xref: /openbmc/linux/lib/sbitmap.c (revision 0547dece8dcbb80983b3c37ad20ceca76a1f06a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Facebook
4  * Copyright (C) 2013-2014 Jens Axboe
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/random.h>
9 #include <linux/sbitmap.h>
10 #include <linux/seq_file.h>
11 
12 /*
13  * See if we have deferred clears that we can batch move
14  */
15 static inline bool sbitmap_deferred_clear(struct sbitmap_word *map)
16 {
17 	unsigned long mask;
18 
19 	if (!READ_ONCE(map->cleared))
20 		return false;
21 
22 	/*
23 	 * First get a stable cleared mask, setting the old mask to 0.
24 	 */
25 	mask = xchg(&map->cleared, 0);
26 
27 	/*
28 	 * Now clear the masked bits in our free word
29 	 */
30 	atomic_long_andnot(mask, (atomic_long_t *)&map->word);
31 	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word));
32 	return true;
33 }
34 
35 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
36 		      gfp_t flags, int node)
37 {
38 	unsigned int bits_per_word;
39 	unsigned int i;
40 
41 	if (shift < 0) {
42 		shift = ilog2(BITS_PER_LONG);
43 		/*
44 		 * If the bitmap is small, shrink the number of bits per word so
45 		 * we spread over a few cachelines, at least. If less than 4
46 		 * bits, just forget about it, it's not going to work optimally
47 		 * anyway.
48 		 */
49 		if (depth >= 4) {
50 			while ((4U << shift) > depth)
51 				shift--;
52 		}
53 	}
54 	bits_per_word = 1U << shift;
55 	if (bits_per_word > BITS_PER_LONG)
56 		return -EINVAL;
57 
58 	sb->shift = shift;
59 	sb->depth = depth;
60 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
61 
62 	if (depth == 0) {
63 		sb->map = NULL;
64 		return 0;
65 	}
66 
67 	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
68 	if (!sb->map)
69 		return -ENOMEM;
70 
71 	for (i = 0; i < sb->map_nr; i++) {
72 		sb->map[i].depth = min(depth, bits_per_word);
73 		depth -= sb->map[i].depth;
74 	}
75 	return 0;
76 }
77 EXPORT_SYMBOL_GPL(sbitmap_init_node);
78 
79 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
80 {
81 	unsigned int bits_per_word = 1U << sb->shift;
82 	unsigned int i;
83 
84 	for (i = 0; i < sb->map_nr; i++)
85 		sbitmap_deferred_clear(&sb->map[i]);
86 
87 	sb->depth = depth;
88 	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
89 
90 	for (i = 0; i < sb->map_nr; i++) {
91 		sb->map[i].depth = min(depth, bits_per_word);
92 		depth -= sb->map[i].depth;
93 	}
94 }
95 EXPORT_SYMBOL_GPL(sbitmap_resize);
96 
97 static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
98 			      unsigned int hint, bool wrap)
99 {
100 	int nr;
101 
102 	/* don't wrap if starting from 0 */
103 	wrap = wrap && hint;
104 
105 	while (1) {
106 		nr = find_next_zero_bit(word, depth, hint);
107 		if (unlikely(nr >= depth)) {
108 			/*
109 			 * We started with an offset, and we didn't reset the
110 			 * offset to 0 in a failure case, so start from 0 to
111 			 * exhaust the map.
112 			 */
113 			if (hint && wrap) {
114 				hint = 0;
115 				continue;
116 			}
117 			return -1;
118 		}
119 
120 		if (!test_and_set_bit_lock(nr, word))
121 			break;
122 
123 		hint = nr + 1;
124 		if (hint >= depth - 1)
125 			hint = 0;
126 	}
127 
128 	return nr;
129 }
130 
131 static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
132 				     unsigned int alloc_hint, bool round_robin)
133 {
134 	struct sbitmap_word *map = &sb->map[index];
135 	int nr;
136 
137 	do {
138 		nr = __sbitmap_get_word(&map->word, map->depth, alloc_hint,
139 					!round_robin);
140 		if (nr != -1)
141 			break;
142 		if (!sbitmap_deferred_clear(map))
143 			break;
144 	} while (1);
145 
146 	return nr;
147 }
148 
149 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
150 {
151 	unsigned int i, index;
152 	int nr = -1;
153 
154 	index = SB_NR_TO_INDEX(sb, alloc_hint);
155 
156 	/*
157 	 * Unless we're doing round robin tag allocation, just use the
158 	 * alloc_hint to find the right word index. No point in looping
159 	 * twice in find_next_zero_bit() for that case.
160 	 */
161 	if (round_robin)
162 		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
163 	else
164 		alloc_hint = 0;
165 
166 	for (i = 0; i < sb->map_nr; i++) {
167 		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint,
168 						round_robin);
169 		if (nr != -1) {
170 			nr += index << sb->shift;
171 			break;
172 		}
173 
174 		/* Jump to next index. */
175 		alloc_hint = 0;
176 		if (++index >= sb->map_nr)
177 			index = 0;
178 	}
179 
180 	return nr;
181 }
182 EXPORT_SYMBOL_GPL(sbitmap_get);
183 
184 int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
185 			unsigned long shallow_depth)
186 {
187 	unsigned int i, index;
188 	int nr = -1;
189 
190 	index = SB_NR_TO_INDEX(sb, alloc_hint);
191 
192 	for (i = 0; i < sb->map_nr; i++) {
193 again:
194 		nr = __sbitmap_get_word(&sb->map[index].word,
195 					min(sb->map[index].depth, shallow_depth),
196 					SB_NR_TO_BIT(sb, alloc_hint), true);
197 		if (nr != -1) {
198 			nr += index << sb->shift;
199 			break;
200 		}
201 
202 		if (sbitmap_deferred_clear(&sb->map[index]))
203 			goto again;
204 
205 		/* Jump to next index. */
206 		index++;
207 		alloc_hint = index << sb->shift;
208 
209 		if (index >= sb->map_nr) {
210 			index = 0;
211 			alloc_hint = 0;
212 		}
213 	}
214 
215 	return nr;
216 }
217 EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
218 
219 bool sbitmap_any_bit_set(const struct sbitmap *sb)
220 {
221 	unsigned int i;
222 
223 	for (i = 0; i < sb->map_nr; i++) {
224 		if (sb->map[i].word & ~sb->map[i].cleared)
225 			return true;
226 	}
227 	return false;
228 }
229 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
230 
231 static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
232 {
233 	unsigned int i, weight = 0;
234 
235 	for (i = 0; i < sb->map_nr; i++) {
236 		const struct sbitmap_word *word = &sb->map[i];
237 
238 		if (set)
239 			weight += bitmap_weight(&word->word, word->depth);
240 		else
241 			weight += bitmap_weight(&word->cleared, word->depth);
242 	}
243 	return weight;
244 }
245 
246 static unsigned int sbitmap_weight(const struct sbitmap *sb)
247 {
248 	return __sbitmap_weight(sb, true);
249 }
250 
251 static unsigned int sbitmap_cleared(const struct sbitmap *sb)
252 {
253 	return __sbitmap_weight(sb, false);
254 }
255 
256 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
257 {
258 	seq_printf(m, "depth=%u\n", sb->depth);
259 	seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb));
260 	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
261 	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
262 	seq_printf(m, "map_nr=%u\n", sb->map_nr);
263 }
264 EXPORT_SYMBOL_GPL(sbitmap_show);
265 
266 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
267 {
268 	if ((offset & 0xf) == 0) {
269 		if (offset != 0)
270 			seq_putc(m, '\n');
271 		seq_printf(m, "%08x:", offset);
272 	}
273 	if ((offset & 0x1) == 0)
274 		seq_putc(m, ' ');
275 	seq_printf(m, "%02x", byte);
276 }
277 
278 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
279 {
280 	u8 byte = 0;
281 	unsigned int byte_bits = 0;
282 	unsigned int offset = 0;
283 	int i;
284 
285 	for (i = 0; i < sb->map_nr; i++) {
286 		unsigned long word = READ_ONCE(sb->map[i].word);
287 		unsigned long cleared = READ_ONCE(sb->map[i].cleared);
288 		unsigned int word_bits = READ_ONCE(sb->map[i].depth);
289 
290 		word &= ~cleared;
291 
292 		while (word_bits > 0) {
293 			unsigned int bits = min(8 - byte_bits, word_bits);
294 
295 			byte |= (word & (BIT(bits) - 1)) << byte_bits;
296 			byte_bits += bits;
297 			if (byte_bits == 8) {
298 				emit_byte(m, offset, byte);
299 				byte = 0;
300 				byte_bits = 0;
301 				offset++;
302 			}
303 			word >>= bits;
304 			word_bits -= bits;
305 		}
306 	}
307 	if (byte_bits) {
308 		emit_byte(m, offset, byte);
309 		offset++;
310 	}
311 	if (offset)
312 		seq_putc(m, '\n');
313 }
314 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
315 
316 static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
317 					unsigned int depth)
318 {
319 	unsigned int wake_batch;
320 	unsigned int shallow_depth;
321 
322 	/*
323 	 * For each batch, we wake up one queue. We need to make sure that our
324 	 * batch size is small enough that the full depth of the bitmap,
325 	 * potentially limited by a shallow depth, is enough to wake up all of
326 	 * the queues.
327 	 *
328 	 * Each full word of the bitmap has bits_per_word bits, and there might
329 	 * be a partial word. There are depth / bits_per_word full words and
330 	 * depth % bits_per_word bits left over. In bitwise arithmetic:
331 	 *
332 	 * bits_per_word = 1 << shift
333 	 * depth / bits_per_word = depth >> shift
334 	 * depth % bits_per_word = depth & ((1 << shift) - 1)
335 	 *
336 	 * Each word can be limited to sbq->min_shallow_depth bits.
337 	 */
338 	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
339 	depth = ((depth >> sbq->sb.shift) * shallow_depth +
340 		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
341 	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
342 			     SBQ_WAKE_BATCH);
343 
344 	return wake_batch;
345 }
346 
347 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
348 			    int shift, bool round_robin, gfp_t flags, int node)
349 {
350 	int ret;
351 	int i;
352 
353 	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
354 	if (ret)
355 		return ret;
356 
357 	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
358 	if (!sbq->alloc_hint) {
359 		sbitmap_free(&sbq->sb);
360 		return -ENOMEM;
361 	}
362 
363 	if (depth && !round_robin) {
364 		for_each_possible_cpu(i)
365 			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
366 	}
367 
368 	sbq->min_shallow_depth = UINT_MAX;
369 	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
370 	atomic_set(&sbq->wake_index, 0);
371 	atomic_set(&sbq->ws_active, 0);
372 
373 	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
374 	if (!sbq->ws) {
375 		free_percpu(sbq->alloc_hint);
376 		sbitmap_free(&sbq->sb);
377 		return -ENOMEM;
378 	}
379 
380 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
381 		init_waitqueue_head(&sbq->ws[i].wait);
382 		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
383 	}
384 
385 	sbq->round_robin = round_robin;
386 	return 0;
387 }
388 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
389 
390 static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
391 					    unsigned int depth)
392 {
393 	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
394 	int i;
395 
396 	if (sbq->wake_batch != wake_batch) {
397 		WRITE_ONCE(sbq->wake_batch, wake_batch);
398 		/*
399 		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
400 		 * to ensure that the batch size is updated before the wait
401 		 * counts.
402 		 */
403 		smp_mb();
404 		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
405 			atomic_set(&sbq->ws[i].wait_cnt, 1);
406 	}
407 }
408 
409 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
410 {
411 	sbitmap_queue_update_wake_batch(sbq, depth);
412 	sbitmap_resize(&sbq->sb, depth);
413 }
414 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
415 
416 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
417 {
418 	unsigned int hint, depth;
419 	int nr;
420 
421 	hint = this_cpu_read(*sbq->alloc_hint);
422 	depth = READ_ONCE(sbq->sb.depth);
423 	if (unlikely(hint >= depth)) {
424 		hint = depth ? prandom_u32() % depth : 0;
425 		this_cpu_write(*sbq->alloc_hint, hint);
426 	}
427 	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
428 
429 	if (nr == -1) {
430 		/* If the map is full, a hint won't do us much good. */
431 		this_cpu_write(*sbq->alloc_hint, 0);
432 	} else if (nr == hint || unlikely(sbq->round_robin)) {
433 		/* Only update the hint if we used it. */
434 		hint = nr + 1;
435 		if (hint >= depth - 1)
436 			hint = 0;
437 		this_cpu_write(*sbq->alloc_hint, hint);
438 	}
439 
440 	return nr;
441 }
442 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
443 
444 int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
445 				unsigned int shallow_depth)
446 {
447 	unsigned int hint, depth;
448 	int nr;
449 
450 	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
451 
452 	hint = this_cpu_read(*sbq->alloc_hint);
453 	depth = READ_ONCE(sbq->sb.depth);
454 	if (unlikely(hint >= depth)) {
455 		hint = depth ? prandom_u32() % depth : 0;
456 		this_cpu_write(*sbq->alloc_hint, hint);
457 	}
458 	nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);
459 
460 	if (nr == -1) {
461 		/* If the map is full, a hint won't do us much good. */
462 		this_cpu_write(*sbq->alloc_hint, 0);
463 	} else if (nr == hint || unlikely(sbq->round_robin)) {
464 		/* Only update the hint if we used it. */
465 		hint = nr + 1;
466 		if (hint >= depth - 1)
467 			hint = 0;
468 		this_cpu_write(*sbq->alloc_hint, hint);
469 	}
470 
471 	return nr;
472 }
473 EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
474 
475 void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
476 				     unsigned int min_shallow_depth)
477 {
478 	sbq->min_shallow_depth = min_shallow_depth;
479 	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
480 }
481 EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
482 
483 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
484 {
485 	int i, wake_index;
486 
487 	if (!atomic_read(&sbq->ws_active))
488 		return NULL;
489 
490 	wake_index = atomic_read(&sbq->wake_index);
491 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
492 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
493 
494 		if (waitqueue_active(&ws->wait)) {
495 			if (wake_index != atomic_read(&sbq->wake_index))
496 				atomic_set(&sbq->wake_index, wake_index);
497 			return ws;
498 		}
499 
500 		wake_index = sbq_index_inc(wake_index);
501 	}
502 
503 	return NULL;
504 }
505 
506 static bool __sbq_wake_up(struct sbitmap_queue *sbq)
507 {
508 	struct sbq_wait_state *ws;
509 	unsigned int wake_batch;
510 	int wait_cnt;
511 
512 	ws = sbq_wake_ptr(sbq);
513 	if (!ws)
514 		return false;
515 
516 	wait_cnt = atomic_dec_return(&ws->wait_cnt);
517 	if (wait_cnt <= 0) {
518 		int ret;
519 
520 		wake_batch = READ_ONCE(sbq->wake_batch);
521 
522 		/*
523 		 * Pairs with the memory barrier in sbitmap_queue_resize() to
524 		 * ensure that we see the batch size update before the wait
525 		 * count is reset.
526 		 */
527 		smp_mb__before_atomic();
528 
529 		/*
530 		 * For concurrent callers of this, the one that failed the
531 		 * atomic_cmpxhcg() race should call this function again
532 		 * to wakeup a new batch on a different 'ws'.
533 		 */
534 		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
535 		if (ret == wait_cnt) {
536 			sbq_index_atomic_inc(&sbq->wake_index);
537 			wake_up_nr(&ws->wait, wake_batch);
538 			return false;
539 		}
540 
541 		return true;
542 	}
543 
544 	return false;
545 }
546 
547 void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
548 {
549 	while (__sbq_wake_up(sbq))
550 		;
551 }
552 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
553 
554 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
555 			 unsigned int cpu)
556 {
557 	/*
558 	 * Once the clear bit is set, the bit may be allocated out.
559 	 *
560 	 * Orders READ/WRITE on the asssociated instance(such as request
561 	 * of blk_mq) by this bit for avoiding race with re-allocation,
562 	 * and its pair is the memory barrier implied in __sbitmap_get_word.
563 	 *
564 	 * One invariant is that the clear bit has to be zero when the bit
565 	 * is in use.
566 	 */
567 	smp_mb__before_atomic();
568 	sbitmap_deferred_clear_bit(&sbq->sb, nr);
569 
570 	/*
571 	 * Pairs with the memory barrier in set_current_state() to ensure the
572 	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
573 	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
574 	 * waiter. See the comment on waitqueue_active().
575 	 */
576 	smp_mb__after_atomic();
577 	sbitmap_queue_wake_up(sbq);
578 
579 	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
580 		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
581 }
582 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
583 
584 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
585 {
586 	int i, wake_index;
587 
588 	/*
589 	 * Pairs with the memory barrier in set_current_state() like in
590 	 * sbitmap_queue_wake_up().
591 	 */
592 	smp_mb();
593 	wake_index = atomic_read(&sbq->wake_index);
594 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
595 		struct sbq_wait_state *ws = &sbq->ws[wake_index];
596 
597 		if (waitqueue_active(&ws->wait))
598 			wake_up(&ws->wait);
599 
600 		wake_index = sbq_index_inc(wake_index);
601 	}
602 }
603 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
604 
605 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
606 {
607 	bool first;
608 	int i;
609 
610 	sbitmap_show(&sbq->sb, m);
611 
612 	seq_puts(m, "alloc_hint={");
613 	first = true;
614 	for_each_possible_cpu(i) {
615 		if (!first)
616 			seq_puts(m, ", ");
617 		first = false;
618 		seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
619 	}
620 	seq_puts(m, "}\n");
621 
622 	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
623 	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
624 	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
625 
626 	seq_puts(m, "ws={\n");
627 	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
628 		struct sbq_wait_state *ws = &sbq->ws[i];
629 
630 		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
631 			   atomic_read(&ws->wait_cnt),
632 			   waitqueue_active(&ws->wait) ? "active" : "inactive");
633 	}
634 	seq_puts(m, "}\n");
635 
636 	seq_printf(m, "round_robin=%d\n", sbq->round_robin);
637 	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
638 }
639 EXPORT_SYMBOL_GPL(sbitmap_queue_show);
640 
641 void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
642 			    struct sbq_wait_state *ws,
643 			    struct sbq_wait *sbq_wait)
644 {
645 	if (!sbq_wait->sbq) {
646 		sbq_wait->sbq = sbq;
647 		atomic_inc(&sbq->ws_active);
648 		add_wait_queue(&ws->wait, &sbq_wait->wait);
649 	}
650 }
651 EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
652 
653 void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
654 {
655 	list_del_init(&sbq_wait->wait.entry);
656 	if (sbq_wait->sbq) {
657 		atomic_dec(&sbq_wait->sbq->ws_active);
658 		sbq_wait->sbq = NULL;
659 	}
660 }
661 EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
662 
663 void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
664 			     struct sbq_wait_state *ws,
665 			     struct sbq_wait *sbq_wait, int state)
666 {
667 	if (!sbq_wait->sbq) {
668 		atomic_inc(&sbq->ws_active);
669 		sbq_wait->sbq = sbq;
670 	}
671 	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
672 }
673 EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
674 
675 void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
676 			 struct sbq_wait *sbq_wait)
677 {
678 	finish_wait(&ws->wait, &sbq_wait->wait);
679 	if (sbq_wait->sbq) {
680 		atomic_dec(&sbq->ws_active);
681 		sbq_wait->sbq = NULL;
682 	}
683 }
684 EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
685