1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * Copyright (C) 2016 Intel, Matthew Wilcox 8 * Copyright (C) 2016 Intel, Ross Zwisler 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/errno.h> 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/export.h> 29 #include <linux/radix-tree.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/kmemleak.h> 33 #include <linux/notifier.h> 34 #include <linux/cpu.h> 35 #include <linux/string.h> 36 #include <linux/bitops.h> 37 #include <linux/rcupdate.h> 38 #include <linux/preempt.h> /* in_interrupt() */ 39 40 41 /* Number of nodes in fully populated tree of given height */ 42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; 43 44 /* 45 * Radix tree node cache. 46 */ 47 static struct kmem_cache *radix_tree_node_cachep; 48 49 /* 50 * The radix tree is variable-height, so an insert operation not only has 51 * to build the branch to its corresponding item, it also has to build the 52 * branch to existing items if the size has to be increased (by 53 * radix_tree_extend). 54 * 55 * The worst case is a zero height tree with just a single item at index 0, 56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 58 * Hence: 59 */ 60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 61 62 /* 63 * Per-cpu pool of preloaded nodes 64 */ 65 struct radix_tree_preload { 66 unsigned nr; 67 /* nodes->private_data points to next preallocated node */ 68 struct radix_tree_node *nodes; 69 }; 70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 71 72 static inline void *node_to_entry(void *ptr) 73 { 74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); 75 } 76 77 #define RADIX_TREE_RETRY node_to_entry(NULL) 78 79 #ifdef CONFIG_RADIX_TREE_MULTIORDER 80 /* Sibling slots point directly to another slot in the same node */ 81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 82 { 83 void **ptr = node; 84 return (parent->slots <= ptr) && 85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE); 86 } 87 #else 88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 89 { 90 return false; 91 } 92 #endif 93 94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent, 95 void **slot) 96 { 97 return slot - parent->slots; 98 } 99 100 static unsigned int radix_tree_descend(struct radix_tree_node *parent, 101 struct radix_tree_node **nodep, unsigned long index) 102 { 103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; 104 void **entry = rcu_dereference_raw(parent->slots[offset]); 105 106 #ifdef CONFIG_RADIX_TREE_MULTIORDER 107 if (radix_tree_is_internal_node(entry)) { 108 if (is_sibling_entry(parent, entry)) { 109 void **sibentry = (void **) entry_to_node(entry); 110 offset = get_slot_offset(parent, sibentry); 111 entry = rcu_dereference_raw(*sibentry); 112 } 113 } 114 #endif 115 116 *nodep = (void *)entry; 117 return offset; 118 } 119 120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 121 { 122 return root->gfp_mask & __GFP_BITS_MASK; 123 } 124 125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 126 int offset) 127 { 128 __set_bit(offset, node->tags[tag]); 129 } 130 131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 132 int offset) 133 { 134 __clear_bit(offset, node->tags[tag]); 135 } 136 137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 138 int offset) 139 { 140 return test_bit(offset, node->tags[tag]); 141 } 142 143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 144 { 145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 146 } 147 148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) 149 { 150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 151 } 152 153 static inline void root_tag_clear_all(struct radix_tree_root *root) 154 { 155 root->gfp_mask &= __GFP_BITS_MASK; 156 } 157 158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 159 { 160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 161 } 162 163 static inline unsigned root_tags_get(struct radix_tree_root *root) 164 { 165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; 166 } 167 168 /* 169 * Returns 1 if any slot in the node has this tag set. 170 * Otherwise returns 0. 171 */ 172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 173 { 174 unsigned idx; 175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 176 if (node->tags[tag][idx]) 177 return 1; 178 } 179 return 0; 180 } 181 182 /** 183 * radix_tree_find_next_bit - find the next set bit in a memory region 184 * 185 * @addr: The address to base the search on 186 * @size: The bitmap size in bits 187 * @offset: The bitnumber to start searching at 188 * 189 * Unrollable variant of find_next_bit() for constant size arrays. 190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 191 * Returns next bit offset, or size if nothing found. 192 */ 193 static __always_inline unsigned long 194 radix_tree_find_next_bit(const unsigned long *addr, 195 unsigned long size, unsigned long offset) 196 { 197 if (!__builtin_constant_p(size)) 198 return find_next_bit(addr, size, offset); 199 200 if (offset < size) { 201 unsigned long tmp; 202 203 addr += offset / BITS_PER_LONG; 204 tmp = *addr >> (offset % BITS_PER_LONG); 205 if (tmp) 206 return __ffs(tmp) + offset; 207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 208 while (offset < size) { 209 tmp = *++addr; 210 if (tmp) 211 return __ffs(tmp) + offset; 212 offset += BITS_PER_LONG; 213 } 214 } 215 return size; 216 } 217 218 #ifndef __KERNEL__ 219 static void dump_node(struct radix_tree_node *node, unsigned long index) 220 { 221 unsigned long i; 222 223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n", 224 node, node->offset, 225 node->tags[0][0], node->tags[1][0], node->tags[2][0], 226 node->shift, node->count, node->exceptional, node->parent); 227 228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 229 unsigned long first = index | (i << node->shift); 230 unsigned long last = first | ((1UL << node->shift) - 1); 231 void *entry = node->slots[i]; 232 if (!entry) 233 continue; 234 if (is_sibling_entry(node, entry)) { 235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n", 236 entry, i, 237 *(void **)entry_to_node(entry), 238 first, last); 239 } else if (!radix_tree_is_internal_node(entry)) { 240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n", 241 entry, i, first, last); 242 } else { 243 dump_node(entry_to_node(entry), first); 244 } 245 } 246 } 247 248 /* For debug */ 249 static void radix_tree_dump(struct radix_tree_root *root) 250 { 251 pr_debug("radix root: %p rnode %p tags %x\n", 252 root, root->rnode, 253 root->gfp_mask >> __GFP_BITS_SHIFT); 254 if (!radix_tree_is_internal_node(root->rnode)) 255 return; 256 dump_node(entry_to_node(root->rnode), 0); 257 } 258 #endif 259 260 /* 261 * This assumes that the caller has performed appropriate preallocation, and 262 * that the caller has pinned this thread of control to the current CPU. 263 */ 264 static struct radix_tree_node * 265 radix_tree_node_alloc(struct radix_tree_root *root) 266 { 267 struct radix_tree_node *ret = NULL; 268 gfp_t gfp_mask = root_gfp_mask(root); 269 270 /* 271 * Preload code isn't irq safe and it doesn't make sense to use 272 * preloading during an interrupt anyway as all the allocations have 273 * to be atomic. So just do normal allocation when in interrupt. 274 */ 275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { 276 struct radix_tree_preload *rtp; 277 278 /* 279 * Even if the caller has preloaded, try to allocate from the 280 * cache first for the new node to get accounted to the memory 281 * cgroup. 282 */ 283 ret = kmem_cache_alloc(radix_tree_node_cachep, 284 gfp_mask | __GFP_NOWARN); 285 if (ret) 286 goto out; 287 288 /* 289 * Provided the caller has preloaded here, we will always 290 * succeed in getting a node here (and never reach 291 * kmem_cache_alloc) 292 */ 293 rtp = this_cpu_ptr(&radix_tree_preloads); 294 if (rtp->nr) { 295 ret = rtp->nodes; 296 rtp->nodes = ret->private_data; 297 ret->private_data = NULL; 298 rtp->nr--; 299 } 300 /* 301 * Update the allocation stack trace as this is more useful 302 * for debugging. 303 */ 304 kmemleak_update_trace(ret); 305 goto out; 306 } 307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 308 out: 309 BUG_ON(radix_tree_is_internal_node(ret)); 310 return ret; 311 } 312 313 static void radix_tree_node_rcu_free(struct rcu_head *head) 314 { 315 struct radix_tree_node *node = 316 container_of(head, struct radix_tree_node, rcu_head); 317 int i; 318 319 /* 320 * must only free zeroed nodes into the slab. radix_tree_shrink 321 * can leave us with a non-NULL entry in the first slot, so clear 322 * that here to make sure. 323 */ 324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 325 tag_clear(node, i, 0); 326 327 node->slots[0] = NULL; 328 329 kmem_cache_free(radix_tree_node_cachep, node); 330 } 331 332 static inline void 333 radix_tree_node_free(struct radix_tree_node *node) 334 { 335 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 336 } 337 338 /* 339 * Load up this CPU's radix_tree_node buffer with sufficient objects to 340 * ensure that the addition of a single element in the tree cannot fail. On 341 * success, return zero, with preemption disabled. On error, return -ENOMEM 342 * with preemption not disabled. 343 * 344 * To make use of this facility, the radix tree must be initialised without 345 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 346 */ 347 static int __radix_tree_preload(gfp_t gfp_mask, int nr) 348 { 349 struct radix_tree_preload *rtp; 350 struct radix_tree_node *node; 351 int ret = -ENOMEM; 352 353 /* 354 * Nodes preloaded by one cgroup can be be used by another cgroup, so 355 * they should never be accounted to any particular memory cgroup. 356 */ 357 gfp_mask &= ~__GFP_ACCOUNT; 358 359 preempt_disable(); 360 rtp = this_cpu_ptr(&radix_tree_preloads); 361 while (rtp->nr < nr) { 362 preempt_enable(); 363 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 364 if (node == NULL) 365 goto out; 366 preempt_disable(); 367 rtp = this_cpu_ptr(&radix_tree_preloads); 368 if (rtp->nr < nr) { 369 node->private_data = rtp->nodes; 370 rtp->nodes = node; 371 rtp->nr++; 372 } else { 373 kmem_cache_free(radix_tree_node_cachep, node); 374 } 375 } 376 ret = 0; 377 out: 378 return ret; 379 } 380 381 /* 382 * Load up this CPU's radix_tree_node buffer with sufficient objects to 383 * ensure that the addition of a single element in the tree cannot fail. On 384 * success, return zero, with preemption disabled. On error, return -ENOMEM 385 * with preemption not disabled. 386 * 387 * To make use of this facility, the radix tree must be initialised without 388 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 389 */ 390 int radix_tree_preload(gfp_t gfp_mask) 391 { 392 /* Warn on non-sensical use... */ 393 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 394 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 395 } 396 EXPORT_SYMBOL(radix_tree_preload); 397 398 /* 399 * The same as above function, except we don't guarantee preloading happens. 400 * We do it, if we decide it helps. On success, return zero with preemption 401 * disabled. On error, return -ENOMEM with preemption not disabled. 402 */ 403 int radix_tree_maybe_preload(gfp_t gfp_mask) 404 { 405 if (gfpflags_allow_blocking(gfp_mask)) 406 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 407 /* Preloading doesn't help anything with this gfp mask, skip it */ 408 preempt_disable(); 409 return 0; 410 } 411 EXPORT_SYMBOL(radix_tree_maybe_preload); 412 413 /* 414 * The same as function above, but preload number of nodes required to insert 415 * (1 << order) continuous naturally-aligned elements. 416 */ 417 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) 418 { 419 unsigned long nr_subtrees; 420 int nr_nodes, subtree_height; 421 422 /* Preloading doesn't help anything with this gfp mask, skip it */ 423 if (!gfpflags_allow_blocking(gfp_mask)) { 424 preempt_disable(); 425 return 0; 426 } 427 428 /* 429 * Calculate number and height of fully populated subtrees it takes to 430 * store (1 << order) elements. 431 */ 432 nr_subtrees = 1 << order; 433 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; 434 subtree_height++) 435 nr_subtrees >>= RADIX_TREE_MAP_SHIFT; 436 437 /* 438 * The worst case is zero height tree with a single item at index 0 and 439 * then inserting items starting at ULONG_MAX - (1 << order). 440 * 441 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to 442 * 0-index item. 443 */ 444 nr_nodes = RADIX_TREE_MAX_PATH; 445 446 /* Plus branch to fully populated subtrees. */ 447 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; 448 449 /* Root node is shared. */ 450 nr_nodes--; 451 452 /* Plus nodes required to build subtrees. */ 453 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; 454 455 return __radix_tree_preload(gfp_mask, nr_nodes); 456 } 457 458 /* 459 * The maximum index which can be stored in a radix tree 460 */ 461 static inline unsigned long shift_maxindex(unsigned int shift) 462 { 463 return (RADIX_TREE_MAP_SIZE << shift) - 1; 464 } 465 466 static inline unsigned long node_maxindex(struct radix_tree_node *node) 467 { 468 return shift_maxindex(node->shift); 469 } 470 471 static unsigned radix_tree_load_root(struct radix_tree_root *root, 472 struct radix_tree_node **nodep, unsigned long *maxindex) 473 { 474 struct radix_tree_node *node = rcu_dereference_raw(root->rnode); 475 476 *nodep = node; 477 478 if (likely(radix_tree_is_internal_node(node))) { 479 node = entry_to_node(node); 480 *maxindex = node_maxindex(node); 481 return node->shift + RADIX_TREE_MAP_SHIFT; 482 } 483 484 *maxindex = 0; 485 return 0; 486 } 487 488 /* 489 * Extend a radix tree so it can store key @index. 490 */ 491 static int radix_tree_extend(struct radix_tree_root *root, 492 unsigned long index, unsigned int shift) 493 { 494 struct radix_tree_node *slot; 495 unsigned int maxshift; 496 int tag; 497 498 /* Figure out what the shift should be. */ 499 maxshift = shift; 500 while (index > shift_maxindex(maxshift)) 501 maxshift += RADIX_TREE_MAP_SHIFT; 502 503 slot = root->rnode; 504 if (!slot) 505 goto out; 506 507 do { 508 struct radix_tree_node *node = radix_tree_node_alloc(root); 509 510 if (!node) 511 return -ENOMEM; 512 513 /* Propagate the aggregated tag info into the new root */ 514 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 515 if (root_tag_get(root, tag)) 516 tag_set(node, tag, 0); 517 } 518 519 BUG_ON(shift > BITS_PER_LONG); 520 node->shift = shift; 521 node->offset = 0; 522 node->count = 1; 523 node->parent = NULL; 524 if (radix_tree_is_internal_node(slot)) { 525 entry_to_node(slot)->parent = node; 526 } else { 527 /* Moving an exceptional root->rnode to a node */ 528 if (radix_tree_exceptional_entry(slot)) 529 node->exceptional = 1; 530 } 531 node->slots[0] = slot; 532 slot = node_to_entry(node); 533 rcu_assign_pointer(root->rnode, slot); 534 shift += RADIX_TREE_MAP_SHIFT; 535 } while (shift <= maxshift); 536 out: 537 return maxshift + RADIX_TREE_MAP_SHIFT; 538 } 539 540 /** 541 * radix_tree_shrink - shrink radix tree to minimum height 542 * @root radix tree root 543 */ 544 static inline bool radix_tree_shrink(struct radix_tree_root *root, 545 radix_tree_update_node_t update_node, 546 void *private) 547 { 548 bool shrunk = false; 549 550 for (;;) { 551 struct radix_tree_node *node = root->rnode; 552 struct radix_tree_node *child; 553 554 if (!radix_tree_is_internal_node(node)) 555 break; 556 node = entry_to_node(node); 557 558 /* 559 * The candidate node has more than one child, or its child 560 * is not at the leftmost slot, or the child is a multiorder 561 * entry, we cannot shrink. 562 */ 563 if (node->count != 1) 564 break; 565 child = node->slots[0]; 566 if (!child) 567 break; 568 if (!radix_tree_is_internal_node(child) && node->shift) 569 break; 570 571 if (radix_tree_is_internal_node(child)) 572 entry_to_node(child)->parent = NULL; 573 574 /* 575 * We don't need rcu_assign_pointer(), since we are simply 576 * moving the node from one part of the tree to another: if it 577 * was safe to dereference the old pointer to it 578 * (node->slots[0]), it will be safe to dereference the new 579 * one (root->rnode) as far as dependent read barriers go. 580 */ 581 root->rnode = child; 582 583 /* 584 * We have a dilemma here. The node's slot[0] must not be 585 * NULLed in case there are concurrent lookups expecting to 586 * find the item. However if this was a bottom-level node, 587 * then it may be subject to the slot pointer being visible 588 * to callers dereferencing it. If item corresponding to 589 * slot[0] is subsequently deleted, these callers would expect 590 * their slot to become empty sooner or later. 591 * 592 * For example, lockless pagecache will look up a slot, deref 593 * the page pointer, and if the page has 0 refcount it means it 594 * was concurrently deleted from pagecache so try the deref 595 * again. Fortunately there is already a requirement for logic 596 * to retry the entire slot lookup -- the indirect pointer 597 * problem (replacing direct root node with an indirect pointer 598 * also results in a stale slot). So tag the slot as indirect 599 * to force callers to retry. 600 */ 601 node->count = 0; 602 if (!radix_tree_is_internal_node(child)) { 603 node->slots[0] = RADIX_TREE_RETRY; 604 if (update_node) 605 update_node(node, private); 606 } 607 608 radix_tree_node_free(node); 609 shrunk = true; 610 } 611 612 return shrunk; 613 } 614 615 static bool delete_node(struct radix_tree_root *root, 616 struct radix_tree_node *node, 617 radix_tree_update_node_t update_node, void *private) 618 { 619 bool deleted = false; 620 621 do { 622 struct radix_tree_node *parent; 623 624 if (node->count) { 625 if (node == entry_to_node(root->rnode)) 626 deleted |= radix_tree_shrink(root, update_node, 627 private); 628 return deleted; 629 } 630 631 parent = node->parent; 632 if (parent) { 633 parent->slots[node->offset] = NULL; 634 parent->count--; 635 } else { 636 root_tag_clear_all(root); 637 root->rnode = NULL; 638 } 639 640 radix_tree_node_free(node); 641 deleted = true; 642 643 node = parent; 644 } while (node); 645 646 return deleted; 647 } 648 649 /** 650 * __radix_tree_create - create a slot in a radix tree 651 * @root: radix tree root 652 * @index: index key 653 * @order: index occupies 2^order aligned slots 654 * @nodep: returns node 655 * @slotp: returns slot 656 * 657 * Create, if necessary, and return the node and slot for an item 658 * at position @index in the radix tree @root. 659 * 660 * Until there is more than one item in the tree, no nodes are 661 * allocated and @root->rnode is used as a direct slot instead of 662 * pointing to a node, in which case *@nodep will be NULL. 663 * 664 * Returns -ENOMEM, or 0 for success. 665 */ 666 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 667 unsigned order, struct radix_tree_node **nodep, 668 void ***slotp) 669 { 670 struct radix_tree_node *node = NULL, *child; 671 void **slot = (void **)&root->rnode; 672 unsigned long maxindex; 673 unsigned int shift, offset = 0; 674 unsigned long max = index | ((1UL << order) - 1); 675 676 shift = radix_tree_load_root(root, &child, &maxindex); 677 678 /* Make sure the tree is high enough. */ 679 if (max > maxindex) { 680 int error = radix_tree_extend(root, max, shift); 681 if (error < 0) 682 return error; 683 shift = error; 684 child = root->rnode; 685 if (order == shift) 686 shift += RADIX_TREE_MAP_SHIFT; 687 } 688 689 while (shift > order) { 690 shift -= RADIX_TREE_MAP_SHIFT; 691 if (child == NULL) { 692 /* Have to add a child node. */ 693 child = radix_tree_node_alloc(root); 694 if (!child) 695 return -ENOMEM; 696 child->shift = shift; 697 child->offset = offset; 698 child->parent = node; 699 rcu_assign_pointer(*slot, node_to_entry(child)); 700 if (node) 701 node->count++; 702 } else if (!radix_tree_is_internal_node(child)) 703 break; 704 705 /* Go a level down */ 706 node = entry_to_node(child); 707 offset = radix_tree_descend(node, &child, index); 708 slot = &node->slots[offset]; 709 } 710 711 #ifdef CONFIG_RADIX_TREE_MULTIORDER 712 /* Insert pointers to the canonical entry */ 713 if (order > shift) { 714 unsigned i, n = 1 << (order - shift); 715 offset = offset & ~(n - 1); 716 slot = &node->slots[offset]; 717 child = node_to_entry(slot); 718 for (i = 0; i < n; i++) { 719 if (slot[i]) 720 return -EEXIST; 721 } 722 723 for (i = 1; i < n; i++) { 724 rcu_assign_pointer(slot[i], child); 725 node->count++; 726 } 727 } 728 #endif 729 730 if (nodep) 731 *nodep = node; 732 if (slotp) 733 *slotp = slot; 734 return 0; 735 } 736 737 /** 738 * __radix_tree_insert - insert into a radix tree 739 * @root: radix tree root 740 * @index: index key 741 * @order: key covers the 2^order indices around index 742 * @item: item to insert 743 * 744 * Insert an item into the radix tree at position @index. 745 */ 746 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, 747 unsigned order, void *item) 748 { 749 struct radix_tree_node *node; 750 void **slot; 751 int error; 752 753 BUG_ON(radix_tree_is_internal_node(item)); 754 755 error = __radix_tree_create(root, index, order, &node, &slot); 756 if (error) 757 return error; 758 if (*slot != NULL) 759 return -EEXIST; 760 rcu_assign_pointer(*slot, item); 761 762 if (node) { 763 unsigned offset = get_slot_offset(node, slot); 764 node->count++; 765 if (radix_tree_exceptional_entry(item)) 766 node->exceptional++; 767 BUG_ON(tag_get(node, 0, offset)); 768 BUG_ON(tag_get(node, 1, offset)); 769 BUG_ON(tag_get(node, 2, offset)); 770 } else { 771 BUG_ON(root_tags_get(root)); 772 } 773 774 return 0; 775 } 776 EXPORT_SYMBOL(__radix_tree_insert); 777 778 /** 779 * __radix_tree_lookup - lookup an item in a radix tree 780 * @root: radix tree root 781 * @index: index key 782 * @nodep: returns node 783 * @slotp: returns slot 784 * 785 * Lookup and return the item at position @index in the radix 786 * tree @root. 787 * 788 * Until there is more than one item in the tree, no nodes are 789 * allocated and @root->rnode is used as a direct slot instead of 790 * pointing to a node, in which case *@nodep will be NULL. 791 */ 792 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 793 struct radix_tree_node **nodep, void ***slotp) 794 { 795 struct radix_tree_node *node, *parent; 796 unsigned long maxindex; 797 void **slot; 798 799 restart: 800 parent = NULL; 801 slot = (void **)&root->rnode; 802 radix_tree_load_root(root, &node, &maxindex); 803 if (index > maxindex) 804 return NULL; 805 806 while (radix_tree_is_internal_node(node)) { 807 unsigned offset; 808 809 if (node == RADIX_TREE_RETRY) 810 goto restart; 811 parent = entry_to_node(node); 812 offset = radix_tree_descend(parent, &node, index); 813 slot = parent->slots + offset; 814 } 815 816 if (nodep) 817 *nodep = parent; 818 if (slotp) 819 *slotp = slot; 820 return node; 821 } 822 823 /** 824 * radix_tree_lookup_slot - lookup a slot in a radix tree 825 * @root: radix tree root 826 * @index: index key 827 * 828 * Returns: the slot corresponding to the position @index in the 829 * radix tree @root. This is useful for update-if-exists operations. 830 * 831 * This function can be called under rcu_read_lock iff the slot is not 832 * modified by radix_tree_replace_slot, otherwise it must be called 833 * exclusive from other writers. Any dereference of the slot must be done 834 * using radix_tree_deref_slot. 835 */ 836 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 837 { 838 void **slot; 839 840 if (!__radix_tree_lookup(root, index, NULL, &slot)) 841 return NULL; 842 return slot; 843 } 844 EXPORT_SYMBOL(radix_tree_lookup_slot); 845 846 /** 847 * radix_tree_lookup - perform lookup operation on a radix tree 848 * @root: radix tree root 849 * @index: index key 850 * 851 * Lookup the item at the position @index in the radix tree @root. 852 * 853 * This function can be called under rcu_read_lock, however the caller 854 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 855 * them safely). No RCU barriers are required to access or modify the 856 * returned item, however. 857 */ 858 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 859 { 860 return __radix_tree_lookup(root, index, NULL, NULL); 861 } 862 EXPORT_SYMBOL(radix_tree_lookup); 863 864 static void replace_slot(struct radix_tree_root *root, 865 struct radix_tree_node *node, 866 void **slot, void *item, 867 bool warn_typeswitch) 868 { 869 void *old = rcu_dereference_raw(*slot); 870 int count, exceptional; 871 872 WARN_ON_ONCE(radix_tree_is_internal_node(item)); 873 874 count = !!item - !!old; 875 exceptional = !!radix_tree_exceptional_entry(item) - 876 !!radix_tree_exceptional_entry(old); 877 878 WARN_ON_ONCE(warn_typeswitch && (count || exceptional)); 879 880 if (node) { 881 node->count += count; 882 node->exceptional += exceptional; 883 } 884 885 rcu_assign_pointer(*slot, item); 886 } 887 888 /** 889 * __radix_tree_replace - replace item in a slot 890 * @root: radix tree root 891 * @node: pointer to tree node 892 * @slot: pointer to slot in @node 893 * @item: new item to store in the slot. 894 * @update_node: callback for changing leaf nodes 895 * @private: private data to pass to @update_node 896 * 897 * For use with __radix_tree_lookup(). Caller must hold tree write locked 898 * across slot lookup and replacement. 899 */ 900 void __radix_tree_replace(struct radix_tree_root *root, 901 struct radix_tree_node *node, 902 void **slot, void *item, 903 radix_tree_update_node_t update_node, void *private) 904 { 905 /* 906 * This function supports replacing exceptional entries and 907 * deleting entries, but that needs accounting against the 908 * node unless the slot is root->rnode. 909 */ 910 replace_slot(root, node, slot, item, 911 !node && slot != (void **)&root->rnode); 912 913 if (!node) 914 return; 915 916 if (update_node) 917 update_node(node, private); 918 919 delete_node(root, node, update_node, private); 920 } 921 922 /** 923 * radix_tree_replace_slot - replace item in a slot 924 * @root: radix tree root 925 * @slot: pointer to slot 926 * @item: new item to store in the slot. 927 * 928 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(), 929 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked 930 * across slot lookup and replacement. 931 * 932 * NOTE: This cannot be used to switch between non-entries (empty slots), 933 * regular entries, and exceptional entries, as that requires accounting 934 * inside the radix tree node. When switching from one type of entry or 935 * deleting, use __radix_tree_lookup() and __radix_tree_replace(). 936 */ 937 void radix_tree_replace_slot(struct radix_tree_root *root, 938 void **slot, void *item) 939 { 940 replace_slot(root, NULL, slot, item, true); 941 } 942 943 /** 944 * radix_tree_tag_set - set a tag on a radix tree node 945 * @root: radix tree root 946 * @index: index key 947 * @tag: tag index 948 * 949 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 950 * corresponding to @index in the radix tree. From 951 * the root all the way down to the leaf node. 952 * 953 * Returns the address of the tagged item. Setting a tag on a not-present 954 * item is a bug. 955 */ 956 void *radix_tree_tag_set(struct radix_tree_root *root, 957 unsigned long index, unsigned int tag) 958 { 959 struct radix_tree_node *node, *parent; 960 unsigned long maxindex; 961 962 radix_tree_load_root(root, &node, &maxindex); 963 BUG_ON(index > maxindex); 964 965 while (radix_tree_is_internal_node(node)) { 966 unsigned offset; 967 968 parent = entry_to_node(node); 969 offset = radix_tree_descend(parent, &node, index); 970 BUG_ON(!node); 971 972 if (!tag_get(parent, tag, offset)) 973 tag_set(parent, tag, offset); 974 } 975 976 /* set the root's tag bit */ 977 if (!root_tag_get(root, tag)) 978 root_tag_set(root, tag); 979 980 return node; 981 } 982 EXPORT_SYMBOL(radix_tree_tag_set); 983 984 static void node_tag_clear(struct radix_tree_root *root, 985 struct radix_tree_node *node, 986 unsigned int tag, unsigned int offset) 987 { 988 while (node) { 989 if (!tag_get(node, tag, offset)) 990 return; 991 tag_clear(node, tag, offset); 992 if (any_tag_set(node, tag)) 993 return; 994 995 offset = node->offset; 996 node = node->parent; 997 } 998 999 /* clear the root's tag bit */ 1000 if (root_tag_get(root, tag)) 1001 root_tag_clear(root, tag); 1002 } 1003 1004 /** 1005 * radix_tree_tag_clear - clear a tag on a radix tree node 1006 * @root: radix tree root 1007 * @index: index key 1008 * @tag: tag index 1009 * 1010 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 1011 * corresponding to @index in the radix tree. If this causes 1012 * the leaf node to have no tags set then clear the tag in the 1013 * next-to-leaf node, etc. 1014 * 1015 * Returns the address of the tagged item on success, else NULL. ie: 1016 * has the same return value and semantics as radix_tree_lookup(). 1017 */ 1018 void *radix_tree_tag_clear(struct radix_tree_root *root, 1019 unsigned long index, unsigned int tag) 1020 { 1021 struct radix_tree_node *node, *parent; 1022 unsigned long maxindex; 1023 int uninitialized_var(offset); 1024 1025 radix_tree_load_root(root, &node, &maxindex); 1026 if (index > maxindex) 1027 return NULL; 1028 1029 parent = NULL; 1030 1031 while (radix_tree_is_internal_node(node)) { 1032 parent = entry_to_node(node); 1033 offset = radix_tree_descend(parent, &node, index); 1034 } 1035 1036 if (node) 1037 node_tag_clear(root, parent, tag, offset); 1038 1039 return node; 1040 } 1041 EXPORT_SYMBOL(radix_tree_tag_clear); 1042 1043 /** 1044 * radix_tree_tag_get - get a tag on a radix tree node 1045 * @root: radix tree root 1046 * @index: index key 1047 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 1048 * 1049 * Return values: 1050 * 1051 * 0: tag not present or not set 1052 * 1: tag set 1053 * 1054 * Note that the return value of this function may not be relied on, even if 1055 * the RCU lock is held, unless tag modification and node deletion are excluded 1056 * from concurrency. 1057 */ 1058 int radix_tree_tag_get(struct radix_tree_root *root, 1059 unsigned long index, unsigned int tag) 1060 { 1061 struct radix_tree_node *node, *parent; 1062 unsigned long maxindex; 1063 1064 if (!root_tag_get(root, tag)) 1065 return 0; 1066 1067 radix_tree_load_root(root, &node, &maxindex); 1068 if (index > maxindex) 1069 return 0; 1070 if (node == NULL) 1071 return 0; 1072 1073 while (radix_tree_is_internal_node(node)) { 1074 unsigned offset; 1075 1076 parent = entry_to_node(node); 1077 offset = radix_tree_descend(parent, &node, index); 1078 1079 if (!node) 1080 return 0; 1081 if (!tag_get(parent, tag, offset)) 1082 return 0; 1083 if (node == RADIX_TREE_RETRY) 1084 break; 1085 } 1086 1087 return 1; 1088 } 1089 EXPORT_SYMBOL(radix_tree_tag_get); 1090 1091 static inline void __set_iter_shift(struct radix_tree_iter *iter, 1092 unsigned int shift) 1093 { 1094 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1095 iter->shift = shift; 1096 #endif 1097 } 1098 1099 /** 1100 * radix_tree_next_chunk - find next chunk of slots for iteration 1101 * 1102 * @root: radix tree root 1103 * @iter: iterator state 1104 * @flags: RADIX_TREE_ITER_* flags and tag index 1105 * Returns: pointer to chunk first slot, or NULL if iteration is over 1106 */ 1107 void **radix_tree_next_chunk(struct radix_tree_root *root, 1108 struct radix_tree_iter *iter, unsigned flags) 1109 { 1110 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 1111 struct radix_tree_node *node, *child; 1112 unsigned long index, offset, maxindex; 1113 1114 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 1115 return NULL; 1116 1117 /* 1118 * Catch next_index overflow after ~0UL. iter->index never overflows 1119 * during iterating; it can be zero only at the beginning. 1120 * And we cannot overflow iter->next_index in a single step, 1121 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 1122 * 1123 * This condition also used by radix_tree_next_slot() to stop 1124 * contiguous iterating, and forbid swithing to the next chunk. 1125 */ 1126 index = iter->next_index; 1127 if (!index && iter->index) 1128 return NULL; 1129 1130 restart: 1131 radix_tree_load_root(root, &child, &maxindex); 1132 if (index > maxindex) 1133 return NULL; 1134 if (!child) 1135 return NULL; 1136 1137 if (!radix_tree_is_internal_node(child)) { 1138 /* Single-slot tree */ 1139 iter->index = index; 1140 iter->next_index = maxindex + 1; 1141 iter->tags = 1; 1142 __set_iter_shift(iter, 0); 1143 return (void **)&root->rnode; 1144 } 1145 1146 do { 1147 node = entry_to_node(child); 1148 offset = radix_tree_descend(node, &child, index); 1149 1150 if ((flags & RADIX_TREE_ITER_TAGGED) ? 1151 !tag_get(node, tag, offset) : !child) { 1152 /* Hole detected */ 1153 if (flags & RADIX_TREE_ITER_CONTIG) 1154 return NULL; 1155 1156 if (flags & RADIX_TREE_ITER_TAGGED) 1157 offset = radix_tree_find_next_bit( 1158 node->tags[tag], 1159 RADIX_TREE_MAP_SIZE, 1160 offset + 1); 1161 else 1162 while (++offset < RADIX_TREE_MAP_SIZE) { 1163 void *slot = node->slots[offset]; 1164 if (is_sibling_entry(node, slot)) 1165 continue; 1166 if (slot) 1167 break; 1168 } 1169 index &= ~node_maxindex(node); 1170 index += offset << node->shift; 1171 /* Overflow after ~0UL */ 1172 if (!index) 1173 return NULL; 1174 if (offset == RADIX_TREE_MAP_SIZE) 1175 goto restart; 1176 child = rcu_dereference_raw(node->slots[offset]); 1177 } 1178 1179 if ((child == NULL) || (child == RADIX_TREE_RETRY)) 1180 goto restart; 1181 } while (radix_tree_is_internal_node(child)); 1182 1183 /* Update the iterator state */ 1184 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); 1185 iter->next_index = (index | node_maxindex(node)) + 1; 1186 __set_iter_shift(iter, node->shift); 1187 1188 /* Construct iter->tags bit-mask from node->tags[tag] array */ 1189 if (flags & RADIX_TREE_ITER_TAGGED) { 1190 unsigned tag_long, tag_bit; 1191 1192 tag_long = offset / BITS_PER_LONG; 1193 tag_bit = offset % BITS_PER_LONG; 1194 iter->tags = node->tags[tag][tag_long] >> tag_bit; 1195 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 1196 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 1197 /* Pick tags from next element */ 1198 if (tag_bit) 1199 iter->tags |= node->tags[tag][tag_long + 1] << 1200 (BITS_PER_LONG - tag_bit); 1201 /* Clip chunk size, here only BITS_PER_LONG tags */ 1202 iter->next_index = index + BITS_PER_LONG; 1203 } 1204 } 1205 1206 return node->slots + offset; 1207 } 1208 EXPORT_SYMBOL(radix_tree_next_chunk); 1209 1210 /** 1211 * radix_tree_range_tag_if_tagged - for each item in given range set given 1212 * tag if item has another tag set 1213 * @root: radix tree root 1214 * @first_indexp: pointer to a starting index of a range to scan 1215 * @last_index: last index of a range to scan 1216 * @nr_to_tag: maximum number items to tag 1217 * @iftag: tag index to test 1218 * @settag: tag index to set if tested tag is set 1219 * 1220 * This function scans range of radix tree from first_index to last_index 1221 * (inclusive). For each item in the range if iftag is set, the function sets 1222 * also settag. The function stops either after tagging nr_to_tag items or 1223 * after reaching last_index. 1224 * 1225 * The tags must be set from the leaf level only and propagated back up the 1226 * path to the root. We must do this so that we resolve the full path before 1227 * setting any tags on intermediate nodes. If we set tags as we descend, then 1228 * we can get to the leaf node and find that the index that has the iftag 1229 * set is outside the range we are scanning. This reults in dangling tags and 1230 * can lead to problems with later tag operations (e.g. livelocks on lookups). 1231 * 1232 * The function returns the number of leaves where the tag was set and sets 1233 * *first_indexp to the first unscanned index. 1234 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 1235 * be prepared to handle that. 1236 */ 1237 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 1238 unsigned long *first_indexp, unsigned long last_index, 1239 unsigned long nr_to_tag, 1240 unsigned int iftag, unsigned int settag) 1241 { 1242 struct radix_tree_node *parent, *node, *child; 1243 unsigned long maxindex; 1244 unsigned long tagged = 0; 1245 unsigned long index = *first_indexp; 1246 1247 radix_tree_load_root(root, &child, &maxindex); 1248 last_index = min(last_index, maxindex); 1249 if (index > last_index) 1250 return 0; 1251 if (!nr_to_tag) 1252 return 0; 1253 if (!root_tag_get(root, iftag)) { 1254 *first_indexp = last_index + 1; 1255 return 0; 1256 } 1257 if (!radix_tree_is_internal_node(child)) { 1258 *first_indexp = last_index + 1; 1259 root_tag_set(root, settag); 1260 return 1; 1261 } 1262 1263 node = entry_to_node(child); 1264 1265 for (;;) { 1266 unsigned offset = radix_tree_descend(node, &child, index); 1267 if (!child) 1268 goto next; 1269 if (!tag_get(node, iftag, offset)) 1270 goto next; 1271 /* Sibling slots never have tags set on them */ 1272 if (radix_tree_is_internal_node(child)) { 1273 node = entry_to_node(child); 1274 continue; 1275 } 1276 1277 /* tag the leaf */ 1278 tagged++; 1279 tag_set(node, settag, offset); 1280 1281 /* walk back up the path tagging interior nodes */ 1282 parent = node; 1283 for (;;) { 1284 offset = parent->offset; 1285 parent = parent->parent; 1286 if (!parent) 1287 break; 1288 /* stop if we find a node with the tag already set */ 1289 if (tag_get(parent, settag, offset)) 1290 break; 1291 tag_set(parent, settag, offset); 1292 } 1293 next: 1294 /* Go to next entry in node */ 1295 index = ((index >> node->shift) + 1) << node->shift; 1296 /* Overflow can happen when last_index is ~0UL... */ 1297 if (index > last_index || !index) 1298 break; 1299 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1300 while (offset == 0) { 1301 /* 1302 * We've fully scanned this node. Go up. Because 1303 * last_index is guaranteed to be in the tree, what 1304 * we do below cannot wander astray. 1305 */ 1306 node = node->parent; 1307 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1308 } 1309 if (is_sibling_entry(node, node->slots[offset])) 1310 goto next; 1311 if (tagged >= nr_to_tag) 1312 break; 1313 } 1314 /* 1315 * We need not to tag the root tag if there is no tag which is set with 1316 * settag within the range from *first_indexp to last_index. 1317 */ 1318 if (tagged > 0) 1319 root_tag_set(root, settag); 1320 *first_indexp = index; 1321 1322 return tagged; 1323 } 1324 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 1325 1326 /** 1327 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 1328 * @root: radix tree root 1329 * @results: where the results of the lookup are placed 1330 * @first_index: start the lookup from this key 1331 * @max_items: place up to this many items at *results 1332 * 1333 * Performs an index-ascending scan of the tree for present items. Places 1334 * them at *@results and returns the number of items which were placed at 1335 * *@results. 1336 * 1337 * The implementation is naive. 1338 * 1339 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1340 * rcu_read_lock. In this case, rather than the returned results being 1341 * an atomic snapshot of the tree at a single point in time, the 1342 * semantics of an RCU protected gang lookup are as though multiple 1343 * radix_tree_lookups have been issued in individual locks, and results 1344 * stored in 'results'. 1345 */ 1346 unsigned int 1347 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1348 unsigned long first_index, unsigned int max_items) 1349 { 1350 struct radix_tree_iter iter; 1351 void **slot; 1352 unsigned int ret = 0; 1353 1354 if (unlikely(!max_items)) 1355 return 0; 1356 1357 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1358 results[ret] = rcu_dereference_raw(*slot); 1359 if (!results[ret]) 1360 continue; 1361 if (radix_tree_is_internal_node(results[ret])) { 1362 slot = radix_tree_iter_retry(&iter); 1363 continue; 1364 } 1365 if (++ret == max_items) 1366 break; 1367 } 1368 1369 return ret; 1370 } 1371 EXPORT_SYMBOL(radix_tree_gang_lookup); 1372 1373 /** 1374 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1375 * @root: radix tree root 1376 * @results: where the results of the lookup are placed 1377 * @indices: where their indices should be placed (but usually NULL) 1378 * @first_index: start the lookup from this key 1379 * @max_items: place up to this many items at *results 1380 * 1381 * Performs an index-ascending scan of the tree for present items. Places 1382 * their slots at *@results and returns the number of items which were 1383 * placed at *@results. 1384 * 1385 * The implementation is naive. 1386 * 1387 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1388 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1389 * protection, radix_tree_deref_slot may fail requiring a retry. 1390 */ 1391 unsigned int 1392 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1393 void ***results, unsigned long *indices, 1394 unsigned long first_index, unsigned int max_items) 1395 { 1396 struct radix_tree_iter iter; 1397 void **slot; 1398 unsigned int ret = 0; 1399 1400 if (unlikely(!max_items)) 1401 return 0; 1402 1403 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1404 results[ret] = slot; 1405 if (indices) 1406 indices[ret] = iter.index; 1407 if (++ret == max_items) 1408 break; 1409 } 1410 1411 return ret; 1412 } 1413 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1414 1415 /** 1416 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1417 * based on a tag 1418 * @root: radix tree root 1419 * @results: where the results of the lookup are placed 1420 * @first_index: start the lookup from this key 1421 * @max_items: place up to this many items at *results 1422 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1423 * 1424 * Performs an index-ascending scan of the tree for present items which 1425 * have the tag indexed by @tag set. Places the items at *@results and 1426 * returns the number of items which were placed at *@results. 1427 */ 1428 unsigned int 1429 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1430 unsigned long first_index, unsigned int max_items, 1431 unsigned int tag) 1432 { 1433 struct radix_tree_iter iter; 1434 void **slot; 1435 unsigned int ret = 0; 1436 1437 if (unlikely(!max_items)) 1438 return 0; 1439 1440 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1441 results[ret] = rcu_dereference_raw(*slot); 1442 if (!results[ret]) 1443 continue; 1444 if (radix_tree_is_internal_node(results[ret])) { 1445 slot = radix_tree_iter_retry(&iter); 1446 continue; 1447 } 1448 if (++ret == max_items) 1449 break; 1450 } 1451 1452 return ret; 1453 } 1454 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1455 1456 /** 1457 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1458 * radix tree based on a tag 1459 * @root: radix tree root 1460 * @results: where the results of the lookup are placed 1461 * @first_index: start the lookup from this key 1462 * @max_items: place up to this many items at *results 1463 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1464 * 1465 * Performs an index-ascending scan of the tree for present items which 1466 * have the tag indexed by @tag set. Places the slots at *@results and 1467 * returns the number of slots which were placed at *@results. 1468 */ 1469 unsigned int 1470 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1471 unsigned long first_index, unsigned int max_items, 1472 unsigned int tag) 1473 { 1474 struct radix_tree_iter iter; 1475 void **slot; 1476 unsigned int ret = 0; 1477 1478 if (unlikely(!max_items)) 1479 return 0; 1480 1481 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1482 results[ret] = slot; 1483 if (++ret == max_items) 1484 break; 1485 } 1486 1487 return ret; 1488 } 1489 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1490 1491 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1492 #include <linux/sched.h> /* for cond_resched() */ 1493 1494 struct locate_info { 1495 unsigned long found_index; 1496 bool stop; 1497 }; 1498 1499 /* 1500 * This linear search is at present only useful to shmem_unuse_inode(). 1501 */ 1502 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1503 unsigned long index, struct locate_info *info) 1504 { 1505 unsigned long i; 1506 1507 do { 1508 unsigned int shift = slot->shift; 1509 1510 for (i = (index >> shift) & RADIX_TREE_MAP_MASK; 1511 i < RADIX_TREE_MAP_SIZE; 1512 i++, index += (1UL << shift)) { 1513 struct radix_tree_node *node = 1514 rcu_dereference_raw(slot->slots[i]); 1515 if (node == RADIX_TREE_RETRY) 1516 goto out; 1517 if (!radix_tree_is_internal_node(node)) { 1518 if (node == item) { 1519 info->found_index = index; 1520 info->stop = true; 1521 goto out; 1522 } 1523 continue; 1524 } 1525 node = entry_to_node(node); 1526 if (is_sibling_entry(slot, node)) 1527 continue; 1528 slot = node; 1529 break; 1530 } 1531 } while (i < RADIX_TREE_MAP_SIZE); 1532 1533 out: 1534 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE)) 1535 info->stop = true; 1536 return index; 1537 } 1538 1539 /** 1540 * radix_tree_locate_item - search through radix tree for item 1541 * @root: radix tree root 1542 * @item: item to be found 1543 * 1544 * Returns index where item was found, or -1 if not found. 1545 * Caller must hold no lock (since this time-consuming function needs 1546 * to be preemptible), and must check afterwards if item is still there. 1547 */ 1548 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1549 { 1550 struct radix_tree_node *node; 1551 unsigned long max_index; 1552 unsigned long cur_index = 0; 1553 struct locate_info info = { 1554 .found_index = -1, 1555 .stop = false, 1556 }; 1557 1558 do { 1559 rcu_read_lock(); 1560 node = rcu_dereference_raw(root->rnode); 1561 if (!radix_tree_is_internal_node(node)) { 1562 rcu_read_unlock(); 1563 if (node == item) 1564 info.found_index = 0; 1565 break; 1566 } 1567 1568 node = entry_to_node(node); 1569 1570 max_index = node_maxindex(node); 1571 if (cur_index > max_index) { 1572 rcu_read_unlock(); 1573 break; 1574 } 1575 1576 cur_index = __locate(node, item, cur_index, &info); 1577 rcu_read_unlock(); 1578 cond_resched(); 1579 } while (!info.stop && cur_index <= max_index); 1580 1581 return info.found_index; 1582 } 1583 #else 1584 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1585 { 1586 return -1; 1587 } 1588 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1589 1590 /** 1591 * __radix_tree_delete_node - try to free node after clearing a slot 1592 * @root: radix tree root 1593 * @node: node containing @index 1594 * 1595 * After clearing the slot at @index in @node from radix tree 1596 * rooted at @root, call this function to attempt freeing the 1597 * node and shrinking the tree. 1598 * 1599 * Returns %true if @node was freed, %false otherwise. 1600 */ 1601 bool __radix_tree_delete_node(struct radix_tree_root *root, 1602 struct radix_tree_node *node) 1603 { 1604 return delete_node(root, node, NULL, NULL); 1605 } 1606 1607 static inline void delete_sibling_entries(struct radix_tree_node *node, 1608 void *ptr, unsigned offset) 1609 { 1610 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1611 int i; 1612 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 1613 if (node->slots[offset + i] != ptr) 1614 break; 1615 node->slots[offset + i] = NULL; 1616 node->count--; 1617 } 1618 #endif 1619 } 1620 1621 /** 1622 * radix_tree_delete_item - delete an item from a radix tree 1623 * @root: radix tree root 1624 * @index: index key 1625 * @item: expected item 1626 * 1627 * Remove @item at @index from the radix tree rooted at @root. 1628 * 1629 * Returns the address of the deleted item, or NULL if it was not present 1630 * or the entry at the given @index was not @item. 1631 */ 1632 void *radix_tree_delete_item(struct radix_tree_root *root, 1633 unsigned long index, void *item) 1634 { 1635 struct radix_tree_node *node; 1636 unsigned int offset; 1637 void **slot; 1638 void *entry; 1639 int tag; 1640 1641 entry = __radix_tree_lookup(root, index, &node, &slot); 1642 if (!entry) 1643 return NULL; 1644 1645 if (item && entry != item) 1646 return NULL; 1647 1648 if (!node) { 1649 root_tag_clear_all(root); 1650 root->rnode = NULL; 1651 return entry; 1652 } 1653 1654 offset = get_slot_offset(node, slot); 1655 1656 /* Clear all tags associated with the item to be deleted. */ 1657 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1658 node_tag_clear(root, node, tag, offset); 1659 1660 delete_sibling_entries(node, node_to_entry(slot), offset); 1661 __radix_tree_replace(root, node, slot, NULL, NULL, NULL); 1662 1663 return entry; 1664 } 1665 EXPORT_SYMBOL(radix_tree_delete_item); 1666 1667 /** 1668 * radix_tree_delete - delete an item from a radix tree 1669 * @root: radix tree root 1670 * @index: index key 1671 * 1672 * Remove the item at @index from the radix tree rooted at @root. 1673 * 1674 * Returns the address of the deleted item, or NULL if it was not present. 1675 */ 1676 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1677 { 1678 return radix_tree_delete_item(root, index, NULL); 1679 } 1680 EXPORT_SYMBOL(radix_tree_delete); 1681 1682 void radix_tree_clear_tags(struct radix_tree_root *root, 1683 struct radix_tree_node *node, 1684 void **slot) 1685 { 1686 if (node) { 1687 unsigned int tag, offset = get_slot_offset(node, slot); 1688 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1689 node_tag_clear(root, node, tag, offset); 1690 } else { 1691 /* Clear root node tags */ 1692 root->gfp_mask &= __GFP_BITS_MASK; 1693 } 1694 } 1695 1696 /** 1697 * radix_tree_tagged - test whether any items in the tree are tagged 1698 * @root: radix tree root 1699 * @tag: tag to test 1700 */ 1701 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1702 { 1703 return root_tag_get(root, tag); 1704 } 1705 EXPORT_SYMBOL(radix_tree_tagged); 1706 1707 static void 1708 radix_tree_node_ctor(void *arg) 1709 { 1710 struct radix_tree_node *node = arg; 1711 1712 memset(node, 0, sizeof(*node)); 1713 INIT_LIST_HEAD(&node->private_list); 1714 } 1715 1716 static __init unsigned long __maxindex(unsigned int height) 1717 { 1718 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1719 int shift = RADIX_TREE_INDEX_BITS - width; 1720 1721 if (shift < 0) 1722 return ~0UL; 1723 if (shift >= BITS_PER_LONG) 1724 return 0UL; 1725 return ~0UL >> shift; 1726 } 1727 1728 static __init void radix_tree_init_maxnodes(void) 1729 { 1730 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; 1731 unsigned int i, j; 1732 1733 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1734 height_to_maxindex[i] = __maxindex(i); 1735 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { 1736 for (j = i; j > 0; j--) 1737 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; 1738 } 1739 } 1740 1741 static int radix_tree_callback(struct notifier_block *nfb, 1742 unsigned long action, void *hcpu) 1743 { 1744 int cpu = (long)hcpu; 1745 struct radix_tree_preload *rtp; 1746 struct radix_tree_node *node; 1747 1748 /* Free per-cpu pool of preloaded nodes */ 1749 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1750 rtp = &per_cpu(radix_tree_preloads, cpu); 1751 while (rtp->nr) { 1752 node = rtp->nodes; 1753 rtp->nodes = node->private_data; 1754 kmem_cache_free(radix_tree_node_cachep, node); 1755 rtp->nr--; 1756 } 1757 } 1758 return NOTIFY_OK; 1759 } 1760 1761 void __init radix_tree_init(void) 1762 { 1763 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1764 sizeof(struct radix_tree_node), 0, 1765 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1766 radix_tree_node_ctor); 1767 radix_tree_init_maxnodes(); 1768 hotcpu_notifier(radix_tree_callback, 0); 1769 } 1770