xref: /openbmc/linux/mm/compaction.c (revision 31b8384a555d94c78e2ea2284a323cb985441f60)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
21 
22 /*
23  * compact_control is used to track pages being migrated and the free pages
24  * they are being migrated to during memory compaction. The free_pfn starts
25  * at the end of a zone and migrate_pfn begins at the start. Movable pages
26  * are moved to the end of a zone during a compaction run and the run
27  * completes when free_pfn <= migrate_pfn
28  */
29 struct compact_control {
30 	struct list_head freepages;	/* List of free pages to migrate to */
31 	struct list_head migratepages;	/* List of pages being migrated */
32 	unsigned long nr_freepages;	/* Number of isolated free pages */
33 	unsigned long nr_migratepages;	/* Number of pages to migrate */
34 	unsigned long free_pfn;		/* isolate_freepages search base */
35 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36 	bool sync;			/* Synchronous migration */
37 
38 	unsigned int order;		/* order a direct compactor needs */
39 	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40 	struct zone *zone;
41 };
42 
43 static unsigned long release_freepages(struct list_head *freelist)
44 {
45 	struct page *page, *next;
46 	unsigned long count = 0;
47 
48 	list_for_each_entry_safe(page, next, freelist, lru) {
49 		list_del(&page->lru);
50 		__free_page(page);
51 		count++;
52 	}
53 
54 	return count;
55 }
56 
57 /* Isolate free pages onto a private freelist. Must hold zone->lock */
58 static unsigned long isolate_freepages_block(struct zone *zone,
59 				unsigned long blockpfn,
60 				struct list_head *freelist)
61 {
62 	unsigned long zone_end_pfn, end_pfn;
63 	int nr_scanned = 0, total_isolated = 0;
64 	struct page *cursor;
65 
66 	/* Get the last PFN we should scan for free pages at */
67 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68 	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
69 
70 	/* Find the first usable PFN in the block to initialse page cursor */
71 	for (; blockpfn < end_pfn; blockpfn++) {
72 		if (pfn_valid_within(blockpfn))
73 			break;
74 	}
75 	cursor = pfn_to_page(blockpfn);
76 
77 	/* Isolate free pages. This assumes the block is valid */
78 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79 		int isolated, i;
80 		struct page *page = cursor;
81 
82 		if (!pfn_valid_within(blockpfn))
83 			continue;
84 		nr_scanned++;
85 
86 		if (!PageBuddy(page))
87 			continue;
88 
89 		/* Found a free page, break it into order-0 pages */
90 		isolated = split_free_page(page);
91 		total_isolated += isolated;
92 		for (i = 0; i < isolated; i++) {
93 			list_add(&page->lru, freelist);
94 			page++;
95 		}
96 
97 		/* If a page was split, advance to the end of it */
98 		if (isolated) {
99 			blockpfn += isolated - 1;
100 			cursor += isolated - 1;
101 		}
102 	}
103 
104 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 	return total_isolated;
106 }
107 
108 /* Returns true if the page is within a block suitable for migration to */
109 static bool suitable_migration_target(struct page *page)
110 {
111 
112 	int migratetype = get_pageblock_migratetype(page);
113 
114 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
115 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
116 		return false;
117 
118 	/* If the page is a large free page, then allow migration */
119 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
120 		return true;
121 
122 	/* If the block is MIGRATE_MOVABLE, allow migration */
123 	if (migratetype == MIGRATE_MOVABLE)
124 		return true;
125 
126 	/* Otherwise skip the block */
127 	return false;
128 }
129 
130 /*
131  * Based on information in the current compact_control, find blocks
132  * suitable for isolating free pages from and then isolate them.
133  */
134 static void isolate_freepages(struct zone *zone,
135 				struct compact_control *cc)
136 {
137 	struct page *page;
138 	unsigned long high_pfn, low_pfn, pfn;
139 	unsigned long flags;
140 	int nr_freepages = cc->nr_freepages;
141 	struct list_head *freelist = &cc->freepages;
142 
143 	/*
144 	 * Initialise the free scanner. The starting point is where we last
145 	 * scanned from (or the end of the zone if starting). The low point
146 	 * is the end of the pageblock the migration scanner is using.
147 	 */
148 	pfn = cc->free_pfn;
149 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
150 
151 	/*
152 	 * Take care that if the migration scanner is at the end of the zone
153 	 * that the free scanner does not accidentally move to the next zone
154 	 * in the next isolation cycle.
155 	 */
156 	high_pfn = min(low_pfn, pfn);
157 
158 	/*
159 	 * Isolate free pages until enough are available to migrate the
160 	 * pages on cc->migratepages. We stop searching if the migrate
161 	 * and free page scanners meet or enough free pages are isolated.
162 	 */
163 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
164 					pfn -= pageblock_nr_pages) {
165 		unsigned long isolated;
166 
167 		if (!pfn_valid(pfn))
168 			continue;
169 
170 		/*
171 		 * Check for overlapping nodes/zones. It's possible on some
172 		 * configurations to have a setup like
173 		 * node0 node1 node0
174 		 * i.e. it's possible that all pages within a zones range of
175 		 * pages do not belong to a single zone.
176 		 */
177 		page = pfn_to_page(pfn);
178 		if (page_zone(page) != zone)
179 			continue;
180 
181 		/* Check the block is suitable for migration */
182 		if (!suitable_migration_target(page))
183 			continue;
184 
185 		/*
186 		 * Found a block suitable for isolating free pages from. Now
187 		 * we disabled interrupts, double check things are ok and
188 		 * isolate the pages. This is to minimise the time IRQs
189 		 * are disabled
190 		 */
191 		isolated = 0;
192 		spin_lock_irqsave(&zone->lock, flags);
193 		if (suitable_migration_target(page)) {
194 			isolated = isolate_freepages_block(zone, pfn, freelist);
195 			nr_freepages += isolated;
196 		}
197 		spin_unlock_irqrestore(&zone->lock, flags);
198 
199 		/*
200 		 * Record the highest PFN we isolated pages from. When next
201 		 * looking for free pages, the search will restart here as
202 		 * page migration may have returned some pages to the allocator
203 		 */
204 		if (isolated)
205 			high_pfn = max(high_pfn, pfn);
206 	}
207 
208 	/* split_free_page does not map the pages */
209 	list_for_each_entry(page, freelist, lru) {
210 		arch_alloc_page(page, 0);
211 		kernel_map_pages(page, 1, 1);
212 	}
213 
214 	cc->free_pfn = high_pfn;
215 	cc->nr_freepages = nr_freepages;
216 }
217 
218 /* Update the number of anon and file isolated pages in the zone */
219 static void acct_isolated(struct zone *zone, struct compact_control *cc)
220 {
221 	struct page *page;
222 	unsigned int count[2] = { 0, };
223 
224 	list_for_each_entry(page, &cc->migratepages, lru)
225 		count[!!page_is_file_cache(page)]++;
226 
227 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
228 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
229 }
230 
231 /* Similar to reclaim, but different enough that they don't share logic */
232 static bool too_many_isolated(struct zone *zone)
233 {
234 	unsigned long active, inactive, isolated;
235 
236 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
237 					zone_page_state(zone, NR_INACTIVE_ANON);
238 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
239 					zone_page_state(zone, NR_ACTIVE_ANON);
240 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
241 					zone_page_state(zone, NR_ISOLATED_ANON);
242 
243 	return isolated > (inactive + active) / 2;
244 }
245 
246 /* possible outcome of isolate_migratepages */
247 typedef enum {
248 	ISOLATE_ABORT,		/* Abort compaction now */
249 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
250 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
251 } isolate_migrate_t;
252 
253 /*
254  * Isolate all pages that can be migrated from the block pointed to by
255  * the migrate scanner within compact_control.
256  */
257 static isolate_migrate_t isolate_migratepages(struct zone *zone,
258 					struct compact_control *cc)
259 {
260 	unsigned long low_pfn, end_pfn;
261 	unsigned long last_pageblock_nr = 0, pageblock_nr;
262 	unsigned long nr_scanned = 0, nr_isolated = 0;
263 	struct list_head *migratelist = &cc->migratepages;
264 	isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
265 
266 	/* Do not scan outside zone boundaries */
267 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
268 
269 	/* Only scan within a pageblock boundary */
270 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
271 
272 	/* Do not cross the free scanner or scan within a memory hole */
273 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
274 		cc->migrate_pfn = end_pfn;
275 		return ISOLATE_NONE;
276 	}
277 
278 	/*
279 	 * Ensure that there are not too many pages isolated from the LRU
280 	 * list by either parallel reclaimers or compaction. If there are,
281 	 * delay for some time until fewer pages are isolated
282 	 */
283 	while (unlikely(too_many_isolated(zone))) {
284 		/* async migration should just abort */
285 		if (!cc->sync)
286 			return ISOLATE_ABORT;
287 
288 		congestion_wait(BLK_RW_ASYNC, HZ/10);
289 
290 		if (fatal_signal_pending(current))
291 			return ISOLATE_ABORT;
292 	}
293 
294 	/* Time to isolate some pages for migration */
295 	cond_resched();
296 	spin_lock_irq(&zone->lru_lock);
297 	for (; low_pfn < end_pfn; low_pfn++) {
298 		struct page *page;
299 		bool locked = true;
300 
301 		/* give a chance to irqs before checking need_resched() */
302 		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
303 			spin_unlock_irq(&zone->lru_lock);
304 			locked = false;
305 		}
306 		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
307 			if (locked)
308 				spin_unlock_irq(&zone->lru_lock);
309 			cond_resched();
310 			spin_lock_irq(&zone->lru_lock);
311 			if (fatal_signal_pending(current))
312 				break;
313 		} else if (!locked)
314 			spin_lock_irq(&zone->lru_lock);
315 
316 		if (!pfn_valid_within(low_pfn))
317 			continue;
318 		nr_scanned++;
319 
320 		/* Get the page and skip if free */
321 		page = pfn_to_page(low_pfn);
322 		if (PageBuddy(page))
323 			continue;
324 
325 		/*
326 		 * For async migration, also only scan in MOVABLE blocks. Async
327 		 * migration is optimistic to see if the minimum amount of work
328 		 * satisfies the allocation
329 		 */
330 		pageblock_nr = low_pfn >> pageblock_order;
331 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
332 				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
333 			low_pfn += pageblock_nr_pages;
334 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
335 			last_pageblock_nr = pageblock_nr;
336 			continue;
337 		}
338 
339 		if (!PageLRU(page))
340 			continue;
341 
342 		/*
343 		 * PageLRU is set, and lru_lock excludes isolation,
344 		 * splitting and collapsing (collapsing has already
345 		 * happened if PageLRU is set).
346 		 */
347 		if (PageTransHuge(page)) {
348 			low_pfn += (1 << compound_order(page)) - 1;
349 			continue;
350 		}
351 
352 		if (!cc->sync)
353 			mode |= ISOLATE_CLEAN;
354 
355 		/* Try isolate the page */
356 		if (__isolate_lru_page(page, mode, 0) != 0)
357 			continue;
358 
359 		VM_BUG_ON(PageTransCompound(page));
360 
361 		/* Successfully isolated */
362 		del_page_from_lru_list(zone, page, page_lru(page));
363 		list_add(&page->lru, migratelist);
364 		cc->nr_migratepages++;
365 		nr_isolated++;
366 
367 		/* Avoid isolating too much */
368 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
369 			++low_pfn;
370 			break;
371 		}
372 	}
373 
374 	acct_isolated(zone, cc);
375 
376 	spin_unlock_irq(&zone->lru_lock);
377 	cc->migrate_pfn = low_pfn;
378 
379 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
380 
381 	return ISOLATE_SUCCESS;
382 }
383 
384 /*
385  * This is a migrate-callback that "allocates" freepages by taking pages
386  * from the isolated freelists in the block we are migrating to.
387  */
388 static struct page *compaction_alloc(struct page *migratepage,
389 					unsigned long data,
390 					int **result)
391 {
392 	struct compact_control *cc = (struct compact_control *)data;
393 	struct page *freepage;
394 
395 	/* Isolate free pages if necessary */
396 	if (list_empty(&cc->freepages)) {
397 		isolate_freepages(cc->zone, cc);
398 
399 		if (list_empty(&cc->freepages))
400 			return NULL;
401 	}
402 
403 	freepage = list_entry(cc->freepages.next, struct page, lru);
404 	list_del(&freepage->lru);
405 	cc->nr_freepages--;
406 
407 	return freepage;
408 }
409 
410 /*
411  * We cannot control nr_migratepages and nr_freepages fully when migration is
412  * running as migrate_pages() has no knowledge of compact_control. When
413  * migration is complete, we count the number of pages on the lists by hand.
414  */
415 static void update_nr_listpages(struct compact_control *cc)
416 {
417 	int nr_migratepages = 0;
418 	int nr_freepages = 0;
419 	struct page *page;
420 
421 	list_for_each_entry(page, &cc->migratepages, lru)
422 		nr_migratepages++;
423 	list_for_each_entry(page, &cc->freepages, lru)
424 		nr_freepages++;
425 
426 	cc->nr_migratepages = nr_migratepages;
427 	cc->nr_freepages = nr_freepages;
428 }
429 
430 static int compact_finished(struct zone *zone,
431 			    struct compact_control *cc)
432 {
433 	unsigned int order;
434 	unsigned long watermark;
435 
436 	if (fatal_signal_pending(current))
437 		return COMPACT_PARTIAL;
438 
439 	/* Compaction run completes if the migrate and free scanner meet */
440 	if (cc->free_pfn <= cc->migrate_pfn)
441 		return COMPACT_COMPLETE;
442 
443 	/*
444 	 * order == -1 is expected when compacting via
445 	 * /proc/sys/vm/compact_memory
446 	 */
447 	if (cc->order == -1)
448 		return COMPACT_CONTINUE;
449 
450 	/* Compaction run is not finished if the watermark is not met */
451 	watermark = low_wmark_pages(zone);
452 	watermark += (1 << cc->order);
453 
454 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
455 		return COMPACT_CONTINUE;
456 
457 	/* Direct compactor: Is a suitable page free? */
458 	for (order = cc->order; order < MAX_ORDER; order++) {
459 		/* Job done if page is free of the right migratetype */
460 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
461 			return COMPACT_PARTIAL;
462 
463 		/* Job done if allocation would set block type */
464 		if (order >= pageblock_order && zone->free_area[order].nr_free)
465 			return COMPACT_PARTIAL;
466 	}
467 
468 	return COMPACT_CONTINUE;
469 }
470 
471 /*
472  * compaction_suitable: Is this suitable to run compaction on this zone now?
473  * Returns
474  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
475  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
476  *   COMPACT_CONTINUE - If compaction should run now
477  */
478 unsigned long compaction_suitable(struct zone *zone, int order)
479 {
480 	int fragindex;
481 	unsigned long watermark;
482 
483 	/*
484 	 * order == -1 is expected when compacting via
485 	 * /proc/sys/vm/compact_memory
486 	 */
487 	if (order == -1)
488 		return COMPACT_CONTINUE;
489 
490 	/*
491 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
492 	 * This is because during migration, copies of pages need to be
493 	 * allocated and for a short time, the footprint is higher
494 	 */
495 	watermark = low_wmark_pages(zone) + (2UL << order);
496 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
497 		return COMPACT_SKIPPED;
498 
499 	/*
500 	 * fragmentation index determines if allocation failures are due to
501 	 * low memory or external fragmentation
502 	 *
503 	 * index of -1000 implies allocations might succeed depending on
504 	 * watermarks
505 	 * index towards 0 implies failure is due to lack of memory
506 	 * index towards 1000 implies failure is due to fragmentation
507 	 *
508 	 * Only compact if a failure would be due to fragmentation.
509 	 */
510 	fragindex = fragmentation_index(zone, order);
511 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
512 		return COMPACT_SKIPPED;
513 
514 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
515 	    0, 0))
516 		return COMPACT_PARTIAL;
517 
518 	return COMPACT_CONTINUE;
519 }
520 
521 static int compact_zone(struct zone *zone, struct compact_control *cc)
522 {
523 	int ret;
524 
525 	ret = compaction_suitable(zone, cc->order);
526 	switch (ret) {
527 	case COMPACT_PARTIAL:
528 	case COMPACT_SKIPPED:
529 		/* Compaction is likely to fail */
530 		return ret;
531 	case COMPACT_CONTINUE:
532 		/* Fall through to compaction */
533 		;
534 	}
535 
536 	/* Setup to move all movable pages to the end of the zone */
537 	cc->migrate_pfn = zone->zone_start_pfn;
538 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
539 	cc->free_pfn &= ~(pageblock_nr_pages-1);
540 
541 	migrate_prep_local();
542 
543 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
544 		unsigned long nr_migrate, nr_remaining;
545 		int err;
546 
547 		switch (isolate_migratepages(zone, cc)) {
548 		case ISOLATE_ABORT:
549 			ret = COMPACT_PARTIAL;
550 			goto out;
551 		case ISOLATE_NONE:
552 			continue;
553 		case ISOLATE_SUCCESS:
554 			;
555 		}
556 
557 		nr_migrate = cc->nr_migratepages;
558 		err = migrate_pages(&cc->migratepages, compaction_alloc,
559 				(unsigned long)cc, false,
560 				cc->sync);
561 		update_nr_listpages(cc);
562 		nr_remaining = cc->nr_migratepages;
563 
564 		count_vm_event(COMPACTBLOCKS);
565 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
566 		if (nr_remaining)
567 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
568 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
569 						nr_remaining);
570 
571 		/* Release LRU pages not migrated */
572 		if (err) {
573 			putback_lru_pages(&cc->migratepages);
574 			cc->nr_migratepages = 0;
575 		}
576 
577 	}
578 
579 out:
580 	/* Release free pages and check accounting */
581 	cc->nr_freepages -= release_freepages(&cc->freepages);
582 	VM_BUG_ON(cc->nr_freepages != 0);
583 
584 	return ret;
585 }
586 
587 static unsigned long compact_zone_order(struct zone *zone,
588 				 int order, gfp_t gfp_mask,
589 				 bool sync)
590 {
591 	struct compact_control cc = {
592 		.nr_freepages = 0,
593 		.nr_migratepages = 0,
594 		.order = order,
595 		.migratetype = allocflags_to_migratetype(gfp_mask),
596 		.zone = zone,
597 		.sync = sync,
598 	};
599 	INIT_LIST_HEAD(&cc.freepages);
600 	INIT_LIST_HEAD(&cc.migratepages);
601 
602 	return compact_zone(zone, &cc);
603 }
604 
605 int sysctl_extfrag_threshold = 500;
606 
607 /**
608  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
609  * @zonelist: The zonelist used for the current allocation
610  * @order: The order of the current allocation
611  * @gfp_mask: The GFP mask of the current allocation
612  * @nodemask: The allowed nodes to allocate from
613  * @sync: Whether migration is synchronous or not
614  *
615  * This is the main entry point for direct page compaction.
616  */
617 unsigned long try_to_compact_pages(struct zonelist *zonelist,
618 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
619 			bool sync)
620 {
621 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
622 	int may_enter_fs = gfp_mask & __GFP_FS;
623 	int may_perform_io = gfp_mask & __GFP_IO;
624 	struct zoneref *z;
625 	struct zone *zone;
626 	int rc = COMPACT_SKIPPED;
627 
628 	/*
629 	 * Check whether it is worth even starting compaction. The order check is
630 	 * made because an assumption is made that the page allocator can satisfy
631 	 * the "cheaper" orders without taking special steps
632 	 */
633 	if (!order || !may_enter_fs || !may_perform_io)
634 		return rc;
635 
636 	count_vm_event(COMPACTSTALL);
637 
638 	/* Compact each zone in the list */
639 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
640 								nodemask) {
641 		int status;
642 
643 		status = compact_zone_order(zone, order, gfp_mask, sync);
644 		rc = max(status, rc);
645 
646 		/* If a normal allocation would succeed, stop compacting */
647 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
648 			break;
649 	}
650 
651 	return rc;
652 }
653 
654 
655 /* Compact all zones within a node */
656 static int compact_node(int nid)
657 {
658 	int zoneid;
659 	pg_data_t *pgdat;
660 	struct zone *zone;
661 
662 	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
663 		return -EINVAL;
664 	pgdat = NODE_DATA(nid);
665 
666 	/* Flush pending updates to the LRU lists */
667 	lru_add_drain_all();
668 
669 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
670 		struct compact_control cc = {
671 			.nr_freepages = 0,
672 			.nr_migratepages = 0,
673 			.order = -1,
674 		};
675 
676 		zone = &pgdat->node_zones[zoneid];
677 		if (!populated_zone(zone))
678 			continue;
679 
680 		cc.zone = zone;
681 		INIT_LIST_HEAD(&cc.freepages);
682 		INIT_LIST_HEAD(&cc.migratepages);
683 
684 		compact_zone(zone, &cc);
685 
686 		VM_BUG_ON(!list_empty(&cc.freepages));
687 		VM_BUG_ON(!list_empty(&cc.migratepages));
688 	}
689 
690 	return 0;
691 }
692 
693 /* Compact all nodes in the system */
694 static int compact_nodes(void)
695 {
696 	int nid;
697 
698 	for_each_online_node(nid)
699 		compact_node(nid);
700 
701 	return COMPACT_COMPLETE;
702 }
703 
704 /* The written value is actually unused, all memory is compacted */
705 int sysctl_compact_memory;
706 
707 /* This is the entry point for compacting all nodes via /proc/sys/vm */
708 int sysctl_compaction_handler(struct ctl_table *table, int write,
709 			void __user *buffer, size_t *length, loff_t *ppos)
710 {
711 	if (write)
712 		return compact_nodes();
713 
714 	return 0;
715 }
716 
717 int sysctl_extfrag_handler(struct ctl_table *table, int write,
718 			void __user *buffer, size_t *length, loff_t *ppos)
719 {
720 	proc_dointvec_minmax(table, write, buffer, length, ppos);
721 
722 	return 0;
723 }
724 
725 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
726 ssize_t sysfs_compact_node(struct device *dev,
727 			struct device_attribute *attr,
728 			const char *buf, size_t count)
729 {
730 	compact_node(dev->id);
731 
732 	return count;
733 }
734 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
735 
736 int compaction_register_node(struct node *node)
737 {
738 	return device_create_file(&node->dev, &dev_attr_compact);
739 }
740 
741 void compaction_unregister_node(struct node *node)
742 {
743 	return device_remove_file(&node->dev, &dev_attr_compact);
744 }
745 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
746