xref: /openbmc/linux/lib/iov_iter.c (revision 7ca4282ade77de53b6e9ffa2695566e5d35dab1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15 
16 #define PIPE_PARANOIA /* for now */
17 
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
19 	size_t left;					\
20 	size_t wanted = n;				\
21 	__p = i->iov;					\
22 	__v.iov_len = min(n, __p->iov_len - skip);	\
23 	if (likely(__v.iov_len)) {			\
24 		__v.iov_base = __p->iov_base + skip;	\
25 		left = (STEP);				\
26 		__v.iov_len -= left;			\
27 		skip += __v.iov_len;			\
28 		n -= __v.iov_len;			\
29 	} else {					\
30 		left = 0;				\
31 	}						\
32 	while (unlikely(!left && n)) {			\
33 		__p++;					\
34 		__v.iov_len = min(n, __p->iov_len);	\
35 		if (unlikely(!__v.iov_len))		\
36 			continue;			\
37 		__v.iov_base = __p->iov_base;		\
38 		left = (STEP);				\
39 		__v.iov_len -= left;			\
40 		skip = __v.iov_len;			\
41 		n -= __v.iov_len;			\
42 	}						\
43 	n = wanted - n;					\
44 }
45 
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
47 	size_t wanted = n;				\
48 	__p = i->kvec;					\
49 	__v.iov_len = min(n, __p->iov_len - skip);	\
50 	if (likely(__v.iov_len)) {			\
51 		__v.iov_base = __p->iov_base + skip;	\
52 		(void)(STEP);				\
53 		skip += __v.iov_len;			\
54 		n -= __v.iov_len;			\
55 	}						\
56 	while (unlikely(n)) {				\
57 		__p++;					\
58 		__v.iov_len = min(n, __p->iov_len);	\
59 		if (unlikely(!__v.iov_len))		\
60 			continue;			\
61 		__v.iov_base = __p->iov_base;		\
62 		(void)(STEP);				\
63 		skip = __v.iov_len;			\
64 		n -= __v.iov_len;			\
65 	}						\
66 	n = wanted;					\
67 }
68 
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
70 	struct bvec_iter __start;			\
71 	__start.bi_size = n;				\
72 	__start.bi_bvec_done = skip;			\
73 	__start.bi_idx = 0;				\
74 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
75 		if (!__v.bv_len)			\
76 			continue;			\
77 		(void)(STEP);				\
78 	}						\
79 }
80 
81 #define iterate_all_kinds(i, n, v, I, B, K) {			\
82 	if (likely(n)) {					\
83 		size_t skip = i->iov_offset;			\
84 		if (unlikely(i->type & ITER_BVEC)) {		\
85 			struct bio_vec v;			\
86 			struct bvec_iter __bi;			\
87 			iterate_bvec(i, n, v, __bi, skip, (B))	\
88 		} else if (unlikely(i->type & ITER_KVEC)) {	\
89 			const struct kvec *kvec;		\
90 			struct kvec v;				\
91 			iterate_kvec(i, n, v, kvec, skip, (K))	\
92 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
93 		} else {					\
94 			const struct iovec *iov;		\
95 			struct iovec v;				\
96 			iterate_iovec(i, n, v, iov, skip, (I))	\
97 		}						\
98 	}							\
99 }
100 
101 #define iterate_and_advance(i, n, v, I, B, K) {			\
102 	if (unlikely(i->count < n))				\
103 		n = i->count;					\
104 	if (i->count) {						\
105 		size_t skip = i->iov_offset;			\
106 		if (unlikely(i->type & ITER_BVEC)) {		\
107 			const struct bio_vec *bvec = i->bvec;	\
108 			struct bio_vec v;			\
109 			struct bvec_iter __bi;			\
110 			iterate_bvec(i, n, v, __bi, skip, (B))	\
111 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
112 			i->nr_segs -= i->bvec - bvec;		\
113 			skip = __bi.bi_bvec_done;		\
114 		} else if (unlikely(i->type & ITER_KVEC)) {	\
115 			const struct kvec *kvec;		\
116 			struct kvec v;				\
117 			iterate_kvec(i, n, v, kvec, skip, (K))	\
118 			if (skip == kvec->iov_len) {		\
119 				kvec++;				\
120 				skip = 0;			\
121 			}					\
122 			i->nr_segs -= kvec - i->kvec;		\
123 			i->kvec = kvec;				\
124 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
125 			skip += n;				\
126 		} else {					\
127 			const struct iovec *iov;		\
128 			struct iovec v;				\
129 			iterate_iovec(i, n, v, iov, skip, (I))	\
130 			if (skip == iov->iov_len) {		\
131 				iov++;				\
132 				skip = 0;			\
133 			}					\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		}						\
137 		i->count -= n;					\
138 		i->iov_offset = skip;				\
139 	}							\
140 }
141 
142 static int copyout(void __user *to, const void *from, size_t n)
143 {
144 	if (should_fail_usercopy())
145 		return n;
146 	if (access_ok(to, n)) {
147 		instrument_copy_to_user(to, from, n);
148 		n = raw_copy_to_user(to, from, n);
149 	}
150 	return n;
151 }
152 
153 static int copyin(void *to, const void __user *from, size_t n)
154 {
155 	if (should_fail_usercopy())
156 		return n;
157 	if (access_ok(from, n)) {
158 		instrument_copy_from_user(to, from, n);
159 		n = raw_copy_from_user(to, from, n);
160 	}
161 	return n;
162 }
163 
164 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
165 			 struct iov_iter *i)
166 {
167 	size_t skip, copy, left, wanted;
168 	const struct iovec *iov;
169 	char __user *buf;
170 	void *kaddr, *from;
171 
172 	if (unlikely(bytes > i->count))
173 		bytes = i->count;
174 
175 	if (unlikely(!bytes))
176 		return 0;
177 
178 	might_fault();
179 	wanted = bytes;
180 	iov = i->iov;
181 	skip = i->iov_offset;
182 	buf = iov->iov_base + skip;
183 	copy = min(bytes, iov->iov_len - skip);
184 
185 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
186 		kaddr = kmap_atomic(page);
187 		from = kaddr + offset;
188 
189 		/* first chunk, usually the only one */
190 		left = copyout(buf, from, copy);
191 		copy -= left;
192 		skip += copy;
193 		from += copy;
194 		bytes -= copy;
195 
196 		while (unlikely(!left && bytes)) {
197 			iov++;
198 			buf = iov->iov_base;
199 			copy = min(bytes, iov->iov_len);
200 			left = copyout(buf, from, copy);
201 			copy -= left;
202 			skip = copy;
203 			from += copy;
204 			bytes -= copy;
205 		}
206 		if (likely(!bytes)) {
207 			kunmap_atomic(kaddr);
208 			goto done;
209 		}
210 		offset = from - kaddr;
211 		buf += copy;
212 		kunmap_atomic(kaddr);
213 		copy = min(bytes, iov->iov_len - skip);
214 	}
215 	/* Too bad - revert to non-atomic kmap */
216 
217 	kaddr = kmap(page);
218 	from = kaddr + offset;
219 	left = copyout(buf, from, copy);
220 	copy -= left;
221 	skip += copy;
222 	from += copy;
223 	bytes -= copy;
224 	while (unlikely(!left && bytes)) {
225 		iov++;
226 		buf = iov->iov_base;
227 		copy = min(bytes, iov->iov_len);
228 		left = copyout(buf, from, copy);
229 		copy -= left;
230 		skip = copy;
231 		from += copy;
232 		bytes -= copy;
233 	}
234 	kunmap(page);
235 
236 done:
237 	if (skip == iov->iov_len) {
238 		iov++;
239 		skip = 0;
240 	}
241 	i->count -= wanted - bytes;
242 	i->nr_segs -= iov - i->iov;
243 	i->iov = iov;
244 	i->iov_offset = skip;
245 	return wanted - bytes;
246 }
247 
248 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
249 			 struct iov_iter *i)
250 {
251 	size_t skip, copy, left, wanted;
252 	const struct iovec *iov;
253 	char __user *buf;
254 	void *kaddr, *to;
255 
256 	if (unlikely(bytes > i->count))
257 		bytes = i->count;
258 
259 	if (unlikely(!bytes))
260 		return 0;
261 
262 	might_fault();
263 	wanted = bytes;
264 	iov = i->iov;
265 	skip = i->iov_offset;
266 	buf = iov->iov_base + skip;
267 	copy = min(bytes, iov->iov_len - skip);
268 
269 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
270 		kaddr = kmap_atomic(page);
271 		to = kaddr + offset;
272 
273 		/* first chunk, usually the only one */
274 		left = copyin(to, buf, copy);
275 		copy -= left;
276 		skip += copy;
277 		to += copy;
278 		bytes -= copy;
279 
280 		while (unlikely(!left && bytes)) {
281 			iov++;
282 			buf = iov->iov_base;
283 			copy = min(bytes, iov->iov_len);
284 			left = copyin(to, buf, copy);
285 			copy -= left;
286 			skip = copy;
287 			to += copy;
288 			bytes -= copy;
289 		}
290 		if (likely(!bytes)) {
291 			kunmap_atomic(kaddr);
292 			goto done;
293 		}
294 		offset = to - kaddr;
295 		buf += copy;
296 		kunmap_atomic(kaddr);
297 		copy = min(bytes, iov->iov_len - skip);
298 	}
299 	/* Too bad - revert to non-atomic kmap */
300 
301 	kaddr = kmap(page);
302 	to = kaddr + offset;
303 	left = copyin(to, buf, copy);
304 	copy -= left;
305 	skip += copy;
306 	to += copy;
307 	bytes -= copy;
308 	while (unlikely(!left && bytes)) {
309 		iov++;
310 		buf = iov->iov_base;
311 		copy = min(bytes, iov->iov_len);
312 		left = copyin(to, buf, copy);
313 		copy -= left;
314 		skip = copy;
315 		to += copy;
316 		bytes -= copy;
317 	}
318 	kunmap(page);
319 
320 done:
321 	if (skip == iov->iov_len) {
322 		iov++;
323 		skip = 0;
324 	}
325 	i->count -= wanted - bytes;
326 	i->nr_segs -= iov - i->iov;
327 	i->iov = iov;
328 	i->iov_offset = skip;
329 	return wanted - bytes;
330 }
331 
332 #ifdef PIPE_PARANOIA
333 static bool sanity(const struct iov_iter *i)
334 {
335 	struct pipe_inode_info *pipe = i->pipe;
336 	unsigned int p_head = pipe->head;
337 	unsigned int p_tail = pipe->tail;
338 	unsigned int p_mask = pipe->ring_size - 1;
339 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
340 	unsigned int i_head = i->head;
341 	unsigned int idx;
342 
343 	if (i->iov_offset) {
344 		struct pipe_buffer *p;
345 		if (unlikely(p_occupancy == 0))
346 			goto Bad;	// pipe must be non-empty
347 		if (unlikely(i_head != p_head - 1))
348 			goto Bad;	// must be at the last buffer...
349 
350 		p = &pipe->bufs[i_head & p_mask];
351 		if (unlikely(p->offset + p->len != i->iov_offset))
352 			goto Bad;	// ... at the end of segment
353 	} else {
354 		if (i_head != p_head)
355 			goto Bad;	// must be right after the last buffer
356 	}
357 	return true;
358 Bad:
359 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
360 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
361 			p_head, p_tail, pipe->ring_size);
362 	for (idx = 0; idx < pipe->ring_size; idx++)
363 		printk(KERN_ERR "[%p %p %d %d]\n",
364 			pipe->bufs[idx].ops,
365 			pipe->bufs[idx].page,
366 			pipe->bufs[idx].offset,
367 			pipe->bufs[idx].len);
368 	WARN_ON(1);
369 	return false;
370 }
371 #else
372 #define sanity(i) true
373 #endif
374 
375 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
376 			 struct iov_iter *i)
377 {
378 	struct pipe_inode_info *pipe = i->pipe;
379 	struct pipe_buffer *buf;
380 	unsigned int p_tail = pipe->tail;
381 	unsigned int p_mask = pipe->ring_size - 1;
382 	unsigned int i_head = i->head;
383 	size_t off;
384 
385 	if (unlikely(bytes > i->count))
386 		bytes = i->count;
387 
388 	if (unlikely(!bytes))
389 		return 0;
390 
391 	if (!sanity(i))
392 		return 0;
393 
394 	off = i->iov_offset;
395 	buf = &pipe->bufs[i_head & p_mask];
396 	if (off) {
397 		if (offset == off && buf->page == page) {
398 			/* merge with the last one */
399 			buf->len += bytes;
400 			i->iov_offset += bytes;
401 			goto out;
402 		}
403 		i_head++;
404 		buf = &pipe->bufs[i_head & p_mask];
405 	}
406 	if (pipe_full(i_head, p_tail, pipe->max_usage))
407 		return 0;
408 
409 	buf->ops = &page_cache_pipe_buf_ops;
410 	get_page(page);
411 	buf->page = page;
412 	buf->offset = offset;
413 	buf->len = bytes;
414 
415 	pipe->head = i_head + 1;
416 	i->iov_offset = offset + bytes;
417 	i->head = i_head;
418 out:
419 	i->count -= bytes;
420 	return bytes;
421 }
422 
423 /*
424  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
425  * bytes.  For each iovec, fault in each page that constitutes the iovec.
426  *
427  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
428  * because it is an invalid address).
429  */
430 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
431 {
432 	size_t skip = i->iov_offset;
433 	const struct iovec *iov;
434 	int err;
435 	struct iovec v;
436 
437 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
438 		iterate_iovec(i, bytes, v, iov, skip, ({
439 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
440 			if (unlikely(err))
441 			return err;
442 		0;}))
443 	}
444 	return 0;
445 }
446 EXPORT_SYMBOL(iov_iter_fault_in_readable);
447 
448 void iov_iter_init(struct iov_iter *i, unsigned int direction,
449 			const struct iovec *iov, unsigned long nr_segs,
450 			size_t count)
451 {
452 	WARN_ON(direction & ~(READ | WRITE));
453 	direction &= READ | WRITE;
454 
455 	/* It will get better.  Eventually... */
456 	if (uaccess_kernel()) {
457 		i->type = ITER_KVEC | direction;
458 		i->kvec = (struct kvec *)iov;
459 	} else {
460 		i->type = ITER_IOVEC | direction;
461 		i->iov = iov;
462 	}
463 	i->nr_segs = nr_segs;
464 	i->iov_offset = 0;
465 	i->count = count;
466 }
467 EXPORT_SYMBOL(iov_iter_init);
468 
469 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
470 {
471 	char *from = kmap_atomic(page);
472 	memcpy(to, from + offset, len);
473 	kunmap_atomic(from);
474 }
475 
476 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
477 {
478 	char *to = kmap_atomic(page);
479 	memcpy(to + offset, from, len);
480 	kunmap_atomic(to);
481 }
482 
483 static void memzero_page(struct page *page, size_t offset, size_t len)
484 {
485 	char *addr = kmap_atomic(page);
486 	memset(addr + offset, 0, len);
487 	kunmap_atomic(addr);
488 }
489 
490 static inline bool allocated(struct pipe_buffer *buf)
491 {
492 	return buf->ops == &default_pipe_buf_ops;
493 }
494 
495 static inline void data_start(const struct iov_iter *i,
496 			      unsigned int *iter_headp, size_t *offp)
497 {
498 	unsigned int p_mask = i->pipe->ring_size - 1;
499 	unsigned int iter_head = i->head;
500 	size_t off = i->iov_offset;
501 
502 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
503 		    off == PAGE_SIZE)) {
504 		iter_head++;
505 		off = 0;
506 	}
507 	*iter_headp = iter_head;
508 	*offp = off;
509 }
510 
511 static size_t push_pipe(struct iov_iter *i, size_t size,
512 			int *iter_headp, size_t *offp)
513 {
514 	struct pipe_inode_info *pipe = i->pipe;
515 	unsigned int p_tail = pipe->tail;
516 	unsigned int p_mask = pipe->ring_size - 1;
517 	unsigned int iter_head;
518 	size_t off;
519 	ssize_t left;
520 
521 	if (unlikely(size > i->count))
522 		size = i->count;
523 	if (unlikely(!size))
524 		return 0;
525 
526 	left = size;
527 	data_start(i, &iter_head, &off);
528 	*iter_headp = iter_head;
529 	*offp = off;
530 	if (off) {
531 		left -= PAGE_SIZE - off;
532 		if (left <= 0) {
533 			pipe->bufs[iter_head & p_mask].len += size;
534 			return size;
535 		}
536 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
537 		iter_head++;
538 	}
539 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
540 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
541 		struct page *page = alloc_page(GFP_USER);
542 		if (!page)
543 			break;
544 
545 		buf->ops = &default_pipe_buf_ops;
546 		buf->page = page;
547 		buf->offset = 0;
548 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
549 		left -= buf->len;
550 		iter_head++;
551 		pipe->head = iter_head;
552 
553 		if (left == 0)
554 			return size;
555 	}
556 	return size - left;
557 }
558 
559 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
560 				struct iov_iter *i)
561 {
562 	struct pipe_inode_info *pipe = i->pipe;
563 	unsigned int p_mask = pipe->ring_size - 1;
564 	unsigned int i_head;
565 	size_t n, off;
566 
567 	if (!sanity(i))
568 		return 0;
569 
570 	bytes = n = push_pipe(i, bytes, &i_head, &off);
571 	if (unlikely(!n))
572 		return 0;
573 	do {
574 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
575 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
576 		i->head = i_head;
577 		i->iov_offset = off + chunk;
578 		n -= chunk;
579 		addr += chunk;
580 		off = 0;
581 		i_head++;
582 	} while (n);
583 	i->count -= bytes;
584 	return bytes;
585 }
586 
587 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
588 			      __wsum sum, size_t off)
589 {
590 	__wsum next = csum_partial_copy_nocheck(from, to, len);
591 	return csum_block_add(sum, next, off);
592 }
593 
594 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
595 				__wsum *csum, struct iov_iter *i)
596 {
597 	struct pipe_inode_info *pipe = i->pipe;
598 	unsigned int p_mask = pipe->ring_size - 1;
599 	unsigned int i_head;
600 	size_t n, r;
601 	size_t off = 0;
602 	__wsum sum = *csum;
603 
604 	if (!sanity(i))
605 		return 0;
606 
607 	bytes = n = push_pipe(i, bytes, &i_head, &r);
608 	if (unlikely(!n))
609 		return 0;
610 	do {
611 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
612 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
613 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
614 		kunmap_atomic(p);
615 		i->head = i_head;
616 		i->iov_offset = r + chunk;
617 		n -= chunk;
618 		off += chunk;
619 		addr += chunk;
620 		r = 0;
621 		i_head++;
622 	} while (n);
623 	i->count -= bytes;
624 	*csum = sum;
625 	return bytes;
626 }
627 
628 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
629 {
630 	const char *from = addr;
631 	if (unlikely(iov_iter_is_pipe(i)))
632 		return copy_pipe_to_iter(addr, bytes, i);
633 	if (iter_is_iovec(i))
634 		might_fault();
635 	iterate_and_advance(i, bytes, v,
636 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
637 		memcpy_to_page(v.bv_page, v.bv_offset,
638 			       (from += v.bv_len) - v.bv_len, v.bv_len),
639 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
640 	)
641 
642 	return bytes;
643 }
644 EXPORT_SYMBOL(_copy_to_iter);
645 
646 #ifdef CONFIG_ARCH_HAS_COPY_MC
647 static int copyout_mc(void __user *to, const void *from, size_t n)
648 {
649 	if (access_ok(to, n)) {
650 		instrument_copy_to_user(to, from, n);
651 		n = copy_mc_to_user((__force void *) to, from, n);
652 	}
653 	return n;
654 }
655 
656 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
657 		const char *from, size_t len)
658 {
659 	unsigned long ret;
660 	char *to;
661 
662 	to = kmap_atomic(page);
663 	ret = copy_mc_to_kernel(to + offset, from, len);
664 	kunmap_atomic(to);
665 
666 	return ret;
667 }
668 
669 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
670 				struct iov_iter *i)
671 {
672 	struct pipe_inode_info *pipe = i->pipe;
673 	unsigned int p_mask = pipe->ring_size - 1;
674 	unsigned int i_head;
675 	size_t n, off, xfer = 0;
676 
677 	if (!sanity(i))
678 		return 0;
679 
680 	bytes = n = push_pipe(i, bytes, &i_head, &off);
681 	if (unlikely(!n))
682 		return 0;
683 	do {
684 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
685 		unsigned long rem;
686 
687 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
688 					    off, addr, chunk);
689 		i->head = i_head;
690 		i->iov_offset = off + chunk - rem;
691 		xfer += chunk - rem;
692 		if (rem)
693 			break;
694 		n -= chunk;
695 		addr += chunk;
696 		off = 0;
697 		i_head++;
698 	} while (n);
699 	i->count -= xfer;
700 	return xfer;
701 }
702 
703 /**
704  * _copy_mc_to_iter - copy to iter with source memory error exception handling
705  * @addr: source kernel address
706  * @bytes: total transfer length
707  * @iter: destination iterator
708  *
709  * The pmem driver deploys this for the dax operation
710  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
711  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
712  * successfully copied.
713  *
714  * The main differences between this and typical _copy_to_iter().
715  *
716  * * Typical tail/residue handling after a fault retries the copy
717  *   byte-by-byte until the fault happens again. Re-triggering machine
718  *   checks is potentially fatal so the implementation uses source
719  *   alignment and poison alignment assumptions to avoid re-triggering
720  *   hardware exceptions.
721  *
722  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
723  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
724  *   a short copy.
725  */
726 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
727 {
728 	const char *from = addr;
729 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
730 
731 	if (unlikely(iov_iter_is_pipe(i)))
732 		return copy_mc_pipe_to_iter(addr, bytes, i);
733 	if (iter_is_iovec(i))
734 		might_fault();
735 	iterate_and_advance(i, bytes, v,
736 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
737 			   v.iov_len),
738 		({
739 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
740 				      (from += v.bv_len) - v.bv_len, v.bv_len);
741 		if (rem) {
742 			curr_addr = (unsigned long) from;
743 			bytes = curr_addr - s_addr - rem;
744 			return bytes;
745 		}
746 		}),
747 		({
748 		rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
749 					- v.iov_len, v.iov_len);
750 		if (rem) {
751 			curr_addr = (unsigned long) from;
752 			bytes = curr_addr - s_addr - rem;
753 			return bytes;
754 		}
755 		})
756 	)
757 
758 	return bytes;
759 }
760 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
761 #endif /* CONFIG_ARCH_HAS_COPY_MC */
762 
763 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
764 {
765 	char *to = addr;
766 	if (unlikely(iov_iter_is_pipe(i))) {
767 		WARN_ON(1);
768 		return 0;
769 	}
770 	if (iter_is_iovec(i))
771 		might_fault();
772 	iterate_and_advance(i, bytes, v,
773 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
774 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
775 				 v.bv_offset, v.bv_len),
776 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
777 	)
778 
779 	return bytes;
780 }
781 EXPORT_SYMBOL(_copy_from_iter);
782 
783 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
784 {
785 	char *to = addr;
786 	if (unlikely(iov_iter_is_pipe(i))) {
787 		WARN_ON(1);
788 		return false;
789 	}
790 	if (unlikely(i->count < bytes))
791 		return false;
792 
793 	if (iter_is_iovec(i))
794 		might_fault();
795 	iterate_all_kinds(i, bytes, v, ({
796 		if (copyin((to += v.iov_len) - v.iov_len,
797 				      v.iov_base, v.iov_len))
798 			return false;
799 		0;}),
800 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
801 				 v.bv_offset, v.bv_len),
802 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
803 	)
804 
805 	iov_iter_advance(i, bytes);
806 	return true;
807 }
808 EXPORT_SYMBOL(_copy_from_iter_full);
809 
810 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
811 {
812 	char *to = addr;
813 	if (unlikely(iov_iter_is_pipe(i))) {
814 		WARN_ON(1);
815 		return 0;
816 	}
817 	iterate_and_advance(i, bytes, v,
818 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
819 					 v.iov_base, v.iov_len),
820 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
821 				 v.bv_offset, v.bv_len),
822 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
823 	)
824 
825 	return bytes;
826 }
827 EXPORT_SYMBOL(_copy_from_iter_nocache);
828 
829 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
830 /**
831  * _copy_from_iter_flushcache - write destination through cpu cache
832  * @addr: destination kernel address
833  * @bytes: total transfer length
834  * @iter: source iterator
835  *
836  * The pmem driver arranges for filesystem-dax to use this facility via
837  * dax_copy_from_iter() for ensuring that writes to persistent memory
838  * are flushed through the CPU cache. It is differentiated from
839  * _copy_from_iter_nocache() in that guarantees all data is flushed for
840  * all iterator types. The _copy_from_iter_nocache() only attempts to
841  * bypass the cache for the ITER_IOVEC case, and on some archs may use
842  * instructions that strand dirty-data in the cache.
843  */
844 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
845 {
846 	char *to = addr;
847 	if (unlikely(iov_iter_is_pipe(i))) {
848 		WARN_ON(1);
849 		return 0;
850 	}
851 	iterate_and_advance(i, bytes, v,
852 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
853 					 v.iov_base, v.iov_len),
854 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
855 				 v.bv_offset, v.bv_len),
856 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
857 			v.iov_len)
858 	)
859 
860 	return bytes;
861 }
862 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
863 #endif
864 
865 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
866 {
867 	char *to = addr;
868 	if (unlikely(iov_iter_is_pipe(i))) {
869 		WARN_ON(1);
870 		return false;
871 	}
872 	if (unlikely(i->count < bytes))
873 		return false;
874 	iterate_all_kinds(i, bytes, v, ({
875 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
876 					     v.iov_base, v.iov_len))
877 			return false;
878 		0;}),
879 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
880 				 v.bv_offset, v.bv_len),
881 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
882 	)
883 
884 	iov_iter_advance(i, bytes);
885 	return true;
886 }
887 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
888 
889 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
890 {
891 	struct page *head;
892 	size_t v = n + offset;
893 
894 	/*
895 	 * The general case needs to access the page order in order
896 	 * to compute the page size.
897 	 * However, we mostly deal with order-0 pages and thus can
898 	 * avoid a possible cache line miss for requests that fit all
899 	 * page orders.
900 	 */
901 	if (n <= v && v <= PAGE_SIZE)
902 		return true;
903 
904 	head = compound_head(page);
905 	v += (page - head) << PAGE_SHIFT;
906 
907 	if (likely(n <= v && v <= (page_size(head))))
908 		return true;
909 	WARN_ON(1);
910 	return false;
911 }
912 
913 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
914 			 struct iov_iter *i)
915 {
916 	if (unlikely(!page_copy_sane(page, offset, bytes)))
917 		return 0;
918 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
919 		void *kaddr = kmap_atomic(page);
920 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
921 		kunmap_atomic(kaddr);
922 		return wanted;
923 	} else if (unlikely(iov_iter_is_discard(i)))
924 		return bytes;
925 	else if (likely(!iov_iter_is_pipe(i)))
926 		return copy_page_to_iter_iovec(page, offset, bytes, i);
927 	else
928 		return copy_page_to_iter_pipe(page, offset, bytes, i);
929 }
930 EXPORT_SYMBOL(copy_page_to_iter);
931 
932 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
933 			 struct iov_iter *i)
934 {
935 	if (unlikely(!page_copy_sane(page, offset, bytes)))
936 		return 0;
937 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
938 		WARN_ON(1);
939 		return 0;
940 	}
941 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
942 		void *kaddr = kmap_atomic(page);
943 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
944 		kunmap_atomic(kaddr);
945 		return wanted;
946 	} else
947 		return copy_page_from_iter_iovec(page, offset, bytes, i);
948 }
949 EXPORT_SYMBOL(copy_page_from_iter);
950 
951 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
952 {
953 	struct pipe_inode_info *pipe = i->pipe;
954 	unsigned int p_mask = pipe->ring_size - 1;
955 	unsigned int i_head;
956 	size_t n, off;
957 
958 	if (!sanity(i))
959 		return 0;
960 
961 	bytes = n = push_pipe(i, bytes, &i_head, &off);
962 	if (unlikely(!n))
963 		return 0;
964 
965 	do {
966 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
967 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
968 		i->head = i_head;
969 		i->iov_offset = off + chunk;
970 		n -= chunk;
971 		off = 0;
972 		i_head++;
973 	} while (n);
974 	i->count -= bytes;
975 	return bytes;
976 }
977 
978 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
979 {
980 	if (unlikely(iov_iter_is_pipe(i)))
981 		return pipe_zero(bytes, i);
982 	iterate_and_advance(i, bytes, v,
983 		clear_user(v.iov_base, v.iov_len),
984 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
985 		memset(v.iov_base, 0, v.iov_len)
986 	)
987 
988 	return bytes;
989 }
990 EXPORT_SYMBOL(iov_iter_zero);
991 
992 size_t iov_iter_copy_from_user_atomic(struct page *page,
993 		struct iov_iter *i, unsigned long offset, size_t bytes)
994 {
995 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
996 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
997 		kunmap_atomic(kaddr);
998 		return 0;
999 	}
1000 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1001 		kunmap_atomic(kaddr);
1002 		WARN_ON(1);
1003 		return 0;
1004 	}
1005 	iterate_all_kinds(i, bytes, v,
1006 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1007 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1008 				 v.bv_offset, v.bv_len),
1009 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1010 	)
1011 	kunmap_atomic(kaddr);
1012 	return bytes;
1013 }
1014 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1015 
1016 static inline void pipe_truncate(struct iov_iter *i)
1017 {
1018 	struct pipe_inode_info *pipe = i->pipe;
1019 	unsigned int p_tail = pipe->tail;
1020 	unsigned int p_head = pipe->head;
1021 	unsigned int p_mask = pipe->ring_size - 1;
1022 
1023 	if (!pipe_empty(p_head, p_tail)) {
1024 		struct pipe_buffer *buf;
1025 		unsigned int i_head = i->head;
1026 		size_t off = i->iov_offset;
1027 
1028 		if (off) {
1029 			buf = &pipe->bufs[i_head & p_mask];
1030 			buf->len = off - buf->offset;
1031 			i_head++;
1032 		}
1033 		while (p_head != i_head) {
1034 			p_head--;
1035 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1036 		}
1037 
1038 		pipe->head = p_head;
1039 	}
1040 }
1041 
1042 static void pipe_advance(struct iov_iter *i, size_t size)
1043 {
1044 	struct pipe_inode_info *pipe = i->pipe;
1045 	if (unlikely(i->count < size))
1046 		size = i->count;
1047 	if (size) {
1048 		struct pipe_buffer *buf;
1049 		unsigned int p_mask = pipe->ring_size - 1;
1050 		unsigned int i_head = i->head;
1051 		size_t off = i->iov_offset, left = size;
1052 
1053 		if (off) /* make it relative to the beginning of buffer */
1054 			left += off - pipe->bufs[i_head & p_mask].offset;
1055 		while (1) {
1056 			buf = &pipe->bufs[i_head & p_mask];
1057 			if (left <= buf->len)
1058 				break;
1059 			left -= buf->len;
1060 			i_head++;
1061 		}
1062 		i->head = i_head;
1063 		i->iov_offset = buf->offset + left;
1064 	}
1065 	i->count -= size;
1066 	/* ... and discard everything past that point */
1067 	pipe_truncate(i);
1068 }
1069 
1070 void iov_iter_advance(struct iov_iter *i, size_t size)
1071 {
1072 	if (unlikely(iov_iter_is_pipe(i))) {
1073 		pipe_advance(i, size);
1074 		return;
1075 	}
1076 	if (unlikely(iov_iter_is_discard(i))) {
1077 		i->count -= size;
1078 		return;
1079 	}
1080 	iterate_and_advance(i, size, v, 0, 0, 0)
1081 }
1082 EXPORT_SYMBOL(iov_iter_advance);
1083 
1084 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1085 {
1086 	if (!unroll)
1087 		return;
1088 	if (WARN_ON(unroll > MAX_RW_COUNT))
1089 		return;
1090 	i->count += unroll;
1091 	if (unlikely(iov_iter_is_pipe(i))) {
1092 		struct pipe_inode_info *pipe = i->pipe;
1093 		unsigned int p_mask = pipe->ring_size - 1;
1094 		unsigned int i_head = i->head;
1095 		size_t off = i->iov_offset;
1096 		while (1) {
1097 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1098 			size_t n = off - b->offset;
1099 			if (unroll < n) {
1100 				off -= unroll;
1101 				break;
1102 			}
1103 			unroll -= n;
1104 			if (!unroll && i_head == i->start_head) {
1105 				off = 0;
1106 				break;
1107 			}
1108 			i_head--;
1109 			b = &pipe->bufs[i_head & p_mask];
1110 			off = b->offset + b->len;
1111 		}
1112 		i->iov_offset = off;
1113 		i->head = i_head;
1114 		pipe_truncate(i);
1115 		return;
1116 	}
1117 	if (unlikely(iov_iter_is_discard(i)))
1118 		return;
1119 	if (unroll <= i->iov_offset) {
1120 		i->iov_offset -= unroll;
1121 		return;
1122 	}
1123 	unroll -= i->iov_offset;
1124 	if (iov_iter_is_bvec(i)) {
1125 		const struct bio_vec *bvec = i->bvec;
1126 		while (1) {
1127 			size_t n = (--bvec)->bv_len;
1128 			i->nr_segs++;
1129 			if (unroll <= n) {
1130 				i->bvec = bvec;
1131 				i->iov_offset = n - unroll;
1132 				return;
1133 			}
1134 			unroll -= n;
1135 		}
1136 	} else { /* same logics for iovec and kvec */
1137 		const struct iovec *iov = i->iov;
1138 		while (1) {
1139 			size_t n = (--iov)->iov_len;
1140 			i->nr_segs++;
1141 			if (unroll <= n) {
1142 				i->iov = iov;
1143 				i->iov_offset = n - unroll;
1144 				return;
1145 			}
1146 			unroll -= n;
1147 		}
1148 	}
1149 }
1150 EXPORT_SYMBOL(iov_iter_revert);
1151 
1152 /*
1153  * Return the count of just the current iov_iter segment.
1154  */
1155 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1156 {
1157 	if (unlikely(iov_iter_is_pipe(i)))
1158 		return i->count;	// it is a silly place, anyway
1159 	if (i->nr_segs == 1)
1160 		return i->count;
1161 	if (unlikely(iov_iter_is_discard(i)))
1162 		return i->count;
1163 	else if (iov_iter_is_bvec(i))
1164 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1165 	else
1166 		return min(i->count, i->iov->iov_len - i->iov_offset);
1167 }
1168 EXPORT_SYMBOL(iov_iter_single_seg_count);
1169 
1170 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1171 			const struct kvec *kvec, unsigned long nr_segs,
1172 			size_t count)
1173 {
1174 	WARN_ON(direction & ~(READ | WRITE));
1175 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1176 	i->kvec = kvec;
1177 	i->nr_segs = nr_segs;
1178 	i->iov_offset = 0;
1179 	i->count = count;
1180 }
1181 EXPORT_SYMBOL(iov_iter_kvec);
1182 
1183 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1184 			const struct bio_vec *bvec, unsigned long nr_segs,
1185 			size_t count)
1186 {
1187 	WARN_ON(direction & ~(READ | WRITE));
1188 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1189 	i->bvec = bvec;
1190 	i->nr_segs = nr_segs;
1191 	i->iov_offset = 0;
1192 	i->count = count;
1193 }
1194 EXPORT_SYMBOL(iov_iter_bvec);
1195 
1196 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1197 			struct pipe_inode_info *pipe,
1198 			size_t count)
1199 {
1200 	BUG_ON(direction != READ);
1201 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1202 	i->type = ITER_PIPE | READ;
1203 	i->pipe = pipe;
1204 	i->head = pipe->head;
1205 	i->iov_offset = 0;
1206 	i->count = count;
1207 	i->start_head = i->head;
1208 }
1209 EXPORT_SYMBOL(iov_iter_pipe);
1210 
1211 /**
1212  * iov_iter_discard - Initialise an I/O iterator that discards data
1213  * @i: The iterator to initialise.
1214  * @direction: The direction of the transfer.
1215  * @count: The size of the I/O buffer in bytes.
1216  *
1217  * Set up an I/O iterator that just discards everything that's written to it.
1218  * It's only available as a READ iterator.
1219  */
1220 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1221 {
1222 	BUG_ON(direction != READ);
1223 	i->type = ITER_DISCARD | READ;
1224 	i->count = count;
1225 	i->iov_offset = 0;
1226 }
1227 EXPORT_SYMBOL(iov_iter_discard);
1228 
1229 unsigned long iov_iter_alignment(const struct iov_iter *i)
1230 {
1231 	unsigned long res = 0;
1232 	size_t size = i->count;
1233 
1234 	if (unlikely(iov_iter_is_pipe(i))) {
1235 		unsigned int p_mask = i->pipe->ring_size - 1;
1236 
1237 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1238 			return size | i->iov_offset;
1239 		return size;
1240 	}
1241 	iterate_all_kinds(i, size, v,
1242 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1243 		res |= v.bv_offset | v.bv_len,
1244 		res |= (unsigned long)v.iov_base | v.iov_len
1245 	)
1246 	return res;
1247 }
1248 EXPORT_SYMBOL(iov_iter_alignment);
1249 
1250 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1251 {
1252 	unsigned long res = 0;
1253 	size_t size = i->count;
1254 
1255 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1256 		WARN_ON(1);
1257 		return ~0U;
1258 	}
1259 
1260 	iterate_all_kinds(i, size, v,
1261 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1262 			(size != v.iov_len ? size : 0), 0),
1263 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1264 			(size != v.bv_len ? size : 0)),
1265 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1266 			(size != v.iov_len ? size : 0))
1267 		);
1268 	return res;
1269 }
1270 EXPORT_SYMBOL(iov_iter_gap_alignment);
1271 
1272 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1273 				size_t maxsize,
1274 				struct page **pages,
1275 				int iter_head,
1276 				size_t *start)
1277 {
1278 	struct pipe_inode_info *pipe = i->pipe;
1279 	unsigned int p_mask = pipe->ring_size - 1;
1280 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1281 	if (!n)
1282 		return -EFAULT;
1283 
1284 	maxsize = n;
1285 	n += *start;
1286 	while (n > 0) {
1287 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1288 		iter_head++;
1289 		n -= PAGE_SIZE;
1290 	}
1291 
1292 	return maxsize;
1293 }
1294 
1295 static ssize_t pipe_get_pages(struct iov_iter *i,
1296 		   struct page **pages, size_t maxsize, unsigned maxpages,
1297 		   size_t *start)
1298 {
1299 	unsigned int iter_head, npages;
1300 	size_t capacity;
1301 
1302 	if (!maxsize)
1303 		return 0;
1304 
1305 	if (!sanity(i))
1306 		return -EFAULT;
1307 
1308 	data_start(i, &iter_head, start);
1309 	/* Amount of free space: some of this one + all after this one */
1310 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1311 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1312 
1313 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1314 }
1315 
1316 ssize_t iov_iter_get_pages(struct iov_iter *i,
1317 		   struct page **pages, size_t maxsize, unsigned maxpages,
1318 		   size_t *start)
1319 {
1320 	if (maxsize > i->count)
1321 		maxsize = i->count;
1322 
1323 	if (unlikely(iov_iter_is_pipe(i)))
1324 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1325 	if (unlikely(iov_iter_is_discard(i)))
1326 		return -EFAULT;
1327 
1328 	iterate_all_kinds(i, maxsize, v, ({
1329 		unsigned long addr = (unsigned long)v.iov_base;
1330 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1331 		int n;
1332 		int res;
1333 
1334 		if (len > maxpages * PAGE_SIZE)
1335 			len = maxpages * PAGE_SIZE;
1336 		addr &= ~(PAGE_SIZE - 1);
1337 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1338 		res = get_user_pages_fast(addr, n,
1339 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1340 				pages);
1341 		if (unlikely(res < 0))
1342 			return res;
1343 		return (res == n ? len : res * PAGE_SIZE) - *start;
1344 	0;}),({
1345 		/* can't be more than PAGE_SIZE */
1346 		*start = v.bv_offset;
1347 		get_page(*pages = v.bv_page);
1348 		return v.bv_len;
1349 	}),({
1350 		return -EFAULT;
1351 	})
1352 	)
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL(iov_iter_get_pages);
1356 
1357 static struct page **get_pages_array(size_t n)
1358 {
1359 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1360 }
1361 
1362 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1363 		   struct page ***pages, size_t maxsize,
1364 		   size_t *start)
1365 {
1366 	struct page **p;
1367 	unsigned int iter_head, npages;
1368 	ssize_t n;
1369 
1370 	if (!maxsize)
1371 		return 0;
1372 
1373 	if (!sanity(i))
1374 		return -EFAULT;
1375 
1376 	data_start(i, &iter_head, start);
1377 	/* Amount of free space: some of this one + all after this one */
1378 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1379 	n = npages * PAGE_SIZE - *start;
1380 	if (maxsize > n)
1381 		maxsize = n;
1382 	else
1383 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1384 	p = get_pages_array(npages);
1385 	if (!p)
1386 		return -ENOMEM;
1387 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1388 	if (n > 0)
1389 		*pages = p;
1390 	else
1391 		kvfree(p);
1392 	return n;
1393 }
1394 
1395 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1396 		   struct page ***pages, size_t maxsize,
1397 		   size_t *start)
1398 {
1399 	struct page **p;
1400 
1401 	if (maxsize > i->count)
1402 		maxsize = i->count;
1403 
1404 	if (unlikely(iov_iter_is_pipe(i)))
1405 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1406 	if (unlikely(iov_iter_is_discard(i)))
1407 		return -EFAULT;
1408 
1409 	iterate_all_kinds(i, maxsize, v, ({
1410 		unsigned long addr = (unsigned long)v.iov_base;
1411 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1412 		int n;
1413 		int res;
1414 
1415 		addr &= ~(PAGE_SIZE - 1);
1416 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1417 		p = get_pages_array(n);
1418 		if (!p)
1419 			return -ENOMEM;
1420 		res = get_user_pages_fast(addr, n,
1421 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1422 		if (unlikely(res < 0)) {
1423 			kvfree(p);
1424 			return res;
1425 		}
1426 		*pages = p;
1427 		return (res == n ? len : res * PAGE_SIZE) - *start;
1428 	0;}),({
1429 		/* can't be more than PAGE_SIZE */
1430 		*start = v.bv_offset;
1431 		*pages = p = get_pages_array(1);
1432 		if (!p)
1433 			return -ENOMEM;
1434 		get_page(*p = v.bv_page);
1435 		return v.bv_len;
1436 	}),({
1437 		return -EFAULT;
1438 	})
1439 	)
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1443 
1444 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1445 			       struct iov_iter *i)
1446 {
1447 	char *to = addr;
1448 	__wsum sum, next;
1449 	size_t off = 0;
1450 	sum = *csum;
1451 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1452 		WARN_ON(1);
1453 		return 0;
1454 	}
1455 	iterate_and_advance(i, bytes, v, ({
1456 		next = csum_and_copy_from_user(v.iov_base,
1457 					       (to += v.iov_len) - v.iov_len,
1458 					       v.iov_len);
1459 		if (next) {
1460 			sum = csum_block_add(sum, next, off);
1461 			off += v.iov_len;
1462 		}
1463 		next ? 0 : v.iov_len;
1464 	}), ({
1465 		char *p = kmap_atomic(v.bv_page);
1466 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1467 				      p + v.bv_offset, v.bv_len,
1468 				      sum, off);
1469 		kunmap_atomic(p);
1470 		off += v.bv_len;
1471 	}),({
1472 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1473 				      v.iov_base, v.iov_len,
1474 				      sum, off);
1475 		off += v.iov_len;
1476 	})
1477 	)
1478 	*csum = sum;
1479 	return bytes;
1480 }
1481 EXPORT_SYMBOL(csum_and_copy_from_iter);
1482 
1483 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1484 			       struct iov_iter *i)
1485 {
1486 	char *to = addr;
1487 	__wsum sum, next;
1488 	size_t off = 0;
1489 	sum = *csum;
1490 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1491 		WARN_ON(1);
1492 		return false;
1493 	}
1494 	if (unlikely(i->count < bytes))
1495 		return false;
1496 	iterate_all_kinds(i, bytes, v, ({
1497 		next = csum_and_copy_from_user(v.iov_base,
1498 					       (to += v.iov_len) - v.iov_len,
1499 					       v.iov_len);
1500 		if (!next)
1501 			return false;
1502 		sum = csum_block_add(sum, next, off);
1503 		off += v.iov_len;
1504 		0;
1505 	}), ({
1506 		char *p = kmap_atomic(v.bv_page);
1507 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1508 				      p + v.bv_offset, v.bv_len,
1509 				      sum, off);
1510 		kunmap_atomic(p);
1511 		off += v.bv_len;
1512 	}),({
1513 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1514 				      v.iov_base, v.iov_len,
1515 				      sum, off);
1516 		off += v.iov_len;
1517 	})
1518 	)
1519 	*csum = sum;
1520 	iov_iter_advance(i, bytes);
1521 	return true;
1522 }
1523 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1524 
1525 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1526 			     struct iov_iter *i)
1527 {
1528 	const char *from = addr;
1529 	__wsum *csum = csump;
1530 	__wsum sum, next;
1531 	size_t off = 0;
1532 
1533 	if (unlikely(iov_iter_is_pipe(i)))
1534 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1535 
1536 	sum = *csum;
1537 	if (unlikely(iov_iter_is_discard(i))) {
1538 		WARN_ON(1);	/* for now */
1539 		return 0;
1540 	}
1541 	iterate_and_advance(i, bytes, v, ({
1542 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1543 					     v.iov_base,
1544 					     v.iov_len);
1545 		if (next) {
1546 			sum = csum_block_add(sum, next, off);
1547 			off += v.iov_len;
1548 		}
1549 		next ? 0 : v.iov_len;
1550 	}), ({
1551 		char *p = kmap_atomic(v.bv_page);
1552 		sum = csum_and_memcpy(p + v.bv_offset,
1553 				      (from += v.bv_len) - v.bv_len,
1554 				      v.bv_len, sum, off);
1555 		kunmap_atomic(p);
1556 		off += v.bv_len;
1557 	}),({
1558 		sum = csum_and_memcpy(v.iov_base,
1559 				     (from += v.iov_len) - v.iov_len,
1560 				     v.iov_len, sum, off);
1561 		off += v.iov_len;
1562 	})
1563 	)
1564 	*csum = sum;
1565 	return bytes;
1566 }
1567 EXPORT_SYMBOL(csum_and_copy_to_iter);
1568 
1569 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1570 		struct iov_iter *i)
1571 {
1572 #ifdef CONFIG_CRYPTO_HASH
1573 	struct ahash_request *hash = hashp;
1574 	struct scatterlist sg;
1575 	size_t copied;
1576 
1577 	copied = copy_to_iter(addr, bytes, i);
1578 	sg_init_one(&sg, addr, copied);
1579 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1580 	crypto_ahash_update(hash);
1581 	return copied;
1582 #else
1583 	return 0;
1584 #endif
1585 }
1586 EXPORT_SYMBOL(hash_and_copy_to_iter);
1587 
1588 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1589 {
1590 	size_t size = i->count;
1591 	int npages = 0;
1592 
1593 	if (!size)
1594 		return 0;
1595 	if (unlikely(iov_iter_is_discard(i)))
1596 		return 0;
1597 
1598 	if (unlikely(iov_iter_is_pipe(i))) {
1599 		struct pipe_inode_info *pipe = i->pipe;
1600 		unsigned int iter_head;
1601 		size_t off;
1602 
1603 		if (!sanity(i))
1604 			return 0;
1605 
1606 		data_start(i, &iter_head, &off);
1607 		/* some of this one + all after this one */
1608 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1609 		if (npages >= maxpages)
1610 			return maxpages;
1611 	} else iterate_all_kinds(i, size, v, ({
1612 		unsigned long p = (unsigned long)v.iov_base;
1613 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1614 			- p / PAGE_SIZE;
1615 		if (npages >= maxpages)
1616 			return maxpages;
1617 	0;}),({
1618 		npages++;
1619 		if (npages >= maxpages)
1620 			return maxpages;
1621 	}),({
1622 		unsigned long p = (unsigned long)v.iov_base;
1623 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1624 			- p / PAGE_SIZE;
1625 		if (npages >= maxpages)
1626 			return maxpages;
1627 	})
1628 	)
1629 	return npages;
1630 }
1631 EXPORT_SYMBOL(iov_iter_npages);
1632 
1633 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1634 {
1635 	*new = *old;
1636 	if (unlikely(iov_iter_is_pipe(new))) {
1637 		WARN_ON(1);
1638 		return NULL;
1639 	}
1640 	if (unlikely(iov_iter_is_discard(new)))
1641 		return NULL;
1642 	if (iov_iter_is_bvec(new))
1643 		return new->bvec = kmemdup(new->bvec,
1644 				    new->nr_segs * sizeof(struct bio_vec),
1645 				    flags);
1646 	else
1647 		/* iovec and kvec have identical layout */
1648 		return new->iov = kmemdup(new->iov,
1649 				   new->nr_segs * sizeof(struct iovec),
1650 				   flags);
1651 }
1652 EXPORT_SYMBOL(dup_iter);
1653 
1654 static int copy_compat_iovec_from_user(struct iovec *iov,
1655 		const struct iovec __user *uvec, unsigned long nr_segs)
1656 {
1657 	const struct compat_iovec __user *uiov =
1658 		(const struct compat_iovec __user *)uvec;
1659 	int ret = -EFAULT, i;
1660 
1661 	if (!user_access_begin(uvec, nr_segs * sizeof(*uvec)))
1662 		return -EFAULT;
1663 
1664 	for (i = 0; i < nr_segs; i++) {
1665 		compat_uptr_t buf;
1666 		compat_ssize_t len;
1667 
1668 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1669 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1670 
1671 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1672 		if (len < 0) {
1673 			ret = -EINVAL;
1674 			goto uaccess_end;
1675 		}
1676 		iov[i].iov_base = compat_ptr(buf);
1677 		iov[i].iov_len = len;
1678 	}
1679 
1680 	ret = 0;
1681 uaccess_end:
1682 	user_access_end();
1683 	return ret;
1684 }
1685 
1686 static int copy_iovec_from_user(struct iovec *iov,
1687 		const struct iovec __user *uvec, unsigned long nr_segs)
1688 {
1689 	unsigned long seg;
1690 
1691 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1692 		return -EFAULT;
1693 	for (seg = 0; seg < nr_segs; seg++) {
1694 		if ((ssize_t)iov[seg].iov_len < 0)
1695 			return -EINVAL;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1702 		unsigned long nr_segs, unsigned long fast_segs,
1703 		struct iovec *fast_iov, bool compat)
1704 {
1705 	struct iovec *iov = fast_iov;
1706 	int ret;
1707 
1708 	/*
1709 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1710 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1711 	 * traditionally returned zero for zero segments, so...
1712 	 */
1713 	if (nr_segs == 0)
1714 		return iov;
1715 	if (nr_segs > UIO_MAXIOV)
1716 		return ERR_PTR(-EINVAL);
1717 	if (nr_segs > fast_segs) {
1718 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1719 		if (!iov)
1720 			return ERR_PTR(-ENOMEM);
1721 	}
1722 
1723 	if (compat)
1724 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1725 	else
1726 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1727 	if (ret) {
1728 		if (iov != fast_iov)
1729 			kfree(iov);
1730 		return ERR_PTR(ret);
1731 	}
1732 
1733 	return iov;
1734 }
1735 
1736 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1737 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1738 		 struct iov_iter *i, bool compat)
1739 {
1740 	ssize_t total_len = 0;
1741 	unsigned long seg;
1742 	struct iovec *iov;
1743 
1744 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1745 	if (IS_ERR(iov)) {
1746 		*iovp = NULL;
1747 		return PTR_ERR(iov);
1748 	}
1749 
1750 	/*
1751 	 * According to the Single Unix Specification we should return EINVAL if
1752 	 * an element length is < 0 when cast to ssize_t or if the total length
1753 	 * would overflow the ssize_t return value of the system call.
1754 	 *
1755 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1756 	 * overflow case.
1757 	 */
1758 	for (seg = 0; seg < nr_segs; seg++) {
1759 		ssize_t len = (ssize_t)iov[seg].iov_len;
1760 
1761 		if (!access_ok(iov[seg].iov_base, len)) {
1762 			if (iov != *iovp)
1763 				kfree(iov);
1764 			*iovp = NULL;
1765 			return -EFAULT;
1766 		}
1767 
1768 		if (len > MAX_RW_COUNT - total_len) {
1769 			len = MAX_RW_COUNT - total_len;
1770 			iov[seg].iov_len = len;
1771 		}
1772 		total_len += len;
1773 	}
1774 
1775 	iov_iter_init(i, type, iov, nr_segs, total_len);
1776 	if (iov == *iovp)
1777 		*iovp = NULL;
1778 	else
1779 		*iovp = iov;
1780 	return total_len;
1781 }
1782 
1783 /**
1784  * import_iovec() - Copy an array of &struct iovec from userspace
1785  *     into the kernel, check that it is valid, and initialize a new
1786  *     &struct iov_iter iterator to access it.
1787  *
1788  * @type: One of %READ or %WRITE.
1789  * @uvec: Pointer to the userspace array.
1790  * @nr_segs: Number of elements in userspace array.
1791  * @fast_segs: Number of elements in @iov.
1792  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1793  *     on-stack) kernel array.
1794  * @i: Pointer to iterator that will be initialized on success.
1795  *
1796  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1797  * then this function places %NULL in *@iov on return. Otherwise, a new
1798  * array will be allocated and the result placed in *@iov. This means that
1799  * the caller may call kfree() on *@iov regardless of whether the small
1800  * on-stack array was used or not (and regardless of whether this function
1801  * returns an error or not).
1802  *
1803  * Return: Negative error code on error, bytes imported on success
1804  */
1805 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1806 		 unsigned nr_segs, unsigned fast_segs,
1807 		 struct iovec **iovp, struct iov_iter *i)
1808 {
1809 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1810 			      in_compat_syscall());
1811 }
1812 EXPORT_SYMBOL(import_iovec);
1813 
1814 int import_single_range(int rw, void __user *buf, size_t len,
1815 		 struct iovec *iov, struct iov_iter *i)
1816 {
1817 	if (len > MAX_RW_COUNT)
1818 		len = MAX_RW_COUNT;
1819 	if (unlikely(!access_ok(buf, len)))
1820 		return -EFAULT;
1821 
1822 	iov->iov_base = buf;
1823 	iov->iov_len = len;
1824 	iov_iter_init(i, rw, iov, 1, len);
1825 	return 0;
1826 }
1827 EXPORT_SYMBOL(import_single_range);
1828 
1829 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1830 			    int (*f)(struct kvec *vec, void *context),
1831 			    void *context)
1832 {
1833 	struct kvec w;
1834 	int err = -EINVAL;
1835 	if (!bytes)
1836 		return 0;
1837 
1838 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1839 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1840 		w.iov_len = v.bv_len;
1841 		err = f(&w, context);
1842 		kunmap(v.bv_page);
1843 		err;}), ({
1844 		w = v;
1845 		err = f(&w, context);})
1846 	)
1847 	return err;
1848 }
1849 EXPORT_SYMBOL(iov_iter_for_each_range);
1850