1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/compaction.h> 21 22 /* 23 * compact_control is used to track pages being migrated and the free pages 24 * they are being migrated to during memory compaction. The free_pfn starts 25 * at the end of a zone and migrate_pfn begins at the start. Movable pages 26 * are moved to the end of a zone during a compaction run and the run 27 * completes when free_pfn <= migrate_pfn 28 */ 29 struct compact_control { 30 struct list_head freepages; /* List of free pages to migrate to */ 31 struct list_head migratepages; /* List of pages being migrated */ 32 unsigned long nr_freepages; /* Number of isolated free pages */ 33 unsigned long nr_migratepages; /* Number of pages to migrate */ 34 unsigned long free_pfn; /* isolate_freepages search base */ 35 unsigned long migrate_pfn; /* isolate_migratepages search base */ 36 bool sync; /* Synchronous migration */ 37 38 unsigned int order; /* order a direct compactor needs */ 39 int migratetype; /* MOVABLE, RECLAIMABLE etc */ 40 struct zone *zone; 41 }; 42 43 static unsigned long release_freepages(struct list_head *freelist) 44 { 45 struct page *page, *next; 46 unsigned long count = 0; 47 48 list_for_each_entry_safe(page, next, freelist, lru) { 49 list_del(&page->lru); 50 __free_page(page); 51 count++; 52 } 53 54 return count; 55 } 56 57 /* Isolate free pages onto a private freelist. Must hold zone->lock */ 58 static unsigned long isolate_freepages_block(struct zone *zone, 59 unsigned long blockpfn, 60 struct list_head *freelist) 61 { 62 unsigned long zone_end_pfn, end_pfn; 63 int nr_scanned = 0, total_isolated = 0; 64 struct page *cursor; 65 66 /* Get the last PFN we should scan for free pages at */ 67 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 68 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn); 69 70 /* Find the first usable PFN in the block to initialse page cursor */ 71 for (; blockpfn < end_pfn; blockpfn++) { 72 if (pfn_valid_within(blockpfn)) 73 break; 74 } 75 cursor = pfn_to_page(blockpfn); 76 77 /* Isolate free pages. This assumes the block is valid */ 78 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 79 int isolated, i; 80 struct page *page = cursor; 81 82 if (!pfn_valid_within(blockpfn)) 83 continue; 84 nr_scanned++; 85 86 if (!PageBuddy(page)) 87 continue; 88 89 /* Found a free page, break it into order-0 pages */ 90 isolated = split_free_page(page); 91 total_isolated += isolated; 92 for (i = 0; i < isolated; i++) { 93 list_add(&page->lru, freelist); 94 page++; 95 } 96 97 /* If a page was split, advance to the end of it */ 98 if (isolated) { 99 blockpfn += isolated - 1; 100 cursor += isolated - 1; 101 } 102 } 103 104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 105 return total_isolated; 106 } 107 108 /* Returns true if the page is within a block suitable for migration to */ 109 static bool suitable_migration_target(struct page *page) 110 { 111 112 int migratetype = get_pageblock_migratetype(page); 113 114 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 115 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 116 return false; 117 118 /* If the page is a large free page, then allow migration */ 119 if (PageBuddy(page) && page_order(page) >= pageblock_order) 120 return true; 121 122 /* If the block is MIGRATE_MOVABLE, allow migration */ 123 if (migratetype == MIGRATE_MOVABLE) 124 return true; 125 126 /* Otherwise skip the block */ 127 return false; 128 } 129 130 /* 131 * Based on information in the current compact_control, find blocks 132 * suitable for isolating free pages from and then isolate them. 133 */ 134 static void isolate_freepages(struct zone *zone, 135 struct compact_control *cc) 136 { 137 struct page *page; 138 unsigned long high_pfn, low_pfn, pfn; 139 unsigned long flags; 140 int nr_freepages = cc->nr_freepages; 141 struct list_head *freelist = &cc->freepages; 142 143 /* 144 * Initialise the free scanner. The starting point is where we last 145 * scanned from (or the end of the zone if starting). The low point 146 * is the end of the pageblock the migration scanner is using. 147 */ 148 pfn = cc->free_pfn; 149 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 150 151 /* 152 * Take care that if the migration scanner is at the end of the zone 153 * that the free scanner does not accidentally move to the next zone 154 * in the next isolation cycle. 155 */ 156 high_pfn = min(low_pfn, pfn); 157 158 /* 159 * Isolate free pages until enough are available to migrate the 160 * pages on cc->migratepages. We stop searching if the migrate 161 * and free page scanners meet or enough free pages are isolated. 162 */ 163 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 164 pfn -= pageblock_nr_pages) { 165 unsigned long isolated; 166 167 if (!pfn_valid(pfn)) 168 continue; 169 170 /* 171 * Check for overlapping nodes/zones. It's possible on some 172 * configurations to have a setup like 173 * node0 node1 node0 174 * i.e. it's possible that all pages within a zones range of 175 * pages do not belong to a single zone. 176 */ 177 page = pfn_to_page(pfn); 178 if (page_zone(page) != zone) 179 continue; 180 181 /* Check the block is suitable for migration */ 182 if (!suitable_migration_target(page)) 183 continue; 184 185 /* 186 * Found a block suitable for isolating free pages from. Now 187 * we disabled interrupts, double check things are ok and 188 * isolate the pages. This is to minimise the time IRQs 189 * are disabled 190 */ 191 isolated = 0; 192 spin_lock_irqsave(&zone->lock, flags); 193 if (suitable_migration_target(page)) { 194 isolated = isolate_freepages_block(zone, pfn, freelist); 195 nr_freepages += isolated; 196 } 197 spin_unlock_irqrestore(&zone->lock, flags); 198 199 /* 200 * Record the highest PFN we isolated pages from. When next 201 * looking for free pages, the search will restart here as 202 * page migration may have returned some pages to the allocator 203 */ 204 if (isolated) 205 high_pfn = max(high_pfn, pfn); 206 } 207 208 /* split_free_page does not map the pages */ 209 list_for_each_entry(page, freelist, lru) { 210 arch_alloc_page(page, 0); 211 kernel_map_pages(page, 1, 1); 212 } 213 214 cc->free_pfn = high_pfn; 215 cc->nr_freepages = nr_freepages; 216 } 217 218 /* Update the number of anon and file isolated pages in the zone */ 219 static void acct_isolated(struct zone *zone, struct compact_control *cc) 220 { 221 struct page *page; 222 unsigned int count[2] = { 0, }; 223 224 list_for_each_entry(page, &cc->migratepages, lru) 225 count[!!page_is_file_cache(page)]++; 226 227 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 228 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 229 } 230 231 /* Similar to reclaim, but different enough that they don't share logic */ 232 static bool too_many_isolated(struct zone *zone) 233 { 234 unsigned long active, inactive, isolated; 235 236 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 237 zone_page_state(zone, NR_INACTIVE_ANON); 238 active = zone_page_state(zone, NR_ACTIVE_FILE) + 239 zone_page_state(zone, NR_ACTIVE_ANON); 240 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 241 zone_page_state(zone, NR_ISOLATED_ANON); 242 243 return isolated > (inactive + active) / 2; 244 } 245 246 /* possible outcome of isolate_migratepages */ 247 typedef enum { 248 ISOLATE_ABORT, /* Abort compaction now */ 249 ISOLATE_NONE, /* No pages isolated, continue scanning */ 250 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 251 } isolate_migrate_t; 252 253 /* 254 * Isolate all pages that can be migrated from the block pointed to by 255 * the migrate scanner within compact_control. 256 */ 257 static isolate_migrate_t isolate_migratepages(struct zone *zone, 258 struct compact_control *cc) 259 { 260 unsigned long low_pfn, end_pfn; 261 unsigned long last_pageblock_nr = 0, pageblock_nr; 262 unsigned long nr_scanned = 0, nr_isolated = 0; 263 struct list_head *migratelist = &cc->migratepages; 264 isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE; 265 266 /* Do not scan outside zone boundaries */ 267 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 268 269 /* Only scan within a pageblock boundary */ 270 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 271 272 /* Do not cross the free scanner or scan within a memory hole */ 273 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 274 cc->migrate_pfn = end_pfn; 275 return ISOLATE_NONE; 276 } 277 278 /* 279 * Ensure that there are not too many pages isolated from the LRU 280 * list by either parallel reclaimers or compaction. If there are, 281 * delay for some time until fewer pages are isolated 282 */ 283 while (unlikely(too_many_isolated(zone))) { 284 /* async migration should just abort */ 285 if (!cc->sync) 286 return ISOLATE_ABORT; 287 288 congestion_wait(BLK_RW_ASYNC, HZ/10); 289 290 if (fatal_signal_pending(current)) 291 return ISOLATE_ABORT; 292 } 293 294 /* Time to isolate some pages for migration */ 295 cond_resched(); 296 spin_lock_irq(&zone->lru_lock); 297 for (; low_pfn < end_pfn; low_pfn++) { 298 struct page *page; 299 bool locked = true; 300 301 /* give a chance to irqs before checking need_resched() */ 302 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) { 303 spin_unlock_irq(&zone->lru_lock); 304 locked = false; 305 } 306 if (need_resched() || spin_is_contended(&zone->lru_lock)) { 307 if (locked) 308 spin_unlock_irq(&zone->lru_lock); 309 cond_resched(); 310 spin_lock_irq(&zone->lru_lock); 311 if (fatal_signal_pending(current)) 312 break; 313 } else if (!locked) 314 spin_lock_irq(&zone->lru_lock); 315 316 if (!pfn_valid_within(low_pfn)) 317 continue; 318 nr_scanned++; 319 320 /* Get the page and skip if free */ 321 page = pfn_to_page(low_pfn); 322 if (PageBuddy(page)) 323 continue; 324 325 /* 326 * For async migration, also only scan in MOVABLE blocks. Async 327 * migration is optimistic to see if the minimum amount of work 328 * satisfies the allocation 329 */ 330 pageblock_nr = low_pfn >> pageblock_order; 331 if (!cc->sync && last_pageblock_nr != pageblock_nr && 332 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) { 333 low_pfn += pageblock_nr_pages; 334 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 335 last_pageblock_nr = pageblock_nr; 336 continue; 337 } 338 339 if (!PageLRU(page)) 340 continue; 341 342 /* 343 * PageLRU is set, and lru_lock excludes isolation, 344 * splitting and collapsing (collapsing has already 345 * happened if PageLRU is set). 346 */ 347 if (PageTransHuge(page)) { 348 low_pfn += (1 << compound_order(page)) - 1; 349 continue; 350 } 351 352 if (!cc->sync) 353 mode |= ISOLATE_CLEAN; 354 355 /* Try isolate the page */ 356 if (__isolate_lru_page(page, mode, 0) != 0) 357 continue; 358 359 VM_BUG_ON(PageTransCompound(page)); 360 361 /* Successfully isolated */ 362 del_page_from_lru_list(zone, page, page_lru(page)); 363 list_add(&page->lru, migratelist); 364 cc->nr_migratepages++; 365 nr_isolated++; 366 367 /* Avoid isolating too much */ 368 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 369 ++low_pfn; 370 break; 371 } 372 } 373 374 acct_isolated(zone, cc); 375 376 spin_unlock_irq(&zone->lru_lock); 377 cc->migrate_pfn = low_pfn; 378 379 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 380 381 return ISOLATE_SUCCESS; 382 } 383 384 /* 385 * This is a migrate-callback that "allocates" freepages by taking pages 386 * from the isolated freelists in the block we are migrating to. 387 */ 388 static struct page *compaction_alloc(struct page *migratepage, 389 unsigned long data, 390 int **result) 391 { 392 struct compact_control *cc = (struct compact_control *)data; 393 struct page *freepage; 394 395 /* Isolate free pages if necessary */ 396 if (list_empty(&cc->freepages)) { 397 isolate_freepages(cc->zone, cc); 398 399 if (list_empty(&cc->freepages)) 400 return NULL; 401 } 402 403 freepage = list_entry(cc->freepages.next, struct page, lru); 404 list_del(&freepage->lru); 405 cc->nr_freepages--; 406 407 return freepage; 408 } 409 410 /* 411 * We cannot control nr_migratepages and nr_freepages fully when migration is 412 * running as migrate_pages() has no knowledge of compact_control. When 413 * migration is complete, we count the number of pages on the lists by hand. 414 */ 415 static void update_nr_listpages(struct compact_control *cc) 416 { 417 int nr_migratepages = 0; 418 int nr_freepages = 0; 419 struct page *page; 420 421 list_for_each_entry(page, &cc->migratepages, lru) 422 nr_migratepages++; 423 list_for_each_entry(page, &cc->freepages, lru) 424 nr_freepages++; 425 426 cc->nr_migratepages = nr_migratepages; 427 cc->nr_freepages = nr_freepages; 428 } 429 430 static int compact_finished(struct zone *zone, 431 struct compact_control *cc) 432 { 433 unsigned int order; 434 unsigned long watermark; 435 436 if (fatal_signal_pending(current)) 437 return COMPACT_PARTIAL; 438 439 /* Compaction run completes if the migrate and free scanner meet */ 440 if (cc->free_pfn <= cc->migrate_pfn) 441 return COMPACT_COMPLETE; 442 443 /* 444 * order == -1 is expected when compacting via 445 * /proc/sys/vm/compact_memory 446 */ 447 if (cc->order == -1) 448 return COMPACT_CONTINUE; 449 450 /* Compaction run is not finished if the watermark is not met */ 451 watermark = low_wmark_pages(zone); 452 watermark += (1 << cc->order); 453 454 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 455 return COMPACT_CONTINUE; 456 457 /* Direct compactor: Is a suitable page free? */ 458 for (order = cc->order; order < MAX_ORDER; order++) { 459 /* Job done if page is free of the right migratetype */ 460 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) 461 return COMPACT_PARTIAL; 462 463 /* Job done if allocation would set block type */ 464 if (order >= pageblock_order && zone->free_area[order].nr_free) 465 return COMPACT_PARTIAL; 466 } 467 468 return COMPACT_CONTINUE; 469 } 470 471 /* 472 * compaction_suitable: Is this suitable to run compaction on this zone now? 473 * Returns 474 * COMPACT_SKIPPED - If there are too few free pages for compaction 475 * COMPACT_PARTIAL - If the allocation would succeed without compaction 476 * COMPACT_CONTINUE - If compaction should run now 477 */ 478 unsigned long compaction_suitable(struct zone *zone, int order) 479 { 480 int fragindex; 481 unsigned long watermark; 482 483 /* 484 * order == -1 is expected when compacting via 485 * /proc/sys/vm/compact_memory 486 */ 487 if (order == -1) 488 return COMPACT_CONTINUE; 489 490 /* 491 * Watermarks for order-0 must be met for compaction. Note the 2UL. 492 * This is because during migration, copies of pages need to be 493 * allocated and for a short time, the footprint is higher 494 */ 495 watermark = low_wmark_pages(zone) + (2UL << order); 496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 497 return COMPACT_SKIPPED; 498 499 /* 500 * fragmentation index determines if allocation failures are due to 501 * low memory or external fragmentation 502 * 503 * index of -1000 implies allocations might succeed depending on 504 * watermarks 505 * index towards 0 implies failure is due to lack of memory 506 * index towards 1000 implies failure is due to fragmentation 507 * 508 * Only compact if a failure would be due to fragmentation. 509 */ 510 fragindex = fragmentation_index(zone, order); 511 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 512 return COMPACT_SKIPPED; 513 514 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 515 0, 0)) 516 return COMPACT_PARTIAL; 517 518 return COMPACT_CONTINUE; 519 } 520 521 static int compact_zone(struct zone *zone, struct compact_control *cc) 522 { 523 int ret; 524 525 ret = compaction_suitable(zone, cc->order); 526 switch (ret) { 527 case COMPACT_PARTIAL: 528 case COMPACT_SKIPPED: 529 /* Compaction is likely to fail */ 530 return ret; 531 case COMPACT_CONTINUE: 532 /* Fall through to compaction */ 533 ; 534 } 535 536 /* Setup to move all movable pages to the end of the zone */ 537 cc->migrate_pfn = zone->zone_start_pfn; 538 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages; 539 cc->free_pfn &= ~(pageblock_nr_pages-1); 540 541 migrate_prep_local(); 542 543 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 544 unsigned long nr_migrate, nr_remaining; 545 int err; 546 547 switch (isolate_migratepages(zone, cc)) { 548 case ISOLATE_ABORT: 549 ret = COMPACT_PARTIAL; 550 goto out; 551 case ISOLATE_NONE: 552 continue; 553 case ISOLATE_SUCCESS: 554 ; 555 } 556 557 nr_migrate = cc->nr_migratepages; 558 err = migrate_pages(&cc->migratepages, compaction_alloc, 559 (unsigned long)cc, false, 560 cc->sync); 561 update_nr_listpages(cc); 562 nr_remaining = cc->nr_migratepages; 563 564 count_vm_event(COMPACTBLOCKS); 565 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 566 if (nr_remaining) 567 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 568 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 569 nr_remaining); 570 571 /* Release LRU pages not migrated */ 572 if (err) { 573 putback_lru_pages(&cc->migratepages); 574 cc->nr_migratepages = 0; 575 } 576 577 } 578 579 out: 580 /* Release free pages and check accounting */ 581 cc->nr_freepages -= release_freepages(&cc->freepages); 582 VM_BUG_ON(cc->nr_freepages != 0); 583 584 return ret; 585 } 586 587 static unsigned long compact_zone_order(struct zone *zone, 588 int order, gfp_t gfp_mask, 589 bool sync) 590 { 591 struct compact_control cc = { 592 .nr_freepages = 0, 593 .nr_migratepages = 0, 594 .order = order, 595 .migratetype = allocflags_to_migratetype(gfp_mask), 596 .zone = zone, 597 .sync = sync, 598 }; 599 INIT_LIST_HEAD(&cc.freepages); 600 INIT_LIST_HEAD(&cc.migratepages); 601 602 return compact_zone(zone, &cc); 603 } 604 605 int sysctl_extfrag_threshold = 500; 606 607 /** 608 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 609 * @zonelist: The zonelist used for the current allocation 610 * @order: The order of the current allocation 611 * @gfp_mask: The GFP mask of the current allocation 612 * @nodemask: The allowed nodes to allocate from 613 * @sync: Whether migration is synchronous or not 614 * 615 * This is the main entry point for direct page compaction. 616 */ 617 unsigned long try_to_compact_pages(struct zonelist *zonelist, 618 int order, gfp_t gfp_mask, nodemask_t *nodemask, 619 bool sync) 620 { 621 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 622 int may_enter_fs = gfp_mask & __GFP_FS; 623 int may_perform_io = gfp_mask & __GFP_IO; 624 struct zoneref *z; 625 struct zone *zone; 626 int rc = COMPACT_SKIPPED; 627 628 /* 629 * Check whether it is worth even starting compaction. The order check is 630 * made because an assumption is made that the page allocator can satisfy 631 * the "cheaper" orders without taking special steps 632 */ 633 if (!order || !may_enter_fs || !may_perform_io) 634 return rc; 635 636 count_vm_event(COMPACTSTALL); 637 638 /* Compact each zone in the list */ 639 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 640 nodemask) { 641 int status; 642 643 status = compact_zone_order(zone, order, gfp_mask, sync); 644 rc = max(status, rc); 645 646 /* If a normal allocation would succeed, stop compacting */ 647 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 648 break; 649 } 650 651 return rc; 652 } 653 654 655 /* Compact all zones within a node */ 656 static int compact_node(int nid) 657 { 658 int zoneid; 659 pg_data_t *pgdat; 660 struct zone *zone; 661 662 if (nid < 0 || nid >= nr_node_ids || !node_online(nid)) 663 return -EINVAL; 664 pgdat = NODE_DATA(nid); 665 666 /* Flush pending updates to the LRU lists */ 667 lru_add_drain_all(); 668 669 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 670 struct compact_control cc = { 671 .nr_freepages = 0, 672 .nr_migratepages = 0, 673 .order = -1, 674 }; 675 676 zone = &pgdat->node_zones[zoneid]; 677 if (!populated_zone(zone)) 678 continue; 679 680 cc.zone = zone; 681 INIT_LIST_HEAD(&cc.freepages); 682 INIT_LIST_HEAD(&cc.migratepages); 683 684 compact_zone(zone, &cc); 685 686 VM_BUG_ON(!list_empty(&cc.freepages)); 687 VM_BUG_ON(!list_empty(&cc.migratepages)); 688 } 689 690 return 0; 691 } 692 693 /* Compact all nodes in the system */ 694 static int compact_nodes(void) 695 { 696 int nid; 697 698 for_each_online_node(nid) 699 compact_node(nid); 700 701 return COMPACT_COMPLETE; 702 } 703 704 /* The written value is actually unused, all memory is compacted */ 705 int sysctl_compact_memory; 706 707 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 708 int sysctl_compaction_handler(struct ctl_table *table, int write, 709 void __user *buffer, size_t *length, loff_t *ppos) 710 { 711 if (write) 712 return compact_nodes(); 713 714 return 0; 715 } 716 717 int sysctl_extfrag_handler(struct ctl_table *table, int write, 718 void __user *buffer, size_t *length, loff_t *ppos) 719 { 720 proc_dointvec_minmax(table, write, buffer, length, ppos); 721 722 return 0; 723 } 724 725 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 726 ssize_t sysfs_compact_node(struct device *dev, 727 struct device_attribute *attr, 728 const char *buf, size_t count) 729 { 730 compact_node(dev->id); 731 732 return count; 733 } 734 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 735 736 int compaction_register_node(struct node *node) 737 { 738 return device_create_file(&node->dev, &dev_attr_compact); 739 } 740 741 void compaction_unregister_node(struct node *node) 742 { 743 return device_remove_file(&node->dev, &dev_attr_compact); 744 } 745 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 746