xref: /openbmc/linux/lib/reed_solomon/decode_rs.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * lib/reed_solomon/decode_rs.c
3  *
4  * Overview:
5  *   Generic Reed Solomon encoder / decoder library
6  *
7  * Copyright 2002, Phil Karn, KA9Q
8  * May be used under the terms of the GNU General Public License (GPL)
9  *
10  * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
11  *
12  * $Id: decode_rs.c,v 1.6 2004/10/22 15:41:47 gleixner Exp $
13  *
14  */
15 
16 /* Generic data width independent code which is included by the
17  * wrappers.
18  */
19 {
20 	int deg_lambda, el, deg_omega;
21 	int i, j, r, k, pad;
22 	int nn = rs->nn;
23 	int nroots = rs->nroots;
24 	int fcr = rs->fcr;
25 	int prim = rs->prim;
26 	int iprim = rs->iprim;
27 	uint16_t *alpha_to = rs->alpha_to;
28 	uint16_t *index_of = rs->index_of;
29 	uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
30 	/* Err+Eras Locator poly and syndrome poly The maximum value
31 	 * of nroots is 8. So the necessary stack size will be about
32 	 * 220 bytes max.
33 	 */
34 	uint16_t lambda[nroots + 1], syn[nroots];
35 	uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
36 	uint16_t root[nroots], reg[nroots + 1], loc[nroots];
37 	int count = 0;
38 	uint16_t msk = (uint16_t) rs->nn;
39 
40 	/* Check length parameter for validity */
41 	pad = nn - nroots - len;
42 	if (pad < 0 || pad >= nn)
43 		return -ERANGE;
44 
45 	/* Does the caller provide the syndrome ? */
46 	if (s != NULL)
47 		goto decode;
48 
49 	/* form the syndromes; i.e., evaluate data(x) at roots of
50 	 * g(x) */
51 	for (i = 0; i < nroots; i++)
52 		syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
53 
54 	for (j = 1; j < len; j++) {
55 		for (i = 0; i < nroots; i++) {
56 			if (syn[i] == 0) {
57 				syn[i] = (((uint16_t) data[j]) ^
58 					  invmsk) & msk;
59 			} else {
60 				syn[i] = ((((uint16_t) data[j]) ^
61 					   invmsk) & msk) ^
62 					alpha_to[rs_modnn(rs, index_of[syn[i]] +
63 						       (fcr + i) * prim)];
64 			}
65 		}
66 	}
67 
68 	for (j = 0; j < nroots; j++) {
69 		for (i = 0; i < nroots; i++) {
70 			if (syn[i] == 0) {
71 				syn[i] = ((uint16_t) par[j]) & msk;
72 			} else {
73 				syn[i] = (((uint16_t) par[j]) & msk) ^
74 					alpha_to[rs_modnn(rs, index_of[syn[i]] +
75 						       (fcr+i)*prim)];
76 			}
77 		}
78 	}
79 	s = syn;
80 
81 	/* Convert syndromes to index form, checking for nonzero condition */
82 	syn_error = 0;
83 	for (i = 0; i < nroots; i++) {
84 		syn_error |= s[i];
85 		s[i] = index_of[s[i]];
86 	}
87 
88 	if (!syn_error) {
89 		/* if syndrome is zero, data[] is a codeword and there are no
90 		 * errors to correct. So return data[] unmodified
91 		 */
92 		count = 0;
93 		goto finish;
94 	}
95 
96  decode:
97 	memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
98 	lambda[0] = 1;
99 
100 	if (no_eras > 0) {
101 		/* Init lambda to be the erasure locator polynomial */
102 		lambda[1] = alpha_to[rs_modnn(rs,
103 					      prim * (nn - 1 - eras_pos[0]))];
104 		for (i = 1; i < no_eras; i++) {
105 			u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
106 			for (j = i + 1; j > 0; j--) {
107 				tmp = index_of[lambda[j - 1]];
108 				if (tmp != nn) {
109 					lambda[j] ^=
110 						alpha_to[rs_modnn(rs, u + tmp)];
111 				}
112 			}
113 		}
114 	}
115 
116 	for (i = 0; i < nroots + 1; i++)
117 		b[i] = index_of[lambda[i]];
118 
119 	/*
120 	 * Begin Berlekamp-Massey algorithm to determine error+erasure
121 	 * locator polynomial
122 	 */
123 	r = no_eras;
124 	el = no_eras;
125 	while (++r <= nroots) {	/* r is the step number */
126 		/* Compute discrepancy at the r-th step in poly-form */
127 		discr_r = 0;
128 		for (i = 0; i < r; i++) {
129 			if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
130 				discr_r ^=
131 					alpha_to[rs_modnn(rs,
132 							  index_of[lambda[i]] +
133 							  s[r - i - 1])];
134 			}
135 		}
136 		discr_r = index_of[discr_r];	/* Index form */
137 		if (discr_r == nn) {
138 			/* 2 lines below: B(x) <-- x*B(x) */
139 			memmove (&b[1], b, nroots * sizeof (b[0]));
140 			b[0] = nn;
141 		} else {
142 			/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
143 			t[0] = lambda[0];
144 			for (i = 0; i < nroots; i++) {
145 				if (b[i] != nn) {
146 					t[i + 1] = lambda[i + 1] ^
147 						alpha_to[rs_modnn(rs, discr_r +
148 								  b[i])];
149 				} else
150 					t[i + 1] = lambda[i + 1];
151 			}
152 			if (2 * el <= r + no_eras - 1) {
153 				el = r + no_eras - el;
154 				/*
155 				 * 2 lines below: B(x) <-- inv(discr_r) *
156 				 * lambda(x)
157 				 */
158 				for (i = 0; i <= nroots; i++) {
159 					b[i] = (lambda[i] == 0) ? nn :
160 						rs_modnn(rs, index_of[lambda[i]]
161 							 - discr_r + nn);
162 				}
163 			} else {
164 				/* 2 lines below: B(x) <-- x*B(x) */
165 				memmove(&b[1], b, nroots * sizeof(b[0]));
166 				b[0] = nn;
167 			}
168 			memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
169 		}
170 	}
171 
172 	/* Convert lambda to index form and compute deg(lambda(x)) */
173 	deg_lambda = 0;
174 	for (i = 0; i < nroots + 1; i++) {
175 		lambda[i] = index_of[lambda[i]];
176 		if (lambda[i] != nn)
177 			deg_lambda = i;
178 	}
179 	/* Find roots of error+erasure locator polynomial by Chien search */
180 	memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
181 	count = 0;		/* Number of roots of lambda(x) */
182 	for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
183 		q = 1;		/* lambda[0] is always 0 */
184 		for (j = deg_lambda; j > 0; j--) {
185 			if (reg[j] != nn) {
186 				reg[j] = rs_modnn(rs, reg[j] + j);
187 				q ^= alpha_to[reg[j]];
188 			}
189 		}
190 		if (q != 0)
191 			continue;	/* Not a root */
192 		/* store root (index-form) and error location number */
193 		root[count] = i;
194 		loc[count] = k;
195 		/* If we've already found max possible roots,
196 		 * abort the search to save time
197 		 */
198 		if (++count == deg_lambda)
199 			break;
200 	}
201 	if (deg_lambda != count) {
202 		/*
203 		 * deg(lambda) unequal to number of roots => uncorrectable
204 		 * error detected
205 		 */
206 		count = -1;
207 		goto finish;
208 	}
209 	/*
210 	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
211 	 * x**nroots). in index form. Also find deg(omega).
212 	 */
213 	deg_omega = deg_lambda - 1;
214 	for (i = 0; i <= deg_omega; i++) {
215 		tmp = 0;
216 		for (j = i; j >= 0; j--) {
217 			if ((s[i - j] != nn) && (lambda[j] != nn))
218 				tmp ^=
219 				    alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
220 		}
221 		omega[i] = index_of[tmp];
222 	}
223 
224 	/*
225 	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
226 	 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
227 	 */
228 	for (j = count - 1; j >= 0; j--) {
229 		num1 = 0;
230 		for (i = deg_omega; i >= 0; i--) {
231 			if (omega[i] != nn)
232 				num1 ^= alpha_to[rs_modnn(rs, omega[i] +
233 							i * root[j])];
234 		}
235 		num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
236 		den = 0;
237 
238 		/* lambda[i+1] for i even is the formal derivative
239 		 * lambda_pr of lambda[i] */
240 		for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
241 			if (lambda[i + 1] != nn) {
242 				den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
243 						       i * root[j])];
244 			}
245 		}
246 		/* Apply error to data */
247 		if (num1 != 0 && loc[j] >= pad) {
248 			uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
249 						       index_of[num2] +
250 						       nn - index_of[den])];
251 			/* Store the error correction pattern, if a
252 			 * correction buffer is available */
253 			if (corr) {
254 				corr[j] = cor;
255 			} else {
256 				/* If a data buffer is given and the
257 				 * error is inside the message,
258 				 * correct it */
259 				if (data && (loc[j] < (nn - nroots)))
260 					data[loc[j] - pad] ^= cor;
261 			}
262 		}
263 	}
264 
265 finish:
266 	if (eras_pos != NULL) {
267 		for (i = 0; i < count; i++)
268 			eras_pos[i] = loc[i] - pad;
269 	}
270 	return count;
271 
272 }
273