1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void split_map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 static bool 241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 242 bool check_target) 243 { 244 struct page *page = pfn_to_online_page(pfn); 245 struct page *block_page; 246 struct page *end_page; 247 unsigned long block_pfn; 248 249 if (!page) 250 return false; 251 if (zone != page_zone(page)) 252 return false; 253 if (pageblock_skip_persistent(page)) 254 return false; 255 256 /* 257 * If skip is already cleared do no further checking once the 258 * restart points have been set. 259 */ 260 if (check_source && check_target && !get_pageblock_skip(page)) 261 return true; 262 263 /* 264 * If clearing skip for the target scanner, do not select a 265 * non-movable pageblock as the starting point. 266 */ 267 if (!check_source && check_target && 268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 269 return false; 270 271 /* Ensure the start of the pageblock or zone is online and valid */ 272 block_pfn = pageblock_start_pfn(pfn); 273 block_pfn = max(block_pfn, zone->zone_start_pfn); 274 block_page = pfn_to_online_page(block_pfn); 275 if (block_page) { 276 page = block_page; 277 pfn = block_pfn; 278 } 279 280 /* Ensure the end of the pageblock or zone is online and valid */ 281 block_pfn = pageblock_end_pfn(pfn) - 1; 282 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 283 end_page = pfn_to_online_page(block_pfn); 284 if (!end_page) 285 return false; 286 287 /* 288 * Only clear the hint if a sample indicates there is either a 289 * free page or an LRU page in the block. One or other condition 290 * is necessary for the block to be a migration source/target. 291 */ 292 do { 293 if (pfn_valid_within(pfn)) { 294 if (check_source && PageLRU(page)) { 295 clear_pageblock_skip(page); 296 return true; 297 } 298 299 if (check_target && PageBuddy(page)) { 300 clear_pageblock_skip(page); 301 return true; 302 } 303 } 304 305 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 306 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 307 } while (page <= end_page); 308 309 return false; 310 } 311 312 /* 313 * This function is called to clear all cached information on pageblocks that 314 * should be skipped for page isolation when the migrate and free page scanner 315 * meet. 316 */ 317 static void __reset_isolation_suitable(struct zone *zone) 318 { 319 unsigned long migrate_pfn = zone->zone_start_pfn; 320 unsigned long free_pfn = zone_end_pfn(zone) - 1; 321 unsigned long reset_migrate = free_pfn; 322 unsigned long reset_free = migrate_pfn; 323 bool source_set = false; 324 bool free_set = false; 325 326 if (!zone->compact_blockskip_flush) 327 return; 328 329 zone->compact_blockskip_flush = false; 330 331 /* 332 * Walk the zone and update pageblock skip information. Source looks 333 * for PageLRU while target looks for PageBuddy. When the scanner 334 * is found, both PageBuddy and PageLRU are checked as the pageblock 335 * is suitable as both source and target. 336 */ 337 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 338 free_pfn -= pageblock_nr_pages) { 339 cond_resched(); 340 341 /* Update the migrate PFN */ 342 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 343 migrate_pfn < reset_migrate) { 344 source_set = true; 345 reset_migrate = migrate_pfn; 346 zone->compact_init_migrate_pfn = reset_migrate; 347 zone->compact_cached_migrate_pfn[0] = reset_migrate; 348 zone->compact_cached_migrate_pfn[1] = reset_migrate; 349 } 350 351 /* Update the free PFN */ 352 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 353 free_pfn > reset_free) { 354 free_set = true; 355 reset_free = free_pfn; 356 zone->compact_init_free_pfn = reset_free; 357 zone->compact_cached_free_pfn = reset_free; 358 } 359 } 360 361 /* Leave no distance if no suitable block was reset */ 362 if (reset_migrate >= reset_free) { 363 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 364 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 365 zone->compact_cached_free_pfn = free_pfn; 366 } 367 } 368 369 void reset_isolation_suitable(pg_data_t *pgdat) 370 { 371 int zoneid; 372 373 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 374 struct zone *zone = &pgdat->node_zones[zoneid]; 375 if (!populated_zone(zone)) 376 continue; 377 378 /* Only flush if a full compaction finished recently */ 379 if (zone->compact_blockskip_flush) 380 __reset_isolation_suitable(zone); 381 } 382 } 383 384 /* 385 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 386 * locks are not required for read/writers. Returns true if it was already set. 387 */ 388 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 389 unsigned long pfn) 390 { 391 bool skip; 392 393 /* Do no update if skip hint is being ignored */ 394 if (cc->ignore_skip_hint) 395 return false; 396 397 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 398 return false; 399 400 skip = get_pageblock_skip(page); 401 if (!skip && !cc->no_set_skip_hint) 402 set_pageblock_skip(page); 403 404 return skip; 405 } 406 407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 408 { 409 struct zone *zone = cc->zone; 410 411 pfn = pageblock_end_pfn(pfn); 412 413 /* Set for isolation rather than compaction */ 414 if (cc->no_set_skip_hint) 415 return; 416 417 if (pfn > zone->compact_cached_migrate_pfn[0]) 418 zone->compact_cached_migrate_pfn[0] = pfn; 419 if (cc->mode != MIGRATE_ASYNC && 420 pfn > zone->compact_cached_migrate_pfn[1]) 421 zone->compact_cached_migrate_pfn[1] = pfn; 422 } 423 424 /* 425 * If no pages were isolated then mark this pageblock to be skipped in the 426 * future. The information is later cleared by __reset_isolation_suitable(). 427 */ 428 static void update_pageblock_skip(struct compact_control *cc, 429 struct page *page, unsigned long pfn) 430 { 431 struct zone *zone = cc->zone; 432 433 if (cc->no_set_skip_hint) 434 return; 435 436 if (!page) 437 return; 438 439 set_pageblock_skip(page); 440 441 /* Update where async and sync compaction should restart */ 442 if (pfn < zone->compact_cached_free_pfn) 443 zone->compact_cached_free_pfn = pfn; 444 } 445 #else 446 static inline bool isolation_suitable(struct compact_control *cc, 447 struct page *page) 448 { 449 return true; 450 } 451 452 static inline bool pageblock_skip_persistent(struct page *page) 453 { 454 return false; 455 } 456 457 static inline void update_pageblock_skip(struct compact_control *cc, 458 struct page *page, unsigned long pfn) 459 { 460 } 461 462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 463 { 464 } 465 466 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 467 unsigned long pfn) 468 { 469 return false; 470 } 471 #endif /* CONFIG_COMPACTION */ 472 473 /* 474 * Compaction requires the taking of some coarse locks that are potentially 475 * very heavily contended. For async compaction, trylock and record if the 476 * lock is contended. The lock will still be acquired but compaction will 477 * abort when the current block is finished regardless of success rate. 478 * Sync compaction acquires the lock. 479 * 480 * Always returns true which makes it easier to track lock state in callers. 481 */ 482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 483 struct compact_control *cc) 484 { 485 /* Track if the lock is contended in async mode */ 486 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 487 if (spin_trylock_irqsave(lock, *flags)) 488 return true; 489 490 cc->contended = true; 491 } 492 493 spin_lock_irqsave(lock, *flags); 494 return true; 495 } 496 497 /* 498 * Compaction requires the taking of some coarse locks that are potentially 499 * very heavily contended. The lock should be periodically unlocked to avoid 500 * having disabled IRQs for a long time, even when there is nobody waiting on 501 * the lock. It might also be that allowing the IRQs will result in 502 * need_resched() becoming true. If scheduling is needed, async compaction 503 * aborts. Sync compaction schedules. 504 * Either compaction type will also abort if a fatal signal is pending. 505 * In either case if the lock was locked, it is dropped and not regained. 506 * 507 * Returns true if compaction should abort due to fatal signal pending, or 508 * async compaction due to need_resched() 509 * Returns false when compaction can continue (sync compaction might have 510 * scheduled) 511 */ 512 static bool compact_unlock_should_abort(spinlock_t *lock, 513 unsigned long flags, bool *locked, struct compact_control *cc) 514 { 515 if (*locked) { 516 spin_unlock_irqrestore(lock, flags); 517 *locked = false; 518 } 519 520 if (fatal_signal_pending(current)) { 521 cc->contended = true; 522 return true; 523 } 524 525 cond_resched(); 526 527 return false; 528 } 529 530 /* 531 * Isolate free pages onto a private freelist. If @strict is true, will abort 532 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 533 * (even though it may still end up isolating some pages). 534 */ 535 static unsigned long isolate_freepages_block(struct compact_control *cc, 536 unsigned long *start_pfn, 537 unsigned long end_pfn, 538 struct list_head *freelist, 539 unsigned int stride, 540 bool strict) 541 { 542 int nr_scanned = 0, total_isolated = 0; 543 struct page *cursor; 544 unsigned long flags = 0; 545 bool locked = false; 546 unsigned long blockpfn = *start_pfn; 547 unsigned int order; 548 549 /* Strict mode is for isolation, speed is secondary */ 550 if (strict) 551 stride = 1; 552 553 cursor = pfn_to_page(blockpfn); 554 555 /* Isolate free pages. */ 556 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 557 int isolated; 558 struct page *page = cursor; 559 560 /* 561 * Periodically drop the lock (if held) regardless of its 562 * contention, to give chance to IRQs. Abort if fatal signal 563 * pending or async compaction detects need_resched() 564 */ 565 if (!(blockpfn % SWAP_CLUSTER_MAX) 566 && compact_unlock_should_abort(&cc->zone->lock, flags, 567 &locked, cc)) 568 break; 569 570 nr_scanned++; 571 if (!pfn_valid_within(blockpfn)) 572 goto isolate_fail; 573 574 /* 575 * For compound pages such as THP and hugetlbfs, we can save 576 * potentially a lot of iterations if we skip them at once. 577 * The check is racy, but we can consider only valid values 578 * and the only danger is skipping too much. 579 */ 580 if (PageCompound(page)) { 581 const unsigned int order = compound_order(page); 582 583 if (likely(order < MAX_ORDER)) { 584 blockpfn += (1UL << order) - 1; 585 cursor += (1UL << order) - 1; 586 } 587 goto isolate_fail; 588 } 589 590 if (!PageBuddy(page)) 591 goto isolate_fail; 592 593 /* 594 * If we already hold the lock, we can skip some rechecking. 595 * Note that if we hold the lock now, checked_pageblock was 596 * already set in some previous iteration (or strict is true), 597 * so it is correct to skip the suitable migration target 598 * recheck as well. 599 */ 600 if (!locked) { 601 locked = compact_lock_irqsave(&cc->zone->lock, 602 &flags, cc); 603 604 /* Recheck this is a buddy page under lock */ 605 if (!PageBuddy(page)) 606 goto isolate_fail; 607 } 608 609 /* Found a free page, will break it into order-0 pages */ 610 order = page_order(page); 611 isolated = __isolate_free_page(page, order); 612 if (!isolated) 613 break; 614 set_page_private(page, order); 615 616 total_isolated += isolated; 617 cc->nr_freepages += isolated; 618 list_add_tail(&page->lru, freelist); 619 620 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 621 blockpfn += isolated; 622 break; 623 } 624 /* Advance to the end of split page */ 625 blockpfn += isolated - 1; 626 cursor += isolated - 1; 627 continue; 628 629 isolate_fail: 630 if (strict) 631 break; 632 else 633 continue; 634 635 } 636 637 if (locked) 638 spin_unlock_irqrestore(&cc->zone->lock, flags); 639 640 /* 641 * There is a tiny chance that we have read bogus compound_order(), 642 * so be careful to not go outside of the pageblock. 643 */ 644 if (unlikely(blockpfn > end_pfn)) 645 blockpfn = end_pfn; 646 647 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 648 nr_scanned, total_isolated); 649 650 /* Record how far we have got within the block */ 651 *start_pfn = blockpfn; 652 653 /* 654 * If strict isolation is requested by CMA then check that all the 655 * pages requested were isolated. If there were any failures, 0 is 656 * returned and CMA will fail. 657 */ 658 if (strict && blockpfn < end_pfn) 659 total_isolated = 0; 660 661 cc->total_free_scanned += nr_scanned; 662 if (total_isolated) 663 count_compact_events(COMPACTISOLATED, total_isolated); 664 return total_isolated; 665 } 666 667 /** 668 * isolate_freepages_range() - isolate free pages. 669 * @cc: Compaction control structure. 670 * @start_pfn: The first PFN to start isolating. 671 * @end_pfn: The one-past-last PFN. 672 * 673 * Non-free pages, invalid PFNs, or zone boundaries within the 674 * [start_pfn, end_pfn) range are considered errors, cause function to 675 * undo its actions and return zero. 676 * 677 * Otherwise, function returns one-past-the-last PFN of isolated page 678 * (which may be greater then end_pfn if end fell in a middle of 679 * a free page). 680 */ 681 unsigned long 682 isolate_freepages_range(struct compact_control *cc, 683 unsigned long start_pfn, unsigned long end_pfn) 684 { 685 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 686 LIST_HEAD(freelist); 687 688 pfn = start_pfn; 689 block_start_pfn = pageblock_start_pfn(pfn); 690 if (block_start_pfn < cc->zone->zone_start_pfn) 691 block_start_pfn = cc->zone->zone_start_pfn; 692 block_end_pfn = pageblock_end_pfn(pfn); 693 694 for (; pfn < end_pfn; pfn += isolated, 695 block_start_pfn = block_end_pfn, 696 block_end_pfn += pageblock_nr_pages) { 697 /* Protect pfn from changing by isolate_freepages_block */ 698 unsigned long isolate_start_pfn = pfn; 699 700 block_end_pfn = min(block_end_pfn, end_pfn); 701 702 /* 703 * pfn could pass the block_end_pfn if isolated freepage 704 * is more than pageblock order. In this case, we adjust 705 * scanning range to right one. 706 */ 707 if (pfn >= block_end_pfn) { 708 block_start_pfn = pageblock_start_pfn(pfn); 709 block_end_pfn = pageblock_end_pfn(pfn); 710 block_end_pfn = min(block_end_pfn, end_pfn); 711 } 712 713 if (!pageblock_pfn_to_page(block_start_pfn, 714 block_end_pfn, cc->zone)) 715 break; 716 717 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 718 block_end_pfn, &freelist, 0, true); 719 720 /* 721 * In strict mode, isolate_freepages_block() returns 0 if 722 * there are any holes in the block (ie. invalid PFNs or 723 * non-free pages). 724 */ 725 if (!isolated) 726 break; 727 728 /* 729 * If we managed to isolate pages, it is always (1 << n) * 730 * pageblock_nr_pages for some non-negative n. (Max order 731 * page may span two pageblocks). 732 */ 733 } 734 735 /* __isolate_free_page() does not map the pages */ 736 split_map_pages(&freelist); 737 738 if (pfn < end_pfn) { 739 /* Loop terminated early, cleanup. */ 740 release_freepages(&freelist); 741 return 0; 742 } 743 744 /* We don't use freelists for anything. */ 745 return pfn; 746 } 747 748 /* Similar to reclaim, but different enough that they don't share logic */ 749 static bool too_many_isolated(pg_data_t *pgdat) 750 { 751 unsigned long active, inactive, isolated; 752 753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 754 node_page_state(pgdat, NR_INACTIVE_ANON); 755 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 756 node_page_state(pgdat, NR_ACTIVE_ANON); 757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 758 node_page_state(pgdat, NR_ISOLATED_ANON); 759 760 return isolated > (inactive + active) / 2; 761 } 762 763 /** 764 * isolate_migratepages_block() - isolate all migrate-able pages within 765 * a single pageblock 766 * @cc: Compaction control structure. 767 * @low_pfn: The first PFN to isolate 768 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 769 * @isolate_mode: Isolation mode to be used. 770 * 771 * Isolate all pages that can be migrated from the range specified by 772 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 773 * Returns zero if there is a fatal signal pending, otherwise PFN of the 774 * first page that was not scanned (which may be both less, equal to or more 775 * than end_pfn). 776 * 777 * The pages are isolated on cc->migratepages list (not required to be empty), 778 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 779 * is neither read nor updated. 780 */ 781 static unsigned long 782 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 783 unsigned long end_pfn, isolate_mode_t isolate_mode) 784 { 785 pg_data_t *pgdat = cc->zone->zone_pgdat; 786 unsigned long nr_scanned = 0, nr_isolated = 0; 787 struct lruvec *lruvec; 788 unsigned long flags = 0; 789 bool locked = false; 790 struct page *page = NULL, *valid_page = NULL; 791 unsigned long start_pfn = low_pfn; 792 bool skip_on_failure = false; 793 unsigned long next_skip_pfn = 0; 794 bool skip_updated = false; 795 796 /* 797 * Ensure that there are not too many pages isolated from the LRU 798 * list by either parallel reclaimers or compaction. If there are, 799 * delay for some time until fewer pages are isolated 800 */ 801 while (unlikely(too_many_isolated(pgdat))) { 802 /* async migration should just abort */ 803 if (cc->mode == MIGRATE_ASYNC) 804 return 0; 805 806 congestion_wait(BLK_RW_ASYNC, HZ/10); 807 808 if (fatal_signal_pending(current)) 809 return 0; 810 } 811 812 cond_resched(); 813 814 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 815 skip_on_failure = true; 816 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 817 } 818 819 /* Time to isolate some pages for migration */ 820 for (; low_pfn < end_pfn; low_pfn++) { 821 822 if (skip_on_failure && low_pfn >= next_skip_pfn) { 823 /* 824 * We have isolated all migration candidates in the 825 * previous order-aligned block, and did not skip it due 826 * to failure. We should migrate the pages now and 827 * hopefully succeed compaction. 828 */ 829 if (nr_isolated) 830 break; 831 832 /* 833 * We failed to isolate in the previous order-aligned 834 * block. Set the new boundary to the end of the 835 * current block. Note we can't simply increase 836 * next_skip_pfn by 1 << order, as low_pfn might have 837 * been incremented by a higher number due to skipping 838 * a compound or a high-order buddy page in the 839 * previous loop iteration. 840 */ 841 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 842 } 843 844 /* 845 * Periodically drop the lock (if held) regardless of its 846 * contention, to give chance to IRQs. Abort completely if 847 * a fatal signal is pending. 848 */ 849 if (!(low_pfn % SWAP_CLUSTER_MAX) 850 && compact_unlock_should_abort(&pgdat->lru_lock, 851 flags, &locked, cc)) { 852 low_pfn = 0; 853 goto fatal_pending; 854 } 855 856 if (!pfn_valid_within(low_pfn)) 857 goto isolate_fail; 858 nr_scanned++; 859 860 page = pfn_to_page(low_pfn); 861 862 /* 863 * Check if the pageblock has already been marked skipped. 864 * Only the aligned PFN is checked as the caller isolates 865 * COMPACT_CLUSTER_MAX at a time so the second call must 866 * not falsely conclude that the block should be skipped. 867 */ 868 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 869 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 870 low_pfn = end_pfn; 871 goto isolate_abort; 872 } 873 valid_page = page; 874 } 875 876 /* 877 * Skip if free. We read page order here without zone lock 878 * which is generally unsafe, but the race window is small and 879 * the worst thing that can happen is that we skip some 880 * potential isolation targets. 881 */ 882 if (PageBuddy(page)) { 883 unsigned long freepage_order = page_order_unsafe(page); 884 885 /* 886 * Without lock, we cannot be sure that what we got is 887 * a valid page order. Consider only values in the 888 * valid order range to prevent low_pfn overflow. 889 */ 890 if (freepage_order > 0 && freepage_order < MAX_ORDER) 891 low_pfn += (1UL << freepage_order) - 1; 892 continue; 893 } 894 895 /* 896 * Regardless of being on LRU, compound pages such as THP and 897 * hugetlbfs are not to be compacted unless we are attempting 898 * an allocation much larger than the huge page size (eg CMA). 899 * We can potentially save a lot of iterations if we skip them 900 * at once. The check is racy, but we can consider only valid 901 * values and the only danger is skipping too much. 902 */ 903 if (PageCompound(page) && !cc->alloc_contig) { 904 const unsigned int order = compound_order(page); 905 906 if (likely(order < MAX_ORDER)) 907 low_pfn += (1UL << order) - 1; 908 goto isolate_fail; 909 } 910 911 /* 912 * Check may be lockless but that's ok as we recheck later. 913 * It's possible to migrate LRU and non-lru movable pages. 914 * Skip any other type of page 915 */ 916 if (!PageLRU(page)) { 917 /* 918 * __PageMovable can return false positive so we need 919 * to verify it under page_lock. 920 */ 921 if (unlikely(__PageMovable(page)) && 922 !PageIsolated(page)) { 923 if (locked) { 924 spin_unlock_irqrestore(&pgdat->lru_lock, 925 flags); 926 locked = false; 927 } 928 929 if (!isolate_movable_page(page, isolate_mode)) 930 goto isolate_success; 931 } 932 933 goto isolate_fail; 934 } 935 936 /* 937 * Migration will fail if an anonymous page is pinned in memory, 938 * so avoid taking lru_lock and isolating it unnecessarily in an 939 * admittedly racy check. 940 */ 941 if (!page_mapping(page) && 942 page_count(page) > page_mapcount(page)) 943 goto isolate_fail; 944 945 /* 946 * Only allow to migrate anonymous pages in GFP_NOFS context 947 * because those do not depend on fs locks. 948 */ 949 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 950 goto isolate_fail; 951 952 /* If we already hold the lock, we can skip some rechecking */ 953 if (!locked) { 954 locked = compact_lock_irqsave(&pgdat->lru_lock, 955 &flags, cc); 956 957 /* Try get exclusive access under lock */ 958 if (!skip_updated) { 959 skip_updated = true; 960 if (test_and_set_skip(cc, page, low_pfn)) 961 goto isolate_abort; 962 } 963 964 /* Recheck PageLRU and PageCompound under lock */ 965 if (!PageLRU(page)) 966 goto isolate_fail; 967 968 /* 969 * Page become compound since the non-locked check, 970 * and it's on LRU. It can only be a THP so the order 971 * is safe to read and it's 0 for tail pages. 972 */ 973 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 974 low_pfn += compound_nr(page) - 1; 975 goto isolate_fail; 976 } 977 } 978 979 lruvec = mem_cgroup_page_lruvec(page, pgdat); 980 981 /* Try isolate the page */ 982 if (__isolate_lru_page(page, isolate_mode) != 0) 983 goto isolate_fail; 984 985 /* The whole page is taken off the LRU; skip the tail pages. */ 986 if (PageCompound(page)) 987 low_pfn += compound_nr(page) - 1; 988 989 /* Successfully isolated */ 990 del_page_from_lru_list(page, lruvec, page_lru(page)); 991 mod_node_page_state(page_pgdat(page), 992 NR_ISOLATED_ANON + page_is_file_cache(page), 993 hpage_nr_pages(page)); 994 995 isolate_success: 996 list_add(&page->lru, &cc->migratepages); 997 cc->nr_migratepages++; 998 nr_isolated++; 999 1000 /* 1001 * Avoid isolating too much unless this block is being 1002 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1003 * or a lock is contended. For contention, isolate quickly to 1004 * potentially remove one source of contention. 1005 */ 1006 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1007 !cc->rescan && !cc->contended) { 1008 ++low_pfn; 1009 break; 1010 } 1011 1012 continue; 1013 isolate_fail: 1014 if (!skip_on_failure) 1015 continue; 1016 1017 /* 1018 * We have isolated some pages, but then failed. Release them 1019 * instead of migrating, as we cannot form the cc->order buddy 1020 * page anyway. 1021 */ 1022 if (nr_isolated) { 1023 if (locked) { 1024 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1025 locked = false; 1026 } 1027 putback_movable_pages(&cc->migratepages); 1028 cc->nr_migratepages = 0; 1029 nr_isolated = 0; 1030 } 1031 1032 if (low_pfn < next_skip_pfn) { 1033 low_pfn = next_skip_pfn - 1; 1034 /* 1035 * The check near the loop beginning would have updated 1036 * next_skip_pfn too, but this is a bit simpler. 1037 */ 1038 next_skip_pfn += 1UL << cc->order; 1039 } 1040 } 1041 1042 /* 1043 * The PageBuddy() check could have potentially brought us outside 1044 * the range to be scanned. 1045 */ 1046 if (unlikely(low_pfn > end_pfn)) 1047 low_pfn = end_pfn; 1048 1049 isolate_abort: 1050 if (locked) 1051 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1052 1053 /* 1054 * Updated the cached scanner pfn once the pageblock has been scanned 1055 * Pages will either be migrated in which case there is no point 1056 * scanning in the near future or migration failed in which case the 1057 * failure reason may persist. The block is marked for skipping if 1058 * there were no pages isolated in the block or if the block is 1059 * rescanned twice in a row. 1060 */ 1061 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1062 if (valid_page && !skip_updated) 1063 set_pageblock_skip(valid_page); 1064 update_cached_migrate(cc, low_pfn); 1065 } 1066 1067 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1068 nr_scanned, nr_isolated); 1069 1070 fatal_pending: 1071 cc->total_migrate_scanned += nr_scanned; 1072 if (nr_isolated) 1073 count_compact_events(COMPACTISOLATED, nr_isolated); 1074 1075 return low_pfn; 1076 } 1077 1078 /** 1079 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1080 * @cc: Compaction control structure. 1081 * @start_pfn: The first PFN to start isolating. 1082 * @end_pfn: The one-past-last PFN. 1083 * 1084 * Returns zero if isolation fails fatally due to e.g. pending signal. 1085 * Otherwise, function returns one-past-the-last PFN of isolated page 1086 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1087 */ 1088 unsigned long 1089 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1090 unsigned long end_pfn) 1091 { 1092 unsigned long pfn, block_start_pfn, block_end_pfn; 1093 1094 /* Scan block by block. First and last block may be incomplete */ 1095 pfn = start_pfn; 1096 block_start_pfn = pageblock_start_pfn(pfn); 1097 if (block_start_pfn < cc->zone->zone_start_pfn) 1098 block_start_pfn = cc->zone->zone_start_pfn; 1099 block_end_pfn = pageblock_end_pfn(pfn); 1100 1101 for (; pfn < end_pfn; pfn = block_end_pfn, 1102 block_start_pfn = block_end_pfn, 1103 block_end_pfn += pageblock_nr_pages) { 1104 1105 block_end_pfn = min(block_end_pfn, end_pfn); 1106 1107 if (!pageblock_pfn_to_page(block_start_pfn, 1108 block_end_pfn, cc->zone)) 1109 continue; 1110 1111 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1112 ISOLATE_UNEVICTABLE); 1113 1114 if (!pfn) 1115 break; 1116 1117 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1118 break; 1119 } 1120 1121 return pfn; 1122 } 1123 1124 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1125 #ifdef CONFIG_COMPACTION 1126 1127 static bool suitable_migration_source(struct compact_control *cc, 1128 struct page *page) 1129 { 1130 int block_mt; 1131 1132 if (pageblock_skip_persistent(page)) 1133 return false; 1134 1135 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1136 return true; 1137 1138 block_mt = get_pageblock_migratetype(page); 1139 1140 if (cc->migratetype == MIGRATE_MOVABLE) 1141 return is_migrate_movable(block_mt); 1142 else 1143 return block_mt == cc->migratetype; 1144 } 1145 1146 /* Returns true if the page is within a block suitable for migration to */ 1147 static bool suitable_migration_target(struct compact_control *cc, 1148 struct page *page) 1149 { 1150 /* If the page is a large free page, then disallow migration */ 1151 if (PageBuddy(page)) { 1152 /* 1153 * We are checking page_order without zone->lock taken. But 1154 * the only small danger is that we skip a potentially suitable 1155 * pageblock, so it's not worth to check order for valid range. 1156 */ 1157 if (page_order_unsafe(page) >= pageblock_order) 1158 return false; 1159 } 1160 1161 if (cc->ignore_block_suitable) 1162 return true; 1163 1164 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1165 if (is_migrate_movable(get_pageblock_migratetype(page))) 1166 return true; 1167 1168 /* Otherwise skip the block */ 1169 return false; 1170 } 1171 1172 static inline unsigned int 1173 freelist_scan_limit(struct compact_control *cc) 1174 { 1175 unsigned short shift = BITS_PER_LONG - 1; 1176 1177 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1178 } 1179 1180 /* 1181 * Test whether the free scanner has reached the same or lower pageblock than 1182 * the migration scanner, and compaction should thus terminate. 1183 */ 1184 static inline bool compact_scanners_met(struct compact_control *cc) 1185 { 1186 return (cc->free_pfn >> pageblock_order) 1187 <= (cc->migrate_pfn >> pageblock_order); 1188 } 1189 1190 /* 1191 * Used when scanning for a suitable migration target which scans freelists 1192 * in reverse. Reorders the list such as the unscanned pages are scanned 1193 * first on the next iteration of the free scanner 1194 */ 1195 static void 1196 move_freelist_head(struct list_head *freelist, struct page *freepage) 1197 { 1198 LIST_HEAD(sublist); 1199 1200 if (!list_is_last(freelist, &freepage->lru)) { 1201 list_cut_before(&sublist, freelist, &freepage->lru); 1202 if (!list_empty(&sublist)) 1203 list_splice_tail(&sublist, freelist); 1204 } 1205 } 1206 1207 /* 1208 * Similar to move_freelist_head except used by the migration scanner 1209 * when scanning forward. It's possible for these list operations to 1210 * move against each other if they search the free list exactly in 1211 * lockstep. 1212 */ 1213 static void 1214 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1215 { 1216 LIST_HEAD(sublist); 1217 1218 if (!list_is_first(freelist, &freepage->lru)) { 1219 list_cut_position(&sublist, freelist, &freepage->lru); 1220 if (!list_empty(&sublist)) 1221 list_splice_tail(&sublist, freelist); 1222 } 1223 } 1224 1225 static void 1226 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1227 { 1228 unsigned long start_pfn, end_pfn; 1229 struct page *page = pfn_to_page(pfn); 1230 1231 /* Do not search around if there are enough pages already */ 1232 if (cc->nr_freepages >= cc->nr_migratepages) 1233 return; 1234 1235 /* Minimise scanning during async compaction */ 1236 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1237 return; 1238 1239 /* Pageblock boundaries */ 1240 start_pfn = pageblock_start_pfn(pfn); 1241 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1242 1243 /* Scan before */ 1244 if (start_pfn != pfn) { 1245 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1246 if (cc->nr_freepages >= cc->nr_migratepages) 1247 return; 1248 } 1249 1250 /* Scan after */ 1251 start_pfn = pfn + nr_isolated; 1252 if (start_pfn < end_pfn) 1253 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1254 1255 /* Skip this pageblock in the future as it's full or nearly full */ 1256 if (cc->nr_freepages < cc->nr_migratepages) 1257 set_pageblock_skip(page); 1258 } 1259 1260 /* Search orders in round-robin fashion */ 1261 static int next_search_order(struct compact_control *cc, int order) 1262 { 1263 order--; 1264 if (order < 0) 1265 order = cc->order - 1; 1266 1267 /* Search wrapped around? */ 1268 if (order == cc->search_order) { 1269 cc->search_order--; 1270 if (cc->search_order < 0) 1271 cc->search_order = cc->order - 1; 1272 return -1; 1273 } 1274 1275 return order; 1276 } 1277 1278 static unsigned long 1279 fast_isolate_freepages(struct compact_control *cc) 1280 { 1281 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1282 unsigned int nr_scanned = 0; 1283 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1284 unsigned long nr_isolated = 0; 1285 unsigned long distance; 1286 struct page *page = NULL; 1287 bool scan_start = false; 1288 int order; 1289 1290 /* Full compaction passes in a negative order */ 1291 if (cc->order <= 0) 1292 return cc->free_pfn; 1293 1294 /* 1295 * If starting the scan, use a deeper search and use the highest 1296 * PFN found if a suitable one is not found. 1297 */ 1298 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1299 limit = pageblock_nr_pages >> 1; 1300 scan_start = true; 1301 } 1302 1303 /* 1304 * Preferred point is in the top quarter of the scan space but take 1305 * a pfn from the top half if the search is problematic. 1306 */ 1307 distance = (cc->free_pfn - cc->migrate_pfn); 1308 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1309 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1310 1311 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1312 low_pfn = min_pfn; 1313 1314 /* 1315 * Search starts from the last successful isolation order or the next 1316 * order to search after a previous failure 1317 */ 1318 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1319 1320 for (order = cc->search_order; 1321 !page && order >= 0; 1322 order = next_search_order(cc, order)) { 1323 struct free_area *area = &cc->zone->free_area[order]; 1324 struct list_head *freelist; 1325 struct page *freepage; 1326 unsigned long flags; 1327 unsigned int order_scanned = 0; 1328 1329 if (!area->nr_free) 1330 continue; 1331 1332 spin_lock_irqsave(&cc->zone->lock, flags); 1333 freelist = &area->free_list[MIGRATE_MOVABLE]; 1334 list_for_each_entry_reverse(freepage, freelist, lru) { 1335 unsigned long pfn; 1336 1337 order_scanned++; 1338 nr_scanned++; 1339 pfn = page_to_pfn(freepage); 1340 1341 if (pfn >= highest) 1342 highest = pageblock_start_pfn(pfn); 1343 1344 if (pfn >= low_pfn) { 1345 cc->fast_search_fail = 0; 1346 cc->search_order = order; 1347 page = freepage; 1348 break; 1349 } 1350 1351 if (pfn >= min_pfn && pfn > high_pfn) { 1352 high_pfn = pfn; 1353 1354 /* Shorten the scan if a candidate is found */ 1355 limit >>= 1; 1356 } 1357 1358 if (order_scanned >= limit) 1359 break; 1360 } 1361 1362 /* Use a minimum pfn if a preferred one was not found */ 1363 if (!page && high_pfn) { 1364 page = pfn_to_page(high_pfn); 1365 1366 /* Update freepage for the list reorder below */ 1367 freepage = page; 1368 } 1369 1370 /* Reorder to so a future search skips recent pages */ 1371 move_freelist_head(freelist, freepage); 1372 1373 /* Isolate the page if available */ 1374 if (page) { 1375 if (__isolate_free_page(page, order)) { 1376 set_page_private(page, order); 1377 nr_isolated = 1 << order; 1378 cc->nr_freepages += nr_isolated; 1379 list_add_tail(&page->lru, &cc->freepages); 1380 count_compact_events(COMPACTISOLATED, nr_isolated); 1381 } else { 1382 /* If isolation fails, abort the search */ 1383 order = cc->search_order + 1; 1384 page = NULL; 1385 } 1386 } 1387 1388 spin_unlock_irqrestore(&cc->zone->lock, flags); 1389 1390 /* 1391 * Smaller scan on next order so the total scan ig related 1392 * to freelist_scan_limit. 1393 */ 1394 if (order_scanned >= limit) 1395 limit = min(1U, limit >> 1); 1396 } 1397 1398 if (!page) { 1399 cc->fast_search_fail++; 1400 if (scan_start) { 1401 /* 1402 * Use the highest PFN found above min. If one was 1403 * not found, be pessemistic for direct compaction 1404 * and use the min mark. 1405 */ 1406 if (highest) { 1407 page = pfn_to_page(highest); 1408 cc->free_pfn = highest; 1409 } else { 1410 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1411 page = pfn_to_page(min_pfn); 1412 cc->free_pfn = min_pfn; 1413 } 1414 } 1415 } 1416 } 1417 1418 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1419 highest -= pageblock_nr_pages; 1420 cc->zone->compact_cached_free_pfn = highest; 1421 } 1422 1423 cc->total_free_scanned += nr_scanned; 1424 if (!page) 1425 return cc->free_pfn; 1426 1427 low_pfn = page_to_pfn(page); 1428 fast_isolate_around(cc, low_pfn, nr_isolated); 1429 return low_pfn; 1430 } 1431 1432 /* 1433 * Based on information in the current compact_control, find blocks 1434 * suitable for isolating free pages from and then isolate them. 1435 */ 1436 static void isolate_freepages(struct compact_control *cc) 1437 { 1438 struct zone *zone = cc->zone; 1439 struct page *page; 1440 unsigned long block_start_pfn; /* start of current pageblock */ 1441 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1442 unsigned long block_end_pfn; /* end of current pageblock */ 1443 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1444 struct list_head *freelist = &cc->freepages; 1445 unsigned int stride; 1446 1447 /* Try a small search of the free lists for a candidate */ 1448 isolate_start_pfn = fast_isolate_freepages(cc); 1449 if (cc->nr_freepages) 1450 goto splitmap; 1451 1452 /* 1453 * Initialise the free scanner. The starting point is where we last 1454 * successfully isolated from, zone-cached value, or the end of the 1455 * zone when isolating for the first time. For looping we also need 1456 * this pfn aligned down to the pageblock boundary, because we do 1457 * block_start_pfn -= pageblock_nr_pages in the for loop. 1458 * For ending point, take care when isolating in last pageblock of a 1459 * a zone which ends in the middle of a pageblock. 1460 * The low boundary is the end of the pageblock the migration scanner 1461 * is using. 1462 */ 1463 isolate_start_pfn = cc->free_pfn; 1464 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1465 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1466 zone_end_pfn(zone)); 1467 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1468 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1469 1470 /* 1471 * Isolate free pages until enough are available to migrate the 1472 * pages on cc->migratepages. We stop searching if the migrate 1473 * and free page scanners meet or enough free pages are isolated. 1474 */ 1475 for (; block_start_pfn >= low_pfn; 1476 block_end_pfn = block_start_pfn, 1477 block_start_pfn -= pageblock_nr_pages, 1478 isolate_start_pfn = block_start_pfn) { 1479 unsigned long nr_isolated; 1480 1481 /* 1482 * This can iterate a massively long zone without finding any 1483 * suitable migration targets, so periodically check resched. 1484 */ 1485 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1486 cond_resched(); 1487 1488 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1489 zone); 1490 if (!page) 1491 continue; 1492 1493 /* Check the block is suitable for migration */ 1494 if (!suitable_migration_target(cc, page)) 1495 continue; 1496 1497 /* If isolation recently failed, do not retry */ 1498 if (!isolation_suitable(cc, page)) 1499 continue; 1500 1501 /* Found a block suitable for isolating free pages from. */ 1502 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1503 block_end_pfn, freelist, stride, false); 1504 1505 /* Update the skip hint if the full pageblock was scanned */ 1506 if (isolate_start_pfn == block_end_pfn) 1507 update_pageblock_skip(cc, page, block_start_pfn); 1508 1509 /* Are enough freepages isolated? */ 1510 if (cc->nr_freepages >= cc->nr_migratepages) { 1511 if (isolate_start_pfn >= block_end_pfn) { 1512 /* 1513 * Restart at previous pageblock if more 1514 * freepages can be isolated next time. 1515 */ 1516 isolate_start_pfn = 1517 block_start_pfn - pageblock_nr_pages; 1518 } 1519 break; 1520 } else if (isolate_start_pfn < block_end_pfn) { 1521 /* 1522 * If isolation failed early, do not continue 1523 * needlessly. 1524 */ 1525 break; 1526 } 1527 1528 /* Adjust stride depending on isolation */ 1529 if (nr_isolated) { 1530 stride = 1; 1531 continue; 1532 } 1533 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1534 } 1535 1536 /* 1537 * Record where the free scanner will restart next time. Either we 1538 * broke from the loop and set isolate_start_pfn based on the last 1539 * call to isolate_freepages_block(), or we met the migration scanner 1540 * and the loop terminated due to isolate_start_pfn < low_pfn 1541 */ 1542 cc->free_pfn = isolate_start_pfn; 1543 1544 splitmap: 1545 /* __isolate_free_page() does not map the pages */ 1546 split_map_pages(freelist); 1547 } 1548 1549 /* 1550 * This is a migrate-callback that "allocates" freepages by taking pages 1551 * from the isolated freelists in the block we are migrating to. 1552 */ 1553 static struct page *compaction_alloc(struct page *migratepage, 1554 unsigned long data) 1555 { 1556 struct compact_control *cc = (struct compact_control *)data; 1557 struct page *freepage; 1558 1559 if (list_empty(&cc->freepages)) { 1560 isolate_freepages(cc); 1561 1562 if (list_empty(&cc->freepages)) 1563 return NULL; 1564 } 1565 1566 freepage = list_entry(cc->freepages.next, struct page, lru); 1567 list_del(&freepage->lru); 1568 cc->nr_freepages--; 1569 1570 return freepage; 1571 } 1572 1573 /* 1574 * This is a migrate-callback that "frees" freepages back to the isolated 1575 * freelist. All pages on the freelist are from the same zone, so there is no 1576 * special handling needed for NUMA. 1577 */ 1578 static void compaction_free(struct page *page, unsigned long data) 1579 { 1580 struct compact_control *cc = (struct compact_control *)data; 1581 1582 list_add(&page->lru, &cc->freepages); 1583 cc->nr_freepages++; 1584 } 1585 1586 /* possible outcome of isolate_migratepages */ 1587 typedef enum { 1588 ISOLATE_ABORT, /* Abort compaction now */ 1589 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1590 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1591 } isolate_migrate_t; 1592 1593 /* 1594 * Allow userspace to control policy on scanning the unevictable LRU for 1595 * compactable pages. 1596 */ 1597 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1598 1599 static inline void 1600 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1601 { 1602 if (cc->fast_start_pfn == ULONG_MAX) 1603 return; 1604 1605 if (!cc->fast_start_pfn) 1606 cc->fast_start_pfn = pfn; 1607 1608 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1609 } 1610 1611 static inline unsigned long 1612 reinit_migrate_pfn(struct compact_control *cc) 1613 { 1614 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1615 return cc->migrate_pfn; 1616 1617 cc->migrate_pfn = cc->fast_start_pfn; 1618 cc->fast_start_pfn = ULONG_MAX; 1619 1620 return cc->migrate_pfn; 1621 } 1622 1623 /* 1624 * Briefly search the free lists for a migration source that already has 1625 * some free pages to reduce the number of pages that need migration 1626 * before a pageblock is free. 1627 */ 1628 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1629 { 1630 unsigned int limit = freelist_scan_limit(cc); 1631 unsigned int nr_scanned = 0; 1632 unsigned long distance; 1633 unsigned long pfn = cc->migrate_pfn; 1634 unsigned long high_pfn; 1635 int order; 1636 1637 /* Skip hints are relied on to avoid repeats on the fast search */ 1638 if (cc->ignore_skip_hint) 1639 return pfn; 1640 1641 /* 1642 * If the migrate_pfn is not at the start of a zone or the start 1643 * of a pageblock then assume this is a continuation of a previous 1644 * scan restarted due to COMPACT_CLUSTER_MAX. 1645 */ 1646 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1647 return pfn; 1648 1649 /* 1650 * For smaller orders, just linearly scan as the number of pages 1651 * to migrate should be relatively small and does not necessarily 1652 * justify freeing up a large block for a small allocation. 1653 */ 1654 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1655 return pfn; 1656 1657 /* 1658 * Only allow kcompactd and direct requests for movable pages to 1659 * quickly clear out a MOVABLE pageblock for allocation. This 1660 * reduces the risk that a large movable pageblock is freed for 1661 * an unmovable/reclaimable small allocation. 1662 */ 1663 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1664 return pfn; 1665 1666 /* 1667 * When starting the migration scanner, pick any pageblock within the 1668 * first half of the search space. Otherwise try and pick a pageblock 1669 * within the first eighth to reduce the chances that a migration 1670 * target later becomes a source. 1671 */ 1672 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1673 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1674 distance >>= 2; 1675 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1676 1677 for (order = cc->order - 1; 1678 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1679 order--) { 1680 struct free_area *area = &cc->zone->free_area[order]; 1681 struct list_head *freelist; 1682 unsigned long flags; 1683 struct page *freepage; 1684 1685 if (!area->nr_free) 1686 continue; 1687 1688 spin_lock_irqsave(&cc->zone->lock, flags); 1689 freelist = &area->free_list[MIGRATE_MOVABLE]; 1690 list_for_each_entry(freepage, freelist, lru) { 1691 unsigned long free_pfn; 1692 1693 nr_scanned++; 1694 free_pfn = page_to_pfn(freepage); 1695 if (free_pfn < high_pfn) { 1696 /* 1697 * Avoid if skipped recently. Ideally it would 1698 * move to the tail but even safe iteration of 1699 * the list assumes an entry is deleted, not 1700 * reordered. 1701 */ 1702 if (get_pageblock_skip(freepage)) { 1703 if (list_is_last(freelist, &freepage->lru)) 1704 break; 1705 1706 continue; 1707 } 1708 1709 /* Reorder to so a future search skips recent pages */ 1710 move_freelist_tail(freelist, freepage); 1711 1712 update_fast_start_pfn(cc, free_pfn); 1713 pfn = pageblock_start_pfn(free_pfn); 1714 cc->fast_search_fail = 0; 1715 set_pageblock_skip(freepage); 1716 break; 1717 } 1718 1719 if (nr_scanned >= limit) { 1720 cc->fast_search_fail++; 1721 move_freelist_tail(freelist, freepage); 1722 break; 1723 } 1724 } 1725 spin_unlock_irqrestore(&cc->zone->lock, flags); 1726 } 1727 1728 cc->total_migrate_scanned += nr_scanned; 1729 1730 /* 1731 * If fast scanning failed then use a cached entry for a page block 1732 * that had free pages as the basis for starting a linear scan. 1733 */ 1734 if (pfn == cc->migrate_pfn) 1735 pfn = reinit_migrate_pfn(cc); 1736 1737 return pfn; 1738 } 1739 1740 /* 1741 * Isolate all pages that can be migrated from the first suitable block, 1742 * starting at the block pointed to by the migrate scanner pfn within 1743 * compact_control. 1744 */ 1745 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1746 { 1747 unsigned long block_start_pfn; 1748 unsigned long block_end_pfn; 1749 unsigned long low_pfn; 1750 struct page *page; 1751 const isolate_mode_t isolate_mode = 1752 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1753 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1754 bool fast_find_block; 1755 1756 /* 1757 * Start at where we last stopped, or beginning of the zone as 1758 * initialized by compact_zone(). The first failure will use 1759 * the lowest PFN as the starting point for linear scanning. 1760 */ 1761 low_pfn = fast_find_migrateblock(cc); 1762 block_start_pfn = pageblock_start_pfn(low_pfn); 1763 if (block_start_pfn < cc->zone->zone_start_pfn) 1764 block_start_pfn = cc->zone->zone_start_pfn; 1765 1766 /* 1767 * fast_find_migrateblock marks a pageblock skipped so to avoid 1768 * the isolation_suitable check below, check whether the fast 1769 * search was successful. 1770 */ 1771 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1772 1773 /* Only scan within a pageblock boundary */ 1774 block_end_pfn = pageblock_end_pfn(low_pfn); 1775 1776 /* 1777 * Iterate over whole pageblocks until we find the first suitable. 1778 * Do not cross the free scanner. 1779 */ 1780 for (; block_end_pfn <= cc->free_pfn; 1781 fast_find_block = false, 1782 low_pfn = block_end_pfn, 1783 block_start_pfn = block_end_pfn, 1784 block_end_pfn += pageblock_nr_pages) { 1785 1786 /* 1787 * This can potentially iterate a massively long zone with 1788 * many pageblocks unsuitable, so periodically check if we 1789 * need to schedule. 1790 */ 1791 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1792 cond_resched(); 1793 1794 page = pageblock_pfn_to_page(block_start_pfn, 1795 block_end_pfn, cc->zone); 1796 if (!page) 1797 continue; 1798 1799 /* 1800 * If isolation recently failed, do not retry. Only check the 1801 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1802 * to be visited multiple times. Assume skip was checked 1803 * before making it "skip" so other compaction instances do 1804 * not scan the same block. 1805 */ 1806 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1807 !fast_find_block && !isolation_suitable(cc, page)) 1808 continue; 1809 1810 /* 1811 * For async compaction, also only scan in MOVABLE blocks 1812 * without huge pages. Async compaction is optimistic to see 1813 * if the minimum amount of work satisfies the allocation. 1814 * The cached PFN is updated as it's possible that all 1815 * remaining blocks between source and target are unsuitable 1816 * and the compaction scanners fail to meet. 1817 */ 1818 if (!suitable_migration_source(cc, page)) { 1819 update_cached_migrate(cc, block_end_pfn); 1820 continue; 1821 } 1822 1823 /* Perform the isolation */ 1824 low_pfn = isolate_migratepages_block(cc, low_pfn, 1825 block_end_pfn, isolate_mode); 1826 1827 if (!low_pfn) 1828 return ISOLATE_ABORT; 1829 1830 /* 1831 * Either we isolated something and proceed with migration. Or 1832 * we failed and compact_zone should decide if we should 1833 * continue or not. 1834 */ 1835 break; 1836 } 1837 1838 /* Record where migration scanner will be restarted. */ 1839 cc->migrate_pfn = low_pfn; 1840 1841 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1842 } 1843 1844 /* 1845 * order == -1 is expected when compacting via 1846 * /proc/sys/vm/compact_memory 1847 */ 1848 static inline bool is_via_compact_memory(int order) 1849 { 1850 return order == -1; 1851 } 1852 1853 static enum compact_result __compact_finished(struct compact_control *cc) 1854 { 1855 unsigned int order; 1856 const int migratetype = cc->migratetype; 1857 int ret; 1858 1859 /* Compaction run completes if the migrate and free scanner meet */ 1860 if (compact_scanners_met(cc)) { 1861 /* Let the next compaction start anew. */ 1862 reset_cached_positions(cc->zone); 1863 1864 /* 1865 * Mark that the PG_migrate_skip information should be cleared 1866 * by kswapd when it goes to sleep. kcompactd does not set the 1867 * flag itself as the decision to be clear should be directly 1868 * based on an allocation request. 1869 */ 1870 if (cc->direct_compaction) 1871 cc->zone->compact_blockskip_flush = true; 1872 1873 if (cc->whole_zone) 1874 return COMPACT_COMPLETE; 1875 else 1876 return COMPACT_PARTIAL_SKIPPED; 1877 } 1878 1879 if (is_via_compact_memory(cc->order)) 1880 return COMPACT_CONTINUE; 1881 1882 /* 1883 * Always finish scanning a pageblock to reduce the possibility of 1884 * fallbacks in the future. This is particularly important when 1885 * migration source is unmovable/reclaimable but it's not worth 1886 * special casing. 1887 */ 1888 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1889 return COMPACT_CONTINUE; 1890 1891 /* Direct compactor: Is a suitable page free? */ 1892 ret = COMPACT_NO_SUITABLE_PAGE; 1893 for (order = cc->order; order < MAX_ORDER; order++) { 1894 struct free_area *area = &cc->zone->free_area[order]; 1895 bool can_steal; 1896 1897 /* Job done if page is free of the right migratetype */ 1898 if (!free_area_empty(area, migratetype)) 1899 return COMPACT_SUCCESS; 1900 1901 #ifdef CONFIG_CMA 1902 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1903 if (migratetype == MIGRATE_MOVABLE && 1904 !free_area_empty(area, MIGRATE_CMA)) 1905 return COMPACT_SUCCESS; 1906 #endif 1907 /* 1908 * Job done if allocation would steal freepages from 1909 * other migratetype buddy lists. 1910 */ 1911 if (find_suitable_fallback(area, order, migratetype, 1912 true, &can_steal) != -1) { 1913 1914 /* movable pages are OK in any pageblock */ 1915 if (migratetype == MIGRATE_MOVABLE) 1916 return COMPACT_SUCCESS; 1917 1918 /* 1919 * We are stealing for a non-movable allocation. Make 1920 * sure we finish compacting the current pageblock 1921 * first so it is as free as possible and we won't 1922 * have to steal another one soon. This only applies 1923 * to sync compaction, as async compaction operates 1924 * on pageblocks of the same migratetype. 1925 */ 1926 if (cc->mode == MIGRATE_ASYNC || 1927 IS_ALIGNED(cc->migrate_pfn, 1928 pageblock_nr_pages)) { 1929 return COMPACT_SUCCESS; 1930 } 1931 1932 ret = COMPACT_CONTINUE; 1933 break; 1934 } 1935 } 1936 1937 if (cc->contended || fatal_signal_pending(current)) 1938 ret = COMPACT_CONTENDED; 1939 1940 return ret; 1941 } 1942 1943 static enum compact_result compact_finished(struct compact_control *cc) 1944 { 1945 int ret; 1946 1947 ret = __compact_finished(cc); 1948 trace_mm_compaction_finished(cc->zone, cc->order, ret); 1949 if (ret == COMPACT_NO_SUITABLE_PAGE) 1950 ret = COMPACT_CONTINUE; 1951 1952 return ret; 1953 } 1954 1955 /* 1956 * compaction_suitable: Is this suitable to run compaction on this zone now? 1957 * Returns 1958 * COMPACT_SKIPPED - If there are too few free pages for compaction 1959 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1960 * COMPACT_CONTINUE - If compaction should run now 1961 */ 1962 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1963 unsigned int alloc_flags, 1964 int classzone_idx, 1965 unsigned long wmark_target) 1966 { 1967 unsigned long watermark; 1968 1969 if (is_via_compact_memory(order)) 1970 return COMPACT_CONTINUE; 1971 1972 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 1973 /* 1974 * If watermarks for high-order allocation are already met, there 1975 * should be no need for compaction at all. 1976 */ 1977 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1978 alloc_flags)) 1979 return COMPACT_SUCCESS; 1980 1981 /* 1982 * Watermarks for order-0 must be met for compaction to be able to 1983 * isolate free pages for migration targets. This means that the 1984 * watermark and alloc_flags have to match, or be more pessimistic than 1985 * the check in __isolate_free_page(). We don't use the direct 1986 * compactor's alloc_flags, as they are not relevant for freepage 1987 * isolation. We however do use the direct compactor's classzone_idx to 1988 * skip over zones where lowmem reserves would prevent allocation even 1989 * if compaction succeeds. 1990 * For costly orders, we require low watermark instead of min for 1991 * compaction to proceed to increase its chances. 1992 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1993 * suitable migration targets 1994 */ 1995 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1996 low_wmark_pages(zone) : min_wmark_pages(zone); 1997 watermark += compact_gap(order); 1998 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1999 ALLOC_CMA, wmark_target)) 2000 return COMPACT_SKIPPED; 2001 2002 return COMPACT_CONTINUE; 2003 } 2004 2005 enum compact_result compaction_suitable(struct zone *zone, int order, 2006 unsigned int alloc_flags, 2007 int classzone_idx) 2008 { 2009 enum compact_result ret; 2010 int fragindex; 2011 2012 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 2013 zone_page_state(zone, NR_FREE_PAGES)); 2014 /* 2015 * fragmentation index determines if allocation failures are due to 2016 * low memory or external fragmentation 2017 * 2018 * index of -1000 would imply allocations might succeed depending on 2019 * watermarks, but we already failed the high-order watermark check 2020 * index towards 0 implies failure is due to lack of memory 2021 * index towards 1000 implies failure is due to fragmentation 2022 * 2023 * Only compact if a failure would be due to fragmentation. Also 2024 * ignore fragindex for non-costly orders where the alternative to 2025 * a successful reclaim/compaction is OOM. Fragindex and the 2026 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2027 * excessive compaction for costly orders, but it should not be at the 2028 * expense of system stability. 2029 */ 2030 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2031 fragindex = fragmentation_index(zone, order); 2032 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2033 ret = COMPACT_NOT_SUITABLE_ZONE; 2034 } 2035 2036 trace_mm_compaction_suitable(zone, order, ret); 2037 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2038 ret = COMPACT_SKIPPED; 2039 2040 return ret; 2041 } 2042 2043 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2044 int alloc_flags) 2045 { 2046 struct zone *zone; 2047 struct zoneref *z; 2048 2049 /* 2050 * Make sure at least one zone would pass __compaction_suitable if we continue 2051 * retrying the reclaim. 2052 */ 2053 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2054 ac->nodemask) { 2055 unsigned long available; 2056 enum compact_result compact_result; 2057 2058 /* 2059 * Do not consider all the reclaimable memory because we do not 2060 * want to trash just for a single high order allocation which 2061 * is even not guaranteed to appear even if __compaction_suitable 2062 * is happy about the watermark check. 2063 */ 2064 available = zone_reclaimable_pages(zone) / order; 2065 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2066 compact_result = __compaction_suitable(zone, order, alloc_flags, 2067 ac_classzone_idx(ac), available); 2068 if (compact_result != COMPACT_SKIPPED) 2069 return true; 2070 } 2071 2072 return false; 2073 } 2074 2075 static enum compact_result 2076 compact_zone(struct compact_control *cc, struct capture_control *capc) 2077 { 2078 enum compact_result ret; 2079 unsigned long start_pfn = cc->zone->zone_start_pfn; 2080 unsigned long end_pfn = zone_end_pfn(cc->zone); 2081 unsigned long last_migrated_pfn; 2082 const bool sync = cc->mode != MIGRATE_ASYNC; 2083 bool update_cached; 2084 2085 /* 2086 * These counters track activities during zone compaction. Initialize 2087 * them before compacting a new zone. 2088 */ 2089 cc->total_migrate_scanned = 0; 2090 cc->total_free_scanned = 0; 2091 cc->nr_migratepages = 0; 2092 cc->nr_freepages = 0; 2093 INIT_LIST_HEAD(&cc->freepages); 2094 INIT_LIST_HEAD(&cc->migratepages); 2095 2096 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 2097 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2098 cc->classzone_idx); 2099 /* Compaction is likely to fail */ 2100 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2101 return ret; 2102 2103 /* huh, compaction_suitable is returning something unexpected */ 2104 VM_BUG_ON(ret != COMPACT_CONTINUE); 2105 2106 /* 2107 * Clear pageblock skip if there were failures recently and compaction 2108 * is about to be retried after being deferred. 2109 */ 2110 if (compaction_restarting(cc->zone, cc->order)) 2111 __reset_isolation_suitable(cc->zone); 2112 2113 /* 2114 * Setup to move all movable pages to the end of the zone. Used cached 2115 * information on where the scanners should start (unless we explicitly 2116 * want to compact the whole zone), but check that it is initialised 2117 * by ensuring the values are within zone boundaries. 2118 */ 2119 cc->fast_start_pfn = 0; 2120 if (cc->whole_zone) { 2121 cc->migrate_pfn = start_pfn; 2122 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2123 } else { 2124 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2125 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2126 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2127 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2128 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2129 } 2130 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2131 cc->migrate_pfn = start_pfn; 2132 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2133 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2134 } 2135 2136 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2137 cc->whole_zone = true; 2138 } 2139 2140 last_migrated_pfn = 0; 2141 2142 /* 2143 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2144 * the basis that some migrations will fail in ASYNC mode. However, 2145 * if the cached PFNs match and pageblocks are skipped due to having 2146 * no isolation candidates, then the sync state does not matter. 2147 * Until a pageblock with isolation candidates is found, keep the 2148 * cached PFNs in sync to avoid revisiting the same blocks. 2149 */ 2150 update_cached = !sync && 2151 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2152 2153 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2154 cc->free_pfn, end_pfn, sync); 2155 2156 migrate_prep_local(); 2157 2158 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2159 int err; 2160 unsigned long start_pfn = cc->migrate_pfn; 2161 2162 /* 2163 * Avoid multiple rescans which can happen if a page cannot be 2164 * isolated (dirty/writeback in async mode) or if the migrated 2165 * pages are being allocated before the pageblock is cleared. 2166 * The first rescan will capture the entire pageblock for 2167 * migration. If it fails, it'll be marked skip and scanning 2168 * will proceed as normal. 2169 */ 2170 cc->rescan = false; 2171 if (pageblock_start_pfn(last_migrated_pfn) == 2172 pageblock_start_pfn(start_pfn)) { 2173 cc->rescan = true; 2174 } 2175 2176 switch (isolate_migratepages(cc)) { 2177 case ISOLATE_ABORT: 2178 ret = COMPACT_CONTENDED; 2179 putback_movable_pages(&cc->migratepages); 2180 cc->nr_migratepages = 0; 2181 last_migrated_pfn = 0; 2182 goto out; 2183 case ISOLATE_NONE: 2184 if (update_cached) { 2185 cc->zone->compact_cached_migrate_pfn[1] = 2186 cc->zone->compact_cached_migrate_pfn[0]; 2187 } 2188 2189 /* 2190 * We haven't isolated and migrated anything, but 2191 * there might still be unflushed migrations from 2192 * previous cc->order aligned block. 2193 */ 2194 goto check_drain; 2195 case ISOLATE_SUCCESS: 2196 update_cached = false; 2197 last_migrated_pfn = start_pfn; 2198 ; 2199 } 2200 2201 err = migrate_pages(&cc->migratepages, compaction_alloc, 2202 compaction_free, (unsigned long)cc, cc->mode, 2203 MR_COMPACTION); 2204 2205 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2206 &cc->migratepages); 2207 2208 /* All pages were either migrated or will be released */ 2209 cc->nr_migratepages = 0; 2210 if (err) { 2211 putback_movable_pages(&cc->migratepages); 2212 /* 2213 * migrate_pages() may return -ENOMEM when scanners meet 2214 * and we want compact_finished() to detect it 2215 */ 2216 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2217 ret = COMPACT_CONTENDED; 2218 goto out; 2219 } 2220 /* 2221 * We failed to migrate at least one page in the current 2222 * order-aligned block, so skip the rest of it. 2223 */ 2224 if (cc->direct_compaction && 2225 (cc->mode == MIGRATE_ASYNC)) { 2226 cc->migrate_pfn = block_end_pfn( 2227 cc->migrate_pfn - 1, cc->order); 2228 /* Draining pcplists is useless in this case */ 2229 last_migrated_pfn = 0; 2230 } 2231 } 2232 2233 check_drain: 2234 /* 2235 * Has the migration scanner moved away from the previous 2236 * cc->order aligned block where we migrated from? If yes, 2237 * flush the pages that were freed, so that they can merge and 2238 * compact_finished() can detect immediately if allocation 2239 * would succeed. 2240 */ 2241 if (cc->order > 0 && last_migrated_pfn) { 2242 int cpu; 2243 unsigned long current_block_start = 2244 block_start_pfn(cc->migrate_pfn, cc->order); 2245 2246 if (last_migrated_pfn < current_block_start) { 2247 cpu = get_cpu(); 2248 lru_add_drain_cpu(cpu); 2249 drain_local_pages(cc->zone); 2250 put_cpu(); 2251 /* No more flushing until we migrate again */ 2252 last_migrated_pfn = 0; 2253 } 2254 } 2255 2256 /* Stop if a page has been captured */ 2257 if (capc && capc->page) { 2258 ret = COMPACT_SUCCESS; 2259 break; 2260 } 2261 } 2262 2263 out: 2264 /* 2265 * Release free pages and update where the free scanner should restart, 2266 * so we don't leave any returned pages behind in the next attempt. 2267 */ 2268 if (cc->nr_freepages > 0) { 2269 unsigned long free_pfn = release_freepages(&cc->freepages); 2270 2271 cc->nr_freepages = 0; 2272 VM_BUG_ON(free_pfn == 0); 2273 /* The cached pfn is always the first in a pageblock */ 2274 free_pfn = pageblock_start_pfn(free_pfn); 2275 /* 2276 * Only go back, not forward. The cached pfn might have been 2277 * already reset to zone end in compact_finished() 2278 */ 2279 if (free_pfn > cc->zone->compact_cached_free_pfn) 2280 cc->zone->compact_cached_free_pfn = free_pfn; 2281 } 2282 2283 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2284 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2285 2286 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2287 cc->free_pfn, end_pfn, sync, ret); 2288 2289 return ret; 2290 } 2291 2292 static enum compact_result compact_zone_order(struct zone *zone, int order, 2293 gfp_t gfp_mask, enum compact_priority prio, 2294 unsigned int alloc_flags, int classzone_idx, 2295 struct page **capture) 2296 { 2297 enum compact_result ret; 2298 struct compact_control cc = { 2299 .order = order, 2300 .search_order = order, 2301 .gfp_mask = gfp_mask, 2302 .zone = zone, 2303 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2304 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2305 .alloc_flags = alloc_flags, 2306 .classzone_idx = classzone_idx, 2307 .direct_compaction = true, 2308 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2309 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2310 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2311 }; 2312 struct capture_control capc = { 2313 .cc = &cc, 2314 .page = NULL, 2315 }; 2316 2317 if (capture) 2318 current->capture_control = &capc; 2319 2320 ret = compact_zone(&cc, &capc); 2321 2322 VM_BUG_ON(!list_empty(&cc.freepages)); 2323 VM_BUG_ON(!list_empty(&cc.migratepages)); 2324 2325 *capture = capc.page; 2326 current->capture_control = NULL; 2327 2328 return ret; 2329 } 2330 2331 int sysctl_extfrag_threshold = 500; 2332 2333 /** 2334 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2335 * @gfp_mask: The GFP mask of the current allocation 2336 * @order: The order of the current allocation 2337 * @alloc_flags: The allocation flags of the current allocation 2338 * @ac: The context of current allocation 2339 * @prio: Determines how hard direct compaction should try to succeed 2340 * 2341 * This is the main entry point for direct page compaction. 2342 */ 2343 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2344 unsigned int alloc_flags, const struct alloc_context *ac, 2345 enum compact_priority prio, struct page **capture) 2346 { 2347 int may_perform_io = gfp_mask & __GFP_IO; 2348 struct zoneref *z; 2349 struct zone *zone; 2350 enum compact_result rc = COMPACT_SKIPPED; 2351 2352 /* 2353 * Check if the GFP flags allow compaction - GFP_NOIO is really 2354 * tricky context because the migration might require IO 2355 */ 2356 if (!may_perform_io) 2357 return COMPACT_SKIPPED; 2358 2359 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2360 2361 /* Compact each zone in the list */ 2362 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2363 ac->nodemask) { 2364 enum compact_result status; 2365 2366 if (prio > MIN_COMPACT_PRIORITY 2367 && compaction_deferred(zone, order)) { 2368 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2369 continue; 2370 } 2371 2372 status = compact_zone_order(zone, order, gfp_mask, prio, 2373 alloc_flags, ac_classzone_idx(ac), capture); 2374 rc = max(status, rc); 2375 2376 /* The allocation should succeed, stop compacting */ 2377 if (status == COMPACT_SUCCESS) { 2378 /* 2379 * We think the allocation will succeed in this zone, 2380 * but it is not certain, hence the false. The caller 2381 * will repeat this with true if allocation indeed 2382 * succeeds in this zone. 2383 */ 2384 compaction_defer_reset(zone, order, false); 2385 2386 break; 2387 } 2388 2389 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2390 status == COMPACT_PARTIAL_SKIPPED)) 2391 /* 2392 * We think that allocation won't succeed in this zone 2393 * so we defer compaction there. If it ends up 2394 * succeeding after all, it will be reset. 2395 */ 2396 defer_compaction(zone, order); 2397 2398 /* 2399 * We might have stopped compacting due to need_resched() in 2400 * async compaction, or due to a fatal signal detected. In that 2401 * case do not try further zones 2402 */ 2403 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2404 || fatal_signal_pending(current)) 2405 break; 2406 } 2407 2408 return rc; 2409 } 2410 2411 2412 /* Compact all zones within a node */ 2413 static void compact_node(int nid) 2414 { 2415 pg_data_t *pgdat = NODE_DATA(nid); 2416 int zoneid; 2417 struct zone *zone; 2418 struct compact_control cc = { 2419 .order = -1, 2420 .mode = MIGRATE_SYNC, 2421 .ignore_skip_hint = true, 2422 .whole_zone = true, 2423 .gfp_mask = GFP_KERNEL, 2424 }; 2425 2426 2427 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2428 2429 zone = &pgdat->node_zones[zoneid]; 2430 if (!populated_zone(zone)) 2431 continue; 2432 2433 cc.zone = zone; 2434 2435 compact_zone(&cc, NULL); 2436 2437 VM_BUG_ON(!list_empty(&cc.freepages)); 2438 VM_BUG_ON(!list_empty(&cc.migratepages)); 2439 } 2440 } 2441 2442 /* Compact all nodes in the system */ 2443 static void compact_nodes(void) 2444 { 2445 int nid; 2446 2447 /* Flush pending updates to the LRU lists */ 2448 lru_add_drain_all(); 2449 2450 for_each_online_node(nid) 2451 compact_node(nid); 2452 } 2453 2454 /* The written value is actually unused, all memory is compacted */ 2455 int sysctl_compact_memory; 2456 2457 /* 2458 * This is the entry point for compacting all nodes via 2459 * /proc/sys/vm/compact_memory 2460 */ 2461 int sysctl_compaction_handler(struct ctl_table *table, int write, 2462 void __user *buffer, size_t *length, loff_t *ppos) 2463 { 2464 if (write) 2465 compact_nodes(); 2466 2467 return 0; 2468 } 2469 2470 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2471 static ssize_t sysfs_compact_node(struct device *dev, 2472 struct device_attribute *attr, 2473 const char *buf, size_t count) 2474 { 2475 int nid = dev->id; 2476 2477 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2478 /* Flush pending updates to the LRU lists */ 2479 lru_add_drain_all(); 2480 2481 compact_node(nid); 2482 } 2483 2484 return count; 2485 } 2486 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2487 2488 int compaction_register_node(struct node *node) 2489 { 2490 return device_create_file(&node->dev, &dev_attr_compact); 2491 } 2492 2493 void compaction_unregister_node(struct node *node) 2494 { 2495 return device_remove_file(&node->dev, &dev_attr_compact); 2496 } 2497 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2498 2499 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2500 { 2501 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2502 } 2503 2504 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2505 { 2506 int zoneid; 2507 struct zone *zone; 2508 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 2509 2510 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 2511 zone = &pgdat->node_zones[zoneid]; 2512 2513 if (!populated_zone(zone)) 2514 continue; 2515 2516 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2517 classzone_idx) == COMPACT_CONTINUE) 2518 return true; 2519 } 2520 2521 return false; 2522 } 2523 2524 static void kcompactd_do_work(pg_data_t *pgdat) 2525 { 2526 /* 2527 * With no special task, compact all zones so that a page of requested 2528 * order is allocatable. 2529 */ 2530 int zoneid; 2531 struct zone *zone; 2532 struct compact_control cc = { 2533 .order = pgdat->kcompactd_max_order, 2534 .search_order = pgdat->kcompactd_max_order, 2535 .classzone_idx = pgdat->kcompactd_classzone_idx, 2536 .mode = MIGRATE_SYNC_LIGHT, 2537 .ignore_skip_hint = false, 2538 .gfp_mask = GFP_KERNEL, 2539 }; 2540 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2541 cc.classzone_idx); 2542 count_compact_event(KCOMPACTD_WAKE); 2543 2544 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 2545 int status; 2546 2547 zone = &pgdat->node_zones[zoneid]; 2548 if (!populated_zone(zone)) 2549 continue; 2550 2551 if (compaction_deferred(zone, cc.order)) 2552 continue; 2553 2554 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2555 COMPACT_CONTINUE) 2556 continue; 2557 2558 if (kthread_should_stop()) 2559 return; 2560 2561 cc.zone = zone; 2562 status = compact_zone(&cc, NULL); 2563 2564 if (status == COMPACT_SUCCESS) { 2565 compaction_defer_reset(zone, cc.order, false); 2566 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2567 /* 2568 * Buddy pages may become stranded on pcps that could 2569 * otherwise coalesce on the zone's free area for 2570 * order >= cc.order. This is ratelimited by the 2571 * upcoming deferral. 2572 */ 2573 drain_all_pages(zone); 2574 2575 /* 2576 * We use sync migration mode here, so we defer like 2577 * sync direct compaction does. 2578 */ 2579 defer_compaction(zone, cc.order); 2580 } 2581 2582 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2583 cc.total_migrate_scanned); 2584 count_compact_events(KCOMPACTD_FREE_SCANNED, 2585 cc.total_free_scanned); 2586 2587 VM_BUG_ON(!list_empty(&cc.freepages)); 2588 VM_BUG_ON(!list_empty(&cc.migratepages)); 2589 } 2590 2591 /* 2592 * Regardless of success, we are done until woken up next. But remember 2593 * the requested order/classzone_idx in case it was higher/tighter than 2594 * our current ones 2595 */ 2596 if (pgdat->kcompactd_max_order <= cc.order) 2597 pgdat->kcompactd_max_order = 0; 2598 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2599 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2600 } 2601 2602 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2603 { 2604 if (!order) 2605 return; 2606 2607 if (pgdat->kcompactd_max_order < order) 2608 pgdat->kcompactd_max_order = order; 2609 2610 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2611 pgdat->kcompactd_classzone_idx = classzone_idx; 2612 2613 /* 2614 * Pairs with implicit barrier in wait_event_freezable() 2615 * such that wakeups are not missed. 2616 */ 2617 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2618 return; 2619 2620 if (!kcompactd_node_suitable(pgdat)) 2621 return; 2622 2623 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2624 classzone_idx); 2625 wake_up_interruptible(&pgdat->kcompactd_wait); 2626 } 2627 2628 /* 2629 * The background compaction daemon, started as a kernel thread 2630 * from the init process. 2631 */ 2632 static int kcompactd(void *p) 2633 { 2634 pg_data_t *pgdat = (pg_data_t*)p; 2635 struct task_struct *tsk = current; 2636 2637 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2638 2639 if (!cpumask_empty(cpumask)) 2640 set_cpus_allowed_ptr(tsk, cpumask); 2641 2642 set_freezable(); 2643 2644 pgdat->kcompactd_max_order = 0; 2645 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2646 2647 while (!kthread_should_stop()) { 2648 unsigned long pflags; 2649 2650 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2651 wait_event_freezable(pgdat->kcompactd_wait, 2652 kcompactd_work_requested(pgdat)); 2653 2654 psi_memstall_enter(&pflags); 2655 kcompactd_do_work(pgdat); 2656 psi_memstall_leave(&pflags); 2657 } 2658 2659 return 0; 2660 } 2661 2662 /* 2663 * This kcompactd start function will be called by init and node-hot-add. 2664 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2665 */ 2666 int kcompactd_run(int nid) 2667 { 2668 pg_data_t *pgdat = NODE_DATA(nid); 2669 int ret = 0; 2670 2671 if (pgdat->kcompactd) 2672 return 0; 2673 2674 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2675 if (IS_ERR(pgdat->kcompactd)) { 2676 pr_err("Failed to start kcompactd on node %d\n", nid); 2677 ret = PTR_ERR(pgdat->kcompactd); 2678 pgdat->kcompactd = NULL; 2679 } 2680 return ret; 2681 } 2682 2683 /* 2684 * Called by memory hotplug when all memory in a node is offlined. Caller must 2685 * hold mem_hotplug_begin/end(). 2686 */ 2687 void kcompactd_stop(int nid) 2688 { 2689 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2690 2691 if (kcompactd) { 2692 kthread_stop(kcompactd); 2693 NODE_DATA(nid)->kcompactd = NULL; 2694 } 2695 } 2696 2697 /* 2698 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2699 * not required for correctness. So if the last cpu in a node goes 2700 * away, we get changed to run anywhere: as the first one comes back, 2701 * restore their cpu bindings. 2702 */ 2703 static int kcompactd_cpu_online(unsigned int cpu) 2704 { 2705 int nid; 2706 2707 for_each_node_state(nid, N_MEMORY) { 2708 pg_data_t *pgdat = NODE_DATA(nid); 2709 const struct cpumask *mask; 2710 2711 mask = cpumask_of_node(pgdat->node_id); 2712 2713 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2714 /* One of our CPUs online: restore mask */ 2715 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2716 } 2717 return 0; 2718 } 2719 2720 static int __init kcompactd_init(void) 2721 { 2722 int nid; 2723 int ret; 2724 2725 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2726 "mm/compaction:online", 2727 kcompactd_cpu_online, NULL); 2728 if (ret < 0) { 2729 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2730 return ret; 2731 } 2732 2733 for_each_node_state(nid, N_MEMORY) 2734 kcompactd_run(nid); 2735 return 0; 2736 } 2737 subsys_initcall(kcompactd_init) 2738 2739 #endif /* CONFIG_COMPACTION */ 2740