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2503 
2504 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2505 		zone = &pgdat->node_zones[zoneid];
2506 
2507 		if (!populated_zone(zone))
2508 			continue;
2509 
2510 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2511 					classzone_idx) == COMPACT_CONTINUE)
2512 			return true;
2513 	}
2514 
2515 	return false;
2516 }
2517 
2518 static void kcompactd_do_work(pg_data_t *pgdat)
2519 {
2520 	/*
2521 	 * With no special task, compact all zones so that a page of requested
2522 	 * order is allocatable.
2523 	 */
2524 	int zoneid;
2525 	struct zone *zone;
2526 	struct compact_control cc = {
2527 		.order = pgdat->kcompactd_max_order,
2528 		.search_order = pgdat->kcompactd_max_order,
2529 		.total_migrate_scanned = 0,
2530 		.total_free_scanned = 0,
2531 		.classzone_idx = pgdat->kcompactd_classzone_idx,
2532 		.mode = MIGRATE_SYNC_LIGHT,
2533 		.ignore_skip_hint = false,
2534 		.gfp_mask = GFP_KERNEL,
2535 	};
2536 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2537 							cc.classzone_idx);
2538 	count_compact_event(KCOMPACTD_WAKE);
2539 
2540 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2541 		int status;
2542 
2543 		zone = &pgdat->node_zones[zoneid];
2544 		if (!populated_zone(zone))
2545 			continue;
2546 
2547 		if (compaction_deferred(zone, cc.order))
2548 			continue;
2549 
2550 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2551 							COMPACT_CONTINUE)
2552 			continue;
2553 
2554 		cc.nr_freepages = 0;
2555 		cc.nr_migratepages = 0;
2556 		cc.total_migrate_scanned = 0;
2557 		cc.total_free_scanned = 0;
2558 		cc.zone = zone;
2559 		INIT_LIST_HEAD(&cc.freepages);
2560 		INIT_LIST_HEAD(&cc.migratepages);
2561 
2562 		if (kthread_should_stop())
2563 			return;
2564 		status = compact_zone(&cc, NULL);
2565 
2566 		if (status == COMPACT_SUCCESS) {
2567 			compaction_defer_reset(zone, cc.order, false);
2568 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2569 			/*
2570 			 * Buddy pages may become stranded on pcps that could
2571 			 * otherwise coalesce on the zone's free area for
2572 			 * order >= cc.order.  This is ratelimited by the
2573 			 * upcoming deferral.
2574 			 */
2575 			drain_all_pages(zone);
2576 
2577 			/*
2578 			 * We use sync migration mode here, so we defer like
2579 			 * sync direct compaction does.
2580 			 */
2581 			defer_compaction(zone, cc.order);
2582 		}
2583 
2584 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2585 				     cc.total_migrate_scanned);
2586 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2587 				     cc.total_free_scanned);
2588 
2589 		VM_BUG_ON(!list_empty(&cc.freepages));
2590 		VM_BUG_ON(!list_empty(&cc.migratepages));
2591 	}
2592 
2593 	/*
2594 	 * Regardless of success, we are done until woken up next. But remember
2595 	 * the requested order/classzone_idx in case it was higher/tighter than
2596 	 * our current ones
2597 	 */
2598 	if (pgdat->kcompactd_max_order <= cc.order)
2599 		pgdat->kcompactd_max_order = 0;
2600 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2601 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2602 }
2603 
2604 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2605 {
2606 	if (!order)
2607 		return;
2608 
2609 	if (pgdat->kcompactd_max_order < order)
2610 		pgdat->kcompactd_max_order = order;
2611 
2612 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2613 		pgdat->kcompactd_classzone_idx = classzone_idx;
2614 
2615 	/*
2616 	 * Pairs with implicit barrier in wait_event_freezable()
2617 	 * such that wakeups are not missed.
2618 	 */
2619 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2620 		return;
2621 
2622 	if (!kcompactd_node_suitable(pgdat))
2623 		return;
2624 
2625 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2626 							classzone_idx);
2627 	wake_up_interruptible(&pgdat->kcompactd_wait);
2628 }
2629 
2630 /*
2631  * The background compaction daemon, started as a kernel thread
2632  * from the init process.
2633  */
2634 static int kcompactd(void *p)
2635 {
2636 	pg_data_t *pgdat = (pg_data_t*)p;
2637 	struct task_struct *tsk = current;
2638 
2639 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2640 
2641 	if (!cpumask_empty(cpumask))
2642 		set_cpus_allowed_ptr(tsk, cpumask);
2643 
2644 	set_freezable();
2645 
2646 	pgdat->kcompactd_max_order = 0;
2647 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2648 
2649 	while (!kthread_should_stop()) {
2650 		unsigned long pflags;
2651 
2652 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2653 		wait_event_freezable(pgdat->kcompactd_wait,
2654 				kcompactd_work_requested(pgdat));
2655 
2656 		psi_memstall_enter(&pflags);
2657 		kcompactd_do_work(pgdat);
2658 		psi_memstall_leave(&pflags);
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 /*
2665  * This kcompactd start function will be called by init and node-hot-add.
2666  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2667  */
2668 int kcompactd_run(int nid)
2669 {
2670 	pg_data_t *pgdat = NODE_DATA(nid);
2671 	int ret = 0;
2672 
2673 	if (pgdat->kcompactd)
2674 		return 0;
2675 
2676 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2677 	if (IS_ERR(pgdat->kcompactd)) {
2678 		pr_err("Failed to start kcompactd on node %d\n", nid);
2679 		ret = PTR_ERR(pgdat->kcompactd);
2680 		pgdat->kcompactd = NULL;
2681 	}
2682 	return ret;
2683 }
2684 
2685 /*
2686  * Called by memory hotplug when all memory in a node is offlined. Caller must
2687  * hold mem_hotplug_begin/end().
2688  */
2689 void kcompactd_stop(int nid)
2690 {
2691 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2692 
2693 	if (kcompactd) {
2694 		kthread_stop(kcompactd);
2695 		NODE_DATA(nid)->kcompactd = NULL;
2696 	}
2697 }
2698 
2699 /*
2700  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2701  * not required for correctness. So if the last cpu in a node goes
2702  * away, we get changed to run anywhere: as the first one comes back,
2703  * restore their cpu bindings.
2704  */
2705 static int kcompactd_cpu_online(unsigned int cpu)
2706 {
2707 	int nid;
2708 
2709 	for_each_node_state(nid, N_MEMORY) {
2710 		pg_data_t *pgdat = NODE_DATA(nid);
2711 		const struct cpumask *mask;
2712 
2713 		mask = cpumask_of_node(pgdat->node_id);
2714 
2715 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2716 			/* One of our CPUs online: restore mask */
2717 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2718 	}
2719 	return 0;
2720 }
2721 
2722 static int __init kcompactd_init(void)
2723 {
2724 	int nid;
2725 	int ret;
2726 
2727 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2728 					"mm/compaction:online",
2729 					kcompactd_cpu_online, NULL);
2730 	if (ret < 0) {
2731 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2732 		return ret;
2733 	}
2734 
2735 	for_each_node_state(nid, N_MEMORY)
2736 		kcompactd_run(nid);
2737 	return 0;
2738 }
2739 subsys_initcall(kcompactd_init)
2740 
2741 #endif /* CONFIG_COMPACTION */
2742