xref: /openbmc/linux/lib/iov_iter.c (revision 64794d6db49730d22f440aef0cf4da98a56a4ea3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
21 	size_t off = 0;						\
22 	size_t skip = i->iov_offset;				\
23 	do {							\
24 		len = min(n, __p->iov_len - skip);		\
25 		if (likely(len)) {				\
26 			base = __p->iov_base + skip;		\
27 			len -= (STEP);				\
28 			off += len;				\
29 			skip += len;				\
30 			n -= len;				\
31 			if (skip < __p->iov_len)		\
32 				break;				\
33 		}						\
34 		__p++;						\
35 		skip = 0;					\
36 	} while (n);						\
37 	i->iov_offset = skip;					\
38 	n = off;						\
39 }
40 
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
42 	size_t off = 0;						\
43 	unsigned skip = i->iov_offset;				\
44 	while (n) {						\
45 		unsigned offset = p->bv_offset + skip;		\
46 		unsigned left;					\
47 		void *kaddr = kmap_local_page(p->bv_page +	\
48 					offset / PAGE_SIZE);	\
49 		base = kaddr + offset % PAGE_SIZE;		\
50 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
51 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
52 		left = (STEP);					\
53 		kunmap_local(kaddr);				\
54 		len -= left;					\
55 		off += len;					\
56 		skip += len;					\
57 		if (skip == p->bv_len) {			\
58 			skip = 0;				\
59 			p++;					\
60 		}						\
61 		n -= len;					\
62 		if (left)					\
63 			break;					\
64 	}							\
65 	i->iov_offset = skip;					\
66 	n = off;						\
67 }
68 
69 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
70 	__label__ __out;					\
71 	size_t __off = 0;					\
72 	struct page *head = NULL;				\
73 	loff_t start = i->xarray_start + i->iov_offset;		\
74 	unsigned offset = start % PAGE_SIZE;			\
75 	pgoff_t index = start / PAGE_SIZE;			\
76 	int j;							\
77 								\
78 	XA_STATE(xas, i->xarray, index);			\
79 								\
80 	rcu_read_lock();					\
81 	xas_for_each(&xas, head, ULONG_MAX) {			\
82 		unsigned left;					\
83 		if (xas_retry(&xas, head))			\
84 			continue;				\
85 		if (WARN_ON(xa_is_value(head)))			\
86 			break;					\
87 		if (WARN_ON(PageHuge(head)))			\
88 			break;					\
89 		for (j = (head->index < index) ? index - head->index : 0; \
90 		     j < thp_nr_pages(head); j++) {		\
91 			void *kaddr = kmap_local_page(head + j);	\
92 			base = kaddr + offset;			\
93 			len = PAGE_SIZE - offset;		\
94 			len = min(n, len);			\
95 			left = (STEP);				\
96 			kunmap_local(kaddr);			\
97 			len -= left;				\
98 			__off += len;				\
99 			n -= len;				\
100 			if (left || n == 0)			\
101 				goto __out;			\
102 			offset = 0;				\
103 		}						\
104 	}							\
105 __out:								\
106 	rcu_read_unlock();					\
107 	i->iov_offset += __off;						\
108 	n = __off;						\
109 }
110 
111 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
112 	if (unlikely(i->count < n))				\
113 		n = i->count;					\
114 	if (likely(n)) {					\
115 		if (likely(iter_is_iovec(i))) {			\
116 			const struct iovec *iov = i->iov;	\
117 			void __user *base;			\
118 			size_t len;				\
119 			iterate_iovec(i, n, base, len, off,	\
120 						iov, (I))	\
121 			i->nr_segs -= iov - i->iov;		\
122 			i->iov = iov;				\
123 		} else if (iov_iter_is_bvec(i)) {		\
124 			const struct bio_vec *bvec = i->bvec;	\
125 			void *base;				\
126 			size_t len;				\
127 			iterate_bvec(i, n, base, len, off,	\
128 						bvec, (K))	\
129 			i->nr_segs -= bvec - i->bvec;		\
130 			i->bvec = bvec;				\
131 		} else if (iov_iter_is_kvec(i)) {		\
132 			const struct kvec *kvec = i->kvec;	\
133 			void *base;				\
134 			size_t len;				\
135 			iterate_iovec(i, n, base, len, off,	\
136 						kvec, (K))	\
137 			i->nr_segs -= kvec - i->kvec;		\
138 			i->kvec = kvec;				\
139 		} else if (iov_iter_is_xarray(i)) {		\
140 			void *base;				\
141 			size_t len;				\
142 			iterate_xarray(i, n, base, len, off,	\
143 							(K))	\
144 		}						\
145 		i->count -= n;					\
146 	}							\
147 }
148 #define iterate_and_advance(i, n, base, len, off, I, K) \
149 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
150 
151 static int copyout(void __user *to, const void *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(to, n)) {
156 		instrument_copy_to_user(to, from, n);
157 		n = raw_copy_to_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static int copyin(void *to, const void __user *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(from, n)) {
167 		instrument_copy_from_user(to, from, n);
168 		n = raw_copy_from_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
174 			 struct iov_iter *i)
175 {
176 	size_t skip, copy, left, wanted;
177 	const struct iovec *iov;
178 	char __user *buf;
179 	void *kaddr, *from;
180 
181 	if (unlikely(bytes > i->count))
182 		bytes = i->count;
183 
184 	if (unlikely(!bytes))
185 		return 0;
186 
187 	might_fault();
188 	wanted = bytes;
189 	iov = i->iov;
190 	skip = i->iov_offset;
191 	buf = iov->iov_base + skip;
192 	copy = min(bytes, iov->iov_len - skip);
193 
194 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
195 		kaddr = kmap_atomic(page);
196 		from = kaddr + offset;
197 
198 		/* first chunk, usually the only one */
199 		left = copyout(buf, from, copy);
200 		copy -= left;
201 		skip += copy;
202 		from += copy;
203 		bytes -= copy;
204 
205 		while (unlikely(!left && bytes)) {
206 			iov++;
207 			buf = iov->iov_base;
208 			copy = min(bytes, iov->iov_len);
209 			left = copyout(buf, from, copy);
210 			copy -= left;
211 			skip = copy;
212 			from += copy;
213 			bytes -= copy;
214 		}
215 		if (likely(!bytes)) {
216 			kunmap_atomic(kaddr);
217 			goto done;
218 		}
219 		offset = from - kaddr;
220 		buf += copy;
221 		kunmap_atomic(kaddr);
222 		copy = min(bytes, iov->iov_len - skip);
223 	}
224 	/* Too bad - revert to non-atomic kmap */
225 
226 	kaddr = kmap(page);
227 	from = kaddr + offset;
228 	left = copyout(buf, from, copy);
229 	copy -= left;
230 	skip += copy;
231 	from += copy;
232 	bytes -= copy;
233 	while (unlikely(!left && bytes)) {
234 		iov++;
235 		buf = iov->iov_base;
236 		copy = min(bytes, iov->iov_len);
237 		left = copyout(buf, from, copy);
238 		copy -= left;
239 		skip = copy;
240 		from += copy;
241 		bytes -= copy;
242 	}
243 	kunmap(page);
244 
245 done:
246 	if (skip == iov->iov_len) {
247 		iov++;
248 		skip = 0;
249 	}
250 	i->count -= wanted - bytes;
251 	i->nr_segs -= iov - i->iov;
252 	i->iov = iov;
253 	i->iov_offset = skip;
254 	return wanted - bytes;
255 }
256 
257 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
258 			 struct iov_iter *i)
259 {
260 	size_t skip, copy, left, wanted;
261 	const struct iovec *iov;
262 	char __user *buf;
263 	void *kaddr, *to;
264 
265 	if (unlikely(bytes > i->count))
266 		bytes = i->count;
267 
268 	if (unlikely(!bytes))
269 		return 0;
270 
271 	might_fault();
272 	wanted = bytes;
273 	iov = i->iov;
274 	skip = i->iov_offset;
275 	buf = iov->iov_base + skip;
276 	copy = min(bytes, iov->iov_len - skip);
277 
278 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
279 		kaddr = kmap_atomic(page);
280 		to = kaddr + offset;
281 
282 		/* first chunk, usually the only one */
283 		left = copyin(to, buf, copy);
284 		copy -= left;
285 		skip += copy;
286 		to += copy;
287 		bytes -= copy;
288 
289 		while (unlikely(!left && bytes)) {
290 			iov++;
291 			buf = iov->iov_base;
292 			copy = min(bytes, iov->iov_len);
293 			left = copyin(to, buf, copy);
294 			copy -= left;
295 			skip = copy;
296 			to += copy;
297 			bytes -= copy;
298 		}
299 		if (likely(!bytes)) {
300 			kunmap_atomic(kaddr);
301 			goto done;
302 		}
303 		offset = to - kaddr;
304 		buf += copy;
305 		kunmap_atomic(kaddr);
306 		copy = min(bytes, iov->iov_len - skip);
307 	}
308 	/* Too bad - revert to non-atomic kmap */
309 
310 	kaddr = kmap(page);
311 	to = kaddr + offset;
312 	left = copyin(to, buf, copy);
313 	copy -= left;
314 	skip += copy;
315 	to += copy;
316 	bytes -= copy;
317 	while (unlikely(!left && bytes)) {
318 		iov++;
319 		buf = iov->iov_base;
320 		copy = min(bytes, iov->iov_len);
321 		left = copyin(to, buf, copy);
322 		copy -= left;
323 		skip = copy;
324 		to += copy;
325 		bytes -= copy;
326 	}
327 	kunmap(page);
328 
329 done:
330 	if (skip == iov->iov_len) {
331 		iov++;
332 		skip = 0;
333 	}
334 	i->count -= wanted - bytes;
335 	i->nr_segs -= iov - i->iov;
336 	i->iov = iov;
337 	i->iov_offset = skip;
338 	return wanted - bytes;
339 }
340 
341 #ifdef PIPE_PARANOIA
342 static bool sanity(const struct iov_iter *i)
343 {
344 	struct pipe_inode_info *pipe = i->pipe;
345 	unsigned int p_head = pipe->head;
346 	unsigned int p_tail = pipe->tail;
347 	unsigned int p_mask = pipe->ring_size - 1;
348 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
349 	unsigned int i_head = i->head;
350 	unsigned int idx;
351 
352 	if (i->iov_offset) {
353 		struct pipe_buffer *p;
354 		if (unlikely(p_occupancy == 0))
355 			goto Bad;	// pipe must be non-empty
356 		if (unlikely(i_head != p_head - 1))
357 			goto Bad;	// must be at the last buffer...
358 
359 		p = &pipe->bufs[i_head & p_mask];
360 		if (unlikely(p->offset + p->len != i->iov_offset))
361 			goto Bad;	// ... at the end of segment
362 	} else {
363 		if (i_head != p_head)
364 			goto Bad;	// must be right after the last buffer
365 	}
366 	return true;
367 Bad:
368 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
369 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
370 			p_head, p_tail, pipe->ring_size);
371 	for (idx = 0; idx < pipe->ring_size; idx++)
372 		printk(KERN_ERR "[%p %p %d %d]\n",
373 			pipe->bufs[idx].ops,
374 			pipe->bufs[idx].page,
375 			pipe->bufs[idx].offset,
376 			pipe->bufs[idx].len);
377 	WARN_ON(1);
378 	return false;
379 }
380 #else
381 #define sanity(i) true
382 #endif
383 
384 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
385 			 struct iov_iter *i)
386 {
387 	struct pipe_inode_info *pipe = i->pipe;
388 	struct pipe_buffer *buf;
389 	unsigned int p_tail = pipe->tail;
390 	unsigned int p_mask = pipe->ring_size - 1;
391 	unsigned int i_head = i->head;
392 	size_t off;
393 
394 	if (unlikely(bytes > i->count))
395 		bytes = i->count;
396 
397 	if (unlikely(!bytes))
398 		return 0;
399 
400 	if (!sanity(i))
401 		return 0;
402 
403 	off = i->iov_offset;
404 	buf = &pipe->bufs[i_head & p_mask];
405 	if (off) {
406 		if (offset == off && buf->page == page) {
407 			/* merge with the last one */
408 			buf->len += bytes;
409 			i->iov_offset += bytes;
410 			goto out;
411 		}
412 		i_head++;
413 		buf = &pipe->bufs[i_head & p_mask];
414 	}
415 	if (pipe_full(i_head, p_tail, pipe->max_usage))
416 		return 0;
417 
418 	buf->ops = &page_cache_pipe_buf_ops;
419 	get_page(page);
420 	buf->page = page;
421 	buf->offset = offset;
422 	buf->len = bytes;
423 
424 	pipe->head = i_head + 1;
425 	i->iov_offset = offset + bytes;
426 	i->head = i_head;
427 out:
428 	i->count -= bytes;
429 	return bytes;
430 }
431 
432 /*
433  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
434  * bytes.  For each iovec, fault in each page that constitutes the iovec.
435  *
436  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
437  * because it is an invalid address).
438  */
439 int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
440 {
441 	if (iter_is_iovec(i)) {
442 		const struct iovec *p;
443 		size_t skip;
444 
445 		if (bytes > i->count)
446 			bytes = i->count;
447 		for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
448 			size_t len = min(bytes, p->iov_len - skip);
449 			int err;
450 
451 			if (unlikely(!len))
452 				continue;
453 			err = fault_in_pages_readable(p->iov_base + skip, len);
454 			if (unlikely(err))
455 				return err;
456 			bytes -= len;
457 		}
458 	}
459 	return 0;
460 }
461 EXPORT_SYMBOL(iov_iter_fault_in_readable);
462 
463 void iov_iter_init(struct iov_iter *i, unsigned int direction,
464 			const struct iovec *iov, unsigned long nr_segs,
465 			size_t count)
466 {
467 	WARN_ON(direction & ~(READ | WRITE));
468 	*i = (struct iov_iter) {
469 		.iter_type = ITER_IOVEC,
470 		.data_source = direction,
471 		.iov = iov,
472 		.nr_segs = nr_segs,
473 		.iov_offset = 0,
474 		.count = count
475 	};
476 }
477 EXPORT_SYMBOL(iov_iter_init);
478 
479 static inline bool allocated(struct pipe_buffer *buf)
480 {
481 	return buf->ops == &default_pipe_buf_ops;
482 }
483 
484 static inline void data_start(const struct iov_iter *i,
485 			      unsigned int *iter_headp, size_t *offp)
486 {
487 	unsigned int p_mask = i->pipe->ring_size - 1;
488 	unsigned int iter_head = i->head;
489 	size_t off = i->iov_offset;
490 
491 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
492 		    off == PAGE_SIZE)) {
493 		iter_head++;
494 		off = 0;
495 	}
496 	*iter_headp = iter_head;
497 	*offp = off;
498 }
499 
500 static size_t push_pipe(struct iov_iter *i, size_t size,
501 			int *iter_headp, size_t *offp)
502 {
503 	struct pipe_inode_info *pipe = i->pipe;
504 	unsigned int p_tail = pipe->tail;
505 	unsigned int p_mask = pipe->ring_size - 1;
506 	unsigned int iter_head;
507 	size_t off;
508 	ssize_t left;
509 
510 	if (unlikely(size > i->count))
511 		size = i->count;
512 	if (unlikely(!size))
513 		return 0;
514 
515 	left = size;
516 	data_start(i, &iter_head, &off);
517 	*iter_headp = iter_head;
518 	*offp = off;
519 	if (off) {
520 		left -= PAGE_SIZE - off;
521 		if (left <= 0) {
522 			pipe->bufs[iter_head & p_mask].len += size;
523 			return size;
524 		}
525 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
526 		iter_head++;
527 	}
528 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
529 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
530 		struct page *page = alloc_page(GFP_USER);
531 		if (!page)
532 			break;
533 
534 		buf->ops = &default_pipe_buf_ops;
535 		buf->page = page;
536 		buf->offset = 0;
537 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
538 		left -= buf->len;
539 		iter_head++;
540 		pipe->head = iter_head;
541 
542 		if (left == 0)
543 			return size;
544 	}
545 	return size - left;
546 }
547 
548 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
549 				struct iov_iter *i)
550 {
551 	struct pipe_inode_info *pipe = i->pipe;
552 	unsigned int p_mask = pipe->ring_size - 1;
553 	unsigned int i_head;
554 	size_t n, off;
555 
556 	if (!sanity(i))
557 		return 0;
558 
559 	bytes = n = push_pipe(i, bytes, &i_head, &off);
560 	if (unlikely(!n))
561 		return 0;
562 	do {
563 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
564 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
565 		i->head = i_head;
566 		i->iov_offset = off + chunk;
567 		n -= chunk;
568 		addr += chunk;
569 		off = 0;
570 		i_head++;
571 	} while (n);
572 	i->count -= bytes;
573 	return bytes;
574 }
575 
576 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
577 			      __wsum sum, size_t off)
578 {
579 	__wsum next = csum_partial_copy_nocheck(from, to, len);
580 	return csum_block_add(sum, next, off);
581 }
582 
583 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
584 					 struct iov_iter *i, __wsum *sump)
585 {
586 	struct pipe_inode_info *pipe = i->pipe;
587 	unsigned int p_mask = pipe->ring_size - 1;
588 	__wsum sum = *sump;
589 	size_t off = 0;
590 	unsigned int i_head;
591 	size_t r;
592 
593 	if (!sanity(i))
594 		return 0;
595 
596 	bytes = push_pipe(i, bytes, &i_head, &r);
597 	while (bytes) {
598 		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
599 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
600 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
601 		kunmap_local(p);
602 		i->head = i_head;
603 		i->iov_offset = r + chunk;
604 		bytes -= chunk;
605 		off += chunk;
606 		r = 0;
607 		i_head++;
608 	}
609 	*sump = sum;
610 	i->count -= off;
611 	return off;
612 }
613 
614 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
615 {
616 	if (unlikely(iov_iter_is_pipe(i)))
617 		return copy_pipe_to_iter(addr, bytes, i);
618 	if (iter_is_iovec(i))
619 		might_fault();
620 	iterate_and_advance(i, bytes, base, len, off,
621 		copyout(base, addr + off, len),
622 		memcpy(base, addr + off, len)
623 	)
624 
625 	return bytes;
626 }
627 EXPORT_SYMBOL(_copy_to_iter);
628 
629 #ifdef CONFIG_ARCH_HAS_COPY_MC
630 static int copyout_mc(void __user *to, const void *from, size_t n)
631 {
632 	if (access_ok(to, n)) {
633 		instrument_copy_to_user(to, from, n);
634 		n = copy_mc_to_user((__force void *) to, from, n);
635 	}
636 	return n;
637 }
638 
639 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
640 				struct iov_iter *i)
641 {
642 	struct pipe_inode_info *pipe = i->pipe;
643 	unsigned int p_mask = pipe->ring_size - 1;
644 	unsigned int i_head;
645 	size_t n, off, xfer = 0;
646 
647 	if (!sanity(i))
648 		return 0;
649 
650 	n = push_pipe(i, bytes, &i_head, &off);
651 	while (n) {
652 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
653 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
654 		unsigned long rem;
655 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
656 		chunk -= rem;
657 		kunmap_local(p);
658 		i->head = i_head;
659 		i->iov_offset = off + chunk;
660 		xfer += chunk;
661 		if (rem)
662 			break;
663 		n -= chunk;
664 		off = 0;
665 		i_head++;
666 	}
667 	i->count -= xfer;
668 	return xfer;
669 }
670 
671 /**
672  * _copy_mc_to_iter - copy to iter with source memory error exception handling
673  * @addr: source kernel address
674  * @bytes: total transfer length
675  * @i: destination iterator
676  *
677  * The pmem driver deploys this for the dax operation
678  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
679  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
680  * successfully copied.
681  *
682  * The main differences between this and typical _copy_to_iter().
683  *
684  * * Typical tail/residue handling after a fault retries the copy
685  *   byte-by-byte until the fault happens again. Re-triggering machine
686  *   checks is potentially fatal so the implementation uses source
687  *   alignment and poison alignment assumptions to avoid re-triggering
688  *   hardware exceptions.
689  *
690  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
691  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
692  *   a short copy.
693  *
694  * Return: number of bytes copied (may be %0)
695  */
696 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
697 {
698 	if (unlikely(iov_iter_is_pipe(i)))
699 		return copy_mc_pipe_to_iter(addr, bytes, i);
700 	if (iter_is_iovec(i))
701 		might_fault();
702 	__iterate_and_advance(i, bytes, base, len, off,
703 		copyout_mc(base, addr + off, len),
704 		copy_mc_to_kernel(base, addr + off, len)
705 	)
706 
707 	return bytes;
708 }
709 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
710 #endif /* CONFIG_ARCH_HAS_COPY_MC */
711 
712 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
713 {
714 	if (unlikely(iov_iter_is_pipe(i))) {
715 		WARN_ON(1);
716 		return 0;
717 	}
718 	if (iter_is_iovec(i))
719 		might_fault();
720 	iterate_and_advance(i, bytes, base, len, off,
721 		copyin(addr + off, base, len),
722 		memcpy(addr + off, base, len)
723 	)
724 
725 	return bytes;
726 }
727 EXPORT_SYMBOL(_copy_from_iter);
728 
729 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
730 {
731 	if (unlikely(iov_iter_is_pipe(i))) {
732 		WARN_ON(1);
733 		return 0;
734 	}
735 	iterate_and_advance(i, bytes, base, len, off,
736 		__copy_from_user_inatomic_nocache(addr + off, base, len),
737 		memcpy(addr + off, base, len)
738 	)
739 
740 	return bytes;
741 }
742 EXPORT_SYMBOL(_copy_from_iter_nocache);
743 
744 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
745 /**
746  * _copy_from_iter_flushcache - write destination through cpu cache
747  * @addr: destination kernel address
748  * @bytes: total transfer length
749  * @i: source iterator
750  *
751  * The pmem driver arranges for filesystem-dax to use this facility via
752  * dax_copy_from_iter() for ensuring that writes to persistent memory
753  * are flushed through the CPU cache. It is differentiated from
754  * _copy_from_iter_nocache() in that guarantees all data is flushed for
755  * all iterator types. The _copy_from_iter_nocache() only attempts to
756  * bypass the cache for the ITER_IOVEC case, and on some archs may use
757  * instructions that strand dirty-data in the cache.
758  *
759  * Return: number of bytes copied (may be %0)
760  */
761 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
762 {
763 	if (unlikely(iov_iter_is_pipe(i))) {
764 		WARN_ON(1);
765 		return 0;
766 	}
767 	iterate_and_advance(i, bytes, base, len, off,
768 		__copy_from_user_flushcache(addr + off, base, len),
769 		memcpy_flushcache(addr + off, base, len)
770 	)
771 
772 	return bytes;
773 }
774 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
775 #endif
776 
777 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
778 {
779 	struct page *head;
780 	size_t v = n + offset;
781 
782 	/*
783 	 * The general case needs to access the page order in order
784 	 * to compute the page size.
785 	 * However, we mostly deal with order-0 pages and thus can
786 	 * avoid a possible cache line miss for requests that fit all
787 	 * page orders.
788 	 */
789 	if (n <= v && v <= PAGE_SIZE)
790 		return true;
791 
792 	head = compound_head(page);
793 	v += (page - head) << PAGE_SHIFT;
794 
795 	if (likely(n <= v && v <= (page_size(head))))
796 		return true;
797 	WARN_ON(1);
798 	return false;
799 }
800 
801 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
802 			 struct iov_iter *i)
803 {
804 	if (likely(iter_is_iovec(i)))
805 		return copy_page_to_iter_iovec(page, offset, bytes, i);
806 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
807 		void *kaddr = kmap_local_page(page);
808 		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
809 		kunmap_local(kaddr);
810 		return wanted;
811 	}
812 	if (iov_iter_is_pipe(i))
813 		return copy_page_to_iter_pipe(page, offset, bytes, i);
814 	if (unlikely(iov_iter_is_discard(i))) {
815 		if (unlikely(i->count < bytes))
816 			bytes = i->count;
817 		i->count -= bytes;
818 		return bytes;
819 	}
820 	WARN_ON(1);
821 	return 0;
822 }
823 
824 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
825 			 struct iov_iter *i)
826 {
827 	size_t res = 0;
828 	if (unlikely(!page_copy_sane(page, offset, bytes)))
829 		return 0;
830 	page += offset / PAGE_SIZE; // first subpage
831 	offset %= PAGE_SIZE;
832 	while (1) {
833 		size_t n = __copy_page_to_iter(page, offset,
834 				min(bytes, (size_t)PAGE_SIZE - offset), i);
835 		res += n;
836 		bytes -= n;
837 		if (!bytes || !n)
838 			break;
839 		offset += n;
840 		if (offset == PAGE_SIZE) {
841 			page++;
842 			offset = 0;
843 		}
844 	}
845 	return res;
846 }
847 EXPORT_SYMBOL(copy_page_to_iter);
848 
849 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
850 			 struct iov_iter *i)
851 {
852 	if (unlikely(!page_copy_sane(page, offset, bytes)))
853 		return 0;
854 	if (likely(iter_is_iovec(i)))
855 		return copy_page_from_iter_iovec(page, offset, bytes, i);
856 	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
857 		void *kaddr = kmap_local_page(page);
858 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
859 		kunmap_local(kaddr);
860 		return wanted;
861 	}
862 	WARN_ON(1);
863 	return 0;
864 }
865 EXPORT_SYMBOL(copy_page_from_iter);
866 
867 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
868 {
869 	struct pipe_inode_info *pipe = i->pipe;
870 	unsigned int p_mask = pipe->ring_size - 1;
871 	unsigned int i_head;
872 	size_t n, off;
873 
874 	if (!sanity(i))
875 		return 0;
876 
877 	bytes = n = push_pipe(i, bytes, &i_head, &off);
878 	if (unlikely(!n))
879 		return 0;
880 
881 	do {
882 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
883 		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
884 		memset(p + off, 0, chunk);
885 		kunmap_local(p);
886 		i->head = i_head;
887 		i->iov_offset = off + chunk;
888 		n -= chunk;
889 		off = 0;
890 		i_head++;
891 	} while (n);
892 	i->count -= bytes;
893 	return bytes;
894 }
895 
896 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
897 {
898 	if (unlikely(iov_iter_is_pipe(i)))
899 		return pipe_zero(bytes, i);
900 	iterate_and_advance(i, bytes, base, len, count,
901 		clear_user(base, len),
902 		memset(base, 0, len)
903 	)
904 
905 	return bytes;
906 }
907 EXPORT_SYMBOL(iov_iter_zero);
908 
909 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
910 				  struct iov_iter *i)
911 {
912 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
913 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
914 		kunmap_atomic(kaddr);
915 		return 0;
916 	}
917 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
918 		kunmap_atomic(kaddr);
919 		WARN_ON(1);
920 		return 0;
921 	}
922 	iterate_and_advance(i, bytes, base, len, off,
923 		copyin(p + off, base, len),
924 		memcpy(p + off, base, len)
925 	)
926 	kunmap_atomic(kaddr);
927 	return bytes;
928 }
929 EXPORT_SYMBOL(copy_page_from_iter_atomic);
930 
931 static inline void pipe_truncate(struct iov_iter *i)
932 {
933 	struct pipe_inode_info *pipe = i->pipe;
934 	unsigned int p_tail = pipe->tail;
935 	unsigned int p_head = pipe->head;
936 	unsigned int p_mask = pipe->ring_size - 1;
937 
938 	if (!pipe_empty(p_head, p_tail)) {
939 		struct pipe_buffer *buf;
940 		unsigned int i_head = i->head;
941 		size_t off = i->iov_offset;
942 
943 		if (off) {
944 			buf = &pipe->bufs[i_head & p_mask];
945 			buf->len = off - buf->offset;
946 			i_head++;
947 		}
948 		while (p_head != i_head) {
949 			p_head--;
950 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
951 		}
952 
953 		pipe->head = p_head;
954 	}
955 }
956 
957 static void pipe_advance(struct iov_iter *i, size_t size)
958 {
959 	struct pipe_inode_info *pipe = i->pipe;
960 	if (size) {
961 		struct pipe_buffer *buf;
962 		unsigned int p_mask = pipe->ring_size - 1;
963 		unsigned int i_head = i->head;
964 		size_t off = i->iov_offset, left = size;
965 
966 		if (off) /* make it relative to the beginning of buffer */
967 			left += off - pipe->bufs[i_head & p_mask].offset;
968 		while (1) {
969 			buf = &pipe->bufs[i_head & p_mask];
970 			if (left <= buf->len)
971 				break;
972 			left -= buf->len;
973 			i_head++;
974 		}
975 		i->head = i_head;
976 		i->iov_offset = buf->offset + left;
977 	}
978 	i->count -= size;
979 	/* ... and discard everything past that point */
980 	pipe_truncate(i);
981 }
982 
983 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
984 {
985 	struct bvec_iter bi;
986 
987 	bi.bi_size = i->count;
988 	bi.bi_bvec_done = i->iov_offset;
989 	bi.bi_idx = 0;
990 	bvec_iter_advance(i->bvec, &bi, size);
991 
992 	i->bvec += bi.bi_idx;
993 	i->nr_segs -= bi.bi_idx;
994 	i->count = bi.bi_size;
995 	i->iov_offset = bi.bi_bvec_done;
996 }
997 
998 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
999 {
1000 	const struct iovec *iov, *end;
1001 
1002 	if (!i->count)
1003 		return;
1004 	i->count -= size;
1005 
1006 	size += i->iov_offset; // from beginning of current segment
1007 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
1008 		if (likely(size < iov->iov_len))
1009 			break;
1010 		size -= iov->iov_len;
1011 	}
1012 	i->iov_offset = size;
1013 	i->nr_segs -= iov - i->iov;
1014 	i->iov = iov;
1015 }
1016 
1017 void iov_iter_advance(struct iov_iter *i, size_t size)
1018 {
1019 	if (unlikely(i->count < size))
1020 		size = i->count;
1021 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
1022 		/* iovec and kvec have identical layouts */
1023 		iov_iter_iovec_advance(i, size);
1024 	} else if (iov_iter_is_bvec(i)) {
1025 		iov_iter_bvec_advance(i, size);
1026 	} else if (iov_iter_is_pipe(i)) {
1027 		pipe_advance(i, size);
1028 	} else if (unlikely(iov_iter_is_xarray(i))) {
1029 		i->iov_offset += size;
1030 		i->count -= size;
1031 	} else if (iov_iter_is_discard(i)) {
1032 		i->count -= size;
1033 	}
1034 }
1035 EXPORT_SYMBOL(iov_iter_advance);
1036 
1037 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1038 {
1039 	if (!unroll)
1040 		return;
1041 	if (WARN_ON(unroll > MAX_RW_COUNT))
1042 		return;
1043 	i->count += unroll;
1044 	if (unlikely(iov_iter_is_pipe(i))) {
1045 		struct pipe_inode_info *pipe = i->pipe;
1046 		unsigned int p_mask = pipe->ring_size - 1;
1047 		unsigned int i_head = i->head;
1048 		size_t off = i->iov_offset;
1049 		while (1) {
1050 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1051 			size_t n = off - b->offset;
1052 			if (unroll < n) {
1053 				off -= unroll;
1054 				break;
1055 			}
1056 			unroll -= n;
1057 			if (!unroll && i_head == i->start_head) {
1058 				off = 0;
1059 				break;
1060 			}
1061 			i_head--;
1062 			b = &pipe->bufs[i_head & p_mask];
1063 			off = b->offset + b->len;
1064 		}
1065 		i->iov_offset = off;
1066 		i->head = i_head;
1067 		pipe_truncate(i);
1068 		return;
1069 	}
1070 	if (unlikely(iov_iter_is_discard(i)))
1071 		return;
1072 	if (unroll <= i->iov_offset) {
1073 		i->iov_offset -= unroll;
1074 		return;
1075 	}
1076 	unroll -= i->iov_offset;
1077 	if (iov_iter_is_xarray(i)) {
1078 		BUG(); /* We should never go beyond the start of the specified
1079 			* range since we might then be straying into pages that
1080 			* aren't pinned.
1081 			*/
1082 	} else if (iov_iter_is_bvec(i)) {
1083 		const struct bio_vec *bvec = i->bvec;
1084 		while (1) {
1085 			size_t n = (--bvec)->bv_len;
1086 			i->nr_segs++;
1087 			if (unroll <= n) {
1088 				i->bvec = bvec;
1089 				i->iov_offset = n - unroll;
1090 				return;
1091 			}
1092 			unroll -= n;
1093 		}
1094 	} else { /* same logics for iovec and kvec */
1095 		const struct iovec *iov = i->iov;
1096 		while (1) {
1097 			size_t n = (--iov)->iov_len;
1098 			i->nr_segs++;
1099 			if (unroll <= n) {
1100 				i->iov = iov;
1101 				i->iov_offset = n - unroll;
1102 				return;
1103 			}
1104 			unroll -= n;
1105 		}
1106 	}
1107 }
1108 EXPORT_SYMBOL(iov_iter_revert);
1109 
1110 /*
1111  * Return the count of just the current iov_iter segment.
1112  */
1113 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1114 {
1115 	if (i->nr_segs > 1) {
1116 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1117 			return min(i->count, i->iov->iov_len - i->iov_offset);
1118 		if (iov_iter_is_bvec(i))
1119 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1120 	}
1121 	return i->count;
1122 }
1123 EXPORT_SYMBOL(iov_iter_single_seg_count);
1124 
1125 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1126 			const struct kvec *kvec, unsigned long nr_segs,
1127 			size_t count)
1128 {
1129 	WARN_ON(direction & ~(READ | WRITE));
1130 	*i = (struct iov_iter){
1131 		.iter_type = ITER_KVEC,
1132 		.data_source = direction,
1133 		.kvec = kvec,
1134 		.nr_segs = nr_segs,
1135 		.iov_offset = 0,
1136 		.count = count
1137 	};
1138 }
1139 EXPORT_SYMBOL(iov_iter_kvec);
1140 
1141 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1142 			const struct bio_vec *bvec, unsigned long nr_segs,
1143 			size_t count)
1144 {
1145 	WARN_ON(direction & ~(READ | WRITE));
1146 	*i = (struct iov_iter){
1147 		.iter_type = ITER_BVEC,
1148 		.data_source = direction,
1149 		.bvec = bvec,
1150 		.nr_segs = nr_segs,
1151 		.iov_offset = 0,
1152 		.count = count
1153 	};
1154 }
1155 EXPORT_SYMBOL(iov_iter_bvec);
1156 
1157 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1158 			struct pipe_inode_info *pipe,
1159 			size_t count)
1160 {
1161 	BUG_ON(direction != READ);
1162 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1163 	*i = (struct iov_iter){
1164 		.iter_type = ITER_PIPE,
1165 		.data_source = false,
1166 		.pipe = pipe,
1167 		.head = pipe->head,
1168 		.start_head = pipe->head,
1169 		.iov_offset = 0,
1170 		.count = count
1171 	};
1172 }
1173 EXPORT_SYMBOL(iov_iter_pipe);
1174 
1175 /**
1176  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1177  * @i: The iterator to initialise.
1178  * @direction: The direction of the transfer.
1179  * @xarray: The xarray to access.
1180  * @start: The start file position.
1181  * @count: The size of the I/O buffer in bytes.
1182  *
1183  * Set up an I/O iterator to either draw data out of the pages attached to an
1184  * inode or to inject data into those pages.  The pages *must* be prevented
1185  * from evaporation, either by taking a ref on them or locking them by the
1186  * caller.
1187  */
1188 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1189 		     struct xarray *xarray, loff_t start, size_t count)
1190 {
1191 	BUG_ON(direction & ~1);
1192 	*i = (struct iov_iter) {
1193 		.iter_type = ITER_XARRAY,
1194 		.data_source = direction,
1195 		.xarray = xarray,
1196 		.xarray_start = start,
1197 		.count = count,
1198 		.iov_offset = 0
1199 	};
1200 }
1201 EXPORT_SYMBOL(iov_iter_xarray);
1202 
1203 /**
1204  * iov_iter_discard - Initialise an I/O iterator that discards data
1205  * @i: The iterator to initialise.
1206  * @direction: The direction of the transfer.
1207  * @count: The size of the I/O buffer in bytes.
1208  *
1209  * Set up an I/O iterator that just discards everything that's written to it.
1210  * It's only available as a READ iterator.
1211  */
1212 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1213 {
1214 	BUG_ON(direction != READ);
1215 	*i = (struct iov_iter){
1216 		.iter_type = ITER_DISCARD,
1217 		.data_source = false,
1218 		.count = count,
1219 		.iov_offset = 0
1220 	};
1221 }
1222 EXPORT_SYMBOL(iov_iter_discard);
1223 
1224 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1225 {
1226 	unsigned long res = 0;
1227 	size_t size = i->count;
1228 	size_t skip = i->iov_offset;
1229 	unsigned k;
1230 
1231 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1232 		size_t len = i->iov[k].iov_len - skip;
1233 		if (len) {
1234 			res |= (unsigned long)i->iov[k].iov_base + skip;
1235 			if (len > size)
1236 				len = size;
1237 			res |= len;
1238 			size -= len;
1239 			if (!size)
1240 				break;
1241 		}
1242 	}
1243 	return res;
1244 }
1245 
1246 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1247 {
1248 	unsigned res = 0;
1249 	size_t size = i->count;
1250 	unsigned skip = i->iov_offset;
1251 	unsigned k;
1252 
1253 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1254 		size_t len = i->bvec[k].bv_len - skip;
1255 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1256 		if (len > size)
1257 			len = size;
1258 		res |= len;
1259 		size -= len;
1260 		if (!size)
1261 			break;
1262 	}
1263 	return res;
1264 }
1265 
1266 unsigned long iov_iter_alignment(const struct iov_iter *i)
1267 {
1268 	/* iovec and kvec have identical layouts */
1269 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1270 		return iov_iter_alignment_iovec(i);
1271 
1272 	if (iov_iter_is_bvec(i))
1273 		return iov_iter_alignment_bvec(i);
1274 
1275 	if (iov_iter_is_pipe(i)) {
1276 		unsigned int p_mask = i->pipe->ring_size - 1;
1277 		size_t size = i->count;
1278 
1279 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1280 			return size | i->iov_offset;
1281 		return size;
1282 	}
1283 
1284 	if (iov_iter_is_xarray(i))
1285 		return (i->xarray_start + i->iov_offset) | i->count;
1286 
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL(iov_iter_alignment);
1290 
1291 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1292 {
1293 	unsigned long res = 0;
1294 	unsigned long v = 0;
1295 	size_t size = i->count;
1296 	unsigned k;
1297 
1298 	if (WARN_ON(!iter_is_iovec(i)))
1299 		return ~0U;
1300 
1301 	for (k = 0; k < i->nr_segs; k++) {
1302 		if (i->iov[k].iov_len) {
1303 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1304 			if (v) // if not the first one
1305 				res |= base | v; // this start | previous end
1306 			v = base + i->iov[k].iov_len;
1307 			if (size <= i->iov[k].iov_len)
1308 				break;
1309 			size -= i->iov[k].iov_len;
1310 		}
1311 	}
1312 	return res;
1313 }
1314 EXPORT_SYMBOL(iov_iter_gap_alignment);
1315 
1316 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1317 				size_t maxsize,
1318 				struct page **pages,
1319 				int iter_head,
1320 				size_t *start)
1321 {
1322 	struct pipe_inode_info *pipe = i->pipe;
1323 	unsigned int p_mask = pipe->ring_size - 1;
1324 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1325 	if (!n)
1326 		return -EFAULT;
1327 
1328 	maxsize = n;
1329 	n += *start;
1330 	while (n > 0) {
1331 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1332 		iter_head++;
1333 		n -= PAGE_SIZE;
1334 	}
1335 
1336 	return maxsize;
1337 }
1338 
1339 static ssize_t pipe_get_pages(struct iov_iter *i,
1340 		   struct page **pages, size_t maxsize, unsigned maxpages,
1341 		   size_t *start)
1342 {
1343 	unsigned int iter_head, npages;
1344 	size_t capacity;
1345 
1346 	if (!sanity(i))
1347 		return -EFAULT;
1348 
1349 	data_start(i, &iter_head, start);
1350 	/* Amount of free space: some of this one + all after this one */
1351 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1352 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1353 
1354 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1355 }
1356 
1357 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1358 					  pgoff_t index, unsigned int nr_pages)
1359 {
1360 	XA_STATE(xas, xa, index);
1361 	struct page *page;
1362 	unsigned int ret = 0;
1363 
1364 	rcu_read_lock();
1365 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1366 		if (xas_retry(&xas, page))
1367 			continue;
1368 
1369 		/* Has the page moved or been split? */
1370 		if (unlikely(page != xas_reload(&xas))) {
1371 			xas_reset(&xas);
1372 			continue;
1373 		}
1374 
1375 		pages[ret] = find_subpage(page, xas.xa_index);
1376 		get_page(pages[ret]);
1377 		if (++ret == nr_pages)
1378 			break;
1379 	}
1380 	rcu_read_unlock();
1381 	return ret;
1382 }
1383 
1384 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1385 				     struct page **pages, size_t maxsize,
1386 				     unsigned maxpages, size_t *_start_offset)
1387 {
1388 	unsigned nr, offset;
1389 	pgoff_t index, count;
1390 	size_t size = maxsize, actual;
1391 	loff_t pos;
1392 
1393 	if (!size || !maxpages)
1394 		return 0;
1395 
1396 	pos = i->xarray_start + i->iov_offset;
1397 	index = pos >> PAGE_SHIFT;
1398 	offset = pos & ~PAGE_MASK;
1399 	*_start_offset = offset;
1400 
1401 	count = 1;
1402 	if (size > PAGE_SIZE - offset) {
1403 		size -= PAGE_SIZE - offset;
1404 		count += size >> PAGE_SHIFT;
1405 		size &= ~PAGE_MASK;
1406 		if (size)
1407 			count++;
1408 	}
1409 
1410 	if (count > maxpages)
1411 		count = maxpages;
1412 
1413 	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1414 	if (nr == 0)
1415 		return 0;
1416 
1417 	actual = PAGE_SIZE * nr;
1418 	actual -= offset;
1419 	if (nr == count && size > 0) {
1420 		unsigned last_offset = (nr > 1) ? 0 : offset;
1421 		actual -= PAGE_SIZE - (last_offset + size);
1422 	}
1423 	return actual;
1424 }
1425 
1426 /* must be done on non-empty ITER_IOVEC one */
1427 static unsigned long first_iovec_segment(const struct iov_iter *i,
1428 					 size_t *size, size_t *start,
1429 					 size_t maxsize, unsigned maxpages)
1430 {
1431 	size_t skip;
1432 	long k;
1433 
1434 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1435 		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
1436 		size_t len = i->iov[k].iov_len - skip;
1437 
1438 		if (unlikely(!len))
1439 			continue;
1440 		if (len > maxsize)
1441 			len = maxsize;
1442 		len += (*start = addr % PAGE_SIZE);
1443 		if (len > maxpages * PAGE_SIZE)
1444 			len = maxpages * PAGE_SIZE;
1445 		*size = len;
1446 		return addr & PAGE_MASK;
1447 	}
1448 	BUG(); // if it had been empty, we wouldn't get called
1449 }
1450 
1451 /* must be done on non-empty ITER_BVEC one */
1452 static struct page *first_bvec_segment(const struct iov_iter *i,
1453 				       size_t *size, size_t *start,
1454 				       size_t maxsize, unsigned maxpages)
1455 {
1456 	struct page *page;
1457 	size_t skip = i->iov_offset, len;
1458 
1459 	len = i->bvec->bv_len - skip;
1460 	if (len > maxsize)
1461 		len = maxsize;
1462 	skip += i->bvec->bv_offset;
1463 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1464 	len += (*start = skip % PAGE_SIZE);
1465 	if (len > maxpages * PAGE_SIZE)
1466 		len = maxpages * PAGE_SIZE;
1467 	*size = len;
1468 	return page;
1469 }
1470 
1471 ssize_t iov_iter_get_pages(struct iov_iter *i,
1472 		   struct page **pages, size_t maxsize, unsigned maxpages,
1473 		   size_t *start)
1474 {
1475 	size_t len;
1476 	int n, res;
1477 
1478 	if (maxsize > i->count)
1479 		maxsize = i->count;
1480 	if (!maxsize)
1481 		return 0;
1482 
1483 	if (likely(iter_is_iovec(i))) {
1484 		unsigned long addr;
1485 
1486 		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
1487 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1488 		res = get_user_pages_fast(addr, n,
1489 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1490 				pages);
1491 		if (unlikely(res < 0))
1492 			return res;
1493 		return (res == n ? len : res * PAGE_SIZE) - *start;
1494 	}
1495 	if (iov_iter_is_bvec(i)) {
1496 		struct page *page;
1497 
1498 		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
1499 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1500 		while (n--)
1501 			get_page(*pages++ = page++);
1502 		return len - *start;
1503 	}
1504 	if (iov_iter_is_pipe(i))
1505 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1506 	if (iov_iter_is_xarray(i))
1507 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1508 	return -EFAULT;
1509 }
1510 EXPORT_SYMBOL(iov_iter_get_pages);
1511 
1512 static struct page **get_pages_array(size_t n)
1513 {
1514 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1515 }
1516 
1517 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1518 		   struct page ***pages, size_t maxsize,
1519 		   size_t *start)
1520 {
1521 	struct page **p;
1522 	unsigned int iter_head, npages;
1523 	ssize_t n;
1524 
1525 	if (!sanity(i))
1526 		return -EFAULT;
1527 
1528 	data_start(i, &iter_head, start);
1529 	/* Amount of free space: some of this one + all after this one */
1530 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1531 	n = npages * PAGE_SIZE - *start;
1532 	if (maxsize > n)
1533 		maxsize = n;
1534 	else
1535 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1536 	p = get_pages_array(npages);
1537 	if (!p)
1538 		return -ENOMEM;
1539 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1540 	if (n > 0)
1541 		*pages = p;
1542 	else
1543 		kvfree(p);
1544 	return n;
1545 }
1546 
1547 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1548 					   struct page ***pages, size_t maxsize,
1549 					   size_t *_start_offset)
1550 {
1551 	struct page **p;
1552 	unsigned nr, offset;
1553 	pgoff_t index, count;
1554 	size_t size = maxsize, actual;
1555 	loff_t pos;
1556 
1557 	if (!size)
1558 		return 0;
1559 
1560 	pos = i->xarray_start + i->iov_offset;
1561 	index = pos >> PAGE_SHIFT;
1562 	offset = pos & ~PAGE_MASK;
1563 	*_start_offset = offset;
1564 
1565 	count = 1;
1566 	if (size > PAGE_SIZE - offset) {
1567 		size -= PAGE_SIZE - offset;
1568 		count += size >> PAGE_SHIFT;
1569 		size &= ~PAGE_MASK;
1570 		if (size)
1571 			count++;
1572 	}
1573 
1574 	p = get_pages_array(count);
1575 	if (!p)
1576 		return -ENOMEM;
1577 	*pages = p;
1578 
1579 	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1580 	if (nr == 0)
1581 		return 0;
1582 
1583 	actual = PAGE_SIZE * nr;
1584 	actual -= offset;
1585 	if (nr == count && size > 0) {
1586 		unsigned last_offset = (nr > 1) ? 0 : offset;
1587 		actual -= PAGE_SIZE - (last_offset + size);
1588 	}
1589 	return actual;
1590 }
1591 
1592 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1593 		   struct page ***pages, size_t maxsize,
1594 		   size_t *start)
1595 {
1596 	struct page **p;
1597 	size_t len;
1598 	int n, res;
1599 
1600 	if (maxsize > i->count)
1601 		maxsize = i->count;
1602 	if (!maxsize)
1603 		return 0;
1604 
1605 	if (likely(iter_is_iovec(i))) {
1606 		unsigned long addr;
1607 
1608 		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
1609 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1610 		p = get_pages_array(n);
1611 		if (!p)
1612 			return -ENOMEM;
1613 		res = get_user_pages_fast(addr, n,
1614 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1615 		if (unlikely(res < 0)) {
1616 			kvfree(p);
1617 			return res;
1618 		}
1619 		*pages = p;
1620 		return (res == n ? len : res * PAGE_SIZE) - *start;
1621 	}
1622 	if (iov_iter_is_bvec(i)) {
1623 		struct page *page;
1624 
1625 		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
1626 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1627 		*pages = p = get_pages_array(n);
1628 		if (!p)
1629 			return -ENOMEM;
1630 		while (n--)
1631 			get_page(*p++ = page++);
1632 		return len - *start;
1633 	}
1634 	if (iov_iter_is_pipe(i))
1635 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1636 	if (iov_iter_is_xarray(i))
1637 		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1638 	return -EFAULT;
1639 }
1640 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1641 
1642 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1643 			       struct iov_iter *i)
1644 {
1645 	__wsum sum, next;
1646 	sum = *csum;
1647 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1648 		WARN_ON(1);
1649 		return 0;
1650 	}
1651 	iterate_and_advance(i, bytes, base, len, off, ({
1652 		next = csum_and_copy_from_user(base, addr + off, len);
1653 		sum = csum_block_add(sum, next, off);
1654 		next ? 0 : len;
1655 	}), ({
1656 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1657 	})
1658 	)
1659 	*csum = sum;
1660 	return bytes;
1661 }
1662 EXPORT_SYMBOL(csum_and_copy_from_iter);
1663 
1664 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1665 			     struct iov_iter *i)
1666 {
1667 	struct csum_state *csstate = _csstate;
1668 	__wsum sum, next;
1669 
1670 	if (unlikely(iov_iter_is_discard(i))) {
1671 		WARN_ON(1);	/* for now */
1672 		return 0;
1673 	}
1674 
1675 	sum = csum_shift(csstate->csum, csstate->off);
1676 	if (unlikely(iov_iter_is_pipe(i)))
1677 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1678 	else iterate_and_advance(i, bytes, base, len, off, ({
1679 		next = csum_and_copy_to_user(addr + off, base, len);
1680 		sum = csum_block_add(sum, next, off);
1681 		next ? 0 : len;
1682 	}), ({
1683 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1684 	})
1685 	)
1686 	csstate->csum = csum_shift(sum, csstate->off);
1687 	csstate->off += bytes;
1688 	return bytes;
1689 }
1690 EXPORT_SYMBOL(csum_and_copy_to_iter);
1691 
1692 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1693 		struct iov_iter *i)
1694 {
1695 #ifdef CONFIG_CRYPTO_HASH
1696 	struct ahash_request *hash = hashp;
1697 	struct scatterlist sg;
1698 	size_t copied;
1699 
1700 	copied = copy_to_iter(addr, bytes, i);
1701 	sg_init_one(&sg, addr, copied);
1702 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1703 	crypto_ahash_update(hash);
1704 	return copied;
1705 #else
1706 	return 0;
1707 #endif
1708 }
1709 EXPORT_SYMBOL(hash_and_copy_to_iter);
1710 
1711 static int iov_npages(const struct iov_iter *i, int maxpages)
1712 {
1713 	size_t skip = i->iov_offset, size = i->count;
1714 	const struct iovec *p;
1715 	int npages = 0;
1716 
1717 	for (p = i->iov; size; skip = 0, p++) {
1718 		unsigned offs = offset_in_page(p->iov_base + skip);
1719 		size_t len = min(p->iov_len - skip, size);
1720 
1721 		if (len) {
1722 			size -= len;
1723 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1724 			if (unlikely(npages > maxpages))
1725 				return maxpages;
1726 		}
1727 	}
1728 	return npages;
1729 }
1730 
1731 static int bvec_npages(const struct iov_iter *i, int maxpages)
1732 {
1733 	size_t skip = i->iov_offset, size = i->count;
1734 	const struct bio_vec *p;
1735 	int npages = 0;
1736 
1737 	for (p = i->bvec; size; skip = 0, p++) {
1738 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1739 		size_t len = min(p->bv_len - skip, size);
1740 
1741 		size -= len;
1742 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1743 		if (unlikely(npages > maxpages))
1744 			return maxpages;
1745 	}
1746 	return npages;
1747 }
1748 
1749 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1750 {
1751 	if (unlikely(!i->count))
1752 		return 0;
1753 	/* iovec and kvec have identical layouts */
1754 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1755 		return iov_npages(i, maxpages);
1756 	if (iov_iter_is_bvec(i))
1757 		return bvec_npages(i, maxpages);
1758 	if (iov_iter_is_pipe(i)) {
1759 		unsigned int iter_head;
1760 		int npages;
1761 		size_t off;
1762 
1763 		if (!sanity(i))
1764 			return 0;
1765 
1766 		data_start(i, &iter_head, &off);
1767 		/* some of this one + all after this one */
1768 		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1769 		return min(npages, maxpages);
1770 	}
1771 	if (iov_iter_is_xarray(i)) {
1772 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1773 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1774 		return min(npages, maxpages);
1775 	}
1776 	return 0;
1777 }
1778 EXPORT_SYMBOL(iov_iter_npages);
1779 
1780 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1781 {
1782 	*new = *old;
1783 	if (unlikely(iov_iter_is_pipe(new))) {
1784 		WARN_ON(1);
1785 		return NULL;
1786 	}
1787 	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1788 		return NULL;
1789 	if (iov_iter_is_bvec(new))
1790 		return new->bvec = kmemdup(new->bvec,
1791 				    new->nr_segs * sizeof(struct bio_vec),
1792 				    flags);
1793 	else
1794 		/* iovec and kvec have identical layout */
1795 		return new->iov = kmemdup(new->iov,
1796 				   new->nr_segs * sizeof(struct iovec),
1797 				   flags);
1798 }
1799 EXPORT_SYMBOL(dup_iter);
1800 
1801 static int copy_compat_iovec_from_user(struct iovec *iov,
1802 		const struct iovec __user *uvec, unsigned long nr_segs)
1803 {
1804 	const struct compat_iovec __user *uiov =
1805 		(const struct compat_iovec __user *)uvec;
1806 	int ret = -EFAULT, i;
1807 
1808 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1809 		return -EFAULT;
1810 
1811 	for (i = 0; i < nr_segs; i++) {
1812 		compat_uptr_t buf;
1813 		compat_ssize_t len;
1814 
1815 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1816 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1817 
1818 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1819 		if (len < 0) {
1820 			ret = -EINVAL;
1821 			goto uaccess_end;
1822 		}
1823 		iov[i].iov_base = compat_ptr(buf);
1824 		iov[i].iov_len = len;
1825 	}
1826 
1827 	ret = 0;
1828 uaccess_end:
1829 	user_access_end();
1830 	return ret;
1831 }
1832 
1833 static int copy_iovec_from_user(struct iovec *iov,
1834 		const struct iovec __user *uvec, unsigned long nr_segs)
1835 {
1836 	unsigned long seg;
1837 
1838 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1839 		return -EFAULT;
1840 	for (seg = 0; seg < nr_segs; seg++) {
1841 		if ((ssize_t)iov[seg].iov_len < 0)
1842 			return -EINVAL;
1843 	}
1844 
1845 	return 0;
1846 }
1847 
1848 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1849 		unsigned long nr_segs, unsigned long fast_segs,
1850 		struct iovec *fast_iov, bool compat)
1851 {
1852 	struct iovec *iov = fast_iov;
1853 	int ret;
1854 
1855 	/*
1856 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1857 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1858 	 * traditionally returned zero for zero segments, so...
1859 	 */
1860 	if (nr_segs == 0)
1861 		return iov;
1862 	if (nr_segs > UIO_MAXIOV)
1863 		return ERR_PTR(-EINVAL);
1864 	if (nr_segs > fast_segs) {
1865 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1866 		if (!iov)
1867 			return ERR_PTR(-ENOMEM);
1868 	}
1869 
1870 	if (compat)
1871 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1872 	else
1873 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1874 	if (ret) {
1875 		if (iov != fast_iov)
1876 			kfree(iov);
1877 		return ERR_PTR(ret);
1878 	}
1879 
1880 	return iov;
1881 }
1882 
1883 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1884 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1885 		 struct iov_iter *i, bool compat)
1886 {
1887 	ssize_t total_len = 0;
1888 	unsigned long seg;
1889 	struct iovec *iov;
1890 
1891 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1892 	if (IS_ERR(iov)) {
1893 		*iovp = NULL;
1894 		return PTR_ERR(iov);
1895 	}
1896 
1897 	/*
1898 	 * According to the Single Unix Specification we should return EINVAL if
1899 	 * an element length is < 0 when cast to ssize_t or if the total length
1900 	 * would overflow the ssize_t return value of the system call.
1901 	 *
1902 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1903 	 * overflow case.
1904 	 */
1905 	for (seg = 0; seg < nr_segs; seg++) {
1906 		ssize_t len = (ssize_t)iov[seg].iov_len;
1907 
1908 		if (!access_ok(iov[seg].iov_base, len)) {
1909 			if (iov != *iovp)
1910 				kfree(iov);
1911 			*iovp = NULL;
1912 			return -EFAULT;
1913 		}
1914 
1915 		if (len > MAX_RW_COUNT - total_len) {
1916 			len = MAX_RW_COUNT - total_len;
1917 			iov[seg].iov_len = len;
1918 		}
1919 		total_len += len;
1920 	}
1921 
1922 	iov_iter_init(i, type, iov, nr_segs, total_len);
1923 	if (iov == *iovp)
1924 		*iovp = NULL;
1925 	else
1926 		*iovp = iov;
1927 	return total_len;
1928 }
1929 
1930 /**
1931  * import_iovec() - Copy an array of &struct iovec from userspace
1932  *     into the kernel, check that it is valid, and initialize a new
1933  *     &struct iov_iter iterator to access it.
1934  *
1935  * @type: One of %READ or %WRITE.
1936  * @uvec: Pointer to the userspace array.
1937  * @nr_segs: Number of elements in userspace array.
1938  * @fast_segs: Number of elements in @iov.
1939  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1940  *     on-stack) kernel array.
1941  * @i: Pointer to iterator that will be initialized on success.
1942  *
1943  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1944  * then this function places %NULL in *@iov on return. Otherwise, a new
1945  * array will be allocated and the result placed in *@iov. This means that
1946  * the caller may call kfree() on *@iov regardless of whether the small
1947  * on-stack array was used or not (and regardless of whether this function
1948  * returns an error or not).
1949  *
1950  * Return: Negative error code on error, bytes imported on success
1951  */
1952 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1953 		 unsigned nr_segs, unsigned fast_segs,
1954 		 struct iovec **iovp, struct iov_iter *i)
1955 {
1956 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1957 			      in_compat_syscall());
1958 }
1959 EXPORT_SYMBOL(import_iovec);
1960 
1961 int import_single_range(int rw, void __user *buf, size_t len,
1962 		 struct iovec *iov, struct iov_iter *i)
1963 {
1964 	if (len > MAX_RW_COUNT)
1965 		len = MAX_RW_COUNT;
1966 	if (unlikely(!access_ok(buf, len)))
1967 		return -EFAULT;
1968 
1969 	iov->iov_base = buf;
1970 	iov->iov_len = len;
1971 	iov_iter_init(i, rw, iov, 1, len);
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL(import_single_range);
1975