1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 #ifdef CONFIG_KASAN_STACK 150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 151 #define noinline_for_kasan noinline_for_stack 152 #else 153 #define noinline_for_kasan inline 154 #endif 155 156 /* Functions */ 157 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 158 { 159 return kmem_cache_alloc(maple_node_cache, gfp); 160 } 161 162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 163 { 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 165 } 166 167 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 168 { 169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 170 } 171 172 static void mt_free_rcu(struct rcu_head *head) 173 { 174 struct maple_node *node = container_of(head, struct maple_node, rcu); 175 176 kmem_cache_free(maple_node_cache, node); 177 } 178 179 /* 180 * ma_free_rcu() - Use rcu callback to free a maple node 181 * @node: The node to free 182 * 183 * The maple tree uses the parent pointer to indicate this node is no longer in 184 * use and will be freed. 185 */ 186 static void ma_free_rcu(struct maple_node *node) 187 { 188 WARN_ON(node->parent != ma_parent_ptr(node)); 189 call_rcu(&node->rcu, mt_free_rcu); 190 } 191 192 static void mas_set_height(struct ma_state *mas) 193 { 194 unsigned int new_flags = mas->tree->ma_flags; 195 196 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 197 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 199 mas->tree->ma_flags = new_flags; 200 } 201 202 static unsigned int mas_mt_height(struct ma_state *mas) 203 { 204 return mt_height(mas->tree); 205 } 206 207 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 208 { 209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 210 MAPLE_NODE_TYPE_MASK; 211 } 212 213 static inline bool ma_is_dense(const enum maple_type type) 214 { 215 return type < maple_leaf_64; 216 } 217 218 static inline bool ma_is_leaf(const enum maple_type type) 219 { 220 return type < maple_range_64; 221 } 222 223 static inline bool mte_is_leaf(const struct maple_enode *entry) 224 { 225 return ma_is_leaf(mte_node_type(entry)); 226 } 227 228 /* 229 * We also reserve values with the bottom two bits set to '10' which are 230 * below 4096 231 */ 232 static inline bool mt_is_reserved(const void *entry) 233 { 234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 235 xa_is_internal(entry); 236 } 237 238 static inline void mas_set_err(struct ma_state *mas, long err) 239 { 240 mas->node = MA_ERROR(err); 241 } 242 243 static inline bool mas_is_ptr(const struct ma_state *mas) 244 { 245 return mas->node == MAS_ROOT; 246 } 247 248 static inline bool mas_is_start(const struct ma_state *mas) 249 { 250 return mas->node == MAS_START; 251 } 252 253 bool mas_is_err(struct ma_state *mas) 254 { 255 return xa_is_err(mas->node); 256 } 257 258 static inline bool mas_searchable(struct ma_state *mas) 259 { 260 if (mas_is_none(mas)) 261 return false; 262 263 if (mas_is_ptr(mas)) 264 return false; 265 266 return true; 267 } 268 269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 270 { 271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 272 } 273 274 /* 275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 276 * @entry: The maple encoded node 277 * 278 * Return: a maple topiary pointer 279 */ 280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 281 { 282 return (struct maple_topiary *) 283 ((unsigned long)entry & ~MAPLE_NODE_MASK); 284 } 285 286 /* 287 * mas_mn() - Get the maple state node. 288 * @mas: The maple state 289 * 290 * Return: the maple node (not encoded - bare pointer). 291 */ 292 static inline struct maple_node *mas_mn(const struct ma_state *mas) 293 { 294 return mte_to_node(mas->node); 295 } 296 297 /* 298 * mte_set_node_dead() - Set a maple encoded node as dead. 299 * @mn: The maple encoded node. 300 */ 301 static inline void mte_set_node_dead(struct maple_enode *mn) 302 { 303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 304 smp_wmb(); /* Needed for RCU */ 305 } 306 307 /* Bit 1 indicates the root is a node */ 308 #define MAPLE_ROOT_NODE 0x02 309 /* maple_type stored bit 3-6 */ 310 #define MAPLE_ENODE_TYPE_SHIFT 0x03 311 /* Bit 2 means a NULL somewhere below */ 312 #define MAPLE_ENODE_NULL 0x04 313 314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 315 enum maple_type type) 316 { 317 return (void *)((unsigned long)node | 318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 319 } 320 321 static inline void *mte_mk_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_safe_root(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 329 } 330 331 static inline void *mte_set_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 334 } 335 336 static inline void *mte_clear_full(const struct maple_enode *node) 337 { 338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 339 } 340 341 static inline bool mte_has_null(const struct maple_enode *node) 342 { 343 return (unsigned long)node & MAPLE_ENODE_NULL; 344 } 345 346 static inline bool ma_is_root(struct maple_node *node) 347 { 348 return ((unsigned long)node->parent & MA_ROOT_PARENT); 349 } 350 351 static inline bool mte_is_root(const struct maple_enode *node) 352 { 353 return ma_is_root(mte_to_node(node)); 354 } 355 356 static inline bool mas_is_root_limits(const struct ma_state *mas) 357 { 358 return !mas->min && mas->max == ULONG_MAX; 359 } 360 361 static inline bool mt_is_alloc(struct maple_tree *mt) 362 { 363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 364 } 365 366 /* 367 * The Parent Pointer 368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 370 * bit values need an extra bit to store the offset. This extra bit comes from 371 * a reuse of the last bit in the node type. This is possible by using bit 1 to 372 * indicate if bit 2 is part of the type or the slot. 373 * 374 * Note types: 375 * 0x??1 = Root 376 * 0x?00 = 16 bit nodes 377 * 0x010 = 32 bit nodes 378 * 0x110 = 64 bit nodes 379 * 380 * Slot size and alignment 381 * 0b??1 : Root 382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 385 */ 386 387 #define MAPLE_PARENT_ROOT 0x01 388 389 #define MAPLE_PARENT_SLOT_SHIFT 0x03 390 #define MAPLE_PARENT_SLOT_MASK 0xF8 391 392 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 393 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 394 395 #define MAPLE_PARENT_RANGE64 0x06 396 #define MAPLE_PARENT_RANGE32 0x04 397 #define MAPLE_PARENT_NOT_RANGE16 0x02 398 399 /* 400 * mte_parent_shift() - Get the parent shift for the slot storage. 401 * @parent: The parent pointer cast as an unsigned long 402 * Return: The shift into that pointer to the star to of the slot 403 */ 404 static inline unsigned long mte_parent_shift(unsigned long parent) 405 { 406 /* Note bit 1 == 0 means 16B */ 407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 408 return MAPLE_PARENT_SLOT_SHIFT; 409 410 return MAPLE_PARENT_16B_SLOT_SHIFT; 411 } 412 413 /* 414 * mte_parent_slot_mask() - Get the slot mask for the parent. 415 * @parent: The parent pointer cast as an unsigned long. 416 * Return: The slot mask for that parent. 417 */ 418 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 419 { 420 /* Note bit 1 == 0 means 16B */ 421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 422 return MAPLE_PARENT_SLOT_MASK; 423 424 return MAPLE_PARENT_16B_SLOT_MASK; 425 } 426 427 /* 428 * mas_parent_type() - Return the maple_type of the parent from the stored 429 * parent type. 430 * @mas: The maple state 431 * @enode: The maple_enode to extract the parent's enum 432 * Return: The node->parent maple_type 433 */ 434 static inline 435 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 436 { 437 unsigned long p_type; 438 439 p_type = (unsigned long)mte_to_node(enode)->parent; 440 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 441 return 0; 442 443 p_type &= MAPLE_NODE_MASK; 444 p_type &= ~mte_parent_slot_mask(p_type); 445 switch (p_type) { 446 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 447 if (mt_is_alloc(mas->tree)) 448 return maple_arange_64; 449 return maple_range_64; 450 } 451 452 return 0; 453 } 454 455 /* 456 * mas_set_parent() - Set the parent node and encode the slot 457 * @enode: The encoded maple node. 458 * @parent: The encoded maple node that is the parent of @enode. 459 * @slot: The slot that @enode resides in @parent. 460 * 461 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 462 * parent type. 463 */ 464 static inline 465 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 466 const struct maple_enode *parent, unsigned char slot) 467 { 468 unsigned long val = (unsigned long)parent; 469 unsigned long shift; 470 unsigned long type; 471 enum maple_type p_type = mte_node_type(parent); 472 473 MAS_BUG_ON(mas, p_type == maple_dense); 474 MAS_BUG_ON(mas, p_type == maple_leaf_64); 475 476 switch (p_type) { 477 case maple_range_64: 478 case maple_arange_64: 479 shift = MAPLE_PARENT_SLOT_SHIFT; 480 type = MAPLE_PARENT_RANGE64; 481 break; 482 default: 483 case maple_dense: 484 case maple_leaf_64: 485 shift = type = 0; 486 break; 487 } 488 489 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 490 val |= (slot << shift) | type; 491 mte_to_node(enode)->parent = ma_parent_ptr(val); 492 } 493 494 /* 495 * mte_parent_slot() - get the parent slot of @enode. 496 * @enode: The encoded maple node. 497 * 498 * Return: The slot in the parent node where @enode resides. 499 */ 500 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 501 { 502 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 503 504 if (val & MA_ROOT_PARENT) 505 return 0; 506 507 /* 508 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 509 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 510 */ 511 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 512 } 513 514 /* 515 * mte_parent() - Get the parent of @node. 516 * @node: The encoded maple node. 517 * 518 * Return: The parent maple node. 519 */ 520 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 521 { 522 return (void *)((unsigned long) 523 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 524 } 525 526 /* 527 * ma_dead_node() - check if the @enode is dead. 528 * @enode: The encoded maple node 529 * 530 * Return: true if dead, false otherwise. 531 */ 532 static inline bool ma_dead_node(const struct maple_node *node) 533 { 534 struct maple_node *parent; 535 536 /* Do not reorder reads from the node prior to the parent check */ 537 smp_rmb(); 538 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 539 return (parent == node); 540 } 541 542 /* 543 * mte_dead_node() - check if the @enode is dead. 544 * @enode: The encoded maple node 545 * 546 * Return: true if dead, false otherwise. 547 */ 548 static inline bool mte_dead_node(const struct maple_enode *enode) 549 { 550 struct maple_node *parent, *node; 551 552 node = mte_to_node(enode); 553 /* Do not reorder reads from the node prior to the parent check */ 554 smp_rmb(); 555 parent = mte_parent(enode); 556 return (parent == node); 557 } 558 559 /* 560 * mas_allocated() - Get the number of nodes allocated in a maple state. 561 * @mas: The maple state 562 * 563 * The ma_state alloc member is overloaded to hold a pointer to the first 564 * allocated node or to the number of requested nodes to allocate. If bit 0 is 565 * set, then the alloc contains the number of requested nodes. If there is an 566 * allocated node, then the total allocated nodes is in that node. 567 * 568 * Return: The total number of nodes allocated 569 */ 570 static inline unsigned long mas_allocated(const struct ma_state *mas) 571 { 572 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 573 return 0; 574 575 return mas->alloc->total; 576 } 577 578 /* 579 * mas_set_alloc_req() - Set the requested number of allocations. 580 * @mas: the maple state 581 * @count: the number of allocations. 582 * 583 * The requested number of allocations is either in the first allocated node, 584 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 585 * no allocated node. Set the request either in the node or do the necessary 586 * encoding to store in @mas->alloc directly. 587 */ 588 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 589 { 590 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 591 if (!count) 592 mas->alloc = NULL; 593 else 594 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 595 return; 596 } 597 598 mas->alloc->request_count = count; 599 } 600 601 /* 602 * mas_alloc_req() - get the requested number of allocations. 603 * @mas: The maple state 604 * 605 * The alloc count is either stored directly in @mas, or in 606 * @mas->alloc->request_count if there is at least one node allocated. Decode 607 * the request count if it's stored directly in @mas->alloc. 608 * 609 * Return: The allocation request count. 610 */ 611 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 612 { 613 if ((unsigned long)mas->alloc & 0x1) 614 return (unsigned long)(mas->alloc) >> 1; 615 else if (mas->alloc) 616 return mas->alloc->request_count; 617 return 0; 618 } 619 620 /* 621 * ma_pivots() - Get a pointer to the maple node pivots. 622 * @node - the maple node 623 * @type - the node type 624 * 625 * In the event of a dead node, this array may be %NULL 626 * 627 * Return: A pointer to the maple node pivots 628 */ 629 static inline unsigned long *ma_pivots(struct maple_node *node, 630 enum maple_type type) 631 { 632 switch (type) { 633 case maple_arange_64: 634 return node->ma64.pivot; 635 case maple_range_64: 636 case maple_leaf_64: 637 return node->mr64.pivot; 638 case maple_dense: 639 return NULL; 640 } 641 return NULL; 642 } 643 644 /* 645 * ma_gaps() - Get a pointer to the maple node gaps. 646 * @node - the maple node 647 * @type - the node type 648 * 649 * Return: A pointer to the maple node gaps 650 */ 651 static inline unsigned long *ma_gaps(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.gap; 657 case maple_range_64: 658 case maple_leaf_64: 659 case maple_dense: 660 return NULL; 661 } 662 return NULL; 663 } 664 665 /* 666 * mas_pivot() - Get the pivot at @piv of the maple encoded node. 667 * @mas: The maple state. 668 * @piv: The pivot. 669 * 670 * Return: the pivot at @piv of @mn. 671 */ 672 static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv) 673 { 674 struct maple_node *node = mas_mn(mas); 675 enum maple_type type = mte_node_type(mas->node); 676 677 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) { 678 mas_set_err(mas, -EIO); 679 return 0; 680 } 681 682 switch (type) { 683 case maple_arange_64: 684 return node->ma64.pivot[piv]; 685 case maple_range_64: 686 case maple_leaf_64: 687 return node->mr64.pivot[piv]; 688 case maple_dense: 689 return 0; 690 } 691 return 0; 692 } 693 694 /* 695 * mas_safe_pivot() - get the pivot at @piv or mas->max. 696 * @mas: The maple state 697 * @pivots: The pointer to the maple node pivots 698 * @piv: The pivot to fetch 699 * @type: The maple node type 700 * 701 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 702 * otherwise. 703 */ 704 static inline unsigned long 705 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 706 unsigned char piv, enum maple_type type) 707 { 708 if (piv >= mt_pivots[type]) 709 return mas->max; 710 711 return pivots[piv]; 712 } 713 714 /* 715 * mas_safe_min() - Return the minimum for a given offset. 716 * @mas: The maple state 717 * @pivots: The pointer to the maple node pivots 718 * @offset: The offset into the pivot array 719 * 720 * Return: The minimum range value that is contained in @offset. 721 */ 722 static inline unsigned long 723 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 724 { 725 if (likely(offset)) 726 return pivots[offset - 1] + 1; 727 728 return mas->min; 729 } 730 731 /* 732 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 733 * @mn: The encoded maple node 734 * @piv: The pivot offset 735 * @val: The value of the pivot 736 */ 737 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 738 unsigned long val) 739 { 740 struct maple_node *node = mte_to_node(mn); 741 enum maple_type type = mte_node_type(mn); 742 743 BUG_ON(piv >= mt_pivots[type]); 744 switch (type) { 745 default: 746 case maple_range_64: 747 case maple_leaf_64: 748 node->mr64.pivot[piv] = val; 749 break; 750 case maple_arange_64: 751 node->ma64.pivot[piv] = val; 752 break; 753 case maple_dense: 754 break; 755 } 756 757 } 758 759 /* 760 * ma_slots() - Get a pointer to the maple node slots. 761 * @mn: The maple node 762 * @mt: The maple node type 763 * 764 * Return: A pointer to the maple node slots 765 */ 766 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 767 { 768 switch (mt) { 769 default: 770 case maple_arange_64: 771 return mn->ma64.slot; 772 case maple_range_64: 773 case maple_leaf_64: 774 return mn->mr64.slot; 775 case maple_dense: 776 return mn->slot; 777 } 778 } 779 780 static inline bool mt_write_locked(const struct maple_tree *mt) 781 { 782 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : 783 lockdep_is_held(&mt->ma_lock); 784 } 785 786 static inline bool mt_locked(const struct maple_tree *mt) 787 { 788 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 789 lockdep_is_held(&mt->ma_lock); 790 } 791 792 static inline void *mt_slot(const struct maple_tree *mt, 793 void __rcu **slots, unsigned char offset) 794 { 795 return rcu_dereference_check(slots[offset], mt_locked(mt)); 796 } 797 798 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots, 799 unsigned char offset) 800 { 801 return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); 802 } 803 /* 804 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 805 * @mas: The maple state 806 * @slots: The pointer to the slots 807 * @offset: The offset into the slots array to fetch 808 * 809 * Return: The entry stored in @slots at the @offset. 810 */ 811 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 812 unsigned char offset) 813 { 814 return mt_slot_locked(mas->tree, slots, offset); 815 } 816 817 /* 818 * mas_slot() - Get the slot value when not holding the maple tree lock. 819 * @mas: The maple state 820 * @slots: The pointer to the slots 821 * @offset: The offset into the slots array to fetch 822 * 823 * Return: The entry stored in @slots at the @offset 824 */ 825 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 826 unsigned char offset) 827 { 828 return mt_slot(mas->tree, slots, offset); 829 } 830 831 /* 832 * mas_root() - Get the maple tree root. 833 * @mas: The maple state. 834 * 835 * Return: The pointer to the root of the tree 836 */ 837 static inline void *mas_root(struct ma_state *mas) 838 { 839 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 840 } 841 842 static inline void *mt_root_locked(struct maple_tree *mt) 843 { 844 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); 845 } 846 847 /* 848 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 849 * @mas: The maple state. 850 * 851 * Return: The pointer to the root of the tree 852 */ 853 static inline void *mas_root_locked(struct ma_state *mas) 854 { 855 return mt_root_locked(mas->tree); 856 } 857 858 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 859 enum maple_type mt) 860 { 861 switch (mt) { 862 case maple_arange_64: 863 return &mn->ma64.meta; 864 default: 865 return &mn->mr64.meta; 866 } 867 } 868 869 /* 870 * ma_set_meta() - Set the metadata information of a node. 871 * @mn: The maple node 872 * @mt: The maple node type 873 * @offset: The offset of the highest sub-gap in this node. 874 * @end: The end of the data in this node. 875 */ 876 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 877 unsigned char offset, unsigned char end) 878 { 879 struct maple_metadata *meta = ma_meta(mn, mt); 880 881 meta->gap = offset; 882 meta->end = end; 883 } 884 885 /* 886 * mt_clear_meta() - clear the metadata information of a node, if it exists 887 * @mt: The maple tree 888 * @mn: The maple node 889 * @type: The maple node type 890 * @offset: The offset of the highest sub-gap in this node. 891 * @end: The end of the data in this node. 892 */ 893 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 894 enum maple_type type) 895 { 896 struct maple_metadata *meta; 897 unsigned long *pivots; 898 void __rcu **slots; 899 void *next; 900 901 switch (type) { 902 case maple_range_64: 903 pivots = mn->mr64.pivot; 904 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 905 slots = mn->mr64.slot; 906 next = mt_slot_locked(mt, slots, 907 MAPLE_RANGE64_SLOTS - 1); 908 if (unlikely((mte_to_node(next) && 909 mte_node_type(next)))) 910 return; /* no metadata, could be node */ 911 } 912 fallthrough; 913 case maple_arange_64: 914 meta = ma_meta(mn, type); 915 break; 916 default: 917 return; 918 } 919 920 meta->gap = 0; 921 meta->end = 0; 922 } 923 924 /* 925 * ma_meta_end() - Get the data end of a node from the metadata 926 * @mn: The maple node 927 * @mt: The maple node type 928 */ 929 static inline unsigned char ma_meta_end(struct maple_node *mn, 930 enum maple_type mt) 931 { 932 struct maple_metadata *meta = ma_meta(mn, mt); 933 934 return meta->end; 935 } 936 937 /* 938 * ma_meta_gap() - Get the largest gap location of a node from the metadata 939 * @mn: The maple node 940 * @mt: The maple node type 941 */ 942 static inline unsigned char ma_meta_gap(struct maple_node *mn, 943 enum maple_type mt) 944 { 945 return mn->ma64.meta.gap; 946 } 947 948 /* 949 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 950 * @mn: The maple node 951 * @mn: The maple node type 952 * @offset: The location of the largest gap. 953 */ 954 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 955 unsigned char offset) 956 { 957 958 struct maple_metadata *meta = ma_meta(mn, mt); 959 960 meta->gap = offset; 961 } 962 963 /* 964 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 965 * @mat - the ma_topiary, a linked list of dead nodes. 966 * @dead_enode - the node to be marked as dead and added to the tail of the list 967 * 968 * Add the @dead_enode to the linked list in @mat. 969 */ 970 static inline void mat_add(struct ma_topiary *mat, 971 struct maple_enode *dead_enode) 972 { 973 mte_set_node_dead(dead_enode); 974 mte_to_mat(dead_enode)->next = NULL; 975 if (!mat->tail) { 976 mat->tail = mat->head = dead_enode; 977 return; 978 } 979 980 mte_to_mat(mat->tail)->next = dead_enode; 981 mat->tail = dead_enode; 982 } 983 984 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 985 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 986 987 /* 988 * mas_mat_free() - Free all nodes in a dead list. 989 * @mas - the maple state 990 * @mat - the ma_topiary linked list of dead nodes to free. 991 * 992 * Free walk a dead list. 993 */ 994 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 995 { 996 struct maple_enode *next; 997 998 while (mat->head) { 999 next = mte_to_mat(mat->head)->next; 1000 mas_free(mas, mat->head); 1001 mat->head = next; 1002 } 1003 } 1004 1005 /* 1006 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 1007 * @mas - the maple state 1008 * @mat - the ma_topiary linked list of dead nodes to free. 1009 * 1010 * Destroy walk a dead list. 1011 */ 1012 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 1013 { 1014 struct maple_enode *next; 1015 1016 while (mat->head) { 1017 next = mte_to_mat(mat->head)->next; 1018 mte_destroy_walk(mat->head, mat->mtree); 1019 mat->head = next; 1020 } 1021 } 1022 /* 1023 * mas_descend() - Descend into the slot stored in the ma_state. 1024 * @mas - the maple state. 1025 * 1026 * Note: Not RCU safe, only use in write side or debug code. 1027 */ 1028 static inline void mas_descend(struct ma_state *mas) 1029 { 1030 enum maple_type type; 1031 unsigned long *pivots; 1032 struct maple_node *node; 1033 void __rcu **slots; 1034 1035 node = mas_mn(mas); 1036 type = mte_node_type(mas->node); 1037 pivots = ma_pivots(node, type); 1038 slots = ma_slots(node, type); 1039 1040 if (mas->offset) 1041 mas->min = pivots[mas->offset - 1] + 1; 1042 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1043 mas->node = mas_slot(mas, slots, mas->offset); 1044 } 1045 1046 /* 1047 * mte_set_gap() - Set a maple node gap. 1048 * @mn: The encoded maple node 1049 * @gap: The offset of the gap to set 1050 * @val: The gap value 1051 */ 1052 static inline void mte_set_gap(const struct maple_enode *mn, 1053 unsigned char gap, unsigned long val) 1054 { 1055 switch (mte_node_type(mn)) { 1056 default: 1057 break; 1058 case maple_arange_64: 1059 mte_to_node(mn)->ma64.gap[gap] = val; 1060 break; 1061 } 1062 } 1063 1064 /* 1065 * mas_ascend() - Walk up a level of the tree. 1066 * @mas: The maple state 1067 * 1068 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1069 * may cause several levels of walking up to find the correct min and max. 1070 * May find a dead node which will cause a premature return. 1071 * Return: 1 on dead node, 0 otherwise 1072 */ 1073 static int mas_ascend(struct ma_state *mas) 1074 { 1075 struct maple_enode *p_enode; /* parent enode. */ 1076 struct maple_enode *a_enode; /* ancestor enode. */ 1077 struct maple_node *a_node; /* ancestor node. */ 1078 struct maple_node *p_node; /* parent node. */ 1079 unsigned char a_slot; 1080 enum maple_type a_type; 1081 unsigned long min, max; 1082 unsigned long *pivots; 1083 bool set_max = false, set_min = false; 1084 1085 a_node = mas_mn(mas); 1086 if (ma_is_root(a_node)) { 1087 mas->offset = 0; 1088 return 0; 1089 } 1090 1091 p_node = mte_parent(mas->node); 1092 if (unlikely(a_node == p_node)) 1093 return 1; 1094 1095 a_type = mas_parent_type(mas, mas->node); 1096 mas->offset = mte_parent_slot(mas->node); 1097 a_enode = mt_mk_node(p_node, a_type); 1098 1099 /* Check to make sure all parent information is still accurate */ 1100 if (p_node != mte_parent(mas->node)) 1101 return 1; 1102 1103 mas->node = a_enode; 1104 1105 if (mte_is_root(a_enode)) { 1106 mas->max = ULONG_MAX; 1107 mas->min = 0; 1108 return 0; 1109 } 1110 1111 if (!mas->min) 1112 set_min = true; 1113 1114 if (mas->max == ULONG_MAX) 1115 set_max = true; 1116 1117 min = 0; 1118 max = ULONG_MAX; 1119 do { 1120 p_enode = a_enode; 1121 a_type = mas_parent_type(mas, p_enode); 1122 a_node = mte_parent(p_enode); 1123 a_slot = mte_parent_slot(p_enode); 1124 a_enode = mt_mk_node(a_node, a_type); 1125 pivots = ma_pivots(a_node, a_type); 1126 1127 if (unlikely(ma_dead_node(a_node))) 1128 return 1; 1129 1130 if (!set_min && a_slot) { 1131 set_min = true; 1132 min = pivots[a_slot - 1] + 1; 1133 } 1134 1135 if (!set_max && a_slot < mt_pivots[a_type]) { 1136 set_max = true; 1137 max = pivots[a_slot]; 1138 } 1139 1140 if (unlikely(ma_dead_node(a_node))) 1141 return 1; 1142 1143 if (unlikely(ma_is_root(a_node))) 1144 break; 1145 1146 } while (!set_min || !set_max); 1147 1148 mas->max = max; 1149 mas->min = min; 1150 return 0; 1151 } 1152 1153 /* 1154 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1155 * @mas: The maple state 1156 * 1157 * Return: A pointer to a maple node. 1158 */ 1159 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1160 { 1161 struct maple_alloc *ret, *node = mas->alloc; 1162 unsigned long total = mas_allocated(mas); 1163 unsigned int req = mas_alloc_req(mas); 1164 1165 /* nothing or a request pending. */ 1166 if (WARN_ON(!total)) 1167 return NULL; 1168 1169 if (total == 1) { 1170 /* single allocation in this ma_state */ 1171 mas->alloc = NULL; 1172 ret = node; 1173 goto single_node; 1174 } 1175 1176 if (node->node_count == 1) { 1177 /* Single allocation in this node. */ 1178 mas->alloc = node->slot[0]; 1179 mas->alloc->total = node->total - 1; 1180 ret = node; 1181 goto new_head; 1182 } 1183 node->total--; 1184 ret = node->slot[--node->node_count]; 1185 node->slot[node->node_count] = NULL; 1186 1187 single_node: 1188 new_head: 1189 if (req) { 1190 req++; 1191 mas_set_alloc_req(mas, req); 1192 } 1193 1194 memset(ret, 0, sizeof(*ret)); 1195 return (struct maple_node *)ret; 1196 } 1197 1198 /* 1199 * mas_push_node() - Push a node back on the maple state allocation. 1200 * @mas: The maple state 1201 * @used: The used maple node 1202 * 1203 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1204 * requested node count as necessary. 1205 */ 1206 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1207 { 1208 struct maple_alloc *reuse = (struct maple_alloc *)used; 1209 struct maple_alloc *head = mas->alloc; 1210 unsigned long count; 1211 unsigned int requested = mas_alloc_req(mas); 1212 1213 count = mas_allocated(mas); 1214 1215 reuse->request_count = 0; 1216 reuse->node_count = 0; 1217 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1218 head->slot[head->node_count++] = reuse; 1219 head->total++; 1220 goto done; 1221 } 1222 1223 reuse->total = 1; 1224 if ((head) && !((unsigned long)head & 0x1)) { 1225 reuse->slot[0] = head; 1226 reuse->node_count = 1; 1227 reuse->total += head->total; 1228 } 1229 1230 mas->alloc = reuse; 1231 done: 1232 if (requested > 1) 1233 mas_set_alloc_req(mas, requested - 1); 1234 } 1235 1236 /* 1237 * mas_alloc_nodes() - Allocate nodes into a maple state 1238 * @mas: The maple state 1239 * @gfp: The GFP Flags 1240 */ 1241 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1242 { 1243 struct maple_alloc *node; 1244 unsigned long allocated = mas_allocated(mas); 1245 unsigned int requested = mas_alloc_req(mas); 1246 unsigned int count; 1247 void **slots = NULL; 1248 unsigned int max_req = 0; 1249 1250 if (!requested) 1251 return; 1252 1253 mas_set_alloc_req(mas, 0); 1254 if (mas->mas_flags & MA_STATE_PREALLOC) { 1255 if (allocated) 1256 return; 1257 WARN_ON(!allocated); 1258 } 1259 1260 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1261 node = (struct maple_alloc *)mt_alloc_one(gfp); 1262 if (!node) 1263 goto nomem_one; 1264 1265 if (allocated) { 1266 node->slot[0] = mas->alloc; 1267 node->node_count = 1; 1268 } else { 1269 node->node_count = 0; 1270 } 1271 1272 mas->alloc = node; 1273 node->total = ++allocated; 1274 requested--; 1275 } 1276 1277 node = mas->alloc; 1278 node->request_count = 0; 1279 while (requested) { 1280 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1281 slots = (void **)&node->slot[node->node_count]; 1282 max_req = min(requested, max_req); 1283 count = mt_alloc_bulk(gfp, max_req, slots); 1284 if (!count) 1285 goto nomem_bulk; 1286 1287 if (node->node_count == 0) { 1288 node->slot[0]->node_count = 0; 1289 node->slot[0]->request_count = 0; 1290 } 1291 1292 node->node_count += count; 1293 allocated += count; 1294 node = node->slot[0]; 1295 requested -= count; 1296 } 1297 mas->alloc->total = allocated; 1298 return; 1299 1300 nomem_bulk: 1301 /* Clean up potential freed allocations on bulk failure */ 1302 memset(slots, 0, max_req * sizeof(unsigned long)); 1303 nomem_one: 1304 mas_set_alloc_req(mas, requested); 1305 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1306 mas->alloc->total = allocated; 1307 mas_set_err(mas, -ENOMEM); 1308 } 1309 1310 /* 1311 * mas_free() - Free an encoded maple node 1312 * @mas: The maple state 1313 * @used: The encoded maple node to free. 1314 * 1315 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1316 * otherwise. 1317 */ 1318 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1319 { 1320 struct maple_node *tmp = mte_to_node(used); 1321 1322 if (mt_in_rcu(mas->tree)) 1323 ma_free_rcu(tmp); 1324 else 1325 mas_push_node(mas, tmp); 1326 } 1327 1328 /* 1329 * mas_node_count() - Check if enough nodes are allocated and request more if 1330 * there is not enough nodes. 1331 * @mas: The maple state 1332 * @count: The number of nodes needed 1333 * @gfp: the gfp flags 1334 */ 1335 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1336 { 1337 unsigned long allocated = mas_allocated(mas); 1338 1339 if (allocated < count) { 1340 mas_set_alloc_req(mas, count - allocated); 1341 mas_alloc_nodes(mas, gfp); 1342 } 1343 } 1344 1345 /* 1346 * mas_node_count() - Check if enough nodes are allocated and request more if 1347 * there is not enough nodes. 1348 * @mas: The maple state 1349 * @count: The number of nodes needed 1350 * 1351 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1352 */ 1353 static void mas_node_count(struct ma_state *mas, int count) 1354 { 1355 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1356 } 1357 1358 /* 1359 * mas_start() - Sets up maple state for operations. 1360 * @mas: The maple state. 1361 * 1362 * If mas->node == MAS_START, then set the min, max and depth to 1363 * defaults. 1364 * 1365 * Return: 1366 * - If mas->node is an error or not MAS_START, return NULL. 1367 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1368 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1369 * - If it's a tree: NULL & mas->node == safe root node. 1370 */ 1371 static inline struct maple_enode *mas_start(struct ma_state *mas) 1372 { 1373 if (likely(mas_is_start(mas))) { 1374 struct maple_enode *root; 1375 1376 mas->min = 0; 1377 mas->max = ULONG_MAX; 1378 1379 retry: 1380 mas->depth = 0; 1381 root = mas_root(mas); 1382 /* Tree with nodes */ 1383 if (likely(xa_is_node(root))) { 1384 mas->depth = 1; 1385 mas->node = mte_safe_root(root); 1386 mas->offset = 0; 1387 if (mte_dead_node(mas->node)) 1388 goto retry; 1389 1390 return NULL; 1391 } 1392 1393 /* empty tree */ 1394 if (unlikely(!root)) { 1395 mas->node = MAS_NONE; 1396 mas->offset = MAPLE_NODE_SLOTS; 1397 return NULL; 1398 } 1399 1400 /* Single entry tree */ 1401 mas->node = MAS_ROOT; 1402 mas->offset = MAPLE_NODE_SLOTS; 1403 1404 /* Single entry tree. */ 1405 if (mas->index > 0) 1406 return NULL; 1407 1408 return root; 1409 } 1410 1411 return NULL; 1412 } 1413 1414 /* 1415 * ma_data_end() - Find the end of the data in a node. 1416 * @node: The maple node 1417 * @type: The maple node type 1418 * @pivots: The array of pivots in the node 1419 * @max: The maximum value in the node 1420 * 1421 * Uses metadata to find the end of the data when possible. 1422 * Return: The zero indexed last slot with data (may be null). 1423 */ 1424 static inline unsigned char ma_data_end(struct maple_node *node, 1425 enum maple_type type, 1426 unsigned long *pivots, 1427 unsigned long max) 1428 { 1429 unsigned char offset; 1430 1431 if (!pivots) 1432 return 0; 1433 1434 if (type == maple_arange_64) 1435 return ma_meta_end(node, type); 1436 1437 offset = mt_pivots[type] - 1; 1438 if (likely(!pivots[offset])) 1439 return ma_meta_end(node, type); 1440 1441 if (likely(pivots[offset] == max)) 1442 return offset; 1443 1444 return mt_pivots[type]; 1445 } 1446 1447 /* 1448 * mas_data_end() - Find the end of the data (slot). 1449 * @mas: the maple state 1450 * 1451 * This method is optimized to check the metadata of a node if the node type 1452 * supports data end metadata. 1453 * 1454 * Return: The zero indexed last slot with data (may be null). 1455 */ 1456 static inline unsigned char mas_data_end(struct ma_state *mas) 1457 { 1458 enum maple_type type; 1459 struct maple_node *node; 1460 unsigned char offset; 1461 unsigned long *pivots; 1462 1463 type = mte_node_type(mas->node); 1464 node = mas_mn(mas); 1465 if (type == maple_arange_64) 1466 return ma_meta_end(node, type); 1467 1468 pivots = ma_pivots(node, type); 1469 if (unlikely(ma_dead_node(node))) 1470 return 0; 1471 1472 offset = mt_pivots[type] - 1; 1473 if (likely(!pivots[offset])) 1474 return ma_meta_end(node, type); 1475 1476 if (likely(pivots[offset] == mas->max)) 1477 return offset; 1478 1479 return mt_pivots[type]; 1480 } 1481 1482 /* 1483 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1484 * @mas - the maple state 1485 * 1486 * Return: The maximum gap in the leaf. 1487 */ 1488 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1489 { 1490 enum maple_type mt; 1491 unsigned long pstart, gap, max_gap; 1492 struct maple_node *mn; 1493 unsigned long *pivots; 1494 void __rcu **slots; 1495 unsigned char i; 1496 unsigned char max_piv; 1497 1498 mt = mte_node_type(mas->node); 1499 mn = mas_mn(mas); 1500 slots = ma_slots(mn, mt); 1501 max_gap = 0; 1502 if (unlikely(ma_is_dense(mt))) { 1503 gap = 0; 1504 for (i = 0; i < mt_slots[mt]; i++) { 1505 if (slots[i]) { 1506 if (gap > max_gap) 1507 max_gap = gap; 1508 gap = 0; 1509 } else { 1510 gap++; 1511 } 1512 } 1513 if (gap > max_gap) 1514 max_gap = gap; 1515 return max_gap; 1516 } 1517 1518 /* 1519 * Check the first implied pivot optimizes the loop below and slot 1 may 1520 * be skipped if there is a gap in slot 0. 1521 */ 1522 pivots = ma_pivots(mn, mt); 1523 if (likely(!slots[0])) { 1524 max_gap = pivots[0] - mas->min + 1; 1525 i = 2; 1526 } else { 1527 i = 1; 1528 } 1529 1530 /* reduce max_piv as the special case is checked before the loop */ 1531 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1532 /* 1533 * Check end implied pivot which can only be a gap on the right most 1534 * node. 1535 */ 1536 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1537 gap = ULONG_MAX - pivots[max_piv]; 1538 if (gap > max_gap) 1539 max_gap = gap; 1540 } 1541 1542 for (; i <= max_piv; i++) { 1543 /* data == no gap. */ 1544 if (likely(slots[i])) 1545 continue; 1546 1547 pstart = pivots[i - 1]; 1548 gap = pivots[i] - pstart; 1549 if (gap > max_gap) 1550 max_gap = gap; 1551 1552 /* There cannot be two gaps in a row. */ 1553 i++; 1554 } 1555 return max_gap; 1556 } 1557 1558 /* 1559 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1560 * @node: The maple node 1561 * @gaps: The pointer to the gaps 1562 * @mt: The maple node type 1563 * @*off: Pointer to store the offset location of the gap. 1564 * 1565 * Uses the metadata data end to scan backwards across set gaps. 1566 * 1567 * Return: The maximum gap value 1568 */ 1569 static inline unsigned long 1570 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1571 unsigned char *off) 1572 { 1573 unsigned char offset, i; 1574 unsigned long max_gap = 0; 1575 1576 i = offset = ma_meta_end(node, mt); 1577 do { 1578 if (gaps[i] > max_gap) { 1579 max_gap = gaps[i]; 1580 offset = i; 1581 } 1582 } while (i--); 1583 1584 *off = offset; 1585 return max_gap; 1586 } 1587 1588 /* 1589 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1590 * @mas: The maple state. 1591 * 1592 * Return: The gap value. 1593 */ 1594 static inline unsigned long mas_max_gap(struct ma_state *mas) 1595 { 1596 unsigned long *gaps; 1597 unsigned char offset; 1598 enum maple_type mt; 1599 struct maple_node *node; 1600 1601 mt = mte_node_type(mas->node); 1602 if (ma_is_leaf(mt)) 1603 return mas_leaf_max_gap(mas); 1604 1605 node = mas_mn(mas); 1606 MAS_BUG_ON(mas, mt != maple_arange_64); 1607 offset = ma_meta_gap(node, mt); 1608 gaps = ma_gaps(node, mt); 1609 return gaps[offset]; 1610 } 1611 1612 /* 1613 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1614 * @mas: The maple state 1615 * @offset: The gap offset in the parent to set 1616 * @new: The new gap value. 1617 * 1618 * Set the parent gap then continue to set the gap upwards, using the metadata 1619 * of the parent to see if it is necessary to check the node above. 1620 */ 1621 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1622 unsigned long new) 1623 { 1624 unsigned long meta_gap = 0; 1625 struct maple_node *pnode; 1626 struct maple_enode *penode; 1627 unsigned long *pgaps; 1628 unsigned char meta_offset; 1629 enum maple_type pmt; 1630 1631 pnode = mte_parent(mas->node); 1632 pmt = mas_parent_type(mas, mas->node); 1633 penode = mt_mk_node(pnode, pmt); 1634 pgaps = ma_gaps(pnode, pmt); 1635 1636 ascend: 1637 MAS_BUG_ON(mas, pmt != maple_arange_64); 1638 meta_offset = ma_meta_gap(pnode, pmt); 1639 meta_gap = pgaps[meta_offset]; 1640 1641 pgaps[offset] = new; 1642 1643 if (meta_gap == new) 1644 return; 1645 1646 if (offset != meta_offset) { 1647 if (meta_gap > new) 1648 return; 1649 1650 ma_set_meta_gap(pnode, pmt, offset); 1651 } else if (new < meta_gap) { 1652 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1653 ma_set_meta_gap(pnode, pmt, meta_offset); 1654 } 1655 1656 if (ma_is_root(pnode)) 1657 return; 1658 1659 /* Go to the parent node. */ 1660 pnode = mte_parent(penode); 1661 pmt = mas_parent_type(mas, penode); 1662 pgaps = ma_gaps(pnode, pmt); 1663 offset = mte_parent_slot(penode); 1664 penode = mt_mk_node(pnode, pmt); 1665 goto ascend; 1666 } 1667 1668 /* 1669 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1670 * @mas - the maple state. 1671 */ 1672 static inline void mas_update_gap(struct ma_state *mas) 1673 { 1674 unsigned char pslot; 1675 unsigned long p_gap; 1676 unsigned long max_gap; 1677 1678 if (!mt_is_alloc(mas->tree)) 1679 return; 1680 1681 if (mte_is_root(mas->node)) 1682 return; 1683 1684 max_gap = mas_max_gap(mas); 1685 1686 pslot = mte_parent_slot(mas->node); 1687 p_gap = ma_gaps(mte_parent(mas->node), 1688 mas_parent_type(mas, mas->node))[pslot]; 1689 1690 if (p_gap != max_gap) 1691 mas_parent_gap(mas, pslot, max_gap); 1692 } 1693 1694 /* 1695 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1696 * @parent with the slot encoded. 1697 * @mas - the maple state (for the tree) 1698 * @parent - the maple encoded node containing the children. 1699 */ 1700 static inline void mas_adopt_children(struct ma_state *mas, 1701 struct maple_enode *parent) 1702 { 1703 enum maple_type type = mte_node_type(parent); 1704 struct maple_node *node = mas_mn(mas); 1705 void __rcu **slots = ma_slots(node, type); 1706 unsigned long *pivots = ma_pivots(node, type); 1707 struct maple_enode *child; 1708 unsigned char offset; 1709 1710 offset = ma_data_end(node, type, pivots, mas->max); 1711 do { 1712 child = mas_slot_locked(mas, slots, offset); 1713 mas_set_parent(mas, child, parent, offset); 1714 } while (offset--); 1715 } 1716 1717 /* 1718 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old 1719 * node as dead. 1720 * @mas - the maple state with the new node 1721 * @old_enode - The old maple encoded node to replace. 1722 */ 1723 static inline void mas_put_in_tree(struct ma_state *mas, 1724 struct maple_enode *old_enode) 1725 __must_hold(mas->tree->ma_lock) 1726 { 1727 unsigned char offset; 1728 void __rcu **slots; 1729 1730 if (mte_is_root(mas->node)) { 1731 mas_mn(mas)->parent = ma_parent_ptr( 1732 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1733 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1734 mas_set_height(mas); 1735 } else { 1736 1737 offset = mte_parent_slot(mas->node); 1738 slots = ma_slots(mte_parent(mas->node), 1739 mas_parent_type(mas, mas->node)); 1740 rcu_assign_pointer(slots[offset], mas->node); 1741 } 1742 1743 mte_set_node_dead(old_enode); 1744 } 1745 1746 /* 1747 * mas_replace_node() - Replace a node by putting it in the tree, marking it 1748 * dead, and freeing it. 1749 * the parent encoding to locate the maple node in the tree. 1750 * @mas - the ma_state with @mas->node pointing to the new node. 1751 * @old_enode - The old maple encoded node. 1752 */ 1753 static inline void mas_replace_node(struct ma_state *mas, 1754 struct maple_enode *old_enode) 1755 __must_hold(mas->tree->ma_lock) 1756 { 1757 mas_put_in_tree(mas, old_enode); 1758 mas_free(mas, old_enode); 1759 } 1760 1761 /* 1762 * mas_new_child() - Find the new child of a node. 1763 * @mas: the maple state 1764 * @child: the maple state to store the child. 1765 */ 1766 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1767 __must_hold(mas->tree->ma_lock) 1768 { 1769 enum maple_type mt; 1770 unsigned char offset; 1771 unsigned char end; 1772 unsigned long *pivots; 1773 struct maple_enode *entry; 1774 struct maple_node *node; 1775 void __rcu **slots; 1776 1777 mt = mte_node_type(mas->node); 1778 node = mas_mn(mas); 1779 slots = ma_slots(node, mt); 1780 pivots = ma_pivots(node, mt); 1781 end = ma_data_end(node, mt, pivots, mas->max); 1782 for (offset = mas->offset; offset <= end; offset++) { 1783 entry = mas_slot_locked(mas, slots, offset); 1784 if (mte_parent(entry) == node) { 1785 *child = *mas; 1786 mas->offset = offset + 1; 1787 child->offset = offset; 1788 mas_descend(child); 1789 child->offset = 0; 1790 return true; 1791 } 1792 } 1793 return false; 1794 } 1795 1796 /* 1797 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1798 * old data or set b_node->b_end. 1799 * @b_node: the maple_big_node 1800 * @shift: the shift count 1801 */ 1802 static inline void mab_shift_right(struct maple_big_node *b_node, 1803 unsigned char shift) 1804 { 1805 unsigned long size = b_node->b_end * sizeof(unsigned long); 1806 1807 memmove(b_node->pivot + shift, b_node->pivot, size); 1808 memmove(b_node->slot + shift, b_node->slot, size); 1809 if (b_node->type == maple_arange_64) 1810 memmove(b_node->gap + shift, b_node->gap, size); 1811 } 1812 1813 /* 1814 * mab_middle_node() - Check if a middle node is needed (unlikely) 1815 * @b_node: the maple_big_node that contains the data. 1816 * @size: the amount of data in the b_node 1817 * @split: the potential split location 1818 * @slot_count: the size that can be stored in a single node being considered. 1819 * 1820 * Return: true if a middle node is required. 1821 */ 1822 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1823 unsigned char slot_count) 1824 { 1825 unsigned char size = b_node->b_end; 1826 1827 if (size >= 2 * slot_count) 1828 return true; 1829 1830 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1831 return true; 1832 1833 return false; 1834 } 1835 1836 /* 1837 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1838 * @b_node: the maple_big_node with the data 1839 * @split: the suggested split location 1840 * @slot_count: the number of slots in the node being considered. 1841 * 1842 * Return: the split location. 1843 */ 1844 static inline int mab_no_null_split(struct maple_big_node *b_node, 1845 unsigned char split, unsigned char slot_count) 1846 { 1847 if (!b_node->slot[split]) { 1848 /* 1849 * If the split is less than the max slot && the right side will 1850 * still be sufficient, then increment the split on NULL. 1851 */ 1852 if ((split < slot_count - 1) && 1853 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1854 split++; 1855 else 1856 split--; 1857 } 1858 return split; 1859 } 1860 1861 /* 1862 * mab_calc_split() - Calculate the split location and if there needs to be two 1863 * splits. 1864 * @bn: The maple_big_node with the data 1865 * @mid_split: The second split, if required. 0 otherwise. 1866 * 1867 * Return: The first split location. The middle split is set in @mid_split. 1868 */ 1869 static inline int mab_calc_split(struct ma_state *mas, 1870 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1871 { 1872 unsigned char b_end = bn->b_end; 1873 int split = b_end / 2; /* Assume equal split. */ 1874 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1875 1876 /* 1877 * To support gap tracking, all NULL entries are kept together and a node cannot 1878 * end on a NULL entry, with the exception of the left-most leaf. The 1879 * limitation means that the split of a node must be checked for this condition 1880 * and be able to put more data in one direction or the other. 1881 */ 1882 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1883 *mid_split = 0; 1884 split = b_end - mt_min_slots[bn->type]; 1885 1886 if (!ma_is_leaf(bn->type)) 1887 return split; 1888 1889 mas->mas_flags |= MA_STATE_REBALANCE; 1890 if (!bn->slot[split]) 1891 split--; 1892 return split; 1893 } 1894 1895 /* 1896 * Although extremely rare, it is possible to enter what is known as the 3-way 1897 * split scenario. The 3-way split comes about by means of a store of a range 1898 * that overwrites the end and beginning of two full nodes. The result is a set 1899 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1900 * also be located in different parent nodes which are also full. This can 1901 * carry upwards all the way to the root in the worst case. 1902 */ 1903 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1904 split = b_end / 3; 1905 *mid_split = split * 2; 1906 } else { 1907 slot_min = mt_min_slots[bn->type]; 1908 1909 *mid_split = 0; 1910 /* 1911 * Avoid having a range less than the slot count unless it 1912 * causes one node to be deficient. 1913 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1914 */ 1915 while ((split < slot_count - 1) && 1916 ((bn->pivot[split] - min) < slot_count - 1) && 1917 (b_end - split > slot_min)) 1918 split++; 1919 } 1920 1921 /* Avoid ending a node on a NULL entry */ 1922 split = mab_no_null_split(bn, split, slot_count); 1923 1924 if (unlikely(*mid_split)) 1925 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1926 1927 return split; 1928 } 1929 1930 /* 1931 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1932 * and set @b_node->b_end to the next free slot. 1933 * @mas: The maple state 1934 * @mas_start: The starting slot to copy 1935 * @mas_end: The end slot to copy (inclusively) 1936 * @b_node: The maple_big_node to place the data 1937 * @mab_start: The starting location in maple_big_node to store the data. 1938 */ 1939 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1940 unsigned char mas_end, struct maple_big_node *b_node, 1941 unsigned char mab_start) 1942 { 1943 enum maple_type mt; 1944 struct maple_node *node; 1945 void __rcu **slots; 1946 unsigned long *pivots, *gaps; 1947 int i = mas_start, j = mab_start; 1948 unsigned char piv_end; 1949 1950 node = mas_mn(mas); 1951 mt = mte_node_type(mas->node); 1952 pivots = ma_pivots(node, mt); 1953 if (!i) { 1954 b_node->pivot[j] = pivots[i++]; 1955 if (unlikely(i > mas_end)) 1956 goto complete; 1957 j++; 1958 } 1959 1960 piv_end = min(mas_end, mt_pivots[mt]); 1961 for (; i < piv_end; i++, j++) { 1962 b_node->pivot[j] = pivots[i]; 1963 if (unlikely(!b_node->pivot[j])) 1964 break; 1965 1966 if (unlikely(mas->max == b_node->pivot[j])) 1967 goto complete; 1968 } 1969 1970 if (likely(i <= mas_end)) 1971 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1972 1973 complete: 1974 b_node->b_end = ++j; 1975 j -= mab_start; 1976 slots = ma_slots(node, mt); 1977 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1978 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1979 gaps = ma_gaps(node, mt); 1980 memcpy(b_node->gap + mab_start, gaps + mas_start, 1981 sizeof(unsigned long) * j); 1982 } 1983 } 1984 1985 /* 1986 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1987 * @mas: The maple state 1988 * @node: The maple node 1989 * @pivots: pointer to the maple node pivots 1990 * @mt: The maple type 1991 * @end: The assumed end 1992 * 1993 * Note, end may be incremented within this function but not modified at the 1994 * source. This is fine since the metadata is the last thing to be stored in a 1995 * node during a write. 1996 */ 1997 static inline void mas_leaf_set_meta(struct ma_state *mas, 1998 struct maple_node *node, unsigned long *pivots, 1999 enum maple_type mt, unsigned char end) 2000 { 2001 /* There is no room for metadata already */ 2002 if (mt_pivots[mt] <= end) 2003 return; 2004 2005 if (pivots[end] && pivots[end] < mas->max) 2006 end++; 2007 2008 if (end < mt_slots[mt] - 1) 2009 ma_set_meta(node, mt, 0, end); 2010 } 2011 2012 /* 2013 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 2014 * @b_node: the maple_big_node that has the data 2015 * @mab_start: the start location in @b_node. 2016 * @mab_end: The end location in @b_node (inclusively) 2017 * @mas: The maple state with the maple encoded node. 2018 */ 2019 static inline void mab_mas_cp(struct maple_big_node *b_node, 2020 unsigned char mab_start, unsigned char mab_end, 2021 struct ma_state *mas, bool new_max) 2022 { 2023 int i, j = 0; 2024 enum maple_type mt = mte_node_type(mas->node); 2025 struct maple_node *node = mte_to_node(mas->node); 2026 void __rcu **slots = ma_slots(node, mt); 2027 unsigned long *pivots = ma_pivots(node, mt); 2028 unsigned long *gaps = NULL; 2029 unsigned char end; 2030 2031 if (mab_end - mab_start > mt_pivots[mt]) 2032 mab_end--; 2033 2034 if (!pivots[mt_pivots[mt] - 1]) 2035 slots[mt_pivots[mt]] = NULL; 2036 2037 i = mab_start; 2038 do { 2039 pivots[j++] = b_node->pivot[i++]; 2040 } while (i <= mab_end && likely(b_node->pivot[i])); 2041 2042 memcpy(slots, b_node->slot + mab_start, 2043 sizeof(void *) * (i - mab_start)); 2044 2045 if (new_max) 2046 mas->max = b_node->pivot[i - 1]; 2047 2048 end = j - 1; 2049 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2050 unsigned long max_gap = 0; 2051 unsigned char offset = 0; 2052 2053 gaps = ma_gaps(node, mt); 2054 do { 2055 gaps[--j] = b_node->gap[--i]; 2056 if (gaps[j] > max_gap) { 2057 offset = j; 2058 max_gap = gaps[j]; 2059 } 2060 } while (j); 2061 2062 ma_set_meta(node, mt, offset, end); 2063 } else { 2064 mas_leaf_set_meta(mas, node, pivots, mt, end); 2065 } 2066 } 2067 2068 /* 2069 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2070 * @mas: the maple state with the maple encoded node of the sub-tree. 2071 * 2072 * Descend through a sub-tree and adopt children who do not have the correct 2073 * parents set. Follow the parents which have the correct parents as they are 2074 * the new entries which need to be followed to find other incorrectly set 2075 * parents. 2076 */ 2077 static inline void mas_descend_adopt(struct ma_state *mas) 2078 { 2079 struct ma_state list[3], next[3]; 2080 int i, n; 2081 2082 /* 2083 * At each level there may be up to 3 correct parent pointers which indicates 2084 * the new nodes which need to be walked to find any new nodes at a lower level. 2085 */ 2086 2087 for (i = 0; i < 3; i++) { 2088 list[i] = *mas; 2089 list[i].offset = 0; 2090 next[i].offset = 0; 2091 } 2092 next[0] = *mas; 2093 2094 while (!mte_is_leaf(list[0].node)) { 2095 n = 0; 2096 for (i = 0; i < 3; i++) { 2097 if (mas_is_none(&list[i])) 2098 continue; 2099 2100 if (i && list[i-1].node == list[i].node) 2101 continue; 2102 2103 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2104 n++; 2105 2106 mas_adopt_children(&list[i], list[i].node); 2107 } 2108 2109 while (n < 3) 2110 next[n++].node = MAS_NONE; 2111 2112 /* descend by setting the list to the children */ 2113 for (i = 0; i < 3; i++) 2114 list[i] = next[i]; 2115 } 2116 } 2117 2118 /* 2119 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2120 * @mas: The maple state 2121 * @end: The maple node end 2122 * @mt: The maple node type 2123 */ 2124 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2125 enum maple_type mt) 2126 { 2127 if (!(mas->mas_flags & MA_STATE_BULK)) 2128 return; 2129 2130 if (mte_is_root(mas->node)) 2131 return; 2132 2133 if (end > mt_min_slots[mt]) { 2134 mas->mas_flags &= ~MA_STATE_REBALANCE; 2135 return; 2136 } 2137 } 2138 2139 /* 2140 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2141 * data from a maple encoded node. 2142 * @wr_mas: the maple write state 2143 * @b_node: the maple_big_node to fill with data 2144 * @offset_end: the offset to end copying 2145 * 2146 * Return: The actual end of the data stored in @b_node 2147 */ 2148 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2149 struct maple_big_node *b_node, unsigned char offset_end) 2150 { 2151 unsigned char slot; 2152 unsigned char b_end; 2153 /* Possible underflow of piv will wrap back to 0 before use. */ 2154 unsigned long piv; 2155 struct ma_state *mas = wr_mas->mas; 2156 2157 b_node->type = wr_mas->type; 2158 b_end = 0; 2159 slot = mas->offset; 2160 if (slot) { 2161 /* Copy start data up to insert. */ 2162 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2163 b_end = b_node->b_end; 2164 piv = b_node->pivot[b_end - 1]; 2165 } else 2166 piv = mas->min - 1; 2167 2168 if (piv + 1 < mas->index) { 2169 /* Handle range starting after old range */ 2170 b_node->slot[b_end] = wr_mas->content; 2171 if (!wr_mas->content) 2172 b_node->gap[b_end] = mas->index - 1 - piv; 2173 b_node->pivot[b_end++] = mas->index - 1; 2174 } 2175 2176 /* Store the new entry. */ 2177 mas->offset = b_end; 2178 b_node->slot[b_end] = wr_mas->entry; 2179 b_node->pivot[b_end] = mas->last; 2180 2181 /* Appended. */ 2182 if (mas->last >= mas->max) 2183 goto b_end; 2184 2185 /* Handle new range ending before old range ends */ 2186 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2187 if (piv > mas->last) { 2188 if (piv == ULONG_MAX) 2189 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2190 2191 if (offset_end != slot) 2192 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2193 offset_end); 2194 2195 b_node->slot[++b_end] = wr_mas->content; 2196 if (!wr_mas->content) 2197 b_node->gap[b_end] = piv - mas->last + 1; 2198 b_node->pivot[b_end] = piv; 2199 } 2200 2201 slot = offset_end + 1; 2202 if (slot > wr_mas->node_end) 2203 goto b_end; 2204 2205 /* Copy end data to the end of the node. */ 2206 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2207 b_node->b_end--; 2208 return; 2209 2210 b_end: 2211 b_node->b_end = b_end; 2212 } 2213 2214 /* 2215 * mas_prev_sibling() - Find the previous node with the same parent. 2216 * @mas: the maple state 2217 * 2218 * Return: True if there is a previous sibling, false otherwise. 2219 */ 2220 static inline bool mas_prev_sibling(struct ma_state *mas) 2221 { 2222 unsigned int p_slot = mte_parent_slot(mas->node); 2223 2224 if (mte_is_root(mas->node)) 2225 return false; 2226 2227 if (!p_slot) 2228 return false; 2229 2230 mas_ascend(mas); 2231 mas->offset = p_slot - 1; 2232 mas_descend(mas); 2233 return true; 2234 } 2235 2236 /* 2237 * mas_next_sibling() - Find the next node with the same parent. 2238 * @mas: the maple state 2239 * 2240 * Return: true if there is a next sibling, false otherwise. 2241 */ 2242 static inline bool mas_next_sibling(struct ma_state *mas) 2243 { 2244 MA_STATE(parent, mas->tree, mas->index, mas->last); 2245 2246 if (mte_is_root(mas->node)) 2247 return false; 2248 2249 parent = *mas; 2250 mas_ascend(&parent); 2251 parent.offset = mte_parent_slot(mas->node) + 1; 2252 if (parent.offset > mas_data_end(&parent)) 2253 return false; 2254 2255 *mas = parent; 2256 mas_descend(mas); 2257 return true; 2258 } 2259 2260 /* 2261 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2262 * @enode: The encoded maple node. 2263 * 2264 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2265 * 2266 * Return: @enode or MAS_NONE 2267 */ 2268 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2269 { 2270 if (enode) 2271 return enode; 2272 2273 return ma_enode_ptr(MAS_NONE); 2274 } 2275 2276 /* 2277 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2278 * @wr_mas: The maple write state 2279 * 2280 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2281 */ 2282 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2283 { 2284 struct ma_state *mas = wr_mas->mas; 2285 unsigned char count, offset; 2286 2287 if (unlikely(ma_is_dense(wr_mas->type))) { 2288 wr_mas->r_max = wr_mas->r_min = mas->index; 2289 mas->offset = mas->index = mas->min; 2290 return; 2291 } 2292 2293 wr_mas->node = mas_mn(wr_mas->mas); 2294 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2295 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2296 wr_mas->pivots, mas->max); 2297 offset = mas->offset; 2298 2299 while (offset < count && mas->index > wr_mas->pivots[offset]) 2300 offset++; 2301 2302 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2303 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2304 wr_mas->offset_end = mas->offset = offset; 2305 } 2306 2307 /* 2308 * mas_topiary_range() - Add a range of slots to the topiary. 2309 * @mas: The maple state 2310 * @destroy: The topiary to add the slots (usually destroy) 2311 * @start: The starting slot inclusively 2312 * @end: The end slot inclusively 2313 */ 2314 static inline void mas_topiary_range(struct ma_state *mas, 2315 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2316 { 2317 void __rcu **slots; 2318 unsigned char offset; 2319 2320 MAS_BUG_ON(mas, mte_is_leaf(mas->node)); 2321 2322 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2323 for (offset = start; offset <= end; offset++) { 2324 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2325 2326 if (mte_dead_node(enode)) 2327 continue; 2328 2329 mat_add(destroy, enode); 2330 } 2331 } 2332 2333 /* 2334 * mast_topiary() - Add the portions of the tree to the removal list; either to 2335 * be freed or discarded (destroy walk). 2336 * @mast: The maple_subtree_state. 2337 */ 2338 static inline void mast_topiary(struct maple_subtree_state *mast) 2339 { 2340 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2341 unsigned char r_start, r_end; 2342 unsigned char l_start, l_end; 2343 void __rcu **l_slots, **r_slots; 2344 2345 wr_mas.type = mte_node_type(mast->orig_l->node); 2346 mast->orig_l->index = mast->orig_l->last; 2347 mas_wr_node_walk(&wr_mas); 2348 l_start = mast->orig_l->offset + 1; 2349 l_end = mas_data_end(mast->orig_l); 2350 r_start = 0; 2351 r_end = mast->orig_r->offset; 2352 2353 if (r_end) 2354 r_end--; 2355 2356 l_slots = ma_slots(mas_mn(mast->orig_l), 2357 mte_node_type(mast->orig_l->node)); 2358 2359 r_slots = ma_slots(mas_mn(mast->orig_r), 2360 mte_node_type(mast->orig_r->node)); 2361 2362 if ((l_start < l_end) && 2363 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2364 l_start++; 2365 } 2366 2367 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2368 if (r_end) 2369 r_end--; 2370 } 2371 2372 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2373 return; 2374 2375 /* At the node where left and right sides meet, add the parts between */ 2376 if (mast->orig_l->node == mast->orig_r->node) { 2377 return mas_topiary_range(mast->orig_l, mast->destroy, 2378 l_start, r_end); 2379 } 2380 2381 /* mast->orig_r is different and consumed. */ 2382 if (mte_is_leaf(mast->orig_r->node)) 2383 return; 2384 2385 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2386 l_end--; 2387 2388 2389 if (l_start <= l_end) 2390 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2391 2392 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2393 r_start++; 2394 2395 if (r_start <= r_end) 2396 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2397 } 2398 2399 /* 2400 * mast_rebalance_next() - Rebalance against the next node 2401 * @mast: The maple subtree state 2402 * @old_r: The encoded maple node to the right (next node). 2403 */ 2404 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2405 { 2406 unsigned char b_end = mast->bn->b_end; 2407 2408 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2409 mast->bn, b_end); 2410 mast->orig_r->last = mast->orig_r->max; 2411 } 2412 2413 /* 2414 * mast_rebalance_prev() - Rebalance against the previous node 2415 * @mast: The maple subtree state 2416 * @old_l: The encoded maple node to the left (previous node) 2417 */ 2418 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2419 { 2420 unsigned char end = mas_data_end(mast->orig_l) + 1; 2421 unsigned char b_end = mast->bn->b_end; 2422 2423 mab_shift_right(mast->bn, end); 2424 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2425 mast->l->min = mast->orig_l->min; 2426 mast->orig_l->index = mast->orig_l->min; 2427 mast->bn->b_end = end + b_end; 2428 mast->l->offset += end; 2429 } 2430 2431 /* 2432 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2433 * the node to the right. Checking the nodes to the right then the left at each 2434 * level upwards until root is reached. Free and destroy as needed. 2435 * Data is copied into the @mast->bn. 2436 * @mast: The maple_subtree_state. 2437 */ 2438 static inline 2439 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2440 { 2441 struct ma_state r_tmp = *mast->orig_r; 2442 struct ma_state l_tmp = *mast->orig_l; 2443 struct maple_enode *ancestor = NULL; 2444 unsigned char start, end; 2445 unsigned char depth = 0; 2446 2447 r_tmp = *mast->orig_r; 2448 l_tmp = *mast->orig_l; 2449 do { 2450 mas_ascend(mast->orig_r); 2451 mas_ascend(mast->orig_l); 2452 depth++; 2453 if (!ancestor && 2454 (mast->orig_r->node == mast->orig_l->node)) { 2455 ancestor = mast->orig_r->node; 2456 end = mast->orig_r->offset - 1; 2457 start = mast->orig_l->offset + 1; 2458 } 2459 2460 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2461 if (!ancestor) { 2462 ancestor = mast->orig_r->node; 2463 start = 0; 2464 } 2465 2466 mast->orig_r->offset++; 2467 do { 2468 mas_descend(mast->orig_r); 2469 mast->orig_r->offset = 0; 2470 depth--; 2471 } while (depth); 2472 2473 mast_rebalance_next(mast); 2474 do { 2475 unsigned char l_off = 0; 2476 struct maple_enode *child = r_tmp.node; 2477 2478 mas_ascend(&r_tmp); 2479 if (ancestor == r_tmp.node) 2480 l_off = start; 2481 2482 if (r_tmp.offset) 2483 r_tmp.offset--; 2484 2485 if (l_off < r_tmp.offset) 2486 mas_topiary_range(&r_tmp, mast->destroy, 2487 l_off, r_tmp.offset); 2488 2489 if (l_tmp.node != child) 2490 mat_add(mast->free, child); 2491 2492 } while (r_tmp.node != ancestor); 2493 2494 *mast->orig_l = l_tmp; 2495 return true; 2496 2497 } else if (mast->orig_l->offset != 0) { 2498 if (!ancestor) { 2499 ancestor = mast->orig_l->node; 2500 end = mas_data_end(mast->orig_l); 2501 } 2502 2503 mast->orig_l->offset--; 2504 do { 2505 mas_descend(mast->orig_l); 2506 mast->orig_l->offset = 2507 mas_data_end(mast->orig_l); 2508 depth--; 2509 } while (depth); 2510 2511 mast_rebalance_prev(mast); 2512 do { 2513 unsigned char r_off; 2514 struct maple_enode *child = l_tmp.node; 2515 2516 mas_ascend(&l_tmp); 2517 if (ancestor == l_tmp.node) 2518 r_off = end; 2519 else 2520 r_off = mas_data_end(&l_tmp); 2521 2522 if (l_tmp.offset < r_off) 2523 l_tmp.offset++; 2524 2525 if (l_tmp.offset < r_off) 2526 mas_topiary_range(&l_tmp, mast->destroy, 2527 l_tmp.offset, r_off); 2528 2529 if (r_tmp.node != child) 2530 mat_add(mast->free, child); 2531 2532 } while (l_tmp.node != ancestor); 2533 2534 *mast->orig_r = r_tmp; 2535 return true; 2536 } 2537 } while (!mte_is_root(mast->orig_r->node)); 2538 2539 *mast->orig_r = r_tmp; 2540 *mast->orig_l = l_tmp; 2541 return false; 2542 } 2543 2544 /* 2545 * mast_ascend_free() - Add current original maple state nodes to the free list 2546 * and ascend. 2547 * @mast: the maple subtree state. 2548 * 2549 * Ascend the original left and right sides and add the previous nodes to the 2550 * free list. Set the slots to point to the correct location in the new nodes. 2551 */ 2552 static inline void 2553 mast_ascend_free(struct maple_subtree_state *mast) 2554 { 2555 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2556 struct maple_enode *left = mast->orig_l->node; 2557 struct maple_enode *right = mast->orig_r->node; 2558 2559 mas_ascend(mast->orig_l); 2560 mas_ascend(mast->orig_r); 2561 mat_add(mast->free, left); 2562 2563 if (left != right) 2564 mat_add(mast->free, right); 2565 2566 mast->orig_r->offset = 0; 2567 mast->orig_r->index = mast->r->max; 2568 /* last should be larger than or equal to index */ 2569 if (mast->orig_r->last < mast->orig_r->index) 2570 mast->orig_r->last = mast->orig_r->index; 2571 /* 2572 * The node may not contain the value so set slot to ensure all 2573 * of the nodes contents are freed or destroyed. 2574 */ 2575 wr_mas.type = mte_node_type(mast->orig_r->node); 2576 mas_wr_node_walk(&wr_mas); 2577 /* Set up the left side of things */ 2578 mast->orig_l->offset = 0; 2579 mast->orig_l->index = mast->l->min; 2580 wr_mas.mas = mast->orig_l; 2581 wr_mas.type = mte_node_type(mast->orig_l->node); 2582 mas_wr_node_walk(&wr_mas); 2583 2584 mast->bn->type = wr_mas.type; 2585 } 2586 2587 /* 2588 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2589 * @mas: the maple state with the allocations. 2590 * @b_node: the maple_big_node with the type encoding. 2591 * 2592 * Use the node type from the maple_big_node to allocate a new node from the 2593 * ma_state. This function exists mainly for code readability. 2594 * 2595 * Return: A new maple encoded node 2596 */ 2597 static inline struct maple_enode 2598 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2599 { 2600 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2601 } 2602 2603 /* 2604 * mas_mab_to_node() - Set up right and middle nodes 2605 * 2606 * @mas: the maple state that contains the allocations. 2607 * @b_node: the node which contains the data. 2608 * @left: The pointer which will have the left node 2609 * @right: The pointer which may have the right node 2610 * @middle: the pointer which may have the middle node (rare) 2611 * @mid_split: the split location for the middle node 2612 * 2613 * Return: the split of left. 2614 */ 2615 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2616 struct maple_big_node *b_node, struct maple_enode **left, 2617 struct maple_enode **right, struct maple_enode **middle, 2618 unsigned char *mid_split, unsigned long min) 2619 { 2620 unsigned char split = 0; 2621 unsigned char slot_count = mt_slots[b_node->type]; 2622 2623 *left = mas_new_ma_node(mas, b_node); 2624 *right = NULL; 2625 *middle = NULL; 2626 *mid_split = 0; 2627 2628 if (b_node->b_end < slot_count) { 2629 split = b_node->b_end; 2630 } else { 2631 split = mab_calc_split(mas, b_node, mid_split, min); 2632 *right = mas_new_ma_node(mas, b_node); 2633 } 2634 2635 if (*mid_split) 2636 *middle = mas_new_ma_node(mas, b_node); 2637 2638 return split; 2639 2640 } 2641 2642 /* 2643 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2644 * pointer. 2645 * @b_node - the big node to add the entry 2646 * @mas - the maple state to get the pivot (mas->max) 2647 * @entry - the entry to add, if NULL nothing happens. 2648 */ 2649 static inline void mab_set_b_end(struct maple_big_node *b_node, 2650 struct ma_state *mas, 2651 void *entry) 2652 { 2653 if (!entry) 2654 return; 2655 2656 b_node->slot[b_node->b_end] = entry; 2657 if (mt_is_alloc(mas->tree)) 2658 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2659 b_node->pivot[b_node->b_end++] = mas->max; 2660 } 2661 2662 /* 2663 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2664 * of @mas->node to either @left or @right, depending on @slot and @split 2665 * 2666 * @mas - the maple state with the node that needs a parent 2667 * @left - possible parent 1 2668 * @right - possible parent 2 2669 * @slot - the slot the mas->node was placed 2670 * @split - the split location between @left and @right 2671 */ 2672 static inline void mas_set_split_parent(struct ma_state *mas, 2673 struct maple_enode *left, 2674 struct maple_enode *right, 2675 unsigned char *slot, unsigned char split) 2676 { 2677 if (mas_is_none(mas)) 2678 return; 2679 2680 if ((*slot) <= split) 2681 mas_set_parent(mas, mas->node, left, *slot); 2682 else if (right) 2683 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2684 2685 (*slot)++; 2686 } 2687 2688 /* 2689 * mte_mid_split_check() - Check if the next node passes the mid-split 2690 * @**l: Pointer to left encoded maple node. 2691 * @**m: Pointer to middle encoded maple node. 2692 * @**r: Pointer to right encoded maple node. 2693 * @slot: The offset 2694 * @*split: The split location. 2695 * @mid_split: The middle split. 2696 */ 2697 static inline void mte_mid_split_check(struct maple_enode **l, 2698 struct maple_enode **r, 2699 struct maple_enode *right, 2700 unsigned char slot, 2701 unsigned char *split, 2702 unsigned char mid_split) 2703 { 2704 if (*r == right) 2705 return; 2706 2707 if (slot < mid_split) 2708 return; 2709 2710 *l = *r; 2711 *r = right; 2712 *split = mid_split; 2713 } 2714 2715 /* 2716 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2717 * is taken from @mast->l. 2718 * @mast - the maple subtree state 2719 * @left - the left node 2720 * @right - the right node 2721 * @split - the split location. 2722 */ 2723 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2724 struct maple_enode *left, 2725 struct maple_enode *middle, 2726 struct maple_enode *right, 2727 unsigned char split, 2728 unsigned char mid_split) 2729 { 2730 unsigned char slot; 2731 struct maple_enode *l = left; 2732 struct maple_enode *r = right; 2733 2734 if (mas_is_none(mast->l)) 2735 return; 2736 2737 if (middle) 2738 r = middle; 2739 2740 slot = mast->l->offset; 2741 2742 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2743 mas_set_split_parent(mast->l, l, r, &slot, split); 2744 2745 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2746 mas_set_split_parent(mast->m, l, r, &slot, split); 2747 2748 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2749 mas_set_split_parent(mast->r, l, r, &slot, split); 2750 } 2751 2752 /* 2753 * mas_wmb_replace() - Write memory barrier and replace 2754 * @mas: The maple state 2755 * @free: the maple topiary list of nodes to free 2756 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2757 * 2758 * Updates gap as necessary. 2759 */ 2760 static inline void mas_wmb_replace(struct ma_state *mas, 2761 struct ma_topiary *free, 2762 struct ma_topiary *destroy) 2763 { 2764 struct maple_enode *old_enode; 2765 2766 if (mte_is_root(mas->node)) { 2767 old_enode = mas_root_locked(mas); 2768 } else { 2769 unsigned char offset = mte_parent_slot(mas->node); 2770 void __rcu **slots = ma_slots(mte_parent(mas->node), 2771 mas_parent_type(mas, mas->node)); 2772 2773 old_enode = mas_slot_locked(mas, slots, offset); 2774 } 2775 2776 /* Insert the new data in the tree */ 2777 mas_put_in_tree(mas, old_enode); 2778 2779 if (!mte_is_leaf(mas->node)) 2780 mas_descend_adopt(mas); 2781 2782 mas_mat_free(mas, free); 2783 2784 if (destroy) 2785 mas_mat_destroy(mas, destroy); 2786 2787 if (mte_is_leaf(mas->node)) 2788 return; 2789 2790 mas_update_gap(mas); 2791 } 2792 2793 /* 2794 * mast_new_root() - Set a new tree root during subtree creation 2795 * @mast: The maple subtree state 2796 * @mas: The maple state 2797 */ 2798 static inline void mast_new_root(struct maple_subtree_state *mast, 2799 struct ma_state *mas) 2800 { 2801 mas_mn(mast->l)->parent = 2802 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2803 if (!mte_dead_node(mast->orig_l->node) && 2804 !mte_is_root(mast->orig_l->node)) { 2805 do { 2806 mast_ascend_free(mast); 2807 mast_topiary(mast); 2808 } while (!mte_is_root(mast->orig_l->node)); 2809 } 2810 if ((mast->orig_l->node != mas->node) && 2811 (mast->l->depth > mas_mt_height(mas))) { 2812 mat_add(mast->free, mas->node); 2813 } 2814 } 2815 2816 /* 2817 * mast_cp_to_nodes() - Copy data out to nodes. 2818 * @mast: The maple subtree state 2819 * @left: The left encoded maple node 2820 * @middle: The middle encoded maple node 2821 * @right: The right encoded maple node 2822 * @split: The location to split between left and (middle ? middle : right) 2823 * @mid_split: The location to split between middle and right. 2824 */ 2825 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2826 struct maple_enode *left, struct maple_enode *middle, 2827 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2828 { 2829 bool new_lmax = true; 2830 2831 mast->l->node = mte_node_or_none(left); 2832 mast->m->node = mte_node_or_none(middle); 2833 mast->r->node = mte_node_or_none(right); 2834 2835 mast->l->min = mast->orig_l->min; 2836 if (split == mast->bn->b_end) { 2837 mast->l->max = mast->orig_r->max; 2838 new_lmax = false; 2839 } 2840 2841 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2842 2843 if (middle) { 2844 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2845 mast->m->min = mast->bn->pivot[split] + 1; 2846 split = mid_split; 2847 } 2848 2849 mast->r->max = mast->orig_r->max; 2850 if (right) { 2851 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2852 mast->r->min = mast->bn->pivot[split] + 1; 2853 } 2854 } 2855 2856 /* 2857 * mast_combine_cp_left - Copy in the original left side of the tree into the 2858 * combined data set in the maple subtree state big node. 2859 * @mast: The maple subtree state 2860 */ 2861 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2862 { 2863 unsigned char l_slot = mast->orig_l->offset; 2864 2865 if (!l_slot) 2866 return; 2867 2868 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2869 } 2870 2871 /* 2872 * mast_combine_cp_right: Copy in the original right side of the tree into the 2873 * combined data set in the maple subtree state big node. 2874 * @mast: The maple subtree state 2875 */ 2876 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2877 { 2878 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2879 return; 2880 2881 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2882 mt_slot_count(mast->orig_r->node), mast->bn, 2883 mast->bn->b_end); 2884 mast->orig_r->last = mast->orig_r->max; 2885 } 2886 2887 /* 2888 * mast_sufficient: Check if the maple subtree state has enough data in the big 2889 * node to create at least one sufficient node 2890 * @mast: the maple subtree state 2891 */ 2892 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2893 { 2894 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2895 return true; 2896 2897 return false; 2898 } 2899 2900 /* 2901 * mast_overflow: Check if there is too much data in the subtree state for a 2902 * single node. 2903 * @mast: The maple subtree state 2904 */ 2905 static inline bool mast_overflow(struct maple_subtree_state *mast) 2906 { 2907 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2908 return true; 2909 2910 return false; 2911 } 2912 2913 static inline void *mtree_range_walk(struct ma_state *mas) 2914 { 2915 unsigned long *pivots; 2916 unsigned char offset; 2917 struct maple_node *node; 2918 struct maple_enode *next, *last; 2919 enum maple_type type; 2920 void __rcu **slots; 2921 unsigned char end; 2922 unsigned long max, min; 2923 unsigned long prev_max, prev_min; 2924 2925 next = mas->node; 2926 min = mas->min; 2927 max = mas->max; 2928 do { 2929 offset = 0; 2930 last = next; 2931 node = mte_to_node(next); 2932 type = mte_node_type(next); 2933 pivots = ma_pivots(node, type); 2934 end = ma_data_end(node, type, pivots, max); 2935 if (unlikely(ma_dead_node(node))) 2936 goto dead_node; 2937 2938 if (pivots[offset] >= mas->index) { 2939 prev_max = max; 2940 prev_min = min; 2941 max = pivots[offset]; 2942 goto next; 2943 } 2944 2945 do { 2946 offset++; 2947 } while ((offset < end) && (pivots[offset] < mas->index)); 2948 2949 prev_min = min; 2950 min = pivots[offset - 1] + 1; 2951 prev_max = max; 2952 if (likely(offset < end && pivots[offset])) 2953 max = pivots[offset]; 2954 2955 next: 2956 slots = ma_slots(node, type); 2957 next = mt_slot(mas->tree, slots, offset); 2958 if (unlikely(ma_dead_node(node))) 2959 goto dead_node; 2960 } while (!ma_is_leaf(type)); 2961 2962 mas->offset = offset; 2963 mas->index = min; 2964 mas->last = max; 2965 mas->min = prev_min; 2966 mas->max = prev_max; 2967 mas->node = last; 2968 return (void *)next; 2969 2970 dead_node: 2971 mas_reset(mas); 2972 return NULL; 2973 } 2974 2975 /* 2976 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2977 * @mas: The starting maple state 2978 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2979 * @count: The estimated count of iterations needed. 2980 * 2981 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2982 * is hit. First @b_node is split into two entries which are inserted into the 2983 * next iteration of the loop. @b_node is returned populated with the final 2984 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2985 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2986 * to account of what has been copied into the new sub-tree. The update of 2987 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2988 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2989 * the new sub-tree in case the sub-tree becomes the full tree. 2990 * 2991 * Return: the number of elements in b_node during the last loop. 2992 */ 2993 static int mas_spanning_rebalance(struct ma_state *mas, 2994 struct maple_subtree_state *mast, unsigned char count) 2995 { 2996 unsigned char split, mid_split; 2997 unsigned char slot = 0; 2998 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2999 3000 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 3001 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3002 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 3003 MA_TOPIARY(free, mas->tree); 3004 MA_TOPIARY(destroy, mas->tree); 3005 3006 /* 3007 * The tree needs to be rebalanced and leaves need to be kept at the same level. 3008 * Rebalancing is done by use of the ``struct maple_topiary``. 3009 */ 3010 mast->l = &l_mas; 3011 mast->m = &m_mas; 3012 mast->r = &r_mas; 3013 mast->free = &free; 3014 mast->destroy = &destroy; 3015 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 3016 3017 /* Check if this is not root and has sufficient data. */ 3018 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 3019 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 3020 mast_spanning_rebalance(mast); 3021 3022 mast->orig_l->depth = 0; 3023 3024 /* 3025 * Each level of the tree is examined and balanced, pushing data to the left or 3026 * right, or rebalancing against left or right nodes is employed to avoid 3027 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3028 * the tree is created, there may be a mix of new and old nodes. The old nodes 3029 * will have the incorrect parent pointers and currently be in two trees: the 3030 * original tree and the partially new tree. To remedy the parent pointers in 3031 * the old tree, the new data is swapped into the active tree and a walk down 3032 * the tree is performed and the parent pointers are updated. 3033 * See mas_descend_adopt() for more information.. 3034 */ 3035 while (count--) { 3036 mast->bn->b_end--; 3037 mast->bn->type = mte_node_type(mast->orig_l->node); 3038 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3039 &mid_split, mast->orig_l->min); 3040 mast_set_split_parents(mast, left, middle, right, split, 3041 mid_split); 3042 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3043 3044 /* 3045 * Copy data from next level in the tree to mast->bn from next 3046 * iteration 3047 */ 3048 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3049 mast->bn->type = mte_node_type(left); 3050 mast->orig_l->depth++; 3051 3052 /* Root already stored in l->node. */ 3053 if (mas_is_root_limits(mast->l)) 3054 goto new_root; 3055 3056 mast_ascend_free(mast); 3057 mast_combine_cp_left(mast); 3058 l_mas.offset = mast->bn->b_end; 3059 mab_set_b_end(mast->bn, &l_mas, left); 3060 mab_set_b_end(mast->bn, &m_mas, middle); 3061 mab_set_b_end(mast->bn, &r_mas, right); 3062 3063 /* Copy anything necessary out of the right node. */ 3064 mast_combine_cp_right(mast); 3065 mast_topiary(mast); 3066 mast->orig_l->last = mast->orig_l->max; 3067 3068 if (mast_sufficient(mast)) 3069 continue; 3070 3071 if (mast_overflow(mast)) 3072 continue; 3073 3074 /* May be a new root stored in mast->bn */ 3075 if (mas_is_root_limits(mast->orig_l)) 3076 break; 3077 3078 mast_spanning_rebalance(mast); 3079 3080 /* rebalancing from other nodes may require another loop. */ 3081 if (!count) 3082 count++; 3083 } 3084 3085 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3086 mte_node_type(mast->orig_l->node)); 3087 mast->orig_l->depth++; 3088 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3089 mas_set_parent(mas, left, l_mas.node, slot); 3090 if (middle) 3091 mas_set_parent(mas, middle, l_mas.node, ++slot); 3092 3093 if (right) 3094 mas_set_parent(mas, right, l_mas.node, ++slot); 3095 3096 if (mas_is_root_limits(mast->l)) { 3097 new_root: 3098 mast_new_root(mast, mas); 3099 } else { 3100 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3101 } 3102 3103 if (!mte_dead_node(mast->orig_l->node)) 3104 mat_add(&free, mast->orig_l->node); 3105 3106 mas->depth = mast->orig_l->depth; 3107 *mast->orig_l = l_mas; 3108 mte_set_node_dead(mas->node); 3109 3110 /* Set up mas for insertion. */ 3111 mast->orig_l->depth = mas->depth; 3112 mast->orig_l->alloc = mas->alloc; 3113 *mas = *mast->orig_l; 3114 mas_wmb_replace(mas, &free, &destroy); 3115 mtree_range_walk(mas); 3116 return mast->bn->b_end; 3117 } 3118 3119 /* 3120 * mas_rebalance() - Rebalance a given node. 3121 * @mas: The maple state 3122 * @b_node: The big maple node. 3123 * 3124 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3125 * Continue upwards until tree is sufficient. 3126 * 3127 * Return: the number of elements in b_node during the last loop. 3128 */ 3129 static inline int mas_rebalance(struct ma_state *mas, 3130 struct maple_big_node *b_node) 3131 { 3132 char empty_count = mas_mt_height(mas); 3133 struct maple_subtree_state mast; 3134 unsigned char shift, b_end = ++b_node->b_end; 3135 3136 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3137 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3138 3139 trace_ma_op(__func__, mas); 3140 3141 /* 3142 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3143 * against the node to the right if it exists, otherwise the node to the 3144 * left of this node is rebalanced against this node. If rebalancing 3145 * causes just one node to be produced instead of two, then the parent 3146 * is also examined and rebalanced if it is insufficient. Every level 3147 * tries to combine the data in the same way. If one node contains the 3148 * entire range of the tree, then that node is used as a new root node. 3149 */ 3150 mas_node_count(mas, empty_count * 2 - 1); 3151 if (mas_is_err(mas)) 3152 return 0; 3153 3154 mast.orig_l = &l_mas; 3155 mast.orig_r = &r_mas; 3156 mast.bn = b_node; 3157 mast.bn->type = mte_node_type(mas->node); 3158 3159 l_mas = r_mas = *mas; 3160 3161 if (mas_next_sibling(&r_mas)) { 3162 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3163 r_mas.last = r_mas.index = r_mas.max; 3164 } else { 3165 mas_prev_sibling(&l_mas); 3166 shift = mas_data_end(&l_mas) + 1; 3167 mab_shift_right(b_node, shift); 3168 mas->offset += shift; 3169 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3170 b_node->b_end = shift + b_end; 3171 l_mas.index = l_mas.last = l_mas.min; 3172 } 3173 3174 return mas_spanning_rebalance(mas, &mast, empty_count); 3175 } 3176 3177 /* 3178 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3179 * state. 3180 * @mas: The maple state 3181 * @end: The end of the left-most node. 3182 * 3183 * During a mass-insert event (such as forking), it may be necessary to 3184 * rebalance the left-most node when it is not sufficient. 3185 */ 3186 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3187 { 3188 enum maple_type mt = mte_node_type(mas->node); 3189 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3190 struct maple_enode *eparent, *old_eparent; 3191 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3192 void __rcu **l_slots, **slots; 3193 unsigned long *l_pivs, *pivs, gap; 3194 bool in_rcu = mt_in_rcu(mas->tree); 3195 3196 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3197 3198 l_mas = *mas; 3199 mas_prev_sibling(&l_mas); 3200 3201 /* set up node. */ 3202 if (in_rcu) { 3203 /* Allocate for both left and right as well as parent. */ 3204 mas_node_count(mas, 3); 3205 if (mas_is_err(mas)) 3206 return; 3207 3208 newnode = mas_pop_node(mas); 3209 } else { 3210 newnode = &reuse; 3211 } 3212 3213 node = mas_mn(mas); 3214 newnode->parent = node->parent; 3215 slots = ma_slots(newnode, mt); 3216 pivs = ma_pivots(newnode, mt); 3217 left = mas_mn(&l_mas); 3218 l_slots = ma_slots(left, mt); 3219 l_pivs = ma_pivots(left, mt); 3220 if (!l_slots[split]) 3221 split++; 3222 tmp = mas_data_end(&l_mas) - split; 3223 3224 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3225 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3226 pivs[tmp] = l_mas.max; 3227 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3228 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3229 3230 l_mas.max = l_pivs[split]; 3231 mas->min = l_mas.max + 1; 3232 old_eparent = mt_mk_node(mte_parent(l_mas.node), 3233 mas_parent_type(&l_mas, l_mas.node)); 3234 tmp += end; 3235 if (!in_rcu) { 3236 unsigned char max_p = mt_pivots[mt]; 3237 unsigned char max_s = mt_slots[mt]; 3238 3239 if (tmp < max_p) 3240 memset(pivs + tmp, 0, 3241 sizeof(unsigned long) * (max_p - tmp)); 3242 3243 if (tmp < mt_slots[mt]) 3244 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3245 3246 memcpy(node, newnode, sizeof(struct maple_node)); 3247 ma_set_meta(node, mt, 0, tmp - 1); 3248 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node), 3249 l_pivs[split]); 3250 3251 /* Remove data from l_pivs. */ 3252 tmp = split + 1; 3253 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3254 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3255 ma_set_meta(left, mt, 0, split); 3256 eparent = old_eparent; 3257 3258 goto done; 3259 } 3260 3261 /* RCU requires replacing both l_mas, mas, and parent. */ 3262 mas->node = mt_mk_node(newnode, mt); 3263 ma_set_meta(newnode, mt, 0, tmp); 3264 3265 new_left = mas_pop_node(mas); 3266 new_left->parent = left->parent; 3267 mt = mte_node_type(l_mas.node); 3268 slots = ma_slots(new_left, mt); 3269 pivs = ma_pivots(new_left, mt); 3270 memcpy(slots, l_slots, sizeof(void *) * split); 3271 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3272 ma_set_meta(new_left, mt, 0, split); 3273 l_mas.node = mt_mk_node(new_left, mt); 3274 3275 /* replace parent. */ 3276 offset = mte_parent_slot(mas->node); 3277 mt = mas_parent_type(&l_mas, l_mas.node); 3278 parent = mas_pop_node(mas); 3279 slots = ma_slots(parent, mt); 3280 pivs = ma_pivots(parent, mt); 3281 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node)); 3282 rcu_assign_pointer(slots[offset], mas->node); 3283 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3284 pivs[offset - 1] = l_mas.max; 3285 eparent = mt_mk_node(parent, mt); 3286 done: 3287 gap = mas_leaf_max_gap(mas); 3288 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3289 gap = mas_leaf_max_gap(&l_mas); 3290 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3291 mas_ascend(mas); 3292 3293 if (in_rcu) { 3294 mas_replace_node(mas, old_eparent); 3295 mas_adopt_children(mas, mas->node); 3296 } 3297 3298 mas_update_gap(mas); 3299 } 3300 3301 /* 3302 * mas_split_final_node() - Split the final node in a subtree operation. 3303 * @mast: the maple subtree state 3304 * @mas: The maple state 3305 * @height: The height of the tree in case it's a new root. 3306 */ 3307 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3308 struct ma_state *mas, int height) 3309 { 3310 struct maple_enode *ancestor; 3311 3312 if (mte_is_root(mas->node)) { 3313 if (mt_is_alloc(mas->tree)) 3314 mast->bn->type = maple_arange_64; 3315 else 3316 mast->bn->type = maple_range_64; 3317 mas->depth = height; 3318 } 3319 /* 3320 * Only a single node is used here, could be root. 3321 * The Big_node data should just fit in a single node. 3322 */ 3323 ancestor = mas_new_ma_node(mas, mast->bn); 3324 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3325 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3326 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3327 3328 mast->l->node = ancestor; 3329 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3330 mas->offset = mast->bn->b_end - 1; 3331 return true; 3332 } 3333 3334 /* 3335 * mast_fill_bnode() - Copy data into the big node in the subtree state 3336 * @mast: The maple subtree state 3337 * @mas: the maple state 3338 * @skip: The number of entries to skip for new nodes insertion. 3339 */ 3340 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3341 struct ma_state *mas, 3342 unsigned char skip) 3343 { 3344 bool cp = true; 3345 struct maple_enode *old = mas->node; 3346 unsigned char split; 3347 3348 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3349 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3350 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3351 mast->bn->b_end = 0; 3352 3353 if (mte_is_root(mas->node)) { 3354 cp = false; 3355 } else { 3356 mas_ascend(mas); 3357 mat_add(mast->free, old); 3358 mas->offset = mte_parent_slot(mas->node); 3359 } 3360 3361 if (cp && mast->l->offset) 3362 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3363 3364 split = mast->bn->b_end; 3365 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3366 mast->r->offset = mast->bn->b_end; 3367 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3368 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3369 cp = false; 3370 3371 if (cp) 3372 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3373 mast->bn, mast->bn->b_end); 3374 3375 mast->bn->b_end--; 3376 mast->bn->type = mte_node_type(mas->node); 3377 } 3378 3379 /* 3380 * mast_split_data() - Split the data in the subtree state big node into regular 3381 * nodes. 3382 * @mast: The maple subtree state 3383 * @mas: The maple state 3384 * @split: The location to split the big node 3385 */ 3386 static inline void mast_split_data(struct maple_subtree_state *mast, 3387 struct ma_state *mas, unsigned char split) 3388 { 3389 unsigned char p_slot; 3390 3391 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3392 mte_set_pivot(mast->r->node, 0, mast->r->max); 3393 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3394 mast->l->offset = mte_parent_slot(mas->node); 3395 mast->l->max = mast->bn->pivot[split]; 3396 mast->r->min = mast->l->max + 1; 3397 if (mte_is_leaf(mas->node)) 3398 return; 3399 3400 p_slot = mast->orig_l->offset; 3401 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3402 &p_slot, split); 3403 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3404 &p_slot, split); 3405 } 3406 3407 /* 3408 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3409 * data to the right or left node if there is room. 3410 * @mas: The maple state 3411 * @height: The current height of the maple state 3412 * @mast: The maple subtree state 3413 * @left: Push left or not. 3414 * 3415 * Keeping the height of the tree low means faster lookups. 3416 * 3417 * Return: True if pushed, false otherwise. 3418 */ 3419 static inline bool mas_push_data(struct ma_state *mas, int height, 3420 struct maple_subtree_state *mast, bool left) 3421 { 3422 unsigned char slot_total = mast->bn->b_end; 3423 unsigned char end, space, split; 3424 3425 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3426 tmp_mas = *mas; 3427 tmp_mas.depth = mast->l->depth; 3428 3429 if (left && !mas_prev_sibling(&tmp_mas)) 3430 return false; 3431 else if (!left && !mas_next_sibling(&tmp_mas)) 3432 return false; 3433 3434 end = mas_data_end(&tmp_mas); 3435 slot_total += end; 3436 space = 2 * mt_slot_count(mas->node) - 2; 3437 /* -2 instead of -1 to ensure there isn't a triple split */ 3438 if (ma_is_leaf(mast->bn->type)) 3439 space--; 3440 3441 if (mas->max == ULONG_MAX) 3442 space--; 3443 3444 if (slot_total >= space) 3445 return false; 3446 3447 /* Get the data; Fill mast->bn */ 3448 mast->bn->b_end++; 3449 if (left) { 3450 mab_shift_right(mast->bn, end + 1); 3451 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3452 mast->bn->b_end = slot_total + 1; 3453 } else { 3454 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3455 } 3456 3457 /* Configure mast for splitting of mast->bn */ 3458 split = mt_slots[mast->bn->type] - 2; 3459 if (left) { 3460 /* Switch mas to prev node */ 3461 mat_add(mast->free, mas->node); 3462 *mas = tmp_mas; 3463 /* Start using mast->l for the left side. */ 3464 tmp_mas.node = mast->l->node; 3465 *mast->l = tmp_mas; 3466 } else { 3467 mat_add(mast->free, tmp_mas.node); 3468 tmp_mas.node = mast->r->node; 3469 *mast->r = tmp_mas; 3470 split = slot_total - split; 3471 } 3472 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3473 /* Update parent slot for split calculation. */ 3474 if (left) 3475 mast->orig_l->offset += end + 1; 3476 3477 mast_split_data(mast, mas, split); 3478 mast_fill_bnode(mast, mas, 2); 3479 mas_split_final_node(mast, mas, height + 1); 3480 return true; 3481 } 3482 3483 /* 3484 * mas_split() - Split data that is too big for one node into two. 3485 * @mas: The maple state 3486 * @b_node: The maple big node 3487 * Return: 1 on success, 0 on failure. 3488 */ 3489 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3490 { 3491 struct maple_subtree_state mast; 3492 int height = 0; 3493 unsigned char mid_split, split = 0; 3494 3495 /* 3496 * Splitting is handled differently from any other B-tree; the Maple 3497 * Tree splits upwards. Splitting up means that the split operation 3498 * occurs when the walk of the tree hits the leaves and not on the way 3499 * down. The reason for splitting up is that it is impossible to know 3500 * how much space will be needed until the leaf is (or leaves are) 3501 * reached. Since overwriting data is allowed and a range could 3502 * overwrite more than one range or result in changing one entry into 3 3503 * entries, it is impossible to know if a split is required until the 3504 * data is examined. 3505 * 3506 * Splitting is a balancing act between keeping allocations to a minimum 3507 * and avoiding a 'jitter' event where a tree is expanded to make room 3508 * for an entry followed by a contraction when the entry is removed. To 3509 * accomplish the balance, there are empty slots remaining in both left 3510 * and right nodes after a split. 3511 */ 3512 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3513 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3514 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3515 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3516 MA_TOPIARY(mat, mas->tree); 3517 3518 trace_ma_op(__func__, mas); 3519 mas->depth = mas_mt_height(mas); 3520 /* Allocation failures will happen early. */ 3521 mas_node_count(mas, 1 + mas->depth * 2); 3522 if (mas_is_err(mas)) 3523 return 0; 3524 3525 mast.l = &l_mas; 3526 mast.r = &r_mas; 3527 mast.orig_l = &prev_l_mas; 3528 mast.orig_r = &prev_r_mas; 3529 mast.free = &mat; 3530 mast.bn = b_node; 3531 3532 while (height++ <= mas->depth) { 3533 if (mt_slots[b_node->type] > b_node->b_end) { 3534 mas_split_final_node(&mast, mas, height); 3535 break; 3536 } 3537 3538 l_mas = r_mas = *mas; 3539 l_mas.node = mas_new_ma_node(mas, b_node); 3540 r_mas.node = mas_new_ma_node(mas, b_node); 3541 /* 3542 * Another way that 'jitter' is avoided is to terminate a split up early if the 3543 * left or right node has space to spare. This is referred to as "pushing left" 3544 * or "pushing right" and is similar to the B* tree, except the nodes left or 3545 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3546 * is a significant savings. 3547 */ 3548 /* Try to push left. */ 3549 if (mas_push_data(mas, height, &mast, true)) 3550 break; 3551 3552 /* Try to push right. */ 3553 if (mas_push_data(mas, height, &mast, false)) 3554 break; 3555 3556 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3557 mast_split_data(&mast, mas, split); 3558 /* 3559 * Usually correct, mab_mas_cp in the above call overwrites 3560 * r->max. 3561 */ 3562 mast.r->max = mas->max; 3563 mast_fill_bnode(&mast, mas, 1); 3564 prev_l_mas = *mast.l; 3565 prev_r_mas = *mast.r; 3566 } 3567 3568 /* Set the original node as dead */ 3569 mat_add(mast.free, mas->node); 3570 mas->node = l_mas.node; 3571 mas_wmb_replace(mas, mast.free, NULL); 3572 mtree_range_walk(mas); 3573 return 1; 3574 } 3575 3576 /* 3577 * mas_reuse_node() - Reuse the node to store the data. 3578 * @wr_mas: The maple write state 3579 * @bn: The maple big node 3580 * @end: The end of the data. 3581 * 3582 * Will always return false in RCU mode. 3583 * 3584 * Return: True if node was reused, false otherwise. 3585 */ 3586 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3587 struct maple_big_node *bn, unsigned char end) 3588 { 3589 /* Need to be rcu safe. */ 3590 if (mt_in_rcu(wr_mas->mas->tree)) 3591 return false; 3592 3593 if (end > bn->b_end) { 3594 int clear = mt_slots[wr_mas->type] - bn->b_end; 3595 3596 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3597 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3598 } 3599 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3600 return true; 3601 } 3602 3603 /* 3604 * mas_commit_b_node() - Commit the big node into the tree. 3605 * @wr_mas: The maple write state 3606 * @b_node: The maple big node 3607 * @end: The end of the data. 3608 */ 3609 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3610 struct maple_big_node *b_node, unsigned char end) 3611 { 3612 struct maple_node *node; 3613 struct maple_enode *old_enode; 3614 unsigned char b_end = b_node->b_end; 3615 enum maple_type b_type = b_node->type; 3616 3617 old_enode = wr_mas->mas->node; 3618 if ((b_end < mt_min_slots[b_type]) && 3619 (!mte_is_root(old_enode)) && 3620 (mas_mt_height(wr_mas->mas) > 1)) 3621 return mas_rebalance(wr_mas->mas, b_node); 3622 3623 if (b_end >= mt_slots[b_type]) 3624 return mas_split(wr_mas->mas, b_node); 3625 3626 if (mas_reuse_node(wr_mas, b_node, end)) 3627 goto reuse_node; 3628 3629 mas_node_count(wr_mas->mas, 1); 3630 if (mas_is_err(wr_mas->mas)) 3631 return 0; 3632 3633 node = mas_pop_node(wr_mas->mas); 3634 node->parent = mas_mn(wr_mas->mas)->parent; 3635 wr_mas->mas->node = mt_mk_node(node, b_type); 3636 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3637 mas_replace_node(wr_mas->mas, old_enode); 3638 reuse_node: 3639 mas_update_gap(wr_mas->mas); 3640 return 1; 3641 } 3642 3643 /* 3644 * mas_root_expand() - Expand a root to a node 3645 * @mas: The maple state 3646 * @entry: The entry to store into the tree 3647 */ 3648 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3649 { 3650 void *contents = mas_root_locked(mas); 3651 enum maple_type type = maple_leaf_64; 3652 struct maple_node *node; 3653 void __rcu **slots; 3654 unsigned long *pivots; 3655 int slot = 0; 3656 3657 mas_node_count(mas, 1); 3658 if (unlikely(mas_is_err(mas))) 3659 return 0; 3660 3661 node = mas_pop_node(mas); 3662 pivots = ma_pivots(node, type); 3663 slots = ma_slots(node, type); 3664 node->parent = ma_parent_ptr( 3665 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3666 mas->node = mt_mk_node(node, type); 3667 3668 if (mas->index) { 3669 if (contents) { 3670 rcu_assign_pointer(slots[slot], contents); 3671 if (likely(mas->index > 1)) 3672 slot++; 3673 } 3674 pivots[slot++] = mas->index - 1; 3675 } 3676 3677 rcu_assign_pointer(slots[slot], entry); 3678 mas->offset = slot; 3679 pivots[slot] = mas->last; 3680 if (mas->last != ULONG_MAX) 3681 pivots[++slot] = ULONG_MAX; 3682 3683 mas->depth = 1; 3684 mas_set_height(mas); 3685 ma_set_meta(node, maple_leaf_64, 0, slot); 3686 /* swap the new root into the tree */ 3687 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3688 return slot; 3689 } 3690 3691 static inline void mas_store_root(struct ma_state *mas, void *entry) 3692 { 3693 if (likely((mas->last != 0) || (mas->index != 0))) 3694 mas_root_expand(mas, entry); 3695 else if (((unsigned long) (entry) & 3) == 2) 3696 mas_root_expand(mas, entry); 3697 else { 3698 rcu_assign_pointer(mas->tree->ma_root, entry); 3699 mas->node = MAS_START; 3700 } 3701 } 3702 3703 /* 3704 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3705 * spans the node. 3706 * @mas: The maple state 3707 * @piv: The pivot value being written 3708 * @type: The maple node type 3709 * @entry: The data to write 3710 * 3711 * Spanning writes are writes that start in one node and end in another OR if 3712 * the write of a %NULL will cause the node to end with a %NULL. 3713 * 3714 * Return: True if this is a spanning write, false otherwise. 3715 */ 3716 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3717 { 3718 unsigned long max = wr_mas->r_max; 3719 unsigned long last = wr_mas->mas->last; 3720 enum maple_type type = wr_mas->type; 3721 void *entry = wr_mas->entry; 3722 3723 /* Contained in this pivot, fast path */ 3724 if (last < max) 3725 return false; 3726 3727 if (ma_is_leaf(type)) { 3728 max = wr_mas->mas->max; 3729 if (last < max) 3730 return false; 3731 } 3732 3733 if (last == max) { 3734 /* 3735 * The last entry of leaf node cannot be NULL unless it is the 3736 * rightmost node (writing ULONG_MAX), otherwise it spans slots. 3737 */ 3738 if (entry || last == ULONG_MAX) 3739 return false; 3740 } 3741 3742 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); 3743 return true; 3744 } 3745 3746 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3747 { 3748 wr_mas->type = mte_node_type(wr_mas->mas->node); 3749 mas_wr_node_walk(wr_mas); 3750 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3751 } 3752 3753 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3754 { 3755 wr_mas->mas->max = wr_mas->r_max; 3756 wr_mas->mas->min = wr_mas->r_min; 3757 wr_mas->mas->node = wr_mas->content; 3758 wr_mas->mas->offset = 0; 3759 wr_mas->mas->depth++; 3760 } 3761 /* 3762 * mas_wr_walk() - Walk the tree for a write. 3763 * @wr_mas: The maple write state 3764 * 3765 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3766 * 3767 * Return: True if it's contained in a node, false on spanning write. 3768 */ 3769 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3770 { 3771 struct ma_state *mas = wr_mas->mas; 3772 3773 while (true) { 3774 mas_wr_walk_descend(wr_mas); 3775 if (unlikely(mas_is_span_wr(wr_mas))) 3776 return false; 3777 3778 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3779 mas->offset); 3780 if (ma_is_leaf(wr_mas->type)) 3781 return true; 3782 3783 mas_wr_walk_traverse(wr_mas); 3784 } 3785 3786 return true; 3787 } 3788 3789 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3790 { 3791 struct ma_state *mas = wr_mas->mas; 3792 3793 while (true) { 3794 mas_wr_walk_descend(wr_mas); 3795 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3796 mas->offset); 3797 if (ma_is_leaf(wr_mas->type)) 3798 return true; 3799 mas_wr_walk_traverse(wr_mas); 3800 3801 } 3802 return true; 3803 } 3804 /* 3805 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3806 * @l_wr_mas: The left maple write state 3807 * @r_wr_mas: The right maple write state 3808 */ 3809 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3810 struct ma_wr_state *r_wr_mas) 3811 { 3812 struct ma_state *r_mas = r_wr_mas->mas; 3813 struct ma_state *l_mas = l_wr_mas->mas; 3814 unsigned char l_slot; 3815 3816 l_slot = l_mas->offset; 3817 if (!l_wr_mas->content) 3818 l_mas->index = l_wr_mas->r_min; 3819 3820 if ((l_mas->index == l_wr_mas->r_min) && 3821 (l_slot && 3822 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3823 if (l_slot > 1) 3824 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3825 else 3826 l_mas->index = l_mas->min; 3827 3828 l_mas->offset = l_slot - 1; 3829 } 3830 3831 if (!r_wr_mas->content) { 3832 if (r_mas->last < r_wr_mas->r_max) 3833 r_mas->last = r_wr_mas->r_max; 3834 r_mas->offset++; 3835 } else if ((r_mas->last == r_wr_mas->r_max) && 3836 (r_mas->last < r_mas->max) && 3837 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3838 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3839 r_wr_mas->type, r_mas->offset + 1); 3840 r_mas->offset++; 3841 } 3842 } 3843 3844 static inline void *mas_state_walk(struct ma_state *mas) 3845 { 3846 void *entry; 3847 3848 entry = mas_start(mas); 3849 if (mas_is_none(mas)) 3850 return NULL; 3851 3852 if (mas_is_ptr(mas)) 3853 return entry; 3854 3855 return mtree_range_walk(mas); 3856 } 3857 3858 /* 3859 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3860 * to date. 3861 * 3862 * @mas: The maple state. 3863 * 3864 * Note: Leaves mas in undesirable state. 3865 * Return: The entry for @mas->index or %NULL on dead node. 3866 */ 3867 static inline void *mtree_lookup_walk(struct ma_state *mas) 3868 { 3869 unsigned long *pivots; 3870 unsigned char offset; 3871 struct maple_node *node; 3872 struct maple_enode *next; 3873 enum maple_type type; 3874 void __rcu **slots; 3875 unsigned char end; 3876 unsigned long max; 3877 3878 next = mas->node; 3879 max = ULONG_MAX; 3880 do { 3881 offset = 0; 3882 node = mte_to_node(next); 3883 type = mte_node_type(next); 3884 pivots = ma_pivots(node, type); 3885 end = ma_data_end(node, type, pivots, max); 3886 if (unlikely(ma_dead_node(node))) 3887 goto dead_node; 3888 do { 3889 if (pivots[offset] >= mas->index) { 3890 max = pivots[offset]; 3891 break; 3892 } 3893 } while (++offset < end); 3894 3895 slots = ma_slots(node, type); 3896 next = mt_slot(mas->tree, slots, offset); 3897 if (unlikely(ma_dead_node(node))) 3898 goto dead_node; 3899 } while (!ma_is_leaf(type)); 3900 3901 return (void *)next; 3902 3903 dead_node: 3904 mas_reset(mas); 3905 return NULL; 3906 } 3907 3908 /* 3909 * mas_new_root() - Create a new root node that only contains the entry passed 3910 * in. 3911 * @mas: The maple state 3912 * @entry: The entry to store. 3913 * 3914 * Only valid when the index == 0 and the last == ULONG_MAX 3915 * 3916 * Return 0 on error, 1 on success. 3917 */ 3918 static inline int mas_new_root(struct ma_state *mas, void *entry) 3919 { 3920 struct maple_enode *root = mas_root_locked(mas); 3921 enum maple_type type = maple_leaf_64; 3922 struct maple_node *node; 3923 void __rcu **slots; 3924 unsigned long *pivots; 3925 3926 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3927 mas->depth = 0; 3928 mas_set_height(mas); 3929 rcu_assign_pointer(mas->tree->ma_root, entry); 3930 mas->node = MAS_START; 3931 goto done; 3932 } 3933 3934 mas_node_count(mas, 1); 3935 if (mas_is_err(mas)) 3936 return 0; 3937 3938 node = mas_pop_node(mas); 3939 pivots = ma_pivots(node, type); 3940 slots = ma_slots(node, type); 3941 node->parent = ma_parent_ptr( 3942 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3943 mas->node = mt_mk_node(node, type); 3944 rcu_assign_pointer(slots[0], entry); 3945 pivots[0] = mas->last; 3946 mas->depth = 1; 3947 mas_set_height(mas); 3948 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3949 3950 done: 3951 if (xa_is_node(root)) 3952 mte_destroy_walk(root, mas->tree); 3953 3954 return 1; 3955 } 3956 /* 3957 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3958 * and new nodes where necessary, then place the sub-tree in the actual tree. 3959 * Note that mas is expected to point to the node which caused the store to 3960 * span. 3961 * @wr_mas: The maple write state 3962 * 3963 * Return: 0 on error, positive on success. 3964 */ 3965 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3966 { 3967 struct maple_subtree_state mast; 3968 struct maple_big_node b_node; 3969 struct ma_state *mas; 3970 unsigned char height; 3971 3972 /* Left and Right side of spanning store */ 3973 MA_STATE(l_mas, NULL, 0, 0); 3974 MA_STATE(r_mas, NULL, 0, 0); 3975 3976 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3977 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3978 3979 /* 3980 * A store operation that spans multiple nodes is called a spanning 3981 * store and is handled early in the store call stack by the function 3982 * mas_is_span_wr(). When a spanning store is identified, the maple 3983 * state is duplicated. The first maple state walks the left tree path 3984 * to ``index``, the duplicate walks the right tree path to ``last``. 3985 * The data in the two nodes are combined into a single node, two nodes, 3986 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3987 * written to the last entry of a node is considered a spanning store as 3988 * a rebalance is required for the operation to complete and an overflow 3989 * of data may happen. 3990 */ 3991 mas = wr_mas->mas; 3992 trace_ma_op(__func__, mas); 3993 3994 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3995 return mas_new_root(mas, wr_mas->entry); 3996 /* 3997 * Node rebalancing may occur due to this store, so there may be three new 3998 * entries per level plus a new root. 3999 */ 4000 height = mas_mt_height(mas); 4001 mas_node_count(mas, 1 + height * 3); 4002 if (mas_is_err(mas)) 4003 return 0; 4004 4005 /* 4006 * Set up right side. Need to get to the next offset after the spanning 4007 * store to ensure it's not NULL and to combine both the next node and 4008 * the node with the start together. 4009 */ 4010 r_mas = *mas; 4011 /* Avoid overflow, walk to next slot in the tree. */ 4012 if (r_mas.last + 1) 4013 r_mas.last++; 4014 4015 r_mas.index = r_mas.last; 4016 mas_wr_walk_index(&r_wr_mas); 4017 r_mas.last = r_mas.index = mas->last; 4018 4019 /* Set up left side. */ 4020 l_mas = *mas; 4021 mas_wr_walk_index(&l_wr_mas); 4022 4023 if (!wr_mas->entry) { 4024 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4025 mas->offset = l_mas.offset; 4026 mas->index = l_mas.index; 4027 mas->last = l_mas.last = r_mas.last; 4028 } 4029 4030 /* expanding NULLs may make this cover the entire range */ 4031 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4032 mas_set_range(mas, 0, ULONG_MAX); 4033 return mas_new_root(mas, wr_mas->entry); 4034 } 4035 4036 memset(&b_node, 0, sizeof(struct maple_big_node)); 4037 /* Copy l_mas and store the value in b_node. */ 4038 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4039 /* Copy r_mas into b_node. */ 4040 if (r_mas.offset <= r_wr_mas.node_end) 4041 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4042 &b_node, b_node.b_end + 1); 4043 else 4044 b_node.b_end++; 4045 4046 /* Stop spanning searches by searching for just index. */ 4047 l_mas.index = l_mas.last = mas->index; 4048 4049 mast.bn = &b_node; 4050 mast.orig_l = &l_mas; 4051 mast.orig_r = &r_mas; 4052 /* Combine l_mas and r_mas and split them up evenly again. */ 4053 return mas_spanning_rebalance(mas, &mast, height + 1); 4054 } 4055 4056 /* 4057 * mas_wr_node_store() - Attempt to store the value in a node 4058 * @wr_mas: The maple write state 4059 * 4060 * Attempts to reuse the node, but may allocate. 4061 * 4062 * Return: True if stored, false otherwise 4063 */ 4064 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas, 4065 unsigned char new_end) 4066 { 4067 struct ma_state *mas = wr_mas->mas; 4068 void __rcu **dst_slots; 4069 unsigned long *dst_pivots; 4070 unsigned char dst_offset, offset_end = wr_mas->offset_end; 4071 struct maple_node reuse, *newnode; 4072 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; 4073 bool in_rcu = mt_in_rcu(mas->tree); 4074 4075 /* Check if there is enough data. The room is enough. */ 4076 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4077 !(mas->mas_flags & MA_STATE_BULK)) 4078 return false; 4079 4080 if (mas->last == wr_mas->end_piv) 4081 offset_end++; /* don't copy this offset */ 4082 else if (unlikely(wr_mas->r_max == ULONG_MAX)) 4083 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4084 4085 /* set up node. */ 4086 if (in_rcu) { 4087 mas_node_count(mas, 1); 4088 if (mas_is_err(mas)) 4089 return false; 4090 4091 newnode = mas_pop_node(mas); 4092 } else { 4093 memset(&reuse, 0, sizeof(struct maple_node)); 4094 newnode = &reuse; 4095 } 4096 4097 newnode->parent = mas_mn(mas)->parent; 4098 dst_pivots = ma_pivots(newnode, wr_mas->type); 4099 dst_slots = ma_slots(newnode, wr_mas->type); 4100 /* Copy from start to insert point */ 4101 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); 4102 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); 4103 4104 /* Handle insert of new range starting after old range */ 4105 if (wr_mas->r_min < mas->index) { 4106 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); 4107 dst_pivots[mas->offset++] = mas->index - 1; 4108 } 4109 4110 /* Store the new entry and range end. */ 4111 if (mas->offset < node_pivots) 4112 dst_pivots[mas->offset] = mas->last; 4113 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); 4114 4115 /* 4116 * this range wrote to the end of the node or it overwrote the rest of 4117 * the data 4118 */ 4119 if (offset_end > wr_mas->node_end) 4120 goto done; 4121 4122 dst_offset = mas->offset + 1; 4123 /* Copy to the end of node if necessary. */ 4124 copy_size = wr_mas->node_end - offset_end + 1; 4125 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, 4126 sizeof(void *) * copy_size); 4127 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, 4128 sizeof(unsigned long) * (copy_size - 1)); 4129 4130 if (new_end < node_pivots) 4131 dst_pivots[new_end] = mas->max; 4132 4133 done: 4134 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4135 if (in_rcu) { 4136 struct maple_enode *old_enode = mas->node; 4137 4138 mas->node = mt_mk_node(newnode, wr_mas->type); 4139 mas_replace_node(mas, old_enode); 4140 } else { 4141 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4142 } 4143 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4144 mas_update_gap(mas); 4145 return true; 4146 } 4147 4148 /* 4149 * mas_wr_slot_store: Attempt to store a value in a slot. 4150 * @wr_mas: the maple write state 4151 * 4152 * Return: True if stored, false otherwise 4153 */ 4154 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4155 { 4156 struct ma_state *mas = wr_mas->mas; 4157 unsigned char offset = mas->offset; 4158 void __rcu **slots = wr_mas->slots; 4159 bool gap = false; 4160 4161 gap |= !mt_slot_locked(mas->tree, slots, offset); 4162 gap |= !mt_slot_locked(mas->tree, slots, offset + 1); 4163 4164 if (wr_mas->offset_end - offset == 1) { 4165 if (mas->index == wr_mas->r_min) { 4166 /* Overwriting the range and a part of the next one */ 4167 rcu_assign_pointer(slots[offset], wr_mas->entry); 4168 wr_mas->pivots[offset] = mas->last; 4169 } else { 4170 /* Overwriting a part of the range and the next one */ 4171 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 4172 wr_mas->pivots[offset] = mas->index - 1; 4173 mas->offset++; /* Keep mas accurate. */ 4174 } 4175 } else if (!mt_in_rcu(mas->tree)) { 4176 /* 4177 * Expand the range, only partially overwriting the previous and 4178 * next ranges 4179 */ 4180 gap |= !mt_slot_locked(mas->tree, slots, offset + 2); 4181 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 4182 wr_mas->pivots[offset] = mas->index - 1; 4183 wr_mas->pivots[offset + 1] = mas->last; 4184 mas->offset++; /* Keep mas accurate. */ 4185 } else { 4186 return false; 4187 } 4188 4189 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4190 /* 4191 * Only update gap when the new entry is empty or there is an empty 4192 * entry in the original two ranges. 4193 */ 4194 if (!wr_mas->entry || gap) 4195 mas_update_gap(mas); 4196 4197 return true; 4198 } 4199 4200 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4201 { 4202 struct ma_state *mas = wr_mas->mas; 4203 4204 if (!wr_mas->slots[wr_mas->offset_end]) { 4205 /* If this one is null, the next and prev are not */ 4206 mas->last = wr_mas->end_piv; 4207 } else { 4208 /* Check next slot(s) if we are overwriting the end */ 4209 if ((mas->last == wr_mas->end_piv) && 4210 (wr_mas->node_end != wr_mas->offset_end) && 4211 !wr_mas->slots[wr_mas->offset_end + 1]) { 4212 wr_mas->offset_end++; 4213 if (wr_mas->offset_end == wr_mas->node_end) 4214 mas->last = mas->max; 4215 else 4216 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4217 wr_mas->end_piv = mas->last; 4218 } 4219 } 4220 4221 if (!wr_mas->content) { 4222 /* If this one is null, the next and prev are not */ 4223 mas->index = wr_mas->r_min; 4224 } else { 4225 /* Check prev slot if we are overwriting the start */ 4226 if (mas->index == wr_mas->r_min && mas->offset && 4227 !wr_mas->slots[mas->offset - 1]) { 4228 mas->offset--; 4229 wr_mas->r_min = mas->index = 4230 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4231 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4232 } 4233 } 4234 } 4235 4236 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4237 { 4238 while ((wr_mas->offset_end < wr_mas->node_end) && 4239 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 4240 wr_mas->offset_end++; 4241 4242 if (wr_mas->offset_end < wr_mas->node_end) 4243 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 4244 else 4245 wr_mas->end_piv = wr_mas->mas->max; 4246 4247 if (!wr_mas->entry) 4248 mas_wr_extend_null(wr_mas); 4249 } 4250 4251 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) 4252 { 4253 struct ma_state *mas = wr_mas->mas; 4254 unsigned char new_end = wr_mas->node_end + 2; 4255 4256 new_end -= wr_mas->offset_end - mas->offset; 4257 if (wr_mas->r_min == mas->index) 4258 new_end--; 4259 4260 if (wr_mas->end_piv == mas->last) 4261 new_end--; 4262 4263 return new_end; 4264 } 4265 4266 /* 4267 * mas_wr_append: Attempt to append 4268 * @wr_mas: the maple write state 4269 * 4270 * Return: True if appended, false otherwise 4271 */ 4272 static inline bool mas_wr_append(struct ma_wr_state *wr_mas, 4273 unsigned char new_end) 4274 { 4275 unsigned char end = wr_mas->node_end; 4276 struct ma_state *mas = wr_mas->mas; 4277 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4278 4279 if (mas->offset != wr_mas->node_end) 4280 return false; 4281 4282 if (new_end < node_pivots) { 4283 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4284 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4285 } 4286 4287 if (new_end == wr_mas->node_end + 1) { 4288 if (mas->last == wr_mas->r_max) { 4289 /* Append to end of range */ 4290 rcu_assign_pointer(wr_mas->slots[new_end], 4291 wr_mas->entry); 4292 wr_mas->pivots[end] = mas->index - 1; 4293 mas->offset = new_end; 4294 } else { 4295 /* Append to start of range */ 4296 rcu_assign_pointer(wr_mas->slots[new_end], 4297 wr_mas->content); 4298 wr_mas->pivots[end] = mas->last; 4299 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4300 } 4301 } else { 4302 /* Append to the range without touching any boundaries. */ 4303 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4304 wr_mas->pivots[end + 1] = mas->last; 4305 rcu_assign_pointer(wr_mas->slots[end + 1], wr_mas->entry); 4306 wr_mas->pivots[end] = mas->index - 1; 4307 mas->offset = end + 1; 4308 } 4309 4310 if (!wr_mas->content || !wr_mas->entry) 4311 mas_update_gap(mas); 4312 4313 return true; 4314 } 4315 4316 /* 4317 * mas_wr_bnode() - Slow path for a modification. 4318 * @wr_mas: The write maple state 4319 * 4320 * This is where split, rebalance end up. 4321 */ 4322 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4323 { 4324 struct maple_big_node b_node; 4325 4326 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4327 memset(&b_node, 0, sizeof(struct maple_big_node)); 4328 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4329 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4330 } 4331 4332 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4333 { 4334 struct ma_state *mas = wr_mas->mas; 4335 unsigned char new_end; 4336 4337 /* Direct replacement */ 4338 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4339 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4340 if (!!wr_mas->entry ^ !!wr_mas->content) 4341 mas_update_gap(mas); 4342 return; 4343 } 4344 4345 /* 4346 * new_end exceeds the size of the maple node and cannot enter the fast 4347 * path. 4348 */ 4349 new_end = mas_wr_new_end(wr_mas); 4350 if (new_end >= mt_slots[wr_mas->type]) 4351 goto slow_path; 4352 4353 /* Attempt to append */ 4354 if (mas_wr_append(wr_mas, new_end)) 4355 return; 4356 4357 if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas)) 4358 return; 4359 4360 if (mas_wr_node_store(wr_mas, new_end)) 4361 return; 4362 4363 if (mas_is_err(mas)) 4364 return; 4365 4366 slow_path: 4367 mas_wr_bnode(wr_mas); 4368 } 4369 4370 /* 4371 * mas_wr_store_entry() - Internal call to store a value 4372 * @mas: The maple state 4373 * @entry: The entry to store. 4374 * 4375 * Return: The contents that was stored at the index. 4376 */ 4377 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4378 { 4379 struct ma_state *mas = wr_mas->mas; 4380 4381 wr_mas->content = mas_start(mas); 4382 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4383 mas_store_root(mas, wr_mas->entry); 4384 return wr_mas->content; 4385 } 4386 4387 if (unlikely(!mas_wr_walk(wr_mas))) { 4388 mas_wr_spanning_store(wr_mas); 4389 return wr_mas->content; 4390 } 4391 4392 /* At this point, we are at the leaf node that needs to be altered. */ 4393 mas_wr_end_piv(wr_mas); 4394 /* New root for a single pointer */ 4395 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4396 mas_new_root(mas, wr_mas->entry); 4397 return wr_mas->content; 4398 } 4399 4400 mas_wr_modify(wr_mas); 4401 return wr_mas->content; 4402 } 4403 4404 /** 4405 * mas_insert() - Internal call to insert a value 4406 * @mas: The maple state 4407 * @entry: The entry to store 4408 * 4409 * Return: %NULL or the contents that already exists at the requested index 4410 * otherwise. The maple state needs to be checked for error conditions. 4411 */ 4412 static inline void *mas_insert(struct ma_state *mas, void *entry) 4413 { 4414 MA_WR_STATE(wr_mas, mas, entry); 4415 4416 /* 4417 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4418 * tree. If the insert fits exactly into an existing gap with a value 4419 * of NULL, then the slot only needs to be written with the new value. 4420 * If the range being inserted is adjacent to another range, then only a 4421 * single pivot needs to be inserted (as well as writing the entry). If 4422 * the new range is within a gap but does not touch any other ranges, 4423 * then two pivots need to be inserted: the start - 1, and the end. As 4424 * usual, the entry must be written. Most operations require a new node 4425 * to be allocated and replace an existing node to ensure RCU safety, 4426 * when in RCU mode. The exception to requiring a newly allocated node 4427 * is when inserting at the end of a node (appending). When done 4428 * carefully, appending can reuse the node in place. 4429 */ 4430 wr_mas.content = mas_start(mas); 4431 if (wr_mas.content) 4432 goto exists; 4433 4434 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4435 mas_store_root(mas, entry); 4436 return NULL; 4437 } 4438 4439 /* spanning writes always overwrite something */ 4440 if (!mas_wr_walk(&wr_mas)) 4441 goto exists; 4442 4443 /* At this point, we are at the leaf node that needs to be altered. */ 4444 wr_mas.offset_end = mas->offset; 4445 wr_mas.end_piv = wr_mas.r_max; 4446 4447 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4448 goto exists; 4449 4450 if (!entry) 4451 return NULL; 4452 4453 mas_wr_modify(&wr_mas); 4454 return wr_mas.content; 4455 4456 exists: 4457 mas_set_err(mas, -EEXIST); 4458 return wr_mas.content; 4459 4460 } 4461 4462 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4463 { 4464 retry: 4465 mas_set(mas, index); 4466 mas_state_walk(mas); 4467 if (mas_is_start(mas)) 4468 goto retry; 4469 } 4470 4471 static inline bool mas_rewalk_if_dead(struct ma_state *mas, 4472 struct maple_node *node, const unsigned long index) 4473 { 4474 if (unlikely(ma_dead_node(node))) { 4475 mas_rewalk(mas, index); 4476 return true; 4477 } 4478 return false; 4479 } 4480 4481 /* 4482 * mas_prev_node() - Find the prev non-null entry at the same level in the 4483 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4484 * @mas: The maple state 4485 * @min: The lower limit to search 4486 * 4487 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4488 * Return: 1 if the node is dead, 0 otherwise. 4489 */ 4490 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4491 { 4492 enum maple_type mt; 4493 int offset, level; 4494 void __rcu **slots; 4495 struct maple_node *node; 4496 unsigned long *pivots; 4497 unsigned long max; 4498 4499 node = mas_mn(mas); 4500 if (!mas->min) 4501 goto no_entry; 4502 4503 max = mas->min - 1; 4504 if (max < min) 4505 goto no_entry; 4506 4507 level = 0; 4508 do { 4509 if (ma_is_root(node)) 4510 goto no_entry; 4511 4512 /* Walk up. */ 4513 if (unlikely(mas_ascend(mas))) 4514 return 1; 4515 offset = mas->offset; 4516 level++; 4517 node = mas_mn(mas); 4518 } while (!offset); 4519 4520 offset--; 4521 mt = mte_node_type(mas->node); 4522 while (level > 1) { 4523 level--; 4524 slots = ma_slots(node, mt); 4525 mas->node = mas_slot(mas, slots, offset); 4526 if (unlikely(ma_dead_node(node))) 4527 return 1; 4528 4529 mt = mte_node_type(mas->node); 4530 node = mas_mn(mas); 4531 pivots = ma_pivots(node, mt); 4532 offset = ma_data_end(node, mt, pivots, max); 4533 if (unlikely(ma_dead_node(node))) 4534 return 1; 4535 } 4536 4537 slots = ma_slots(node, mt); 4538 mas->node = mas_slot(mas, slots, offset); 4539 pivots = ma_pivots(node, mt); 4540 if (unlikely(ma_dead_node(node))) 4541 return 1; 4542 4543 if (likely(offset)) 4544 mas->min = pivots[offset - 1] + 1; 4545 mas->max = max; 4546 mas->offset = mas_data_end(mas); 4547 if (unlikely(mte_dead_node(mas->node))) 4548 return 1; 4549 4550 return 0; 4551 4552 no_entry: 4553 if (unlikely(ma_dead_node(node))) 4554 return 1; 4555 4556 mas->node = MAS_NONE; 4557 return 0; 4558 } 4559 4560 /* 4561 * mas_prev_slot() - Get the entry in the previous slot 4562 * 4563 * @mas: The maple state 4564 * @max: The minimum starting range 4565 * 4566 * Return: The entry in the previous slot which is possibly NULL 4567 */ 4568 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4569 { 4570 void *entry; 4571 void __rcu **slots; 4572 unsigned long pivot; 4573 enum maple_type type; 4574 unsigned long *pivots; 4575 struct maple_node *node; 4576 unsigned long save_point = mas->index; 4577 4578 retry: 4579 node = mas_mn(mas); 4580 type = mte_node_type(mas->node); 4581 pivots = ma_pivots(node, type); 4582 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4583 goto retry; 4584 4585 again: 4586 if (mas->min <= min) { 4587 pivot = mas_safe_min(mas, pivots, mas->offset); 4588 4589 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4590 goto retry; 4591 4592 if (pivot <= min) 4593 return NULL; 4594 } 4595 4596 if (likely(mas->offset)) { 4597 mas->offset--; 4598 mas->last = mas->index - 1; 4599 mas->index = mas_safe_min(mas, pivots, mas->offset); 4600 } else { 4601 if (mas_prev_node(mas, min)) { 4602 mas_rewalk(mas, save_point); 4603 goto retry; 4604 } 4605 4606 if (mas_is_none(mas)) 4607 return NULL; 4608 4609 mas->last = mas->max; 4610 node = mas_mn(mas); 4611 type = mte_node_type(mas->node); 4612 pivots = ma_pivots(node, type); 4613 mas->index = pivots[mas->offset - 1] + 1; 4614 } 4615 4616 slots = ma_slots(node, type); 4617 entry = mas_slot(mas, slots, mas->offset); 4618 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4619 goto retry; 4620 4621 if (likely(entry)) 4622 return entry; 4623 4624 if (!empty) 4625 goto again; 4626 4627 return entry; 4628 } 4629 4630 /* 4631 * mas_next_node() - Get the next node at the same level in the tree. 4632 * @mas: The maple state 4633 * @max: The maximum pivot value to check. 4634 * 4635 * The next value will be mas->node[mas->offset] or MAS_NONE. 4636 * Return: 1 on dead node, 0 otherwise. 4637 */ 4638 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4639 unsigned long max) 4640 { 4641 unsigned long min; 4642 unsigned long *pivots; 4643 struct maple_enode *enode; 4644 int level = 0; 4645 unsigned char node_end; 4646 enum maple_type mt; 4647 void __rcu **slots; 4648 4649 if (mas->max >= max) 4650 goto no_entry; 4651 4652 min = mas->max + 1; 4653 level = 0; 4654 do { 4655 if (ma_is_root(node)) 4656 goto no_entry; 4657 4658 /* Walk up. */ 4659 if (unlikely(mas_ascend(mas))) 4660 return 1; 4661 4662 level++; 4663 node = mas_mn(mas); 4664 mt = mte_node_type(mas->node); 4665 pivots = ma_pivots(node, mt); 4666 node_end = ma_data_end(node, mt, pivots, mas->max); 4667 if (unlikely(ma_dead_node(node))) 4668 return 1; 4669 4670 } while (unlikely(mas->offset == node_end)); 4671 4672 slots = ma_slots(node, mt); 4673 mas->offset++; 4674 enode = mas_slot(mas, slots, mas->offset); 4675 if (unlikely(ma_dead_node(node))) 4676 return 1; 4677 4678 if (level > 1) 4679 mas->offset = 0; 4680 4681 while (unlikely(level > 1)) { 4682 level--; 4683 mas->node = enode; 4684 node = mas_mn(mas); 4685 mt = mte_node_type(mas->node); 4686 slots = ma_slots(node, mt); 4687 enode = mas_slot(mas, slots, 0); 4688 if (unlikely(ma_dead_node(node))) 4689 return 1; 4690 } 4691 4692 if (!mas->offset) 4693 pivots = ma_pivots(node, mt); 4694 4695 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4696 if (unlikely(ma_dead_node(node))) 4697 return 1; 4698 4699 mas->node = enode; 4700 mas->min = min; 4701 return 0; 4702 4703 no_entry: 4704 if (unlikely(ma_dead_node(node))) 4705 return 1; 4706 4707 mas->node = MAS_NONE; 4708 return 0; 4709 } 4710 4711 /* 4712 * mas_next_slot() - Get the entry in the next slot 4713 * 4714 * @mas: The maple state 4715 * @max: The maximum starting range 4716 * @empty: Can be empty 4717 * 4718 * Return: The entry in the next slot which is possibly NULL 4719 */ 4720 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4721 { 4722 void __rcu **slots; 4723 unsigned long *pivots; 4724 unsigned long pivot; 4725 enum maple_type type; 4726 struct maple_node *node; 4727 unsigned char data_end; 4728 unsigned long save_point = mas->last; 4729 void *entry; 4730 4731 retry: 4732 node = mas_mn(mas); 4733 type = mte_node_type(mas->node); 4734 pivots = ma_pivots(node, type); 4735 data_end = ma_data_end(node, type, pivots, mas->max); 4736 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4737 goto retry; 4738 4739 again: 4740 if (mas->max >= max) { 4741 if (likely(mas->offset < data_end)) 4742 pivot = pivots[mas->offset]; 4743 else 4744 return NULL; /* must be mas->max */ 4745 4746 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4747 goto retry; 4748 4749 if (pivot >= max) 4750 return NULL; 4751 } 4752 4753 if (likely(mas->offset < data_end)) { 4754 mas->index = pivots[mas->offset] + 1; 4755 mas->offset++; 4756 if (likely(mas->offset < data_end)) 4757 mas->last = pivots[mas->offset]; 4758 else 4759 mas->last = mas->max; 4760 } else { 4761 if (mas_next_node(mas, node, max)) { 4762 mas_rewalk(mas, save_point); 4763 goto retry; 4764 } 4765 4766 if (mas_is_none(mas)) 4767 return NULL; 4768 4769 mas->offset = 0; 4770 mas->index = mas->min; 4771 node = mas_mn(mas); 4772 type = mte_node_type(mas->node); 4773 pivots = ma_pivots(node, type); 4774 mas->last = pivots[0]; 4775 } 4776 4777 slots = ma_slots(node, type); 4778 entry = mt_slot(mas->tree, slots, mas->offset); 4779 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4780 goto retry; 4781 4782 if (entry) 4783 return entry; 4784 4785 if (!empty) { 4786 if (!mas->offset) 4787 data_end = 2; 4788 goto again; 4789 } 4790 4791 return entry; 4792 } 4793 4794 /* 4795 * mas_next_entry() - Internal function to get the next entry. 4796 * @mas: The maple state 4797 * @limit: The maximum range start. 4798 * 4799 * Set the @mas->node to the next entry and the range_start to 4800 * the beginning value for the entry. Does not check beyond @limit. 4801 * Sets @mas->index and @mas->last to the limit if it is hit. 4802 * Restarts on dead nodes. 4803 * 4804 * Return: the next entry or %NULL. 4805 */ 4806 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4807 { 4808 if (mas->last >= limit) 4809 return NULL; 4810 4811 return mas_next_slot(mas, limit, false); 4812 } 4813 4814 /* 4815 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4816 * highest gap address of a given size in a given node and descend. 4817 * @mas: The maple state 4818 * @size: The needed size. 4819 * 4820 * Return: True if found in a leaf, false otherwise. 4821 * 4822 */ 4823 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4824 unsigned long *gap_min, unsigned long *gap_max) 4825 { 4826 enum maple_type type = mte_node_type(mas->node); 4827 struct maple_node *node = mas_mn(mas); 4828 unsigned long *pivots, *gaps; 4829 void __rcu **slots; 4830 unsigned long gap = 0; 4831 unsigned long max, min; 4832 unsigned char offset; 4833 4834 if (unlikely(mas_is_err(mas))) 4835 return true; 4836 4837 if (ma_is_dense(type)) { 4838 /* dense nodes. */ 4839 mas->offset = (unsigned char)(mas->index - mas->min); 4840 return true; 4841 } 4842 4843 pivots = ma_pivots(node, type); 4844 slots = ma_slots(node, type); 4845 gaps = ma_gaps(node, type); 4846 offset = mas->offset; 4847 min = mas_safe_min(mas, pivots, offset); 4848 /* Skip out of bounds. */ 4849 while (mas->last < min) 4850 min = mas_safe_min(mas, pivots, --offset); 4851 4852 max = mas_safe_pivot(mas, pivots, offset, type); 4853 while (mas->index <= max) { 4854 gap = 0; 4855 if (gaps) 4856 gap = gaps[offset]; 4857 else if (!mas_slot(mas, slots, offset)) 4858 gap = max - min + 1; 4859 4860 if (gap) { 4861 if ((size <= gap) && (size <= mas->last - min + 1)) 4862 break; 4863 4864 if (!gaps) { 4865 /* Skip the next slot, it cannot be a gap. */ 4866 if (offset < 2) 4867 goto ascend; 4868 4869 offset -= 2; 4870 max = pivots[offset]; 4871 min = mas_safe_min(mas, pivots, offset); 4872 continue; 4873 } 4874 } 4875 4876 if (!offset) 4877 goto ascend; 4878 4879 offset--; 4880 max = min - 1; 4881 min = mas_safe_min(mas, pivots, offset); 4882 } 4883 4884 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4885 goto no_space; 4886 4887 if (unlikely(ma_is_leaf(type))) { 4888 mas->offset = offset; 4889 *gap_min = min; 4890 *gap_max = min + gap - 1; 4891 return true; 4892 } 4893 4894 /* descend, only happens under lock. */ 4895 mas->node = mas_slot(mas, slots, offset); 4896 mas->min = min; 4897 mas->max = max; 4898 mas->offset = mas_data_end(mas); 4899 return false; 4900 4901 ascend: 4902 if (!mte_is_root(mas->node)) 4903 return false; 4904 4905 no_space: 4906 mas_set_err(mas, -EBUSY); 4907 return false; 4908 } 4909 4910 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4911 { 4912 enum maple_type type = mte_node_type(mas->node); 4913 unsigned long pivot, min, gap = 0; 4914 unsigned char offset, data_end; 4915 unsigned long *gaps, *pivots; 4916 void __rcu **slots; 4917 struct maple_node *node; 4918 bool found = false; 4919 4920 if (ma_is_dense(type)) { 4921 mas->offset = (unsigned char)(mas->index - mas->min); 4922 return true; 4923 } 4924 4925 node = mas_mn(mas); 4926 pivots = ma_pivots(node, type); 4927 slots = ma_slots(node, type); 4928 gaps = ma_gaps(node, type); 4929 offset = mas->offset; 4930 min = mas_safe_min(mas, pivots, offset); 4931 data_end = ma_data_end(node, type, pivots, mas->max); 4932 for (; offset <= data_end; offset++) { 4933 pivot = mas_safe_pivot(mas, pivots, offset, type); 4934 4935 /* Not within lower bounds */ 4936 if (mas->index > pivot) 4937 goto next_slot; 4938 4939 if (gaps) 4940 gap = gaps[offset]; 4941 else if (!mas_slot(mas, slots, offset)) 4942 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4943 else 4944 goto next_slot; 4945 4946 if (gap >= size) { 4947 if (ma_is_leaf(type)) { 4948 found = true; 4949 goto done; 4950 } 4951 if (mas->index <= pivot) { 4952 mas->node = mas_slot(mas, slots, offset); 4953 mas->min = min; 4954 mas->max = pivot; 4955 offset = 0; 4956 break; 4957 } 4958 } 4959 next_slot: 4960 min = pivot + 1; 4961 if (mas->last <= pivot) { 4962 mas_set_err(mas, -EBUSY); 4963 return true; 4964 } 4965 } 4966 4967 if (mte_is_root(mas->node)) 4968 found = true; 4969 done: 4970 mas->offset = offset; 4971 return found; 4972 } 4973 4974 /** 4975 * mas_walk() - Search for @mas->index in the tree. 4976 * @mas: The maple state. 4977 * 4978 * mas->index and mas->last will be set to the range if there is a value. If 4979 * mas->node is MAS_NONE, reset to MAS_START. 4980 * 4981 * Return: the entry at the location or %NULL. 4982 */ 4983 void *mas_walk(struct ma_state *mas) 4984 { 4985 void *entry; 4986 4987 if (mas_is_none(mas) || mas_is_paused(mas) || mas_is_ptr(mas)) 4988 mas->node = MAS_START; 4989 retry: 4990 entry = mas_state_walk(mas); 4991 if (mas_is_start(mas)) { 4992 goto retry; 4993 } else if (mas_is_none(mas)) { 4994 mas->index = 0; 4995 mas->last = ULONG_MAX; 4996 } else if (mas_is_ptr(mas)) { 4997 if (!mas->index) { 4998 mas->last = 0; 4999 return entry; 5000 } 5001 5002 mas->index = 1; 5003 mas->last = ULONG_MAX; 5004 mas->node = MAS_NONE; 5005 return NULL; 5006 } 5007 5008 return entry; 5009 } 5010 EXPORT_SYMBOL_GPL(mas_walk); 5011 5012 static inline bool mas_rewind_node(struct ma_state *mas) 5013 { 5014 unsigned char slot; 5015 5016 do { 5017 if (mte_is_root(mas->node)) { 5018 slot = mas->offset; 5019 if (!slot) 5020 return false; 5021 } else { 5022 mas_ascend(mas); 5023 slot = mas->offset; 5024 } 5025 } while (!slot); 5026 5027 mas->offset = --slot; 5028 return true; 5029 } 5030 5031 /* 5032 * mas_skip_node() - Internal function. Skip over a node. 5033 * @mas: The maple state. 5034 * 5035 * Return: true if there is another node, false otherwise. 5036 */ 5037 static inline bool mas_skip_node(struct ma_state *mas) 5038 { 5039 if (mas_is_err(mas)) 5040 return false; 5041 5042 do { 5043 if (mte_is_root(mas->node)) { 5044 if (mas->offset >= mas_data_end(mas)) { 5045 mas_set_err(mas, -EBUSY); 5046 return false; 5047 } 5048 } else { 5049 mas_ascend(mas); 5050 } 5051 } while (mas->offset >= mas_data_end(mas)); 5052 5053 mas->offset++; 5054 return true; 5055 } 5056 5057 /* 5058 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5059 * @size 5060 * @mas: The maple state 5061 * @size: The size of the gap required 5062 * 5063 * Search between @mas->index and @mas->last for a gap of @size. 5064 */ 5065 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5066 { 5067 struct maple_enode *last = NULL; 5068 5069 /* 5070 * There are 4 options: 5071 * go to child (descend) 5072 * go back to parent (ascend) 5073 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5074 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5075 */ 5076 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5077 if (last == mas->node) 5078 mas_skip_node(mas); 5079 else 5080 last = mas->node; 5081 } 5082 } 5083 5084 /* 5085 * mas_sparse_area() - Internal function. Return upper or lower limit when 5086 * searching for a gap in an empty tree. 5087 * @mas: The maple state 5088 * @min: the minimum range 5089 * @max: The maximum range 5090 * @size: The size of the gap 5091 * @fwd: Searching forward or back 5092 */ 5093 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5094 unsigned long max, unsigned long size, bool fwd) 5095 { 5096 if (!unlikely(mas_is_none(mas)) && min == 0) { 5097 min++; 5098 /* 5099 * At this time, min is increased, we need to recheck whether 5100 * the size is satisfied. 5101 */ 5102 if (min > max || max - min + 1 < size) 5103 return -EBUSY; 5104 } 5105 /* mas_is_ptr */ 5106 5107 if (fwd) { 5108 mas->index = min; 5109 mas->last = min + size - 1; 5110 } else { 5111 mas->last = max; 5112 mas->index = max - size + 1; 5113 } 5114 return 0; 5115 } 5116 5117 /* 5118 * mas_empty_area() - Get the lowest address within the range that is 5119 * sufficient for the size requested. 5120 * @mas: The maple state 5121 * @min: The lowest value of the range 5122 * @max: The highest value of the range 5123 * @size: The size needed 5124 */ 5125 int mas_empty_area(struct ma_state *mas, unsigned long min, 5126 unsigned long max, unsigned long size) 5127 { 5128 unsigned char offset; 5129 unsigned long *pivots; 5130 enum maple_type mt; 5131 5132 if (min > max) 5133 return -EINVAL; 5134 5135 if (size == 0 || max - min < size - 1) 5136 return -EINVAL; 5137 5138 if (mas_is_start(mas)) 5139 mas_start(mas); 5140 else if (mas->offset >= 2) 5141 mas->offset -= 2; 5142 else if (!mas_skip_node(mas)) 5143 return -EBUSY; 5144 5145 /* Empty set */ 5146 if (mas_is_none(mas) || mas_is_ptr(mas)) 5147 return mas_sparse_area(mas, min, max, size, true); 5148 5149 /* The start of the window can only be within these values */ 5150 mas->index = min; 5151 mas->last = max; 5152 mas_awalk(mas, size); 5153 5154 if (unlikely(mas_is_err(mas))) 5155 return xa_err(mas->node); 5156 5157 offset = mas->offset; 5158 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5159 return -EBUSY; 5160 5161 mt = mte_node_type(mas->node); 5162 pivots = ma_pivots(mas_mn(mas), mt); 5163 min = mas_safe_min(mas, pivots, offset); 5164 if (mas->index < min) 5165 mas->index = min; 5166 mas->last = mas->index + size - 1; 5167 return 0; 5168 } 5169 EXPORT_SYMBOL_GPL(mas_empty_area); 5170 5171 /* 5172 * mas_empty_area_rev() - Get the highest address within the range that is 5173 * sufficient for the size requested. 5174 * @mas: The maple state 5175 * @min: The lowest value of the range 5176 * @max: The highest value of the range 5177 * @size: The size needed 5178 */ 5179 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5180 unsigned long max, unsigned long size) 5181 { 5182 struct maple_enode *last = mas->node; 5183 5184 if (min > max) 5185 return -EINVAL; 5186 5187 if (size == 0 || max - min < size - 1) 5188 return -EINVAL; 5189 5190 if (mas_is_start(mas)) { 5191 mas_start(mas); 5192 mas->offset = mas_data_end(mas); 5193 } else if (mas->offset >= 2) { 5194 mas->offset -= 2; 5195 } else if (!mas_rewind_node(mas)) { 5196 return -EBUSY; 5197 } 5198 5199 /* Empty set. */ 5200 if (mas_is_none(mas) || mas_is_ptr(mas)) 5201 return mas_sparse_area(mas, min, max, size, false); 5202 5203 /* The start of the window can only be within these values. */ 5204 mas->index = min; 5205 mas->last = max; 5206 5207 while (!mas_rev_awalk(mas, size, &min, &max)) { 5208 if (last == mas->node) { 5209 if (!mas_rewind_node(mas)) 5210 return -EBUSY; 5211 } else { 5212 last = mas->node; 5213 } 5214 } 5215 5216 if (mas_is_err(mas)) 5217 return xa_err(mas->node); 5218 5219 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5220 return -EBUSY; 5221 5222 /* Trim the upper limit to the max. */ 5223 if (max < mas->last) 5224 mas->last = max; 5225 5226 mas->index = mas->last - size + 1; 5227 return 0; 5228 } 5229 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5230 5231 /* 5232 * mte_dead_leaves() - Mark all leaves of a node as dead. 5233 * @mas: The maple state 5234 * @slots: Pointer to the slot array 5235 * @type: The maple node type 5236 * 5237 * Must hold the write lock. 5238 * 5239 * Return: The number of leaves marked as dead. 5240 */ 5241 static inline 5242 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5243 void __rcu **slots) 5244 { 5245 struct maple_node *node; 5246 enum maple_type type; 5247 void *entry; 5248 int offset; 5249 5250 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5251 entry = mt_slot(mt, slots, offset); 5252 type = mte_node_type(entry); 5253 node = mte_to_node(entry); 5254 /* Use both node and type to catch LE & BE metadata */ 5255 if (!node || !type) 5256 break; 5257 5258 mte_set_node_dead(entry); 5259 node->type = type; 5260 rcu_assign_pointer(slots[offset], node); 5261 } 5262 5263 return offset; 5264 } 5265 5266 /** 5267 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5268 * @enode: The maple encoded node 5269 * @offset: The starting offset 5270 * 5271 * Note: This can only be used from the RCU callback context. 5272 */ 5273 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5274 { 5275 struct maple_node *node, *next; 5276 void __rcu **slots = NULL; 5277 5278 next = mte_to_node(*enode); 5279 do { 5280 *enode = ma_enode_ptr(next); 5281 node = mte_to_node(*enode); 5282 slots = ma_slots(node, node->type); 5283 next = rcu_dereference_protected(slots[offset], 5284 lock_is_held(&rcu_callback_map)); 5285 offset = 0; 5286 } while (!ma_is_leaf(next->type)); 5287 5288 return slots; 5289 } 5290 5291 /** 5292 * mt_free_walk() - Walk & free a tree in the RCU callback context 5293 * @head: The RCU head that's within the node. 5294 * 5295 * Note: This can only be used from the RCU callback context. 5296 */ 5297 static void mt_free_walk(struct rcu_head *head) 5298 { 5299 void __rcu **slots; 5300 struct maple_node *node, *start; 5301 struct maple_enode *enode; 5302 unsigned char offset; 5303 enum maple_type type; 5304 5305 node = container_of(head, struct maple_node, rcu); 5306 5307 if (ma_is_leaf(node->type)) 5308 goto free_leaf; 5309 5310 start = node; 5311 enode = mt_mk_node(node, node->type); 5312 slots = mte_dead_walk(&enode, 0); 5313 node = mte_to_node(enode); 5314 do { 5315 mt_free_bulk(node->slot_len, slots); 5316 offset = node->parent_slot + 1; 5317 enode = node->piv_parent; 5318 if (mte_to_node(enode) == node) 5319 goto free_leaf; 5320 5321 type = mte_node_type(enode); 5322 slots = ma_slots(mte_to_node(enode), type); 5323 if ((offset < mt_slots[type]) && 5324 rcu_dereference_protected(slots[offset], 5325 lock_is_held(&rcu_callback_map))) 5326 slots = mte_dead_walk(&enode, offset); 5327 node = mte_to_node(enode); 5328 } while ((node != start) || (node->slot_len < offset)); 5329 5330 slots = ma_slots(node, node->type); 5331 mt_free_bulk(node->slot_len, slots); 5332 5333 free_leaf: 5334 mt_free_rcu(&node->rcu); 5335 } 5336 5337 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5338 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5339 { 5340 struct maple_node *node; 5341 struct maple_enode *next = *enode; 5342 void __rcu **slots = NULL; 5343 enum maple_type type; 5344 unsigned char next_offset = 0; 5345 5346 do { 5347 *enode = next; 5348 node = mte_to_node(*enode); 5349 type = mte_node_type(*enode); 5350 slots = ma_slots(node, type); 5351 next = mt_slot_locked(mt, slots, next_offset); 5352 if ((mte_dead_node(next))) 5353 next = mt_slot_locked(mt, slots, ++next_offset); 5354 5355 mte_set_node_dead(*enode); 5356 node->type = type; 5357 node->piv_parent = prev; 5358 node->parent_slot = offset; 5359 offset = next_offset; 5360 next_offset = 0; 5361 prev = *enode; 5362 } while (!mte_is_leaf(next)); 5363 5364 return slots; 5365 } 5366 5367 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5368 bool free) 5369 { 5370 void __rcu **slots; 5371 struct maple_node *node = mte_to_node(enode); 5372 struct maple_enode *start; 5373 5374 if (mte_is_leaf(enode)) { 5375 node->type = mte_node_type(enode); 5376 goto free_leaf; 5377 } 5378 5379 start = enode; 5380 slots = mte_destroy_descend(&enode, mt, start, 0); 5381 node = mte_to_node(enode); // Updated in the above call. 5382 do { 5383 enum maple_type type; 5384 unsigned char offset; 5385 struct maple_enode *parent, *tmp; 5386 5387 node->slot_len = mte_dead_leaves(enode, mt, slots); 5388 if (free) 5389 mt_free_bulk(node->slot_len, slots); 5390 offset = node->parent_slot + 1; 5391 enode = node->piv_parent; 5392 if (mte_to_node(enode) == node) 5393 goto free_leaf; 5394 5395 type = mte_node_type(enode); 5396 slots = ma_slots(mte_to_node(enode), type); 5397 if (offset >= mt_slots[type]) 5398 goto next; 5399 5400 tmp = mt_slot_locked(mt, slots, offset); 5401 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5402 parent = enode; 5403 enode = tmp; 5404 slots = mte_destroy_descend(&enode, mt, parent, offset); 5405 } 5406 next: 5407 node = mte_to_node(enode); 5408 } while (start != enode); 5409 5410 node = mte_to_node(enode); 5411 node->slot_len = mte_dead_leaves(enode, mt, slots); 5412 if (free) 5413 mt_free_bulk(node->slot_len, slots); 5414 5415 free_leaf: 5416 if (free) 5417 mt_free_rcu(&node->rcu); 5418 else 5419 mt_clear_meta(mt, node, node->type); 5420 } 5421 5422 /* 5423 * mte_destroy_walk() - Free a tree or sub-tree. 5424 * @enode: the encoded maple node (maple_enode) to start 5425 * @mt: the tree to free - needed for node types. 5426 * 5427 * Must hold the write lock. 5428 */ 5429 static inline void mte_destroy_walk(struct maple_enode *enode, 5430 struct maple_tree *mt) 5431 { 5432 struct maple_node *node = mte_to_node(enode); 5433 5434 if (mt_in_rcu(mt)) { 5435 mt_destroy_walk(enode, mt, false); 5436 call_rcu(&node->rcu, mt_free_walk); 5437 } else { 5438 mt_destroy_walk(enode, mt, true); 5439 } 5440 } 5441 5442 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5443 { 5444 if (mas_is_start(wr_mas->mas)) 5445 return; 5446 5447 if (unlikely(mas_is_paused(wr_mas->mas))) 5448 goto reset; 5449 5450 if (unlikely(mas_is_none(wr_mas->mas))) 5451 goto reset; 5452 5453 /* 5454 * A less strict version of mas_is_span_wr() where we allow spanning 5455 * writes within this node. This is to stop partial walks in 5456 * mas_prealloc() from being reset. 5457 */ 5458 if (wr_mas->mas->last > wr_mas->mas->max) 5459 goto reset; 5460 5461 if (wr_mas->entry) 5462 return; 5463 5464 if (mte_is_leaf(wr_mas->mas->node) && 5465 wr_mas->mas->last == wr_mas->mas->max) 5466 goto reset; 5467 5468 return; 5469 5470 reset: 5471 mas_reset(wr_mas->mas); 5472 } 5473 5474 /* Interface */ 5475 5476 /** 5477 * mas_store() - Store an @entry. 5478 * @mas: The maple state. 5479 * @entry: The entry to store. 5480 * 5481 * The @mas->index and @mas->last is used to set the range for the @entry. 5482 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5483 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5484 * 5485 * Return: the first entry between mas->index and mas->last or %NULL. 5486 */ 5487 void *mas_store(struct ma_state *mas, void *entry) 5488 { 5489 MA_WR_STATE(wr_mas, mas, entry); 5490 5491 trace_ma_write(__func__, mas, 0, entry); 5492 #ifdef CONFIG_DEBUG_MAPLE_TREE 5493 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5494 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5495 5496 if (mas->index > mas->last) { 5497 mas_set_err(mas, -EINVAL); 5498 return NULL; 5499 } 5500 5501 #endif 5502 5503 /* 5504 * Storing is the same operation as insert with the added caveat that it 5505 * can overwrite entries. Although this seems simple enough, one may 5506 * want to examine what happens if a single store operation was to 5507 * overwrite multiple entries within a self-balancing B-Tree. 5508 */ 5509 mas_wr_store_setup(&wr_mas); 5510 mas_wr_store_entry(&wr_mas); 5511 return wr_mas.content; 5512 } 5513 EXPORT_SYMBOL_GPL(mas_store); 5514 5515 /** 5516 * mas_store_gfp() - Store a value into the tree. 5517 * @mas: The maple state 5518 * @entry: The entry to store 5519 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5520 * 5521 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5522 * be allocated. 5523 */ 5524 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5525 { 5526 MA_WR_STATE(wr_mas, mas, entry); 5527 5528 mas_wr_store_setup(&wr_mas); 5529 trace_ma_write(__func__, mas, 0, entry); 5530 retry: 5531 mas_wr_store_entry(&wr_mas); 5532 if (unlikely(mas_nomem(mas, gfp))) 5533 goto retry; 5534 5535 if (unlikely(mas_is_err(mas))) 5536 return xa_err(mas->node); 5537 5538 return 0; 5539 } 5540 EXPORT_SYMBOL_GPL(mas_store_gfp); 5541 5542 /** 5543 * mas_store_prealloc() - Store a value into the tree using memory 5544 * preallocated in the maple state. 5545 * @mas: The maple state 5546 * @entry: The entry to store. 5547 */ 5548 void mas_store_prealloc(struct ma_state *mas, void *entry) 5549 { 5550 MA_WR_STATE(wr_mas, mas, entry); 5551 5552 mas_wr_store_setup(&wr_mas); 5553 trace_ma_write(__func__, mas, 0, entry); 5554 mas_wr_store_entry(&wr_mas); 5555 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5556 mas_destroy(mas); 5557 } 5558 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5559 5560 /** 5561 * mas_preallocate() - Preallocate enough nodes for a store operation 5562 * @mas: The maple state 5563 * @entry: The entry that will be stored 5564 * @gfp: The GFP_FLAGS to use for allocations. 5565 * 5566 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5567 */ 5568 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5569 { 5570 MA_WR_STATE(wr_mas, mas, entry); 5571 unsigned char node_size; 5572 int request = 1; 5573 int ret; 5574 5575 5576 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 5577 goto ask_now; 5578 5579 mas_wr_store_setup(&wr_mas); 5580 wr_mas.content = mas_start(mas); 5581 /* Root expand */ 5582 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) 5583 goto ask_now; 5584 5585 if (unlikely(!mas_wr_walk(&wr_mas))) { 5586 /* Spanning store, use worst case for now */ 5587 request = 1 + mas_mt_height(mas) * 3; 5588 goto ask_now; 5589 } 5590 5591 /* At this point, we are at the leaf node that needs to be altered. */ 5592 /* Exact fit, no nodes needed. */ 5593 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last) 5594 return 0; 5595 5596 mas_wr_end_piv(&wr_mas); 5597 node_size = mas_wr_new_end(&wr_mas); 5598 if (node_size >= mt_slots[wr_mas.type]) { 5599 /* Split, worst case for now. */ 5600 request = 1 + mas_mt_height(mas) * 2; 5601 goto ask_now; 5602 } 5603 5604 /* New root needs a singe node */ 5605 if (unlikely(mte_is_root(mas->node))) 5606 goto ask_now; 5607 5608 /* Potential spanning rebalance collapsing a node, use worst-case */ 5609 if (node_size - 1 <= mt_min_slots[wr_mas.type]) 5610 request = mas_mt_height(mas) * 2 - 1; 5611 5612 /* node store, slot store needs one node */ 5613 ask_now: 5614 mas_node_count_gfp(mas, request, gfp); 5615 mas->mas_flags |= MA_STATE_PREALLOC; 5616 if (likely(!mas_is_err(mas))) 5617 return 0; 5618 5619 mas_set_alloc_req(mas, 0); 5620 ret = xa_err(mas->node); 5621 mas_reset(mas); 5622 mas_destroy(mas); 5623 mas_reset(mas); 5624 return ret; 5625 } 5626 EXPORT_SYMBOL_GPL(mas_preallocate); 5627 5628 /* 5629 * mas_destroy() - destroy a maple state. 5630 * @mas: The maple state 5631 * 5632 * Upon completion, check the left-most node and rebalance against the node to 5633 * the right if necessary. Frees any allocated nodes associated with this maple 5634 * state. 5635 */ 5636 void mas_destroy(struct ma_state *mas) 5637 { 5638 struct maple_alloc *node; 5639 unsigned long total; 5640 5641 /* 5642 * When using mas_for_each() to insert an expected number of elements, 5643 * it is possible that the number inserted is less than the expected 5644 * number. To fix an invalid final node, a check is performed here to 5645 * rebalance the previous node with the final node. 5646 */ 5647 if (mas->mas_flags & MA_STATE_REBALANCE) { 5648 unsigned char end; 5649 5650 mas_start(mas); 5651 mtree_range_walk(mas); 5652 end = mas_data_end(mas) + 1; 5653 if (end < mt_min_slot_count(mas->node) - 1) 5654 mas_destroy_rebalance(mas, end); 5655 5656 mas->mas_flags &= ~MA_STATE_REBALANCE; 5657 } 5658 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5659 5660 total = mas_allocated(mas); 5661 while (total) { 5662 node = mas->alloc; 5663 mas->alloc = node->slot[0]; 5664 if (node->node_count > 1) { 5665 size_t count = node->node_count - 1; 5666 5667 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5668 total -= count; 5669 } 5670 kmem_cache_free(maple_node_cache, node); 5671 total--; 5672 } 5673 5674 mas->alloc = NULL; 5675 } 5676 EXPORT_SYMBOL_GPL(mas_destroy); 5677 5678 /* 5679 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5680 * @mas: The maple state 5681 * @nr_entries: The number of expected entries. 5682 * 5683 * This will attempt to pre-allocate enough nodes to store the expected number 5684 * of entries. The allocations will occur using the bulk allocator interface 5685 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5686 * to ensure any unused nodes are freed. 5687 * 5688 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5689 */ 5690 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5691 { 5692 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5693 struct maple_enode *enode = mas->node; 5694 int nr_nodes; 5695 int ret; 5696 5697 /* 5698 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5699 * forking a process and duplicating the VMAs from one tree to a new 5700 * tree. When such a situation arises, it is known that the new tree is 5701 * not going to be used until the entire tree is populated. For 5702 * performance reasons, it is best to use a bulk load with RCU disabled. 5703 * This allows for optimistic splitting that favours the left and reuse 5704 * of nodes during the operation. 5705 */ 5706 5707 /* Optimize splitting for bulk insert in-order */ 5708 mas->mas_flags |= MA_STATE_BULK; 5709 5710 /* 5711 * Avoid overflow, assume a gap between each entry and a trailing null. 5712 * If this is wrong, it just means allocation can happen during 5713 * insertion of entries. 5714 */ 5715 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5716 if (!mt_is_alloc(mas->tree)) 5717 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5718 5719 /* Leaves; reduce slots to keep space for expansion */ 5720 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5721 /* Internal nodes */ 5722 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5723 /* Add working room for split (2 nodes) + new parents */ 5724 mas_node_count(mas, nr_nodes + 3); 5725 5726 /* Detect if allocations run out */ 5727 mas->mas_flags |= MA_STATE_PREALLOC; 5728 5729 if (!mas_is_err(mas)) 5730 return 0; 5731 5732 ret = xa_err(mas->node); 5733 mas->node = enode; 5734 mas_destroy(mas); 5735 return ret; 5736 5737 } 5738 EXPORT_SYMBOL_GPL(mas_expected_entries); 5739 5740 static inline bool mas_next_setup(struct ma_state *mas, unsigned long max, 5741 void **entry) 5742 { 5743 bool was_none = mas_is_none(mas); 5744 5745 if (mas_is_none(mas) || mas_is_paused(mas)) 5746 mas->node = MAS_START; 5747 5748 if (mas_is_start(mas)) 5749 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5750 5751 if (mas_is_ptr(mas)) { 5752 *entry = NULL; 5753 if (was_none && mas->index == 0) { 5754 mas->index = mas->last = 0; 5755 return true; 5756 } 5757 mas->index = 1; 5758 mas->last = ULONG_MAX; 5759 mas->node = MAS_NONE; 5760 return true; 5761 } 5762 5763 if (mas_is_none(mas)) 5764 return true; 5765 return false; 5766 } 5767 5768 /** 5769 * mas_next() - Get the next entry. 5770 * @mas: The maple state 5771 * @max: The maximum index to check. 5772 * 5773 * Returns the next entry after @mas->index. 5774 * Must hold rcu_read_lock or the write lock. 5775 * Can return the zero entry. 5776 * 5777 * Return: The next entry or %NULL 5778 */ 5779 void *mas_next(struct ma_state *mas, unsigned long max) 5780 { 5781 void *entry = NULL; 5782 5783 if (mas_next_setup(mas, max, &entry)) 5784 return entry; 5785 5786 /* Retries on dead nodes handled by mas_next_slot */ 5787 return mas_next_slot(mas, max, false); 5788 } 5789 EXPORT_SYMBOL_GPL(mas_next); 5790 5791 /** 5792 * mas_next_range() - Advance the maple state to the next range 5793 * @mas: The maple state 5794 * @max: The maximum index to check. 5795 * 5796 * Sets @mas->index and @mas->last to the range. 5797 * Must hold rcu_read_lock or the write lock. 5798 * Can return the zero entry. 5799 * 5800 * Return: The next entry or %NULL 5801 */ 5802 void *mas_next_range(struct ma_state *mas, unsigned long max) 5803 { 5804 void *entry = NULL; 5805 5806 if (mas_next_setup(mas, max, &entry)) 5807 return entry; 5808 5809 /* Retries on dead nodes handled by mas_next_slot */ 5810 return mas_next_slot(mas, max, true); 5811 } 5812 EXPORT_SYMBOL_GPL(mas_next_range); 5813 5814 /** 5815 * mt_next() - get the next value in the maple tree 5816 * @mt: The maple tree 5817 * @index: The start index 5818 * @max: The maximum index to check 5819 * 5820 * Takes RCU read lock internally to protect the search, which does not 5821 * protect the returned pointer after dropping RCU read lock. 5822 * See also: Documentation/core-api/maple_tree.rst 5823 * 5824 * Return: The entry higher than @index or %NULL if nothing is found. 5825 */ 5826 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5827 { 5828 void *entry = NULL; 5829 MA_STATE(mas, mt, index, index); 5830 5831 rcu_read_lock(); 5832 entry = mas_next(&mas, max); 5833 rcu_read_unlock(); 5834 return entry; 5835 } 5836 EXPORT_SYMBOL_GPL(mt_next); 5837 5838 static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min, 5839 void **entry) 5840 { 5841 if (mas->index <= min) 5842 goto none; 5843 5844 if (mas_is_none(mas) || mas_is_paused(mas)) 5845 mas->node = MAS_START; 5846 5847 if (mas_is_start(mas)) { 5848 mas_walk(mas); 5849 if (!mas->index) 5850 goto none; 5851 } 5852 5853 if (unlikely(mas_is_ptr(mas))) { 5854 if (!mas->index) 5855 goto none; 5856 mas->index = mas->last = 0; 5857 *entry = mas_root(mas); 5858 return true; 5859 } 5860 5861 if (mas_is_none(mas)) { 5862 if (mas->index) { 5863 /* Walked to out-of-range pointer? */ 5864 mas->index = mas->last = 0; 5865 mas->node = MAS_ROOT; 5866 *entry = mas_root(mas); 5867 return true; 5868 } 5869 return true; 5870 } 5871 5872 return false; 5873 5874 none: 5875 mas->node = MAS_NONE; 5876 return true; 5877 } 5878 5879 /** 5880 * mas_prev() - Get the previous entry 5881 * @mas: The maple state 5882 * @min: The minimum value to check. 5883 * 5884 * Must hold rcu_read_lock or the write lock. 5885 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5886 * searchable nodes. 5887 * 5888 * Return: the previous value or %NULL. 5889 */ 5890 void *mas_prev(struct ma_state *mas, unsigned long min) 5891 { 5892 void *entry = NULL; 5893 5894 if (mas_prev_setup(mas, min, &entry)) 5895 return entry; 5896 5897 return mas_prev_slot(mas, min, false); 5898 } 5899 EXPORT_SYMBOL_GPL(mas_prev); 5900 5901 /** 5902 * mas_prev_range() - Advance to the previous range 5903 * @mas: The maple state 5904 * @min: The minimum value to check. 5905 * 5906 * Sets @mas->index and @mas->last to the range. 5907 * Must hold rcu_read_lock or the write lock. 5908 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5909 * searchable nodes. 5910 * 5911 * Return: the previous value or %NULL. 5912 */ 5913 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5914 { 5915 void *entry = NULL; 5916 5917 if (mas_prev_setup(mas, min, &entry)) 5918 return entry; 5919 5920 return mas_prev_slot(mas, min, true); 5921 } 5922 EXPORT_SYMBOL_GPL(mas_prev_range); 5923 5924 /** 5925 * mt_prev() - get the previous value in the maple tree 5926 * @mt: The maple tree 5927 * @index: The start index 5928 * @min: The minimum index to check 5929 * 5930 * Takes RCU read lock internally to protect the search, which does not 5931 * protect the returned pointer after dropping RCU read lock. 5932 * See also: Documentation/core-api/maple_tree.rst 5933 * 5934 * Return: The entry before @index or %NULL if nothing is found. 5935 */ 5936 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5937 { 5938 void *entry = NULL; 5939 MA_STATE(mas, mt, index, index); 5940 5941 rcu_read_lock(); 5942 entry = mas_prev(&mas, min); 5943 rcu_read_unlock(); 5944 return entry; 5945 } 5946 EXPORT_SYMBOL_GPL(mt_prev); 5947 5948 /** 5949 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5950 * @mas: The maple state to pause 5951 * 5952 * Some users need to pause a walk and drop the lock they're holding in 5953 * order to yield to a higher priority thread or carry out an operation 5954 * on an entry. Those users should call this function before they drop 5955 * the lock. It resets the @mas to be suitable for the next iteration 5956 * of the loop after the user has reacquired the lock. If most entries 5957 * found during a walk require you to call mas_pause(), the mt_for_each() 5958 * iterator may be more appropriate. 5959 * 5960 */ 5961 void mas_pause(struct ma_state *mas) 5962 { 5963 mas->node = MAS_PAUSE; 5964 } 5965 EXPORT_SYMBOL_GPL(mas_pause); 5966 5967 /** 5968 * mas_find_setup() - Internal function to set up mas_find*(). 5969 * @mas: The maple state 5970 * @max: The maximum index 5971 * @entry: Pointer to the entry 5972 * 5973 * Returns: True if entry is the answer, false otherwise. 5974 */ 5975 static inline bool mas_find_setup(struct ma_state *mas, unsigned long max, 5976 void **entry) 5977 { 5978 *entry = NULL; 5979 5980 if (unlikely(mas_is_none(mas))) { 5981 if (unlikely(mas->last >= max)) 5982 return true; 5983 5984 mas->index = mas->last; 5985 mas->node = MAS_START; 5986 } else if (unlikely(mas_is_paused(mas))) { 5987 if (unlikely(mas->last >= max)) 5988 return true; 5989 5990 mas->node = MAS_START; 5991 mas->index = ++mas->last; 5992 } else if (unlikely(mas_is_ptr(mas))) 5993 goto ptr_out_of_range; 5994 5995 if (unlikely(mas_is_start(mas))) { 5996 /* First run or continue */ 5997 if (mas->index > max) 5998 return true; 5999 6000 *entry = mas_walk(mas); 6001 if (*entry) 6002 return true; 6003 6004 } 6005 6006 if (unlikely(!mas_searchable(mas))) { 6007 if (unlikely(mas_is_ptr(mas))) 6008 goto ptr_out_of_range; 6009 6010 return true; 6011 } 6012 6013 if (mas->index == max) 6014 return true; 6015 6016 return false; 6017 6018 ptr_out_of_range: 6019 mas->node = MAS_NONE; 6020 mas->index = 1; 6021 mas->last = ULONG_MAX; 6022 return true; 6023 } 6024 6025 /** 6026 * mas_find() - On the first call, find the entry at or after mas->index up to 6027 * %max. Otherwise, find the entry after mas->index. 6028 * @mas: The maple state 6029 * @max: The maximum value to check. 6030 * 6031 * Must hold rcu_read_lock or the write lock. 6032 * If an entry exists, last and index are updated accordingly. 6033 * May set @mas->node to MAS_NONE. 6034 * 6035 * Return: The entry or %NULL. 6036 */ 6037 void *mas_find(struct ma_state *mas, unsigned long max) 6038 { 6039 void *entry = NULL; 6040 6041 if (mas_find_setup(mas, max, &entry)) 6042 return entry; 6043 6044 /* Retries on dead nodes handled by mas_next_slot */ 6045 return mas_next_slot(mas, max, false); 6046 } 6047 EXPORT_SYMBOL_GPL(mas_find); 6048 6049 /** 6050 * mas_find_range() - On the first call, find the entry at or after 6051 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 6052 * @mas: The maple state 6053 * @max: The maximum value to check. 6054 * 6055 * Must hold rcu_read_lock or the write lock. 6056 * If an entry exists, last and index are updated accordingly. 6057 * May set @mas->node to MAS_NONE. 6058 * 6059 * Return: The entry or %NULL. 6060 */ 6061 void *mas_find_range(struct ma_state *mas, unsigned long max) 6062 { 6063 void *entry; 6064 6065 if (mas_find_setup(mas, max, &entry)) 6066 return entry; 6067 6068 /* Retries on dead nodes handled by mas_next_slot */ 6069 return mas_next_slot(mas, max, true); 6070 } 6071 EXPORT_SYMBOL_GPL(mas_find_range); 6072 6073 /** 6074 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 6075 * @mas: The maple state 6076 * @min: The minimum index 6077 * @entry: Pointer to the entry 6078 * 6079 * Returns: True if entry is the answer, false otherwise. 6080 */ 6081 static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6082 void **entry) 6083 { 6084 *entry = NULL; 6085 6086 if (unlikely(mas_is_none(mas))) { 6087 if (mas->index <= min) 6088 goto none; 6089 6090 mas->last = mas->index; 6091 mas->node = MAS_START; 6092 } 6093 6094 if (unlikely(mas_is_paused(mas))) { 6095 if (unlikely(mas->index <= min)) { 6096 mas->node = MAS_NONE; 6097 return true; 6098 } 6099 mas->node = MAS_START; 6100 mas->last = --mas->index; 6101 } 6102 6103 if (unlikely(mas_is_start(mas))) { 6104 /* First run or continue */ 6105 if (mas->index < min) 6106 return true; 6107 6108 *entry = mas_walk(mas); 6109 if (*entry) 6110 return true; 6111 } 6112 6113 if (unlikely(!mas_searchable(mas))) { 6114 if (mas_is_ptr(mas)) 6115 goto none; 6116 6117 if (mas_is_none(mas)) { 6118 /* 6119 * Walked to the location, and there was nothing so the 6120 * previous location is 0. 6121 */ 6122 mas->last = mas->index = 0; 6123 mas->node = MAS_ROOT; 6124 *entry = mas_root(mas); 6125 return true; 6126 } 6127 } 6128 6129 if (mas->index < min) 6130 return true; 6131 6132 return false; 6133 6134 none: 6135 mas->node = MAS_NONE; 6136 return true; 6137 } 6138 6139 /** 6140 * mas_find_rev: On the first call, find the first non-null entry at or below 6141 * mas->index down to %min. Otherwise find the first non-null entry below 6142 * mas->index down to %min. 6143 * @mas: The maple state 6144 * @min: The minimum value to check. 6145 * 6146 * Must hold rcu_read_lock or the write lock. 6147 * If an entry exists, last and index are updated accordingly. 6148 * May set @mas->node to MAS_NONE. 6149 * 6150 * Return: The entry or %NULL. 6151 */ 6152 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6153 { 6154 void *entry; 6155 6156 if (mas_find_rev_setup(mas, min, &entry)) 6157 return entry; 6158 6159 /* Retries on dead nodes handled by mas_prev_slot */ 6160 return mas_prev_slot(mas, min, false); 6161 6162 } 6163 EXPORT_SYMBOL_GPL(mas_find_rev); 6164 6165 /** 6166 * mas_find_range_rev: On the first call, find the first non-null entry at or 6167 * below mas->index down to %min. Otherwise advance to the previous slot after 6168 * mas->index down to %min. 6169 * @mas: The maple state 6170 * @min: The minimum value to check. 6171 * 6172 * Must hold rcu_read_lock or the write lock. 6173 * If an entry exists, last and index are updated accordingly. 6174 * May set @mas->node to MAS_NONE. 6175 * 6176 * Return: The entry or %NULL. 6177 */ 6178 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6179 { 6180 void *entry; 6181 6182 if (mas_find_rev_setup(mas, min, &entry)) 6183 return entry; 6184 6185 /* Retries on dead nodes handled by mas_prev_slot */ 6186 return mas_prev_slot(mas, min, true); 6187 } 6188 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6189 6190 /** 6191 * mas_erase() - Find the range in which index resides and erase the entire 6192 * range. 6193 * @mas: The maple state 6194 * 6195 * Must hold the write lock. 6196 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6197 * erases that range. 6198 * 6199 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6200 */ 6201 void *mas_erase(struct ma_state *mas) 6202 { 6203 void *entry; 6204 MA_WR_STATE(wr_mas, mas, NULL); 6205 6206 if (mas_is_none(mas) || mas_is_paused(mas)) 6207 mas->node = MAS_START; 6208 6209 /* Retry unnecessary when holding the write lock. */ 6210 entry = mas_state_walk(mas); 6211 if (!entry) 6212 return NULL; 6213 6214 write_retry: 6215 /* Must reset to ensure spanning writes of last slot are detected */ 6216 mas_reset(mas); 6217 mas_wr_store_setup(&wr_mas); 6218 mas_wr_store_entry(&wr_mas); 6219 if (mas_nomem(mas, GFP_KERNEL)) 6220 goto write_retry; 6221 6222 return entry; 6223 } 6224 EXPORT_SYMBOL_GPL(mas_erase); 6225 6226 /** 6227 * mas_nomem() - Check if there was an error allocating and do the allocation 6228 * if necessary If there are allocations, then free them. 6229 * @mas: The maple state 6230 * @gfp: The GFP_FLAGS to use for allocations 6231 * Return: true on allocation, false otherwise. 6232 */ 6233 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6234 __must_hold(mas->tree->ma_lock) 6235 { 6236 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6237 mas_destroy(mas); 6238 return false; 6239 } 6240 6241 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6242 mtree_unlock(mas->tree); 6243 mas_alloc_nodes(mas, gfp); 6244 mtree_lock(mas->tree); 6245 } else { 6246 mas_alloc_nodes(mas, gfp); 6247 } 6248 6249 if (!mas_allocated(mas)) 6250 return false; 6251 6252 mas->node = MAS_START; 6253 return true; 6254 } 6255 6256 void __init maple_tree_init(void) 6257 { 6258 maple_node_cache = kmem_cache_create("maple_node", 6259 sizeof(struct maple_node), sizeof(struct maple_node), 6260 SLAB_PANIC, NULL); 6261 } 6262 6263 /** 6264 * mtree_load() - Load a value stored in a maple tree 6265 * @mt: The maple tree 6266 * @index: The index to load 6267 * 6268 * Return: the entry or %NULL 6269 */ 6270 void *mtree_load(struct maple_tree *mt, unsigned long index) 6271 { 6272 MA_STATE(mas, mt, index, index); 6273 void *entry; 6274 6275 trace_ma_read(__func__, &mas); 6276 rcu_read_lock(); 6277 retry: 6278 entry = mas_start(&mas); 6279 if (unlikely(mas_is_none(&mas))) 6280 goto unlock; 6281 6282 if (unlikely(mas_is_ptr(&mas))) { 6283 if (index) 6284 entry = NULL; 6285 6286 goto unlock; 6287 } 6288 6289 entry = mtree_lookup_walk(&mas); 6290 if (!entry && unlikely(mas_is_start(&mas))) 6291 goto retry; 6292 unlock: 6293 rcu_read_unlock(); 6294 if (xa_is_zero(entry)) 6295 return NULL; 6296 6297 return entry; 6298 } 6299 EXPORT_SYMBOL(mtree_load); 6300 6301 /** 6302 * mtree_store_range() - Store an entry at a given range. 6303 * @mt: The maple tree 6304 * @index: The start of the range 6305 * @last: The end of the range 6306 * @entry: The entry to store 6307 * @gfp: The GFP_FLAGS to use for allocations 6308 * 6309 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6310 * be allocated. 6311 */ 6312 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6313 unsigned long last, void *entry, gfp_t gfp) 6314 { 6315 MA_STATE(mas, mt, index, last); 6316 MA_WR_STATE(wr_mas, &mas, entry); 6317 6318 trace_ma_write(__func__, &mas, 0, entry); 6319 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6320 return -EINVAL; 6321 6322 if (index > last) 6323 return -EINVAL; 6324 6325 mtree_lock(mt); 6326 retry: 6327 mas_wr_store_entry(&wr_mas); 6328 if (mas_nomem(&mas, gfp)) 6329 goto retry; 6330 6331 mtree_unlock(mt); 6332 if (mas_is_err(&mas)) 6333 return xa_err(mas.node); 6334 6335 return 0; 6336 } 6337 EXPORT_SYMBOL(mtree_store_range); 6338 6339 /** 6340 * mtree_store() - Store an entry at a given index. 6341 * @mt: The maple tree 6342 * @index: The index to store the value 6343 * @entry: The entry to store 6344 * @gfp: The GFP_FLAGS to use for allocations 6345 * 6346 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6347 * be allocated. 6348 */ 6349 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6350 gfp_t gfp) 6351 { 6352 return mtree_store_range(mt, index, index, entry, gfp); 6353 } 6354 EXPORT_SYMBOL(mtree_store); 6355 6356 /** 6357 * mtree_insert_range() - Insert an entry at a given range if there is no value. 6358 * @mt: The maple tree 6359 * @first: The start of the range 6360 * @last: The end of the range 6361 * @entry: The entry to store 6362 * @gfp: The GFP_FLAGS to use for allocations. 6363 * 6364 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6365 * request, -ENOMEM if memory could not be allocated. 6366 */ 6367 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6368 unsigned long last, void *entry, gfp_t gfp) 6369 { 6370 MA_STATE(ms, mt, first, last); 6371 6372 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6373 return -EINVAL; 6374 6375 if (first > last) 6376 return -EINVAL; 6377 6378 mtree_lock(mt); 6379 retry: 6380 mas_insert(&ms, entry); 6381 if (mas_nomem(&ms, gfp)) 6382 goto retry; 6383 6384 mtree_unlock(mt); 6385 if (mas_is_err(&ms)) 6386 return xa_err(ms.node); 6387 6388 return 0; 6389 } 6390 EXPORT_SYMBOL(mtree_insert_range); 6391 6392 /** 6393 * mtree_insert() - Insert an entry at a given index if there is no value. 6394 * @mt: The maple tree 6395 * @index : The index to store the value 6396 * @entry: The entry to store 6397 * @gfp: The GFP_FLAGS to use for allocations. 6398 * 6399 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6400 * request, -ENOMEM if memory could not be allocated. 6401 */ 6402 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6403 gfp_t gfp) 6404 { 6405 return mtree_insert_range(mt, index, index, entry, gfp); 6406 } 6407 EXPORT_SYMBOL(mtree_insert); 6408 6409 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6410 void *entry, unsigned long size, unsigned long min, 6411 unsigned long max, gfp_t gfp) 6412 { 6413 int ret = 0; 6414 6415 MA_STATE(mas, mt, 0, 0); 6416 if (!mt_is_alloc(mt)) 6417 return -EINVAL; 6418 6419 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6420 return -EINVAL; 6421 6422 mtree_lock(mt); 6423 retry: 6424 ret = mas_empty_area(&mas, min, max, size); 6425 if (ret) 6426 goto unlock; 6427 6428 mas_insert(&mas, entry); 6429 /* 6430 * mas_nomem() may release the lock, causing the allocated area 6431 * to be unavailable, so try to allocate a free area again. 6432 */ 6433 if (mas_nomem(&mas, gfp)) 6434 goto retry; 6435 6436 if (mas_is_err(&mas)) 6437 ret = xa_err(mas.node); 6438 else 6439 *startp = mas.index; 6440 6441 unlock: 6442 mtree_unlock(mt); 6443 return ret; 6444 } 6445 EXPORT_SYMBOL(mtree_alloc_range); 6446 6447 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6448 void *entry, unsigned long size, unsigned long min, 6449 unsigned long max, gfp_t gfp) 6450 { 6451 int ret = 0; 6452 6453 MA_STATE(mas, mt, 0, 0); 6454 if (!mt_is_alloc(mt)) 6455 return -EINVAL; 6456 6457 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6458 return -EINVAL; 6459 6460 mtree_lock(mt); 6461 retry: 6462 ret = mas_empty_area_rev(&mas, min, max, size); 6463 if (ret) 6464 goto unlock; 6465 6466 mas_insert(&mas, entry); 6467 /* 6468 * mas_nomem() may release the lock, causing the allocated area 6469 * to be unavailable, so try to allocate a free area again. 6470 */ 6471 if (mas_nomem(&mas, gfp)) 6472 goto retry; 6473 6474 if (mas_is_err(&mas)) 6475 ret = xa_err(mas.node); 6476 else 6477 *startp = mas.index; 6478 6479 unlock: 6480 mtree_unlock(mt); 6481 return ret; 6482 } 6483 EXPORT_SYMBOL(mtree_alloc_rrange); 6484 6485 /** 6486 * mtree_erase() - Find an index and erase the entire range. 6487 * @mt: The maple tree 6488 * @index: The index to erase 6489 * 6490 * Erasing is the same as a walk to an entry then a store of a NULL to that 6491 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6492 * 6493 * Return: The entry stored at the @index or %NULL 6494 */ 6495 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6496 { 6497 void *entry = NULL; 6498 6499 MA_STATE(mas, mt, index, index); 6500 trace_ma_op(__func__, &mas); 6501 6502 mtree_lock(mt); 6503 entry = mas_erase(&mas); 6504 mtree_unlock(mt); 6505 6506 return entry; 6507 } 6508 EXPORT_SYMBOL(mtree_erase); 6509 6510 /** 6511 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6512 * @mt: The maple tree 6513 * 6514 * Note: Does not handle locking. 6515 */ 6516 void __mt_destroy(struct maple_tree *mt) 6517 { 6518 void *root = mt_root_locked(mt); 6519 6520 rcu_assign_pointer(mt->ma_root, NULL); 6521 if (xa_is_node(root)) 6522 mte_destroy_walk(root, mt); 6523 6524 mt->ma_flags = 0; 6525 } 6526 EXPORT_SYMBOL_GPL(__mt_destroy); 6527 6528 /** 6529 * mtree_destroy() - Destroy a maple tree 6530 * @mt: The maple tree 6531 * 6532 * Frees all resources used by the tree. Handles locking. 6533 */ 6534 void mtree_destroy(struct maple_tree *mt) 6535 { 6536 mtree_lock(mt); 6537 __mt_destroy(mt); 6538 mtree_unlock(mt); 6539 } 6540 EXPORT_SYMBOL(mtree_destroy); 6541 6542 /** 6543 * mt_find() - Search from the start up until an entry is found. 6544 * @mt: The maple tree 6545 * @index: Pointer which contains the start location of the search 6546 * @max: The maximum value of the search range 6547 * 6548 * Takes RCU read lock internally to protect the search, which does not 6549 * protect the returned pointer after dropping RCU read lock. 6550 * See also: Documentation/core-api/maple_tree.rst 6551 * 6552 * In case that an entry is found @index is updated to point to the next 6553 * possible entry independent whether the found entry is occupying a 6554 * single index or a range if indices. 6555 * 6556 * Return: The entry at or after the @index or %NULL 6557 */ 6558 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6559 { 6560 MA_STATE(mas, mt, *index, *index); 6561 void *entry; 6562 #ifdef CONFIG_DEBUG_MAPLE_TREE 6563 unsigned long copy = *index; 6564 #endif 6565 6566 trace_ma_read(__func__, &mas); 6567 6568 if ((*index) > max) 6569 return NULL; 6570 6571 rcu_read_lock(); 6572 retry: 6573 entry = mas_state_walk(&mas); 6574 if (mas_is_start(&mas)) 6575 goto retry; 6576 6577 if (unlikely(xa_is_zero(entry))) 6578 entry = NULL; 6579 6580 if (entry) 6581 goto unlock; 6582 6583 while (mas_searchable(&mas) && (mas.last < max)) { 6584 entry = mas_next_entry(&mas, max); 6585 if (likely(entry && !xa_is_zero(entry))) 6586 break; 6587 } 6588 6589 if (unlikely(xa_is_zero(entry))) 6590 entry = NULL; 6591 unlock: 6592 rcu_read_unlock(); 6593 if (likely(entry)) { 6594 *index = mas.last + 1; 6595 #ifdef CONFIG_DEBUG_MAPLE_TREE 6596 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6597 pr_err("index not increased! %lx <= %lx\n", 6598 *index, copy); 6599 #endif 6600 } 6601 6602 return entry; 6603 } 6604 EXPORT_SYMBOL(mt_find); 6605 6606 /** 6607 * mt_find_after() - Search from the start up until an entry is found. 6608 * @mt: The maple tree 6609 * @index: Pointer which contains the start location of the search 6610 * @max: The maximum value to check 6611 * 6612 * Same as mt_find() except that it checks @index for 0 before 6613 * searching. If @index == 0, the search is aborted. This covers a wrap 6614 * around of @index to 0 in an iterator loop. 6615 * 6616 * Return: The entry at or after the @index or %NULL 6617 */ 6618 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6619 unsigned long max) 6620 { 6621 if (!(*index)) 6622 return NULL; 6623 6624 return mt_find(mt, index, max); 6625 } 6626 EXPORT_SYMBOL(mt_find_after); 6627 6628 #ifdef CONFIG_DEBUG_MAPLE_TREE 6629 atomic_t maple_tree_tests_run; 6630 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6631 atomic_t maple_tree_tests_passed; 6632 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6633 6634 #ifndef __KERNEL__ 6635 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6636 void mt_set_non_kernel(unsigned int val) 6637 { 6638 kmem_cache_set_non_kernel(maple_node_cache, val); 6639 } 6640 6641 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6642 unsigned long mt_get_alloc_size(void) 6643 { 6644 return kmem_cache_get_alloc(maple_node_cache); 6645 } 6646 6647 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6648 void mt_zero_nr_tallocated(void) 6649 { 6650 kmem_cache_zero_nr_tallocated(maple_node_cache); 6651 } 6652 6653 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6654 unsigned int mt_nr_tallocated(void) 6655 { 6656 return kmem_cache_nr_tallocated(maple_node_cache); 6657 } 6658 6659 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6660 unsigned int mt_nr_allocated(void) 6661 { 6662 return kmem_cache_nr_allocated(maple_node_cache); 6663 } 6664 6665 /* 6666 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6667 * @mas: The maple state 6668 * @index: The index to restore in @mas. 6669 * 6670 * Used in test code. 6671 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6672 */ 6673 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6674 { 6675 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6676 return 0; 6677 6678 if (likely(!mte_dead_node(mas->node))) 6679 return 0; 6680 6681 mas_rewalk(mas, index); 6682 return 1; 6683 } 6684 6685 void mt_cache_shrink(void) 6686 { 6687 } 6688 #else 6689 /* 6690 * mt_cache_shrink() - For testing, don't use this. 6691 * 6692 * Certain testcases can trigger an OOM when combined with other memory 6693 * debugging configuration options. This function is used to reduce the 6694 * possibility of an out of memory even due to kmem_cache objects remaining 6695 * around for longer than usual. 6696 */ 6697 void mt_cache_shrink(void) 6698 { 6699 kmem_cache_shrink(maple_node_cache); 6700 6701 } 6702 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6703 6704 #endif /* not defined __KERNEL__ */ 6705 /* 6706 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6707 * @mas: The maple state 6708 * @offset: The offset into the slot array to fetch. 6709 * 6710 * Return: The entry stored at @offset. 6711 */ 6712 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6713 unsigned char offset) 6714 { 6715 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6716 offset); 6717 } 6718 6719 /* Depth first search, post-order */ 6720 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6721 { 6722 6723 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6724 unsigned long p_min, p_max; 6725 6726 mas_next_node(mas, mas_mn(mas), max); 6727 if (!mas_is_none(mas)) 6728 return; 6729 6730 if (mte_is_root(mn)) 6731 return; 6732 6733 mas->node = mn; 6734 mas_ascend(mas); 6735 do { 6736 p = mas->node; 6737 p_min = mas->min; 6738 p_max = mas->max; 6739 mas_prev_node(mas, 0); 6740 } while (!mas_is_none(mas)); 6741 6742 mas->node = p; 6743 mas->max = p_max; 6744 mas->min = p_min; 6745 } 6746 6747 /* Tree validations */ 6748 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6749 unsigned long min, unsigned long max, unsigned int depth, 6750 enum mt_dump_format format); 6751 static void mt_dump_range(unsigned long min, unsigned long max, 6752 unsigned int depth, enum mt_dump_format format) 6753 { 6754 static const char spaces[] = " "; 6755 6756 switch(format) { 6757 case mt_dump_hex: 6758 if (min == max) 6759 pr_info("%.*s%lx: ", depth * 2, spaces, min); 6760 else 6761 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 6762 break; 6763 default: 6764 case mt_dump_dec: 6765 if (min == max) 6766 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6767 else 6768 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6769 } 6770 } 6771 6772 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6773 unsigned int depth, enum mt_dump_format format) 6774 { 6775 mt_dump_range(min, max, depth, format); 6776 6777 if (xa_is_value(entry)) 6778 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6779 xa_to_value(entry), entry); 6780 else if (xa_is_zero(entry)) 6781 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6782 else if (mt_is_reserved(entry)) 6783 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6784 else 6785 pr_cont("%p\n", entry); 6786 } 6787 6788 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6789 unsigned long min, unsigned long max, unsigned int depth, 6790 enum mt_dump_format format) 6791 { 6792 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6793 bool leaf = mte_is_leaf(entry); 6794 unsigned long first = min; 6795 int i; 6796 6797 pr_cont(" contents: "); 6798 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 6799 switch(format) { 6800 case mt_dump_hex: 6801 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 6802 break; 6803 default: 6804 case mt_dump_dec: 6805 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6806 } 6807 } 6808 pr_cont("%p\n", node->slot[i]); 6809 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6810 unsigned long last = max; 6811 6812 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6813 last = node->pivot[i]; 6814 else if (!node->slot[i] && max != mt_node_max(entry)) 6815 break; 6816 if (last == 0 && i > 0) 6817 break; 6818 if (leaf) 6819 mt_dump_entry(mt_slot(mt, node->slot, i), 6820 first, last, depth + 1, format); 6821 else if (node->slot[i]) 6822 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6823 first, last, depth + 1, format); 6824 6825 if (last == max) 6826 break; 6827 if (last > max) { 6828 switch(format) { 6829 case mt_dump_hex: 6830 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 6831 node, last, max, i); 6832 break; 6833 default: 6834 case mt_dump_dec: 6835 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6836 node, last, max, i); 6837 } 6838 } 6839 first = last + 1; 6840 } 6841 } 6842 6843 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6844 unsigned long min, unsigned long max, unsigned int depth, 6845 enum mt_dump_format format) 6846 { 6847 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6848 bool leaf = mte_is_leaf(entry); 6849 unsigned long first = min; 6850 int i; 6851 6852 pr_cont(" contents: "); 6853 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6854 switch (format) { 6855 case mt_dump_hex: 6856 pr_cont("%lx ", node->gap[i]); 6857 break; 6858 default: 6859 case mt_dump_dec: 6860 pr_cont("%lu ", node->gap[i]); 6861 } 6862 } 6863 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6864 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { 6865 switch (format) { 6866 case mt_dump_hex: 6867 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 6868 break; 6869 default: 6870 case mt_dump_dec: 6871 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6872 } 6873 } 6874 pr_cont("%p\n", node->slot[i]); 6875 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6876 unsigned long last = max; 6877 6878 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6879 last = node->pivot[i]; 6880 else if (!node->slot[i]) 6881 break; 6882 if (last == 0 && i > 0) 6883 break; 6884 if (leaf) 6885 mt_dump_entry(mt_slot(mt, node->slot, i), 6886 first, last, depth + 1, format); 6887 else if (node->slot[i]) 6888 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6889 first, last, depth + 1, format); 6890 6891 if (last == max) 6892 break; 6893 if (last > max) { 6894 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6895 node, last, max, i); 6896 break; 6897 } 6898 first = last + 1; 6899 } 6900 } 6901 6902 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6903 unsigned long min, unsigned long max, unsigned int depth, 6904 enum mt_dump_format format) 6905 { 6906 struct maple_node *node = mte_to_node(entry); 6907 unsigned int type = mte_node_type(entry); 6908 unsigned int i; 6909 6910 mt_dump_range(min, max, depth, format); 6911 6912 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6913 node ? node->parent : NULL); 6914 switch (type) { 6915 case maple_dense: 6916 pr_cont("\n"); 6917 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6918 if (min + i > max) 6919 pr_cont("OUT OF RANGE: "); 6920 mt_dump_entry(mt_slot(mt, node->slot, i), 6921 min + i, min + i, depth, format); 6922 } 6923 break; 6924 case maple_leaf_64: 6925 case maple_range_64: 6926 mt_dump_range64(mt, entry, min, max, depth, format); 6927 break; 6928 case maple_arange_64: 6929 mt_dump_arange64(mt, entry, min, max, depth, format); 6930 break; 6931 6932 default: 6933 pr_cont(" UNKNOWN TYPE\n"); 6934 } 6935 } 6936 6937 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 6938 { 6939 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6940 6941 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6942 mt, mt->ma_flags, mt_height(mt), entry); 6943 if (!xa_is_node(entry)) 6944 mt_dump_entry(entry, 0, 0, 0, format); 6945 else if (entry) 6946 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 6947 } 6948 EXPORT_SYMBOL_GPL(mt_dump); 6949 6950 /* 6951 * Calculate the maximum gap in a node and check if that's what is reported in 6952 * the parent (unless root). 6953 */ 6954 static void mas_validate_gaps(struct ma_state *mas) 6955 { 6956 struct maple_enode *mte = mas->node; 6957 struct maple_node *p_mn, *node = mte_to_node(mte); 6958 enum maple_type mt = mte_node_type(mas->node); 6959 unsigned long gap = 0, max_gap = 0; 6960 unsigned long p_end, p_start = mas->min; 6961 unsigned char p_slot, offset; 6962 unsigned long *gaps = NULL; 6963 unsigned long *pivots = ma_pivots(node, mt); 6964 unsigned int i; 6965 6966 if (ma_is_dense(mt)) { 6967 for (i = 0; i < mt_slot_count(mte); i++) { 6968 if (mas_get_slot(mas, i)) { 6969 if (gap > max_gap) 6970 max_gap = gap; 6971 gap = 0; 6972 continue; 6973 } 6974 gap++; 6975 } 6976 goto counted; 6977 } 6978 6979 gaps = ma_gaps(node, mt); 6980 for (i = 0; i < mt_slot_count(mte); i++) { 6981 p_end = mas_safe_pivot(mas, pivots, i, mt); 6982 6983 if (!gaps) { 6984 if (!mas_get_slot(mas, i)) 6985 gap = p_end - p_start + 1; 6986 } else { 6987 void *entry = mas_get_slot(mas, i); 6988 6989 gap = gaps[i]; 6990 MT_BUG_ON(mas->tree, !entry); 6991 6992 if (gap > p_end - p_start + 1) { 6993 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 6994 mas_mn(mas), i, gap, p_end, p_start, 6995 p_end - p_start + 1); 6996 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); 6997 } 6998 } 6999 7000 if (gap > max_gap) 7001 max_gap = gap; 7002 7003 p_start = p_end + 1; 7004 if (p_end >= mas->max) 7005 break; 7006 } 7007 7008 counted: 7009 if (mt == maple_arange_64) { 7010 offset = ma_meta_gap(node, mt); 7011 if (offset > i) { 7012 pr_err("gap offset %p[%u] is invalid\n", node, offset); 7013 MT_BUG_ON(mas->tree, 1); 7014 } 7015 7016 if (gaps[offset] != max_gap) { 7017 pr_err("gap %p[%u] is not the largest gap %lu\n", 7018 node, offset, max_gap); 7019 MT_BUG_ON(mas->tree, 1); 7020 } 7021 7022 MT_BUG_ON(mas->tree, !gaps); 7023 for (i++ ; i < mt_slot_count(mte); i++) { 7024 if (gaps[i] != 0) { 7025 pr_err("gap %p[%u] beyond node limit != 0\n", 7026 node, i); 7027 MT_BUG_ON(mas->tree, 1); 7028 } 7029 } 7030 } 7031 7032 if (mte_is_root(mte)) 7033 return; 7034 7035 p_slot = mte_parent_slot(mas->node); 7036 p_mn = mte_parent(mte); 7037 MT_BUG_ON(mas->tree, max_gap > mas->max); 7038 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 7039 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7040 mt_dump(mas->tree, mt_dump_hex); 7041 MT_BUG_ON(mas->tree, 1); 7042 } 7043 } 7044 7045 static void mas_validate_parent_slot(struct ma_state *mas) 7046 { 7047 struct maple_node *parent; 7048 struct maple_enode *node; 7049 enum maple_type p_type; 7050 unsigned char p_slot; 7051 void __rcu **slots; 7052 int i; 7053 7054 if (mte_is_root(mas->node)) 7055 return; 7056 7057 p_slot = mte_parent_slot(mas->node); 7058 p_type = mas_parent_type(mas, mas->node); 7059 parent = mte_parent(mas->node); 7060 slots = ma_slots(parent, p_type); 7061 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7062 7063 /* Check prev/next parent slot for duplicate node entry */ 7064 7065 for (i = 0; i < mt_slots[p_type]; i++) { 7066 node = mas_slot(mas, slots, i); 7067 if (i == p_slot) { 7068 if (node != mas->node) 7069 pr_err("parent %p[%u] does not have %p\n", 7070 parent, i, mas_mn(mas)); 7071 MT_BUG_ON(mas->tree, node != mas->node); 7072 } else if (node == mas->node) { 7073 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7074 mas_mn(mas), parent, i, p_slot); 7075 MT_BUG_ON(mas->tree, node == mas->node); 7076 } 7077 } 7078 } 7079 7080 static void mas_validate_child_slot(struct ma_state *mas) 7081 { 7082 enum maple_type type = mte_node_type(mas->node); 7083 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7084 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7085 struct maple_enode *child; 7086 unsigned char i; 7087 7088 if (mte_is_leaf(mas->node)) 7089 return; 7090 7091 for (i = 0; i < mt_slots[type]; i++) { 7092 child = mas_slot(mas, slots, i); 7093 7094 if (!child) { 7095 pr_err("Non-leaf node lacks child at %p[%u]\n", 7096 mas_mn(mas), i); 7097 MT_BUG_ON(mas->tree, 1); 7098 } 7099 7100 if (mte_parent_slot(child) != i) { 7101 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7102 mas_mn(mas), i, mte_to_node(child), 7103 mte_parent_slot(child)); 7104 MT_BUG_ON(mas->tree, 1); 7105 } 7106 7107 if (mte_parent(child) != mte_to_node(mas->node)) { 7108 pr_err("child %p has parent %p not %p\n", 7109 mte_to_node(child), mte_parent(child), 7110 mte_to_node(mas->node)); 7111 MT_BUG_ON(mas->tree, 1); 7112 } 7113 7114 if (i < mt_pivots[type] && pivots[i] == mas->max) 7115 break; 7116 } 7117 } 7118 7119 /* 7120 * Validate all pivots are within mas->min and mas->max, check metadata ends 7121 * where the maximum ends and ensure there is no slots or pivots set outside of 7122 * the end of the data. 7123 */ 7124 static void mas_validate_limits(struct ma_state *mas) 7125 { 7126 int i; 7127 unsigned long prev_piv = 0; 7128 enum maple_type type = mte_node_type(mas->node); 7129 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7130 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7131 7132 for (i = 0; i < mt_slots[type]; i++) { 7133 unsigned long piv; 7134 7135 piv = mas_safe_pivot(mas, pivots, i, type); 7136 7137 if (!piv && (i != 0)) { 7138 pr_err("Missing node limit pivot at %p[%u]", 7139 mas_mn(mas), i); 7140 MAS_WARN_ON(mas, 1); 7141 } 7142 7143 if (prev_piv > piv) { 7144 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7145 mas_mn(mas), i, piv, prev_piv); 7146 MAS_WARN_ON(mas, piv < prev_piv); 7147 } 7148 7149 if (piv < mas->min) { 7150 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7151 piv, mas->min); 7152 MAS_WARN_ON(mas, piv < mas->min); 7153 } 7154 if (piv > mas->max) { 7155 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7156 piv, mas->max); 7157 MAS_WARN_ON(mas, piv > mas->max); 7158 } 7159 prev_piv = piv; 7160 if (piv == mas->max) 7161 break; 7162 } 7163 7164 if (mas_data_end(mas) != i) { 7165 pr_err("node%p: data_end %u != the last slot offset %u\n", 7166 mas_mn(mas), mas_data_end(mas), i); 7167 MT_BUG_ON(mas->tree, 1); 7168 } 7169 7170 for (i += 1; i < mt_slots[type]; i++) { 7171 void *entry = mas_slot(mas, slots, i); 7172 7173 if (entry && (i != mt_slots[type] - 1)) { 7174 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7175 i, entry); 7176 MT_BUG_ON(mas->tree, entry != NULL); 7177 } 7178 7179 if (i < mt_pivots[type]) { 7180 unsigned long piv = pivots[i]; 7181 7182 if (!piv) 7183 continue; 7184 7185 pr_err("%p[%u] should not have piv %lu\n", 7186 mas_mn(mas), i, piv); 7187 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7188 } 7189 } 7190 } 7191 7192 static void mt_validate_nulls(struct maple_tree *mt) 7193 { 7194 void *entry, *last = (void *)1; 7195 unsigned char offset = 0; 7196 void __rcu **slots; 7197 MA_STATE(mas, mt, 0, 0); 7198 7199 mas_start(&mas); 7200 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7201 return; 7202 7203 while (!mte_is_leaf(mas.node)) 7204 mas_descend(&mas); 7205 7206 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7207 do { 7208 entry = mas_slot(&mas, slots, offset); 7209 if (!last && !entry) { 7210 pr_err("Sequential nulls end at %p[%u]\n", 7211 mas_mn(&mas), offset); 7212 } 7213 MT_BUG_ON(mt, !last && !entry); 7214 last = entry; 7215 if (offset == mas_data_end(&mas)) { 7216 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7217 if (mas_is_none(&mas)) 7218 return; 7219 offset = 0; 7220 slots = ma_slots(mte_to_node(mas.node), 7221 mte_node_type(mas.node)); 7222 } else { 7223 offset++; 7224 } 7225 7226 } while (!mas_is_none(&mas)); 7227 } 7228 7229 /* 7230 * validate a maple tree by checking: 7231 * 1. The limits (pivots are within mas->min to mas->max) 7232 * 2. The gap is correctly set in the parents 7233 */ 7234 void mt_validate(struct maple_tree *mt) 7235 { 7236 unsigned char end; 7237 7238 MA_STATE(mas, mt, 0, 0); 7239 rcu_read_lock(); 7240 mas_start(&mas); 7241 if (!mas_searchable(&mas)) 7242 goto done; 7243 7244 while (!mte_is_leaf(mas.node)) 7245 mas_descend(&mas); 7246 7247 while (!mas_is_none(&mas)) { 7248 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7249 end = mas_data_end(&mas); 7250 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && 7251 (mas.max != ULONG_MAX))) { 7252 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas)); 7253 } 7254 7255 mas_validate_parent_slot(&mas); 7256 mas_validate_limits(&mas); 7257 mas_validate_child_slot(&mas); 7258 if (mt_is_alloc(mt)) 7259 mas_validate_gaps(&mas); 7260 mas_dfs_postorder(&mas, ULONG_MAX); 7261 } 7262 mt_validate_nulls(mt); 7263 done: 7264 rcu_read_unlock(); 7265 7266 } 7267 EXPORT_SYMBOL_GPL(mt_validate); 7268 7269 void mas_dump(const struct ma_state *mas) 7270 { 7271 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7272 if (mas_is_none(mas)) 7273 pr_err("(MAS_NONE) "); 7274 else if (mas_is_ptr(mas)) 7275 pr_err("(MAS_ROOT) "); 7276 else if (mas_is_start(mas)) 7277 pr_err("(MAS_START) "); 7278 else if (mas_is_paused(mas)) 7279 pr_err("(MAS_PAUSED) "); 7280 7281 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last); 7282 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7283 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7284 if (mas->index > mas->last) 7285 pr_err("Check index & last\n"); 7286 } 7287 EXPORT_SYMBOL_GPL(mas_dump); 7288 7289 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7290 { 7291 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7292 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7293 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7294 wr_mas->type, wr_mas->offset_end, wr_mas->node_end, 7295 wr_mas->end_piv); 7296 } 7297 EXPORT_SYMBOL_GPL(mas_wr_dump); 7298 7299 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7300