xref: /openbmc/linux/lib/radix-tree.c (revision 4d693d08607ab319095ec8942909df4b4aebdf66)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h>		/* in_interrupt() */
39 
40 
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43 
44 /*
45  * Radix tree node cache.
46  */
47 static struct kmem_cache *radix_tree_node_cachep;
48 
49 /*
50  * The radix tree is variable-height, so an insert operation not only has
51  * to build the branch to its corresponding item, it also has to build the
52  * branch to existing items if the size has to be increased (by
53  * radix_tree_extend).
54  *
55  * The worst case is a zero height tree with just a single item at index 0,
56  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58  * Hence:
59  */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61 
62 /*
63  * Per-cpu pool of preloaded nodes
64  */
65 struct radix_tree_preload {
66 	unsigned nr;
67 	/* nodes->private_data points to next preallocated node */
68 	struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71 
72 static inline void *node_to_entry(void *ptr)
73 {
74 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
75 }
76 
77 #define RADIX_TREE_RETRY	node_to_entry(NULL)
78 
79 #ifdef CONFIG_RADIX_TREE_MULTIORDER
80 /* Sibling slots point directly to another slot in the same node */
81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82 {
83 	void **ptr = node;
84 	return (parent->slots <= ptr) &&
85 			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86 }
87 #else
88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89 {
90 	return false;
91 }
92 #endif
93 
94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 						 void **slot)
96 {
97 	return slot - parent->slots;
98 }
99 
100 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 			struct radix_tree_node **nodep, unsigned long index)
102 {
103 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
104 	void **entry = rcu_dereference_raw(parent->slots[offset]);
105 
106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
107 	if (radix_tree_is_internal_node(entry)) {
108 		if (is_sibling_entry(parent, entry)) {
109 			void **sibentry = (void **) entry_to_node(entry);
110 			offset = get_slot_offset(parent, sibentry);
111 			entry = rcu_dereference_raw(*sibentry);
112 		}
113 	}
114 #endif
115 
116 	*nodep = (void *)entry;
117 	return offset;
118 }
119 
120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121 {
122 	return root->gfp_mask & __GFP_BITS_MASK;
123 }
124 
125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 		int offset)
127 {
128 	__set_bit(offset, node->tags[tag]);
129 }
130 
131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 		int offset)
133 {
134 	__clear_bit(offset, node->tags[tag]);
135 }
136 
137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 		int offset)
139 {
140 	return test_bit(offset, node->tags[tag]);
141 }
142 
143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144 {
145 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146 }
147 
148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
149 {
150 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151 }
152 
153 static inline void root_tag_clear_all(struct radix_tree_root *root)
154 {
155 	root->gfp_mask &= __GFP_BITS_MASK;
156 }
157 
158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159 {
160 	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
161 }
162 
163 static inline unsigned root_tags_get(struct radix_tree_root *root)
164 {
165 	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166 }
167 
168 /*
169  * Returns 1 if any slot in the node has this tag set.
170  * Otherwise returns 0.
171  */
172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173 {
174 	unsigned idx;
175 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 		if (node->tags[tag][idx])
177 			return 1;
178 	}
179 	return 0;
180 }
181 
182 /**
183  * radix_tree_find_next_bit - find the next set bit in a memory region
184  *
185  * @addr: The address to base the search on
186  * @size: The bitmap size in bits
187  * @offset: The bitnumber to start searching at
188  *
189  * Unrollable variant of find_next_bit() for constant size arrays.
190  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191  * Returns next bit offset, or size if nothing found.
192  */
193 static __always_inline unsigned long
194 radix_tree_find_next_bit(const unsigned long *addr,
195 			 unsigned long size, unsigned long offset)
196 {
197 	if (!__builtin_constant_p(size))
198 		return find_next_bit(addr, size, offset);
199 
200 	if (offset < size) {
201 		unsigned long tmp;
202 
203 		addr += offset / BITS_PER_LONG;
204 		tmp = *addr >> (offset % BITS_PER_LONG);
205 		if (tmp)
206 			return __ffs(tmp) + offset;
207 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 		while (offset < size) {
209 			tmp = *++addr;
210 			if (tmp)
211 				return __ffs(tmp) + offset;
212 			offset += BITS_PER_LONG;
213 		}
214 	}
215 	return size;
216 }
217 
218 #ifndef __KERNEL__
219 static void dump_node(struct radix_tree_node *node, unsigned long index)
220 {
221 	unsigned long i;
222 
223 	pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n",
224 		node, node->offset,
225 		node->tags[0][0], node->tags[1][0], node->tags[2][0],
226 		node->shift, node->count, node->exceptional, node->parent);
227 
228 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
229 		unsigned long first = index | (i << node->shift);
230 		unsigned long last = first | ((1UL << node->shift) - 1);
231 		void *entry = node->slots[i];
232 		if (!entry)
233 			continue;
234 		if (is_sibling_entry(node, entry)) {
235 			pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 					entry, i,
237 					*(void **)entry_to_node(entry),
238 					first, last);
239 		} else if (!radix_tree_is_internal_node(entry)) {
240 			pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 					entry, i, first, last);
242 		} else {
243 			dump_node(entry_to_node(entry), first);
244 		}
245 	}
246 }
247 
248 /* For debug */
249 static void radix_tree_dump(struct radix_tree_root *root)
250 {
251 	pr_debug("radix root: %p rnode %p tags %x\n",
252 			root, root->rnode,
253 			root->gfp_mask >> __GFP_BITS_SHIFT);
254 	if (!radix_tree_is_internal_node(root->rnode))
255 		return;
256 	dump_node(entry_to_node(root->rnode), 0);
257 }
258 #endif
259 
260 /*
261  * This assumes that the caller has performed appropriate preallocation, and
262  * that the caller has pinned this thread of control to the current CPU.
263  */
264 static struct radix_tree_node *
265 radix_tree_node_alloc(struct radix_tree_root *root)
266 {
267 	struct radix_tree_node *ret = NULL;
268 	gfp_t gfp_mask = root_gfp_mask(root);
269 
270 	/*
271 	 * Preload code isn't irq safe and it doesn't make sense to use
272 	 * preloading during an interrupt anyway as all the allocations have
273 	 * to be atomic. So just do normal allocation when in interrupt.
274 	 */
275 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
276 		struct radix_tree_preload *rtp;
277 
278 		/*
279 		 * Even if the caller has preloaded, try to allocate from the
280 		 * cache first for the new node to get accounted to the memory
281 		 * cgroup.
282 		 */
283 		ret = kmem_cache_alloc(radix_tree_node_cachep,
284 				       gfp_mask | __GFP_NOWARN);
285 		if (ret)
286 			goto out;
287 
288 		/*
289 		 * Provided the caller has preloaded here, we will always
290 		 * succeed in getting a node here (and never reach
291 		 * kmem_cache_alloc)
292 		 */
293 		rtp = this_cpu_ptr(&radix_tree_preloads);
294 		if (rtp->nr) {
295 			ret = rtp->nodes;
296 			rtp->nodes = ret->private_data;
297 			ret->private_data = NULL;
298 			rtp->nr--;
299 		}
300 		/*
301 		 * Update the allocation stack trace as this is more useful
302 		 * for debugging.
303 		 */
304 		kmemleak_update_trace(ret);
305 		goto out;
306 	}
307 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
308 out:
309 	BUG_ON(radix_tree_is_internal_node(ret));
310 	return ret;
311 }
312 
313 static void radix_tree_node_rcu_free(struct rcu_head *head)
314 {
315 	struct radix_tree_node *node =
316 			container_of(head, struct radix_tree_node, rcu_head);
317 	int i;
318 
319 	/*
320 	 * must only free zeroed nodes into the slab. radix_tree_shrink
321 	 * can leave us with a non-NULL entry in the first slot, so clear
322 	 * that here to make sure.
323 	 */
324 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 		tag_clear(node, i, 0);
326 
327 	node->slots[0] = NULL;
328 
329 	kmem_cache_free(radix_tree_node_cachep, node);
330 }
331 
332 static inline void
333 radix_tree_node_free(struct radix_tree_node *node)
334 {
335 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
336 }
337 
338 /*
339  * Load up this CPU's radix_tree_node buffer with sufficient objects to
340  * ensure that the addition of a single element in the tree cannot fail.  On
341  * success, return zero, with preemption disabled.  On error, return -ENOMEM
342  * with preemption not disabled.
343  *
344  * To make use of this facility, the radix tree must be initialised without
345  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
346  */
347 static int __radix_tree_preload(gfp_t gfp_mask, int nr)
348 {
349 	struct radix_tree_preload *rtp;
350 	struct radix_tree_node *node;
351 	int ret = -ENOMEM;
352 
353 	/*
354 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
355 	 * they should never be accounted to any particular memory cgroup.
356 	 */
357 	gfp_mask &= ~__GFP_ACCOUNT;
358 
359 	preempt_disable();
360 	rtp = this_cpu_ptr(&radix_tree_preloads);
361 	while (rtp->nr < nr) {
362 		preempt_enable();
363 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
364 		if (node == NULL)
365 			goto out;
366 		preempt_disable();
367 		rtp = this_cpu_ptr(&radix_tree_preloads);
368 		if (rtp->nr < nr) {
369 			node->private_data = rtp->nodes;
370 			rtp->nodes = node;
371 			rtp->nr++;
372 		} else {
373 			kmem_cache_free(radix_tree_node_cachep, node);
374 		}
375 	}
376 	ret = 0;
377 out:
378 	return ret;
379 }
380 
381 /*
382  * Load up this CPU's radix_tree_node buffer with sufficient objects to
383  * ensure that the addition of a single element in the tree cannot fail.  On
384  * success, return zero, with preemption disabled.  On error, return -ENOMEM
385  * with preemption not disabled.
386  *
387  * To make use of this facility, the radix tree must be initialised without
388  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
389  */
390 int radix_tree_preload(gfp_t gfp_mask)
391 {
392 	/* Warn on non-sensical use... */
393 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
394 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
395 }
396 EXPORT_SYMBOL(radix_tree_preload);
397 
398 /*
399  * The same as above function, except we don't guarantee preloading happens.
400  * We do it, if we decide it helps. On success, return zero with preemption
401  * disabled. On error, return -ENOMEM with preemption not disabled.
402  */
403 int radix_tree_maybe_preload(gfp_t gfp_mask)
404 {
405 	if (gfpflags_allow_blocking(gfp_mask))
406 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
407 	/* Preloading doesn't help anything with this gfp mask, skip it */
408 	preempt_disable();
409 	return 0;
410 }
411 EXPORT_SYMBOL(radix_tree_maybe_preload);
412 
413 /*
414  * The same as function above, but preload number of nodes required to insert
415  * (1 << order) continuous naturally-aligned elements.
416  */
417 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
418 {
419 	unsigned long nr_subtrees;
420 	int nr_nodes, subtree_height;
421 
422 	/* Preloading doesn't help anything with this gfp mask, skip it */
423 	if (!gfpflags_allow_blocking(gfp_mask)) {
424 		preempt_disable();
425 		return 0;
426 	}
427 
428 	/*
429 	 * Calculate number and height of fully populated subtrees it takes to
430 	 * store (1 << order) elements.
431 	 */
432 	nr_subtrees = 1 << order;
433 	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
434 			subtree_height++)
435 		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
436 
437 	/*
438 	 * The worst case is zero height tree with a single item at index 0 and
439 	 * then inserting items starting at ULONG_MAX - (1 << order).
440 	 *
441 	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
442 	 * 0-index item.
443 	 */
444 	nr_nodes = RADIX_TREE_MAX_PATH;
445 
446 	/* Plus branch to fully populated subtrees. */
447 	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
448 
449 	/* Root node is shared. */
450 	nr_nodes--;
451 
452 	/* Plus nodes required to build subtrees. */
453 	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
454 
455 	return __radix_tree_preload(gfp_mask, nr_nodes);
456 }
457 
458 /*
459  * The maximum index which can be stored in a radix tree
460  */
461 static inline unsigned long shift_maxindex(unsigned int shift)
462 {
463 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
464 }
465 
466 static inline unsigned long node_maxindex(struct radix_tree_node *node)
467 {
468 	return shift_maxindex(node->shift);
469 }
470 
471 static unsigned radix_tree_load_root(struct radix_tree_root *root,
472 		struct radix_tree_node **nodep, unsigned long *maxindex)
473 {
474 	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
475 
476 	*nodep = node;
477 
478 	if (likely(radix_tree_is_internal_node(node))) {
479 		node = entry_to_node(node);
480 		*maxindex = node_maxindex(node);
481 		return node->shift + RADIX_TREE_MAP_SHIFT;
482 	}
483 
484 	*maxindex = 0;
485 	return 0;
486 }
487 
488 /*
489  *	Extend a radix tree so it can store key @index.
490  */
491 static int radix_tree_extend(struct radix_tree_root *root,
492 				unsigned long index, unsigned int shift)
493 {
494 	struct radix_tree_node *slot;
495 	unsigned int maxshift;
496 	int tag;
497 
498 	/* Figure out what the shift should be.  */
499 	maxshift = shift;
500 	while (index > shift_maxindex(maxshift))
501 		maxshift += RADIX_TREE_MAP_SHIFT;
502 
503 	slot = root->rnode;
504 	if (!slot)
505 		goto out;
506 
507 	do {
508 		struct radix_tree_node *node = radix_tree_node_alloc(root);
509 
510 		if (!node)
511 			return -ENOMEM;
512 
513 		/* Propagate the aggregated tag info into the new root */
514 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
515 			if (root_tag_get(root, tag))
516 				tag_set(node, tag, 0);
517 		}
518 
519 		BUG_ON(shift > BITS_PER_LONG);
520 		node->shift = shift;
521 		node->offset = 0;
522 		node->count = 1;
523 		node->parent = NULL;
524 		if (radix_tree_is_internal_node(slot)) {
525 			entry_to_node(slot)->parent = node;
526 		} else {
527 			/* Moving an exceptional root->rnode to a node */
528 			if (radix_tree_exceptional_entry(slot))
529 				node->exceptional = 1;
530 		}
531 		node->slots[0] = slot;
532 		slot = node_to_entry(node);
533 		rcu_assign_pointer(root->rnode, slot);
534 		shift += RADIX_TREE_MAP_SHIFT;
535 	} while (shift <= maxshift);
536 out:
537 	return maxshift + RADIX_TREE_MAP_SHIFT;
538 }
539 
540 /**
541  *	radix_tree_shrink    -    shrink radix tree to minimum height
542  *	@root		radix tree root
543  */
544 static inline bool radix_tree_shrink(struct radix_tree_root *root,
545 				     radix_tree_update_node_t update_node,
546 				     void *private)
547 {
548 	bool shrunk = false;
549 
550 	for (;;) {
551 		struct radix_tree_node *node = root->rnode;
552 		struct radix_tree_node *child;
553 
554 		if (!radix_tree_is_internal_node(node))
555 			break;
556 		node = entry_to_node(node);
557 
558 		/*
559 		 * The candidate node has more than one child, or its child
560 		 * is not at the leftmost slot, or the child is a multiorder
561 		 * entry, we cannot shrink.
562 		 */
563 		if (node->count != 1)
564 			break;
565 		child = node->slots[0];
566 		if (!child)
567 			break;
568 		if (!radix_tree_is_internal_node(child) && node->shift)
569 			break;
570 
571 		if (radix_tree_is_internal_node(child))
572 			entry_to_node(child)->parent = NULL;
573 
574 		/*
575 		 * We don't need rcu_assign_pointer(), since we are simply
576 		 * moving the node from one part of the tree to another: if it
577 		 * was safe to dereference the old pointer to it
578 		 * (node->slots[0]), it will be safe to dereference the new
579 		 * one (root->rnode) as far as dependent read barriers go.
580 		 */
581 		root->rnode = child;
582 
583 		/*
584 		 * We have a dilemma here. The node's slot[0] must not be
585 		 * NULLed in case there are concurrent lookups expecting to
586 		 * find the item. However if this was a bottom-level node,
587 		 * then it may be subject to the slot pointer being visible
588 		 * to callers dereferencing it. If item corresponding to
589 		 * slot[0] is subsequently deleted, these callers would expect
590 		 * their slot to become empty sooner or later.
591 		 *
592 		 * For example, lockless pagecache will look up a slot, deref
593 		 * the page pointer, and if the page has 0 refcount it means it
594 		 * was concurrently deleted from pagecache so try the deref
595 		 * again. Fortunately there is already a requirement for logic
596 		 * to retry the entire slot lookup -- the indirect pointer
597 		 * problem (replacing direct root node with an indirect pointer
598 		 * also results in a stale slot). So tag the slot as indirect
599 		 * to force callers to retry.
600 		 */
601 		node->count = 0;
602 		if (!radix_tree_is_internal_node(child)) {
603 			node->slots[0] = RADIX_TREE_RETRY;
604 			if (update_node)
605 				update_node(node, private);
606 		}
607 
608 		radix_tree_node_free(node);
609 		shrunk = true;
610 	}
611 
612 	return shrunk;
613 }
614 
615 static bool delete_node(struct radix_tree_root *root,
616 			struct radix_tree_node *node,
617 			radix_tree_update_node_t update_node, void *private)
618 {
619 	bool deleted = false;
620 
621 	do {
622 		struct radix_tree_node *parent;
623 
624 		if (node->count) {
625 			if (node == entry_to_node(root->rnode))
626 				deleted |= radix_tree_shrink(root, update_node,
627 							     private);
628 			return deleted;
629 		}
630 
631 		parent = node->parent;
632 		if (parent) {
633 			parent->slots[node->offset] = NULL;
634 			parent->count--;
635 		} else {
636 			root_tag_clear_all(root);
637 			root->rnode = NULL;
638 		}
639 
640 		radix_tree_node_free(node);
641 		deleted = true;
642 
643 		node = parent;
644 	} while (node);
645 
646 	return deleted;
647 }
648 
649 /**
650  *	__radix_tree_create	-	create a slot in a radix tree
651  *	@root:		radix tree root
652  *	@index:		index key
653  *	@order:		index occupies 2^order aligned slots
654  *	@nodep:		returns node
655  *	@slotp:		returns slot
656  *
657  *	Create, if necessary, and return the node and slot for an item
658  *	at position @index in the radix tree @root.
659  *
660  *	Until there is more than one item in the tree, no nodes are
661  *	allocated and @root->rnode is used as a direct slot instead of
662  *	pointing to a node, in which case *@nodep will be NULL.
663  *
664  *	Returns -ENOMEM, or 0 for success.
665  */
666 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
667 			unsigned order, struct radix_tree_node **nodep,
668 			void ***slotp)
669 {
670 	struct radix_tree_node *node = NULL, *child;
671 	void **slot = (void **)&root->rnode;
672 	unsigned long maxindex;
673 	unsigned int shift, offset = 0;
674 	unsigned long max = index | ((1UL << order) - 1);
675 
676 	shift = radix_tree_load_root(root, &child, &maxindex);
677 
678 	/* Make sure the tree is high enough.  */
679 	if (max > maxindex) {
680 		int error = radix_tree_extend(root, max, shift);
681 		if (error < 0)
682 			return error;
683 		shift = error;
684 		child = root->rnode;
685 		if (order == shift)
686 			shift += RADIX_TREE_MAP_SHIFT;
687 	}
688 
689 	while (shift > order) {
690 		shift -= RADIX_TREE_MAP_SHIFT;
691 		if (child == NULL) {
692 			/* Have to add a child node.  */
693 			child = radix_tree_node_alloc(root);
694 			if (!child)
695 				return -ENOMEM;
696 			child->shift = shift;
697 			child->offset = offset;
698 			child->parent = node;
699 			rcu_assign_pointer(*slot, node_to_entry(child));
700 			if (node)
701 				node->count++;
702 		} else if (!radix_tree_is_internal_node(child))
703 			break;
704 
705 		/* Go a level down */
706 		node = entry_to_node(child);
707 		offset = radix_tree_descend(node, &child, index);
708 		slot = &node->slots[offset];
709 	}
710 
711 #ifdef CONFIG_RADIX_TREE_MULTIORDER
712 	/* Insert pointers to the canonical entry */
713 	if (order > shift) {
714 		unsigned i, n = 1 << (order - shift);
715 		offset = offset & ~(n - 1);
716 		slot = &node->slots[offset];
717 		child = node_to_entry(slot);
718 		for (i = 0; i < n; i++) {
719 			if (slot[i])
720 				return -EEXIST;
721 		}
722 
723 		for (i = 1; i < n; i++) {
724 			rcu_assign_pointer(slot[i], child);
725 			node->count++;
726 		}
727 	}
728 #endif
729 
730 	if (nodep)
731 		*nodep = node;
732 	if (slotp)
733 		*slotp = slot;
734 	return 0;
735 }
736 
737 /**
738  *	__radix_tree_insert    -    insert into a radix tree
739  *	@root:		radix tree root
740  *	@index:		index key
741  *	@order:		key covers the 2^order indices around index
742  *	@item:		item to insert
743  *
744  *	Insert an item into the radix tree at position @index.
745  */
746 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
747 			unsigned order, void *item)
748 {
749 	struct radix_tree_node *node;
750 	void **slot;
751 	int error;
752 
753 	BUG_ON(radix_tree_is_internal_node(item));
754 
755 	error = __radix_tree_create(root, index, order, &node, &slot);
756 	if (error)
757 		return error;
758 	if (*slot != NULL)
759 		return -EEXIST;
760 	rcu_assign_pointer(*slot, item);
761 
762 	if (node) {
763 		unsigned offset = get_slot_offset(node, slot);
764 		node->count++;
765 		if (radix_tree_exceptional_entry(item))
766 			node->exceptional++;
767 		BUG_ON(tag_get(node, 0, offset));
768 		BUG_ON(tag_get(node, 1, offset));
769 		BUG_ON(tag_get(node, 2, offset));
770 	} else {
771 		BUG_ON(root_tags_get(root));
772 	}
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL(__radix_tree_insert);
777 
778 /**
779  *	__radix_tree_lookup	-	lookup an item in a radix tree
780  *	@root:		radix tree root
781  *	@index:		index key
782  *	@nodep:		returns node
783  *	@slotp:		returns slot
784  *
785  *	Lookup and return the item at position @index in the radix
786  *	tree @root.
787  *
788  *	Until there is more than one item in the tree, no nodes are
789  *	allocated and @root->rnode is used as a direct slot instead of
790  *	pointing to a node, in which case *@nodep will be NULL.
791  */
792 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
793 			  struct radix_tree_node **nodep, void ***slotp)
794 {
795 	struct radix_tree_node *node, *parent;
796 	unsigned long maxindex;
797 	void **slot;
798 
799  restart:
800 	parent = NULL;
801 	slot = (void **)&root->rnode;
802 	radix_tree_load_root(root, &node, &maxindex);
803 	if (index > maxindex)
804 		return NULL;
805 
806 	while (radix_tree_is_internal_node(node)) {
807 		unsigned offset;
808 
809 		if (node == RADIX_TREE_RETRY)
810 			goto restart;
811 		parent = entry_to_node(node);
812 		offset = radix_tree_descend(parent, &node, index);
813 		slot = parent->slots + offset;
814 	}
815 
816 	if (nodep)
817 		*nodep = parent;
818 	if (slotp)
819 		*slotp = slot;
820 	return node;
821 }
822 
823 /**
824  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
825  *	@root:		radix tree root
826  *	@index:		index key
827  *
828  *	Returns:  the slot corresponding to the position @index in the
829  *	radix tree @root. This is useful for update-if-exists operations.
830  *
831  *	This function can be called under rcu_read_lock iff the slot is not
832  *	modified by radix_tree_replace_slot, otherwise it must be called
833  *	exclusive from other writers. Any dereference of the slot must be done
834  *	using radix_tree_deref_slot.
835  */
836 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
837 {
838 	void **slot;
839 
840 	if (!__radix_tree_lookup(root, index, NULL, &slot))
841 		return NULL;
842 	return slot;
843 }
844 EXPORT_SYMBOL(radix_tree_lookup_slot);
845 
846 /**
847  *	radix_tree_lookup    -    perform lookup operation on a radix tree
848  *	@root:		radix tree root
849  *	@index:		index key
850  *
851  *	Lookup the item at the position @index in the radix tree @root.
852  *
853  *	This function can be called under rcu_read_lock, however the caller
854  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
855  *	them safely). No RCU barriers are required to access or modify the
856  *	returned item, however.
857  */
858 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
859 {
860 	return __radix_tree_lookup(root, index, NULL, NULL);
861 }
862 EXPORT_SYMBOL(radix_tree_lookup);
863 
864 static void replace_slot(struct radix_tree_root *root,
865 			 struct radix_tree_node *node,
866 			 void **slot, void *item,
867 			 bool warn_typeswitch)
868 {
869 	void *old = rcu_dereference_raw(*slot);
870 	int count, exceptional;
871 
872 	WARN_ON_ONCE(radix_tree_is_internal_node(item));
873 
874 	count = !!item - !!old;
875 	exceptional = !!radix_tree_exceptional_entry(item) -
876 		      !!radix_tree_exceptional_entry(old);
877 
878 	WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
879 
880 	if (node) {
881 		node->count += count;
882 		node->exceptional += exceptional;
883 	}
884 
885 	rcu_assign_pointer(*slot, item);
886 }
887 
888 /**
889  * __radix_tree_replace		- replace item in a slot
890  * @root:		radix tree root
891  * @node:		pointer to tree node
892  * @slot:		pointer to slot in @node
893  * @item:		new item to store in the slot.
894  * @update_node:	callback for changing leaf nodes
895  * @private:		private data to pass to @update_node
896  *
897  * For use with __radix_tree_lookup().  Caller must hold tree write locked
898  * across slot lookup and replacement.
899  */
900 void __radix_tree_replace(struct radix_tree_root *root,
901 			  struct radix_tree_node *node,
902 			  void **slot, void *item,
903 			  radix_tree_update_node_t update_node, void *private)
904 {
905 	/*
906 	 * This function supports replacing exceptional entries and
907 	 * deleting entries, but that needs accounting against the
908 	 * node unless the slot is root->rnode.
909 	 */
910 	replace_slot(root, node, slot, item,
911 		     !node && slot != (void **)&root->rnode);
912 
913 	if (!node)
914 		return;
915 
916 	if (update_node)
917 		update_node(node, private);
918 
919 	delete_node(root, node, update_node, private);
920 }
921 
922 /**
923  * radix_tree_replace_slot	- replace item in a slot
924  * @root:	radix tree root
925  * @slot:	pointer to slot
926  * @item:	new item to store in the slot.
927  *
928  * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
929  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
930  * across slot lookup and replacement.
931  *
932  * NOTE: This cannot be used to switch between non-entries (empty slots),
933  * regular entries, and exceptional entries, as that requires accounting
934  * inside the radix tree node. When switching from one type of entry or
935  * deleting, use __radix_tree_lookup() and __radix_tree_replace().
936  */
937 void radix_tree_replace_slot(struct radix_tree_root *root,
938 			     void **slot, void *item)
939 {
940 	replace_slot(root, NULL, slot, item, true);
941 }
942 
943 /**
944  *	radix_tree_tag_set - set a tag on a radix tree node
945  *	@root:		radix tree root
946  *	@index:		index key
947  *	@tag:		tag index
948  *
949  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
950  *	corresponding to @index in the radix tree.  From
951  *	the root all the way down to the leaf node.
952  *
953  *	Returns the address of the tagged item.  Setting a tag on a not-present
954  *	item is a bug.
955  */
956 void *radix_tree_tag_set(struct radix_tree_root *root,
957 			unsigned long index, unsigned int tag)
958 {
959 	struct radix_tree_node *node, *parent;
960 	unsigned long maxindex;
961 
962 	radix_tree_load_root(root, &node, &maxindex);
963 	BUG_ON(index > maxindex);
964 
965 	while (radix_tree_is_internal_node(node)) {
966 		unsigned offset;
967 
968 		parent = entry_to_node(node);
969 		offset = radix_tree_descend(parent, &node, index);
970 		BUG_ON(!node);
971 
972 		if (!tag_get(parent, tag, offset))
973 			tag_set(parent, tag, offset);
974 	}
975 
976 	/* set the root's tag bit */
977 	if (!root_tag_get(root, tag))
978 		root_tag_set(root, tag);
979 
980 	return node;
981 }
982 EXPORT_SYMBOL(radix_tree_tag_set);
983 
984 static void node_tag_clear(struct radix_tree_root *root,
985 				struct radix_tree_node *node,
986 				unsigned int tag, unsigned int offset)
987 {
988 	while (node) {
989 		if (!tag_get(node, tag, offset))
990 			return;
991 		tag_clear(node, tag, offset);
992 		if (any_tag_set(node, tag))
993 			return;
994 
995 		offset = node->offset;
996 		node = node->parent;
997 	}
998 
999 	/* clear the root's tag bit */
1000 	if (root_tag_get(root, tag))
1001 		root_tag_clear(root, tag);
1002 }
1003 
1004 /**
1005  *	radix_tree_tag_clear - clear a tag on a radix tree node
1006  *	@root:		radix tree root
1007  *	@index:		index key
1008  *	@tag:		tag index
1009  *
1010  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1011  *	corresponding to @index in the radix tree.  If this causes
1012  *	the leaf node to have no tags set then clear the tag in the
1013  *	next-to-leaf node, etc.
1014  *
1015  *	Returns the address of the tagged item on success, else NULL.  ie:
1016  *	has the same return value and semantics as radix_tree_lookup().
1017  */
1018 void *radix_tree_tag_clear(struct radix_tree_root *root,
1019 			unsigned long index, unsigned int tag)
1020 {
1021 	struct radix_tree_node *node, *parent;
1022 	unsigned long maxindex;
1023 	int uninitialized_var(offset);
1024 
1025 	radix_tree_load_root(root, &node, &maxindex);
1026 	if (index > maxindex)
1027 		return NULL;
1028 
1029 	parent = NULL;
1030 
1031 	while (radix_tree_is_internal_node(node)) {
1032 		parent = entry_to_node(node);
1033 		offset = radix_tree_descend(parent, &node, index);
1034 	}
1035 
1036 	if (node)
1037 		node_tag_clear(root, parent, tag, offset);
1038 
1039 	return node;
1040 }
1041 EXPORT_SYMBOL(radix_tree_tag_clear);
1042 
1043 /**
1044  * radix_tree_tag_get - get a tag on a radix tree node
1045  * @root:		radix tree root
1046  * @index:		index key
1047  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1048  *
1049  * Return values:
1050  *
1051  *  0: tag not present or not set
1052  *  1: tag set
1053  *
1054  * Note that the return value of this function may not be relied on, even if
1055  * the RCU lock is held, unless tag modification and node deletion are excluded
1056  * from concurrency.
1057  */
1058 int radix_tree_tag_get(struct radix_tree_root *root,
1059 			unsigned long index, unsigned int tag)
1060 {
1061 	struct radix_tree_node *node, *parent;
1062 	unsigned long maxindex;
1063 
1064 	if (!root_tag_get(root, tag))
1065 		return 0;
1066 
1067 	radix_tree_load_root(root, &node, &maxindex);
1068 	if (index > maxindex)
1069 		return 0;
1070 	if (node == NULL)
1071 		return 0;
1072 
1073 	while (radix_tree_is_internal_node(node)) {
1074 		unsigned offset;
1075 
1076 		parent = entry_to_node(node);
1077 		offset = radix_tree_descend(parent, &node, index);
1078 
1079 		if (!node)
1080 			return 0;
1081 		if (!tag_get(parent, tag, offset))
1082 			return 0;
1083 		if (node == RADIX_TREE_RETRY)
1084 			break;
1085 	}
1086 
1087 	return 1;
1088 }
1089 EXPORT_SYMBOL(radix_tree_tag_get);
1090 
1091 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1092 					unsigned int shift)
1093 {
1094 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1095 	iter->shift = shift;
1096 #endif
1097 }
1098 
1099 /**
1100  * radix_tree_next_chunk - find next chunk of slots for iteration
1101  *
1102  * @root:	radix tree root
1103  * @iter:	iterator state
1104  * @flags:	RADIX_TREE_ITER_* flags and tag index
1105  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1106  */
1107 void **radix_tree_next_chunk(struct radix_tree_root *root,
1108 			     struct radix_tree_iter *iter, unsigned flags)
1109 {
1110 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1111 	struct radix_tree_node *node, *child;
1112 	unsigned long index, offset, maxindex;
1113 
1114 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1115 		return NULL;
1116 
1117 	/*
1118 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1119 	 * during iterating; it can be zero only at the beginning.
1120 	 * And we cannot overflow iter->next_index in a single step,
1121 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1122 	 *
1123 	 * This condition also used by radix_tree_next_slot() to stop
1124 	 * contiguous iterating, and forbid swithing to the next chunk.
1125 	 */
1126 	index = iter->next_index;
1127 	if (!index && iter->index)
1128 		return NULL;
1129 
1130  restart:
1131 	radix_tree_load_root(root, &child, &maxindex);
1132 	if (index > maxindex)
1133 		return NULL;
1134 	if (!child)
1135 		return NULL;
1136 
1137 	if (!radix_tree_is_internal_node(child)) {
1138 		/* Single-slot tree */
1139 		iter->index = index;
1140 		iter->next_index = maxindex + 1;
1141 		iter->tags = 1;
1142 		__set_iter_shift(iter, 0);
1143 		return (void **)&root->rnode;
1144 	}
1145 
1146 	do {
1147 		node = entry_to_node(child);
1148 		offset = radix_tree_descend(node, &child, index);
1149 
1150 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1151 				!tag_get(node, tag, offset) : !child) {
1152 			/* Hole detected */
1153 			if (flags & RADIX_TREE_ITER_CONTIG)
1154 				return NULL;
1155 
1156 			if (flags & RADIX_TREE_ITER_TAGGED)
1157 				offset = radix_tree_find_next_bit(
1158 						node->tags[tag],
1159 						RADIX_TREE_MAP_SIZE,
1160 						offset + 1);
1161 			else
1162 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1163 					void *slot = node->slots[offset];
1164 					if (is_sibling_entry(node, slot))
1165 						continue;
1166 					if (slot)
1167 						break;
1168 				}
1169 			index &= ~node_maxindex(node);
1170 			index += offset << node->shift;
1171 			/* Overflow after ~0UL */
1172 			if (!index)
1173 				return NULL;
1174 			if (offset == RADIX_TREE_MAP_SIZE)
1175 				goto restart;
1176 			child = rcu_dereference_raw(node->slots[offset]);
1177 		}
1178 
1179 		if ((child == NULL) || (child == RADIX_TREE_RETRY))
1180 			goto restart;
1181 	} while (radix_tree_is_internal_node(child));
1182 
1183 	/* Update the iterator state */
1184 	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1185 	iter->next_index = (index | node_maxindex(node)) + 1;
1186 	__set_iter_shift(iter, node->shift);
1187 
1188 	/* Construct iter->tags bit-mask from node->tags[tag] array */
1189 	if (flags & RADIX_TREE_ITER_TAGGED) {
1190 		unsigned tag_long, tag_bit;
1191 
1192 		tag_long = offset / BITS_PER_LONG;
1193 		tag_bit  = offset % BITS_PER_LONG;
1194 		iter->tags = node->tags[tag][tag_long] >> tag_bit;
1195 		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1196 		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1197 			/* Pick tags from next element */
1198 			if (tag_bit)
1199 				iter->tags |= node->tags[tag][tag_long + 1] <<
1200 						(BITS_PER_LONG - tag_bit);
1201 			/* Clip chunk size, here only BITS_PER_LONG tags */
1202 			iter->next_index = index + BITS_PER_LONG;
1203 		}
1204 	}
1205 
1206 	return node->slots + offset;
1207 }
1208 EXPORT_SYMBOL(radix_tree_next_chunk);
1209 
1210 /**
1211  * radix_tree_range_tag_if_tagged - for each item in given range set given
1212  *				   tag if item has another tag set
1213  * @root:		radix tree root
1214  * @first_indexp:	pointer to a starting index of a range to scan
1215  * @last_index:		last index of a range to scan
1216  * @nr_to_tag:		maximum number items to tag
1217  * @iftag:		tag index to test
1218  * @settag:		tag index to set if tested tag is set
1219  *
1220  * This function scans range of radix tree from first_index to last_index
1221  * (inclusive).  For each item in the range if iftag is set, the function sets
1222  * also settag. The function stops either after tagging nr_to_tag items or
1223  * after reaching last_index.
1224  *
1225  * The tags must be set from the leaf level only and propagated back up the
1226  * path to the root. We must do this so that we resolve the full path before
1227  * setting any tags on intermediate nodes. If we set tags as we descend, then
1228  * we can get to the leaf node and find that the index that has the iftag
1229  * set is outside the range we are scanning. This reults in dangling tags and
1230  * can lead to problems with later tag operations (e.g. livelocks on lookups).
1231  *
1232  * The function returns the number of leaves where the tag was set and sets
1233  * *first_indexp to the first unscanned index.
1234  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1235  * be prepared to handle that.
1236  */
1237 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1238 		unsigned long *first_indexp, unsigned long last_index,
1239 		unsigned long nr_to_tag,
1240 		unsigned int iftag, unsigned int settag)
1241 {
1242 	struct radix_tree_node *parent, *node, *child;
1243 	unsigned long maxindex;
1244 	unsigned long tagged = 0;
1245 	unsigned long index = *first_indexp;
1246 
1247 	radix_tree_load_root(root, &child, &maxindex);
1248 	last_index = min(last_index, maxindex);
1249 	if (index > last_index)
1250 		return 0;
1251 	if (!nr_to_tag)
1252 		return 0;
1253 	if (!root_tag_get(root, iftag)) {
1254 		*first_indexp = last_index + 1;
1255 		return 0;
1256 	}
1257 	if (!radix_tree_is_internal_node(child)) {
1258 		*first_indexp = last_index + 1;
1259 		root_tag_set(root, settag);
1260 		return 1;
1261 	}
1262 
1263 	node = entry_to_node(child);
1264 
1265 	for (;;) {
1266 		unsigned offset = radix_tree_descend(node, &child, index);
1267 		if (!child)
1268 			goto next;
1269 		if (!tag_get(node, iftag, offset))
1270 			goto next;
1271 		/* Sibling slots never have tags set on them */
1272 		if (radix_tree_is_internal_node(child)) {
1273 			node = entry_to_node(child);
1274 			continue;
1275 		}
1276 
1277 		/* tag the leaf */
1278 		tagged++;
1279 		tag_set(node, settag, offset);
1280 
1281 		/* walk back up the path tagging interior nodes */
1282 		parent = node;
1283 		for (;;) {
1284 			offset = parent->offset;
1285 			parent = parent->parent;
1286 			if (!parent)
1287 				break;
1288 			/* stop if we find a node with the tag already set */
1289 			if (tag_get(parent, settag, offset))
1290 				break;
1291 			tag_set(parent, settag, offset);
1292 		}
1293  next:
1294 		/* Go to next entry in node */
1295 		index = ((index >> node->shift) + 1) << node->shift;
1296 		/* Overflow can happen when last_index is ~0UL... */
1297 		if (index > last_index || !index)
1298 			break;
1299 		offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1300 		while (offset == 0) {
1301 			/*
1302 			 * We've fully scanned this node. Go up. Because
1303 			 * last_index is guaranteed to be in the tree, what
1304 			 * we do below cannot wander astray.
1305 			 */
1306 			node = node->parent;
1307 			offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1308 		}
1309 		if (is_sibling_entry(node, node->slots[offset]))
1310 			goto next;
1311 		if (tagged >= nr_to_tag)
1312 			break;
1313 	}
1314 	/*
1315 	 * We need not to tag the root tag if there is no tag which is set with
1316 	 * settag within the range from *first_indexp to last_index.
1317 	 */
1318 	if (tagged > 0)
1319 		root_tag_set(root, settag);
1320 	*first_indexp = index;
1321 
1322 	return tagged;
1323 }
1324 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1325 
1326 /**
1327  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1328  *	@root:		radix tree root
1329  *	@results:	where the results of the lookup are placed
1330  *	@first_index:	start the lookup from this key
1331  *	@max_items:	place up to this many items at *results
1332  *
1333  *	Performs an index-ascending scan of the tree for present items.  Places
1334  *	them at *@results and returns the number of items which were placed at
1335  *	*@results.
1336  *
1337  *	The implementation is naive.
1338  *
1339  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1340  *	rcu_read_lock. In this case, rather than the returned results being
1341  *	an atomic snapshot of the tree at a single point in time, the
1342  *	semantics of an RCU protected gang lookup are as though multiple
1343  *	radix_tree_lookups have been issued in individual locks, and results
1344  *	stored in 'results'.
1345  */
1346 unsigned int
1347 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1348 			unsigned long first_index, unsigned int max_items)
1349 {
1350 	struct radix_tree_iter iter;
1351 	void **slot;
1352 	unsigned int ret = 0;
1353 
1354 	if (unlikely(!max_items))
1355 		return 0;
1356 
1357 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1358 		results[ret] = rcu_dereference_raw(*slot);
1359 		if (!results[ret])
1360 			continue;
1361 		if (radix_tree_is_internal_node(results[ret])) {
1362 			slot = radix_tree_iter_retry(&iter);
1363 			continue;
1364 		}
1365 		if (++ret == max_items)
1366 			break;
1367 	}
1368 
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL(radix_tree_gang_lookup);
1372 
1373 /**
1374  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1375  *	@root:		radix tree root
1376  *	@results:	where the results of the lookup are placed
1377  *	@indices:	where their indices should be placed (but usually NULL)
1378  *	@first_index:	start the lookup from this key
1379  *	@max_items:	place up to this many items at *results
1380  *
1381  *	Performs an index-ascending scan of the tree for present items.  Places
1382  *	their slots at *@results and returns the number of items which were
1383  *	placed at *@results.
1384  *
1385  *	The implementation is naive.
1386  *
1387  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1388  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1389  *	protection, radix_tree_deref_slot may fail requiring a retry.
1390  */
1391 unsigned int
1392 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1393 			void ***results, unsigned long *indices,
1394 			unsigned long first_index, unsigned int max_items)
1395 {
1396 	struct radix_tree_iter iter;
1397 	void **slot;
1398 	unsigned int ret = 0;
1399 
1400 	if (unlikely(!max_items))
1401 		return 0;
1402 
1403 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1404 		results[ret] = slot;
1405 		if (indices)
1406 			indices[ret] = iter.index;
1407 		if (++ret == max_items)
1408 			break;
1409 	}
1410 
1411 	return ret;
1412 }
1413 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1414 
1415 /**
1416  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1417  *	                             based on a tag
1418  *	@root:		radix tree root
1419  *	@results:	where the results of the lookup are placed
1420  *	@first_index:	start the lookup from this key
1421  *	@max_items:	place up to this many items at *results
1422  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1423  *
1424  *	Performs an index-ascending scan of the tree for present items which
1425  *	have the tag indexed by @tag set.  Places the items at *@results and
1426  *	returns the number of items which were placed at *@results.
1427  */
1428 unsigned int
1429 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1430 		unsigned long first_index, unsigned int max_items,
1431 		unsigned int tag)
1432 {
1433 	struct radix_tree_iter iter;
1434 	void **slot;
1435 	unsigned int ret = 0;
1436 
1437 	if (unlikely(!max_items))
1438 		return 0;
1439 
1440 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1441 		results[ret] = rcu_dereference_raw(*slot);
1442 		if (!results[ret])
1443 			continue;
1444 		if (radix_tree_is_internal_node(results[ret])) {
1445 			slot = radix_tree_iter_retry(&iter);
1446 			continue;
1447 		}
1448 		if (++ret == max_items)
1449 			break;
1450 	}
1451 
1452 	return ret;
1453 }
1454 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1455 
1456 /**
1457  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1458  *					  radix tree based on a tag
1459  *	@root:		radix tree root
1460  *	@results:	where the results of the lookup are placed
1461  *	@first_index:	start the lookup from this key
1462  *	@max_items:	place up to this many items at *results
1463  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1464  *
1465  *	Performs an index-ascending scan of the tree for present items which
1466  *	have the tag indexed by @tag set.  Places the slots at *@results and
1467  *	returns the number of slots which were placed at *@results.
1468  */
1469 unsigned int
1470 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1471 		unsigned long first_index, unsigned int max_items,
1472 		unsigned int tag)
1473 {
1474 	struct radix_tree_iter iter;
1475 	void **slot;
1476 	unsigned int ret = 0;
1477 
1478 	if (unlikely(!max_items))
1479 		return 0;
1480 
1481 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1482 		results[ret] = slot;
1483 		if (++ret == max_items)
1484 			break;
1485 	}
1486 
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1490 
1491 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1492 #include <linux/sched.h> /* for cond_resched() */
1493 
1494 struct locate_info {
1495 	unsigned long found_index;
1496 	bool stop;
1497 };
1498 
1499 /*
1500  * This linear search is at present only useful to shmem_unuse_inode().
1501  */
1502 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1503 			      unsigned long index, struct locate_info *info)
1504 {
1505 	unsigned long i;
1506 
1507 	do {
1508 		unsigned int shift = slot->shift;
1509 
1510 		for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1511 		     i < RADIX_TREE_MAP_SIZE;
1512 		     i++, index += (1UL << shift)) {
1513 			struct radix_tree_node *node =
1514 					rcu_dereference_raw(slot->slots[i]);
1515 			if (node == RADIX_TREE_RETRY)
1516 				goto out;
1517 			if (!radix_tree_is_internal_node(node)) {
1518 				if (node == item) {
1519 					info->found_index = index;
1520 					info->stop = true;
1521 					goto out;
1522 				}
1523 				continue;
1524 			}
1525 			node = entry_to_node(node);
1526 			if (is_sibling_entry(slot, node))
1527 				continue;
1528 			slot = node;
1529 			break;
1530 		}
1531 	} while (i < RADIX_TREE_MAP_SIZE);
1532 
1533 out:
1534 	if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1535 		info->stop = true;
1536 	return index;
1537 }
1538 
1539 /**
1540  *	radix_tree_locate_item - search through radix tree for item
1541  *	@root:		radix tree root
1542  *	@item:		item to be found
1543  *
1544  *	Returns index where item was found, or -1 if not found.
1545  *	Caller must hold no lock (since this time-consuming function needs
1546  *	to be preemptible), and must check afterwards if item is still there.
1547  */
1548 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1549 {
1550 	struct radix_tree_node *node;
1551 	unsigned long max_index;
1552 	unsigned long cur_index = 0;
1553 	struct locate_info info = {
1554 		.found_index = -1,
1555 		.stop = false,
1556 	};
1557 
1558 	do {
1559 		rcu_read_lock();
1560 		node = rcu_dereference_raw(root->rnode);
1561 		if (!radix_tree_is_internal_node(node)) {
1562 			rcu_read_unlock();
1563 			if (node == item)
1564 				info.found_index = 0;
1565 			break;
1566 		}
1567 
1568 		node = entry_to_node(node);
1569 
1570 		max_index = node_maxindex(node);
1571 		if (cur_index > max_index) {
1572 			rcu_read_unlock();
1573 			break;
1574 		}
1575 
1576 		cur_index = __locate(node, item, cur_index, &info);
1577 		rcu_read_unlock();
1578 		cond_resched();
1579 	} while (!info.stop && cur_index <= max_index);
1580 
1581 	return info.found_index;
1582 }
1583 #else
1584 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1585 {
1586 	return -1;
1587 }
1588 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1589 
1590 /**
1591  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1592  *	@root:		radix tree root
1593  *	@node:		node containing @index
1594  *
1595  *	After clearing the slot at @index in @node from radix tree
1596  *	rooted at @root, call this function to attempt freeing the
1597  *	node and shrinking the tree.
1598  *
1599  *	Returns %true if @node was freed, %false otherwise.
1600  */
1601 bool __radix_tree_delete_node(struct radix_tree_root *root,
1602 			      struct radix_tree_node *node)
1603 {
1604 	return delete_node(root, node, NULL, NULL);
1605 }
1606 
1607 static inline void delete_sibling_entries(struct radix_tree_node *node,
1608 					void *ptr, unsigned offset)
1609 {
1610 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1611 	int i;
1612 	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1613 		if (node->slots[offset + i] != ptr)
1614 			break;
1615 		node->slots[offset + i] = NULL;
1616 		node->count--;
1617 	}
1618 #endif
1619 }
1620 
1621 /**
1622  *	radix_tree_delete_item    -    delete an item from a radix tree
1623  *	@root:		radix tree root
1624  *	@index:		index key
1625  *	@item:		expected item
1626  *
1627  *	Remove @item at @index from the radix tree rooted at @root.
1628  *
1629  *	Returns the address of the deleted item, or NULL if it was not present
1630  *	or the entry at the given @index was not @item.
1631  */
1632 void *radix_tree_delete_item(struct radix_tree_root *root,
1633 			     unsigned long index, void *item)
1634 {
1635 	struct radix_tree_node *node;
1636 	unsigned int offset;
1637 	void **slot;
1638 	void *entry;
1639 	int tag;
1640 
1641 	entry = __radix_tree_lookup(root, index, &node, &slot);
1642 	if (!entry)
1643 		return NULL;
1644 
1645 	if (item && entry != item)
1646 		return NULL;
1647 
1648 	if (!node) {
1649 		root_tag_clear_all(root);
1650 		root->rnode = NULL;
1651 		return entry;
1652 	}
1653 
1654 	offset = get_slot_offset(node, slot);
1655 
1656 	/* Clear all tags associated with the item to be deleted.  */
1657 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1658 		node_tag_clear(root, node, tag, offset);
1659 
1660 	delete_sibling_entries(node, node_to_entry(slot), offset);
1661 	__radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1662 
1663 	return entry;
1664 }
1665 EXPORT_SYMBOL(radix_tree_delete_item);
1666 
1667 /**
1668  *	radix_tree_delete    -    delete an item from a radix tree
1669  *	@root:		radix tree root
1670  *	@index:		index key
1671  *
1672  *	Remove the item at @index from the radix tree rooted at @root.
1673  *
1674  *	Returns the address of the deleted item, or NULL if it was not present.
1675  */
1676 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1677 {
1678 	return radix_tree_delete_item(root, index, NULL);
1679 }
1680 EXPORT_SYMBOL(radix_tree_delete);
1681 
1682 void radix_tree_clear_tags(struct radix_tree_root *root,
1683 			   struct radix_tree_node *node,
1684 			   void **slot)
1685 {
1686 	if (node) {
1687 		unsigned int tag, offset = get_slot_offset(node, slot);
1688 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1689 			node_tag_clear(root, node, tag, offset);
1690 	} else {
1691 		/* Clear root node tags */
1692 		root->gfp_mask &= __GFP_BITS_MASK;
1693 	}
1694 }
1695 
1696 /**
1697  *	radix_tree_tagged - test whether any items in the tree are tagged
1698  *	@root:		radix tree root
1699  *	@tag:		tag to test
1700  */
1701 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1702 {
1703 	return root_tag_get(root, tag);
1704 }
1705 EXPORT_SYMBOL(radix_tree_tagged);
1706 
1707 static void
1708 radix_tree_node_ctor(void *arg)
1709 {
1710 	struct radix_tree_node *node = arg;
1711 
1712 	memset(node, 0, sizeof(*node));
1713 	INIT_LIST_HEAD(&node->private_list);
1714 }
1715 
1716 static __init unsigned long __maxindex(unsigned int height)
1717 {
1718 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1719 	int shift = RADIX_TREE_INDEX_BITS - width;
1720 
1721 	if (shift < 0)
1722 		return ~0UL;
1723 	if (shift >= BITS_PER_LONG)
1724 		return 0UL;
1725 	return ~0UL >> shift;
1726 }
1727 
1728 static __init void radix_tree_init_maxnodes(void)
1729 {
1730 	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1731 	unsigned int i, j;
1732 
1733 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1734 		height_to_maxindex[i] = __maxindex(i);
1735 	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1736 		for (j = i; j > 0; j--)
1737 			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1738 	}
1739 }
1740 
1741 static int radix_tree_callback(struct notifier_block *nfb,
1742 				unsigned long action, void *hcpu)
1743 {
1744 	int cpu = (long)hcpu;
1745 	struct radix_tree_preload *rtp;
1746 	struct radix_tree_node *node;
1747 
1748 	/* Free per-cpu pool of preloaded nodes */
1749 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1750 		rtp = &per_cpu(radix_tree_preloads, cpu);
1751 		while (rtp->nr) {
1752 			node = rtp->nodes;
1753 			rtp->nodes = node->private_data;
1754 			kmem_cache_free(radix_tree_node_cachep, node);
1755 			rtp->nr--;
1756 		}
1757 	}
1758 	return NOTIFY_OK;
1759 }
1760 
1761 void __init radix_tree_init(void)
1762 {
1763 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1764 			sizeof(struct radix_tree_node), 0,
1765 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1766 			radix_tree_node_ctor);
1767 	radix_tree_init_maxnodes();
1768 	hotcpu_notifier(radix_tree_callback, 0);
1769 }
1770