xref: /openbmc/linux/mm/compaction.c (revision 76c47183224c86e4011048b80f0e2d0d166f01c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageMovable(page), page);
141 	/*
142 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 	 * flag so that VM can catch up released page by driver after isolation.
144 	 * With it, VM migration doesn't try to put it back.
145 	 */
146 	page->mapping = (void *)((unsigned long)page->mapping &
147 				PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150 
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153 
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161 	zone->compact_considered = 0;
162 	zone->compact_defer_shift++;
163 
164 	if (order < zone->compact_order_failed)
165 		zone->compact_order_failed = order;
166 
167 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169 
170 	trace_mm_compaction_defer_compaction(zone, order);
171 }
172 
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177 
178 	if (order < zone->compact_order_failed)
179 		return false;
180 
181 	/* Avoid possible overflow */
182 	if (++zone->compact_considered >= defer_limit) {
183 		zone->compact_considered = defer_limit;
184 		return false;
185 	}
186 
187 	trace_mm_compaction_deferred(zone, order);
188 
189 	return true;
190 }
191 
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198 		bool alloc_success)
199 {
200 	if (alloc_success) {
201 		zone->compact_considered = 0;
202 		zone->compact_defer_shift = 0;
203 	}
204 	if (order >= zone->compact_order_failed)
205 		zone->compact_order_failed = order + 1;
206 
207 	trace_mm_compaction_defer_reset(zone, order);
208 }
209 
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213 	if (order < zone->compact_order_failed)
214 		return false;
215 
216 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219 
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222 					struct page *page)
223 {
224 	if (cc->ignore_skip_hint)
225 		return true;
226 
227 	return !get_pageblock_skip(page);
228 }
229 
230 static void reset_cached_positions(struct zone *zone)
231 {
232 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 	zone->compact_cached_free_pfn =
235 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237 
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245 	if (!PageCompound(page))
246 		return false;
247 
248 	page = compound_head(page);
249 
250 	if (compound_order(page) >= pageblock_order)
251 		return true;
252 
253 	return false;
254 }
255 
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 							bool check_target)
259 {
260 	struct page *page = pfn_to_online_page(pfn);
261 	struct page *block_page;
262 	struct page *end_page;
263 	unsigned long block_pfn;
264 
265 	if (!page)
266 		return false;
267 	if (zone != page_zone(page))
268 		return false;
269 	if (pageblock_skip_persistent(page))
270 		return false;
271 
272 	/*
273 	 * If skip is already cleared do no further checking once the
274 	 * restart points have been set.
275 	 */
276 	if (check_source && check_target && !get_pageblock_skip(page))
277 		return true;
278 
279 	/*
280 	 * If clearing skip for the target scanner, do not select a
281 	 * non-movable pageblock as the starting point.
282 	 */
283 	if (!check_source && check_target &&
284 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 		return false;
286 
287 	/* Ensure the start of the pageblock or zone is online and valid */
288 	block_pfn = pageblock_start_pfn(pfn);
289 	block_pfn = max(block_pfn, zone->zone_start_pfn);
290 	block_page = pfn_to_online_page(block_pfn);
291 	if (block_page) {
292 		page = block_page;
293 		pfn = block_pfn;
294 	}
295 
296 	/* Ensure the end of the pageblock or zone is online and valid */
297 	block_pfn = pageblock_end_pfn(pfn) - 1;
298 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 	end_page = pfn_to_online_page(block_pfn);
300 	if (!end_page)
301 		return false;
302 
303 	/*
304 	 * Only clear the hint if a sample indicates there is either a
305 	 * free page or an LRU page in the block. One or other condition
306 	 * is necessary for the block to be a migration source/target.
307 	 */
308 	do {
309 		if (check_source && PageLRU(page)) {
310 			clear_pageblock_skip(page);
311 			return true;
312 		}
313 
314 		if (check_target && PageBuddy(page)) {
315 			clear_pageblock_skip(page);
316 			return true;
317 		}
318 
319 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
321 	} while (page <= end_page);
322 
323 	return false;
324 }
325 
326 /*
327  * This function is called to clear all cached information on pageblocks that
328  * should be skipped for page isolation when the migrate and free page scanner
329  * meet.
330  */
331 static void __reset_isolation_suitable(struct zone *zone)
332 {
333 	unsigned long migrate_pfn = zone->zone_start_pfn;
334 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
335 	unsigned long reset_migrate = free_pfn;
336 	unsigned long reset_free = migrate_pfn;
337 	bool source_set = false;
338 	bool free_set = false;
339 
340 	if (!zone->compact_blockskip_flush)
341 		return;
342 
343 	zone->compact_blockskip_flush = false;
344 
345 	/*
346 	 * Walk the zone and update pageblock skip information. Source looks
347 	 * for PageLRU while target looks for PageBuddy. When the scanner
348 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
349 	 * is suitable as both source and target.
350 	 */
351 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352 					free_pfn -= pageblock_nr_pages) {
353 		cond_resched();
354 
355 		/* Update the migrate PFN */
356 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357 		    migrate_pfn < reset_migrate) {
358 			source_set = true;
359 			reset_migrate = migrate_pfn;
360 			zone->compact_init_migrate_pfn = reset_migrate;
361 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
362 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
363 		}
364 
365 		/* Update the free PFN */
366 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367 		    free_pfn > reset_free) {
368 			free_set = true;
369 			reset_free = free_pfn;
370 			zone->compact_init_free_pfn = reset_free;
371 			zone->compact_cached_free_pfn = reset_free;
372 		}
373 	}
374 
375 	/* Leave no distance if no suitable block was reset */
376 	if (reset_migrate >= reset_free) {
377 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379 		zone->compact_cached_free_pfn = free_pfn;
380 	}
381 }
382 
383 void reset_isolation_suitable(pg_data_t *pgdat)
384 {
385 	int zoneid;
386 
387 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388 		struct zone *zone = &pgdat->node_zones[zoneid];
389 		if (!populated_zone(zone))
390 			continue;
391 
392 		/* Only flush if a full compaction finished recently */
393 		if (zone->compact_blockskip_flush)
394 			__reset_isolation_suitable(zone);
395 	}
396 }
397 
398 /*
399  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400  * locks are not required for read/writers. Returns true if it was already set.
401  */
402 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 							unsigned long pfn)
404 {
405 	bool skip;
406 
407 	/* Do no update if skip hint is being ignored */
408 	if (cc->ignore_skip_hint)
409 		return false;
410 
411 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412 		return false;
413 
414 	skip = get_pageblock_skip(page);
415 	if (!skip && !cc->no_set_skip_hint)
416 		set_pageblock_skip(page);
417 
418 	return skip;
419 }
420 
421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422 {
423 	struct zone *zone = cc->zone;
424 
425 	pfn = pageblock_end_pfn(pfn);
426 
427 	/* Set for isolation rather than compaction */
428 	if (cc->no_set_skip_hint)
429 		return;
430 
431 	if (pfn > zone->compact_cached_migrate_pfn[0])
432 		zone->compact_cached_migrate_pfn[0] = pfn;
433 	if (cc->mode != MIGRATE_ASYNC &&
434 	    pfn > zone->compact_cached_migrate_pfn[1])
435 		zone->compact_cached_migrate_pfn[1] = pfn;
436 }
437 
438 /*
439  * If no pages were isolated then mark this pageblock to be skipped in the
440  * future. The information is later cleared by __reset_isolation_suitable().
441  */
442 static void update_pageblock_skip(struct compact_control *cc,
443 			struct page *page, unsigned long pfn)
444 {
445 	struct zone *zone = cc->zone;
446 
447 	if (cc->no_set_skip_hint)
448 		return;
449 
450 	if (!page)
451 		return;
452 
453 	set_pageblock_skip(page);
454 
455 	/* Update where async and sync compaction should restart */
456 	if (pfn < zone->compact_cached_free_pfn)
457 		zone->compact_cached_free_pfn = pfn;
458 }
459 #else
460 static inline bool isolation_suitable(struct compact_control *cc,
461 					struct page *page)
462 {
463 	return true;
464 }
465 
466 static inline bool pageblock_skip_persistent(struct page *page)
467 {
468 	return false;
469 }
470 
471 static inline void update_pageblock_skip(struct compact_control *cc,
472 			struct page *page, unsigned long pfn)
473 {
474 }
475 
476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 }
479 
480 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 							unsigned long pfn)
482 {
483 	return false;
484 }
485 #endif /* CONFIG_COMPACTION */
486 
487 /*
488  * Compaction requires the taking of some coarse locks that are potentially
489  * very heavily contended. For async compaction, trylock and record if the
490  * lock is contended. The lock will still be acquired but compaction will
491  * abort when the current block is finished regardless of success rate.
492  * Sync compaction acquires the lock.
493  *
494  * Always returns true which makes it easier to track lock state in callers.
495  */
496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
497 						struct compact_control *cc)
498 	__acquires(lock)
499 {
500 	/* Track if the lock is contended in async mode */
501 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502 		if (spin_trylock_irqsave(lock, *flags))
503 			return true;
504 
505 		cc->contended = true;
506 	}
507 
508 	spin_lock_irqsave(lock, *flags);
509 	return true;
510 }
511 
512 /*
513  * Compaction requires the taking of some coarse locks that are potentially
514  * very heavily contended. The lock should be periodically unlocked to avoid
515  * having disabled IRQs for a long time, even when there is nobody waiting on
516  * the lock. It might also be that allowing the IRQs will result in
517  * need_resched() becoming true. If scheduling is needed, async compaction
518  * aborts. Sync compaction schedules.
519  * Either compaction type will also abort if a fatal signal is pending.
520  * In either case if the lock was locked, it is dropped and not regained.
521  *
522  * Returns true if compaction should abort due to fatal signal pending, or
523  *		async compaction due to need_resched()
524  * Returns false when compaction can continue (sync compaction might have
525  *		scheduled)
526  */
527 static bool compact_unlock_should_abort(spinlock_t *lock,
528 		unsigned long flags, bool *locked, struct compact_control *cc)
529 {
530 	if (*locked) {
531 		spin_unlock_irqrestore(lock, flags);
532 		*locked = false;
533 	}
534 
535 	if (fatal_signal_pending(current)) {
536 		cc->contended = true;
537 		return true;
538 	}
539 
540 	cond_resched();
541 
542 	return false;
543 }
544 
545 /*
546  * Isolate free pages onto a private freelist. If @strict is true, will abort
547  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548  * (even though it may still end up isolating some pages).
549  */
550 static unsigned long isolate_freepages_block(struct compact_control *cc,
551 				unsigned long *start_pfn,
552 				unsigned long end_pfn,
553 				struct list_head *freelist,
554 				unsigned int stride,
555 				bool strict)
556 {
557 	int nr_scanned = 0, total_isolated = 0;
558 	struct page *cursor;
559 	unsigned long flags = 0;
560 	bool locked = false;
561 	unsigned long blockpfn = *start_pfn;
562 	unsigned int order;
563 
564 	/* Strict mode is for isolation, speed is secondary */
565 	if (strict)
566 		stride = 1;
567 
568 	cursor = pfn_to_page(blockpfn);
569 
570 	/* Isolate free pages. */
571 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
572 		int isolated;
573 		struct page *page = cursor;
574 
575 		/*
576 		 * Periodically drop the lock (if held) regardless of its
577 		 * contention, to give chance to IRQs. Abort if fatal signal
578 		 * pending or async compaction detects need_resched()
579 		 */
580 		if (!(blockpfn % SWAP_CLUSTER_MAX)
581 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
582 								&locked, cc))
583 			break;
584 
585 		nr_scanned++;
586 
587 		/*
588 		 * For compound pages such as THP and hugetlbfs, we can save
589 		 * potentially a lot of iterations if we skip them at once.
590 		 * The check is racy, but we can consider only valid values
591 		 * and the only danger is skipping too much.
592 		 */
593 		if (PageCompound(page)) {
594 			const unsigned int order = compound_order(page);
595 
596 			if (likely(order < MAX_ORDER)) {
597 				blockpfn += (1UL << order) - 1;
598 				cursor += (1UL << order) - 1;
599 			}
600 			goto isolate_fail;
601 		}
602 
603 		if (!PageBuddy(page))
604 			goto isolate_fail;
605 
606 		/*
607 		 * If we already hold the lock, we can skip some rechecking.
608 		 * Note that if we hold the lock now, checked_pageblock was
609 		 * already set in some previous iteration (or strict is true),
610 		 * so it is correct to skip the suitable migration target
611 		 * recheck as well.
612 		 */
613 		if (!locked) {
614 			locked = compact_lock_irqsave(&cc->zone->lock,
615 								&flags, cc);
616 
617 			/* Recheck this is a buddy page under lock */
618 			if (!PageBuddy(page))
619 				goto isolate_fail;
620 		}
621 
622 		/* Found a free page, will break it into order-0 pages */
623 		order = buddy_order(page);
624 		isolated = __isolate_free_page(page, order);
625 		if (!isolated)
626 			break;
627 		set_page_private(page, order);
628 
629 		total_isolated += isolated;
630 		cc->nr_freepages += isolated;
631 		list_add_tail(&page->lru, freelist);
632 
633 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634 			blockpfn += isolated;
635 			break;
636 		}
637 		/* Advance to the end of split page */
638 		blockpfn += isolated - 1;
639 		cursor += isolated - 1;
640 		continue;
641 
642 isolate_fail:
643 		if (strict)
644 			break;
645 		else
646 			continue;
647 
648 	}
649 
650 	if (locked)
651 		spin_unlock_irqrestore(&cc->zone->lock, flags);
652 
653 	/*
654 	 * There is a tiny chance that we have read bogus compound_order(),
655 	 * so be careful to not go outside of the pageblock.
656 	 */
657 	if (unlikely(blockpfn > end_pfn))
658 		blockpfn = end_pfn;
659 
660 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661 					nr_scanned, total_isolated);
662 
663 	/* Record how far we have got within the block */
664 	*start_pfn = blockpfn;
665 
666 	/*
667 	 * If strict isolation is requested by CMA then check that all the
668 	 * pages requested were isolated. If there were any failures, 0 is
669 	 * returned and CMA will fail.
670 	 */
671 	if (strict && blockpfn < end_pfn)
672 		total_isolated = 0;
673 
674 	cc->total_free_scanned += nr_scanned;
675 	if (total_isolated)
676 		count_compact_events(COMPACTISOLATED, total_isolated);
677 	return total_isolated;
678 }
679 
680 /**
681  * isolate_freepages_range() - isolate free pages.
682  * @cc:        Compaction control structure.
683  * @start_pfn: The first PFN to start isolating.
684  * @end_pfn:   The one-past-last PFN.
685  *
686  * Non-free pages, invalid PFNs, or zone boundaries within the
687  * [start_pfn, end_pfn) range are considered errors, cause function to
688  * undo its actions and return zero.
689  *
690  * Otherwise, function returns one-past-the-last PFN of isolated page
691  * (which may be greater then end_pfn if end fell in a middle of
692  * a free page).
693  */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696 			unsigned long start_pfn, unsigned long end_pfn)
697 {
698 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699 	LIST_HEAD(freelist);
700 
701 	pfn = start_pfn;
702 	block_start_pfn = pageblock_start_pfn(pfn);
703 	if (block_start_pfn < cc->zone->zone_start_pfn)
704 		block_start_pfn = cc->zone->zone_start_pfn;
705 	block_end_pfn = pageblock_end_pfn(pfn);
706 
707 	for (; pfn < end_pfn; pfn += isolated,
708 				block_start_pfn = block_end_pfn,
709 				block_end_pfn += pageblock_nr_pages) {
710 		/* Protect pfn from changing by isolate_freepages_block */
711 		unsigned long isolate_start_pfn = pfn;
712 
713 		block_end_pfn = min(block_end_pfn, end_pfn);
714 
715 		/*
716 		 * pfn could pass the block_end_pfn if isolated freepage
717 		 * is more than pageblock order. In this case, we adjust
718 		 * scanning range to right one.
719 		 */
720 		if (pfn >= block_end_pfn) {
721 			block_start_pfn = pageblock_start_pfn(pfn);
722 			block_end_pfn = pageblock_end_pfn(pfn);
723 			block_end_pfn = min(block_end_pfn, end_pfn);
724 		}
725 
726 		if (!pageblock_pfn_to_page(block_start_pfn,
727 					block_end_pfn, cc->zone))
728 			break;
729 
730 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
731 					block_end_pfn, &freelist, 0, true);
732 
733 		/*
734 		 * In strict mode, isolate_freepages_block() returns 0 if
735 		 * there are any holes in the block (ie. invalid PFNs or
736 		 * non-free pages).
737 		 */
738 		if (!isolated)
739 			break;
740 
741 		/*
742 		 * If we managed to isolate pages, it is always (1 << n) *
743 		 * pageblock_nr_pages for some non-negative n.  (Max order
744 		 * page may span two pageblocks).
745 		 */
746 	}
747 
748 	/* __isolate_free_page() does not map the pages */
749 	split_map_pages(&freelist);
750 
751 	if (pfn < end_pfn) {
752 		/* Loop terminated early, cleanup. */
753 		release_freepages(&freelist);
754 		return 0;
755 	}
756 
757 	/* We don't use freelists for anything. */
758 	return pfn;
759 }
760 
761 /* Similar to reclaim, but different enough that they don't share logic */
762 static bool too_many_isolated(pg_data_t *pgdat)
763 {
764 	unsigned long active, inactive, isolated;
765 
766 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
767 			node_page_state(pgdat, NR_INACTIVE_ANON);
768 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
769 			node_page_state(pgdat, NR_ACTIVE_ANON);
770 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
771 			node_page_state(pgdat, NR_ISOLATED_ANON);
772 
773 	return isolated > (inactive + active) / 2;
774 }
775 
776 /**
777  * isolate_migratepages_block() - isolate all migrate-able pages within
778  *				  a single pageblock
779  * @cc:		Compaction control structure.
780  * @low_pfn:	The first PFN to isolate
781  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
782  * @isolate_mode: Isolation mode to be used.
783  *
784  * Isolate all pages that can be migrated from the range specified by
785  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
786  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
787  * -ENOMEM in case we could not allocate a page, or 0.
788  * cc->migrate_pfn will contain the next pfn to scan.
789  *
790  * The pages are isolated on cc->migratepages list (not required to be empty),
791  * and cc->nr_migratepages is updated accordingly.
792  */
793 static int
794 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
795 			unsigned long end_pfn, isolate_mode_t isolate_mode)
796 {
797 	pg_data_t *pgdat = cc->zone->zone_pgdat;
798 	unsigned long nr_scanned = 0, nr_isolated = 0;
799 	struct lruvec *lruvec;
800 	unsigned long flags = 0;
801 	struct lruvec *locked = NULL;
802 	struct page *page = NULL, *valid_page = NULL;
803 	unsigned long start_pfn = low_pfn;
804 	bool skip_on_failure = false;
805 	unsigned long next_skip_pfn = 0;
806 	bool skip_updated = false;
807 	int ret = 0;
808 
809 	cc->migrate_pfn = low_pfn;
810 
811 	/*
812 	 * Ensure that there are not too many pages isolated from the LRU
813 	 * list by either parallel reclaimers or compaction. If there are,
814 	 * delay for some time until fewer pages are isolated
815 	 */
816 	while (unlikely(too_many_isolated(pgdat))) {
817 		/* stop isolation if there are still pages not migrated */
818 		if (cc->nr_migratepages)
819 			return -EAGAIN;
820 
821 		/* async migration should just abort */
822 		if (cc->mode == MIGRATE_ASYNC)
823 			return -EAGAIN;
824 
825 		congestion_wait(BLK_RW_ASYNC, HZ/10);
826 
827 		if (fatal_signal_pending(current))
828 			return -EINTR;
829 	}
830 
831 	cond_resched();
832 
833 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
834 		skip_on_failure = true;
835 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
836 	}
837 
838 	/* Time to isolate some pages for migration */
839 	for (; low_pfn < end_pfn; low_pfn++) {
840 
841 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
842 			/*
843 			 * We have isolated all migration candidates in the
844 			 * previous order-aligned block, and did not skip it due
845 			 * to failure. We should migrate the pages now and
846 			 * hopefully succeed compaction.
847 			 */
848 			if (nr_isolated)
849 				break;
850 
851 			/*
852 			 * We failed to isolate in the previous order-aligned
853 			 * block. Set the new boundary to the end of the
854 			 * current block. Note we can't simply increase
855 			 * next_skip_pfn by 1 << order, as low_pfn might have
856 			 * been incremented by a higher number due to skipping
857 			 * a compound or a high-order buddy page in the
858 			 * previous loop iteration.
859 			 */
860 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861 		}
862 
863 		/*
864 		 * Periodically drop the lock (if held) regardless of its
865 		 * contention, to give chance to IRQs. Abort completely if
866 		 * a fatal signal is pending.
867 		 */
868 		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
869 			if (locked) {
870 				unlock_page_lruvec_irqrestore(locked, flags);
871 				locked = NULL;
872 			}
873 
874 			if (fatal_signal_pending(current)) {
875 				cc->contended = true;
876 				ret = -EINTR;
877 
878 				goto fatal_pending;
879 			}
880 
881 			cond_resched();
882 		}
883 
884 		nr_scanned++;
885 
886 		page = pfn_to_page(low_pfn);
887 
888 		/*
889 		 * Check if the pageblock has already been marked skipped.
890 		 * Only the aligned PFN is checked as the caller isolates
891 		 * COMPACT_CLUSTER_MAX at a time so the second call must
892 		 * not falsely conclude that the block should be skipped.
893 		 */
894 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
895 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
896 				low_pfn = end_pfn;
897 				page = NULL;
898 				goto isolate_abort;
899 			}
900 			valid_page = page;
901 		}
902 
903 		if (PageHuge(page) && cc->alloc_contig) {
904 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
905 
906 			/*
907 			 * Fail isolation in case isolate_or_dissolve_huge_page()
908 			 * reports an error. In case of -ENOMEM, abort right away.
909 			 */
910 			if (ret < 0) {
911 				 /* Do not report -EBUSY down the chain */
912 				if (ret == -EBUSY)
913 					ret = 0;
914 				low_pfn += (1UL << compound_order(page)) - 1;
915 				goto isolate_fail;
916 			}
917 
918 			if (PageHuge(page)) {
919 				/*
920 				 * Hugepage was successfully isolated and placed
921 				 * on the cc->migratepages list.
922 				 */
923 				low_pfn += compound_nr(page) - 1;
924 				goto isolate_success_no_list;
925 			}
926 
927 			/*
928 			 * Ok, the hugepage was dissolved. Now these pages are
929 			 * Buddy and cannot be re-allocated because they are
930 			 * isolated. Fall-through as the check below handles
931 			 * Buddy pages.
932 			 */
933 		}
934 
935 		/*
936 		 * Skip if free. We read page order here without zone lock
937 		 * which is generally unsafe, but the race window is small and
938 		 * the worst thing that can happen is that we skip some
939 		 * potential isolation targets.
940 		 */
941 		if (PageBuddy(page)) {
942 			unsigned long freepage_order = buddy_order_unsafe(page);
943 
944 			/*
945 			 * Without lock, we cannot be sure that what we got is
946 			 * a valid page order. Consider only values in the
947 			 * valid order range to prevent low_pfn overflow.
948 			 */
949 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
950 				low_pfn += (1UL << freepage_order) - 1;
951 			continue;
952 		}
953 
954 		/*
955 		 * Regardless of being on LRU, compound pages such as THP and
956 		 * hugetlbfs are not to be compacted unless we are attempting
957 		 * an allocation much larger than the huge page size (eg CMA).
958 		 * We can potentially save a lot of iterations if we skip them
959 		 * at once. The check is racy, but we can consider only valid
960 		 * values and the only danger is skipping too much.
961 		 */
962 		if (PageCompound(page) && !cc->alloc_contig) {
963 			const unsigned int order = compound_order(page);
964 
965 			if (likely(order < MAX_ORDER))
966 				low_pfn += (1UL << order) - 1;
967 			goto isolate_fail;
968 		}
969 
970 		/*
971 		 * Check may be lockless but that's ok as we recheck later.
972 		 * It's possible to migrate LRU and non-lru movable pages.
973 		 * Skip any other type of page
974 		 */
975 		if (!PageLRU(page)) {
976 			/*
977 			 * __PageMovable can return false positive so we need
978 			 * to verify it under page_lock.
979 			 */
980 			if (unlikely(__PageMovable(page)) &&
981 					!PageIsolated(page)) {
982 				if (locked) {
983 					unlock_page_lruvec_irqrestore(locked, flags);
984 					locked = NULL;
985 				}
986 
987 				if (!isolate_movable_page(page, isolate_mode))
988 					goto isolate_success;
989 			}
990 
991 			goto isolate_fail;
992 		}
993 
994 		/*
995 		 * Migration will fail if an anonymous page is pinned in memory,
996 		 * so avoid taking lru_lock and isolating it unnecessarily in an
997 		 * admittedly racy check.
998 		 */
999 		if (!page_mapping(page) &&
1000 		    page_count(page) > page_mapcount(page))
1001 			goto isolate_fail;
1002 
1003 		/*
1004 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1005 		 * because those do not depend on fs locks.
1006 		 */
1007 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1008 			goto isolate_fail;
1009 
1010 		/*
1011 		 * Be careful not to clear PageLRU until after we're
1012 		 * sure the page is not being freed elsewhere -- the
1013 		 * page release code relies on it.
1014 		 */
1015 		if (unlikely(!get_page_unless_zero(page)))
1016 			goto isolate_fail;
1017 
1018 		if (!__isolate_lru_page_prepare(page, isolate_mode))
1019 			goto isolate_fail_put;
1020 
1021 		/* Try isolate the page */
1022 		if (!TestClearPageLRU(page))
1023 			goto isolate_fail_put;
1024 
1025 		lruvec = mem_cgroup_page_lruvec(page);
1026 
1027 		/* If we already hold the lock, we can skip some rechecking */
1028 		if (lruvec != locked) {
1029 			if (locked)
1030 				unlock_page_lruvec_irqrestore(locked, flags);
1031 
1032 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1033 			locked = lruvec;
1034 
1035 			lruvec_memcg_debug(lruvec, page);
1036 
1037 			/* Try get exclusive access under lock */
1038 			if (!skip_updated) {
1039 				skip_updated = true;
1040 				if (test_and_set_skip(cc, page, low_pfn))
1041 					goto isolate_abort;
1042 			}
1043 
1044 			/*
1045 			 * Page become compound since the non-locked check,
1046 			 * and it's on LRU. It can only be a THP so the order
1047 			 * is safe to read and it's 0 for tail pages.
1048 			 */
1049 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1050 				low_pfn += compound_nr(page) - 1;
1051 				SetPageLRU(page);
1052 				goto isolate_fail_put;
1053 			}
1054 		}
1055 
1056 		/* The whole page is taken off the LRU; skip the tail pages. */
1057 		if (PageCompound(page))
1058 			low_pfn += compound_nr(page) - 1;
1059 
1060 		/* Successfully isolated */
1061 		del_page_from_lru_list(page, lruvec);
1062 		mod_node_page_state(page_pgdat(page),
1063 				NR_ISOLATED_ANON + page_is_file_lru(page),
1064 				thp_nr_pages(page));
1065 
1066 isolate_success:
1067 		list_add(&page->lru, &cc->migratepages);
1068 isolate_success_no_list:
1069 		cc->nr_migratepages += compound_nr(page);
1070 		nr_isolated += compound_nr(page);
1071 
1072 		/*
1073 		 * Avoid isolating too much unless this block is being
1074 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1075 		 * or a lock is contended. For contention, isolate quickly to
1076 		 * potentially remove one source of contention.
1077 		 */
1078 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1079 		    !cc->rescan && !cc->contended) {
1080 			++low_pfn;
1081 			break;
1082 		}
1083 
1084 		continue;
1085 
1086 isolate_fail_put:
1087 		/* Avoid potential deadlock in freeing page under lru_lock */
1088 		if (locked) {
1089 			unlock_page_lruvec_irqrestore(locked, flags);
1090 			locked = NULL;
1091 		}
1092 		put_page(page);
1093 
1094 isolate_fail:
1095 		if (!skip_on_failure && ret != -ENOMEM)
1096 			continue;
1097 
1098 		/*
1099 		 * We have isolated some pages, but then failed. Release them
1100 		 * instead of migrating, as we cannot form the cc->order buddy
1101 		 * page anyway.
1102 		 */
1103 		if (nr_isolated) {
1104 			if (locked) {
1105 				unlock_page_lruvec_irqrestore(locked, flags);
1106 				locked = NULL;
1107 			}
1108 			putback_movable_pages(&cc->migratepages);
1109 			cc->nr_migratepages = 0;
1110 			nr_isolated = 0;
1111 		}
1112 
1113 		if (low_pfn < next_skip_pfn) {
1114 			low_pfn = next_skip_pfn - 1;
1115 			/*
1116 			 * The check near the loop beginning would have updated
1117 			 * next_skip_pfn too, but this is a bit simpler.
1118 			 */
1119 			next_skip_pfn += 1UL << cc->order;
1120 		}
1121 
1122 		if (ret == -ENOMEM)
1123 			break;
1124 	}
1125 
1126 	/*
1127 	 * The PageBuddy() check could have potentially brought us outside
1128 	 * the range to be scanned.
1129 	 */
1130 	if (unlikely(low_pfn > end_pfn))
1131 		low_pfn = end_pfn;
1132 
1133 	page = NULL;
1134 
1135 isolate_abort:
1136 	if (locked)
1137 		unlock_page_lruvec_irqrestore(locked, flags);
1138 	if (page) {
1139 		SetPageLRU(page);
1140 		put_page(page);
1141 	}
1142 
1143 	/*
1144 	 * Updated the cached scanner pfn once the pageblock has been scanned
1145 	 * Pages will either be migrated in which case there is no point
1146 	 * scanning in the near future or migration failed in which case the
1147 	 * failure reason may persist. The block is marked for skipping if
1148 	 * there were no pages isolated in the block or if the block is
1149 	 * rescanned twice in a row.
1150 	 */
1151 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1152 		if (valid_page && !skip_updated)
1153 			set_pageblock_skip(valid_page);
1154 		update_cached_migrate(cc, low_pfn);
1155 	}
1156 
1157 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1158 						nr_scanned, nr_isolated);
1159 
1160 fatal_pending:
1161 	cc->total_migrate_scanned += nr_scanned;
1162 	if (nr_isolated)
1163 		count_compact_events(COMPACTISOLATED, nr_isolated);
1164 
1165 	cc->migrate_pfn = low_pfn;
1166 
1167 	return ret;
1168 }
1169 
1170 /**
1171  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1172  * @cc:        Compaction control structure.
1173  * @start_pfn: The first PFN to start isolating.
1174  * @end_pfn:   The one-past-last PFN.
1175  *
1176  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1177  * in case we could not allocate a page, or 0.
1178  */
1179 int
1180 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1181 							unsigned long end_pfn)
1182 {
1183 	unsigned long pfn, block_start_pfn, block_end_pfn;
1184 	int ret = 0;
1185 
1186 	/* Scan block by block. First and last block may be incomplete */
1187 	pfn = start_pfn;
1188 	block_start_pfn = pageblock_start_pfn(pfn);
1189 	if (block_start_pfn < cc->zone->zone_start_pfn)
1190 		block_start_pfn = cc->zone->zone_start_pfn;
1191 	block_end_pfn = pageblock_end_pfn(pfn);
1192 
1193 	for (; pfn < end_pfn; pfn = block_end_pfn,
1194 				block_start_pfn = block_end_pfn,
1195 				block_end_pfn += pageblock_nr_pages) {
1196 
1197 		block_end_pfn = min(block_end_pfn, end_pfn);
1198 
1199 		if (!pageblock_pfn_to_page(block_start_pfn,
1200 					block_end_pfn, cc->zone))
1201 			continue;
1202 
1203 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1204 						 ISOLATE_UNEVICTABLE);
1205 
1206 		if (ret)
1207 			break;
1208 
1209 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1210 			break;
1211 	}
1212 
1213 	return ret;
1214 }
1215 
1216 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1217 #ifdef CONFIG_COMPACTION
1218 
1219 static bool suitable_migration_source(struct compact_control *cc,
1220 							struct page *page)
1221 {
1222 	int block_mt;
1223 
1224 	if (pageblock_skip_persistent(page))
1225 		return false;
1226 
1227 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1228 		return true;
1229 
1230 	block_mt = get_pageblock_migratetype(page);
1231 
1232 	if (cc->migratetype == MIGRATE_MOVABLE)
1233 		return is_migrate_movable(block_mt);
1234 	else
1235 		return block_mt == cc->migratetype;
1236 }
1237 
1238 /* Returns true if the page is within a block suitable for migration to */
1239 static bool suitable_migration_target(struct compact_control *cc,
1240 							struct page *page)
1241 {
1242 	/* If the page is a large free page, then disallow migration */
1243 	if (PageBuddy(page)) {
1244 		/*
1245 		 * We are checking page_order without zone->lock taken. But
1246 		 * the only small danger is that we skip a potentially suitable
1247 		 * pageblock, so it's not worth to check order for valid range.
1248 		 */
1249 		if (buddy_order_unsafe(page) >= pageblock_order)
1250 			return false;
1251 	}
1252 
1253 	if (cc->ignore_block_suitable)
1254 		return true;
1255 
1256 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1257 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1258 		return true;
1259 
1260 	/* Otherwise skip the block */
1261 	return false;
1262 }
1263 
1264 static inline unsigned int
1265 freelist_scan_limit(struct compact_control *cc)
1266 {
1267 	unsigned short shift = BITS_PER_LONG - 1;
1268 
1269 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1270 }
1271 
1272 /*
1273  * Test whether the free scanner has reached the same or lower pageblock than
1274  * the migration scanner, and compaction should thus terminate.
1275  */
1276 static inline bool compact_scanners_met(struct compact_control *cc)
1277 {
1278 	return (cc->free_pfn >> pageblock_order)
1279 		<= (cc->migrate_pfn >> pageblock_order);
1280 }
1281 
1282 /*
1283  * Used when scanning for a suitable migration target which scans freelists
1284  * in reverse. Reorders the list such as the unscanned pages are scanned
1285  * first on the next iteration of the free scanner
1286  */
1287 static void
1288 move_freelist_head(struct list_head *freelist, struct page *freepage)
1289 {
1290 	LIST_HEAD(sublist);
1291 
1292 	if (!list_is_last(freelist, &freepage->lru)) {
1293 		list_cut_before(&sublist, freelist, &freepage->lru);
1294 		list_splice_tail(&sublist, freelist);
1295 	}
1296 }
1297 
1298 /*
1299  * Similar to move_freelist_head except used by the migration scanner
1300  * when scanning forward. It's possible for these list operations to
1301  * move against each other if they search the free list exactly in
1302  * lockstep.
1303  */
1304 static void
1305 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1306 {
1307 	LIST_HEAD(sublist);
1308 
1309 	if (!list_is_first(freelist, &freepage->lru)) {
1310 		list_cut_position(&sublist, freelist, &freepage->lru);
1311 		list_splice_tail(&sublist, freelist);
1312 	}
1313 }
1314 
1315 static void
1316 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1317 {
1318 	unsigned long start_pfn, end_pfn;
1319 	struct page *page;
1320 
1321 	/* Do not search around if there are enough pages already */
1322 	if (cc->nr_freepages >= cc->nr_migratepages)
1323 		return;
1324 
1325 	/* Minimise scanning during async compaction */
1326 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1327 		return;
1328 
1329 	/* Pageblock boundaries */
1330 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1331 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1332 
1333 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1334 	if (!page)
1335 		return;
1336 
1337 	/* Scan before */
1338 	if (start_pfn != pfn) {
1339 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1340 		if (cc->nr_freepages >= cc->nr_migratepages)
1341 			return;
1342 	}
1343 
1344 	/* Scan after */
1345 	start_pfn = pfn + nr_isolated;
1346 	if (start_pfn < end_pfn)
1347 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1348 
1349 	/* Skip this pageblock in the future as it's full or nearly full */
1350 	if (cc->nr_freepages < cc->nr_migratepages)
1351 		set_pageblock_skip(page);
1352 }
1353 
1354 /* Search orders in round-robin fashion */
1355 static int next_search_order(struct compact_control *cc, int order)
1356 {
1357 	order--;
1358 	if (order < 0)
1359 		order = cc->order - 1;
1360 
1361 	/* Search wrapped around? */
1362 	if (order == cc->search_order) {
1363 		cc->search_order--;
1364 		if (cc->search_order < 0)
1365 			cc->search_order = cc->order - 1;
1366 		return -1;
1367 	}
1368 
1369 	return order;
1370 }
1371 
1372 static unsigned long
1373 fast_isolate_freepages(struct compact_control *cc)
1374 {
1375 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1376 	unsigned int nr_scanned = 0;
1377 	unsigned long low_pfn, min_pfn, highest = 0;
1378 	unsigned long nr_isolated = 0;
1379 	unsigned long distance;
1380 	struct page *page = NULL;
1381 	bool scan_start = false;
1382 	int order;
1383 
1384 	/* Full compaction passes in a negative order */
1385 	if (cc->order <= 0)
1386 		return cc->free_pfn;
1387 
1388 	/*
1389 	 * If starting the scan, use a deeper search and use the highest
1390 	 * PFN found if a suitable one is not found.
1391 	 */
1392 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1393 		limit = pageblock_nr_pages >> 1;
1394 		scan_start = true;
1395 	}
1396 
1397 	/*
1398 	 * Preferred point is in the top quarter of the scan space but take
1399 	 * a pfn from the top half if the search is problematic.
1400 	 */
1401 	distance = (cc->free_pfn - cc->migrate_pfn);
1402 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1403 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1404 
1405 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1406 		low_pfn = min_pfn;
1407 
1408 	/*
1409 	 * Search starts from the last successful isolation order or the next
1410 	 * order to search after a previous failure
1411 	 */
1412 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1413 
1414 	for (order = cc->search_order;
1415 	     !page && order >= 0;
1416 	     order = next_search_order(cc, order)) {
1417 		struct free_area *area = &cc->zone->free_area[order];
1418 		struct list_head *freelist;
1419 		struct page *freepage;
1420 		unsigned long flags;
1421 		unsigned int order_scanned = 0;
1422 		unsigned long high_pfn = 0;
1423 
1424 		if (!area->nr_free)
1425 			continue;
1426 
1427 		spin_lock_irqsave(&cc->zone->lock, flags);
1428 		freelist = &area->free_list[MIGRATE_MOVABLE];
1429 		list_for_each_entry_reverse(freepage, freelist, lru) {
1430 			unsigned long pfn;
1431 
1432 			order_scanned++;
1433 			nr_scanned++;
1434 			pfn = page_to_pfn(freepage);
1435 
1436 			if (pfn >= highest)
1437 				highest = max(pageblock_start_pfn(pfn),
1438 					      cc->zone->zone_start_pfn);
1439 
1440 			if (pfn >= low_pfn) {
1441 				cc->fast_search_fail = 0;
1442 				cc->search_order = order;
1443 				page = freepage;
1444 				break;
1445 			}
1446 
1447 			if (pfn >= min_pfn && pfn > high_pfn) {
1448 				high_pfn = pfn;
1449 
1450 				/* Shorten the scan if a candidate is found */
1451 				limit >>= 1;
1452 			}
1453 
1454 			if (order_scanned >= limit)
1455 				break;
1456 		}
1457 
1458 		/* Use a minimum pfn if a preferred one was not found */
1459 		if (!page && high_pfn) {
1460 			page = pfn_to_page(high_pfn);
1461 
1462 			/* Update freepage for the list reorder below */
1463 			freepage = page;
1464 		}
1465 
1466 		/* Reorder to so a future search skips recent pages */
1467 		move_freelist_head(freelist, freepage);
1468 
1469 		/* Isolate the page if available */
1470 		if (page) {
1471 			if (__isolate_free_page(page, order)) {
1472 				set_page_private(page, order);
1473 				nr_isolated = 1 << order;
1474 				cc->nr_freepages += nr_isolated;
1475 				list_add_tail(&page->lru, &cc->freepages);
1476 				count_compact_events(COMPACTISOLATED, nr_isolated);
1477 			} else {
1478 				/* If isolation fails, abort the search */
1479 				order = cc->search_order + 1;
1480 				page = NULL;
1481 			}
1482 		}
1483 
1484 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1485 
1486 		/*
1487 		 * Smaller scan on next order so the total scan is related
1488 		 * to freelist_scan_limit.
1489 		 */
1490 		if (order_scanned >= limit)
1491 			limit = max(1U, limit >> 1);
1492 	}
1493 
1494 	if (!page) {
1495 		cc->fast_search_fail++;
1496 		if (scan_start) {
1497 			/*
1498 			 * Use the highest PFN found above min. If one was
1499 			 * not found, be pessimistic for direct compaction
1500 			 * and use the min mark.
1501 			 */
1502 			if (highest) {
1503 				page = pfn_to_page(highest);
1504 				cc->free_pfn = highest;
1505 			} else {
1506 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1507 					page = pageblock_pfn_to_page(min_pfn,
1508 						min(pageblock_end_pfn(min_pfn),
1509 						    zone_end_pfn(cc->zone)),
1510 						cc->zone);
1511 					cc->free_pfn = min_pfn;
1512 				}
1513 			}
1514 		}
1515 	}
1516 
1517 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1518 		highest -= pageblock_nr_pages;
1519 		cc->zone->compact_cached_free_pfn = highest;
1520 	}
1521 
1522 	cc->total_free_scanned += nr_scanned;
1523 	if (!page)
1524 		return cc->free_pfn;
1525 
1526 	low_pfn = page_to_pfn(page);
1527 	fast_isolate_around(cc, low_pfn, nr_isolated);
1528 	return low_pfn;
1529 }
1530 
1531 /*
1532  * Based on information in the current compact_control, find blocks
1533  * suitable for isolating free pages from and then isolate them.
1534  */
1535 static void isolate_freepages(struct compact_control *cc)
1536 {
1537 	struct zone *zone = cc->zone;
1538 	struct page *page;
1539 	unsigned long block_start_pfn;	/* start of current pageblock */
1540 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1541 	unsigned long block_end_pfn;	/* end of current pageblock */
1542 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1543 	struct list_head *freelist = &cc->freepages;
1544 	unsigned int stride;
1545 
1546 	/* Try a small search of the free lists for a candidate */
1547 	isolate_start_pfn = fast_isolate_freepages(cc);
1548 	if (cc->nr_freepages)
1549 		goto splitmap;
1550 
1551 	/*
1552 	 * Initialise the free scanner. The starting point is where we last
1553 	 * successfully isolated from, zone-cached value, or the end of the
1554 	 * zone when isolating for the first time. For looping we also need
1555 	 * this pfn aligned down to the pageblock boundary, because we do
1556 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1557 	 * For ending point, take care when isolating in last pageblock of a
1558 	 * zone which ends in the middle of a pageblock.
1559 	 * The low boundary is the end of the pageblock the migration scanner
1560 	 * is using.
1561 	 */
1562 	isolate_start_pfn = cc->free_pfn;
1563 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1564 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1565 						zone_end_pfn(zone));
1566 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1567 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1568 
1569 	/*
1570 	 * Isolate free pages until enough are available to migrate the
1571 	 * pages on cc->migratepages. We stop searching if the migrate
1572 	 * and free page scanners meet or enough free pages are isolated.
1573 	 */
1574 	for (; block_start_pfn >= low_pfn;
1575 				block_end_pfn = block_start_pfn,
1576 				block_start_pfn -= pageblock_nr_pages,
1577 				isolate_start_pfn = block_start_pfn) {
1578 		unsigned long nr_isolated;
1579 
1580 		/*
1581 		 * This can iterate a massively long zone without finding any
1582 		 * suitable migration targets, so periodically check resched.
1583 		 */
1584 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1585 			cond_resched();
1586 
1587 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1588 									zone);
1589 		if (!page)
1590 			continue;
1591 
1592 		/* Check the block is suitable for migration */
1593 		if (!suitable_migration_target(cc, page))
1594 			continue;
1595 
1596 		/* If isolation recently failed, do not retry */
1597 		if (!isolation_suitable(cc, page))
1598 			continue;
1599 
1600 		/* Found a block suitable for isolating free pages from. */
1601 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1602 					block_end_pfn, freelist, stride, false);
1603 
1604 		/* Update the skip hint if the full pageblock was scanned */
1605 		if (isolate_start_pfn == block_end_pfn)
1606 			update_pageblock_skip(cc, page, block_start_pfn);
1607 
1608 		/* Are enough freepages isolated? */
1609 		if (cc->nr_freepages >= cc->nr_migratepages) {
1610 			if (isolate_start_pfn >= block_end_pfn) {
1611 				/*
1612 				 * Restart at previous pageblock if more
1613 				 * freepages can be isolated next time.
1614 				 */
1615 				isolate_start_pfn =
1616 					block_start_pfn - pageblock_nr_pages;
1617 			}
1618 			break;
1619 		} else if (isolate_start_pfn < block_end_pfn) {
1620 			/*
1621 			 * If isolation failed early, do not continue
1622 			 * needlessly.
1623 			 */
1624 			break;
1625 		}
1626 
1627 		/* Adjust stride depending on isolation */
1628 		if (nr_isolated) {
1629 			stride = 1;
1630 			continue;
1631 		}
1632 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1633 	}
1634 
1635 	/*
1636 	 * Record where the free scanner will restart next time. Either we
1637 	 * broke from the loop and set isolate_start_pfn based on the last
1638 	 * call to isolate_freepages_block(), or we met the migration scanner
1639 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1640 	 */
1641 	cc->free_pfn = isolate_start_pfn;
1642 
1643 splitmap:
1644 	/* __isolate_free_page() does not map the pages */
1645 	split_map_pages(freelist);
1646 }
1647 
1648 /*
1649  * This is a migrate-callback that "allocates" freepages by taking pages
1650  * from the isolated freelists in the block we are migrating to.
1651  */
1652 static struct page *compaction_alloc(struct page *migratepage,
1653 					unsigned long data)
1654 {
1655 	struct compact_control *cc = (struct compact_control *)data;
1656 	struct page *freepage;
1657 
1658 	if (list_empty(&cc->freepages)) {
1659 		isolate_freepages(cc);
1660 
1661 		if (list_empty(&cc->freepages))
1662 			return NULL;
1663 	}
1664 
1665 	freepage = list_entry(cc->freepages.next, struct page, lru);
1666 	list_del(&freepage->lru);
1667 	cc->nr_freepages--;
1668 
1669 	return freepage;
1670 }
1671 
1672 /*
1673  * This is a migrate-callback that "frees" freepages back to the isolated
1674  * freelist.  All pages on the freelist are from the same zone, so there is no
1675  * special handling needed for NUMA.
1676  */
1677 static void compaction_free(struct page *page, unsigned long data)
1678 {
1679 	struct compact_control *cc = (struct compact_control *)data;
1680 
1681 	list_add(&page->lru, &cc->freepages);
1682 	cc->nr_freepages++;
1683 }
1684 
1685 /* possible outcome of isolate_migratepages */
1686 typedef enum {
1687 	ISOLATE_ABORT,		/* Abort compaction now */
1688 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1689 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1690 } isolate_migrate_t;
1691 
1692 /*
1693  * Allow userspace to control policy on scanning the unevictable LRU for
1694  * compactable pages.
1695  */
1696 #ifdef CONFIG_PREEMPT_RT
1697 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1698 #else
1699 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1700 #endif
1701 
1702 static inline void
1703 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1704 {
1705 	if (cc->fast_start_pfn == ULONG_MAX)
1706 		return;
1707 
1708 	if (!cc->fast_start_pfn)
1709 		cc->fast_start_pfn = pfn;
1710 
1711 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1712 }
1713 
1714 static inline unsigned long
1715 reinit_migrate_pfn(struct compact_control *cc)
1716 {
1717 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1718 		return cc->migrate_pfn;
1719 
1720 	cc->migrate_pfn = cc->fast_start_pfn;
1721 	cc->fast_start_pfn = ULONG_MAX;
1722 
1723 	return cc->migrate_pfn;
1724 }
1725 
1726 /*
1727  * Briefly search the free lists for a migration source that already has
1728  * some free pages to reduce the number of pages that need migration
1729  * before a pageblock is free.
1730  */
1731 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1732 {
1733 	unsigned int limit = freelist_scan_limit(cc);
1734 	unsigned int nr_scanned = 0;
1735 	unsigned long distance;
1736 	unsigned long pfn = cc->migrate_pfn;
1737 	unsigned long high_pfn;
1738 	int order;
1739 	bool found_block = false;
1740 
1741 	/* Skip hints are relied on to avoid repeats on the fast search */
1742 	if (cc->ignore_skip_hint)
1743 		return pfn;
1744 
1745 	/*
1746 	 * If the migrate_pfn is not at the start of a zone or the start
1747 	 * of a pageblock then assume this is a continuation of a previous
1748 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1749 	 */
1750 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1751 		return pfn;
1752 
1753 	/*
1754 	 * For smaller orders, just linearly scan as the number of pages
1755 	 * to migrate should be relatively small and does not necessarily
1756 	 * justify freeing up a large block for a small allocation.
1757 	 */
1758 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1759 		return pfn;
1760 
1761 	/*
1762 	 * Only allow kcompactd and direct requests for movable pages to
1763 	 * quickly clear out a MOVABLE pageblock for allocation. This
1764 	 * reduces the risk that a large movable pageblock is freed for
1765 	 * an unmovable/reclaimable small allocation.
1766 	 */
1767 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1768 		return pfn;
1769 
1770 	/*
1771 	 * When starting the migration scanner, pick any pageblock within the
1772 	 * first half of the search space. Otherwise try and pick a pageblock
1773 	 * within the first eighth to reduce the chances that a migration
1774 	 * target later becomes a source.
1775 	 */
1776 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1777 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1778 		distance >>= 2;
1779 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1780 
1781 	for (order = cc->order - 1;
1782 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1783 	     order--) {
1784 		struct free_area *area = &cc->zone->free_area[order];
1785 		struct list_head *freelist;
1786 		unsigned long flags;
1787 		struct page *freepage;
1788 
1789 		if (!area->nr_free)
1790 			continue;
1791 
1792 		spin_lock_irqsave(&cc->zone->lock, flags);
1793 		freelist = &area->free_list[MIGRATE_MOVABLE];
1794 		list_for_each_entry(freepage, freelist, lru) {
1795 			unsigned long free_pfn;
1796 
1797 			if (nr_scanned++ >= limit) {
1798 				move_freelist_tail(freelist, freepage);
1799 				break;
1800 			}
1801 
1802 			free_pfn = page_to_pfn(freepage);
1803 			if (free_pfn < high_pfn) {
1804 				/*
1805 				 * Avoid if skipped recently. Ideally it would
1806 				 * move to the tail but even safe iteration of
1807 				 * the list assumes an entry is deleted, not
1808 				 * reordered.
1809 				 */
1810 				if (get_pageblock_skip(freepage))
1811 					continue;
1812 
1813 				/* Reorder to so a future search skips recent pages */
1814 				move_freelist_tail(freelist, freepage);
1815 
1816 				update_fast_start_pfn(cc, free_pfn);
1817 				pfn = pageblock_start_pfn(free_pfn);
1818 				cc->fast_search_fail = 0;
1819 				found_block = true;
1820 				set_pageblock_skip(freepage);
1821 				break;
1822 			}
1823 		}
1824 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1825 	}
1826 
1827 	cc->total_migrate_scanned += nr_scanned;
1828 
1829 	/*
1830 	 * If fast scanning failed then use a cached entry for a page block
1831 	 * that had free pages as the basis for starting a linear scan.
1832 	 */
1833 	if (!found_block) {
1834 		cc->fast_search_fail++;
1835 		pfn = reinit_migrate_pfn(cc);
1836 	}
1837 	return pfn;
1838 }
1839 
1840 /*
1841  * Isolate all pages that can be migrated from the first suitable block,
1842  * starting at the block pointed to by the migrate scanner pfn within
1843  * compact_control.
1844  */
1845 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1846 {
1847 	unsigned long block_start_pfn;
1848 	unsigned long block_end_pfn;
1849 	unsigned long low_pfn;
1850 	struct page *page;
1851 	const isolate_mode_t isolate_mode =
1852 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1853 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1854 	bool fast_find_block;
1855 
1856 	/*
1857 	 * Start at where we last stopped, or beginning of the zone as
1858 	 * initialized by compact_zone(). The first failure will use
1859 	 * the lowest PFN as the starting point for linear scanning.
1860 	 */
1861 	low_pfn = fast_find_migrateblock(cc);
1862 	block_start_pfn = pageblock_start_pfn(low_pfn);
1863 	if (block_start_pfn < cc->zone->zone_start_pfn)
1864 		block_start_pfn = cc->zone->zone_start_pfn;
1865 
1866 	/*
1867 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1868 	 * the isolation_suitable check below, check whether the fast
1869 	 * search was successful.
1870 	 */
1871 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1872 
1873 	/* Only scan within a pageblock boundary */
1874 	block_end_pfn = pageblock_end_pfn(low_pfn);
1875 
1876 	/*
1877 	 * Iterate over whole pageblocks until we find the first suitable.
1878 	 * Do not cross the free scanner.
1879 	 */
1880 	for (; block_end_pfn <= cc->free_pfn;
1881 			fast_find_block = false,
1882 			cc->migrate_pfn = low_pfn = block_end_pfn,
1883 			block_start_pfn = block_end_pfn,
1884 			block_end_pfn += pageblock_nr_pages) {
1885 
1886 		/*
1887 		 * This can potentially iterate a massively long zone with
1888 		 * many pageblocks unsuitable, so periodically check if we
1889 		 * need to schedule.
1890 		 */
1891 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1892 			cond_resched();
1893 
1894 		page = pageblock_pfn_to_page(block_start_pfn,
1895 						block_end_pfn, cc->zone);
1896 		if (!page)
1897 			continue;
1898 
1899 		/*
1900 		 * If isolation recently failed, do not retry. Only check the
1901 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1902 		 * to be visited multiple times. Assume skip was checked
1903 		 * before making it "skip" so other compaction instances do
1904 		 * not scan the same block.
1905 		 */
1906 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1907 		    !fast_find_block && !isolation_suitable(cc, page))
1908 			continue;
1909 
1910 		/*
1911 		 * For async compaction, also only scan in MOVABLE blocks
1912 		 * without huge pages. Async compaction is optimistic to see
1913 		 * if the minimum amount of work satisfies the allocation.
1914 		 * The cached PFN is updated as it's possible that all
1915 		 * remaining blocks between source and target are unsuitable
1916 		 * and the compaction scanners fail to meet.
1917 		 */
1918 		if (!suitable_migration_source(cc, page)) {
1919 			update_cached_migrate(cc, block_end_pfn);
1920 			continue;
1921 		}
1922 
1923 		/* Perform the isolation */
1924 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1925 						isolate_mode))
1926 			return ISOLATE_ABORT;
1927 
1928 		/*
1929 		 * Either we isolated something and proceed with migration. Or
1930 		 * we failed and compact_zone should decide if we should
1931 		 * continue or not.
1932 		 */
1933 		break;
1934 	}
1935 
1936 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1937 }
1938 
1939 /*
1940  * order == -1 is expected when compacting via
1941  * /proc/sys/vm/compact_memory
1942  */
1943 static inline bool is_via_compact_memory(int order)
1944 {
1945 	return order == -1;
1946 }
1947 
1948 static bool kswapd_is_running(pg_data_t *pgdat)
1949 {
1950 	return pgdat->kswapd && task_is_running(pgdat->kswapd);
1951 }
1952 
1953 /*
1954  * A zone's fragmentation score is the external fragmentation wrt to the
1955  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1956  */
1957 static unsigned int fragmentation_score_zone(struct zone *zone)
1958 {
1959 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1960 }
1961 
1962 /*
1963  * A weighted zone's fragmentation score is the external fragmentation
1964  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1965  * returns a value in the range [0, 100].
1966  *
1967  * The scaling factor ensures that proactive compaction focuses on larger
1968  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1969  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1970  * and thus never exceeds the high threshold for proactive compaction.
1971  */
1972 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1973 {
1974 	unsigned long score;
1975 
1976 	score = zone->present_pages * fragmentation_score_zone(zone);
1977 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1978 }
1979 
1980 /*
1981  * The per-node proactive (background) compaction process is started by its
1982  * corresponding kcompactd thread when the node's fragmentation score
1983  * exceeds the high threshold. The compaction process remains active till
1984  * the node's score falls below the low threshold, or one of the back-off
1985  * conditions is met.
1986  */
1987 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1988 {
1989 	unsigned int score = 0;
1990 	int zoneid;
1991 
1992 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1993 		struct zone *zone;
1994 
1995 		zone = &pgdat->node_zones[zoneid];
1996 		score += fragmentation_score_zone_weighted(zone);
1997 	}
1998 
1999 	return score;
2000 }
2001 
2002 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2003 {
2004 	unsigned int wmark_low;
2005 
2006 	/*
2007 	 * Cap the low watermark to avoid excessive compaction
2008 	 * activity in case a user sets the proactiveness tunable
2009 	 * close to 100 (maximum).
2010 	 */
2011 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2012 	return low ? wmark_low : min(wmark_low + 10, 100U);
2013 }
2014 
2015 static bool should_proactive_compact_node(pg_data_t *pgdat)
2016 {
2017 	int wmark_high;
2018 
2019 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2020 		return false;
2021 
2022 	wmark_high = fragmentation_score_wmark(pgdat, false);
2023 	return fragmentation_score_node(pgdat) > wmark_high;
2024 }
2025 
2026 static enum compact_result __compact_finished(struct compact_control *cc)
2027 {
2028 	unsigned int order;
2029 	const int migratetype = cc->migratetype;
2030 	int ret;
2031 
2032 	/* Compaction run completes if the migrate and free scanner meet */
2033 	if (compact_scanners_met(cc)) {
2034 		/* Let the next compaction start anew. */
2035 		reset_cached_positions(cc->zone);
2036 
2037 		/*
2038 		 * Mark that the PG_migrate_skip information should be cleared
2039 		 * by kswapd when it goes to sleep. kcompactd does not set the
2040 		 * flag itself as the decision to be clear should be directly
2041 		 * based on an allocation request.
2042 		 */
2043 		if (cc->direct_compaction)
2044 			cc->zone->compact_blockskip_flush = true;
2045 
2046 		if (cc->whole_zone)
2047 			return COMPACT_COMPLETE;
2048 		else
2049 			return COMPACT_PARTIAL_SKIPPED;
2050 	}
2051 
2052 	if (cc->proactive_compaction) {
2053 		int score, wmark_low;
2054 		pg_data_t *pgdat;
2055 
2056 		pgdat = cc->zone->zone_pgdat;
2057 		if (kswapd_is_running(pgdat))
2058 			return COMPACT_PARTIAL_SKIPPED;
2059 
2060 		score = fragmentation_score_zone(cc->zone);
2061 		wmark_low = fragmentation_score_wmark(pgdat, true);
2062 
2063 		if (score > wmark_low)
2064 			ret = COMPACT_CONTINUE;
2065 		else
2066 			ret = COMPACT_SUCCESS;
2067 
2068 		goto out;
2069 	}
2070 
2071 	if (is_via_compact_memory(cc->order))
2072 		return COMPACT_CONTINUE;
2073 
2074 	/*
2075 	 * Always finish scanning a pageblock to reduce the possibility of
2076 	 * fallbacks in the future. This is particularly important when
2077 	 * migration source is unmovable/reclaimable but it's not worth
2078 	 * special casing.
2079 	 */
2080 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2081 		return COMPACT_CONTINUE;
2082 
2083 	/* Direct compactor: Is a suitable page free? */
2084 	ret = COMPACT_NO_SUITABLE_PAGE;
2085 	for (order = cc->order; order < MAX_ORDER; order++) {
2086 		struct free_area *area = &cc->zone->free_area[order];
2087 		bool can_steal;
2088 
2089 		/* Job done if page is free of the right migratetype */
2090 		if (!free_area_empty(area, migratetype))
2091 			return COMPACT_SUCCESS;
2092 
2093 #ifdef CONFIG_CMA
2094 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2095 		if (migratetype == MIGRATE_MOVABLE &&
2096 			!free_area_empty(area, MIGRATE_CMA))
2097 			return COMPACT_SUCCESS;
2098 #endif
2099 		/*
2100 		 * Job done if allocation would steal freepages from
2101 		 * other migratetype buddy lists.
2102 		 */
2103 		if (find_suitable_fallback(area, order, migratetype,
2104 						true, &can_steal) != -1) {
2105 
2106 			/* movable pages are OK in any pageblock */
2107 			if (migratetype == MIGRATE_MOVABLE)
2108 				return COMPACT_SUCCESS;
2109 
2110 			/*
2111 			 * We are stealing for a non-movable allocation. Make
2112 			 * sure we finish compacting the current pageblock
2113 			 * first so it is as free as possible and we won't
2114 			 * have to steal another one soon. This only applies
2115 			 * to sync compaction, as async compaction operates
2116 			 * on pageblocks of the same migratetype.
2117 			 */
2118 			if (cc->mode == MIGRATE_ASYNC ||
2119 					IS_ALIGNED(cc->migrate_pfn,
2120 							pageblock_nr_pages)) {
2121 				return COMPACT_SUCCESS;
2122 			}
2123 
2124 			ret = COMPACT_CONTINUE;
2125 			break;
2126 		}
2127 	}
2128 
2129 out:
2130 	if (cc->contended || fatal_signal_pending(current))
2131 		ret = COMPACT_CONTENDED;
2132 
2133 	return ret;
2134 }
2135 
2136 static enum compact_result compact_finished(struct compact_control *cc)
2137 {
2138 	int ret;
2139 
2140 	ret = __compact_finished(cc);
2141 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2142 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2143 		ret = COMPACT_CONTINUE;
2144 
2145 	return ret;
2146 }
2147 
2148 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2149 					unsigned int alloc_flags,
2150 					int highest_zoneidx,
2151 					unsigned long wmark_target)
2152 {
2153 	unsigned long watermark;
2154 
2155 	if (is_via_compact_memory(order))
2156 		return COMPACT_CONTINUE;
2157 
2158 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2159 	/*
2160 	 * If watermarks for high-order allocation are already met, there
2161 	 * should be no need for compaction at all.
2162 	 */
2163 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2164 								alloc_flags))
2165 		return COMPACT_SUCCESS;
2166 
2167 	/*
2168 	 * Watermarks for order-0 must be met for compaction to be able to
2169 	 * isolate free pages for migration targets. This means that the
2170 	 * watermark and alloc_flags have to match, or be more pessimistic than
2171 	 * the check in __isolate_free_page(). We don't use the direct
2172 	 * compactor's alloc_flags, as they are not relevant for freepage
2173 	 * isolation. We however do use the direct compactor's highest_zoneidx
2174 	 * to skip over zones where lowmem reserves would prevent allocation
2175 	 * even if compaction succeeds.
2176 	 * For costly orders, we require low watermark instead of min for
2177 	 * compaction to proceed to increase its chances.
2178 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2179 	 * suitable migration targets
2180 	 */
2181 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2182 				low_wmark_pages(zone) : min_wmark_pages(zone);
2183 	watermark += compact_gap(order);
2184 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2185 						ALLOC_CMA, wmark_target))
2186 		return COMPACT_SKIPPED;
2187 
2188 	return COMPACT_CONTINUE;
2189 }
2190 
2191 /*
2192  * compaction_suitable: Is this suitable to run compaction on this zone now?
2193  * Returns
2194  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2195  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2196  *   COMPACT_CONTINUE - If compaction should run now
2197  */
2198 enum compact_result compaction_suitable(struct zone *zone, int order,
2199 					unsigned int alloc_flags,
2200 					int highest_zoneidx)
2201 {
2202 	enum compact_result ret;
2203 	int fragindex;
2204 
2205 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2206 				    zone_page_state(zone, NR_FREE_PAGES));
2207 	/*
2208 	 * fragmentation index determines if allocation failures are due to
2209 	 * low memory or external fragmentation
2210 	 *
2211 	 * index of -1000 would imply allocations might succeed depending on
2212 	 * watermarks, but we already failed the high-order watermark check
2213 	 * index towards 0 implies failure is due to lack of memory
2214 	 * index towards 1000 implies failure is due to fragmentation
2215 	 *
2216 	 * Only compact if a failure would be due to fragmentation. Also
2217 	 * ignore fragindex for non-costly orders where the alternative to
2218 	 * a successful reclaim/compaction is OOM. Fragindex and the
2219 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2220 	 * excessive compaction for costly orders, but it should not be at the
2221 	 * expense of system stability.
2222 	 */
2223 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2224 		fragindex = fragmentation_index(zone, order);
2225 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2226 			ret = COMPACT_NOT_SUITABLE_ZONE;
2227 	}
2228 
2229 	trace_mm_compaction_suitable(zone, order, ret);
2230 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2231 		ret = COMPACT_SKIPPED;
2232 
2233 	return ret;
2234 }
2235 
2236 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2237 		int alloc_flags)
2238 {
2239 	struct zone *zone;
2240 	struct zoneref *z;
2241 
2242 	/*
2243 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2244 	 * retrying the reclaim.
2245 	 */
2246 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2247 				ac->highest_zoneidx, ac->nodemask) {
2248 		unsigned long available;
2249 		enum compact_result compact_result;
2250 
2251 		/*
2252 		 * Do not consider all the reclaimable memory because we do not
2253 		 * want to trash just for a single high order allocation which
2254 		 * is even not guaranteed to appear even if __compaction_suitable
2255 		 * is happy about the watermark check.
2256 		 */
2257 		available = zone_reclaimable_pages(zone) / order;
2258 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2259 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2260 				ac->highest_zoneidx, available);
2261 		if (compact_result != COMPACT_SKIPPED)
2262 			return true;
2263 	}
2264 
2265 	return false;
2266 }
2267 
2268 static enum compact_result
2269 compact_zone(struct compact_control *cc, struct capture_control *capc)
2270 {
2271 	enum compact_result ret;
2272 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2273 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2274 	unsigned long last_migrated_pfn;
2275 	const bool sync = cc->mode != MIGRATE_ASYNC;
2276 	bool update_cached;
2277 
2278 	/*
2279 	 * These counters track activities during zone compaction.  Initialize
2280 	 * them before compacting a new zone.
2281 	 */
2282 	cc->total_migrate_scanned = 0;
2283 	cc->total_free_scanned = 0;
2284 	cc->nr_migratepages = 0;
2285 	cc->nr_freepages = 0;
2286 	INIT_LIST_HEAD(&cc->freepages);
2287 	INIT_LIST_HEAD(&cc->migratepages);
2288 
2289 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2290 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2291 							cc->highest_zoneidx);
2292 	/* Compaction is likely to fail */
2293 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2294 		return ret;
2295 
2296 	/* huh, compaction_suitable is returning something unexpected */
2297 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2298 
2299 	/*
2300 	 * Clear pageblock skip if there were failures recently and compaction
2301 	 * is about to be retried after being deferred.
2302 	 */
2303 	if (compaction_restarting(cc->zone, cc->order))
2304 		__reset_isolation_suitable(cc->zone);
2305 
2306 	/*
2307 	 * Setup to move all movable pages to the end of the zone. Used cached
2308 	 * information on where the scanners should start (unless we explicitly
2309 	 * want to compact the whole zone), but check that it is initialised
2310 	 * by ensuring the values are within zone boundaries.
2311 	 */
2312 	cc->fast_start_pfn = 0;
2313 	if (cc->whole_zone) {
2314 		cc->migrate_pfn = start_pfn;
2315 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2316 	} else {
2317 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2318 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2319 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2320 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2321 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2322 		}
2323 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2324 			cc->migrate_pfn = start_pfn;
2325 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2326 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2327 		}
2328 
2329 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2330 			cc->whole_zone = true;
2331 	}
2332 
2333 	last_migrated_pfn = 0;
2334 
2335 	/*
2336 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2337 	 * the basis that some migrations will fail in ASYNC mode. However,
2338 	 * if the cached PFNs match and pageblocks are skipped due to having
2339 	 * no isolation candidates, then the sync state does not matter.
2340 	 * Until a pageblock with isolation candidates is found, keep the
2341 	 * cached PFNs in sync to avoid revisiting the same blocks.
2342 	 */
2343 	update_cached = !sync &&
2344 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2345 
2346 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2347 				cc->free_pfn, end_pfn, sync);
2348 
2349 	/* lru_add_drain_all could be expensive with involving other CPUs */
2350 	lru_add_drain();
2351 
2352 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2353 		int err;
2354 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2355 
2356 		/*
2357 		 * Avoid multiple rescans which can happen if a page cannot be
2358 		 * isolated (dirty/writeback in async mode) or if the migrated
2359 		 * pages are being allocated before the pageblock is cleared.
2360 		 * The first rescan will capture the entire pageblock for
2361 		 * migration. If it fails, it'll be marked skip and scanning
2362 		 * will proceed as normal.
2363 		 */
2364 		cc->rescan = false;
2365 		if (pageblock_start_pfn(last_migrated_pfn) ==
2366 		    pageblock_start_pfn(iteration_start_pfn)) {
2367 			cc->rescan = true;
2368 		}
2369 
2370 		switch (isolate_migratepages(cc)) {
2371 		case ISOLATE_ABORT:
2372 			ret = COMPACT_CONTENDED;
2373 			putback_movable_pages(&cc->migratepages);
2374 			cc->nr_migratepages = 0;
2375 			goto out;
2376 		case ISOLATE_NONE:
2377 			if (update_cached) {
2378 				cc->zone->compact_cached_migrate_pfn[1] =
2379 					cc->zone->compact_cached_migrate_pfn[0];
2380 			}
2381 
2382 			/*
2383 			 * We haven't isolated and migrated anything, but
2384 			 * there might still be unflushed migrations from
2385 			 * previous cc->order aligned block.
2386 			 */
2387 			goto check_drain;
2388 		case ISOLATE_SUCCESS:
2389 			update_cached = false;
2390 			last_migrated_pfn = iteration_start_pfn;
2391 		}
2392 
2393 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2394 				compaction_free, (unsigned long)cc, cc->mode,
2395 				MR_COMPACTION, NULL);
2396 
2397 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2398 							&cc->migratepages);
2399 
2400 		/* All pages were either migrated or will be released */
2401 		cc->nr_migratepages = 0;
2402 		if (err) {
2403 			putback_movable_pages(&cc->migratepages);
2404 			/*
2405 			 * migrate_pages() may return -ENOMEM when scanners meet
2406 			 * and we want compact_finished() to detect it
2407 			 */
2408 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2409 				ret = COMPACT_CONTENDED;
2410 				goto out;
2411 			}
2412 			/*
2413 			 * We failed to migrate at least one page in the current
2414 			 * order-aligned block, so skip the rest of it.
2415 			 */
2416 			if (cc->direct_compaction &&
2417 						(cc->mode == MIGRATE_ASYNC)) {
2418 				cc->migrate_pfn = block_end_pfn(
2419 						cc->migrate_pfn - 1, cc->order);
2420 				/* Draining pcplists is useless in this case */
2421 				last_migrated_pfn = 0;
2422 			}
2423 		}
2424 
2425 check_drain:
2426 		/*
2427 		 * Has the migration scanner moved away from the previous
2428 		 * cc->order aligned block where we migrated from? If yes,
2429 		 * flush the pages that were freed, so that they can merge and
2430 		 * compact_finished() can detect immediately if allocation
2431 		 * would succeed.
2432 		 */
2433 		if (cc->order > 0 && last_migrated_pfn) {
2434 			unsigned long current_block_start =
2435 				block_start_pfn(cc->migrate_pfn, cc->order);
2436 
2437 			if (last_migrated_pfn < current_block_start) {
2438 				lru_add_drain_cpu_zone(cc->zone);
2439 				/* No more flushing until we migrate again */
2440 				last_migrated_pfn = 0;
2441 			}
2442 		}
2443 
2444 		/* Stop if a page has been captured */
2445 		if (capc && capc->page) {
2446 			ret = COMPACT_SUCCESS;
2447 			break;
2448 		}
2449 	}
2450 
2451 out:
2452 	/*
2453 	 * Release free pages and update where the free scanner should restart,
2454 	 * so we don't leave any returned pages behind in the next attempt.
2455 	 */
2456 	if (cc->nr_freepages > 0) {
2457 		unsigned long free_pfn = release_freepages(&cc->freepages);
2458 
2459 		cc->nr_freepages = 0;
2460 		VM_BUG_ON(free_pfn == 0);
2461 		/* The cached pfn is always the first in a pageblock */
2462 		free_pfn = pageblock_start_pfn(free_pfn);
2463 		/*
2464 		 * Only go back, not forward. The cached pfn might have been
2465 		 * already reset to zone end in compact_finished()
2466 		 */
2467 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2468 			cc->zone->compact_cached_free_pfn = free_pfn;
2469 	}
2470 
2471 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2472 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2473 
2474 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2475 				cc->free_pfn, end_pfn, sync, ret);
2476 
2477 	return ret;
2478 }
2479 
2480 static enum compact_result compact_zone_order(struct zone *zone, int order,
2481 		gfp_t gfp_mask, enum compact_priority prio,
2482 		unsigned int alloc_flags, int highest_zoneidx,
2483 		struct page **capture)
2484 {
2485 	enum compact_result ret;
2486 	struct compact_control cc = {
2487 		.order = order,
2488 		.search_order = order,
2489 		.gfp_mask = gfp_mask,
2490 		.zone = zone,
2491 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2492 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2493 		.alloc_flags = alloc_flags,
2494 		.highest_zoneidx = highest_zoneidx,
2495 		.direct_compaction = true,
2496 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2497 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2498 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2499 	};
2500 	struct capture_control capc = {
2501 		.cc = &cc,
2502 		.page = NULL,
2503 	};
2504 
2505 	/*
2506 	 * Make sure the structs are really initialized before we expose the
2507 	 * capture control, in case we are interrupted and the interrupt handler
2508 	 * frees a page.
2509 	 */
2510 	barrier();
2511 	WRITE_ONCE(current->capture_control, &capc);
2512 
2513 	ret = compact_zone(&cc, &capc);
2514 
2515 	VM_BUG_ON(!list_empty(&cc.freepages));
2516 	VM_BUG_ON(!list_empty(&cc.migratepages));
2517 
2518 	/*
2519 	 * Make sure we hide capture control first before we read the captured
2520 	 * page pointer, otherwise an interrupt could free and capture a page
2521 	 * and we would leak it.
2522 	 */
2523 	WRITE_ONCE(current->capture_control, NULL);
2524 	*capture = READ_ONCE(capc.page);
2525 	/*
2526 	 * Technically, it is also possible that compaction is skipped but
2527 	 * the page is still captured out of luck(IRQ came and freed the page).
2528 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2529 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2530 	 */
2531 	if (*capture)
2532 		ret = COMPACT_SUCCESS;
2533 
2534 	return ret;
2535 }
2536 
2537 int sysctl_extfrag_threshold = 500;
2538 
2539 /**
2540  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2541  * @gfp_mask: The GFP mask of the current allocation
2542  * @order: The order of the current allocation
2543  * @alloc_flags: The allocation flags of the current allocation
2544  * @ac: The context of current allocation
2545  * @prio: Determines how hard direct compaction should try to succeed
2546  * @capture: Pointer to free page created by compaction will be stored here
2547  *
2548  * This is the main entry point for direct page compaction.
2549  */
2550 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2551 		unsigned int alloc_flags, const struct alloc_context *ac,
2552 		enum compact_priority prio, struct page **capture)
2553 {
2554 	int may_perform_io = gfp_mask & __GFP_IO;
2555 	struct zoneref *z;
2556 	struct zone *zone;
2557 	enum compact_result rc = COMPACT_SKIPPED;
2558 
2559 	/*
2560 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2561 	 * tricky context because the migration might require IO
2562 	 */
2563 	if (!may_perform_io)
2564 		return COMPACT_SKIPPED;
2565 
2566 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2567 
2568 	/* Compact each zone in the list */
2569 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2570 					ac->highest_zoneidx, ac->nodemask) {
2571 		enum compact_result status;
2572 
2573 		if (prio > MIN_COMPACT_PRIORITY
2574 					&& compaction_deferred(zone, order)) {
2575 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2576 			continue;
2577 		}
2578 
2579 		status = compact_zone_order(zone, order, gfp_mask, prio,
2580 				alloc_flags, ac->highest_zoneidx, capture);
2581 		rc = max(status, rc);
2582 
2583 		/* The allocation should succeed, stop compacting */
2584 		if (status == COMPACT_SUCCESS) {
2585 			/*
2586 			 * We think the allocation will succeed in this zone,
2587 			 * but it is not certain, hence the false. The caller
2588 			 * will repeat this with true if allocation indeed
2589 			 * succeeds in this zone.
2590 			 */
2591 			compaction_defer_reset(zone, order, false);
2592 
2593 			break;
2594 		}
2595 
2596 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2597 					status == COMPACT_PARTIAL_SKIPPED))
2598 			/*
2599 			 * We think that allocation won't succeed in this zone
2600 			 * so we defer compaction there. If it ends up
2601 			 * succeeding after all, it will be reset.
2602 			 */
2603 			defer_compaction(zone, order);
2604 
2605 		/*
2606 		 * We might have stopped compacting due to need_resched() in
2607 		 * async compaction, or due to a fatal signal detected. In that
2608 		 * case do not try further zones
2609 		 */
2610 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2611 					|| fatal_signal_pending(current))
2612 			break;
2613 	}
2614 
2615 	return rc;
2616 }
2617 
2618 /*
2619  * Compact all zones within a node till each zone's fragmentation score
2620  * reaches within proactive compaction thresholds (as determined by the
2621  * proactiveness tunable).
2622  *
2623  * It is possible that the function returns before reaching score targets
2624  * due to various back-off conditions, such as, contention on per-node or
2625  * per-zone locks.
2626  */
2627 static void proactive_compact_node(pg_data_t *pgdat)
2628 {
2629 	int zoneid;
2630 	struct zone *zone;
2631 	struct compact_control cc = {
2632 		.order = -1,
2633 		.mode = MIGRATE_SYNC_LIGHT,
2634 		.ignore_skip_hint = true,
2635 		.whole_zone = true,
2636 		.gfp_mask = GFP_KERNEL,
2637 		.proactive_compaction = true,
2638 	};
2639 
2640 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2641 		zone = &pgdat->node_zones[zoneid];
2642 		if (!populated_zone(zone))
2643 			continue;
2644 
2645 		cc.zone = zone;
2646 
2647 		compact_zone(&cc, NULL);
2648 
2649 		VM_BUG_ON(!list_empty(&cc.freepages));
2650 		VM_BUG_ON(!list_empty(&cc.migratepages));
2651 	}
2652 }
2653 
2654 /* Compact all zones within a node */
2655 static void compact_node(int nid)
2656 {
2657 	pg_data_t *pgdat = NODE_DATA(nid);
2658 	int zoneid;
2659 	struct zone *zone;
2660 	struct compact_control cc = {
2661 		.order = -1,
2662 		.mode = MIGRATE_SYNC,
2663 		.ignore_skip_hint = true,
2664 		.whole_zone = true,
2665 		.gfp_mask = GFP_KERNEL,
2666 	};
2667 
2668 
2669 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2670 
2671 		zone = &pgdat->node_zones[zoneid];
2672 		if (!populated_zone(zone))
2673 			continue;
2674 
2675 		cc.zone = zone;
2676 
2677 		compact_zone(&cc, NULL);
2678 
2679 		VM_BUG_ON(!list_empty(&cc.freepages));
2680 		VM_BUG_ON(!list_empty(&cc.migratepages));
2681 	}
2682 }
2683 
2684 /* Compact all nodes in the system */
2685 static void compact_nodes(void)
2686 {
2687 	int nid;
2688 
2689 	/* Flush pending updates to the LRU lists */
2690 	lru_add_drain_all();
2691 
2692 	for_each_online_node(nid)
2693 		compact_node(nid);
2694 }
2695 
2696 /*
2697  * Tunable for proactive compaction. It determines how
2698  * aggressively the kernel should compact memory in the
2699  * background. It takes values in the range [0, 100].
2700  */
2701 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2702 
2703 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2704 		void *buffer, size_t *length, loff_t *ppos)
2705 {
2706 	int rc, nid;
2707 
2708 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2709 	if (rc)
2710 		return rc;
2711 
2712 	if (write && sysctl_compaction_proactiveness) {
2713 		for_each_online_node(nid) {
2714 			pg_data_t *pgdat = NODE_DATA(nid);
2715 
2716 			if (pgdat->proactive_compact_trigger)
2717 				continue;
2718 
2719 			pgdat->proactive_compact_trigger = true;
2720 			wake_up_interruptible(&pgdat->kcompactd_wait);
2721 		}
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 /*
2728  * This is the entry point for compacting all nodes via
2729  * /proc/sys/vm/compact_memory
2730  */
2731 int sysctl_compaction_handler(struct ctl_table *table, int write,
2732 			void *buffer, size_t *length, loff_t *ppos)
2733 {
2734 	if (write)
2735 		compact_nodes();
2736 
2737 	return 0;
2738 }
2739 
2740 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2741 static ssize_t compact_store(struct device *dev,
2742 			     struct device_attribute *attr,
2743 			     const char *buf, size_t count)
2744 {
2745 	int nid = dev->id;
2746 
2747 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2748 		/* Flush pending updates to the LRU lists */
2749 		lru_add_drain_all();
2750 
2751 		compact_node(nid);
2752 	}
2753 
2754 	return count;
2755 }
2756 static DEVICE_ATTR_WO(compact);
2757 
2758 int compaction_register_node(struct node *node)
2759 {
2760 	return device_create_file(&node->dev, &dev_attr_compact);
2761 }
2762 
2763 void compaction_unregister_node(struct node *node)
2764 {
2765 	return device_remove_file(&node->dev, &dev_attr_compact);
2766 }
2767 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2768 
2769 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2770 {
2771 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2772 		pgdat->proactive_compact_trigger;
2773 }
2774 
2775 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2776 {
2777 	int zoneid;
2778 	struct zone *zone;
2779 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2780 
2781 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2782 		zone = &pgdat->node_zones[zoneid];
2783 
2784 		if (!populated_zone(zone))
2785 			continue;
2786 
2787 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2788 					highest_zoneidx) == COMPACT_CONTINUE)
2789 			return true;
2790 	}
2791 
2792 	return false;
2793 }
2794 
2795 static void kcompactd_do_work(pg_data_t *pgdat)
2796 {
2797 	/*
2798 	 * With no special task, compact all zones so that a page of requested
2799 	 * order is allocatable.
2800 	 */
2801 	int zoneid;
2802 	struct zone *zone;
2803 	struct compact_control cc = {
2804 		.order = pgdat->kcompactd_max_order,
2805 		.search_order = pgdat->kcompactd_max_order,
2806 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2807 		.mode = MIGRATE_SYNC_LIGHT,
2808 		.ignore_skip_hint = false,
2809 		.gfp_mask = GFP_KERNEL,
2810 	};
2811 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2812 							cc.highest_zoneidx);
2813 	count_compact_event(KCOMPACTD_WAKE);
2814 
2815 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2816 		int status;
2817 
2818 		zone = &pgdat->node_zones[zoneid];
2819 		if (!populated_zone(zone))
2820 			continue;
2821 
2822 		if (compaction_deferred(zone, cc.order))
2823 			continue;
2824 
2825 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2826 							COMPACT_CONTINUE)
2827 			continue;
2828 
2829 		if (kthread_should_stop())
2830 			return;
2831 
2832 		cc.zone = zone;
2833 		status = compact_zone(&cc, NULL);
2834 
2835 		if (status == COMPACT_SUCCESS) {
2836 			compaction_defer_reset(zone, cc.order, false);
2837 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2838 			/*
2839 			 * Buddy pages may become stranded on pcps that could
2840 			 * otherwise coalesce on the zone's free area for
2841 			 * order >= cc.order.  This is ratelimited by the
2842 			 * upcoming deferral.
2843 			 */
2844 			drain_all_pages(zone);
2845 
2846 			/*
2847 			 * We use sync migration mode here, so we defer like
2848 			 * sync direct compaction does.
2849 			 */
2850 			defer_compaction(zone, cc.order);
2851 		}
2852 
2853 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2854 				     cc.total_migrate_scanned);
2855 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2856 				     cc.total_free_scanned);
2857 
2858 		VM_BUG_ON(!list_empty(&cc.freepages));
2859 		VM_BUG_ON(!list_empty(&cc.migratepages));
2860 	}
2861 
2862 	/*
2863 	 * Regardless of success, we are done until woken up next. But remember
2864 	 * the requested order/highest_zoneidx in case it was higher/tighter
2865 	 * than our current ones
2866 	 */
2867 	if (pgdat->kcompactd_max_order <= cc.order)
2868 		pgdat->kcompactd_max_order = 0;
2869 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2870 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2871 }
2872 
2873 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2874 {
2875 	if (!order)
2876 		return;
2877 
2878 	if (pgdat->kcompactd_max_order < order)
2879 		pgdat->kcompactd_max_order = order;
2880 
2881 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2882 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2883 
2884 	/*
2885 	 * Pairs with implicit barrier in wait_event_freezable()
2886 	 * such that wakeups are not missed.
2887 	 */
2888 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2889 		return;
2890 
2891 	if (!kcompactd_node_suitable(pgdat))
2892 		return;
2893 
2894 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2895 							highest_zoneidx);
2896 	wake_up_interruptible(&pgdat->kcompactd_wait);
2897 }
2898 
2899 /*
2900  * The background compaction daemon, started as a kernel thread
2901  * from the init process.
2902  */
2903 static int kcompactd(void *p)
2904 {
2905 	pg_data_t *pgdat = (pg_data_t *)p;
2906 	struct task_struct *tsk = current;
2907 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2908 	long timeout = default_timeout;
2909 
2910 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2911 
2912 	if (!cpumask_empty(cpumask))
2913 		set_cpus_allowed_ptr(tsk, cpumask);
2914 
2915 	set_freezable();
2916 
2917 	pgdat->kcompactd_max_order = 0;
2918 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2919 
2920 	while (!kthread_should_stop()) {
2921 		unsigned long pflags;
2922 
2923 		/*
2924 		 * Avoid the unnecessary wakeup for proactive compaction
2925 		 * when it is disabled.
2926 		 */
2927 		if (!sysctl_compaction_proactiveness)
2928 			timeout = MAX_SCHEDULE_TIMEOUT;
2929 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2930 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2931 			kcompactd_work_requested(pgdat), timeout) &&
2932 			!pgdat->proactive_compact_trigger) {
2933 
2934 			psi_memstall_enter(&pflags);
2935 			kcompactd_do_work(pgdat);
2936 			psi_memstall_leave(&pflags);
2937 			/*
2938 			 * Reset the timeout value. The defer timeout from
2939 			 * proactive compaction is lost here but that is fine
2940 			 * as the condition of the zone changing substantionally
2941 			 * then carrying on with the previous defer interval is
2942 			 * not useful.
2943 			 */
2944 			timeout = default_timeout;
2945 			continue;
2946 		}
2947 
2948 		/*
2949 		 * Start the proactive work with default timeout. Based
2950 		 * on the fragmentation score, this timeout is updated.
2951 		 */
2952 		timeout = default_timeout;
2953 		if (should_proactive_compact_node(pgdat)) {
2954 			unsigned int prev_score, score;
2955 
2956 			prev_score = fragmentation_score_node(pgdat);
2957 			proactive_compact_node(pgdat);
2958 			score = fragmentation_score_node(pgdat);
2959 			/*
2960 			 * Defer proactive compaction if the fragmentation
2961 			 * score did not go down i.e. no progress made.
2962 			 */
2963 			if (unlikely(score >= prev_score))
2964 				timeout =
2965 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
2966 		}
2967 		if (unlikely(pgdat->proactive_compact_trigger))
2968 			pgdat->proactive_compact_trigger = false;
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 /*
2975  * This kcompactd start function will be called by init and node-hot-add.
2976  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2977  */
2978 int kcompactd_run(int nid)
2979 {
2980 	pg_data_t *pgdat = NODE_DATA(nid);
2981 	int ret = 0;
2982 
2983 	if (pgdat->kcompactd)
2984 		return 0;
2985 
2986 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2987 	if (IS_ERR(pgdat->kcompactd)) {
2988 		pr_err("Failed to start kcompactd on node %d\n", nid);
2989 		ret = PTR_ERR(pgdat->kcompactd);
2990 		pgdat->kcompactd = NULL;
2991 	}
2992 	return ret;
2993 }
2994 
2995 /*
2996  * Called by memory hotplug when all memory in a node is offlined. Caller must
2997  * hold mem_hotplug_begin/end().
2998  */
2999 void kcompactd_stop(int nid)
3000 {
3001 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3002 
3003 	if (kcompactd) {
3004 		kthread_stop(kcompactd);
3005 		NODE_DATA(nid)->kcompactd = NULL;
3006 	}
3007 }
3008 
3009 /*
3010  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3011  * not required for correctness. So if the last cpu in a node goes
3012  * away, we get changed to run anywhere: as the first one comes back,
3013  * restore their cpu bindings.
3014  */
3015 static int kcompactd_cpu_online(unsigned int cpu)
3016 {
3017 	int nid;
3018 
3019 	for_each_node_state(nid, N_MEMORY) {
3020 		pg_data_t *pgdat = NODE_DATA(nid);
3021 		const struct cpumask *mask;
3022 
3023 		mask = cpumask_of_node(pgdat->node_id);
3024 
3025 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3026 			/* One of our CPUs online: restore mask */
3027 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3028 	}
3029 	return 0;
3030 }
3031 
3032 static int __init kcompactd_init(void)
3033 {
3034 	int nid;
3035 	int ret;
3036 
3037 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3038 					"mm/compaction:online",
3039 					kcompactd_cpu_online, NULL);
3040 	if (ret < 0) {
3041 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3042 		return ret;
3043 	}
3044 
3045 	for_each_node_state(nid, N_MEMORY)
3046 		kcompactd_run(nid);
3047 	return 0;
3048 }
3049 subsys_initcall(kcompactd_init)
3050 
3051 #endif /* CONFIG_COMPACTION */
3052