1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 56 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageMovable(page), page); 141 /* 142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 143 * flag so that VM can catch up released page by driver after isolation. 144 * With it, VM migration doesn't try to put it back. 145 */ 146 page->mapping = (void *)((unsigned long)page->mapping & 147 PAGE_MAPPING_MOVABLE); 148 } 149 EXPORT_SYMBOL(__ClearPageMovable); 150 151 /* Do not skip compaction more than 64 times */ 152 #define COMPACT_MAX_DEFER_SHIFT 6 153 154 /* 155 * Compaction is deferred when compaction fails to result in a page 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 158 */ 159 static void defer_compaction(struct zone *zone, int order) 160 { 161 zone->compact_considered = 0; 162 zone->compact_defer_shift++; 163 164 if (order < zone->compact_order_failed) 165 zone->compact_order_failed = order; 166 167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 169 170 trace_mm_compaction_defer_compaction(zone, order); 171 } 172 173 /* Returns true if compaction should be skipped this time */ 174 static bool compaction_deferred(struct zone *zone, int order) 175 { 176 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 177 178 if (order < zone->compact_order_failed) 179 return false; 180 181 /* Avoid possible overflow */ 182 if (++zone->compact_considered >= defer_limit) { 183 zone->compact_considered = defer_limit; 184 return false; 185 } 186 187 trace_mm_compaction_deferred(zone, order); 188 189 return true; 190 } 191 192 /* 193 * Update defer tracking counters after successful compaction of given order, 194 * which means an allocation either succeeded (alloc_success == true) or is 195 * expected to succeed. 196 */ 197 void compaction_defer_reset(struct zone *zone, int order, 198 bool alloc_success) 199 { 200 if (alloc_success) { 201 zone->compact_considered = 0; 202 zone->compact_defer_shift = 0; 203 } 204 if (order >= zone->compact_order_failed) 205 zone->compact_order_failed = order + 1; 206 207 trace_mm_compaction_defer_reset(zone, order); 208 } 209 210 /* Returns true if restarting compaction after many failures */ 211 static bool compaction_restarting(struct zone *zone, int order) 212 { 213 if (order < zone->compact_order_failed) 214 return false; 215 216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 217 zone->compact_considered >= 1UL << zone->compact_defer_shift; 218 } 219 220 /* Returns true if the pageblock should be scanned for pages to isolate. */ 221 static inline bool isolation_suitable(struct compact_control *cc, 222 struct page *page) 223 { 224 if (cc->ignore_skip_hint) 225 return true; 226 227 return !get_pageblock_skip(page); 228 } 229 230 static void reset_cached_positions(struct zone *zone) 231 { 232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 234 zone->compact_cached_free_pfn = 235 pageblock_start_pfn(zone_end_pfn(zone) - 1); 236 } 237 238 /* 239 * Compound pages of >= pageblock_order should consistently be skipped until 240 * released. It is always pointless to compact pages of such order (if they are 241 * migratable), and the pageblocks they occupy cannot contain any free pages. 242 */ 243 static bool pageblock_skip_persistent(struct page *page) 244 { 245 if (!PageCompound(page)) 246 return false; 247 248 page = compound_head(page); 249 250 if (compound_order(page) >= pageblock_order) 251 return true; 252 253 return false; 254 } 255 256 static bool 257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 258 bool check_target) 259 { 260 struct page *page = pfn_to_online_page(pfn); 261 struct page *block_page; 262 struct page *end_page; 263 unsigned long block_pfn; 264 265 if (!page) 266 return false; 267 if (zone != page_zone(page)) 268 return false; 269 if (pageblock_skip_persistent(page)) 270 return false; 271 272 /* 273 * If skip is already cleared do no further checking once the 274 * restart points have been set. 275 */ 276 if (check_source && check_target && !get_pageblock_skip(page)) 277 return true; 278 279 /* 280 * If clearing skip for the target scanner, do not select a 281 * non-movable pageblock as the starting point. 282 */ 283 if (!check_source && check_target && 284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 285 return false; 286 287 /* Ensure the start of the pageblock or zone is online and valid */ 288 block_pfn = pageblock_start_pfn(pfn); 289 block_pfn = max(block_pfn, zone->zone_start_pfn); 290 block_page = pfn_to_online_page(block_pfn); 291 if (block_page) { 292 page = block_page; 293 pfn = block_pfn; 294 } 295 296 /* Ensure the end of the pageblock or zone is online and valid */ 297 block_pfn = pageblock_end_pfn(pfn) - 1; 298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 299 end_page = pfn_to_online_page(block_pfn); 300 if (!end_page) 301 return false; 302 303 /* 304 * Only clear the hint if a sample indicates there is either a 305 * free page or an LRU page in the block. One or other condition 306 * is necessary for the block to be a migration source/target. 307 */ 308 do { 309 if (check_source && PageLRU(page)) { 310 clear_pageblock_skip(page); 311 return true; 312 } 313 314 if (check_target && PageBuddy(page)) { 315 clear_pageblock_skip(page); 316 return true; 317 } 318 319 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 320 } while (page <= end_page); 321 322 return false; 323 } 324 325 /* 326 * This function is called to clear all cached information on pageblocks that 327 * should be skipped for page isolation when the migrate and free page scanner 328 * meet. 329 */ 330 static void __reset_isolation_suitable(struct zone *zone) 331 { 332 unsigned long migrate_pfn = zone->zone_start_pfn; 333 unsigned long free_pfn = zone_end_pfn(zone) - 1; 334 unsigned long reset_migrate = free_pfn; 335 unsigned long reset_free = migrate_pfn; 336 bool source_set = false; 337 bool free_set = false; 338 339 if (!zone->compact_blockskip_flush) 340 return; 341 342 zone->compact_blockskip_flush = false; 343 344 /* 345 * Walk the zone and update pageblock skip information. Source looks 346 * for PageLRU while target looks for PageBuddy. When the scanner 347 * is found, both PageBuddy and PageLRU are checked as the pageblock 348 * is suitable as both source and target. 349 */ 350 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 351 free_pfn -= pageblock_nr_pages) { 352 cond_resched(); 353 354 /* Update the migrate PFN */ 355 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 356 migrate_pfn < reset_migrate) { 357 source_set = true; 358 reset_migrate = migrate_pfn; 359 zone->compact_init_migrate_pfn = reset_migrate; 360 zone->compact_cached_migrate_pfn[0] = reset_migrate; 361 zone->compact_cached_migrate_pfn[1] = reset_migrate; 362 } 363 364 /* Update the free PFN */ 365 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 366 free_pfn > reset_free) { 367 free_set = true; 368 reset_free = free_pfn; 369 zone->compact_init_free_pfn = reset_free; 370 zone->compact_cached_free_pfn = reset_free; 371 } 372 } 373 374 /* Leave no distance if no suitable block was reset */ 375 if (reset_migrate >= reset_free) { 376 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 377 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 378 zone->compact_cached_free_pfn = free_pfn; 379 } 380 } 381 382 void reset_isolation_suitable(pg_data_t *pgdat) 383 { 384 int zoneid; 385 386 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 387 struct zone *zone = &pgdat->node_zones[zoneid]; 388 if (!populated_zone(zone)) 389 continue; 390 391 /* Only flush if a full compaction finished recently */ 392 if (zone->compact_blockskip_flush) 393 __reset_isolation_suitable(zone); 394 } 395 } 396 397 /* 398 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 399 * locks are not required for read/writers. Returns true if it was already set. 400 */ 401 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 402 unsigned long pfn) 403 { 404 bool skip; 405 406 /* Do no update if skip hint is being ignored */ 407 if (cc->ignore_skip_hint) 408 return false; 409 410 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 411 return false; 412 413 skip = get_pageblock_skip(page); 414 if (!skip && !cc->no_set_skip_hint) 415 set_pageblock_skip(page); 416 417 return skip; 418 } 419 420 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 421 { 422 struct zone *zone = cc->zone; 423 424 pfn = pageblock_end_pfn(pfn); 425 426 /* Set for isolation rather than compaction */ 427 if (cc->no_set_skip_hint) 428 return; 429 430 if (pfn > zone->compact_cached_migrate_pfn[0]) 431 zone->compact_cached_migrate_pfn[0] = pfn; 432 if (cc->mode != MIGRATE_ASYNC && 433 pfn > zone->compact_cached_migrate_pfn[1]) 434 zone->compact_cached_migrate_pfn[1] = pfn; 435 } 436 437 /* 438 * If no pages were isolated then mark this pageblock to be skipped in the 439 * future. The information is later cleared by __reset_isolation_suitable(). 440 */ 441 static void update_pageblock_skip(struct compact_control *cc, 442 struct page *page, unsigned long pfn) 443 { 444 struct zone *zone = cc->zone; 445 446 if (cc->no_set_skip_hint) 447 return; 448 449 if (!page) 450 return; 451 452 set_pageblock_skip(page); 453 454 /* Update where async and sync compaction should restart */ 455 if (pfn < zone->compact_cached_free_pfn) 456 zone->compact_cached_free_pfn = pfn; 457 } 458 #else 459 static inline bool isolation_suitable(struct compact_control *cc, 460 struct page *page) 461 { 462 return true; 463 } 464 465 static inline bool pageblock_skip_persistent(struct page *page) 466 { 467 return false; 468 } 469 470 static inline void update_pageblock_skip(struct compact_control *cc, 471 struct page *page, unsigned long pfn) 472 { 473 } 474 475 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 476 { 477 } 478 479 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 480 unsigned long pfn) 481 { 482 return false; 483 } 484 #endif /* CONFIG_COMPACTION */ 485 486 /* 487 * Compaction requires the taking of some coarse locks that are potentially 488 * very heavily contended. For async compaction, trylock and record if the 489 * lock is contended. The lock will still be acquired but compaction will 490 * abort when the current block is finished regardless of success rate. 491 * Sync compaction acquires the lock. 492 * 493 * Always returns true which makes it easier to track lock state in callers. 494 */ 495 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 496 struct compact_control *cc) 497 __acquires(lock) 498 { 499 /* Track if the lock is contended in async mode */ 500 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 501 if (spin_trylock_irqsave(lock, *flags)) 502 return true; 503 504 cc->contended = true; 505 } 506 507 spin_lock_irqsave(lock, *flags); 508 return true; 509 } 510 511 /* 512 * Compaction requires the taking of some coarse locks that are potentially 513 * very heavily contended. The lock should be periodically unlocked to avoid 514 * having disabled IRQs for a long time, even when there is nobody waiting on 515 * the lock. It might also be that allowing the IRQs will result in 516 * need_resched() becoming true. If scheduling is needed, compaction schedules. 517 * Either compaction type will also abort if a fatal signal is pending. 518 * In either case if the lock was locked, it is dropped and not regained. 519 * 520 * Returns true if compaction should abort due to fatal signal pending. 521 * Returns false when compaction can continue. 522 */ 523 static bool compact_unlock_should_abort(spinlock_t *lock, 524 unsigned long flags, bool *locked, struct compact_control *cc) 525 { 526 if (*locked) { 527 spin_unlock_irqrestore(lock, flags); 528 *locked = false; 529 } 530 531 if (fatal_signal_pending(current)) { 532 cc->contended = true; 533 return true; 534 } 535 536 cond_resched(); 537 538 return false; 539 } 540 541 /* 542 * Isolate free pages onto a private freelist. If @strict is true, will abort 543 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 544 * (even though it may still end up isolating some pages). 545 */ 546 static unsigned long isolate_freepages_block(struct compact_control *cc, 547 unsigned long *start_pfn, 548 unsigned long end_pfn, 549 struct list_head *freelist, 550 unsigned int stride, 551 bool strict) 552 { 553 int nr_scanned = 0, total_isolated = 0; 554 struct page *cursor; 555 unsigned long flags = 0; 556 bool locked = false; 557 unsigned long blockpfn = *start_pfn; 558 unsigned int order; 559 560 /* Strict mode is for isolation, speed is secondary */ 561 if (strict) 562 stride = 1; 563 564 cursor = pfn_to_page(blockpfn); 565 566 /* Isolate free pages. */ 567 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 568 int isolated; 569 struct page *page = cursor; 570 571 /* 572 * Periodically drop the lock (if held) regardless of its 573 * contention, to give chance to IRQs. Abort if fatal signal 574 * pending. 575 */ 576 if (!(blockpfn % COMPACT_CLUSTER_MAX) 577 && compact_unlock_should_abort(&cc->zone->lock, flags, 578 &locked, cc)) 579 break; 580 581 nr_scanned++; 582 583 /* 584 * For compound pages such as THP and hugetlbfs, we can save 585 * potentially a lot of iterations if we skip them at once. 586 * The check is racy, but we can consider only valid values 587 * and the only danger is skipping too much. 588 */ 589 if (PageCompound(page)) { 590 const unsigned int order = compound_order(page); 591 592 if (likely(order < MAX_ORDER)) { 593 blockpfn += (1UL << order) - 1; 594 cursor += (1UL << order) - 1; 595 } 596 goto isolate_fail; 597 } 598 599 if (!PageBuddy(page)) 600 goto isolate_fail; 601 602 /* If we already hold the lock, we can skip some rechecking. */ 603 if (!locked) { 604 locked = compact_lock_irqsave(&cc->zone->lock, 605 &flags, cc); 606 607 /* Recheck this is a buddy page under lock */ 608 if (!PageBuddy(page)) 609 goto isolate_fail; 610 } 611 612 /* Found a free page, will break it into order-0 pages */ 613 order = buddy_order(page); 614 isolated = __isolate_free_page(page, order); 615 if (!isolated) 616 break; 617 set_page_private(page, order); 618 619 total_isolated += isolated; 620 cc->nr_freepages += isolated; 621 list_add_tail(&page->lru, freelist); 622 623 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 624 blockpfn += isolated; 625 break; 626 } 627 /* Advance to the end of split page */ 628 blockpfn += isolated - 1; 629 cursor += isolated - 1; 630 continue; 631 632 isolate_fail: 633 if (strict) 634 break; 635 else 636 continue; 637 638 } 639 640 if (locked) 641 spin_unlock_irqrestore(&cc->zone->lock, flags); 642 643 /* 644 * There is a tiny chance that we have read bogus compound_order(), 645 * so be careful to not go outside of the pageblock. 646 */ 647 if (unlikely(blockpfn > end_pfn)) 648 blockpfn = end_pfn; 649 650 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 651 nr_scanned, total_isolated); 652 653 /* Record how far we have got within the block */ 654 *start_pfn = blockpfn; 655 656 /* 657 * If strict isolation is requested by CMA then check that all the 658 * pages requested were isolated. If there were any failures, 0 is 659 * returned and CMA will fail. 660 */ 661 if (strict && blockpfn < end_pfn) 662 total_isolated = 0; 663 664 cc->total_free_scanned += nr_scanned; 665 if (total_isolated) 666 count_compact_events(COMPACTISOLATED, total_isolated); 667 return total_isolated; 668 } 669 670 /** 671 * isolate_freepages_range() - isolate free pages. 672 * @cc: Compaction control structure. 673 * @start_pfn: The first PFN to start isolating. 674 * @end_pfn: The one-past-last PFN. 675 * 676 * Non-free pages, invalid PFNs, or zone boundaries within the 677 * [start_pfn, end_pfn) range are considered errors, cause function to 678 * undo its actions and return zero. 679 * 680 * Otherwise, function returns one-past-the-last PFN of isolated page 681 * (which may be greater then end_pfn if end fell in a middle of 682 * a free page). 683 */ 684 unsigned long 685 isolate_freepages_range(struct compact_control *cc, 686 unsigned long start_pfn, unsigned long end_pfn) 687 { 688 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 689 LIST_HEAD(freelist); 690 691 pfn = start_pfn; 692 block_start_pfn = pageblock_start_pfn(pfn); 693 if (block_start_pfn < cc->zone->zone_start_pfn) 694 block_start_pfn = cc->zone->zone_start_pfn; 695 block_end_pfn = pageblock_end_pfn(pfn); 696 697 for (; pfn < end_pfn; pfn += isolated, 698 block_start_pfn = block_end_pfn, 699 block_end_pfn += pageblock_nr_pages) { 700 /* Protect pfn from changing by isolate_freepages_block */ 701 unsigned long isolate_start_pfn = pfn; 702 703 block_end_pfn = min(block_end_pfn, end_pfn); 704 705 /* 706 * pfn could pass the block_end_pfn if isolated freepage 707 * is more than pageblock order. In this case, we adjust 708 * scanning range to right one. 709 */ 710 if (pfn >= block_end_pfn) { 711 block_start_pfn = pageblock_start_pfn(pfn); 712 block_end_pfn = pageblock_end_pfn(pfn); 713 block_end_pfn = min(block_end_pfn, end_pfn); 714 } 715 716 if (!pageblock_pfn_to_page(block_start_pfn, 717 block_end_pfn, cc->zone)) 718 break; 719 720 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 721 block_end_pfn, &freelist, 0, true); 722 723 /* 724 * In strict mode, isolate_freepages_block() returns 0 if 725 * there are any holes in the block (ie. invalid PFNs or 726 * non-free pages). 727 */ 728 if (!isolated) 729 break; 730 731 /* 732 * If we managed to isolate pages, it is always (1 << n) * 733 * pageblock_nr_pages for some non-negative n. (Max order 734 * page may span two pageblocks). 735 */ 736 } 737 738 /* __isolate_free_page() does not map the pages */ 739 split_map_pages(&freelist); 740 741 if (pfn < end_pfn) { 742 /* Loop terminated early, cleanup. */ 743 release_freepages(&freelist); 744 return 0; 745 } 746 747 /* We don't use freelists for anything. */ 748 return pfn; 749 } 750 751 /* Similar to reclaim, but different enough that they don't share logic */ 752 static bool too_many_isolated(pg_data_t *pgdat) 753 { 754 bool too_many; 755 756 unsigned long active, inactive, isolated; 757 758 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 759 node_page_state(pgdat, NR_INACTIVE_ANON); 760 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 761 node_page_state(pgdat, NR_ACTIVE_ANON); 762 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 763 node_page_state(pgdat, NR_ISOLATED_ANON); 764 765 too_many = isolated > (inactive + active) / 2; 766 if (!too_many) 767 wake_throttle_isolated(pgdat); 768 769 return too_many; 770 } 771 772 /** 773 * isolate_migratepages_block() - isolate all migrate-able pages within 774 * a single pageblock 775 * @cc: Compaction control structure. 776 * @low_pfn: The first PFN to isolate 777 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 778 * @mode: Isolation mode to be used. 779 * 780 * Isolate all pages that can be migrated from the range specified by 781 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 782 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 783 * -ENOMEM in case we could not allocate a page, or 0. 784 * cc->migrate_pfn will contain the next pfn to scan. 785 * 786 * The pages are isolated on cc->migratepages list (not required to be empty), 787 * and cc->nr_migratepages is updated accordingly. 788 */ 789 static int 790 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 791 unsigned long end_pfn, isolate_mode_t mode) 792 { 793 pg_data_t *pgdat = cc->zone->zone_pgdat; 794 unsigned long nr_scanned = 0, nr_isolated = 0; 795 struct lruvec *lruvec; 796 unsigned long flags = 0; 797 struct lruvec *locked = NULL; 798 struct page *page = NULL, *valid_page = NULL; 799 struct address_space *mapping; 800 unsigned long start_pfn = low_pfn; 801 bool skip_on_failure = false; 802 unsigned long next_skip_pfn = 0; 803 bool skip_updated = false; 804 int ret = 0; 805 806 cc->migrate_pfn = low_pfn; 807 808 /* 809 * Ensure that there are not too many pages isolated from the LRU 810 * list by either parallel reclaimers or compaction. If there are, 811 * delay for some time until fewer pages are isolated 812 */ 813 while (unlikely(too_many_isolated(pgdat))) { 814 /* stop isolation if there are still pages not migrated */ 815 if (cc->nr_migratepages) 816 return -EAGAIN; 817 818 /* async migration should just abort */ 819 if (cc->mode == MIGRATE_ASYNC) 820 return -EAGAIN; 821 822 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 823 824 if (fatal_signal_pending(current)) 825 return -EINTR; 826 } 827 828 cond_resched(); 829 830 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 831 skip_on_failure = true; 832 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 833 } 834 835 /* Time to isolate some pages for migration */ 836 for (; low_pfn < end_pfn; low_pfn++) { 837 838 if (skip_on_failure && low_pfn >= next_skip_pfn) { 839 /* 840 * We have isolated all migration candidates in the 841 * previous order-aligned block, and did not skip it due 842 * to failure. We should migrate the pages now and 843 * hopefully succeed compaction. 844 */ 845 if (nr_isolated) 846 break; 847 848 /* 849 * We failed to isolate in the previous order-aligned 850 * block. Set the new boundary to the end of the 851 * current block. Note we can't simply increase 852 * next_skip_pfn by 1 << order, as low_pfn might have 853 * been incremented by a higher number due to skipping 854 * a compound or a high-order buddy page in the 855 * previous loop iteration. 856 */ 857 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 858 } 859 860 /* 861 * Periodically drop the lock (if held) regardless of its 862 * contention, to give chance to IRQs. Abort completely if 863 * a fatal signal is pending. 864 */ 865 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 866 if (locked) { 867 unlock_page_lruvec_irqrestore(locked, flags); 868 locked = NULL; 869 } 870 871 if (fatal_signal_pending(current)) { 872 cc->contended = true; 873 ret = -EINTR; 874 875 goto fatal_pending; 876 } 877 878 cond_resched(); 879 } 880 881 nr_scanned++; 882 883 page = pfn_to_page(low_pfn); 884 885 /* 886 * Check if the pageblock has already been marked skipped. 887 * Only the aligned PFN is checked as the caller isolates 888 * COMPACT_CLUSTER_MAX at a time so the second call must 889 * not falsely conclude that the block should be skipped. 890 */ 891 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 892 if (!isolation_suitable(cc, page)) { 893 low_pfn = end_pfn; 894 page = NULL; 895 goto isolate_abort; 896 } 897 valid_page = page; 898 } 899 900 if (PageHuge(page) && cc->alloc_contig) { 901 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 902 903 /* 904 * Fail isolation in case isolate_or_dissolve_huge_page() 905 * reports an error. In case of -ENOMEM, abort right away. 906 */ 907 if (ret < 0) { 908 /* Do not report -EBUSY down the chain */ 909 if (ret == -EBUSY) 910 ret = 0; 911 low_pfn += compound_nr(page) - 1; 912 goto isolate_fail; 913 } 914 915 if (PageHuge(page)) { 916 /* 917 * Hugepage was successfully isolated and placed 918 * on the cc->migratepages list. 919 */ 920 low_pfn += compound_nr(page) - 1; 921 goto isolate_success_no_list; 922 } 923 924 /* 925 * Ok, the hugepage was dissolved. Now these pages are 926 * Buddy and cannot be re-allocated because they are 927 * isolated. Fall-through as the check below handles 928 * Buddy pages. 929 */ 930 } 931 932 /* 933 * Skip if free. We read page order here without zone lock 934 * which is generally unsafe, but the race window is small and 935 * the worst thing that can happen is that we skip some 936 * potential isolation targets. 937 */ 938 if (PageBuddy(page)) { 939 unsigned long freepage_order = buddy_order_unsafe(page); 940 941 /* 942 * Without lock, we cannot be sure that what we got is 943 * a valid page order. Consider only values in the 944 * valid order range to prevent low_pfn overflow. 945 */ 946 if (freepage_order > 0 && freepage_order < MAX_ORDER) 947 low_pfn += (1UL << freepage_order) - 1; 948 continue; 949 } 950 951 /* 952 * Regardless of being on LRU, compound pages such as THP and 953 * hugetlbfs are not to be compacted unless we are attempting 954 * an allocation much larger than the huge page size (eg CMA). 955 * We can potentially save a lot of iterations if we skip them 956 * at once. The check is racy, but we can consider only valid 957 * values and the only danger is skipping too much. 958 */ 959 if (PageCompound(page) && !cc->alloc_contig) { 960 const unsigned int order = compound_order(page); 961 962 if (likely(order < MAX_ORDER)) 963 low_pfn += (1UL << order) - 1; 964 goto isolate_fail; 965 } 966 967 /* 968 * Check may be lockless but that's ok as we recheck later. 969 * It's possible to migrate LRU and non-lru movable pages. 970 * Skip any other type of page 971 */ 972 if (!PageLRU(page)) { 973 /* 974 * __PageMovable can return false positive so we need 975 * to verify it under page_lock. 976 */ 977 if (unlikely(__PageMovable(page)) && 978 !PageIsolated(page)) { 979 if (locked) { 980 unlock_page_lruvec_irqrestore(locked, flags); 981 locked = NULL; 982 } 983 984 if (!isolate_movable_page(page, mode)) 985 goto isolate_success; 986 } 987 988 goto isolate_fail; 989 } 990 991 /* 992 * Migration will fail if an anonymous page is pinned in memory, 993 * so avoid taking lru_lock and isolating it unnecessarily in an 994 * admittedly racy check. 995 */ 996 mapping = page_mapping(page); 997 if (!mapping && page_count(page) > page_mapcount(page)) 998 goto isolate_fail; 999 1000 /* 1001 * Only allow to migrate anonymous pages in GFP_NOFS context 1002 * because those do not depend on fs locks. 1003 */ 1004 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1005 goto isolate_fail; 1006 1007 /* 1008 * Be careful not to clear PageLRU until after we're 1009 * sure the page is not being freed elsewhere -- the 1010 * page release code relies on it. 1011 */ 1012 if (unlikely(!get_page_unless_zero(page))) 1013 goto isolate_fail; 1014 1015 /* Only take pages on LRU: a check now makes later tests safe */ 1016 if (!PageLRU(page)) 1017 goto isolate_fail_put; 1018 1019 /* Compaction might skip unevictable pages but CMA takes them */ 1020 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) 1021 goto isolate_fail_put; 1022 1023 /* 1024 * To minimise LRU disruption, the caller can indicate with 1025 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1026 * it will be able to migrate without blocking - clean pages 1027 * for the most part. PageWriteback would require blocking. 1028 */ 1029 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) 1030 goto isolate_fail_put; 1031 1032 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { 1033 bool migrate_dirty; 1034 1035 /* 1036 * Only pages without mappings or that have a 1037 * ->migratepage callback are possible to migrate 1038 * without blocking. However, we can be racing with 1039 * truncation so it's necessary to lock the page 1040 * to stabilise the mapping as truncation holds 1041 * the page lock until after the page is removed 1042 * from the page cache. 1043 */ 1044 if (!trylock_page(page)) 1045 goto isolate_fail_put; 1046 1047 mapping = page_mapping(page); 1048 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1049 unlock_page(page); 1050 if (!migrate_dirty) 1051 goto isolate_fail_put; 1052 } 1053 1054 /* Try isolate the page */ 1055 if (!TestClearPageLRU(page)) 1056 goto isolate_fail_put; 1057 1058 lruvec = folio_lruvec(page_folio(page)); 1059 1060 /* If we already hold the lock, we can skip some rechecking */ 1061 if (lruvec != locked) { 1062 if (locked) 1063 unlock_page_lruvec_irqrestore(locked, flags); 1064 1065 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1066 locked = lruvec; 1067 1068 lruvec_memcg_debug(lruvec, page_folio(page)); 1069 1070 /* Try get exclusive access under lock */ 1071 if (!skip_updated) { 1072 skip_updated = true; 1073 if (test_and_set_skip(cc, page, low_pfn)) 1074 goto isolate_abort; 1075 } 1076 1077 /* 1078 * Page become compound since the non-locked check, 1079 * and it's on LRU. It can only be a THP so the order 1080 * is safe to read and it's 0 for tail pages. 1081 */ 1082 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1083 low_pfn += compound_nr(page) - 1; 1084 SetPageLRU(page); 1085 goto isolate_fail_put; 1086 } 1087 } 1088 1089 /* The whole page is taken off the LRU; skip the tail pages. */ 1090 if (PageCompound(page)) 1091 low_pfn += compound_nr(page) - 1; 1092 1093 /* Successfully isolated */ 1094 del_page_from_lru_list(page, lruvec); 1095 mod_node_page_state(page_pgdat(page), 1096 NR_ISOLATED_ANON + page_is_file_lru(page), 1097 thp_nr_pages(page)); 1098 1099 isolate_success: 1100 list_add(&page->lru, &cc->migratepages); 1101 isolate_success_no_list: 1102 cc->nr_migratepages += compound_nr(page); 1103 nr_isolated += compound_nr(page); 1104 1105 /* 1106 * Avoid isolating too much unless this block is being 1107 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1108 * or a lock is contended. For contention, isolate quickly to 1109 * potentially remove one source of contention. 1110 */ 1111 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1112 !cc->rescan && !cc->contended) { 1113 ++low_pfn; 1114 break; 1115 } 1116 1117 continue; 1118 1119 isolate_fail_put: 1120 /* Avoid potential deadlock in freeing page under lru_lock */ 1121 if (locked) { 1122 unlock_page_lruvec_irqrestore(locked, flags); 1123 locked = NULL; 1124 } 1125 put_page(page); 1126 1127 isolate_fail: 1128 if (!skip_on_failure && ret != -ENOMEM) 1129 continue; 1130 1131 /* 1132 * We have isolated some pages, but then failed. Release them 1133 * instead of migrating, as we cannot form the cc->order buddy 1134 * page anyway. 1135 */ 1136 if (nr_isolated) { 1137 if (locked) { 1138 unlock_page_lruvec_irqrestore(locked, flags); 1139 locked = NULL; 1140 } 1141 putback_movable_pages(&cc->migratepages); 1142 cc->nr_migratepages = 0; 1143 nr_isolated = 0; 1144 } 1145 1146 if (low_pfn < next_skip_pfn) { 1147 low_pfn = next_skip_pfn - 1; 1148 /* 1149 * The check near the loop beginning would have updated 1150 * next_skip_pfn too, but this is a bit simpler. 1151 */ 1152 next_skip_pfn += 1UL << cc->order; 1153 } 1154 1155 if (ret == -ENOMEM) 1156 break; 1157 } 1158 1159 /* 1160 * The PageBuddy() check could have potentially brought us outside 1161 * the range to be scanned. 1162 */ 1163 if (unlikely(low_pfn > end_pfn)) 1164 low_pfn = end_pfn; 1165 1166 page = NULL; 1167 1168 isolate_abort: 1169 if (locked) 1170 unlock_page_lruvec_irqrestore(locked, flags); 1171 if (page) { 1172 SetPageLRU(page); 1173 put_page(page); 1174 } 1175 1176 /* 1177 * Updated the cached scanner pfn once the pageblock has been scanned 1178 * Pages will either be migrated in which case there is no point 1179 * scanning in the near future or migration failed in which case the 1180 * failure reason may persist. The block is marked for skipping if 1181 * there were no pages isolated in the block or if the block is 1182 * rescanned twice in a row. 1183 */ 1184 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1185 if (valid_page && !skip_updated) 1186 set_pageblock_skip(valid_page); 1187 update_cached_migrate(cc, low_pfn); 1188 } 1189 1190 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1191 nr_scanned, nr_isolated); 1192 1193 fatal_pending: 1194 cc->total_migrate_scanned += nr_scanned; 1195 if (nr_isolated) 1196 count_compact_events(COMPACTISOLATED, nr_isolated); 1197 1198 cc->migrate_pfn = low_pfn; 1199 1200 return ret; 1201 } 1202 1203 /** 1204 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1205 * @cc: Compaction control structure. 1206 * @start_pfn: The first PFN to start isolating. 1207 * @end_pfn: The one-past-last PFN. 1208 * 1209 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1210 * in case we could not allocate a page, or 0. 1211 */ 1212 int 1213 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1214 unsigned long end_pfn) 1215 { 1216 unsigned long pfn, block_start_pfn, block_end_pfn; 1217 int ret = 0; 1218 1219 /* Scan block by block. First and last block may be incomplete */ 1220 pfn = start_pfn; 1221 block_start_pfn = pageblock_start_pfn(pfn); 1222 if (block_start_pfn < cc->zone->zone_start_pfn) 1223 block_start_pfn = cc->zone->zone_start_pfn; 1224 block_end_pfn = pageblock_end_pfn(pfn); 1225 1226 for (; pfn < end_pfn; pfn = block_end_pfn, 1227 block_start_pfn = block_end_pfn, 1228 block_end_pfn += pageblock_nr_pages) { 1229 1230 block_end_pfn = min(block_end_pfn, end_pfn); 1231 1232 if (!pageblock_pfn_to_page(block_start_pfn, 1233 block_end_pfn, cc->zone)) 1234 continue; 1235 1236 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1237 ISOLATE_UNEVICTABLE); 1238 1239 if (ret) 1240 break; 1241 1242 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1243 break; 1244 } 1245 1246 return ret; 1247 } 1248 1249 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1250 #ifdef CONFIG_COMPACTION 1251 1252 static bool suitable_migration_source(struct compact_control *cc, 1253 struct page *page) 1254 { 1255 int block_mt; 1256 1257 if (pageblock_skip_persistent(page)) 1258 return false; 1259 1260 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1261 return true; 1262 1263 block_mt = get_pageblock_migratetype(page); 1264 1265 if (cc->migratetype == MIGRATE_MOVABLE) 1266 return is_migrate_movable(block_mt); 1267 else 1268 return block_mt == cc->migratetype; 1269 } 1270 1271 /* Returns true if the page is within a block suitable for migration to */ 1272 static bool suitable_migration_target(struct compact_control *cc, 1273 struct page *page) 1274 { 1275 /* If the page is a large free page, then disallow migration */ 1276 if (PageBuddy(page)) { 1277 /* 1278 * We are checking page_order without zone->lock taken. But 1279 * the only small danger is that we skip a potentially suitable 1280 * pageblock, so it's not worth to check order for valid range. 1281 */ 1282 if (buddy_order_unsafe(page) >= pageblock_order) 1283 return false; 1284 } 1285 1286 if (cc->ignore_block_suitable) 1287 return true; 1288 1289 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1290 if (is_migrate_movable(get_pageblock_migratetype(page))) 1291 return true; 1292 1293 /* Otherwise skip the block */ 1294 return false; 1295 } 1296 1297 static inline unsigned int 1298 freelist_scan_limit(struct compact_control *cc) 1299 { 1300 unsigned short shift = BITS_PER_LONG - 1; 1301 1302 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1303 } 1304 1305 /* 1306 * Test whether the free scanner has reached the same or lower pageblock than 1307 * the migration scanner, and compaction should thus terminate. 1308 */ 1309 static inline bool compact_scanners_met(struct compact_control *cc) 1310 { 1311 return (cc->free_pfn >> pageblock_order) 1312 <= (cc->migrate_pfn >> pageblock_order); 1313 } 1314 1315 /* 1316 * Used when scanning for a suitable migration target which scans freelists 1317 * in reverse. Reorders the list such as the unscanned pages are scanned 1318 * first on the next iteration of the free scanner 1319 */ 1320 static void 1321 move_freelist_head(struct list_head *freelist, struct page *freepage) 1322 { 1323 LIST_HEAD(sublist); 1324 1325 if (!list_is_last(freelist, &freepage->lru)) { 1326 list_cut_before(&sublist, freelist, &freepage->lru); 1327 list_splice_tail(&sublist, freelist); 1328 } 1329 } 1330 1331 /* 1332 * Similar to move_freelist_head except used by the migration scanner 1333 * when scanning forward. It's possible for these list operations to 1334 * move against each other if they search the free list exactly in 1335 * lockstep. 1336 */ 1337 static void 1338 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1339 { 1340 LIST_HEAD(sublist); 1341 1342 if (!list_is_first(freelist, &freepage->lru)) { 1343 list_cut_position(&sublist, freelist, &freepage->lru); 1344 list_splice_tail(&sublist, freelist); 1345 } 1346 } 1347 1348 static void 1349 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1350 { 1351 unsigned long start_pfn, end_pfn; 1352 struct page *page; 1353 1354 /* Do not search around if there are enough pages already */ 1355 if (cc->nr_freepages >= cc->nr_migratepages) 1356 return; 1357 1358 /* Minimise scanning during async compaction */ 1359 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1360 return; 1361 1362 /* Pageblock boundaries */ 1363 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1364 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1365 1366 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1367 if (!page) 1368 return; 1369 1370 /* Scan before */ 1371 if (start_pfn != pfn) { 1372 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1373 if (cc->nr_freepages >= cc->nr_migratepages) 1374 return; 1375 } 1376 1377 /* Scan after */ 1378 start_pfn = pfn + nr_isolated; 1379 if (start_pfn < end_pfn) 1380 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1381 1382 /* Skip this pageblock in the future as it's full or nearly full */ 1383 if (cc->nr_freepages < cc->nr_migratepages) 1384 set_pageblock_skip(page); 1385 } 1386 1387 /* Search orders in round-robin fashion */ 1388 static int next_search_order(struct compact_control *cc, int order) 1389 { 1390 order--; 1391 if (order < 0) 1392 order = cc->order - 1; 1393 1394 /* Search wrapped around? */ 1395 if (order == cc->search_order) { 1396 cc->search_order--; 1397 if (cc->search_order < 0) 1398 cc->search_order = cc->order - 1; 1399 return -1; 1400 } 1401 1402 return order; 1403 } 1404 1405 static unsigned long 1406 fast_isolate_freepages(struct compact_control *cc) 1407 { 1408 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1409 unsigned int nr_scanned = 0; 1410 unsigned long low_pfn, min_pfn, highest = 0; 1411 unsigned long nr_isolated = 0; 1412 unsigned long distance; 1413 struct page *page = NULL; 1414 bool scan_start = false; 1415 int order; 1416 1417 /* Full compaction passes in a negative order */ 1418 if (cc->order <= 0) 1419 return cc->free_pfn; 1420 1421 /* 1422 * If starting the scan, use a deeper search and use the highest 1423 * PFN found if a suitable one is not found. 1424 */ 1425 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1426 limit = pageblock_nr_pages >> 1; 1427 scan_start = true; 1428 } 1429 1430 /* 1431 * Preferred point is in the top quarter of the scan space but take 1432 * a pfn from the top half if the search is problematic. 1433 */ 1434 distance = (cc->free_pfn - cc->migrate_pfn); 1435 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1436 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1437 1438 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1439 low_pfn = min_pfn; 1440 1441 /* 1442 * Search starts from the last successful isolation order or the next 1443 * order to search after a previous failure 1444 */ 1445 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1446 1447 for (order = cc->search_order; 1448 !page && order >= 0; 1449 order = next_search_order(cc, order)) { 1450 struct free_area *area = &cc->zone->free_area[order]; 1451 struct list_head *freelist; 1452 struct page *freepage; 1453 unsigned long flags; 1454 unsigned int order_scanned = 0; 1455 unsigned long high_pfn = 0; 1456 1457 if (!area->nr_free) 1458 continue; 1459 1460 spin_lock_irqsave(&cc->zone->lock, flags); 1461 freelist = &area->free_list[MIGRATE_MOVABLE]; 1462 list_for_each_entry_reverse(freepage, freelist, lru) { 1463 unsigned long pfn; 1464 1465 order_scanned++; 1466 nr_scanned++; 1467 pfn = page_to_pfn(freepage); 1468 1469 if (pfn >= highest) 1470 highest = max(pageblock_start_pfn(pfn), 1471 cc->zone->zone_start_pfn); 1472 1473 if (pfn >= low_pfn) { 1474 cc->fast_search_fail = 0; 1475 cc->search_order = order; 1476 page = freepage; 1477 break; 1478 } 1479 1480 if (pfn >= min_pfn && pfn > high_pfn) { 1481 high_pfn = pfn; 1482 1483 /* Shorten the scan if a candidate is found */ 1484 limit >>= 1; 1485 } 1486 1487 if (order_scanned >= limit) 1488 break; 1489 } 1490 1491 /* Use a minimum pfn if a preferred one was not found */ 1492 if (!page && high_pfn) { 1493 page = pfn_to_page(high_pfn); 1494 1495 /* Update freepage for the list reorder below */ 1496 freepage = page; 1497 } 1498 1499 /* Reorder to so a future search skips recent pages */ 1500 move_freelist_head(freelist, freepage); 1501 1502 /* Isolate the page if available */ 1503 if (page) { 1504 if (__isolate_free_page(page, order)) { 1505 set_page_private(page, order); 1506 nr_isolated = 1 << order; 1507 cc->nr_freepages += nr_isolated; 1508 list_add_tail(&page->lru, &cc->freepages); 1509 count_compact_events(COMPACTISOLATED, nr_isolated); 1510 } else { 1511 /* If isolation fails, abort the search */ 1512 order = cc->search_order + 1; 1513 page = NULL; 1514 } 1515 } 1516 1517 spin_unlock_irqrestore(&cc->zone->lock, flags); 1518 1519 /* 1520 * Smaller scan on next order so the total scan is related 1521 * to freelist_scan_limit. 1522 */ 1523 if (order_scanned >= limit) 1524 limit = max(1U, limit >> 1); 1525 } 1526 1527 if (!page) { 1528 cc->fast_search_fail++; 1529 if (scan_start) { 1530 /* 1531 * Use the highest PFN found above min. If one was 1532 * not found, be pessimistic for direct compaction 1533 * and use the min mark. 1534 */ 1535 if (highest) { 1536 page = pfn_to_page(highest); 1537 cc->free_pfn = highest; 1538 } else { 1539 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1540 page = pageblock_pfn_to_page(min_pfn, 1541 min(pageblock_end_pfn(min_pfn), 1542 zone_end_pfn(cc->zone)), 1543 cc->zone); 1544 cc->free_pfn = min_pfn; 1545 } 1546 } 1547 } 1548 } 1549 1550 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1551 highest -= pageblock_nr_pages; 1552 cc->zone->compact_cached_free_pfn = highest; 1553 } 1554 1555 cc->total_free_scanned += nr_scanned; 1556 if (!page) 1557 return cc->free_pfn; 1558 1559 low_pfn = page_to_pfn(page); 1560 fast_isolate_around(cc, low_pfn, nr_isolated); 1561 return low_pfn; 1562 } 1563 1564 /* 1565 * Based on information in the current compact_control, find blocks 1566 * suitable for isolating free pages from and then isolate them. 1567 */ 1568 static void isolate_freepages(struct compact_control *cc) 1569 { 1570 struct zone *zone = cc->zone; 1571 struct page *page; 1572 unsigned long block_start_pfn; /* start of current pageblock */ 1573 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1574 unsigned long block_end_pfn; /* end of current pageblock */ 1575 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1576 struct list_head *freelist = &cc->freepages; 1577 unsigned int stride; 1578 1579 /* Try a small search of the free lists for a candidate */ 1580 fast_isolate_freepages(cc); 1581 if (cc->nr_freepages) 1582 goto splitmap; 1583 1584 /* 1585 * Initialise the free scanner. The starting point is where we last 1586 * successfully isolated from, zone-cached value, or the end of the 1587 * zone when isolating for the first time. For looping we also need 1588 * this pfn aligned down to the pageblock boundary, because we do 1589 * block_start_pfn -= pageblock_nr_pages in the for loop. 1590 * For ending point, take care when isolating in last pageblock of a 1591 * zone which ends in the middle of a pageblock. 1592 * The low boundary is the end of the pageblock the migration scanner 1593 * is using. 1594 */ 1595 isolate_start_pfn = cc->free_pfn; 1596 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1597 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1598 zone_end_pfn(zone)); 1599 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1600 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1601 1602 /* 1603 * Isolate free pages until enough are available to migrate the 1604 * pages on cc->migratepages. We stop searching if the migrate 1605 * and free page scanners meet or enough free pages are isolated. 1606 */ 1607 for (; block_start_pfn >= low_pfn; 1608 block_end_pfn = block_start_pfn, 1609 block_start_pfn -= pageblock_nr_pages, 1610 isolate_start_pfn = block_start_pfn) { 1611 unsigned long nr_isolated; 1612 1613 /* 1614 * This can iterate a massively long zone without finding any 1615 * suitable migration targets, so periodically check resched. 1616 */ 1617 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1618 cond_resched(); 1619 1620 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1621 zone); 1622 if (!page) 1623 continue; 1624 1625 /* Check the block is suitable for migration */ 1626 if (!suitable_migration_target(cc, page)) 1627 continue; 1628 1629 /* If isolation recently failed, do not retry */ 1630 if (!isolation_suitable(cc, page)) 1631 continue; 1632 1633 /* Found a block suitable for isolating free pages from. */ 1634 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1635 block_end_pfn, freelist, stride, false); 1636 1637 /* Update the skip hint if the full pageblock was scanned */ 1638 if (isolate_start_pfn == block_end_pfn) 1639 update_pageblock_skip(cc, page, block_start_pfn); 1640 1641 /* Are enough freepages isolated? */ 1642 if (cc->nr_freepages >= cc->nr_migratepages) { 1643 if (isolate_start_pfn >= block_end_pfn) { 1644 /* 1645 * Restart at previous pageblock if more 1646 * freepages can be isolated next time. 1647 */ 1648 isolate_start_pfn = 1649 block_start_pfn - pageblock_nr_pages; 1650 } 1651 break; 1652 } else if (isolate_start_pfn < block_end_pfn) { 1653 /* 1654 * If isolation failed early, do not continue 1655 * needlessly. 1656 */ 1657 break; 1658 } 1659 1660 /* Adjust stride depending on isolation */ 1661 if (nr_isolated) { 1662 stride = 1; 1663 continue; 1664 } 1665 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1666 } 1667 1668 /* 1669 * Record where the free scanner will restart next time. Either we 1670 * broke from the loop and set isolate_start_pfn based on the last 1671 * call to isolate_freepages_block(), or we met the migration scanner 1672 * and the loop terminated due to isolate_start_pfn < low_pfn 1673 */ 1674 cc->free_pfn = isolate_start_pfn; 1675 1676 splitmap: 1677 /* __isolate_free_page() does not map the pages */ 1678 split_map_pages(freelist); 1679 } 1680 1681 /* 1682 * This is a migrate-callback that "allocates" freepages by taking pages 1683 * from the isolated freelists in the block we are migrating to. 1684 */ 1685 static struct page *compaction_alloc(struct page *migratepage, 1686 unsigned long data) 1687 { 1688 struct compact_control *cc = (struct compact_control *)data; 1689 struct page *freepage; 1690 1691 if (list_empty(&cc->freepages)) { 1692 isolate_freepages(cc); 1693 1694 if (list_empty(&cc->freepages)) 1695 return NULL; 1696 } 1697 1698 freepage = list_entry(cc->freepages.next, struct page, lru); 1699 list_del(&freepage->lru); 1700 cc->nr_freepages--; 1701 1702 return freepage; 1703 } 1704 1705 /* 1706 * This is a migrate-callback that "frees" freepages back to the isolated 1707 * freelist. All pages on the freelist are from the same zone, so there is no 1708 * special handling needed for NUMA. 1709 */ 1710 static void compaction_free(struct page *page, unsigned long data) 1711 { 1712 struct compact_control *cc = (struct compact_control *)data; 1713 1714 list_add(&page->lru, &cc->freepages); 1715 cc->nr_freepages++; 1716 } 1717 1718 /* possible outcome of isolate_migratepages */ 1719 typedef enum { 1720 ISOLATE_ABORT, /* Abort compaction now */ 1721 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1722 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1723 } isolate_migrate_t; 1724 1725 /* 1726 * Allow userspace to control policy on scanning the unevictable LRU for 1727 * compactable pages. 1728 */ 1729 #ifdef CONFIG_PREEMPT_RT 1730 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1731 #else 1732 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1733 #endif 1734 1735 static inline void 1736 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1737 { 1738 if (cc->fast_start_pfn == ULONG_MAX) 1739 return; 1740 1741 if (!cc->fast_start_pfn) 1742 cc->fast_start_pfn = pfn; 1743 1744 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1745 } 1746 1747 static inline unsigned long 1748 reinit_migrate_pfn(struct compact_control *cc) 1749 { 1750 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1751 return cc->migrate_pfn; 1752 1753 cc->migrate_pfn = cc->fast_start_pfn; 1754 cc->fast_start_pfn = ULONG_MAX; 1755 1756 return cc->migrate_pfn; 1757 } 1758 1759 /* 1760 * Briefly search the free lists for a migration source that already has 1761 * some free pages to reduce the number of pages that need migration 1762 * before a pageblock is free. 1763 */ 1764 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1765 { 1766 unsigned int limit = freelist_scan_limit(cc); 1767 unsigned int nr_scanned = 0; 1768 unsigned long distance; 1769 unsigned long pfn = cc->migrate_pfn; 1770 unsigned long high_pfn; 1771 int order; 1772 bool found_block = false; 1773 1774 /* Skip hints are relied on to avoid repeats on the fast search */ 1775 if (cc->ignore_skip_hint) 1776 return pfn; 1777 1778 /* 1779 * If the migrate_pfn is not at the start of a zone or the start 1780 * of a pageblock then assume this is a continuation of a previous 1781 * scan restarted due to COMPACT_CLUSTER_MAX. 1782 */ 1783 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1784 return pfn; 1785 1786 /* 1787 * For smaller orders, just linearly scan as the number of pages 1788 * to migrate should be relatively small and does not necessarily 1789 * justify freeing up a large block for a small allocation. 1790 */ 1791 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1792 return pfn; 1793 1794 /* 1795 * Only allow kcompactd and direct requests for movable pages to 1796 * quickly clear out a MOVABLE pageblock for allocation. This 1797 * reduces the risk that a large movable pageblock is freed for 1798 * an unmovable/reclaimable small allocation. 1799 */ 1800 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1801 return pfn; 1802 1803 /* 1804 * When starting the migration scanner, pick any pageblock within the 1805 * first half of the search space. Otherwise try and pick a pageblock 1806 * within the first eighth to reduce the chances that a migration 1807 * target later becomes a source. 1808 */ 1809 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1810 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1811 distance >>= 2; 1812 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1813 1814 for (order = cc->order - 1; 1815 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1816 order--) { 1817 struct free_area *area = &cc->zone->free_area[order]; 1818 struct list_head *freelist; 1819 unsigned long flags; 1820 struct page *freepage; 1821 1822 if (!area->nr_free) 1823 continue; 1824 1825 spin_lock_irqsave(&cc->zone->lock, flags); 1826 freelist = &area->free_list[MIGRATE_MOVABLE]; 1827 list_for_each_entry(freepage, freelist, lru) { 1828 unsigned long free_pfn; 1829 1830 if (nr_scanned++ >= limit) { 1831 move_freelist_tail(freelist, freepage); 1832 break; 1833 } 1834 1835 free_pfn = page_to_pfn(freepage); 1836 if (free_pfn < high_pfn) { 1837 /* 1838 * Avoid if skipped recently. Ideally it would 1839 * move to the tail but even safe iteration of 1840 * the list assumes an entry is deleted, not 1841 * reordered. 1842 */ 1843 if (get_pageblock_skip(freepage)) 1844 continue; 1845 1846 /* Reorder to so a future search skips recent pages */ 1847 move_freelist_tail(freelist, freepage); 1848 1849 update_fast_start_pfn(cc, free_pfn); 1850 pfn = pageblock_start_pfn(free_pfn); 1851 cc->fast_search_fail = 0; 1852 found_block = true; 1853 set_pageblock_skip(freepage); 1854 break; 1855 } 1856 } 1857 spin_unlock_irqrestore(&cc->zone->lock, flags); 1858 } 1859 1860 cc->total_migrate_scanned += nr_scanned; 1861 1862 /* 1863 * If fast scanning failed then use a cached entry for a page block 1864 * that had free pages as the basis for starting a linear scan. 1865 */ 1866 if (!found_block) { 1867 cc->fast_search_fail++; 1868 pfn = reinit_migrate_pfn(cc); 1869 } 1870 return pfn; 1871 } 1872 1873 /* 1874 * Isolate all pages that can be migrated from the first suitable block, 1875 * starting at the block pointed to by the migrate scanner pfn within 1876 * compact_control. 1877 */ 1878 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1879 { 1880 unsigned long block_start_pfn; 1881 unsigned long block_end_pfn; 1882 unsigned long low_pfn; 1883 struct page *page; 1884 const isolate_mode_t isolate_mode = 1885 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1886 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1887 bool fast_find_block; 1888 1889 /* 1890 * Start at where we last stopped, or beginning of the zone as 1891 * initialized by compact_zone(). The first failure will use 1892 * the lowest PFN as the starting point for linear scanning. 1893 */ 1894 low_pfn = fast_find_migrateblock(cc); 1895 block_start_pfn = pageblock_start_pfn(low_pfn); 1896 if (block_start_pfn < cc->zone->zone_start_pfn) 1897 block_start_pfn = cc->zone->zone_start_pfn; 1898 1899 /* 1900 * fast_find_migrateblock marks a pageblock skipped so to avoid 1901 * the isolation_suitable check below, check whether the fast 1902 * search was successful. 1903 */ 1904 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1905 1906 /* Only scan within a pageblock boundary */ 1907 block_end_pfn = pageblock_end_pfn(low_pfn); 1908 1909 /* 1910 * Iterate over whole pageblocks until we find the first suitable. 1911 * Do not cross the free scanner. 1912 */ 1913 for (; block_end_pfn <= cc->free_pfn; 1914 fast_find_block = false, 1915 cc->migrate_pfn = low_pfn = block_end_pfn, 1916 block_start_pfn = block_end_pfn, 1917 block_end_pfn += pageblock_nr_pages) { 1918 1919 /* 1920 * This can potentially iterate a massively long zone with 1921 * many pageblocks unsuitable, so periodically check if we 1922 * need to schedule. 1923 */ 1924 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1925 cond_resched(); 1926 1927 page = pageblock_pfn_to_page(block_start_pfn, 1928 block_end_pfn, cc->zone); 1929 if (!page) 1930 continue; 1931 1932 /* 1933 * If isolation recently failed, do not retry. Only check the 1934 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1935 * to be visited multiple times. Assume skip was checked 1936 * before making it "skip" so other compaction instances do 1937 * not scan the same block. 1938 */ 1939 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1940 !fast_find_block && !isolation_suitable(cc, page)) 1941 continue; 1942 1943 /* 1944 * For async direct compaction, only scan the pageblocks of the 1945 * same migratetype without huge pages. Async direct compaction 1946 * is optimistic to see if the minimum amount of work satisfies 1947 * the allocation. The cached PFN is updated as it's possible 1948 * that all remaining blocks between source and target are 1949 * unsuitable and the compaction scanners fail to meet. 1950 */ 1951 if (!suitable_migration_source(cc, page)) { 1952 update_cached_migrate(cc, block_end_pfn); 1953 continue; 1954 } 1955 1956 /* Perform the isolation */ 1957 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1958 isolate_mode)) 1959 return ISOLATE_ABORT; 1960 1961 /* 1962 * Either we isolated something and proceed with migration. Or 1963 * we failed and compact_zone should decide if we should 1964 * continue or not. 1965 */ 1966 break; 1967 } 1968 1969 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1970 } 1971 1972 /* 1973 * order == -1 is expected when compacting via 1974 * /proc/sys/vm/compact_memory 1975 */ 1976 static inline bool is_via_compact_memory(int order) 1977 { 1978 return order == -1; 1979 } 1980 1981 static bool kswapd_is_running(pg_data_t *pgdat) 1982 { 1983 return pgdat->kswapd && task_is_running(pgdat->kswapd); 1984 } 1985 1986 /* 1987 * A zone's fragmentation score is the external fragmentation wrt to the 1988 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 1989 */ 1990 static unsigned int fragmentation_score_zone(struct zone *zone) 1991 { 1992 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1993 } 1994 1995 /* 1996 * A weighted zone's fragmentation score is the external fragmentation 1997 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 1998 * returns a value in the range [0, 100]. 1999 * 2000 * The scaling factor ensures that proactive compaction focuses on larger 2001 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2002 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2003 * and thus never exceeds the high threshold for proactive compaction. 2004 */ 2005 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2006 { 2007 unsigned long score; 2008 2009 score = zone->present_pages * fragmentation_score_zone(zone); 2010 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2011 } 2012 2013 /* 2014 * The per-node proactive (background) compaction process is started by its 2015 * corresponding kcompactd thread when the node's fragmentation score 2016 * exceeds the high threshold. The compaction process remains active till 2017 * the node's score falls below the low threshold, or one of the back-off 2018 * conditions is met. 2019 */ 2020 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2021 { 2022 unsigned int score = 0; 2023 int zoneid; 2024 2025 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2026 struct zone *zone; 2027 2028 zone = &pgdat->node_zones[zoneid]; 2029 score += fragmentation_score_zone_weighted(zone); 2030 } 2031 2032 return score; 2033 } 2034 2035 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2036 { 2037 unsigned int wmark_low; 2038 2039 /* 2040 * Cap the low watermark to avoid excessive compaction 2041 * activity in case a user sets the proactiveness tunable 2042 * close to 100 (maximum). 2043 */ 2044 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2045 return low ? wmark_low : min(wmark_low + 10, 100U); 2046 } 2047 2048 static bool should_proactive_compact_node(pg_data_t *pgdat) 2049 { 2050 int wmark_high; 2051 2052 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2053 return false; 2054 2055 wmark_high = fragmentation_score_wmark(pgdat, false); 2056 return fragmentation_score_node(pgdat) > wmark_high; 2057 } 2058 2059 static enum compact_result __compact_finished(struct compact_control *cc) 2060 { 2061 unsigned int order; 2062 const int migratetype = cc->migratetype; 2063 int ret; 2064 2065 /* Compaction run completes if the migrate and free scanner meet */ 2066 if (compact_scanners_met(cc)) { 2067 /* Let the next compaction start anew. */ 2068 reset_cached_positions(cc->zone); 2069 2070 /* 2071 * Mark that the PG_migrate_skip information should be cleared 2072 * by kswapd when it goes to sleep. kcompactd does not set the 2073 * flag itself as the decision to be clear should be directly 2074 * based on an allocation request. 2075 */ 2076 if (cc->direct_compaction) 2077 cc->zone->compact_blockskip_flush = true; 2078 2079 if (cc->whole_zone) 2080 return COMPACT_COMPLETE; 2081 else 2082 return COMPACT_PARTIAL_SKIPPED; 2083 } 2084 2085 if (cc->proactive_compaction) { 2086 int score, wmark_low; 2087 pg_data_t *pgdat; 2088 2089 pgdat = cc->zone->zone_pgdat; 2090 if (kswapd_is_running(pgdat)) 2091 return COMPACT_PARTIAL_SKIPPED; 2092 2093 score = fragmentation_score_zone(cc->zone); 2094 wmark_low = fragmentation_score_wmark(pgdat, true); 2095 2096 if (score > wmark_low) 2097 ret = COMPACT_CONTINUE; 2098 else 2099 ret = COMPACT_SUCCESS; 2100 2101 goto out; 2102 } 2103 2104 if (is_via_compact_memory(cc->order)) 2105 return COMPACT_CONTINUE; 2106 2107 /* 2108 * Always finish scanning a pageblock to reduce the possibility of 2109 * fallbacks in the future. This is particularly important when 2110 * migration source is unmovable/reclaimable but it's not worth 2111 * special casing. 2112 */ 2113 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2114 return COMPACT_CONTINUE; 2115 2116 /* Direct compactor: Is a suitable page free? */ 2117 ret = COMPACT_NO_SUITABLE_PAGE; 2118 for (order = cc->order; order < MAX_ORDER; order++) { 2119 struct free_area *area = &cc->zone->free_area[order]; 2120 bool can_steal; 2121 2122 /* Job done if page is free of the right migratetype */ 2123 if (!free_area_empty(area, migratetype)) 2124 return COMPACT_SUCCESS; 2125 2126 #ifdef CONFIG_CMA 2127 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2128 if (migratetype == MIGRATE_MOVABLE && 2129 !free_area_empty(area, MIGRATE_CMA)) 2130 return COMPACT_SUCCESS; 2131 #endif 2132 /* 2133 * Job done if allocation would steal freepages from 2134 * other migratetype buddy lists. 2135 */ 2136 if (find_suitable_fallback(area, order, migratetype, 2137 true, &can_steal) != -1) { 2138 2139 /* movable pages are OK in any pageblock */ 2140 if (migratetype == MIGRATE_MOVABLE) 2141 return COMPACT_SUCCESS; 2142 2143 /* 2144 * We are stealing for a non-movable allocation. Make 2145 * sure we finish compacting the current pageblock 2146 * first so it is as free as possible and we won't 2147 * have to steal another one soon. This only applies 2148 * to sync compaction, as async compaction operates 2149 * on pageblocks of the same migratetype. 2150 */ 2151 if (cc->mode == MIGRATE_ASYNC || 2152 IS_ALIGNED(cc->migrate_pfn, 2153 pageblock_nr_pages)) { 2154 return COMPACT_SUCCESS; 2155 } 2156 2157 ret = COMPACT_CONTINUE; 2158 break; 2159 } 2160 } 2161 2162 out: 2163 if (cc->contended || fatal_signal_pending(current)) 2164 ret = COMPACT_CONTENDED; 2165 2166 return ret; 2167 } 2168 2169 static enum compact_result compact_finished(struct compact_control *cc) 2170 { 2171 int ret; 2172 2173 ret = __compact_finished(cc); 2174 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2175 if (ret == COMPACT_NO_SUITABLE_PAGE) 2176 ret = COMPACT_CONTINUE; 2177 2178 return ret; 2179 } 2180 2181 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2182 unsigned int alloc_flags, 2183 int highest_zoneidx, 2184 unsigned long wmark_target) 2185 { 2186 unsigned long watermark; 2187 2188 if (is_via_compact_memory(order)) 2189 return COMPACT_CONTINUE; 2190 2191 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2192 /* 2193 * If watermarks for high-order allocation are already met, there 2194 * should be no need for compaction at all. 2195 */ 2196 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2197 alloc_flags)) 2198 return COMPACT_SUCCESS; 2199 2200 /* 2201 * Watermarks for order-0 must be met for compaction to be able to 2202 * isolate free pages for migration targets. This means that the 2203 * watermark and alloc_flags have to match, or be more pessimistic than 2204 * the check in __isolate_free_page(). We don't use the direct 2205 * compactor's alloc_flags, as they are not relevant for freepage 2206 * isolation. We however do use the direct compactor's highest_zoneidx 2207 * to skip over zones where lowmem reserves would prevent allocation 2208 * even if compaction succeeds. 2209 * For costly orders, we require low watermark instead of min for 2210 * compaction to proceed to increase its chances. 2211 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2212 * suitable migration targets 2213 */ 2214 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2215 low_wmark_pages(zone) : min_wmark_pages(zone); 2216 watermark += compact_gap(order); 2217 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2218 ALLOC_CMA, wmark_target)) 2219 return COMPACT_SKIPPED; 2220 2221 return COMPACT_CONTINUE; 2222 } 2223 2224 /* 2225 * compaction_suitable: Is this suitable to run compaction on this zone now? 2226 * Returns 2227 * COMPACT_SKIPPED - If there are too few free pages for compaction 2228 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2229 * COMPACT_CONTINUE - If compaction should run now 2230 */ 2231 enum compact_result compaction_suitable(struct zone *zone, int order, 2232 unsigned int alloc_flags, 2233 int highest_zoneidx) 2234 { 2235 enum compact_result ret; 2236 int fragindex; 2237 2238 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2239 zone_page_state(zone, NR_FREE_PAGES)); 2240 /* 2241 * fragmentation index determines if allocation failures are due to 2242 * low memory or external fragmentation 2243 * 2244 * index of -1000 would imply allocations might succeed depending on 2245 * watermarks, but we already failed the high-order watermark check 2246 * index towards 0 implies failure is due to lack of memory 2247 * index towards 1000 implies failure is due to fragmentation 2248 * 2249 * Only compact if a failure would be due to fragmentation. Also 2250 * ignore fragindex for non-costly orders where the alternative to 2251 * a successful reclaim/compaction is OOM. Fragindex and the 2252 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2253 * excessive compaction for costly orders, but it should not be at the 2254 * expense of system stability. 2255 */ 2256 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2257 fragindex = fragmentation_index(zone, order); 2258 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2259 ret = COMPACT_NOT_SUITABLE_ZONE; 2260 } 2261 2262 trace_mm_compaction_suitable(zone, order, ret); 2263 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2264 ret = COMPACT_SKIPPED; 2265 2266 return ret; 2267 } 2268 2269 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2270 int alloc_flags) 2271 { 2272 struct zone *zone; 2273 struct zoneref *z; 2274 2275 /* 2276 * Make sure at least one zone would pass __compaction_suitable if we continue 2277 * retrying the reclaim. 2278 */ 2279 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2280 ac->highest_zoneidx, ac->nodemask) { 2281 unsigned long available; 2282 enum compact_result compact_result; 2283 2284 /* 2285 * Do not consider all the reclaimable memory because we do not 2286 * want to trash just for a single high order allocation which 2287 * is even not guaranteed to appear even if __compaction_suitable 2288 * is happy about the watermark check. 2289 */ 2290 available = zone_reclaimable_pages(zone) / order; 2291 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2292 compact_result = __compaction_suitable(zone, order, alloc_flags, 2293 ac->highest_zoneidx, available); 2294 if (compact_result == COMPACT_CONTINUE) 2295 return true; 2296 } 2297 2298 return false; 2299 } 2300 2301 static enum compact_result 2302 compact_zone(struct compact_control *cc, struct capture_control *capc) 2303 { 2304 enum compact_result ret; 2305 unsigned long start_pfn = cc->zone->zone_start_pfn; 2306 unsigned long end_pfn = zone_end_pfn(cc->zone); 2307 unsigned long last_migrated_pfn; 2308 const bool sync = cc->mode != MIGRATE_ASYNC; 2309 bool update_cached; 2310 unsigned int nr_succeeded = 0; 2311 2312 /* 2313 * These counters track activities during zone compaction. Initialize 2314 * them before compacting a new zone. 2315 */ 2316 cc->total_migrate_scanned = 0; 2317 cc->total_free_scanned = 0; 2318 cc->nr_migratepages = 0; 2319 cc->nr_freepages = 0; 2320 INIT_LIST_HEAD(&cc->freepages); 2321 INIT_LIST_HEAD(&cc->migratepages); 2322 2323 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2324 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2325 cc->highest_zoneidx); 2326 /* Compaction is likely to fail */ 2327 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2328 return ret; 2329 2330 /* huh, compaction_suitable is returning something unexpected */ 2331 VM_BUG_ON(ret != COMPACT_CONTINUE); 2332 2333 /* 2334 * Clear pageblock skip if there were failures recently and compaction 2335 * is about to be retried after being deferred. 2336 */ 2337 if (compaction_restarting(cc->zone, cc->order)) 2338 __reset_isolation_suitable(cc->zone); 2339 2340 /* 2341 * Setup to move all movable pages to the end of the zone. Used cached 2342 * information on where the scanners should start (unless we explicitly 2343 * want to compact the whole zone), but check that it is initialised 2344 * by ensuring the values are within zone boundaries. 2345 */ 2346 cc->fast_start_pfn = 0; 2347 if (cc->whole_zone) { 2348 cc->migrate_pfn = start_pfn; 2349 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2350 } else { 2351 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2352 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2353 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2354 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2355 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2356 } 2357 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2358 cc->migrate_pfn = start_pfn; 2359 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2360 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2361 } 2362 2363 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2364 cc->whole_zone = true; 2365 } 2366 2367 last_migrated_pfn = 0; 2368 2369 /* 2370 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2371 * the basis that some migrations will fail in ASYNC mode. However, 2372 * if the cached PFNs match and pageblocks are skipped due to having 2373 * no isolation candidates, then the sync state does not matter. 2374 * Until a pageblock with isolation candidates is found, keep the 2375 * cached PFNs in sync to avoid revisiting the same blocks. 2376 */ 2377 update_cached = !sync && 2378 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2379 2380 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2381 2382 /* lru_add_drain_all could be expensive with involving other CPUs */ 2383 lru_add_drain(); 2384 2385 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2386 int err; 2387 unsigned long iteration_start_pfn = cc->migrate_pfn; 2388 2389 /* 2390 * Avoid multiple rescans which can happen if a page cannot be 2391 * isolated (dirty/writeback in async mode) or if the migrated 2392 * pages are being allocated before the pageblock is cleared. 2393 * The first rescan will capture the entire pageblock for 2394 * migration. If it fails, it'll be marked skip and scanning 2395 * will proceed as normal. 2396 */ 2397 cc->rescan = false; 2398 if (pageblock_start_pfn(last_migrated_pfn) == 2399 pageblock_start_pfn(iteration_start_pfn)) { 2400 cc->rescan = true; 2401 } 2402 2403 switch (isolate_migratepages(cc)) { 2404 case ISOLATE_ABORT: 2405 ret = COMPACT_CONTENDED; 2406 putback_movable_pages(&cc->migratepages); 2407 cc->nr_migratepages = 0; 2408 goto out; 2409 case ISOLATE_NONE: 2410 if (update_cached) { 2411 cc->zone->compact_cached_migrate_pfn[1] = 2412 cc->zone->compact_cached_migrate_pfn[0]; 2413 } 2414 2415 /* 2416 * We haven't isolated and migrated anything, but 2417 * there might still be unflushed migrations from 2418 * previous cc->order aligned block. 2419 */ 2420 goto check_drain; 2421 case ISOLATE_SUCCESS: 2422 update_cached = false; 2423 last_migrated_pfn = iteration_start_pfn; 2424 } 2425 2426 err = migrate_pages(&cc->migratepages, compaction_alloc, 2427 compaction_free, (unsigned long)cc, cc->mode, 2428 MR_COMPACTION, &nr_succeeded); 2429 2430 trace_mm_compaction_migratepages(cc, nr_succeeded); 2431 2432 /* All pages were either migrated or will be released */ 2433 cc->nr_migratepages = 0; 2434 if (err) { 2435 putback_movable_pages(&cc->migratepages); 2436 /* 2437 * migrate_pages() may return -ENOMEM when scanners meet 2438 * and we want compact_finished() to detect it 2439 */ 2440 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2441 ret = COMPACT_CONTENDED; 2442 goto out; 2443 } 2444 /* 2445 * We failed to migrate at least one page in the current 2446 * order-aligned block, so skip the rest of it. 2447 */ 2448 if (cc->direct_compaction && 2449 (cc->mode == MIGRATE_ASYNC)) { 2450 cc->migrate_pfn = block_end_pfn( 2451 cc->migrate_pfn - 1, cc->order); 2452 /* Draining pcplists is useless in this case */ 2453 last_migrated_pfn = 0; 2454 } 2455 } 2456 2457 check_drain: 2458 /* 2459 * Has the migration scanner moved away from the previous 2460 * cc->order aligned block where we migrated from? If yes, 2461 * flush the pages that were freed, so that they can merge and 2462 * compact_finished() can detect immediately if allocation 2463 * would succeed. 2464 */ 2465 if (cc->order > 0 && last_migrated_pfn) { 2466 unsigned long current_block_start = 2467 block_start_pfn(cc->migrate_pfn, cc->order); 2468 2469 if (last_migrated_pfn < current_block_start) { 2470 lru_add_drain_cpu_zone(cc->zone); 2471 /* No more flushing until we migrate again */ 2472 last_migrated_pfn = 0; 2473 } 2474 } 2475 2476 /* Stop if a page has been captured */ 2477 if (capc && capc->page) { 2478 ret = COMPACT_SUCCESS; 2479 break; 2480 } 2481 } 2482 2483 out: 2484 /* 2485 * Release free pages and update where the free scanner should restart, 2486 * so we don't leave any returned pages behind in the next attempt. 2487 */ 2488 if (cc->nr_freepages > 0) { 2489 unsigned long free_pfn = release_freepages(&cc->freepages); 2490 2491 cc->nr_freepages = 0; 2492 VM_BUG_ON(free_pfn == 0); 2493 /* The cached pfn is always the first in a pageblock */ 2494 free_pfn = pageblock_start_pfn(free_pfn); 2495 /* 2496 * Only go back, not forward. The cached pfn might have been 2497 * already reset to zone end in compact_finished() 2498 */ 2499 if (free_pfn > cc->zone->compact_cached_free_pfn) 2500 cc->zone->compact_cached_free_pfn = free_pfn; 2501 } 2502 2503 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2504 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2505 2506 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2507 2508 return ret; 2509 } 2510 2511 static enum compact_result compact_zone_order(struct zone *zone, int order, 2512 gfp_t gfp_mask, enum compact_priority prio, 2513 unsigned int alloc_flags, int highest_zoneidx, 2514 struct page **capture) 2515 { 2516 enum compact_result ret; 2517 struct compact_control cc = { 2518 .order = order, 2519 .search_order = order, 2520 .gfp_mask = gfp_mask, 2521 .zone = zone, 2522 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2523 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2524 .alloc_flags = alloc_flags, 2525 .highest_zoneidx = highest_zoneidx, 2526 .direct_compaction = true, 2527 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2528 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2529 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2530 }; 2531 struct capture_control capc = { 2532 .cc = &cc, 2533 .page = NULL, 2534 }; 2535 2536 /* 2537 * Make sure the structs are really initialized before we expose the 2538 * capture control, in case we are interrupted and the interrupt handler 2539 * frees a page. 2540 */ 2541 barrier(); 2542 WRITE_ONCE(current->capture_control, &capc); 2543 2544 ret = compact_zone(&cc, &capc); 2545 2546 VM_BUG_ON(!list_empty(&cc.freepages)); 2547 VM_BUG_ON(!list_empty(&cc.migratepages)); 2548 2549 /* 2550 * Make sure we hide capture control first before we read the captured 2551 * page pointer, otherwise an interrupt could free and capture a page 2552 * and we would leak it. 2553 */ 2554 WRITE_ONCE(current->capture_control, NULL); 2555 *capture = READ_ONCE(capc.page); 2556 /* 2557 * Technically, it is also possible that compaction is skipped but 2558 * the page is still captured out of luck(IRQ came and freed the page). 2559 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2560 * the COMPACT[STALL|FAIL] when compaction is skipped. 2561 */ 2562 if (*capture) 2563 ret = COMPACT_SUCCESS; 2564 2565 return ret; 2566 } 2567 2568 int sysctl_extfrag_threshold = 500; 2569 2570 /** 2571 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2572 * @gfp_mask: The GFP mask of the current allocation 2573 * @order: The order of the current allocation 2574 * @alloc_flags: The allocation flags of the current allocation 2575 * @ac: The context of current allocation 2576 * @prio: Determines how hard direct compaction should try to succeed 2577 * @capture: Pointer to free page created by compaction will be stored here 2578 * 2579 * This is the main entry point for direct page compaction. 2580 */ 2581 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2582 unsigned int alloc_flags, const struct alloc_context *ac, 2583 enum compact_priority prio, struct page **capture) 2584 { 2585 int may_perform_io = gfp_mask & __GFP_IO; 2586 struct zoneref *z; 2587 struct zone *zone; 2588 enum compact_result rc = COMPACT_SKIPPED; 2589 2590 /* 2591 * Check if the GFP flags allow compaction - GFP_NOIO is really 2592 * tricky context because the migration might require IO 2593 */ 2594 if (!may_perform_io) 2595 return COMPACT_SKIPPED; 2596 2597 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2598 2599 /* Compact each zone in the list */ 2600 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2601 ac->highest_zoneidx, ac->nodemask) { 2602 enum compact_result status; 2603 2604 if (prio > MIN_COMPACT_PRIORITY 2605 && compaction_deferred(zone, order)) { 2606 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2607 continue; 2608 } 2609 2610 status = compact_zone_order(zone, order, gfp_mask, prio, 2611 alloc_flags, ac->highest_zoneidx, capture); 2612 rc = max(status, rc); 2613 2614 /* The allocation should succeed, stop compacting */ 2615 if (status == COMPACT_SUCCESS) { 2616 /* 2617 * We think the allocation will succeed in this zone, 2618 * but it is not certain, hence the false. The caller 2619 * will repeat this with true if allocation indeed 2620 * succeeds in this zone. 2621 */ 2622 compaction_defer_reset(zone, order, false); 2623 2624 break; 2625 } 2626 2627 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2628 status == COMPACT_PARTIAL_SKIPPED)) 2629 /* 2630 * We think that allocation won't succeed in this zone 2631 * so we defer compaction there. If it ends up 2632 * succeeding after all, it will be reset. 2633 */ 2634 defer_compaction(zone, order); 2635 2636 /* 2637 * We might have stopped compacting due to need_resched() in 2638 * async compaction, or due to a fatal signal detected. In that 2639 * case do not try further zones 2640 */ 2641 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2642 || fatal_signal_pending(current)) 2643 break; 2644 } 2645 2646 return rc; 2647 } 2648 2649 /* 2650 * Compact all zones within a node till each zone's fragmentation score 2651 * reaches within proactive compaction thresholds (as determined by the 2652 * proactiveness tunable). 2653 * 2654 * It is possible that the function returns before reaching score targets 2655 * due to various back-off conditions, such as, contention on per-node or 2656 * per-zone locks. 2657 */ 2658 static void proactive_compact_node(pg_data_t *pgdat) 2659 { 2660 int zoneid; 2661 struct zone *zone; 2662 struct compact_control cc = { 2663 .order = -1, 2664 .mode = MIGRATE_SYNC_LIGHT, 2665 .ignore_skip_hint = true, 2666 .whole_zone = true, 2667 .gfp_mask = GFP_KERNEL, 2668 .proactive_compaction = true, 2669 }; 2670 2671 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2672 zone = &pgdat->node_zones[zoneid]; 2673 if (!populated_zone(zone)) 2674 continue; 2675 2676 cc.zone = zone; 2677 2678 compact_zone(&cc, NULL); 2679 2680 VM_BUG_ON(!list_empty(&cc.freepages)); 2681 VM_BUG_ON(!list_empty(&cc.migratepages)); 2682 } 2683 } 2684 2685 /* Compact all zones within a node */ 2686 static void compact_node(int nid) 2687 { 2688 pg_data_t *pgdat = NODE_DATA(nid); 2689 int zoneid; 2690 struct zone *zone; 2691 struct compact_control cc = { 2692 .order = -1, 2693 .mode = MIGRATE_SYNC, 2694 .ignore_skip_hint = true, 2695 .whole_zone = true, 2696 .gfp_mask = GFP_KERNEL, 2697 }; 2698 2699 2700 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2701 2702 zone = &pgdat->node_zones[zoneid]; 2703 if (!populated_zone(zone)) 2704 continue; 2705 2706 cc.zone = zone; 2707 2708 compact_zone(&cc, NULL); 2709 2710 VM_BUG_ON(!list_empty(&cc.freepages)); 2711 VM_BUG_ON(!list_empty(&cc.migratepages)); 2712 } 2713 } 2714 2715 /* Compact all nodes in the system */ 2716 static void compact_nodes(void) 2717 { 2718 int nid; 2719 2720 /* Flush pending updates to the LRU lists */ 2721 lru_add_drain_all(); 2722 2723 for_each_online_node(nid) 2724 compact_node(nid); 2725 } 2726 2727 /* 2728 * Tunable for proactive compaction. It determines how 2729 * aggressively the kernel should compact memory in the 2730 * background. It takes values in the range [0, 100]. 2731 */ 2732 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2733 2734 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2735 void *buffer, size_t *length, loff_t *ppos) 2736 { 2737 int rc, nid; 2738 2739 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2740 if (rc) 2741 return rc; 2742 2743 if (write && sysctl_compaction_proactiveness) { 2744 for_each_online_node(nid) { 2745 pg_data_t *pgdat = NODE_DATA(nid); 2746 2747 if (pgdat->proactive_compact_trigger) 2748 continue; 2749 2750 pgdat->proactive_compact_trigger = true; 2751 wake_up_interruptible(&pgdat->kcompactd_wait); 2752 } 2753 } 2754 2755 return 0; 2756 } 2757 2758 /* 2759 * This is the entry point for compacting all nodes via 2760 * /proc/sys/vm/compact_memory 2761 */ 2762 int sysctl_compaction_handler(struct ctl_table *table, int write, 2763 void *buffer, size_t *length, loff_t *ppos) 2764 { 2765 if (write) 2766 compact_nodes(); 2767 2768 return 0; 2769 } 2770 2771 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2772 static ssize_t compact_store(struct device *dev, 2773 struct device_attribute *attr, 2774 const char *buf, size_t count) 2775 { 2776 int nid = dev->id; 2777 2778 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2779 /* Flush pending updates to the LRU lists */ 2780 lru_add_drain_all(); 2781 2782 compact_node(nid); 2783 } 2784 2785 return count; 2786 } 2787 static DEVICE_ATTR_WO(compact); 2788 2789 int compaction_register_node(struct node *node) 2790 { 2791 return device_create_file(&node->dev, &dev_attr_compact); 2792 } 2793 2794 void compaction_unregister_node(struct node *node) 2795 { 2796 return device_remove_file(&node->dev, &dev_attr_compact); 2797 } 2798 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2799 2800 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2801 { 2802 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2803 pgdat->proactive_compact_trigger; 2804 } 2805 2806 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2807 { 2808 int zoneid; 2809 struct zone *zone; 2810 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2811 2812 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2813 zone = &pgdat->node_zones[zoneid]; 2814 2815 if (!populated_zone(zone)) 2816 continue; 2817 2818 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2819 highest_zoneidx) == COMPACT_CONTINUE) 2820 return true; 2821 } 2822 2823 return false; 2824 } 2825 2826 static void kcompactd_do_work(pg_data_t *pgdat) 2827 { 2828 /* 2829 * With no special task, compact all zones so that a page of requested 2830 * order is allocatable. 2831 */ 2832 int zoneid; 2833 struct zone *zone; 2834 struct compact_control cc = { 2835 .order = pgdat->kcompactd_max_order, 2836 .search_order = pgdat->kcompactd_max_order, 2837 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2838 .mode = MIGRATE_SYNC_LIGHT, 2839 .ignore_skip_hint = false, 2840 .gfp_mask = GFP_KERNEL, 2841 }; 2842 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2843 cc.highest_zoneidx); 2844 count_compact_event(KCOMPACTD_WAKE); 2845 2846 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2847 int status; 2848 2849 zone = &pgdat->node_zones[zoneid]; 2850 if (!populated_zone(zone)) 2851 continue; 2852 2853 if (compaction_deferred(zone, cc.order)) 2854 continue; 2855 2856 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2857 COMPACT_CONTINUE) 2858 continue; 2859 2860 if (kthread_should_stop()) 2861 return; 2862 2863 cc.zone = zone; 2864 status = compact_zone(&cc, NULL); 2865 2866 if (status == COMPACT_SUCCESS) { 2867 compaction_defer_reset(zone, cc.order, false); 2868 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2869 /* 2870 * Buddy pages may become stranded on pcps that could 2871 * otherwise coalesce on the zone's free area for 2872 * order >= cc.order. This is ratelimited by the 2873 * upcoming deferral. 2874 */ 2875 drain_all_pages(zone); 2876 2877 /* 2878 * We use sync migration mode here, so we defer like 2879 * sync direct compaction does. 2880 */ 2881 defer_compaction(zone, cc.order); 2882 } 2883 2884 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2885 cc.total_migrate_scanned); 2886 count_compact_events(KCOMPACTD_FREE_SCANNED, 2887 cc.total_free_scanned); 2888 2889 VM_BUG_ON(!list_empty(&cc.freepages)); 2890 VM_BUG_ON(!list_empty(&cc.migratepages)); 2891 } 2892 2893 /* 2894 * Regardless of success, we are done until woken up next. But remember 2895 * the requested order/highest_zoneidx in case it was higher/tighter 2896 * than our current ones 2897 */ 2898 if (pgdat->kcompactd_max_order <= cc.order) 2899 pgdat->kcompactd_max_order = 0; 2900 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2901 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2902 } 2903 2904 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2905 { 2906 if (!order) 2907 return; 2908 2909 if (pgdat->kcompactd_max_order < order) 2910 pgdat->kcompactd_max_order = order; 2911 2912 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2913 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2914 2915 /* 2916 * Pairs with implicit barrier in wait_event_freezable() 2917 * such that wakeups are not missed. 2918 */ 2919 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2920 return; 2921 2922 if (!kcompactd_node_suitable(pgdat)) 2923 return; 2924 2925 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2926 highest_zoneidx); 2927 wake_up_interruptible(&pgdat->kcompactd_wait); 2928 } 2929 2930 /* 2931 * The background compaction daemon, started as a kernel thread 2932 * from the init process. 2933 */ 2934 static int kcompactd(void *p) 2935 { 2936 pg_data_t *pgdat = (pg_data_t *)p; 2937 struct task_struct *tsk = current; 2938 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 2939 long timeout = default_timeout; 2940 2941 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2942 2943 if (!cpumask_empty(cpumask)) 2944 set_cpus_allowed_ptr(tsk, cpumask); 2945 2946 set_freezable(); 2947 2948 pgdat->kcompactd_max_order = 0; 2949 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2950 2951 while (!kthread_should_stop()) { 2952 unsigned long pflags; 2953 2954 /* 2955 * Avoid the unnecessary wakeup for proactive compaction 2956 * when it is disabled. 2957 */ 2958 if (!sysctl_compaction_proactiveness) 2959 timeout = MAX_SCHEDULE_TIMEOUT; 2960 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2961 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2962 kcompactd_work_requested(pgdat), timeout) && 2963 !pgdat->proactive_compact_trigger) { 2964 2965 psi_memstall_enter(&pflags); 2966 kcompactd_do_work(pgdat); 2967 psi_memstall_leave(&pflags); 2968 /* 2969 * Reset the timeout value. The defer timeout from 2970 * proactive compaction is lost here but that is fine 2971 * as the condition of the zone changing substantionally 2972 * then carrying on with the previous defer interval is 2973 * not useful. 2974 */ 2975 timeout = default_timeout; 2976 continue; 2977 } 2978 2979 /* 2980 * Start the proactive work with default timeout. Based 2981 * on the fragmentation score, this timeout is updated. 2982 */ 2983 timeout = default_timeout; 2984 if (should_proactive_compact_node(pgdat)) { 2985 unsigned int prev_score, score; 2986 2987 prev_score = fragmentation_score_node(pgdat); 2988 proactive_compact_node(pgdat); 2989 score = fragmentation_score_node(pgdat); 2990 /* 2991 * Defer proactive compaction if the fragmentation 2992 * score did not go down i.e. no progress made. 2993 */ 2994 if (unlikely(score >= prev_score)) 2995 timeout = 2996 default_timeout << COMPACT_MAX_DEFER_SHIFT; 2997 } 2998 if (unlikely(pgdat->proactive_compact_trigger)) 2999 pgdat->proactive_compact_trigger = false; 3000 } 3001 3002 return 0; 3003 } 3004 3005 /* 3006 * This kcompactd start function will be called by init and node-hot-add. 3007 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3008 */ 3009 void kcompactd_run(int nid) 3010 { 3011 pg_data_t *pgdat = NODE_DATA(nid); 3012 3013 if (pgdat->kcompactd) 3014 return; 3015 3016 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3017 if (IS_ERR(pgdat->kcompactd)) { 3018 pr_err("Failed to start kcompactd on node %d\n", nid); 3019 pgdat->kcompactd = NULL; 3020 } 3021 } 3022 3023 /* 3024 * Called by memory hotplug when all memory in a node is offlined. Caller must 3025 * hold mem_hotplug_begin/end(). 3026 */ 3027 void kcompactd_stop(int nid) 3028 { 3029 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3030 3031 if (kcompactd) { 3032 kthread_stop(kcompactd); 3033 NODE_DATA(nid)->kcompactd = NULL; 3034 } 3035 } 3036 3037 /* 3038 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3039 * not required for correctness. So if the last cpu in a node goes 3040 * away, we get changed to run anywhere: as the first one comes back, 3041 * restore their cpu bindings. 3042 */ 3043 static int kcompactd_cpu_online(unsigned int cpu) 3044 { 3045 int nid; 3046 3047 for_each_node_state(nid, N_MEMORY) { 3048 pg_data_t *pgdat = NODE_DATA(nid); 3049 const struct cpumask *mask; 3050 3051 mask = cpumask_of_node(pgdat->node_id); 3052 3053 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3054 /* One of our CPUs online: restore mask */ 3055 if (pgdat->kcompactd) 3056 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3057 } 3058 return 0; 3059 } 3060 3061 static int __init kcompactd_init(void) 3062 { 3063 int nid; 3064 int ret; 3065 3066 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3067 "mm/compaction:online", 3068 kcompactd_cpu_online, NULL); 3069 if (ret < 0) { 3070 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3071 return ret; 3072 } 3073 3074 for_each_node_state(nid, N_MEMORY) 3075 kcompactd_run(nid); 3076 return 0; 3077 } 3078 subsys_initcall(kcompactd_init) 3079 3080 #endif /* CONFIG_COMPACTION */ 3081