1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include "internal.h" 26 27 #ifdef CONFIG_COMPACTION 28 static inline void count_compact_event(enum vm_event_item item) 29 { 30 count_vm_event(item); 31 } 32 33 static inline void count_compact_events(enum vm_event_item item, long delta) 34 { 35 count_vm_events(item, delta); 36 } 37 #else 38 #define count_compact_event(item) do { } while (0) 39 #define count_compact_events(item, delta) do { } while (0) 40 #endif 41 42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/compaction.h> 46 47 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 48 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 49 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 50 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 51 52 static unsigned long release_freepages(struct list_head *freelist) 53 { 54 struct page *page, *next; 55 unsigned long high_pfn = 0; 56 57 list_for_each_entry_safe(page, next, freelist, lru) { 58 unsigned long pfn = page_to_pfn(page); 59 list_del(&page->lru); 60 __free_page(page); 61 if (pfn > high_pfn) 62 high_pfn = pfn; 63 } 64 65 return high_pfn; 66 } 67 68 static void map_pages(struct list_head *list) 69 { 70 unsigned int i, order, nr_pages; 71 struct page *page, *next; 72 LIST_HEAD(tmp_list); 73 74 list_for_each_entry_safe(page, next, list, lru) { 75 list_del(&page->lru); 76 77 order = page_private(page); 78 nr_pages = 1 << order; 79 80 post_alloc_hook(page, order, __GFP_MOVABLE); 81 if (order) 82 split_page(page, order); 83 84 for (i = 0; i < nr_pages; i++) { 85 list_add(&page->lru, &tmp_list); 86 page++; 87 } 88 } 89 90 list_splice(&tmp_list, list); 91 } 92 93 #ifdef CONFIG_COMPACTION 94 95 int PageMovable(struct page *page) 96 { 97 struct address_space *mapping; 98 99 VM_BUG_ON_PAGE(!PageLocked(page), page); 100 if (!__PageMovable(page)) 101 return 0; 102 103 mapping = page_mapping(page); 104 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 105 return 1; 106 107 return 0; 108 } 109 EXPORT_SYMBOL(PageMovable); 110 111 void __SetPageMovable(struct page *page, struct address_space *mapping) 112 { 113 VM_BUG_ON_PAGE(!PageLocked(page), page); 114 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 115 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 116 } 117 EXPORT_SYMBOL(__SetPageMovable); 118 119 void __ClearPageMovable(struct page *page) 120 { 121 VM_BUG_ON_PAGE(!PageLocked(page), page); 122 VM_BUG_ON_PAGE(!PageMovable(page), page); 123 /* 124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 125 * flag so that VM can catch up released page by driver after isolation. 126 * With it, VM migration doesn't try to put it back. 127 */ 128 page->mapping = (void *)((unsigned long)page->mapping & 129 PAGE_MAPPING_MOVABLE); 130 } 131 EXPORT_SYMBOL(__ClearPageMovable); 132 133 /* Do not skip compaction more than 64 times */ 134 #define COMPACT_MAX_DEFER_SHIFT 6 135 136 /* 137 * Compaction is deferred when compaction fails to result in a page 138 * allocation success. 1 << compact_defer_limit compactions are skipped up 139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 140 */ 141 void defer_compaction(struct zone *zone, int order) 142 { 143 zone->compact_considered = 0; 144 zone->compact_defer_shift++; 145 146 if (order < zone->compact_order_failed) 147 zone->compact_order_failed = order; 148 149 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 150 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 151 152 trace_mm_compaction_defer_compaction(zone, order); 153 } 154 155 /* Returns true if compaction should be skipped this time */ 156 bool compaction_deferred(struct zone *zone, int order) 157 { 158 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 159 160 if (order < zone->compact_order_failed) 161 return false; 162 163 /* Avoid possible overflow */ 164 if (++zone->compact_considered > defer_limit) 165 zone->compact_considered = defer_limit; 166 167 if (zone->compact_considered >= defer_limit) 168 return false; 169 170 trace_mm_compaction_deferred(zone, order); 171 172 return true; 173 } 174 175 /* 176 * Update defer tracking counters after successful compaction of given order, 177 * which means an allocation either succeeded (alloc_success == true) or is 178 * expected to succeed. 179 */ 180 void compaction_defer_reset(struct zone *zone, int order, 181 bool alloc_success) 182 { 183 if (alloc_success) { 184 zone->compact_considered = 0; 185 zone->compact_defer_shift = 0; 186 } 187 if (order >= zone->compact_order_failed) 188 zone->compact_order_failed = order + 1; 189 190 trace_mm_compaction_defer_reset(zone, order); 191 } 192 193 /* Returns true if restarting compaction after many failures */ 194 bool compaction_restarting(struct zone *zone, int order) 195 { 196 if (order < zone->compact_order_failed) 197 return false; 198 199 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 200 zone->compact_considered >= 1UL << zone->compact_defer_shift; 201 } 202 203 /* Returns true if the pageblock should be scanned for pages to isolate. */ 204 static inline bool isolation_suitable(struct compact_control *cc, 205 struct page *page) 206 { 207 if (cc->ignore_skip_hint) 208 return true; 209 210 return !get_pageblock_skip(page); 211 } 212 213 static void reset_cached_positions(struct zone *zone) 214 { 215 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 216 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 217 zone->compact_cached_free_pfn = 218 pageblock_start_pfn(zone_end_pfn(zone) - 1); 219 } 220 221 /* 222 * Compound pages of >= pageblock_order should consistenly be skipped until 223 * released. It is always pointless to compact pages of such order (if they are 224 * migratable), and the pageblocks they occupy cannot contain any free pages. 225 */ 226 static bool pageblock_skip_persistent(struct page *page) 227 { 228 if (!PageCompound(page)) 229 return false; 230 231 page = compound_head(page); 232 233 if (compound_order(page) >= pageblock_order) 234 return true; 235 236 return false; 237 } 238 239 /* 240 * This function is called to clear all cached information on pageblocks that 241 * should be skipped for page isolation when the migrate and free page scanner 242 * meet. 243 */ 244 static void __reset_isolation_suitable(struct zone *zone) 245 { 246 unsigned long start_pfn = zone->zone_start_pfn; 247 unsigned long end_pfn = zone_end_pfn(zone); 248 unsigned long pfn; 249 250 zone->compact_blockskip_flush = false; 251 252 /* Walk the zone and mark every pageblock as suitable for isolation */ 253 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 254 struct page *page; 255 256 cond_resched(); 257 258 page = pfn_to_online_page(pfn); 259 if (!page) 260 continue; 261 if (zone != page_zone(page)) 262 continue; 263 if (pageblock_skip_persistent(page)) 264 continue; 265 266 clear_pageblock_skip(page); 267 } 268 269 reset_cached_positions(zone); 270 } 271 272 void reset_isolation_suitable(pg_data_t *pgdat) 273 { 274 int zoneid; 275 276 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 277 struct zone *zone = &pgdat->node_zones[zoneid]; 278 if (!populated_zone(zone)) 279 continue; 280 281 /* Only flush if a full compaction finished recently */ 282 if (zone->compact_blockskip_flush) 283 __reset_isolation_suitable(zone); 284 } 285 } 286 287 /* 288 * If no pages were isolated then mark this pageblock to be skipped in the 289 * future. The information is later cleared by __reset_isolation_suitable(). 290 */ 291 static void update_pageblock_skip(struct compact_control *cc, 292 struct page *page, unsigned long nr_isolated, 293 bool migrate_scanner) 294 { 295 struct zone *zone = cc->zone; 296 unsigned long pfn; 297 298 if (cc->no_set_skip_hint) 299 return; 300 301 if (!page) 302 return; 303 304 if (nr_isolated) 305 return; 306 307 set_pageblock_skip(page); 308 309 pfn = page_to_pfn(page); 310 311 /* Update where async and sync compaction should restart */ 312 if (migrate_scanner) { 313 if (pfn > zone->compact_cached_migrate_pfn[0]) 314 zone->compact_cached_migrate_pfn[0] = pfn; 315 if (cc->mode != MIGRATE_ASYNC && 316 pfn > zone->compact_cached_migrate_pfn[1]) 317 zone->compact_cached_migrate_pfn[1] = pfn; 318 } else { 319 if (pfn < zone->compact_cached_free_pfn) 320 zone->compact_cached_free_pfn = pfn; 321 } 322 } 323 #else 324 static inline bool isolation_suitable(struct compact_control *cc, 325 struct page *page) 326 { 327 return true; 328 } 329 330 static inline bool pageblock_skip_persistent(struct page *page) 331 { 332 return false; 333 } 334 335 static inline void update_pageblock_skip(struct compact_control *cc, 336 struct page *page, unsigned long nr_isolated, 337 bool migrate_scanner) 338 { 339 } 340 #endif /* CONFIG_COMPACTION */ 341 342 /* 343 * Compaction requires the taking of some coarse locks that are potentially 344 * very heavily contended. For async compaction, back out if the lock cannot 345 * be taken immediately. For sync compaction, spin on the lock if needed. 346 * 347 * Returns true if the lock is held 348 * Returns false if the lock is not held and compaction should abort 349 */ 350 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 351 struct compact_control *cc) 352 { 353 if (cc->mode == MIGRATE_ASYNC) { 354 if (!spin_trylock_irqsave(lock, *flags)) { 355 cc->contended = true; 356 return false; 357 } 358 } else { 359 spin_lock_irqsave(lock, *flags); 360 } 361 362 return true; 363 } 364 365 /* 366 * Compaction requires the taking of some coarse locks that are potentially 367 * very heavily contended. The lock should be periodically unlocked to avoid 368 * having disabled IRQs for a long time, even when there is nobody waiting on 369 * the lock. It might also be that allowing the IRQs will result in 370 * need_resched() becoming true. If scheduling is needed, async compaction 371 * aborts. Sync compaction schedules. 372 * Either compaction type will also abort if a fatal signal is pending. 373 * In either case if the lock was locked, it is dropped and not regained. 374 * 375 * Returns true if compaction should abort due to fatal signal pending, or 376 * async compaction due to need_resched() 377 * Returns false when compaction can continue (sync compaction might have 378 * scheduled) 379 */ 380 static bool compact_unlock_should_abort(spinlock_t *lock, 381 unsigned long flags, bool *locked, struct compact_control *cc) 382 { 383 if (*locked) { 384 spin_unlock_irqrestore(lock, flags); 385 *locked = false; 386 } 387 388 if (fatal_signal_pending(current)) { 389 cc->contended = true; 390 return true; 391 } 392 393 if (need_resched()) { 394 if (cc->mode == MIGRATE_ASYNC) { 395 cc->contended = true; 396 return true; 397 } 398 cond_resched(); 399 } 400 401 return false; 402 } 403 404 /* 405 * Aside from avoiding lock contention, compaction also periodically checks 406 * need_resched() and either schedules in sync compaction or aborts async 407 * compaction. This is similar to what compact_unlock_should_abort() does, but 408 * is used where no lock is concerned. 409 * 410 * Returns false when no scheduling was needed, or sync compaction scheduled. 411 * Returns true when async compaction should abort. 412 */ 413 static inline bool compact_should_abort(struct compact_control *cc) 414 { 415 /* async compaction aborts if contended */ 416 if (need_resched()) { 417 if (cc->mode == MIGRATE_ASYNC) { 418 cc->contended = true; 419 return true; 420 } 421 422 cond_resched(); 423 } 424 425 return false; 426 } 427 428 /* 429 * Isolate free pages onto a private freelist. If @strict is true, will abort 430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 431 * (even though it may still end up isolating some pages). 432 */ 433 static unsigned long isolate_freepages_block(struct compact_control *cc, 434 unsigned long *start_pfn, 435 unsigned long end_pfn, 436 struct list_head *freelist, 437 bool strict) 438 { 439 int nr_scanned = 0, total_isolated = 0; 440 struct page *cursor, *valid_page = NULL; 441 unsigned long flags = 0; 442 bool locked = false; 443 unsigned long blockpfn = *start_pfn; 444 unsigned int order; 445 446 cursor = pfn_to_page(blockpfn); 447 448 /* Isolate free pages. */ 449 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 450 int isolated; 451 struct page *page = cursor; 452 453 /* 454 * Periodically drop the lock (if held) regardless of its 455 * contention, to give chance to IRQs. Abort if fatal signal 456 * pending or async compaction detects need_resched() 457 */ 458 if (!(blockpfn % SWAP_CLUSTER_MAX) 459 && compact_unlock_should_abort(&cc->zone->lock, flags, 460 &locked, cc)) 461 break; 462 463 nr_scanned++; 464 if (!pfn_valid_within(blockpfn)) 465 goto isolate_fail; 466 467 if (!valid_page) 468 valid_page = page; 469 470 /* 471 * For compound pages such as THP and hugetlbfs, we can save 472 * potentially a lot of iterations if we skip them at once. 473 * The check is racy, but we can consider only valid values 474 * and the only danger is skipping too much. 475 */ 476 if (PageCompound(page)) { 477 const unsigned int order = compound_order(page); 478 479 if (likely(order < MAX_ORDER)) { 480 blockpfn += (1UL << order) - 1; 481 cursor += (1UL << order) - 1; 482 } 483 goto isolate_fail; 484 } 485 486 if (!PageBuddy(page)) 487 goto isolate_fail; 488 489 /* 490 * If we already hold the lock, we can skip some rechecking. 491 * Note that if we hold the lock now, checked_pageblock was 492 * already set in some previous iteration (or strict is true), 493 * so it is correct to skip the suitable migration target 494 * recheck as well. 495 */ 496 if (!locked) { 497 /* 498 * The zone lock must be held to isolate freepages. 499 * Unfortunately this is a very coarse lock and can be 500 * heavily contended if there are parallel allocations 501 * or parallel compactions. For async compaction do not 502 * spin on the lock and we acquire the lock as late as 503 * possible. 504 */ 505 locked = compact_trylock_irqsave(&cc->zone->lock, 506 &flags, cc); 507 if (!locked) 508 break; 509 510 /* Recheck this is a buddy page under lock */ 511 if (!PageBuddy(page)) 512 goto isolate_fail; 513 } 514 515 /* Found a free page, will break it into order-0 pages */ 516 order = page_order(page); 517 isolated = __isolate_free_page(page, order); 518 if (!isolated) 519 break; 520 set_page_private(page, order); 521 522 total_isolated += isolated; 523 cc->nr_freepages += isolated; 524 list_add_tail(&page->lru, freelist); 525 526 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 527 blockpfn += isolated; 528 break; 529 } 530 /* Advance to the end of split page */ 531 blockpfn += isolated - 1; 532 cursor += isolated - 1; 533 continue; 534 535 isolate_fail: 536 if (strict) 537 break; 538 else 539 continue; 540 541 } 542 543 if (locked) 544 spin_unlock_irqrestore(&cc->zone->lock, flags); 545 546 /* 547 * There is a tiny chance that we have read bogus compound_order(), 548 * so be careful to not go outside of the pageblock. 549 */ 550 if (unlikely(blockpfn > end_pfn)) 551 blockpfn = end_pfn; 552 553 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 554 nr_scanned, total_isolated); 555 556 /* Record how far we have got within the block */ 557 *start_pfn = blockpfn; 558 559 /* 560 * If strict isolation is requested by CMA then check that all the 561 * pages requested were isolated. If there were any failures, 0 is 562 * returned and CMA will fail. 563 */ 564 if (strict && blockpfn < end_pfn) 565 total_isolated = 0; 566 567 /* Update the pageblock-skip if the whole pageblock was scanned */ 568 if (blockpfn == end_pfn) 569 update_pageblock_skip(cc, valid_page, total_isolated, false); 570 571 cc->total_free_scanned += nr_scanned; 572 if (total_isolated) 573 count_compact_events(COMPACTISOLATED, total_isolated); 574 return total_isolated; 575 } 576 577 /** 578 * isolate_freepages_range() - isolate free pages. 579 * @cc: Compaction control structure. 580 * @start_pfn: The first PFN to start isolating. 581 * @end_pfn: The one-past-last PFN. 582 * 583 * Non-free pages, invalid PFNs, or zone boundaries within the 584 * [start_pfn, end_pfn) range are considered errors, cause function to 585 * undo its actions and return zero. 586 * 587 * Otherwise, function returns one-past-the-last PFN of isolated page 588 * (which may be greater then end_pfn if end fell in a middle of 589 * a free page). 590 */ 591 unsigned long 592 isolate_freepages_range(struct compact_control *cc, 593 unsigned long start_pfn, unsigned long end_pfn) 594 { 595 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 596 LIST_HEAD(freelist); 597 598 pfn = start_pfn; 599 block_start_pfn = pageblock_start_pfn(pfn); 600 if (block_start_pfn < cc->zone->zone_start_pfn) 601 block_start_pfn = cc->zone->zone_start_pfn; 602 block_end_pfn = pageblock_end_pfn(pfn); 603 604 for (; pfn < end_pfn; pfn += isolated, 605 block_start_pfn = block_end_pfn, 606 block_end_pfn += pageblock_nr_pages) { 607 /* Protect pfn from changing by isolate_freepages_block */ 608 unsigned long isolate_start_pfn = pfn; 609 610 block_end_pfn = min(block_end_pfn, end_pfn); 611 612 /* 613 * pfn could pass the block_end_pfn if isolated freepage 614 * is more than pageblock order. In this case, we adjust 615 * scanning range to right one. 616 */ 617 if (pfn >= block_end_pfn) { 618 block_start_pfn = pageblock_start_pfn(pfn); 619 block_end_pfn = pageblock_end_pfn(pfn); 620 block_end_pfn = min(block_end_pfn, end_pfn); 621 } 622 623 if (!pageblock_pfn_to_page(block_start_pfn, 624 block_end_pfn, cc->zone)) 625 break; 626 627 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 628 block_end_pfn, &freelist, true); 629 630 /* 631 * In strict mode, isolate_freepages_block() returns 0 if 632 * there are any holes in the block (ie. invalid PFNs or 633 * non-free pages). 634 */ 635 if (!isolated) 636 break; 637 638 /* 639 * If we managed to isolate pages, it is always (1 << n) * 640 * pageblock_nr_pages for some non-negative n. (Max order 641 * page may span two pageblocks). 642 */ 643 } 644 645 /* __isolate_free_page() does not map the pages */ 646 map_pages(&freelist); 647 648 if (pfn < end_pfn) { 649 /* Loop terminated early, cleanup. */ 650 release_freepages(&freelist); 651 return 0; 652 } 653 654 /* We don't use freelists for anything. */ 655 return pfn; 656 } 657 658 /* Similar to reclaim, but different enough that they don't share logic */ 659 static bool too_many_isolated(struct zone *zone) 660 { 661 unsigned long active, inactive, isolated; 662 663 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) + 664 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON); 665 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) + 666 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON); 667 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) + 668 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON); 669 670 return isolated > (inactive + active) / 2; 671 } 672 673 /** 674 * isolate_migratepages_block() - isolate all migrate-able pages within 675 * a single pageblock 676 * @cc: Compaction control structure. 677 * @low_pfn: The first PFN to isolate 678 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 679 * @isolate_mode: Isolation mode to be used. 680 * 681 * Isolate all pages that can be migrated from the range specified by 682 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 683 * Returns zero if there is a fatal signal pending, otherwise PFN of the 684 * first page that was not scanned (which may be both less, equal to or more 685 * than end_pfn). 686 * 687 * The pages are isolated on cc->migratepages list (not required to be empty), 688 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 689 * is neither read nor updated. 690 */ 691 static unsigned long 692 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 693 unsigned long end_pfn, isolate_mode_t isolate_mode) 694 { 695 struct zone *zone = cc->zone; 696 unsigned long nr_scanned = 0, nr_isolated = 0; 697 struct lruvec *lruvec; 698 unsigned long flags = 0; 699 bool locked = false; 700 struct page *page = NULL, *valid_page = NULL; 701 unsigned long start_pfn = low_pfn; 702 bool skip_on_failure = false; 703 unsigned long next_skip_pfn = 0; 704 705 /* 706 * Ensure that there are not too many pages isolated from the LRU 707 * list by either parallel reclaimers or compaction. If there are, 708 * delay for some time until fewer pages are isolated 709 */ 710 while (unlikely(too_many_isolated(zone))) { 711 /* async migration should just abort */ 712 if (cc->mode == MIGRATE_ASYNC) 713 return 0; 714 715 congestion_wait(BLK_RW_ASYNC, HZ/10); 716 717 if (fatal_signal_pending(current)) 718 return 0; 719 } 720 721 if (compact_should_abort(cc)) 722 return 0; 723 724 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 725 skip_on_failure = true; 726 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 727 } 728 729 /* Time to isolate some pages for migration */ 730 for (; low_pfn < end_pfn; low_pfn++) { 731 732 if (skip_on_failure && low_pfn >= next_skip_pfn) { 733 /* 734 * We have isolated all migration candidates in the 735 * previous order-aligned block, and did not skip it due 736 * to failure. We should migrate the pages now and 737 * hopefully succeed compaction. 738 */ 739 if (nr_isolated) 740 break; 741 742 /* 743 * We failed to isolate in the previous order-aligned 744 * block. Set the new boundary to the end of the 745 * current block. Note we can't simply increase 746 * next_skip_pfn by 1 << order, as low_pfn might have 747 * been incremented by a higher number due to skipping 748 * a compound or a high-order buddy page in the 749 * previous loop iteration. 750 */ 751 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 752 } 753 754 /* 755 * Periodically drop the lock (if held) regardless of its 756 * contention, to give chance to IRQs. Abort async compaction 757 * if contended. 758 */ 759 if (!(low_pfn % SWAP_CLUSTER_MAX) 760 && compact_unlock_should_abort(zone_lru_lock(zone), flags, 761 &locked, cc)) 762 break; 763 764 if (!pfn_valid_within(low_pfn)) 765 goto isolate_fail; 766 nr_scanned++; 767 768 page = pfn_to_page(low_pfn); 769 770 if (!valid_page) 771 valid_page = page; 772 773 /* 774 * Skip if free. We read page order here without zone lock 775 * which is generally unsafe, but the race window is small and 776 * the worst thing that can happen is that we skip some 777 * potential isolation targets. 778 */ 779 if (PageBuddy(page)) { 780 unsigned long freepage_order = page_order_unsafe(page); 781 782 /* 783 * Without lock, we cannot be sure that what we got is 784 * a valid page order. Consider only values in the 785 * valid order range to prevent low_pfn overflow. 786 */ 787 if (freepage_order > 0 && freepage_order < MAX_ORDER) 788 low_pfn += (1UL << freepage_order) - 1; 789 continue; 790 } 791 792 /* 793 * Regardless of being on LRU, compound pages such as THP and 794 * hugetlbfs are not to be compacted. We can potentially save 795 * a lot of iterations if we skip them at once. The check is 796 * racy, but we can consider only valid values and the only 797 * danger is skipping too much. 798 */ 799 if (PageCompound(page)) { 800 const unsigned int order = compound_order(page); 801 802 if (likely(order < MAX_ORDER)) 803 low_pfn += (1UL << order) - 1; 804 goto isolate_fail; 805 } 806 807 /* 808 * Check may be lockless but that's ok as we recheck later. 809 * It's possible to migrate LRU and non-lru movable pages. 810 * Skip any other type of page 811 */ 812 if (!PageLRU(page)) { 813 /* 814 * __PageMovable can return false positive so we need 815 * to verify it under page_lock. 816 */ 817 if (unlikely(__PageMovable(page)) && 818 !PageIsolated(page)) { 819 if (locked) { 820 spin_unlock_irqrestore(zone_lru_lock(zone), 821 flags); 822 locked = false; 823 } 824 825 if (!isolate_movable_page(page, isolate_mode)) 826 goto isolate_success; 827 } 828 829 goto isolate_fail; 830 } 831 832 /* 833 * Migration will fail if an anonymous page is pinned in memory, 834 * so avoid taking lru_lock and isolating it unnecessarily in an 835 * admittedly racy check. 836 */ 837 if (!page_mapping(page) && 838 page_count(page) > page_mapcount(page)) 839 goto isolate_fail; 840 841 /* 842 * Only allow to migrate anonymous pages in GFP_NOFS context 843 * because those do not depend on fs locks. 844 */ 845 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 846 goto isolate_fail; 847 848 /* If we already hold the lock, we can skip some rechecking */ 849 if (!locked) { 850 locked = compact_trylock_irqsave(zone_lru_lock(zone), 851 &flags, cc); 852 if (!locked) 853 break; 854 855 /* Recheck PageLRU and PageCompound under lock */ 856 if (!PageLRU(page)) 857 goto isolate_fail; 858 859 /* 860 * Page become compound since the non-locked check, 861 * and it's on LRU. It can only be a THP so the order 862 * is safe to read and it's 0 for tail pages. 863 */ 864 if (unlikely(PageCompound(page))) { 865 low_pfn += (1UL << compound_order(page)) - 1; 866 goto isolate_fail; 867 } 868 } 869 870 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 871 872 /* Try isolate the page */ 873 if (__isolate_lru_page(page, isolate_mode) != 0) 874 goto isolate_fail; 875 876 VM_BUG_ON_PAGE(PageCompound(page), page); 877 878 /* Successfully isolated */ 879 del_page_from_lru_list(page, lruvec, page_lru(page)); 880 inc_node_page_state(page, 881 NR_ISOLATED_ANON + page_is_file_cache(page)); 882 883 isolate_success: 884 list_add(&page->lru, &cc->migratepages); 885 cc->nr_migratepages++; 886 nr_isolated++; 887 888 /* 889 * Record where we could have freed pages by migration and not 890 * yet flushed them to buddy allocator. 891 * - this is the lowest page that was isolated and likely be 892 * then freed by migration. 893 */ 894 if (!cc->last_migrated_pfn) 895 cc->last_migrated_pfn = low_pfn; 896 897 /* Avoid isolating too much */ 898 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 899 ++low_pfn; 900 break; 901 } 902 903 continue; 904 isolate_fail: 905 if (!skip_on_failure) 906 continue; 907 908 /* 909 * We have isolated some pages, but then failed. Release them 910 * instead of migrating, as we cannot form the cc->order buddy 911 * page anyway. 912 */ 913 if (nr_isolated) { 914 if (locked) { 915 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 916 locked = false; 917 } 918 putback_movable_pages(&cc->migratepages); 919 cc->nr_migratepages = 0; 920 cc->last_migrated_pfn = 0; 921 nr_isolated = 0; 922 } 923 924 if (low_pfn < next_skip_pfn) { 925 low_pfn = next_skip_pfn - 1; 926 /* 927 * The check near the loop beginning would have updated 928 * next_skip_pfn too, but this is a bit simpler. 929 */ 930 next_skip_pfn += 1UL << cc->order; 931 } 932 } 933 934 /* 935 * The PageBuddy() check could have potentially brought us outside 936 * the range to be scanned. 937 */ 938 if (unlikely(low_pfn > end_pfn)) 939 low_pfn = end_pfn; 940 941 if (locked) 942 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 943 944 /* 945 * Update the pageblock-skip information and cached scanner pfn, 946 * if the whole pageblock was scanned without isolating any page. 947 */ 948 if (low_pfn == end_pfn) 949 update_pageblock_skip(cc, valid_page, nr_isolated, true); 950 951 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 952 nr_scanned, nr_isolated); 953 954 cc->total_migrate_scanned += nr_scanned; 955 if (nr_isolated) 956 count_compact_events(COMPACTISOLATED, nr_isolated); 957 958 return low_pfn; 959 } 960 961 /** 962 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 963 * @cc: Compaction control structure. 964 * @start_pfn: The first PFN to start isolating. 965 * @end_pfn: The one-past-last PFN. 966 * 967 * Returns zero if isolation fails fatally due to e.g. pending signal. 968 * Otherwise, function returns one-past-the-last PFN of isolated page 969 * (which may be greater than end_pfn if end fell in a middle of a THP page). 970 */ 971 unsigned long 972 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 973 unsigned long end_pfn) 974 { 975 unsigned long pfn, block_start_pfn, block_end_pfn; 976 977 /* Scan block by block. First and last block may be incomplete */ 978 pfn = start_pfn; 979 block_start_pfn = pageblock_start_pfn(pfn); 980 if (block_start_pfn < cc->zone->zone_start_pfn) 981 block_start_pfn = cc->zone->zone_start_pfn; 982 block_end_pfn = pageblock_end_pfn(pfn); 983 984 for (; pfn < end_pfn; pfn = block_end_pfn, 985 block_start_pfn = block_end_pfn, 986 block_end_pfn += pageblock_nr_pages) { 987 988 block_end_pfn = min(block_end_pfn, end_pfn); 989 990 if (!pageblock_pfn_to_page(block_start_pfn, 991 block_end_pfn, cc->zone)) 992 continue; 993 994 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 995 ISOLATE_UNEVICTABLE); 996 997 if (!pfn) 998 break; 999 1000 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1001 break; 1002 } 1003 1004 return pfn; 1005 } 1006 1007 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1008 #ifdef CONFIG_COMPACTION 1009 1010 static bool suitable_migration_source(struct compact_control *cc, 1011 struct page *page) 1012 { 1013 int block_mt; 1014 1015 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1016 return true; 1017 1018 block_mt = get_pageblock_migratetype(page); 1019 1020 if (cc->migratetype == MIGRATE_MOVABLE) 1021 return is_migrate_movable(block_mt); 1022 else 1023 return block_mt == cc->migratetype; 1024 } 1025 1026 /* Returns true if the page is within a block suitable for migration to */ 1027 static bool suitable_migration_target(struct compact_control *cc, 1028 struct page *page) 1029 { 1030 /* If the page is a large free page, then disallow migration */ 1031 if (PageBuddy(page)) { 1032 /* 1033 * We are checking page_order without zone->lock taken. But 1034 * the only small danger is that we skip a potentially suitable 1035 * pageblock, so it's not worth to check order for valid range. 1036 */ 1037 if (page_order_unsafe(page) >= pageblock_order) 1038 return false; 1039 } 1040 1041 if (cc->ignore_block_suitable) 1042 return true; 1043 1044 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1045 if (is_migrate_movable(get_pageblock_migratetype(page))) 1046 return true; 1047 1048 /* Otherwise skip the block */ 1049 return false; 1050 } 1051 1052 /* 1053 * Test whether the free scanner has reached the same or lower pageblock than 1054 * the migration scanner, and compaction should thus terminate. 1055 */ 1056 static inline bool compact_scanners_met(struct compact_control *cc) 1057 { 1058 return (cc->free_pfn >> pageblock_order) 1059 <= (cc->migrate_pfn >> pageblock_order); 1060 } 1061 1062 /* 1063 * Based on information in the current compact_control, find blocks 1064 * suitable for isolating free pages from and then isolate them. 1065 */ 1066 static void isolate_freepages(struct compact_control *cc) 1067 { 1068 struct zone *zone = cc->zone; 1069 struct page *page; 1070 unsigned long block_start_pfn; /* start of current pageblock */ 1071 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1072 unsigned long block_end_pfn; /* end of current pageblock */ 1073 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1074 struct list_head *freelist = &cc->freepages; 1075 1076 /* 1077 * Initialise the free scanner. The starting point is where we last 1078 * successfully isolated from, zone-cached value, or the end of the 1079 * zone when isolating for the first time. For looping we also need 1080 * this pfn aligned down to the pageblock boundary, because we do 1081 * block_start_pfn -= pageblock_nr_pages in the for loop. 1082 * For ending point, take care when isolating in last pageblock of a 1083 * a zone which ends in the middle of a pageblock. 1084 * The low boundary is the end of the pageblock the migration scanner 1085 * is using. 1086 */ 1087 isolate_start_pfn = cc->free_pfn; 1088 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 1089 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1090 zone_end_pfn(zone)); 1091 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1092 1093 /* 1094 * Isolate free pages until enough are available to migrate the 1095 * pages on cc->migratepages. We stop searching if the migrate 1096 * and free page scanners meet or enough free pages are isolated. 1097 */ 1098 for (; block_start_pfn >= low_pfn; 1099 block_end_pfn = block_start_pfn, 1100 block_start_pfn -= pageblock_nr_pages, 1101 isolate_start_pfn = block_start_pfn) { 1102 /* 1103 * This can iterate a massively long zone without finding any 1104 * suitable migration targets, so periodically check if we need 1105 * to schedule, or even abort async compaction. 1106 */ 1107 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1108 && compact_should_abort(cc)) 1109 break; 1110 1111 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1112 zone); 1113 if (!page) 1114 continue; 1115 1116 /* Check the block is suitable for migration */ 1117 if (!suitable_migration_target(cc, page)) 1118 continue; 1119 1120 /* If isolation recently failed, do not retry */ 1121 if (!isolation_suitable(cc, page)) 1122 continue; 1123 1124 /* Found a block suitable for isolating free pages from. */ 1125 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, 1126 freelist, false); 1127 1128 /* 1129 * If we isolated enough freepages, or aborted due to lock 1130 * contention, terminate. 1131 */ 1132 if ((cc->nr_freepages >= cc->nr_migratepages) 1133 || cc->contended) { 1134 if (isolate_start_pfn >= block_end_pfn) { 1135 /* 1136 * Restart at previous pageblock if more 1137 * freepages can be isolated next time. 1138 */ 1139 isolate_start_pfn = 1140 block_start_pfn - pageblock_nr_pages; 1141 } 1142 break; 1143 } else if (isolate_start_pfn < block_end_pfn) { 1144 /* 1145 * If isolation failed early, do not continue 1146 * needlessly. 1147 */ 1148 break; 1149 } 1150 } 1151 1152 /* __isolate_free_page() does not map the pages */ 1153 map_pages(freelist); 1154 1155 /* 1156 * Record where the free scanner will restart next time. Either we 1157 * broke from the loop and set isolate_start_pfn based on the last 1158 * call to isolate_freepages_block(), or we met the migration scanner 1159 * and the loop terminated due to isolate_start_pfn < low_pfn 1160 */ 1161 cc->free_pfn = isolate_start_pfn; 1162 } 1163 1164 /* 1165 * This is a migrate-callback that "allocates" freepages by taking pages 1166 * from the isolated freelists in the block we are migrating to. 1167 */ 1168 static struct page *compaction_alloc(struct page *migratepage, 1169 unsigned long data, 1170 int **result) 1171 { 1172 struct compact_control *cc = (struct compact_control *)data; 1173 struct page *freepage; 1174 1175 /* 1176 * Isolate free pages if necessary, and if we are not aborting due to 1177 * contention. 1178 */ 1179 if (list_empty(&cc->freepages)) { 1180 if (!cc->contended) 1181 isolate_freepages(cc); 1182 1183 if (list_empty(&cc->freepages)) 1184 return NULL; 1185 } 1186 1187 freepage = list_entry(cc->freepages.next, struct page, lru); 1188 list_del(&freepage->lru); 1189 cc->nr_freepages--; 1190 1191 return freepage; 1192 } 1193 1194 /* 1195 * This is a migrate-callback that "frees" freepages back to the isolated 1196 * freelist. All pages on the freelist are from the same zone, so there is no 1197 * special handling needed for NUMA. 1198 */ 1199 static void compaction_free(struct page *page, unsigned long data) 1200 { 1201 struct compact_control *cc = (struct compact_control *)data; 1202 1203 list_add(&page->lru, &cc->freepages); 1204 cc->nr_freepages++; 1205 } 1206 1207 /* possible outcome of isolate_migratepages */ 1208 typedef enum { 1209 ISOLATE_ABORT, /* Abort compaction now */ 1210 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1211 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1212 } isolate_migrate_t; 1213 1214 /* 1215 * Allow userspace to control policy on scanning the unevictable LRU for 1216 * compactable pages. 1217 */ 1218 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1219 1220 /* 1221 * Isolate all pages that can be migrated from the first suitable block, 1222 * starting at the block pointed to by the migrate scanner pfn within 1223 * compact_control. 1224 */ 1225 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1226 struct compact_control *cc) 1227 { 1228 unsigned long block_start_pfn; 1229 unsigned long block_end_pfn; 1230 unsigned long low_pfn; 1231 struct page *page; 1232 const isolate_mode_t isolate_mode = 1233 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1234 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1235 1236 /* 1237 * Start at where we last stopped, or beginning of the zone as 1238 * initialized by compact_zone() 1239 */ 1240 low_pfn = cc->migrate_pfn; 1241 block_start_pfn = pageblock_start_pfn(low_pfn); 1242 if (block_start_pfn < zone->zone_start_pfn) 1243 block_start_pfn = zone->zone_start_pfn; 1244 1245 /* Only scan within a pageblock boundary */ 1246 block_end_pfn = pageblock_end_pfn(low_pfn); 1247 1248 /* 1249 * Iterate over whole pageblocks until we find the first suitable. 1250 * Do not cross the free scanner. 1251 */ 1252 for (; block_end_pfn <= cc->free_pfn; 1253 low_pfn = block_end_pfn, 1254 block_start_pfn = block_end_pfn, 1255 block_end_pfn += pageblock_nr_pages) { 1256 1257 /* 1258 * This can potentially iterate a massively long zone with 1259 * many pageblocks unsuitable, so periodically check if we 1260 * need to schedule, or even abort async compaction. 1261 */ 1262 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1263 && compact_should_abort(cc)) 1264 break; 1265 1266 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1267 zone); 1268 if (!page) 1269 continue; 1270 1271 /* If isolation recently failed, do not retry */ 1272 if (!isolation_suitable(cc, page)) 1273 continue; 1274 1275 /* 1276 * For async compaction, also only scan in MOVABLE blocks. 1277 * Async compaction is optimistic to see if the minimum amount 1278 * of work satisfies the allocation. 1279 */ 1280 if (!suitable_migration_source(cc, page)) 1281 continue; 1282 1283 /* Perform the isolation */ 1284 low_pfn = isolate_migratepages_block(cc, low_pfn, 1285 block_end_pfn, isolate_mode); 1286 1287 if (!low_pfn || cc->contended) 1288 return ISOLATE_ABORT; 1289 1290 /* 1291 * Either we isolated something and proceed with migration. Or 1292 * we failed and compact_zone should decide if we should 1293 * continue or not. 1294 */ 1295 break; 1296 } 1297 1298 /* Record where migration scanner will be restarted. */ 1299 cc->migrate_pfn = low_pfn; 1300 1301 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1302 } 1303 1304 /* 1305 * order == -1 is expected when compacting via 1306 * /proc/sys/vm/compact_memory 1307 */ 1308 static inline bool is_via_compact_memory(int order) 1309 { 1310 return order == -1; 1311 } 1312 1313 static enum compact_result __compact_finished(struct zone *zone, 1314 struct compact_control *cc) 1315 { 1316 unsigned int order; 1317 const int migratetype = cc->migratetype; 1318 1319 if (cc->contended || fatal_signal_pending(current)) 1320 return COMPACT_CONTENDED; 1321 1322 /* Compaction run completes if the migrate and free scanner meet */ 1323 if (compact_scanners_met(cc)) { 1324 /* Let the next compaction start anew. */ 1325 reset_cached_positions(zone); 1326 1327 /* 1328 * Mark that the PG_migrate_skip information should be cleared 1329 * by kswapd when it goes to sleep. kcompactd does not set the 1330 * flag itself as the decision to be clear should be directly 1331 * based on an allocation request. 1332 */ 1333 if (cc->direct_compaction) 1334 zone->compact_blockskip_flush = true; 1335 1336 if (cc->whole_zone) 1337 return COMPACT_COMPLETE; 1338 else 1339 return COMPACT_PARTIAL_SKIPPED; 1340 } 1341 1342 if (is_via_compact_memory(cc->order)) 1343 return COMPACT_CONTINUE; 1344 1345 if (cc->finishing_block) { 1346 /* 1347 * We have finished the pageblock, but better check again that 1348 * we really succeeded. 1349 */ 1350 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1351 cc->finishing_block = false; 1352 else 1353 return COMPACT_CONTINUE; 1354 } 1355 1356 /* Direct compactor: Is a suitable page free? */ 1357 for (order = cc->order; order < MAX_ORDER; order++) { 1358 struct free_area *area = &zone->free_area[order]; 1359 bool can_steal; 1360 1361 /* Job done if page is free of the right migratetype */ 1362 if (!list_empty(&area->free_list[migratetype])) 1363 return COMPACT_SUCCESS; 1364 1365 #ifdef CONFIG_CMA 1366 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1367 if (migratetype == MIGRATE_MOVABLE && 1368 !list_empty(&area->free_list[MIGRATE_CMA])) 1369 return COMPACT_SUCCESS; 1370 #endif 1371 /* 1372 * Job done if allocation would steal freepages from 1373 * other migratetype buddy lists. 1374 */ 1375 if (find_suitable_fallback(area, order, migratetype, 1376 true, &can_steal) != -1) { 1377 1378 /* movable pages are OK in any pageblock */ 1379 if (migratetype == MIGRATE_MOVABLE) 1380 return COMPACT_SUCCESS; 1381 1382 /* 1383 * We are stealing for a non-movable allocation. Make 1384 * sure we finish compacting the current pageblock 1385 * first so it is as free as possible and we won't 1386 * have to steal another one soon. This only applies 1387 * to sync compaction, as async compaction operates 1388 * on pageblocks of the same migratetype. 1389 */ 1390 if (cc->mode == MIGRATE_ASYNC || 1391 IS_ALIGNED(cc->migrate_pfn, 1392 pageblock_nr_pages)) { 1393 return COMPACT_SUCCESS; 1394 } 1395 1396 cc->finishing_block = true; 1397 return COMPACT_CONTINUE; 1398 } 1399 } 1400 1401 return COMPACT_NO_SUITABLE_PAGE; 1402 } 1403 1404 static enum compact_result compact_finished(struct zone *zone, 1405 struct compact_control *cc) 1406 { 1407 int ret; 1408 1409 ret = __compact_finished(zone, cc); 1410 trace_mm_compaction_finished(zone, cc->order, ret); 1411 if (ret == COMPACT_NO_SUITABLE_PAGE) 1412 ret = COMPACT_CONTINUE; 1413 1414 return ret; 1415 } 1416 1417 /* 1418 * compaction_suitable: Is this suitable to run compaction on this zone now? 1419 * Returns 1420 * COMPACT_SKIPPED - If there are too few free pages for compaction 1421 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1422 * COMPACT_CONTINUE - If compaction should run now 1423 */ 1424 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1425 unsigned int alloc_flags, 1426 int classzone_idx, 1427 unsigned long wmark_target) 1428 { 1429 unsigned long watermark; 1430 1431 if (is_via_compact_memory(order)) 1432 return COMPACT_CONTINUE; 1433 1434 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1435 /* 1436 * If watermarks for high-order allocation are already met, there 1437 * should be no need for compaction at all. 1438 */ 1439 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1440 alloc_flags)) 1441 return COMPACT_SUCCESS; 1442 1443 /* 1444 * Watermarks for order-0 must be met for compaction to be able to 1445 * isolate free pages for migration targets. This means that the 1446 * watermark and alloc_flags have to match, or be more pessimistic than 1447 * the check in __isolate_free_page(). We don't use the direct 1448 * compactor's alloc_flags, as they are not relevant for freepage 1449 * isolation. We however do use the direct compactor's classzone_idx to 1450 * skip over zones where lowmem reserves would prevent allocation even 1451 * if compaction succeeds. 1452 * For costly orders, we require low watermark instead of min for 1453 * compaction to proceed to increase its chances. 1454 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1455 * suitable migration targets 1456 */ 1457 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1458 low_wmark_pages(zone) : min_wmark_pages(zone); 1459 watermark += compact_gap(order); 1460 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1461 ALLOC_CMA, wmark_target)) 1462 return COMPACT_SKIPPED; 1463 1464 return COMPACT_CONTINUE; 1465 } 1466 1467 enum compact_result compaction_suitable(struct zone *zone, int order, 1468 unsigned int alloc_flags, 1469 int classzone_idx) 1470 { 1471 enum compact_result ret; 1472 int fragindex; 1473 1474 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1475 zone_page_state(zone, NR_FREE_PAGES)); 1476 /* 1477 * fragmentation index determines if allocation failures are due to 1478 * low memory or external fragmentation 1479 * 1480 * index of -1000 would imply allocations might succeed depending on 1481 * watermarks, but we already failed the high-order watermark check 1482 * index towards 0 implies failure is due to lack of memory 1483 * index towards 1000 implies failure is due to fragmentation 1484 * 1485 * Only compact if a failure would be due to fragmentation. Also 1486 * ignore fragindex for non-costly orders where the alternative to 1487 * a successful reclaim/compaction is OOM. Fragindex and the 1488 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 1489 * excessive compaction for costly orders, but it should not be at the 1490 * expense of system stability. 1491 */ 1492 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 1493 fragindex = fragmentation_index(zone, order); 1494 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1495 ret = COMPACT_NOT_SUITABLE_ZONE; 1496 } 1497 1498 trace_mm_compaction_suitable(zone, order, ret); 1499 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1500 ret = COMPACT_SKIPPED; 1501 1502 return ret; 1503 } 1504 1505 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1506 int alloc_flags) 1507 { 1508 struct zone *zone; 1509 struct zoneref *z; 1510 1511 /* 1512 * Make sure at least one zone would pass __compaction_suitable if we continue 1513 * retrying the reclaim. 1514 */ 1515 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1516 ac->nodemask) { 1517 unsigned long available; 1518 enum compact_result compact_result; 1519 1520 /* 1521 * Do not consider all the reclaimable memory because we do not 1522 * want to trash just for a single high order allocation which 1523 * is even not guaranteed to appear even if __compaction_suitable 1524 * is happy about the watermark check. 1525 */ 1526 available = zone_reclaimable_pages(zone) / order; 1527 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1528 compact_result = __compaction_suitable(zone, order, alloc_flags, 1529 ac_classzone_idx(ac), available); 1530 if (compact_result != COMPACT_SKIPPED) 1531 return true; 1532 } 1533 1534 return false; 1535 } 1536 1537 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1538 { 1539 enum compact_result ret; 1540 unsigned long start_pfn = zone->zone_start_pfn; 1541 unsigned long end_pfn = zone_end_pfn(zone); 1542 const bool sync = cc->mode != MIGRATE_ASYNC; 1543 1544 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1545 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1546 cc->classzone_idx); 1547 /* Compaction is likely to fail */ 1548 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 1549 return ret; 1550 1551 /* huh, compaction_suitable is returning something unexpected */ 1552 VM_BUG_ON(ret != COMPACT_CONTINUE); 1553 1554 /* 1555 * Clear pageblock skip if there were failures recently and compaction 1556 * is about to be retried after being deferred. 1557 */ 1558 if (compaction_restarting(zone, cc->order)) 1559 __reset_isolation_suitable(zone); 1560 1561 /* 1562 * Setup to move all movable pages to the end of the zone. Used cached 1563 * information on where the scanners should start (unless we explicitly 1564 * want to compact the whole zone), but check that it is initialised 1565 * by ensuring the values are within zone boundaries. 1566 */ 1567 if (cc->whole_zone) { 1568 cc->migrate_pfn = start_pfn; 1569 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1570 } else { 1571 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1572 cc->free_pfn = zone->compact_cached_free_pfn; 1573 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1574 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1575 zone->compact_cached_free_pfn = cc->free_pfn; 1576 } 1577 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1578 cc->migrate_pfn = start_pfn; 1579 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1580 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1581 } 1582 1583 if (cc->migrate_pfn == start_pfn) 1584 cc->whole_zone = true; 1585 } 1586 1587 cc->last_migrated_pfn = 0; 1588 1589 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1590 cc->free_pfn, end_pfn, sync); 1591 1592 migrate_prep_local(); 1593 1594 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 1595 int err; 1596 1597 switch (isolate_migratepages(zone, cc)) { 1598 case ISOLATE_ABORT: 1599 ret = COMPACT_CONTENDED; 1600 putback_movable_pages(&cc->migratepages); 1601 cc->nr_migratepages = 0; 1602 goto out; 1603 case ISOLATE_NONE: 1604 /* 1605 * We haven't isolated and migrated anything, but 1606 * there might still be unflushed migrations from 1607 * previous cc->order aligned block. 1608 */ 1609 goto check_drain; 1610 case ISOLATE_SUCCESS: 1611 ; 1612 } 1613 1614 err = migrate_pages(&cc->migratepages, compaction_alloc, 1615 compaction_free, (unsigned long)cc, cc->mode, 1616 MR_COMPACTION); 1617 1618 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1619 &cc->migratepages); 1620 1621 /* All pages were either migrated or will be released */ 1622 cc->nr_migratepages = 0; 1623 if (err) { 1624 putback_movable_pages(&cc->migratepages); 1625 /* 1626 * migrate_pages() may return -ENOMEM when scanners meet 1627 * and we want compact_finished() to detect it 1628 */ 1629 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1630 ret = COMPACT_CONTENDED; 1631 goto out; 1632 } 1633 /* 1634 * We failed to migrate at least one page in the current 1635 * order-aligned block, so skip the rest of it. 1636 */ 1637 if (cc->direct_compaction && 1638 (cc->mode == MIGRATE_ASYNC)) { 1639 cc->migrate_pfn = block_end_pfn( 1640 cc->migrate_pfn - 1, cc->order); 1641 /* Draining pcplists is useless in this case */ 1642 cc->last_migrated_pfn = 0; 1643 1644 } 1645 } 1646 1647 check_drain: 1648 /* 1649 * Has the migration scanner moved away from the previous 1650 * cc->order aligned block where we migrated from? If yes, 1651 * flush the pages that were freed, so that they can merge and 1652 * compact_finished() can detect immediately if allocation 1653 * would succeed. 1654 */ 1655 if (cc->order > 0 && cc->last_migrated_pfn) { 1656 int cpu; 1657 unsigned long current_block_start = 1658 block_start_pfn(cc->migrate_pfn, cc->order); 1659 1660 if (cc->last_migrated_pfn < current_block_start) { 1661 cpu = get_cpu(); 1662 lru_add_drain_cpu(cpu); 1663 drain_local_pages(zone); 1664 put_cpu(); 1665 /* No more flushing until we migrate again */ 1666 cc->last_migrated_pfn = 0; 1667 } 1668 } 1669 1670 } 1671 1672 out: 1673 /* 1674 * Release free pages and update where the free scanner should restart, 1675 * so we don't leave any returned pages behind in the next attempt. 1676 */ 1677 if (cc->nr_freepages > 0) { 1678 unsigned long free_pfn = release_freepages(&cc->freepages); 1679 1680 cc->nr_freepages = 0; 1681 VM_BUG_ON(free_pfn == 0); 1682 /* The cached pfn is always the first in a pageblock */ 1683 free_pfn = pageblock_start_pfn(free_pfn); 1684 /* 1685 * Only go back, not forward. The cached pfn might have been 1686 * already reset to zone end in compact_finished() 1687 */ 1688 if (free_pfn > zone->compact_cached_free_pfn) 1689 zone->compact_cached_free_pfn = free_pfn; 1690 } 1691 1692 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 1693 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 1694 1695 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1696 cc->free_pfn, end_pfn, sync, ret); 1697 1698 return ret; 1699 } 1700 1701 static enum compact_result compact_zone_order(struct zone *zone, int order, 1702 gfp_t gfp_mask, enum compact_priority prio, 1703 unsigned int alloc_flags, int classzone_idx) 1704 { 1705 enum compact_result ret; 1706 struct compact_control cc = { 1707 .nr_freepages = 0, 1708 .nr_migratepages = 0, 1709 .total_migrate_scanned = 0, 1710 .total_free_scanned = 0, 1711 .order = order, 1712 .gfp_mask = gfp_mask, 1713 .zone = zone, 1714 .mode = (prio == COMPACT_PRIO_ASYNC) ? 1715 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 1716 .alloc_flags = alloc_flags, 1717 .classzone_idx = classzone_idx, 1718 .direct_compaction = true, 1719 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 1720 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 1721 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 1722 }; 1723 INIT_LIST_HEAD(&cc.freepages); 1724 INIT_LIST_HEAD(&cc.migratepages); 1725 1726 ret = compact_zone(zone, &cc); 1727 1728 VM_BUG_ON(!list_empty(&cc.freepages)); 1729 VM_BUG_ON(!list_empty(&cc.migratepages)); 1730 1731 return ret; 1732 } 1733 1734 int sysctl_extfrag_threshold = 500; 1735 1736 /** 1737 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1738 * @gfp_mask: The GFP mask of the current allocation 1739 * @order: The order of the current allocation 1740 * @alloc_flags: The allocation flags of the current allocation 1741 * @ac: The context of current allocation 1742 * @prio: Determines how hard direct compaction should try to succeed 1743 * 1744 * This is the main entry point for direct page compaction. 1745 */ 1746 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1747 unsigned int alloc_flags, const struct alloc_context *ac, 1748 enum compact_priority prio) 1749 { 1750 int may_perform_io = gfp_mask & __GFP_IO; 1751 struct zoneref *z; 1752 struct zone *zone; 1753 enum compact_result rc = COMPACT_SKIPPED; 1754 1755 /* 1756 * Check if the GFP flags allow compaction - GFP_NOIO is really 1757 * tricky context because the migration might require IO 1758 */ 1759 if (!may_perform_io) 1760 return COMPACT_SKIPPED; 1761 1762 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 1763 1764 /* Compact each zone in the list */ 1765 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1766 ac->nodemask) { 1767 enum compact_result status; 1768 1769 if (prio > MIN_COMPACT_PRIORITY 1770 && compaction_deferred(zone, order)) { 1771 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1772 continue; 1773 } 1774 1775 status = compact_zone_order(zone, order, gfp_mask, prio, 1776 alloc_flags, ac_classzone_idx(ac)); 1777 rc = max(status, rc); 1778 1779 /* The allocation should succeed, stop compacting */ 1780 if (status == COMPACT_SUCCESS) { 1781 /* 1782 * We think the allocation will succeed in this zone, 1783 * but it is not certain, hence the false. The caller 1784 * will repeat this with true if allocation indeed 1785 * succeeds in this zone. 1786 */ 1787 compaction_defer_reset(zone, order, false); 1788 1789 break; 1790 } 1791 1792 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 1793 status == COMPACT_PARTIAL_SKIPPED)) 1794 /* 1795 * We think that allocation won't succeed in this zone 1796 * so we defer compaction there. If it ends up 1797 * succeeding after all, it will be reset. 1798 */ 1799 defer_compaction(zone, order); 1800 1801 /* 1802 * We might have stopped compacting due to need_resched() in 1803 * async compaction, or due to a fatal signal detected. In that 1804 * case do not try further zones 1805 */ 1806 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 1807 || fatal_signal_pending(current)) 1808 break; 1809 } 1810 1811 return rc; 1812 } 1813 1814 1815 /* Compact all zones within a node */ 1816 static void compact_node(int nid) 1817 { 1818 pg_data_t *pgdat = NODE_DATA(nid); 1819 int zoneid; 1820 struct zone *zone; 1821 struct compact_control cc = { 1822 .order = -1, 1823 .total_migrate_scanned = 0, 1824 .total_free_scanned = 0, 1825 .mode = MIGRATE_SYNC, 1826 .ignore_skip_hint = true, 1827 .whole_zone = true, 1828 .gfp_mask = GFP_KERNEL, 1829 }; 1830 1831 1832 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1833 1834 zone = &pgdat->node_zones[zoneid]; 1835 if (!populated_zone(zone)) 1836 continue; 1837 1838 cc.nr_freepages = 0; 1839 cc.nr_migratepages = 0; 1840 cc.zone = zone; 1841 INIT_LIST_HEAD(&cc.freepages); 1842 INIT_LIST_HEAD(&cc.migratepages); 1843 1844 compact_zone(zone, &cc); 1845 1846 VM_BUG_ON(!list_empty(&cc.freepages)); 1847 VM_BUG_ON(!list_empty(&cc.migratepages)); 1848 } 1849 } 1850 1851 /* Compact all nodes in the system */ 1852 static void compact_nodes(void) 1853 { 1854 int nid; 1855 1856 /* Flush pending updates to the LRU lists */ 1857 lru_add_drain_all(); 1858 1859 for_each_online_node(nid) 1860 compact_node(nid); 1861 } 1862 1863 /* The written value is actually unused, all memory is compacted */ 1864 int sysctl_compact_memory; 1865 1866 /* 1867 * This is the entry point for compacting all nodes via 1868 * /proc/sys/vm/compact_memory 1869 */ 1870 int sysctl_compaction_handler(struct ctl_table *table, int write, 1871 void __user *buffer, size_t *length, loff_t *ppos) 1872 { 1873 if (write) 1874 compact_nodes(); 1875 1876 return 0; 1877 } 1878 1879 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1880 void __user *buffer, size_t *length, loff_t *ppos) 1881 { 1882 proc_dointvec_minmax(table, write, buffer, length, ppos); 1883 1884 return 0; 1885 } 1886 1887 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1888 static ssize_t sysfs_compact_node(struct device *dev, 1889 struct device_attribute *attr, 1890 const char *buf, size_t count) 1891 { 1892 int nid = dev->id; 1893 1894 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1895 /* Flush pending updates to the LRU lists */ 1896 lru_add_drain_all(); 1897 1898 compact_node(nid); 1899 } 1900 1901 return count; 1902 } 1903 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1904 1905 int compaction_register_node(struct node *node) 1906 { 1907 return device_create_file(&node->dev, &dev_attr_compact); 1908 } 1909 1910 void compaction_unregister_node(struct node *node) 1911 { 1912 return device_remove_file(&node->dev, &dev_attr_compact); 1913 } 1914 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1915 1916 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1917 { 1918 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1919 } 1920 1921 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1922 { 1923 int zoneid; 1924 struct zone *zone; 1925 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1926 1927 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1928 zone = &pgdat->node_zones[zoneid]; 1929 1930 if (!populated_zone(zone)) 1931 continue; 1932 1933 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1934 classzone_idx) == COMPACT_CONTINUE) 1935 return true; 1936 } 1937 1938 return false; 1939 } 1940 1941 static void kcompactd_do_work(pg_data_t *pgdat) 1942 { 1943 /* 1944 * With no special task, compact all zones so that a page of requested 1945 * order is allocatable. 1946 */ 1947 int zoneid; 1948 struct zone *zone; 1949 struct compact_control cc = { 1950 .order = pgdat->kcompactd_max_order, 1951 .total_migrate_scanned = 0, 1952 .total_free_scanned = 0, 1953 .classzone_idx = pgdat->kcompactd_classzone_idx, 1954 .mode = MIGRATE_SYNC_LIGHT, 1955 .ignore_skip_hint = false, 1956 .gfp_mask = GFP_KERNEL, 1957 }; 1958 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1959 cc.classzone_idx); 1960 count_compact_event(KCOMPACTD_WAKE); 1961 1962 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1963 int status; 1964 1965 zone = &pgdat->node_zones[zoneid]; 1966 if (!populated_zone(zone)) 1967 continue; 1968 1969 if (compaction_deferred(zone, cc.order)) 1970 continue; 1971 1972 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1973 COMPACT_CONTINUE) 1974 continue; 1975 1976 cc.nr_freepages = 0; 1977 cc.nr_migratepages = 0; 1978 cc.total_migrate_scanned = 0; 1979 cc.total_free_scanned = 0; 1980 cc.zone = zone; 1981 INIT_LIST_HEAD(&cc.freepages); 1982 INIT_LIST_HEAD(&cc.migratepages); 1983 1984 if (kthread_should_stop()) 1985 return; 1986 status = compact_zone(zone, &cc); 1987 1988 if (status == COMPACT_SUCCESS) { 1989 compaction_defer_reset(zone, cc.order, false); 1990 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1991 /* 1992 * Buddy pages may become stranded on pcps that could 1993 * otherwise coalesce on the zone's free area for 1994 * order >= cc.order. This is ratelimited by the 1995 * upcoming deferral. 1996 */ 1997 drain_all_pages(zone); 1998 1999 /* 2000 * We use sync migration mode here, so we defer like 2001 * sync direct compaction does. 2002 */ 2003 defer_compaction(zone, cc.order); 2004 } 2005 2006 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2007 cc.total_migrate_scanned); 2008 count_compact_events(KCOMPACTD_FREE_SCANNED, 2009 cc.total_free_scanned); 2010 2011 VM_BUG_ON(!list_empty(&cc.freepages)); 2012 VM_BUG_ON(!list_empty(&cc.migratepages)); 2013 } 2014 2015 /* 2016 * Regardless of success, we are done until woken up next. But remember 2017 * the requested order/classzone_idx in case it was higher/tighter than 2018 * our current ones 2019 */ 2020 if (pgdat->kcompactd_max_order <= cc.order) 2021 pgdat->kcompactd_max_order = 0; 2022 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2023 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2024 } 2025 2026 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2027 { 2028 if (!order) 2029 return; 2030 2031 if (pgdat->kcompactd_max_order < order) 2032 pgdat->kcompactd_max_order = order; 2033 2034 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2035 pgdat->kcompactd_classzone_idx = classzone_idx; 2036 2037 /* 2038 * Pairs with implicit barrier in wait_event_freezable() 2039 * such that wakeups are not missed. 2040 */ 2041 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2042 return; 2043 2044 if (!kcompactd_node_suitable(pgdat)) 2045 return; 2046 2047 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2048 classzone_idx); 2049 wake_up_interruptible(&pgdat->kcompactd_wait); 2050 } 2051 2052 /* 2053 * The background compaction daemon, started as a kernel thread 2054 * from the init process. 2055 */ 2056 static int kcompactd(void *p) 2057 { 2058 pg_data_t *pgdat = (pg_data_t*)p; 2059 struct task_struct *tsk = current; 2060 2061 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2062 2063 if (!cpumask_empty(cpumask)) 2064 set_cpus_allowed_ptr(tsk, cpumask); 2065 2066 set_freezable(); 2067 2068 pgdat->kcompactd_max_order = 0; 2069 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2070 2071 while (!kthread_should_stop()) { 2072 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2073 wait_event_freezable(pgdat->kcompactd_wait, 2074 kcompactd_work_requested(pgdat)); 2075 2076 kcompactd_do_work(pgdat); 2077 } 2078 2079 return 0; 2080 } 2081 2082 /* 2083 * This kcompactd start function will be called by init and node-hot-add. 2084 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2085 */ 2086 int kcompactd_run(int nid) 2087 { 2088 pg_data_t *pgdat = NODE_DATA(nid); 2089 int ret = 0; 2090 2091 if (pgdat->kcompactd) 2092 return 0; 2093 2094 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2095 if (IS_ERR(pgdat->kcompactd)) { 2096 pr_err("Failed to start kcompactd on node %d\n", nid); 2097 ret = PTR_ERR(pgdat->kcompactd); 2098 pgdat->kcompactd = NULL; 2099 } 2100 return ret; 2101 } 2102 2103 /* 2104 * Called by memory hotplug when all memory in a node is offlined. Caller must 2105 * hold mem_hotplug_begin/end(). 2106 */ 2107 void kcompactd_stop(int nid) 2108 { 2109 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2110 2111 if (kcompactd) { 2112 kthread_stop(kcompactd); 2113 NODE_DATA(nid)->kcompactd = NULL; 2114 } 2115 } 2116 2117 /* 2118 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2119 * not required for correctness. So if the last cpu in a node goes 2120 * away, we get changed to run anywhere: as the first one comes back, 2121 * restore their cpu bindings. 2122 */ 2123 static int kcompactd_cpu_online(unsigned int cpu) 2124 { 2125 int nid; 2126 2127 for_each_node_state(nid, N_MEMORY) { 2128 pg_data_t *pgdat = NODE_DATA(nid); 2129 const struct cpumask *mask; 2130 2131 mask = cpumask_of_node(pgdat->node_id); 2132 2133 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2134 /* One of our CPUs online: restore mask */ 2135 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2136 } 2137 return 0; 2138 } 2139 2140 static int __init kcompactd_init(void) 2141 { 2142 int nid; 2143 int ret; 2144 2145 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2146 "mm/compaction:online", 2147 kcompactd_cpu_online, NULL); 2148 if (ret < 0) { 2149 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2150 return ret; 2151 } 2152 2153 for_each_node_state(nid, N_MEMORY) 2154 kcompactd_run(nid); 2155 return 0; 2156 } 2157 subsys_initcall(kcompactd_init) 2158 2159 #endif /* CONFIG_COMPACTION */ 2160