1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/cpu.h> 11 #include <linux/swap.h> 12 #include <linux/migrate.h> 13 #include <linux/compaction.h> 14 #include <linux/mm_inline.h> 15 #include <linux/backing-dev.h> 16 #include <linux/sysctl.h> 17 #include <linux/sysfs.h> 18 #include <linux/page-isolation.h> 19 #include <linux/kasan.h> 20 #include <linux/kthread.h> 21 #include <linux/freezer.h> 22 #include <linux/page_owner.h> 23 #include "internal.h" 24 25 #ifdef CONFIG_COMPACTION 26 static inline void count_compact_event(enum vm_event_item item) 27 { 28 count_vm_event(item); 29 } 30 31 static inline void count_compact_events(enum vm_event_item item, long delta) 32 { 33 count_vm_events(item, delta); 34 } 35 #else 36 #define count_compact_event(item) do { } while (0) 37 #define count_compact_events(item, delta) do { } while (0) 38 #endif 39 40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/compaction.h> 44 45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 49 50 static unsigned long release_freepages(struct list_head *freelist) 51 { 52 struct page *page, *next; 53 unsigned long high_pfn = 0; 54 55 list_for_each_entry_safe(page, next, freelist, lru) { 56 unsigned long pfn = page_to_pfn(page); 57 list_del(&page->lru); 58 __free_page(page); 59 if (pfn > high_pfn) 60 high_pfn = pfn; 61 } 62 63 return high_pfn; 64 } 65 66 static void map_pages(struct list_head *list) 67 { 68 unsigned int i, order, nr_pages; 69 struct page *page, *next; 70 LIST_HEAD(tmp_list); 71 72 list_for_each_entry_safe(page, next, list, lru) { 73 list_del(&page->lru); 74 75 order = page_private(page); 76 nr_pages = 1 << order; 77 78 post_alloc_hook(page, order, __GFP_MOVABLE); 79 if (order) 80 split_page(page, order); 81 82 for (i = 0; i < nr_pages; i++) { 83 list_add(&page->lru, &tmp_list); 84 page++; 85 } 86 } 87 88 list_splice(&tmp_list, list); 89 } 90 91 static inline bool migrate_async_suitable(int migratetype) 92 { 93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 94 } 95 96 #ifdef CONFIG_COMPACTION 97 98 int PageMovable(struct page *page) 99 { 100 struct address_space *mapping; 101 102 VM_BUG_ON_PAGE(!PageLocked(page), page); 103 if (!__PageMovable(page)) 104 return 0; 105 106 mapping = page_mapping(page); 107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 108 return 1; 109 110 return 0; 111 } 112 EXPORT_SYMBOL(PageMovable); 113 114 void __SetPageMovable(struct page *page, struct address_space *mapping) 115 { 116 VM_BUG_ON_PAGE(!PageLocked(page), page); 117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 119 } 120 EXPORT_SYMBOL(__SetPageMovable); 121 122 void __ClearPageMovable(struct page *page) 123 { 124 VM_BUG_ON_PAGE(!PageLocked(page), page); 125 VM_BUG_ON_PAGE(!PageMovable(page), page); 126 /* 127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 128 * flag so that VM can catch up released page by driver after isolation. 129 * With it, VM migration doesn't try to put it back. 130 */ 131 page->mapping = (void *)((unsigned long)page->mapping & 132 PAGE_MAPPING_MOVABLE); 133 } 134 EXPORT_SYMBOL(__ClearPageMovable); 135 136 /* Do not skip compaction more than 64 times */ 137 #define COMPACT_MAX_DEFER_SHIFT 6 138 139 /* 140 * Compaction is deferred when compaction fails to result in a page 141 * allocation success. 1 << compact_defer_limit compactions are skipped up 142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 143 */ 144 void defer_compaction(struct zone *zone, int order) 145 { 146 zone->compact_considered = 0; 147 zone->compact_defer_shift++; 148 149 if (order < zone->compact_order_failed) 150 zone->compact_order_failed = order; 151 152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 154 155 trace_mm_compaction_defer_compaction(zone, order); 156 } 157 158 /* Returns true if compaction should be skipped this time */ 159 bool compaction_deferred(struct zone *zone, int order) 160 { 161 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 162 163 if (order < zone->compact_order_failed) 164 return false; 165 166 /* Avoid possible overflow */ 167 if (++zone->compact_considered > defer_limit) 168 zone->compact_considered = defer_limit; 169 170 if (zone->compact_considered >= defer_limit) 171 return false; 172 173 trace_mm_compaction_deferred(zone, order); 174 175 return true; 176 } 177 178 /* 179 * Update defer tracking counters after successful compaction of given order, 180 * which means an allocation either succeeded (alloc_success == true) or is 181 * expected to succeed. 182 */ 183 void compaction_defer_reset(struct zone *zone, int order, 184 bool alloc_success) 185 { 186 if (alloc_success) { 187 zone->compact_considered = 0; 188 zone->compact_defer_shift = 0; 189 } 190 if (order >= zone->compact_order_failed) 191 zone->compact_order_failed = order + 1; 192 193 trace_mm_compaction_defer_reset(zone, order); 194 } 195 196 /* Returns true if restarting compaction after many failures */ 197 bool compaction_restarting(struct zone *zone, int order) 198 { 199 if (order < zone->compact_order_failed) 200 return false; 201 202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 203 zone->compact_considered >= 1UL << zone->compact_defer_shift; 204 } 205 206 /* Returns true if the pageblock should be scanned for pages to isolate. */ 207 static inline bool isolation_suitable(struct compact_control *cc, 208 struct page *page) 209 { 210 if (cc->ignore_skip_hint) 211 return true; 212 213 return !get_pageblock_skip(page); 214 } 215 216 static void reset_cached_positions(struct zone *zone) 217 { 218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 220 zone->compact_cached_free_pfn = 221 pageblock_start_pfn(zone_end_pfn(zone) - 1); 222 } 223 224 /* 225 * This function is called to clear all cached information on pageblocks that 226 * should be skipped for page isolation when the migrate and free page scanner 227 * meet. 228 */ 229 static void __reset_isolation_suitable(struct zone *zone) 230 { 231 unsigned long start_pfn = zone->zone_start_pfn; 232 unsigned long end_pfn = zone_end_pfn(zone); 233 unsigned long pfn; 234 235 zone->compact_blockskip_flush = false; 236 237 /* Walk the zone and mark every pageblock as suitable for isolation */ 238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 239 struct page *page; 240 241 cond_resched(); 242 243 if (!pfn_valid(pfn)) 244 continue; 245 246 page = pfn_to_page(pfn); 247 if (zone != page_zone(page)) 248 continue; 249 250 clear_pageblock_skip(page); 251 } 252 253 reset_cached_positions(zone); 254 } 255 256 void reset_isolation_suitable(pg_data_t *pgdat) 257 { 258 int zoneid; 259 260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 261 struct zone *zone = &pgdat->node_zones[zoneid]; 262 if (!populated_zone(zone)) 263 continue; 264 265 /* Only flush if a full compaction finished recently */ 266 if (zone->compact_blockskip_flush) 267 __reset_isolation_suitable(zone); 268 } 269 } 270 271 /* 272 * If no pages were isolated then mark this pageblock to be skipped in the 273 * future. The information is later cleared by __reset_isolation_suitable(). 274 */ 275 static void update_pageblock_skip(struct compact_control *cc, 276 struct page *page, unsigned long nr_isolated, 277 bool migrate_scanner) 278 { 279 struct zone *zone = cc->zone; 280 unsigned long pfn; 281 282 if (cc->ignore_skip_hint) 283 return; 284 285 if (!page) 286 return; 287 288 if (nr_isolated) 289 return; 290 291 set_pageblock_skip(page); 292 293 pfn = page_to_pfn(page); 294 295 /* Update where async and sync compaction should restart */ 296 if (migrate_scanner) { 297 if (pfn > zone->compact_cached_migrate_pfn[0]) 298 zone->compact_cached_migrate_pfn[0] = pfn; 299 if (cc->mode != MIGRATE_ASYNC && 300 pfn > zone->compact_cached_migrate_pfn[1]) 301 zone->compact_cached_migrate_pfn[1] = pfn; 302 } else { 303 if (pfn < zone->compact_cached_free_pfn) 304 zone->compact_cached_free_pfn = pfn; 305 } 306 } 307 #else 308 static inline bool isolation_suitable(struct compact_control *cc, 309 struct page *page) 310 { 311 return true; 312 } 313 314 static void update_pageblock_skip(struct compact_control *cc, 315 struct page *page, unsigned long nr_isolated, 316 bool migrate_scanner) 317 { 318 } 319 #endif /* CONFIG_COMPACTION */ 320 321 /* 322 * Compaction requires the taking of some coarse locks that are potentially 323 * very heavily contended. For async compaction, back out if the lock cannot 324 * be taken immediately. For sync compaction, spin on the lock if needed. 325 * 326 * Returns true if the lock is held 327 * Returns false if the lock is not held and compaction should abort 328 */ 329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 330 struct compact_control *cc) 331 { 332 if (cc->mode == MIGRATE_ASYNC) { 333 if (!spin_trylock_irqsave(lock, *flags)) { 334 cc->contended = true; 335 return false; 336 } 337 } else { 338 spin_lock_irqsave(lock, *flags); 339 } 340 341 return true; 342 } 343 344 /* 345 * Compaction requires the taking of some coarse locks that are potentially 346 * very heavily contended. The lock should be periodically unlocked to avoid 347 * having disabled IRQs for a long time, even when there is nobody waiting on 348 * the lock. It might also be that allowing the IRQs will result in 349 * need_resched() becoming true. If scheduling is needed, async compaction 350 * aborts. Sync compaction schedules. 351 * Either compaction type will also abort if a fatal signal is pending. 352 * In either case if the lock was locked, it is dropped and not regained. 353 * 354 * Returns true if compaction should abort due to fatal signal pending, or 355 * async compaction due to need_resched() 356 * Returns false when compaction can continue (sync compaction might have 357 * scheduled) 358 */ 359 static bool compact_unlock_should_abort(spinlock_t *lock, 360 unsigned long flags, bool *locked, struct compact_control *cc) 361 { 362 if (*locked) { 363 spin_unlock_irqrestore(lock, flags); 364 *locked = false; 365 } 366 367 if (fatal_signal_pending(current)) { 368 cc->contended = true; 369 return true; 370 } 371 372 if (need_resched()) { 373 if (cc->mode == MIGRATE_ASYNC) { 374 cc->contended = true; 375 return true; 376 } 377 cond_resched(); 378 } 379 380 return false; 381 } 382 383 /* 384 * Aside from avoiding lock contention, compaction also periodically checks 385 * need_resched() and either schedules in sync compaction or aborts async 386 * compaction. This is similar to what compact_unlock_should_abort() does, but 387 * is used where no lock is concerned. 388 * 389 * Returns false when no scheduling was needed, or sync compaction scheduled. 390 * Returns true when async compaction should abort. 391 */ 392 static inline bool compact_should_abort(struct compact_control *cc) 393 { 394 /* async compaction aborts if contended */ 395 if (need_resched()) { 396 if (cc->mode == MIGRATE_ASYNC) { 397 cc->contended = true; 398 return true; 399 } 400 401 cond_resched(); 402 } 403 404 return false; 405 } 406 407 /* 408 * Isolate free pages onto a private freelist. If @strict is true, will abort 409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 410 * (even though it may still end up isolating some pages). 411 */ 412 static unsigned long isolate_freepages_block(struct compact_control *cc, 413 unsigned long *start_pfn, 414 unsigned long end_pfn, 415 struct list_head *freelist, 416 bool strict) 417 { 418 int nr_scanned = 0, total_isolated = 0; 419 struct page *cursor, *valid_page = NULL; 420 unsigned long flags = 0; 421 bool locked = false; 422 unsigned long blockpfn = *start_pfn; 423 unsigned int order; 424 425 cursor = pfn_to_page(blockpfn); 426 427 /* Isolate free pages. */ 428 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 429 int isolated; 430 struct page *page = cursor; 431 432 /* 433 * Periodically drop the lock (if held) regardless of its 434 * contention, to give chance to IRQs. Abort if fatal signal 435 * pending or async compaction detects need_resched() 436 */ 437 if (!(blockpfn % SWAP_CLUSTER_MAX) 438 && compact_unlock_should_abort(&cc->zone->lock, flags, 439 &locked, cc)) 440 break; 441 442 nr_scanned++; 443 if (!pfn_valid_within(blockpfn)) 444 goto isolate_fail; 445 446 if (!valid_page) 447 valid_page = page; 448 449 /* 450 * For compound pages such as THP and hugetlbfs, we can save 451 * potentially a lot of iterations if we skip them at once. 452 * The check is racy, but we can consider only valid values 453 * and the only danger is skipping too much. 454 */ 455 if (PageCompound(page)) { 456 unsigned int comp_order = compound_order(page); 457 458 if (likely(comp_order < MAX_ORDER)) { 459 blockpfn += (1UL << comp_order) - 1; 460 cursor += (1UL << comp_order) - 1; 461 } 462 463 goto isolate_fail; 464 } 465 466 if (!PageBuddy(page)) 467 goto isolate_fail; 468 469 /* 470 * If we already hold the lock, we can skip some rechecking. 471 * Note that if we hold the lock now, checked_pageblock was 472 * already set in some previous iteration (or strict is true), 473 * so it is correct to skip the suitable migration target 474 * recheck as well. 475 */ 476 if (!locked) { 477 /* 478 * The zone lock must be held to isolate freepages. 479 * Unfortunately this is a very coarse lock and can be 480 * heavily contended if there are parallel allocations 481 * or parallel compactions. For async compaction do not 482 * spin on the lock and we acquire the lock as late as 483 * possible. 484 */ 485 locked = compact_trylock_irqsave(&cc->zone->lock, 486 &flags, cc); 487 if (!locked) 488 break; 489 490 /* Recheck this is a buddy page under lock */ 491 if (!PageBuddy(page)) 492 goto isolate_fail; 493 } 494 495 /* Found a free page, will break it into order-0 pages */ 496 order = page_order(page); 497 isolated = __isolate_free_page(page, order); 498 if (!isolated) 499 break; 500 set_page_private(page, order); 501 502 total_isolated += isolated; 503 cc->nr_freepages += isolated; 504 list_add_tail(&page->lru, freelist); 505 506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 507 blockpfn += isolated; 508 break; 509 } 510 /* Advance to the end of split page */ 511 blockpfn += isolated - 1; 512 cursor += isolated - 1; 513 continue; 514 515 isolate_fail: 516 if (strict) 517 break; 518 else 519 continue; 520 521 } 522 523 if (locked) 524 spin_unlock_irqrestore(&cc->zone->lock, flags); 525 526 /* 527 * There is a tiny chance that we have read bogus compound_order(), 528 * so be careful to not go outside of the pageblock. 529 */ 530 if (unlikely(blockpfn > end_pfn)) 531 blockpfn = end_pfn; 532 533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 534 nr_scanned, total_isolated); 535 536 /* Record how far we have got within the block */ 537 *start_pfn = blockpfn; 538 539 /* 540 * If strict isolation is requested by CMA then check that all the 541 * pages requested were isolated. If there were any failures, 0 is 542 * returned and CMA will fail. 543 */ 544 if (strict && blockpfn < end_pfn) 545 total_isolated = 0; 546 547 /* Update the pageblock-skip if the whole pageblock was scanned */ 548 if (blockpfn == end_pfn) 549 update_pageblock_skip(cc, valid_page, total_isolated, false); 550 551 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 552 if (total_isolated) 553 count_compact_events(COMPACTISOLATED, total_isolated); 554 return total_isolated; 555 } 556 557 /** 558 * isolate_freepages_range() - isolate free pages. 559 * @start_pfn: The first PFN to start isolating. 560 * @end_pfn: The one-past-last PFN. 561 * 562 * Non-free pages, invalid PFNs, or zone boundaries within the 563 * [start_pfn, end_pfn) range are considered errors, cause function to 564 * undo its actions and return zero. 565 * 566 * Otherwise, function returns one-past-the-last PFN of isolated page 567 * (which may be greater then end_pfn if end fell in a middle of 568 * a free page). 569 */ 570 unsigned long 571 isolate_freepages_range(struct compact_control *cc, 572 unsigned long start_pfn, unsigned long end_pfn) 573 { 574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 575 LIST_HEAD(freelist); 576 577 pfn = start_pfn; 578 block_start_pfn = pageblock_start_pfn(pfn); 579 if (block_start_pfn < cc->zone->zone_start_pfn) 580 block_start_pfn = cc->zone->zone_start_pfn; 581 block_end_pfn = pageblock_end_pfn(pfn); 582 583 for (; pfn < end_pfn; pfn += isolated, 584 block_start_pfn = block_end_pfn, 585 block_end_pfn += pageblock_nr_pages) { 586 /* Protect pfn from changing by isolate_freepages_block */ 587 unsigned long isolate_start_pfn = pfn; 588 589 block_end_pfn = min(block_end_pfn, end_pfn); 590 591 /* 592 * pfn could pass the block_end_pfn if isolated freepage 593 * is more than pageblock order. In this case, we adjust 594 * scanning range to right one. 595 */ 596 if (pfn >= block_end_pfn) { 597 block_start_pfn = pageblock_start_pfn(pfn); 598 block_end_pfn = pageblock_end_pfn(pfn); 599 block_end_pfn = min(block_end_pfn, end_pfn); 600 } 601 602 if (!pageblock_pfn_to_page(block_start_pfn, 603 block_end_pfn, cc->zone)) 604 break; 605 606 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 607 block_end_pfn, &freelist, true); 608 609 /* 610 * In strict mode, isolate_freepages_block() returns 0 if 611 * there are any holes in the block (ie. invalid PFNs or 612 * non-free pages). 613 */ 614 if (!isolated) 615 break; 616 617 /* 618 * If we managed to isolate pages, it is always (1 << n) * 619 * pageblock_nr_pages for some non-negative n. (Max order 620 * page may span two pageblocks). 621 */ 622 } 623 624 /* __isolate_free_page() does not map the pages */ 625 map_pages(&freelist); 626 627 if (pfn < end_pfn) { 628 /* Loop terminated early, cleanup. */ 629 release_freepages(&freelist); 630 return 0; 631 } 632 633 /* We don't use freelists for anything. */ 634 return pfn; 635 } 636 637 /* Update the number of anon and file isolated pages in the zone */ 638 static void acct_isolated(struct zone *zone, struct compact_control *cc) 639 { 640 struct page *page; 641 unsigned int count[2] = { 0, }; 642 643 if (list_empty(&cc->migratepages)) 644 return; 645 646 list_for_each_entry(page, &cc->migratepages, lru) 647 count[!!page_is_file_cache(page)]++; 648 649 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]); 650 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]); 651 } 652 653 /* Similar to reclaim, but different enough that they don't share logic */ 654 static bool too_many_isolated(struct zone *zone) 655 { 656 unsigned long active, inactive, isolated; 657 658 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) + 659 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON); 660 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) + 661 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON); 662 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) + 663 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON); 664 665 return isolated > (inactive + active) / 2; 666 } 667 668 /** 669 * isolate_migratepages_block() - isolate all migrate-able pages within 670 * a single pageblock 671 * @cc: Compaction control structure. 672 * @low_pfn: The first PFN to isolate 673 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 674 * @isolate_mode: Isolation mode to be used. 675 * 676 * Isolate all pages that can be migrated from the range specified by 677 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 678 * Returns zero if there is a fatal signal pending, otherwise PFN of the 679 * first page that was not scanned (which may be both less, equal to or more 680 * than end_pfn). 681 * 682 * The pages are isolated on cc->migratepages list (not required to be empty), 683 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 684 * is neither read nor updated. 685 */ 686 static unsigned long 687 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 688 unsigned long end_pfn, isolate_mode_t isolate_mode) 689 { 690 struct zone *zone = cc->zone; 691 unsigned long nr_scanned = 0, nr_isolated = 0; 692 struct lruvec *lruvec; 693 unsigned long flags = 0; 694 bool locked = false; 695 struct page *page = NULL, *valid_page = NULL; 696 unsigned long start_pfn = low_pfn; 697 bool skip_on_failure = false; 698 unsigned long next_skip_pfn = 0; 699 700 /* 701 * Ensure that there are not too many pages isolated from the LRU 702 * list by either parallel reclaimers or compaction. If there are, 703 * delay for some time until fewer pages are isolated 704 */ 705 while (unlikely(too_many_isolated(zone))) { 706 /* async migration should just abort */ 707 if (cc->mode == MIGRATE_ASYNC) 708 return 0; 709 710 congestion_wait(BLK_RW_ASYNC, HZ/10); 711 712 if (fatal_signal_pending(current)) 713 return 0; 714 } 715 716 if (compact_should_abort(cc)) 717 return 0; 718 719 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 720 skip_on_failure = true; 721 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 722 } 723 724 /* Time to isolate some pages for migration */ 725 for (; low_pfn < end_pfn; low_pfn++) { 726 727 if (skip_on_failure && low_pfn >= next_skip_pfn) { 728 /* 729 * We have isolated all migration candidates in the 730 * previous order-aligned block, and did not skip it due 731 * to failure. We should migrate the pages now and 732 * hopefully succeed compaction. 733 */ 734 if (nr_isolated) 735 break; 736 737 /* 738 * We failed to isolate in the previous order-aligned 739 * block. Set the new boundary to the end of the 740 * current block. Note we can't simply increase 741 * next_skip_pfn by 1 << order, as low_pfn might have 742 * been incremented by a higher number due to skipping 743 * a compound or a high-order buddy page in the 744 * previous loop iteration. 745 */ 746 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 747 } 748 749 /* 750 * Periodically drop the lock (if held) regardless of its 751 * contention, to give chance to IRQs. Abort async compaction 752 * if contended. 753 */ 754 if (!(low_pfn % SWAP_CLUSTER_MAX) 755 && compact_unlock_should_abort(zone_lru_lock(zone), flags, 756 &locked, cc)) 757 break; 758 759 if (!pfn_valid_within(low_pfn)) 760 goto isolate_fail; 761 nr_scanned++; 762 763 page = pfn_to_page(low_pfn); 764 765 if (!valid_page) 766 valid_page = page; 767 768 /* 769 * Skip if free. We read page order here without zone lock 770 * which is generally unsafe, but the race window is small and 771 * the worst thing that can happen is that we skip some 772 * potential isolation targets. 773 */ 774 if (PageBuddy(page)) { 775 unsigned long freepage_order = page_order_unsafe(page); 776 777 /* 778 * Without lock, we cannot be sure that what we got is 779 * a valid page order. Consider only values in the 780 * valid order range to prevent low_pfn overflow. 781 */ 782 if (freepage_order > 0 && freepage_order < MAX_ORDER) 783 low_pfn += (1UL << freepage_order) - 1; 784 continue; 785 } 786 787 /* 788 * Regardless of being on LRU, compound pages such as THP and 789 * hugetlbfs are not to be compacted. We can potentially save 790 * a lot of iterations if we skip them at once. The check is 791 * racy, but we can consider only valid values and the only 792 * danger is skipping too much. 793 */ 794 if (PageCompound(page)) { 795 unsigned int comp_order = compound_order(page); 796 797 if (likely(comp_order < MAX_ORDER)) 798 low_pfn += (1UL << comp_order) - 1; 799 800 goto isolate_fail; 801 } 802 803 /* 804 * Check may be lockless but that's ok as we recheck later. 805 * It's possible to migrate LRU and non-lru movable pages. 806 * Skip any other type of page 807 */ 808 if (!PageLRU(page)) { 809 /* 810 * __PageMovable can return false positive so we need 811 * to verify it under page_lock. 812 */ 813 if (unlikely(__PageMovable(page)) && 814 !PageIsolated(page)) { 815 if (locked) { 816 spin_unlock_irqrestore(zone_lru_lock(zone), 817 flags); 818 locked = false; 819 } 820 821 if (isolate_movable_page(page, isolate_mode)) 822 goto isolate_success; 823 } 824 825 goto isolate_fail; 826 } 827 828 /* 829 * Migration will fail if an anonymous page is pinned in memory, 830 * so avoid taking lru_lock and isolating it unnecessarily in an 831 * admittedly racy check. 832 */ 833 if (!page_mapping(page) && 834 page_count(page) > page_mapcount(page)) 835 goto isolate_fail; 836 837 /* If we already hold the lock, we can skip some rechecking */ 838 if (!locked) { 839 locked = compact_trylock_irqsave(zone_lru_lock(zone), 840 &flags, cc); 841 if (!locked) 842 break; 843 844 /* Recheck PageLRU and PageCompound under lock */ 845 if (!PageLRU(page)) 846 goto isolate_fail; 847 848 /* 849 * Page become compound since the non-locked check, 850 * and it's on LRU. It can only be a THP so the order 851 * is safe to read and it's 0 for tail pages. 852 */ 853 if (unlikely(PageCompound(page))) { 854 low_pfn += (1UL << compound_order(page)) - 1; 855 goto isolate_fail; 856 } 857 } 858 859 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 860 861 /* Try isolate the page */ 862 if (__isolate_lru_page(page, isolate_mode) != 0) 863 goto isolate_fail; 864 865 VM_BUG_ON_PAGE(PageCompound(page), page); 866 867 /* Successfully isolated */ 868 del_page_from_lru_list(page, lruvec, page_lru(page)); 869 870 isolate_success: 871 list_add(&page->lru, &cc->migratepages); 872 cc->nr_migratepages++; 873 nr_isolated++; 874 875 /* 876 * Record where we could have freed pages by migration and not 877 * yet flushed them to buddy allocator. 878 * - this is the lowest page that was isolated and likely be 879 * then freed by migration. 880 */ 881 if (!cc->last_migrated_pfn) 882 cc->last_migrated_pfn = low_pfn; 883 884 /* Avoid isolating too much */ 885 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 886 ++low_pfn; 887 break; 888 } 889 890 continue; 891 isolate_fail: 892 if (!skip_on_failure) 893 continue; 894 895 /* 896 * We have isolated some pages, but then failed. Release them 897 * instead of migrating, as we cannot form the cc->order buddy 898 * page anyway. 899 */ 900 if (nr_isolated) { 901 if (locked) { 902 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 903 locked = false; 904 } 905 acct_isolated(zone, cc); 906 putback_movable_pages(&cc->migratepages); 907 cc->nr_migratepages = 0; 908 cc->last_migrated_pfn = 0; 909 nr_isolated = 0; 910 } 911 912 if (low_pfn < next_skip_pfn) { 913 low_pfn = next_skip_pfn - 1; 914 /* 915 * The check near the loop beginning would have updated 916 * next_skip_pfn too, but this is a bit simpler. 917 */ 918 next_skip_pfn += 1UL << cc->order; 919 } 920 } 921 922 /* 923 * The PageBuddy() check could have potentially brought us outside 924 * the range to be scanned. 925 */ 926 if (unlikely(low_pfn > end_pfn)) 927 low_pfn = end_pfn; 928 929 if (locked) 930 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 931 932 /* 933 * Update the pageblock-skip information and cached scanner pfn, 934 * if the whole pageblock was scanned without isolating any page. 935 */ 936 if (low_pfn == end_pfn) 937 update_pageblock_skip(cc, valid_page, nr_isolated, true); 938 939 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 940 nr_scanned, nr_isolated); 941 942 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 943 if (nr_isolated) 944 count_compact_events(COMPACTISOLATED, nr_isolated); 945 946 return low_pfn; 947 } 948 949 /** 950 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 951 * @cc: Compaction control structure. 952 * @start_pfn: The first PFN to start isolating. 953 * @end_pfn: The one-past-last PFN. 954 * 955 * Returns zero if isolation fails fatally due to e.g. pending signal. 956 * Otherwise, function returns one-past-the-last PFN of isolated page 957 * (which may be greater than end_pfn if end fell in a middle of a THP page). 958 */ 959 unsigned long 960 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 961 unsigned long end_pfn) 962 { 963 unsigned long pfn, block_start_pfn, block_end_pfn; 964 965 /* Scan block by block. First and last block may be incomplete */ 966 pfn = start_pfn; 967 block_start_pfn = pageblock_start_pfn(pfn); 968 if (block_start_pfn < cc->zone->zone_start_pfn) 969 block_start_pfn = cc->zone->zone_start_pfn; 970 block_end_pfn = pageblock_end_pfn(pfn); 971 972 for (; pfn < end_pfn; pfn = block_end_pfn, 973 block_start_pfn = block_end_pfn, 974 block_end_pfn += pageblock_nr_pages) { 975 976 block_end_pfn = min(block_end_pfn, end_pfn); 977 978 if (!pageblock_pfn_to_page(block_start_pfn, 979 block_end_pfn, cc->zone)) 980 continue; 981 982 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 983 ISOLATE_UNEVICTABLE); 984 985 if (!pfn) 986 break; 987 988 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 989 break; 990 } 991 acct_isolated(cc->zone, cc); 992 993 return pfn; 994 } 995 996 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 997 #ifdef CONFIG_COMPACTION 998 999 /* Returns true if the page is within a block suitable for migration to */ 1000 static bool suitable_migration_target(struct compact_control *cc, 1001 struct page *page) 1002 { 1003 if (cc->ignore_block_suitable) 1004 return true; 1005 1006 /* If the page is a large free page, then disallow migration */ 1007 if (PageBuddy(page)) { 1008 /* 1009 * We are checking page_order without zone->lock taken. But 1010 * the only small danger is that we skip a potentially suitable 1011 * pageblock, so it's not worth to check order for valid range. 1012 */ 1013 if (page_order_unsafe(page) >= pageblock_order) 1014 return false; 1015 } 1016 1017 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1018 if (migrate_async_suitable(get_pageblock_migratetype(page))) 1019 return true; 1020 1021 /* Otherwise skip the block */ 1022 return false; 1023 } 1024 1025 /* 1026 * Test whether the free scanner has reached the same or lower pageblock than 1027 * the migration scanner, and compaction should thus terminate. 1028 */ 1029 static inline bool compact_scanners_met(struct compact_control *cc) 1030 { 1031 return (cc->free_pfn >> pageblock_order) 1032 <= (cc->migrate_pfn >> pageblock_order); 1033 } 1034 1035 /* 1036 * Based on information in the current compact_control, find blocks 1037 * suitable for isolating free pages from and then isolate them. 1038 */ 1039 static void isolate_freepages(struct compact_control *cc) 1040 { 1041 struct zone *zone = cc->zone; 1042 struct page *page; 1043 unsigned long block_start_pfn; /* start of current pageblock */ 1044 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1045 unsigned long block_end_pfn; /* end of current pageblock */ 1046 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1047 struct list_head *freelist = &cc->freepages; 1048 1049 /* 1050 * Initialise the free scanner. The starting point is where we last 1051 * successfully isolated from, zone-cached value, or the end of the 1052 * zone when isolating for the first time. For looping we also need 1053 * this pfn aligned down to the pageblock boundary, because we do 1054 * block_start_pfn -= pageblock_nr_pages in the for loop. 1055 * For ending point, take care when isolating in last pageblock of a 1056 * a zone which ends in the middle of a pageblock. 1057 * The low boundary is the end of the pageblock the migration scanner 1058 * is using. 1059 */ 1060 isolate_start_pfn = cc->free_pfn; 1061 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 1062 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1063 zone_end_pfn(zone)); 1064 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1065 1066 /* 1067 * Isolate free pages until enough are available to migrate the 1068 * pages on cc->migratepages. We stop searching if the migrate 1069 * and free page scanners meet or enough free pages are isolated. 1070 */ 1071 for (; block_start_pfn >= low_pfn; 1072 block_end_pfn = block_start_pfn, 1073 block_start_pfn -= pageblock_nr_pages, 1074 isolate_start_pfn = block_start_pfn) { 1075 /* 1076 * This can iterate a massively long zone without finding any 1077 * suitable migration targets, so periodically check if we need 1078 * to schedule, or even abort async compaction. 1079 */ 1080 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1081 && compact_should_abort(cc)) 1082 break; 1083 1084 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1085 zone); 1086 if (!page) 1087 continue; 1088 1089 /* Check the block is suitable for migration */ 1090 if (!suitable_migration_target(cc, page)) 1091 continue; 1092 1093 /* If isolation recently failed, do not retry */ 1094 if (!isolation_suitable(cc, page)) 1095 continue; 1096 1097 /* Found a block suitable for isolating free pages from. */ 1098 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, 1099 freelist, false); 1100 1101 /* 1102 * If we isolated enough freepages, or aborted due to lock 1103 * contention, terminate. 1104 */ 1105 if ((cc->nr_freepages >= cc->nr_migratepages) 1106 || cc->contended) { 1107 if (isolate_start_pfn >= block_end_pfn) { 1108 /* 1109 * Restart at previous pageblock if more 1110 * freepages can be isolated next time. 1111 */ 1112 isolate_start_pfn = 1113 block_start_pfn - pageblock_nr_pages; 1114 } 1115 break; 1116 } else if (isolate_start_pfn < block_end_pfn) { 1117 /* 1118 * If isolation failed early, do not continue 1119 * needlessly. 1120 */ 1121 break; 1122 } 1123 } 1124 1125 /* __isolate_free_page() does not map the pages */ 1126 map_pages(freelist); 1127 1128 /* 1129 * Record where the free scanner will restart next time. Either we 1130 * broke from the loop and set isolate_start_pfn based on the last 1131 * call to isolate_freepages_block(), or we met the migration scanner 1132 * and the loop terminated due to isolate_start_pfn < low_pfn 1133 */ 1134 cc->free_pfn = isolate_start_pfn; 1135 } 1136 1137 /* 1138 * This is a migrate-callback that "allocates" freepages by taking pages 1139 * from the isolated freelists in the block we are migrating to. 1140 */ 1141 static struct page *compaction_alloc(struct page *migratepage, 1142 unsigned long data, 1143 int **result) 1144 { 1145 struct compact_control *cc = (struct compact_control *)data; 1146 struct page *freepage; 1147 1148 /* 1149 * Isolate free pages if necessary, and if we are not aborting due to 1150 * contention. 1151 */ 1152 if (list_empty(&cc->freepages)) { 1153 if (!cc->contended) 1154 isolate_freepages(cc); 1155 1156 if (list_empty(&cc->freepages)) 1157 return NULL; 1158 } 1159 1160 freepage = list_entry(cc->freepages.next, struct page, lru); 1161 list_del(&freepage->lru); 1162 cc->nr_freepages--; 1163 1164 return freepage; 1165 } 1166 1167 /* 1168 * This is a migrate-callback that "frees" freepages back to the isolated 1169 * freelist. All pages on the freelist are from the same zone, so there is no 1170 * special handling needed for NUMA. 1171 */ 1172 static void compaction_free(struct page *page, unsigned long data) 1173 { 1174 struct compact_control *cc = (struct compact_control *)data; 1175 1176 list_add(&page->lru, &cc->freepages); 1177 cc->nr_freepages++; 1178 } 1179 1180 /* possible outcome of isolate_migratepages */ 1181 typedef enum { 1182 ISOLATE_ABORT, /* Abort compaction now */ 1183 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1184 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1185 } isolate_migrate_t; 1186 1187 /* 1188 * Allow userspace to control policy on scanning the unevictable LRU for 1189 * compactable pages. 1190 */ 1191 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1192 1193 /* 1194 * Isolate all pages that can be migrated from the first suitable block, 1195 * starting at the block pointed to by the migrate scanner pfn within 1196 * compact_control. 1197 */ 1198 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1199 struct compact_control *cc) 1200 { 1201 unsigned long block_start_pfn; 1202 unsigned long block_end_pfn; 1203 unsigned long low_pfn; 1204 struct page *page; 1205 const isolate_mode_t isolate_mode = 1206 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1207 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1208 1209 /* 1210 * Start at where we last stopped, or beginning of the zone as 1211 * initialized by compact_zone() 1212 */ 1213 low_pfn = cc->migrate_pfn; 1214 block_start_pfn = pageblock_start_pfn(low_pfn); 1215 if (block_start_pfn < zone->zone_start_pfn) 1216 block_start_pfn = zone->zone_start_pfn; 1217 1218 /* Only scan within a pageblock boundary */ 1219 block_end_pfn = pageblock_end_pfn(low_pfn); 1220 1221 /* 1222 * Iterate over whole pageblocks until we find the first suitable. 1223 * Do not cross the free scanner. 1224 */ 1225 for (; block_end_pfn <= cc->free_pfn; 1226 low_pfn = block_end_pfn, 1227 block_start_pfn = block_end_pfn, 1228 block_end_pfn += pageblock_nr_pages) { 1229 1230 /* 1231 * This can potentially iterate a massively long zone with 1232 * many pageblocks unsuitable, so periodically check if we 1233 * need to schedule, or even abort async compaction. 1234 */ 1235 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1236 && compact_should_abort(cc)) 1237 break; 1238 1239 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1240 zone); 1241 if (!page) 1242 continue; 1243 1244 /* If isolation recently failed, do not retry */ 1245 if (!isolation_suitable(cc, page)) 1246 continue; 1247 1248 /* 1249 * For async compaction, also only scan in MOVABLE blocks. 1250 * Async compaction is optimistic to see if the minimum amount 1251 * of work satisfies the allocation. 1252 */ 1253 if (cc->mode == MIGRATE_ASYNC && 1254 !migrate_async_suitable(get_pageblock_migratetype(page))) 1255 continue; 1256 1257 /* Perform the isolation */ 1258 low_pfn = isolate_migratepages_block(cc, low_pfn, 1259 block_end_pfn, isolate_mode); 1260 1261 if (!low_pfn || cc->contended) { 1262 acct_isolated(zone, cc); 1263 return ISOLATE_ABORT; 1264 } 1265 1266 /* 1267 * Either we isolated something and proceed with migration. Or 1268 * we failed and compact_zone should decide if we should 1269 * continue or not. 1270 */ 1271 break; 1272 } 1273 1274 acct_isolated(zone, cc); 1275 /* Record where migration scanner will be restarted. */ 1276 cc->migrate_pfn = low_pfn; 1277 1278 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1279 } 1280 1281 /* 1282 * order == -1 is expected when compacting via 1283 * /proc/sys/vm/compact_memory 1284 */ 1285 static inline bool is_via_compact_memory(int order) 1286 { 1287 return order == -1; 1288 } 1289 1290 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc, 1291 const int migratetype) 1292 { 1293 unsigned int order; 1294 unsigned long watermark; 1295 1296 if (cc->contended || fatal_signal_pending(current)) 1297 return COMPACT_CONTENDED; 1298 1299 /* Compaction run completes if the migrate and free scanner meet */ 1300 if (compact_scanners_met(cc)) { 1301 /* Let the next compaction start anew. */ 1302 reset_cached_positions(zone); 1303 1304 /* 1305 * Mark that the PG_migrate_skip information should be cleared 1306 * by kswapd when it goes to sleep. kcompactd does not set the 1307 * flag itself as the decision to be clear should be directly 1308 * based on an allocation request. 1309 */ 1310 if (cc->direct_compaction) 1311 zone->compact_blockskip_flush = true; 1312 1313 if (cc->whole_zone) 1314 return COMPACT_COMPLETE; 1315 else 1316 return COMPACT_PARTIAL_SKIPPED; 1317 } 1318 1319 if (is_via_compact_memory(cc->order)) 1320 return COMPACT_CONTINUE; 1321 1322 /* Compaction run is not finished if the watermark is not met */ 1323 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK]; 1324 1325 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1326 cc->alloc_flags)) 1327 return COMPACT_CONTINUE; 1328 1329 /* Direct compactor: Is a suitable page free? */ 1330 for (order = cc->order; order < MAX_ORDER; order++) { 1331 struct free_area *area = &zone->free_area[order]; 1332 bool can_steal; 1333 1334 /* Job done if page is free of the right migratetype */ 1335 if (!list_empty(&area->free_list[migratetype])) 1336 return COMPACT_SUCCESS; 1337 1338 #ifdef CONFIG_CMA 1339 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1340 if (migratetype == MIGRATE_MOVABLE && 1341 !list_empty(&area->free_list[MIGRATE_CMA])) 1342 return COMPACT_SUCCESS; 1343 #endif 1344 /* 1345 * Job done if allocation would steal freepages from 1346 * other migratetype buddy lists. 1347 */ 1348 if (find_suitable_fallback(area, order, migratetype, 1349 true, &can_steal) != -1) 1350 return COMPACT_SUCCESS; 1351 } 1352 1353 return COMPACT_NO_SUITABLE_PAGE; 1354 } 1355 1356 static enum compact_result compact_finished(struct zone *zone, 1357 struct compact_control *cc, 1358 const int migratetype) 1359 { 1360 int ret; 1361 1362 ret = __compact_finished(zone, cc, migratetype); 1363 trace_mm_compaction_finished(zone, cc->order, ret); 1364 if (ret == COMPACT_NO_SUITABLE_PAGE) 1365 ret = COMPACT_CONTINUE; 1366 1367 return ret; 1368 } 1369 1370 /* 1371 * compaction_suitable: Is this suitable to run compaction on this zone now? 1372 * Returns 1373 * COMPACT_SKIPPED - If there are too few free pages for compaction 1374 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1375 * COMPACT_CONTINUE - If compaction should run now 1376 */ 1377 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1378 unsigned int alloc_flags, 1379 int classzone_idx, 1380 unsigned long wmark_target) 1381 { 1382 int fragindex; 1383 unsigned long watermark; 1384 1385 if (is_via_compact_memory(order)) 1386 return COMPACT_CONTINUE; 1387 1388 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1389 /* 1390 * If watermarks for high-order allocation are already met, there 1391 * should be no need for compaction at all. 1392 */ 1393 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1394 alloc_flags)) 1395 return COMPACT_SUCCESS; 1396 1397 /* 1398 * Watermarks for order-0 must be met for compaction to be able to 1399 * isolate free pages for migration targets. This means that the 1400 * watermark and alloc_flags have to match, or be more pessimistic than 1401 * the check in __isolate_free_page(). We don't use the direct 1402 * compactor's alloc_flags, as they are not relevant for freepage 1403 * isolation. We however do use the direct compactor's classzone_idx to 1404 * skip over zones where lowmem reserves would prevent allocation even 1405 * if compaction succeeds. 1406 * For costly orders, we require low watermark instead of min for 1407 * compaction to proceed to increase its chances. 1408 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1409 * suitable migration targets 1410 */ 1411 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1412 low_wmark_pages(zone) : min_wmark_pages(zone); 1413 watermark += compact_gap(order); 1414 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1415 ALLOC_CMA, wmark_target)) 1416 return COMPACT_SKIPPED; 1417 1418 /* 1419 * fragmentation index determines if allocation failures are due to 1420 * low memory or external fragmentation 1421 * 1422 * index of -1000 would imply allocations might succeed depending on 1423 * watermarks, but we already failed the high-order watermark check 1424 * index towards 0 implies failure is due to lack of memory 1425 * index towards 1000 implies failure is due to fragmentation 1426 * 1427 * Only compact if a failure would be due to fragmentation. 1428 */ 1429 fragindex = fragmentation_index(zone, order); 1430 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1431 return COMPACT_NOT_SUITABLE_ZONE; 1432 1433 return COMPACT_CONTINUE; 1434 } 1435 1436 enum compact_result compaction_suitable(struct zone *zone, int order, 1437 unsigned int alloc_flags, 1438 int classzone_idx) 1439 { 1440 enum compact_result ret; 1441 1442 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1443 zone_page_state(zone, NR_FREE_PAGES)); 1444 trace_mm_compaction_suitable(zone, order, ret); 1445 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1446 ret = COMPACT_SKIPPED; 1447 1448 return ret; 1449 } 1450 1451 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1452 int alloc_flags) 1453 { 1454 struct zone *zone; 1455 struct zoneref *z; 1456 1457 /* 1458 * Make sure at least one zone would pass __compaction_suitable if we continue 1459 * retrying the reclaim. 1460 */ 1461 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1462 ac->nodemask) { 1463 unsigned long available; 1464 enum compact_result compact_result; 1465 1466 /* 1467 * Do not consider all the reclaimable memory because we do not 1468 * want to trash just for a single high order allocation which 1469 * is even not guaranteed to appear even if __compaction_suitable 1470 * is happy about the watermark check. 1471 */ 1472 available = zone_reclaimable_pages(zone) / order; 1473 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1474 compact_result = __compaction_suitable(zone, order, alloc_flags, 1475 ac_classzone_idx(ac), available); 1476 if (compact_result != COMPACT_SKIPPED && 1477 compact_result != COMPACT_NOT_SUITABLE_ZONE) 1478 return true; 1479 } 1480 1481 return false; 1482 } 1483 1484 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1485 { 1486 enum compact_result ret; 1487 unsigned long start_pfn = zone->zone_start_pfn; 1488 unsigned long end_pfn = zone_end_pfn(zone); 1489 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1490 const bool sync = cc->mode != MIGRATE_ASYNC; 1491 1492 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1493 cc->classzone_idx); 1494 /* Compaction is likely to fail */ 1495 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 1496 return ret; 1497 1498 /* huh, compaction_suitable is returning something unexpected */ 1499 VM_BUG_ON(ret != COMPACT_CONTINUE); 1500 1501 /* 1502 * Clear pageblock skip if there were failures recently and compaction 1503 * is about to be retried after being deferred. 1504 */ 1505 if (compaction_restarting(zone, cc->order)) 1506 __reset_isolation_suitable(zone); 1507 1508 /* 1509 * Setup to move all movable pages to the end of the zone. Used cached 1510 * information on where the scanners should start (unless we explicitly 1511 * want to compact the whole zone), but check that it is initialised 1512 * by ensuring the values are within zone boundaries. 1513 */ 1514 if (cc->whole_zone) { 1515 cc->migrate_pfn = start_pfn; 1516 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1517 } else { 1518 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1519 cc->free_pfn = zone->compact_cached_free_pfn; 1520 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1521 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1522 zone->compact_cached_free_pfn = cc->free_pfn; 1523 } 1524 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1525 cc->migrate_pfn = start_pfn; 1526 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1527 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1528 } 1529 1530 if (cc->migrate_pfn == start_pfn) 1531 cc->whole_zone = true; 1532 } 1533 1534 cc->last_migrated_pfn = 0; 1535 1536 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1537 cc->free_pfn, end_pfn, sync); 1538 1539 migrate_prep_local(); 1540 1541 while ((ret = compact_finished(zone, cc, migratetype)) == 1542 COMPACT_CONTINUE) { 1543 int err; 1544 1545 switch (isolate_migratepages(zone, cc)) { 1546 case ISOLATE_ABORT: 1547 ret = COMPACT_CONTENDED; 1548 putback_movable_pages(&cc->migratepages); 1549 cc->nr_migratepages = 0; 1550 goto out; 1551 case ISOLATE_NONE: 1552 /* 1553 * We haven't isolated and migrated anything, but 1554 * there might still be unflushed migrations from 1555 * previous cc->order aligned block. 1556 */ 1557 goto check_drain; 1558 case ISOLATE_SUCCESS: 1559 ; 1560 } 1561 1562 err = migrate_pages(&cc->migratepages, compaction_alloc, 1563 compaction_free, (unsigned long)cc, cc->mode, 1564 MR_COMPACTION); 1565 1566 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1567 &cc->migratepages); 1568 1569 /* All pages were either migrated or will be released */ 1570 cc->nr_migratepages = 0; 1571 if (err) { 1572 putback_movable_pages(&cc->migratepages); 1573 /* 1574 * migrate_pages() may return -ENOMEM when scanners meet 1575 * and we want compact_finished() to detect it 1576 */ 1577 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1578 ret = COMPACT_CONTENDED; 1579 goto out; 1580 } 1581 /* 1582 * We failed to migrate at least one page in the current 1583 * order-aligned block, so skip the rest of it. 1584 */ 1585 if (cc->direct_compaction && 1586 (cc->mode == MIGRATE_ASYNC)) { 1587 cc->migrate_pfn = block_end_pfn( 1588 cc->migrate_pfn - 1, cc->order); 1589 /* Draining pcplists is useless in this case */ 1590 cc->last_migrated_pfn = 0; 1591 1592 } 1593 } 1594 1595 check_drain: 1596 /* 1597 * Has the migration scanner moved away from the previous 1598 * cc->order aligned block where we migrated from? If yes, 1599 * flush the pages that were freed, so that they can merge and 1600 * compact_finished() can detect immediately if allocation 1601 * would succeed. 1602 */ 1603 if (cc->order > 0 && cc->last_migrated_pfn) { 1604 int cpu; 1605 unsigned long current_block_start = 1606 block_start_pfn(cc->migrate_pfn, cc->order); 1607 1608 if (cc->last_migrated_pfn < current_block_start) { 1609 cpu = get_cpu(); 1610 lru_add_drain_cpu(cpu); 1611 drain_local_pages(zone); 1612 put_cpu(); 1613 /* No more flushing until we migrate again */ 1614 cc->last_migrated_pfn = 0; 1615 } 1616 } 1617 1618 } 1619 1620 out: 1621 /* 1622 * Release free pages and update where the free scanner should restart, 1623 * so we don't leave any returned pages behind in the next attempt. 1624 */ 1625 if (cc->nr_freepages > 0) { 1626 unsigned long free_pfn = release_freepages(&cc->freepages); 1627 1628 cc->nr_freepages = 0; 1629 VM_BUG_ON(free_pfn == 0); 1630 /* The cached pfn is always the first in a pageblock */ 1631 free_pfn = pageblock_start_pfn(free_pfn); 1632 /* 1633 * Only go back, not forward. The cached pfn might have been 1634 * already reset to zone end in compact_finished() 1635 */ 1636 if (free_pfn > zone->compact_cached_free_pfn) 1637 zone->compact_cached_free_pfn = free_pfn; 1638 } 1639 1640 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1641 cc->free_pfn, end_pfn, sync, ret); 1642 1643 return ret; 1644 } 1645 1646 static enum compact_result compact_zone_order(struct zone *zone, int order, 1647 gfp_t gfp_mask, enum compact_priority prio, 1648 unsigned int alloc_flags, int classzone_idx) 1649 { 1650 enum compact_result ret; 1651 struct compact_control cc = { 1652 .nr_freepages = 0, 1653 .nr_migratepages = 0, 1654 .order = order, 1655 .gfp_mask = gfp_mask, 1656 .zone = zone, 1657 .mode = (prio == COMPACT_PRIO_ASYNC) ? 1658 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 1659 .alloc_flags = alloc_flags, 1660 .classzone_idx = classzone_idx, 1661 .direct_compaction = true, 1662 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 1663 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 1664 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 1665 }; 1666 INIT_LIST_HEAD(&cc.freepages); 1667 INIT_LIST_HEAD(&cc.migratepages); 1668 1669 ret = compact_zone(zone, &cc); 1670 1671 VM_BUG_ON(!list_empty(&cc.freepages)); 1672 VM_BUG_ON(!list_empty(&cc.migratepages)); 1673 1674 return ret; 1675 } 1676 1677 int sysctl_extfrag_threshold = 500; 1678 1679 /** 1680 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1681 * @gfp_mask: The GFP mask of the current allocation 1682 * @order: The order of the current allocation 1683 * @alloc_flags: The allocation flags of the current allocation 1684 * @ac: The context of current allocation 1685 * @mode: The migration mode for async, sync light, or sync migration 1686 * 1687 * This is the main entry point for direct page compaction. 1688 */ 1689 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1690 unsigned int alloc_flags, const struct alloc_context *ac, 1691 enum compact_priority prio) 1692 { 1693 int may_enter_fs = gfp_mask & __GFP_FS; 1694 int may_perform_io = gfp_mask & __GFP_IO; 1695 struct zoneref *z; 1696 struct zone *zone; 1697 enum compact_result rc = COMPACT_SKIPPED; 1698 1699 /* Check if the GFP flags allow compaction */ 1700 if (!may_enter_fs || !may_perform_io) 1701 return COMPACT_SKIPPED; 1702 1703 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 1704 1705 /* Compact each zone in the list */ 1706 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1707 ac->nodemask) { 1708 enum compact_result status; 1709 1710 if (prio > MIN_COMPACT_PRIORITY 1711 && compaction_deferred(zone, order)) { 1712 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1713 continue; 1714 } 1715 1716 status = compact_zone_order(zone, order, gfp_mask, prio, 1717 alloc_flags, ac_classzone_idx(ac)); 1718 rc = max(status, rc); 1719 1720 /* The allocation should succeed, stop compacting */ 1721 if (status == COMPACT_SUCCESS) { 1722 /* 1723 * We think the allocation will succeed in this zone, 1724 * but it is not certain, hence the false. The caller 1725 * will repeat this with true if allocation indeed 1726 * succeeds in this zone. 1727 */ 1728 compaction_defer_reset(zone, order, false); 1729 1730 break; 1731 } 1732 1733 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 1734 status == COMPACT_PARTIAL_SKIPPED)) 1735 /* 1736 * We think that allocation won't succeed in this zone 1737 * so we defer compaction there. If it ends up 1738 * succeeding after all, it will be reset. 1739 */ 1740 defer_compaction(zone, order); 1741 1742 /* 1743 * We might have stopped compacting due to need_resched() in 1744 * async compaction, or due to a fatal signal detected. In that 1745 * case do not try further zones 1746 */ 1747 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 1748 || fatal_signal_pending(current)) 1749 break; 1750 } 1751 1752 return rc; 1753 } 1754 1755 1756 /* Compact all zones within a node */ 1757 static void compact_node(int nid) 1758 { 1759 pg_data_t *pgdat = NODE_DATA(nid); 1760 int zoneid; 1761 struct zone *zone; 1762 struct compact_control cc = { 1763 .order = -1, 1764 .mode = MIGRATE_SYNC, 1765 .ignore_skip_hint = true, 1766 .whole_zone = true, 1767 }; 1768 1769 1770 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1771 1772 zone = &pgdat->node_zones[zoneid]; 1773 if (!populated_zone(zone)) 1774 continue; 1775 1776 cc.nr_freepages = 0; 1777 cc.nr_migratepages = 0; 1778 cc.zone = zone; 1779 INIT_LIST_HEAD(&cc.freepages); 1780 INIT_LIST_HEAD(&cc.migratepages); 1781 1782 compact_zone(zone, &cc); 1783 1784 VM_BUG_ON(!list_empty(&cc.freepages)); 1785 VM_BUG_ON(!list_empty(&cc.migratepages)); 1786 } 1787 } 1788 1789 /* Compact all nodes in the system */ 1790 static void compact_nodes(void) 1791 { 1792 int nid; 1793 1794 /* Flush pending updates to the LRU lists */ 1795 lru_add_drain_all(); 1796 1797 for_each_online_node(nid) 1798 compact_node(nid); 1799 } 1800 1801 /* The written value is actually unused, all memory is compacted */ 1802 int sysctl_compact_memory; 1803 1804 /* 1805 * This is the entry point for compacting all nodes via 1806 * /proc/sys/vm/compact_memory 1807 */ 1808 int sysctl_compaction_handler(struct ctl_table *table, int write, 1809 void __user *buffer, size_t *length, loff_t *ppos) 1810 { 1811 if (write) 1812 compact_nodes(); 1813 1814 return 0; 1815 } 1816 1817 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1818 void __user *buffer, size_t *length, loff_t *ppos) 1819 { 1820 proc_dointvec_minmax(table, write, buffer, length, ppos); 1821 1822 return 0; 1823 } 1824 1825 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1826 static ssize_t sysfs_compact_node(struct device *dev, 1827 struct device_attribute *attr, 1828 const char *buf, size_t count) 1829 { 1830 int nid = dev->id; 1831 1832 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1833 /* Flush pending updates to the LRU lists */ 1834 lru_add_drain_all(); 1835 1836 compact_node(nid); 1837 } 1838 1839 return count; 1840 } 1841 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1842 1843 int compaction_register_node(struct node *node) 1844 { 1845 return device_create_file(&node->dev, &dev_attr_compact); 1846 } 1847 1848 void compaction_unregister_node(struct node *node) 1849 { 1850 return device_remove_file(&node->dev, &dev_attr_compact); 1851 } 1852 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1853 1854 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1855 { 1856 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1857 } 1858 1859 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1860 { 1861 int zoneid; 1862 struct zone *zone; 1863 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1864 1865 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1866 zone = &pgdat->node_zones[zoneid]; 1867 1868 if (!populated_zone(zone)) 1869 continue; 1870 1871 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1872 classzone_idx) == COMPACT_CONTINUE) 1873 return true; 1874 } 1875 1876 return false; 1877 } 1878 1879 static void kcompactd_do_work(pg_data_t *pgdat) 1880 { 1881 /* 1882 * With no special task, compact all zones so that a page of requested 1883 * order is allocatable. 1884 */ 1885 int zoneid; 1886 struct zone *zone; 1887 struct compact_control cc = { 1888 .order = pgdat->kcompactd_max_order, 1889 .classzone_idx = pgdat->kcompactd_classzone_idx, 1890 .mode = MIGRATE_SYNC_LIGHT, 1891 .ignore_skip_hint = true, 1892 1893 }; 1894 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1895 cc.classzone_idx); 1896 count_vm_event(KCOMPACTD_WAKE); 1897 1898 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1899 int status; 1900 1901 zone = &pgdat->node_zones[zoneid]; 1902 if (!populated_zone(zone)) 1903 continue; 1904 1905 if (compaction_deferred(zone, cc.order)) 1906 continue; 1907 1908 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1909 COMPACT_CONTINUE) 1910 continue; 1911 1912 cc.nr_freepages = 0; 1913 cc.nr_migratepages = 0; 1914 cc.zone = zone; 1915 INIT_LIST_HEAD(&cc.freepages); 1916 INIT_LIST_HEAD(&cc.migratepages); 1917 1918 if (kthread_should_stop()) 1919 return; 1920 status = compact_zone(zone, &cc); 1921 1922 if (status == COMPACT_SUCCESS) { 1923 compaction_defer_reset(zone, cc.order, false); 1924 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1925 /* 1926 * We use sync migration mode here, so we defer like 1927 * sync direct compaction does. 1928 */ 1929 defer_compaction(zone, cc.order); 1930 } 1931 1932 VM_BUG_ON(!list_empty(&cc.freepages)); 1933 VM_BUG_ON(!list_empty(&cc.migratepages)); 1934 } 1935 1936 /* 1937 * Regardless of success, we are done until woken up next. But remember 1938 * the requested order/classzone_idx in case it was higher/tighter than 1939 * our current ones 1940 */ 1941 if (pgdat->kcompactd_max_order <= cc.order) 1942 pgdat->kcompactd_max_order = 0; 1943 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 1944 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1945 } 1946 1947 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 1948 { 1949 if (!order) 1950 return; 1951 1952 if (pgdat->kcompactd_max_order < order) 1953 pgdat->kcompactd_max_order = order; 1954 1955 if (pgdat->kcompactd_classzone_idx > classzone_idx) 1956 pgdat->kcompactd_classzone_idx = classzone_idx; 1957 1958 if (!waitqueue_active(&pgdat->kcompactd_wait)) 1959 return; 1960 1961 if (!kcompactd_node_suitable(pgdat)) 1962 return; 1963 1964 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 1965 classzone_idx); 1966 wake_up_interruptible(&pgdat->kcompactd_wait); 1967 } 1968 1969 /* 1970 * The background compaction daemon, started as a kernel thread 1971 * from the init process. 1972 */ 1973 static int kcompactd(void *p) 1974 { 1975 pg_data_t *pgdat = (pg_data_t*)p; 1976 struct task_struct *tsk = current; 1977 1978 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1979 1980 if (!cpumask_empty(cpumask)) 1981 set_cpus_allowed_ptr(tsk, cpumask); 1982 1983 set_freezable(); 1984 1985 pgdat->kcompactd_max_order = 0; 1986 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1987 1988 while (!kthread_should_stop()) { 1989 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 1990 wait_event_freezable(pgdat->kcompactd_wait, 1991 kcompactd_work_requested(pgdat)); 1992 1993 kcompactd_do_work(pgdat); 1994 } 1995 1996 return 0; 1997 } 1998 1999 /* 2000 * This kcompactd start function will be called by init and node-hot-add. 2001 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2002 */ 2003 int kcompactd_run(int nid) 2004 { 2005 pg_data_t *pgdat = NODE_DATA(nid); 2006 int ret = 0; 2007 2008 if (pgdat->kcompactd) 2009 return 0; 2010 2011 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2012 if (IS_ERR(pgdat->kcompactd)) { 2013 pr_err("Failed to start kcompactd on node %d\n", nid); 2014 ret = PTR_ERR(pgdat->kcompactd); 2015 pgdat->kcompactd = NULL; 2016 } 2017 return ret; 2018 } 2019 2020 /* 2021 * Called by memory hotplug when all memory in a node is offlined. Caller must 2022 * hold mem_hotplug_begin/end(). 2023 */ 2024 void kcompactd_stop(int nid) 2025 { 2026 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2027 2028 if (kcompactd) { 2029 kthread_stop(kcompactd); 2030 NODE_DATA(nid)->kcompactd = NULL; 2031 } 2032 } 2033 2034 /* 2035 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2036 * not required for correctness. So if the last cpu in a node goes 2037 * away, we get changed to run anywhere: as the first one comes back, 2038 * restore their cpu bindings. 2039 */ 2040 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 2041 void *hcpu) 2042 { 2043 int nid; 2044 2045 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2046 for_each_node_state(nid, N_MEMORY) { 2047 pg_data_t *pgdat = NODE_DATA(nid); 2048 const struct cpumask *mask; 2049 2050 mask = cpumask_of_node(pgdat->node_id); 2051 2052 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2053 /* One of our CPUs online: restore mask */ 2054 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2055 } 2056 } 2057 return NOTIFY_OK; 2058 } 2059 2060 static int __init kcompactd_init(void) 2061 { 2062 int nid; 2063 2064 for_each_node_state(nid, N_MEMORY) 2065 kcompactd_run(nid); 2066 hotcpu_notifier(cpu_callback, 0); 2067 return 0; 2068 } 2069 subsys_initcall(kcompactd_init) 2070 2071 #endif /* CONFIG_COMPACTION */ 2072