1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <crypto/hash.h> 3 #include <linux/export.h> 4 #include <linux/bvec.h> 5 #include <linux/fault-inject-usercopy.h> 6 #include <linux/uio.h> 7 #include <linux/pagemap.h> 8 #include <linux/highmem.h> 9 #include <linux/slab.h> 10 #include <linux/vmalloc.h> 11 #include <linux/splice.h> 12 #include <linux/compat.h> 13 #include <net/checksum.h> 14 #include <linux/scatterlist.h> 15 #include <linux/instrumented.h> 16 17 /* covers ubuf and kbuf alike */ 18 #define iterate_buf(i, n, base, len, off, __p, STEP) { \ 19 size_t __maybe_unused off = 0; \ 20 len = n; \ 21 base = __p + i->iov_offset; \ 22 len -= (STEP); \ 23 i->iov_offset += len; \ 24 n = len; \ 25 } 26 27 /* covers iovec and kvec alike */ 28 #define iterate_iovec(i, n, base, len, off, __p, STEP) { \ 29 size_t off = 0; \ 30 size_t skip = i->iov_offset; \ 31 do { \ 32 len = min(n, __p->iov_len - skip); \ 33 if (likely(len)) { \ 34 base = __p->iov_base + skip; \ 35 len -= (STEP); \ 36 off += len; \ 37 skip += len; \ 38 n -= len; \ 39 if (skip < __p->iov_len) \ 40 break; \ 41 } \ 42 __p++; \ 43 skip = 0; \ 44 } while (n); \ 45 i->iov_offset = skip; \ 46 n = off; \ 47 } 48 49 #define iterate_bvec(i, n, base, len, off, p, STEP) { \ 50 size_t off = 0; \ 51 unsigned skip = i->iov_offset; \ 52 while (n) { \ 53 unsigned offset = p->bv_offset + skip; \ 54 unsigned left; \ 55 void *kaddr = kmap_local_page(p->bv_page + \ 56 offset / PAGE_SIZE); \ 57 base = kaddr + offset % PAGE_SIZE; \ 58 len = min(min(n, (size_t)(p->bv_len - skip)), \ 59 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \ 60 left = (STEP); \ 61 kunmap_local(kaddr); \ 62 len -= left; \ 63 off += len; \ 64 skip += len; \ 65 if (skip == p->bv_len) { \ 66 skip = 0; \ 67 p++; \ 68 } \ 69 n -= len; \ 70 if (left) \ 71 break; \ 72 } \ 73 i->iov_offset = skip; \ 74 n = off; \ 75 } 76 77 #define iterate_xarray(i, n, base, len, __off, STEP) { \ 78 __label__ __out; \ 79 size_t __off = 0; \ 80 struct folio *folio; \ 81 loff_t start = i->xarray_start + i->iov_offset; \ 82 pgoff_t index = start / PAGE_SIZE; \ 83 XA_STATE(xas, i->xarray, index); \ 84 \ 85 len = PAGE_SIZE - offset_in_page(start); \ 86 rcu_read_lock(); \ 87 xas_for_each(&xas, folio, ULONG_MAX) { \ 88 unsigned left; \ 89 size_t offset; \ 90 if (xas_retry(&xas, folio)) \ 91 continue; \ 92 if (WARN_ON(xa_is_value(folio))) \ 93 break; \ 94 if (WARN_ON(folio_test_hugetlb(folio))) \ 95 break; \ 96 offset = offset_in_folio(folio, start + __off); \ 97 while (offset < folio_size(folio)) { \ 98 base = kmap_local_folio(folio, offset); \ 99 len = min(n, len); \ 100 left = (STEP); \ 101 kunmap_local(base); \ 102 len -= left; \ 103 __off += len; \ 104 n -= len; \ 105 if (left || n == 0) \ 106 goto __out; \ 107 offset += len; \ 108 len = PAGE_SIZE; \ 109 } \ 110 } \ 111 __out: \ 112 rcu_read_unlock(); \ 113 i->iov_offset += __off; \ 114 n = __off; \ 115 } 116 117 #define __iterate_and_advance(i, n, base, len, off, I, K) { \ 118 if (unlikely(i->count < n)) \ 119 n = i->count; \ 120 if (likely(n)) { \ 121 if (likely(iter_is_ubuf(i))) { \ 122 void __user *base; \ 123 size_t len; \ 124 iterate_buf(i, n, base, len, off, \ 125 i->ubuf, (I)) \ 126 } else if (likely(iter_is_iovec(i))) { \ 127 const struct iovec *iov = iter_iov(i); \ 128 void __user *base; \ 129 size_t len; \ 130 iterate_iovec(i, n, base, len, off, \ 131 iov, (I)) \ 132 i->nr_segs -= iov - iter_iov(i); \ 133 i->__iov = iov; \ 134 } else if (iov_iter_is_bvec(i)) { \ 135 const struct bio_vec *bvec = i->bvec; \ 136 void *base; \ 137 size_t len; \ 138 iterate_bvec(i, n, base, len, off, \ 139 bvec, (K)) \ 140 i->nr_segs -= bvec - i->bvec; \ 141 i->bvec = bvec; \ 142 } else if (iov_iter_is_kvec(i)) { \ 143 const struct kvec *kvec = i->kvec; \ 144 void *base; \ 145 size_t len; \ 146 iterate_iovec(i, n, base, len, off, \ 147 kvec, (K)) \ 148 i->nr_segs -= kvec - i->kvec; \ 149 i->kvec = kvec; \ 150 } else if (iov_iter_is_xarray(i)) { \ 151 void *base; \ 152 size_t len; \ 153 iterate_xarray(i, n, base, len, off, \ 154 (K)) \ 155 } \ 156 i->count -= n; \ 157 } \ 158 } 159 #define iterate_and_advance(i, n, base, len, off, I, K) \ 160 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0)) 161 162 static int copyout(void __user *to, const void *from, size_t n) 163 { 164 if (should_fail_usercopy()) 165 return n; 166 if (access_ok(to, n)) { 167 instrument_copy_to_user(to, from, n); 168 n = raw_copy_to_user(to, from, n); 169 } 170 return n; 171 } 172 173 static int copyout_nofault(void __user *to, const void *from, size_t n) 174 { 175 long res; 176 177 if (should_fail_usercopy()) 178 return n; 179 180 res = copy_to_user_nofault(to, from, n); 181 182 return res < 0 ? n : res; 183 } 184 185 static int copyin(void *to, const void __user *from, size_t n) 186 { 187 size_t res = n; 188 189 if (should_fail_usercopy()) 190 return n; 191 if (access_ok(from, n)) { 192 instrument_copy_from_user_before(to, from, n); 193 res = raw_copy_from_user(to, from, n); 194 instrument_copy_from_user_after(to, from, n, res); 195 } 196 return res; 197 } 198 199 /* 200 * fault_in_iov_iter_readable - fault in iov iterator for reading 201 * @i: iterator 202 * @size: maximum length 203 * 204 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 205 * @size. For each iovec, fault in each page that constitutes the iovec. 206 * 207 * Returns the number of bytes not faulted in (like copy_to_user() and 208 * copy_from_user()). 209 * 210 * Always returns 0 for non-userspace iterators. 211 */ 212 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 213 { 214 if (iter_is_ubuf(i)) { 215 size_t n = min(size, iov_iter_count(i)); 216 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 217 return size - n; 218 } else if (iter_is_iovec(i)) { 219 size_t count = min(size, iov_iter_count(i)); 220 const struct iovec *p; 221 size_t skip; 222 223 size -= count; 224 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 225 size_t len = min(count, p->iov_len - skip); 226 size_t ret; 227 228 if (unlikely(!len)) 229 continue; 230 ret = fault_in_readable(p->iov_base + skip, len); 231 count -= len - ret; 232 if (ret) 233 break; 234 } 235 return count + size; 236 } 237 return 0; 238 } 239 EXPORT_SYMBOL(fault_in_iov_iter_readable); 240 241 /* 242 * fault_in_iov_iter_writeable - fault in iov iterator for writing 243 * @i: iterator 244 * @size: maximum length 245 * 246 * Faults in the iterator using get_user_pages(), i.e., without triggering 247 * hardware page faults. This is primarily useful when we already know that 248 * some or all of the pages in @i aren't in memory. 249 * 250 * Returns the number of bytes not faulted in, like copy_to_user() and 251 * copy_from_user(). 252 * 253 * Always returns 0 for non-user-space iterators. 254 */ 255 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 256 { 257 if (iter_is_ubuf(i)) { 258 size_t n = min(size, iov_iter_count(i)); 259 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 260 return size - n; 261 } else if (iter_is_iovec(i)) { 262 size_t count = min(size, iov_iter_count(i)); 263 const struct iovec *p; 264 size_t skip; 265 266 size -= count; 267 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 268 size_t len = min(count, p->iov_len - skip); 269 size_t ret; 270 271 if (unlikely(!len)) 272 continue; 273 ret = fault_in_safe_writeable(p->iov_base + skip, len); 274 count -= len - ret; 275 if (ret) 276 break; 277 } 278 return count + size; 279 } 280 return 0; 281 } 282 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 283 284 void iov_iter_init(struct iov_iter *i, unsigned int direction, 285 const struct iovec *iov, unsigned long nr_segs, 286 size_t count) 287 { 288 WARN_ON(direction & ~(READ | WRITE)); 289 *i = (struct iov_iter) { 290 .iter_type = ITER_IOVEC, 291 .copy_mc = false, 292 .nofault = false, 293 .user_backed = true, 294 .data_source = direction, 295 .__iov = iov, 296 .nr_segs = nr_segs, 297 .iov_offset = 0, 298 .count = count 299 }; 300 } 301 EXPORT_SYMBOL(iov_iter_init); 302 303 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 304 __wsum sum, size_t off) 305 { 306 __wsum next = csum_partial_copy_nocheck(from, to, len); 307 return csum_block_add(sum, next, off); 308 } 309 310 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 311 { 312 if (WARN_ON_ONCE(i->data_source)) 313 return 0; 314 if (user_backed_iter(i)) 315 might_fault(); 316 iterate_and_advance(i, bytes, base, len, off, 317 copyout(base, addr + off, len), 318 memcpy(base, addr + off, len) 319 ) 320 321 return bytes; 322 } 323 EXPORT_SYMBOL(_copy_to_iter); 324 325 #ifdef CONFIG_ARCH_HAS_COPY_MC 326 static int copyout_mc(void __user *to, const void *from, size_t n) 327 { 328 if (access_ok(to, n)) { 329 instrument_copy_to_user(to, from, n); 330 n = copy_mc_to_user((__force void *) to, from, n); 331 } 332 return n; 333 } 334 335 /** 336 * _copy_mc_to_iter - copy to iter with source memory error exception handling 337 * @addr: source kernel address 338 * @bytes: total transfer length 339 * @i: destination iterator 340 * 341 * The pmem driver deploys this for the dax operation 342 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 343 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 344 * successfully copied. 345 * 346 * The main differences between this and typical _copy_to_iter(). 347 * 348 * * Typical tail/residue handling after a fault retries the copy 349 * byte-by-byte until the fault happens again. Re-triggering machine 350 * checks is potentially fatal so the implementation uses source 351 * alignment and poison alignment assumptions to avoid re-triggering 352 * hardware exceptions. 353 * 354 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 355 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 356 * 357 * Return: number of bytes copied (may be %0) 358 */ 359 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 360 { 361 if (WARN_ON_ONCE(i->data_source)) 362 return 0; 363 if (user_backed_iter(i)) 364 might_fault(); 365 __iterate_and_advance(i, bytes, base, len, off, 366 copyout_mc(base, addr + off, len), 367 copy_mc_to_kernel(base, addr + off, len) 368 ) 369 370 return bytes; 371 } 372 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 373 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 374 375 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from, 376 size_t size) 377 { 378 if (iov_iter_is_copy_mc(i)) 379 return (void *)copy_mc_to_kernel(to, from, size); 380 return memcpy(to, from, size); 381 } 382 383 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 384 { 385 if (WARN_ON_ONCE(!i->data_source)) 386 return 0; 387 388 if (user_backed_iter(i)) 389 might_fault(); 390 iterate_and_advance(i, bytes, base, len, off, 391 copyin(addr + off, base, len), 392 memcpy_from_iter(i, addr + off, base, len) 393 ) 394 395 return bytes; 396 } 397 EXPORT_SYMBOL(_copy_from_iter); 398 399 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 400 { 401 if (WARN_ON_ONCE(!i->data_source)) 402 return 0; 403 404 iterate_and_advance(i, bytes, base, len, off, 405 __copy_from_user_inatomic_nocache(addr + off, base, len), 406 memcpy(addr + off, base, len) 407 ) 408 409 return bytes; 410 } 411 EXPORT_SYMBOL(_copy_from_iter_nocache); 412 413 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 414 /** 415 * _copy_from_iter_flushcache - write destination through cpu cache 416 * @addr: destination kernel address 417 * @bytes: total transfer length 418 * @i: source iterator 419 * 420 * The pmem driver arranges for filesystem-dax to use this facility via 421 * dax_copy_from_iter() for ensuring that writes to persistent memory 422 * are flushed through the CPU cache. It is differentiated from 423 * _copy_from_iter_nocache() in that guarantees all data is flushed for 424 * all iterator types. The _copy_from_iter_nocache() only attempts to 425 * bypass the cache for the ITER_IOVEC case, and on some archs may use 426 * instructions that strand dirty-data in the cache. 427 * 428 * Return: number of bytes copied (may be %0) 429 */ 430 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 431 { 432 if (WARN_ON_ONCE(!i->data_source)) 433 return 0; 434 435 iterate_and_advance(i, bytes, base, len, off, 436 __copy_from_user_flushcache(addr + off, base, len), 437 memcpy_flushcache(addr + off, base, len) 438 ) 439 440 return bytes; 441 } 442 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 443 #endif 444 445 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 446 { 447 struct page *head; 448 size_t v = n + offset; 449 450 /* 451 * The general case needs to access the page order in order 452 * to compute the page size. 453 * However, we mostly deal with order-0 pages and thus can 454 * avoid a possible cache line miss for requests that fit all 455 * page orders. 456 */ 457 if (n <= v && v <= PAGE_SIZE) 458 return true; 459 460 head = compound_head(page); 461 v += (page - head) << PAGE_SHIFT; 462 463 if (WARN_ON(n > v || v > page_size(head))) 464 return false; 465 return true; 466 } 467 468 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 469 struct iov_iter *i) 470 { 471 size_t res = 0; 472 if (!page_copy_sane(page, offset, bytes)) 473 return 0; 474 if (WARN_ON_ONCE(i->data_source)) 475 return 0; 476 page += offset / PAGE_SIZE; // first subpage 477 offset %= PAGE_SIZE; 478 while (1) { 479 void *kaddr = kmap_local_page(page); 480 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 481 n = _copy_to_iter(kaddr + offset, n, i); 482 kunmap_local(kaddr); 483 res += n; 484 bytes -= n; 485 if (!bytes || !n) 486 break; 487 offset += n; 488 if (offset == PAGE_SIZE) { 489 page++; 490 offset = 0; 491 } 492 } 493 return res; 494 } 495 EXPORT_SYMBOL(copy_page_to_iter); 496 497 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 498 struct iov_iter *i) 499 { 500 size_t res = 0; 501 502 if (!page_copy_sane(page, offset, bytes)) 503 return 0; 504 if (WARN_ON_ONCE(i->data_source)) 505 return 0; 506 page += offset / PAGE_SIZE; // first subpage 507 offset %= PAGE_SIZE; 508 while (1) { 509 void *kaddr = kmap_local_page(page); 510 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 511 512 iterate_and_advance(i, n, base, len, off, 513 copyout_nofault(base, kaddr + offset + off, len), 514 memcpy(base, kaddr + offset + off, len) 515 ) 516 kunmap_local(kaddr); 517 res += n; 518 bytes -= n; 519 if (!bytes || !n) 520 break; 521 offset += n; 522 if (offset == PAGE_SIZE) { 523 page++; 524 offset = 0; 525 } 526 } 527 return res; 528 } 529 EXPORT_SYMBOL(copy_page_to_iter_nofault); 530 531 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 532 struct iov_iter *i) 533 { 534 size_t res = 0; 535 if (!page_copy_sane(page, offset, bytes)) 536 return 0; 537 page += offset / PAGE_SIZE; // first subpage 538 offset %= PAGE_SIZE; 539 while (1) { 540 void *kaddr = kmap_local_page(page); 541 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 542 n = _copy_from_iter(kaddr + offset, n, i); 543 kunmap_local(kaddr); 544 res += n; 545 bytes -= n; 546 if (!bytes || !n) 547 break; 548 offset += n; 549 if (offset == PAGE_SIZE) { 550 page++; 551 offset = 0; 552 } 553 } 554 return res; 555 } 556 EXPORT_SYMBOL(copy_page_from_iter); 557 558 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 559 { 560 iterate_and_advance(i, bytes, base, len, count, 561 clear_user(base, len), 562 memset(base, 0, len) 563 ) 564 565 return bytes; 566 } 567 EXPORT_SYMBOL(iov_iter_zero); 568 569 size_t copy_page_from_iter_atomic(struct page *page, size_t offset, 570 size_t bytes, struct iov_iter *i) 571 { 572 size_t n, copied = 0; 573 574 if (!page_copy_sane(page, offset, bytes)) 575 return 0; 576 if (WARN_ON_ONCE(!i->data_source)) 577 return 0; 578 579 do { 580 char *p; 581 582 n = bytes - copied; 583 if (PageHighMem(page)) { 584 page += offset / PAGE_SIZE; 585 offset %= PAGE_SIZE; 586 n = min_t(size_t, n, PAGE_SIZE - offset); 587 } 588 589 p = kmap_atomic(page) + offset; 590 iterate_and_advance(i, n, base, len, off, 591 copyin(p + off, base, len), 592 memcpy_from_iter(i, p + off, base, len) 593 ) 594 kunmap_atomic(p); 595 copied += n; 596 offset += n; 597 } while (PageHighMem(page) && copied != bytes && n > 0); 598 599 return copied; 600 } 601 EXPORT_SYMBOL(copy_page_from_iter_atomic); 602 603 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 604 { 605 const struct bio_vec *bvec, *end; 606 607 if (!i->count) 608 return; 609 i->count -= size; 610 611 size += i->iov_offset; 612 613 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 614 if (likely(size < bvec->bv_len)) 615 break; 616 size -= bvec->bv_len; 617 } 618 i->iov_offset = size; 619 i->nr_segs -= bvec - i->bvec; 620 i->bvec = bvec; 621 } 622 623 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 624 { 625 const struct iovec *iov, *end; 626 627 if (!i->count) 628 return; 629 i->count -= size; 630 631 size += i->iov_offset; // from beginning of current segment 632 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 633 if (likely(size < iov->iov_len)) 634 break; 635 size -= iov->iov_len; 636 } 637 i->iov_offset = size; 638 i->nr_segs -= iov - iter_iov(i); 639 i->__iov = iov; 640 } 641 642 void iov_iter_advance(struct iov_iter *i, size_t size) 643 { 644 if (unlikely(i->count < size)) 645 size = i->count; 646 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 647 i->iov_offset += size; 648 i->count -= size; 649 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 650 /* iovec and kvec have identical layouts */ 651 iov_iter_iovec_advance(i, size); 652 } else if (iov_iter_is_bvec(i)) { 653 iov_iter_bvec_advance(i, size); 654 } else if (iov_iter_is_discard(i)) { 655 i->count -= size; 656 } 657 } 658 EXPORT_SYMBOL(iov_iter_advance); 659 660 void iov_iter_revert(struct iov_iter *i, size_t unroll) 661 { 662 if (!unroll) 663 return; 664 if (WARN_ON(unroll > MAX_RW_COUNT)) 665 return; 666 i->count += unroll; 667 if (unlikely(iov_iter_is_discard(i))) 668 return; 669 if (unroll <= i->iov_offset) { 670 i->iov_offset -= unroll; 671 return; 672 } 673 unroll -= i->iov_offset; 674 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 675 BUG(); /* We should never go beyond the start of the specified 676 * range since we might then be straying into pages that 677 * aren't pinned. 678 */ 679 } else if (iov_iter_is_bvec(i)) { 680 const struct bio_vec *bvec = i->bvec; 681 while (1) { 682 size_t n = (--bvec)->bv_len; 683 i->nr_segs++; 684 if (unroll <= n) { 685 i->bvec = bvec; 686 i->iov_offset = n - unroll; 687 return; 688 } 689 unroll -= n; 690 } 691 } else { /* same logics for iovec and kvec */ 692 const struct iovec *iov = iter_iov(i); 693 while (1) { 694 size_t n = (--iov)->iov_len; 695 i->nr_segs++; 696 if (unroll <= n) { 697 i->__iov = iov; 698 i->iov_offset = n - unroll; 699 return; 700 } 701 unroll -= n; 702 } 703 } 704 } 705 EXPORT_SYMBOL(iov_iter_revert); 706 707 /* 708 * Return the count of just the current iov_iter segment. 709 */ 710 size_t iov_iter_single_seg_count(const struct iov_iter *i) 711 { 712 if (i->nr_segs > 1) { 713 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 714 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 715 if (iov_iter_is_bvec(i)) 716 return min(i->count, i->bvec->bv_len - i->iov_offset); 717 } 718 return i->count; 719 } 720 EXPORT_SYMBOL(iov_iter_single_seg_count); 721 722 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 723 const struct kvec *kvec, unsigned long nr_segs, 724 size_t count) 725 { 726 WARN_ON(direction & ~(READ | WRITE)); 727 *i = (struct iov_iter){ 728 .iter_type = ITER_KVEC, 729 .copy_mc = false, 730 .data_source = direction, 731 .kvec = kvec, 732 .nr_segs = nr_segs, 733 .iov_offset = 0, 734 .count = count 735 }; 736 } 737 EXPORT_SYMBOL(iov_iter_kvec); 738 739 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 740 const struct bio_vec *bvec, unsigned long nr_segs, 741 size_t count) 742 { 743 WARN_ON(direction & ~(READ | WRITE)); 744 *i = (struct iov_iter){ 745 .iter_type = ITER_BVEC, 746 .copy_mc = false, 747 .data_source = direction, 748 .bvec = bvec, 749 .nr_segs = nr_segs, 750 .iov_offset = 0, 751 .count = count 752 }; 753 } 754 EXPORT_SYMBOL(iov_iter_bvec); 755 756 /** 757 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 758 * @i: The iterator to initialise. 759 * @direction: The direction of the transfer. 760 * @xarray: The xarray to access. 761 * @start: The start file position. 762 * @count: The size of the I/O buffer in bytes. 763 * 764 * Set up an I/O iterator to either draw data out of the pages attached to an 765 * inode or to inject data into those pages. The pages *must* be prevented 766 * from evaporation, either by taking a ref on them or locking them by the 767 * caller. 768 */ 769 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 770 struct xarray *xarray, loff_t start, size_t count) 771 { 772 BUG_ON(direction & ~1); 773 *i = (struct iov_iter) { 774 .iter_type = ITER_XARRAY, 775 .copy_mc = false, 776 .data_source = direction, 777 .xarray = xarray, 778 .xarray_start = start, 779 .count = count, 780 .iov_offset = 0 781 }; 782 } 783 EXPORT_SYMBOL(iov_iter_xarray); 784 785 /** 786 * iov_iter_discard - Initialise an I/O iterator that discards data 787 * @i: The iterator to initialise. 788 * @direction: The direction of the transfer. 789 * @count: The size of the I/O buffer in bytes. 790 * 791 * Set up an I/O iterator that just discards everything that's written to it. 792 * It's only available as a READ iterator. 793 */ 794 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 795 { 796 BUG_ON(direction != READ); 797 *i = (struct iov_iter){ 798 .iter_type = ITER_DISCARD, 799 .copy_mc = false, 800 .data_source = false, 801 .count = count, 802 .iov_offset = 0 803 }; 804 } 805 EXPORT_SYMBOL(iov_iter_discard); 806 807 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 808 unsigned len_mask) 809 { 810 size_t size = i->count; 811 size_t skip = i->iov_offset; 812 unsigned k; 813 814 for (k = 0; k < i->nr_segs; k++, skip = 0) { 815 const struct iovec *iov = iter_iov(i) + k; 816 size_t len = iov->iov_len - skip; 817 818 if (len > size) 819 len = size; 820 if (len & len_mask) 821 return false; 822 if ((unsigned long)(iov->iov_base + skip) & addr_mask) 823 return false; 824 825 size -= len; 826 if (!size) 827 break; 828 } 829 return true; 830 } 831 832 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 833 unsigned len_mask) 834 { 835 size_t size = i->count; 836 unsigned skip = i->iov_offset; 837 unsigned k; 838 839 for (k = 0; k < i->nr_segs; k++, skip = 0) { 840 size_t len = i->bvec[k].bv_len - skip; 841 842 if (len > size) 843 len = size; 844 if (len & len_mask) 845 return false; 846 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask) 847 return false; 848 849 size -= len; 850 if (!size) 851 break; 852 } 853 return true; 854 } 855 856 /** 857 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 858 * are aligned to the parameters. 859 * 860 * @i: &struct iov_iter to restore 861 * @addr_mask: bit mask to check against the iov element's addresses 862 * @len_mask: bit mask to check against the iov element's lengths 863 * 864 * Return: false if any addresses or lengths intersect with the provided masks 865 */ 866 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 867 unsigned len_mask) 868 { 869 if (likely(iter_is_ubuf(i))) { 870 if (i->count & len_mask) 871 return false; 872 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 873 return false; 874 return true; 875 } 876 877 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 878 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 879 880 if (iov_iter_is_bvec(i)) 881 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 882 883 if (iov_iter_is_xarray(i)) { 884 if (i->count & len_mask) 885 return false; 886 if ((i->xarray_start + i->iov_offset) & addr_mask) 887 return false; 888 } 889 890 return true; 891 } 892 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 893 894 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 895 { 896 unsigned long res = 0; 897 size_t size = i->count; 898 size_t skip = i->iov_offset; 899 unsigned k; 900 901 for (k = 0; k < i->nr_segs; k++, skip = 0) { 902 const struct iovec *iov = iter_iov(i) + k; 903 size_t len = iov->iov_len - skip; 904 if (len) { 905 res |= (unsigned long)iov->iov_base + skip; 906 if (len > size) 907 len = size; 908 res |= len; 909 size -= len; 910 if (!size) 911 break; 912 } 913 } 914 return res; 915 } 916 917 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 918 { 919 unsigned res = 0; 920 size_t size = i->count; 921 unsigned skip = i->iov_offset; 922 unsigned k; 923 924 for (k = 0; k < i->nr_segs; k++, skip = 0) { 925 size_t len = i->bvec[k].bv_len - skip; 926 res |= (unsigned long)i->bvec[k].bv_offset + skip; 927 if (len > size) 928 len = size; 929 res |= len; 930 size -= len; 931 if (!size) 932 break; 933 } 934 return res; 935 } 936 937 unsigned long iov_iter_alignment(const struct iov_iter *i) 938 { 939 if (likely(iter_is_ubuf(i))) { 940 size_t size = i->count; 941 if (size) 942 return ((unsigned long)i->ubuf + i->iov_offset) | size; 943 return 0; 944 } 945 946 /* iovec and kvec have identical layouts */ 947 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 948 return iov_iter_alignment_iovec(i); 949 950 if (iov_iter_is_bvec(i)) 951 return iov_iter_alignment_bvec(i); 952 953 if (iov_iter_is_xarray(i)) 954 return (i->xarray_start + i->iov_offset) | i->count; 955 956 return 0; 957 } 958 EXPORT_SYMBOL(iov_iter_alignment); 959 960 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 961 { 962 unsigned long res = 0; 963 unsigned long v = 0; 964 size_t size = i->count; 965 unsigned k; 966 967 if (iter_is_ubuf(i)) 968 return 0; 969 970 if (WARN_ON(!iter_is_iovec(i))) 971 return ~0U; 972 973 for (k = 0; k < i->nr_segs; k++) { 974 const struct iovec *iov = iter_iov(i) + k; 975 if (iov->iov_len) { 976 unsigned long base = (unsigned long)iov->iov_base; 977 if (v) // if not the first one 978 res |= base | v; // this start | previous end 979 v = base + iov->iov_len; 980 if (size <= iov->iov_len) 981 break; 982 size -= iov->iov_len; 983 } 984 } 985 return res; 986 } 987 EXPORT_SYMBOL(iov_iter_gap_alignment); 988 989 static int want_pages_array(struct page ***res, size_t size, 990 size_t start, unsigned int maxpages) 991 { 992 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 993 994 if (count > maxpages) 995 count = maxpages; 996 WARN_ON(!count); // caller should've prevented that 997 if (!*res) { 998 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 999 if (!*res) 1000 return 0; 1001 } 1002 return count; 1003 } 1004 1005 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 1006 pgoff_t index, unsigned int nr_pages) 1007 { 1008 XA_STATE(xas, xa, index); 1009 struct page *page; 1010 unsigned int ret = 0; 1011 1012 rcu_read_lock(); 1013 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1014 if (xas_retry(&xas, page)) 1015 continue; 1016 1017 /* Has the page moved or been split? */ 1018 if (unlikely(page != xas_reload(&xas))) { 1019 xas_reset(&xas); 1020 continue; 1021 } 1022 1023 pages[ret] = find_subpage(page, xas.xa_index); 1024 get_page(pages[ret]); 1025 if (++ret == nr_pages) 1026 break; 1027 } 1028 rcu_read_unlock(); 1029 return ret; 1030 } 1031 1032 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 1033 struct page ***pages, size_t maxsize, 1034 unsigned maxpages, size_t *_start_offset) 1035 { 1036 unsigned nr, offset, count; 1037 pgoff_t index; 1038 loff_t pos; 1039 1040 pos = i->xarray_start + i->iov_offset; 1041 index = pos >> PAGE_SHIFT; 1042 offset = pos & ~PAGE_MASK; 1043 *_start_offset = offset; 1044 1045 count = want_pages_array(pages, maxsize, offset, maxpages); 1046 if (!count) 1047 return -ENOMEM; 1048 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 1049 if (nr == 0) 1050 return 0; 1051 1052 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1053 i->iov_offset += maxsize; 1054 i->count -= maxsize; 1055 return maxsize; 1056 } 1057 1058 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 1059 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 1060 { 1061 size_t skip; 1062 long k; 1063 1064 if (iter_is_ubuf(i)) 1065 return (unsigned long)i->ubuf + i->iov_offset; 1066 1067 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 1068 const struct iovec *iov = iter_iov(i) + k; 1069 size_t len = iov->iov_len - skip; 1070 1071 if (unlikely(!len)) 1072 continue; 1073 if (*size > len) 1074 *size = len; 1075 return (unsigned long)iov->iov_base + skip; 1076 } 1077 BUG(); // if it had been empty, we wouldn't get called 1078 } 1079 1080 /* must be done on non-empty ITER_BVEC one */ 1081 static struct page *first_bvec_segment(const struct iov_iter *i, 1082 size_t *size, size_t *start) 1083 { 1084 struct page *page; 1085 size_t skip = i->iov_offset, len; 1086 1087 len = i->bvec->bv_len - skip; 1088 if (*size > len) 1089 *size = len; 1090 skip += i->bvec->bv_offset; 1091 page = i->bvec->bv_page + skip / PAGE_SIZE; 1092 *start = skip % PAGE_SIZE; 1093 return page; 1094 } 1095 1096 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 1097 struct page ***pages, size_t maxsize, 1098 unsigned int maxpages, size_t *start) 1099 { 1100 unsigned int n, gup_flags = 0; 1101 1102 if (maxsize > i->count) 1103 maxsize = i->count; 1104 if (!maxsize) 1105 return 0; 1106 if (maxsize > MAX_RW_COUNT) 1107 maxsize = MAX_RW_COUNT; 1108 1109 if (likely(user_backed_iter(i))) { 1110 unsigned long addr; 1111 int res; 1112 1113 if (iov_iter_rw(i) != WRITE) 1114 gup_flags |= FOLL_WRITE; 1115 if (i->nofault) 1116 gup_flags |= FOLL_NOFAULT; 1117 1118 addr = first_iovec_segment(i, &maxsize); 1119 *start = addr % PAGE_SIZE; 1120 addr &= PAGE_MASK; 1121 n = want_pages_array(pages, maxsize, *start, maxpages); 1122 if (!n) 1123 return -ENOMEM; 1124 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1125 if (unlikely(res <= 0)) 1126 return res; 1127 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1128 iov_iter_advance(i, maxsize); 1129 return maxsize; 1130 } 1131 if (iov_iter_is_bvec(i)) { 1132 struct page **p; 1133 struct page *page; 1134 1135 page = first_bvec_segment(i, &maxsize, start); 1136 n = want_pages_array(pages, maxsize, *start, maxpages); 1137 if (!n) 1138 return -ENOMEM; 1139 p = *pages; 1140 for (int k = 0; k < n; k++) 1141 get_page(p[k] = page + k); 1142 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1143 i->count -= maxsize; 1144 i->iov_offset += maxsize; 1145 if (i->iov_offset == i->bvec->bv_len) { 1146 i->iov_offset = 0; 1147 i->bvec++; 1148 i->nr_segs--; 1149 } 1150 return maxsize; 1151 } 1152 if (iov_iter_is_xarray(i)) 1153 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1154 return -EFAULT; 1155 } 1156 1157 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1158 size_t maxsize, unsigned maxpages, size_t *start) 1159 { 1160 if (!maxpages) 1161 return 0; 1162 BUG_ON(!pages); 1163 1164 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1165 } 1166 EXPORT_SYMBOL(iov_iter_get_pages2); 1167 1168 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1169 struct page ***pages, size_t maxsize, size_t *start) 1170 { 1171 ssize_t len; 1172 1173 *pages = NULL; 1174 1175 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1176 if (len <= 0) { 1177 kvfree(*pages); 1178 *pages = NULL; 1179 } 1180 return len; 1181 } 1182 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1183 1184 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1185 struct iov_iter *i) 1186 { 1187 __wsum sum, next; 1188 sum = *csum; 1189 if (WARN_ON_ONCE(!i->data_source)) 1190 return 0; 1191 1192 iterate_and_advance(i, bytes, base, len, off, ({ 1193 next = csum_and_copy_from_user(base, addr + off, len); 1194 sum = csum_block_add(sum, next, off); 1195 next ? 0 : len; 1196 }), ({ 1197 sum = csum_and_memcpy(addr + off, base, len, sum, off); 1198 }) 1199 ) 1200 *csum = sum; 1201 return bytes; 1202 } 1203 EXPORT_SYMBOL(csum_and_copy_from_iter); 1204 1205 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, 1206 struct iov_iter *i) 1207 { 1208 struct csum_state *csstate = _csstate; 1209 __wsum sum, next; 1210 1211 if (WARN_ON_ONCE(i->data_source)) 1212 return 0; 1213 if (unlikely(iov_iter_is_discard(i))) { 1214 // can't use csum_memcpy() for that one - data is not copied 1215 csstate->csum = csum_block_add(csstate->csum, 1216 csum_partial(addr, bytes, 0), 1217 csstate->off); 1218 csstate->off += bytes; 1219 return bytes; 1220 } 1221 1222 sum = csum_shift(csstate->csum, csstate->off); 1223 iterate_and_advance(i, bytes, base, len, off, ({ 1224 next = csum_and_copy_to_user(addr + off, base, len); 1225 sum = csum_block_add(sum, next, off); 1226 next ? 0 : len; 1227 }), ({ 1228 sum = csum_and_memcpy(base, addr + off, len, sum, off); 1229 }) 1230 ) 1231 csstate->csum = csum_shift(sum, csstate->off); 1232 csstate->off += bytes; 1233 return bytes; 1234 } 1235 EXPORT_SYMBOL(csum_and_copy_to_iter); 1236 1237 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1238 struct iov_iter *i) 1239 { 1240 #ifdef CONFIG_CRYPTO_HASH 1241 struct ahash_request *hash = hashp; 1242 struct scatterlist sg; 1243 size_t copied; 1244 1245 copied = copy_to_iter(addr, bytes, i); 1246 sg_init_one(&sg, addr, copied); 1247 ahash_request_set_crypt(hash, &sg, NULL, copied); 1248 crypto_ahash_update(hash); 1249 return copied; 1250 #else 1251 return 0; 1252 #endif 1253 } 1254 EXPORT_SYMBOL(hash_and_copy_to_iter); 1255 1256 static int iov_npages(const struct iov_iter *i, int maxpages) 1257 { 1258 size_t skip = i->iov_offset, size = i->count; 1259 const struct iovec *p; 1260 int npages = 0; 1261 1262 for (p = iter_iov(i); size; skip = 0, p++) { 1263 unsigned offs = offset_in_page(p->iov_base + skip); 1264 size_t len = min(p->iov_len - skip, size); 1265 1266 if (len) { 1267 size -= len; 1268 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1269 if (unlikely(npages > maxpages)) 1270 return maxpages; 1271 } 1272 } 1273 return npages; 1274 } 1275 1276 static int bvec_npages(const struct iov_iter *i, int maxpages) 1277 { 1278 size_t skip = i->iov_offset, size = i->count; 1279 const struct bio_vec *p; 1280 int npages = 0; 1281 1282 for (p = i->bvec; size; skip = 0, p++) { 1283 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1284 size_t len = min(p->bv_len - skip, size); 1285 1286 size -= len; 1287 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1288 if (unlikely(npages > maxpages)) 1289 return maxpages; 1290 } 1291 return npages; 1292 } 1293 1294 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1295 { 1296 if (unlikely(!i->count)) 1297 return 0; 1298 if (likely(iter_is_ubuf(i))) { 1299 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1300 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1301 return min(npages, maxpages); 1302 } 1303 /* iovec and kvec have identical layouts */ 1304 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1305 return iov_npages(i, maxpages); 1306 if (iov_iter_is_bvec(i)) 1307 return bvec_npages(i, maxpages); 1308 if (iov_iter_is_xarray(i)) { 1309 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1310 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1311 return min(npages, maxpages); 1312 } 1313 return 0; 1314 } 1315 EXPORT_SYMBOL(iov_iter_npages); 1316 1317 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1318 { 1319 *new = *old; 1320 if (iov_iter_is_bvec(new)) 1321 return new->bvec = kmemdup(new->bvec, 1322 new->nr_segs * sizeof(struct bio_vec), 1323 flags); 1324 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1325 /* iovec and kvec have identical layout */ 1326 return new->__iov = kmemdup(new->__iov, 1327 new->nr_segs * sizeof(struct iovec), 1328 flags); 1329 return NULL; 1330 } 1331 EXPORT_SYMBOL(dup_iter); 1332 1333 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1334 const struct iovec __user *uvec, unsigned long nr_segs) 1335 { 1336 const struct compat_iovec __user *uiov = 1337 (const struct compat_iovec __user *)uvec; 1338 int ret = -EFAULT, i; 1339 1340 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1341 return -EFAULT; 1342 1343 for (i = 0; i < nr_segs; i++) { 1344 compat_uptr_t buf; 1345 compat_ssize_t len; 1346 1347 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1348 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1349 1350 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1351 if (len < 0) { 1352 ret = -EINVAL; 1353 goto uaccess_end; 1354 } 1355 iov[i].iov_base = compat_ptr(buf); 1356 iov[i].iov_len = len; 1357 } 1358 1359 ret = 0; 1360 uaccess_end: 1361 user_access_end(); 1362 return ret; 1363 } 1364 1365 static __noclone int copy_iovec_from_user(struct iovec *iov, 1366 const struct iovec __user *uiov, unsigned long nr_segs) 1367 { 1368 int ret = -EFAULT; 1369 1370 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1371 return -EFAULT; 1372 1373 do { 1374 void __user *buf; 1375 ssize_t len; 1376 1377 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1378 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1379 1380 /* check for size_t not fitting in ssize_t .. */ 1381 if (unlikely(len < 0)) { 1382 ret = -EINVAL; 1383 goto uaccess_end; 1384 } 1385 iov->iov_base = buf; 1386 iov->iov_len = len; 1387 1388 uiov++; iov++; 1389 } while (--nr_segs); 1390 1391 ret = 0; 1392 uaccess_end: 1393 user_access_end(); 1394 return ret; 1395 } 1396 1397 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1398 unsigned long nr_segs, unsigned long fast_segs, 1399 struct iovec *fast_iov, bool compat) 1400 { 1401 struct iovec *iov = fast_iov; 1402 int ret; 1403 1404 /* 1405 * SuS says "The readv() function *may* fail if the iovcnt argument was 1406 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1407 * traditionally returned zero for zero segments, so... 1408 */ 1409 if (nr_segs == 0) 1410 return iov; 1411 if (nr_segs > UIO_MAXIOV) 1412 return ERR_PTR(-EINVAL); 1413 if (nr_segs > fast_segs) { 1414 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1415 if (!iov) 1416 return ERR_PTR(-ENOMEM); 1417 } 1418 1419 if (unlikely(compat)) 1420 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1421 else 1422 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1423 if (ret) { 1424 if (iov != fast_iov) 1425 kfree(iov); 1426 return ERR_PTR(ret); 1427 } 1428 1429 return iov; 1430 } 1431 1432 /* 1433 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1434 */ 1435 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1436 struct iovec **iovp, struct iov_iter *i, 1437 bool compat) 1438 { 1439 struct iovec *iov = *iovp; 1440 ssize_t ret; 1441 1442 if (compat) 1443 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1444 else 1445 ret = copy_iovec_from_user(iov, uvec, 1); 1446 if (unlikely(ret)) 1447 return ret; 1448 1449 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1450 if (unlikely(ret)) 1451 return ret; 1452 *iovp = NULL; 1453 return i->count; 1454 } 1455 1456 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1457 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1458 struct iov_iter *i, bool compat) 1459 { 1460 ssize_t total_len = 0; 1461 unsigned long seg; 1462 struct iovec *iov; 1463 1464 if (nr_segs == 1) 1465 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1466 1467 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1468 if (IS_ERR(iov)) { 1469 *iovp = NULL; 1470 return PTR_ERR(iov); 1471 } 1472 1473 /* 1474 * According to the Single Unix Specification we should return EINVAL if 1475 * an element length is < 0 when cast to ssize_t or if the total length 1476 * would overflow the ssize_t return value of the system call. 1477 * 1478 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1479 * overflow case. 1480 */ 1481 for (seg = 0; seg < nr_segs; seg++) { 1482 ssize_t len = (ssize_t)iov[seg].iov_len; 1483 1484 if (!access_ok(iov[seg].iov_base, len)) { 1485 if (iov != *iovp) 1486 kfree(iov); 1487 *iovp = NULL; 1488 return -EFAULT; 1489 } 1490 1491 if (len > MAX_RW_COUNT - total_len) { 1492 len = MAX_RW_COUNT - total_len; 1493 iov[seg].iov_len = len; 1494 } 1495 total_len += len; 1496 } 1497 1498 iov_iter_init(i, type, iov, nr_segs, total_len); 1499 if (iov == *iovp) 1500 *iovp = NULL; 1501 else 1502 *iovp = iov; 1503 return total_len; 1504 } 1505 1506 /** 1507 * import_iovec() - Copy an array of &struct iovec from userspace 1508 * into the kernel, check that it is valid, and initialize a new 1509 * &struct iov_iter iterator to access it. 1510 * 1511 * @type: One of %READ or %WRITE. 1512 * @uvec: Pointer to the userspace array. 1513 * @nr_segs: Number of elements in userspace array. 1514 * @fast_segs: Number of elements in @iov. 1515 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1516 * on-stack) kernel array. 1517 * @i: Pointer to iterator that will be initialized on success. 1518 * 1519 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1520 * then this function places %NULL in *@iov on return. Otherwise, a new 1521 * array will be allocated and the result placed in *@iov. This means that 1522 * the caller may call kfree() on *@iov regardless of whether the small 1523 * on-stack array was used or not (and regardless of whether this function 1524 * returns an error or not). 1525 * 1526 * Return: Negative error code on error, bytes imported on success 1527 */ 1528 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1529 unsigned nr_segs, unsigned fast_segs, 1530 struct iovec **iovp, struct iov_iter *i) 1531 { 1532 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1533 in_compat_syscall()); 1534 } 1535 EXPORT_SYMBOL(import_iovec); 1536 1537 int import_single_range(int rw, void __user *buf, size_t len, 1538 struct iovec *iov, struct iov_iter *i) 1539 { 1540 if (len > MAX_RW_COUNT) 1541 len = MAX_RW_COUNT; 1542 if (unlikely(!access_ok(buf, len))) 1543 return -EFAULT; 1544 1545 iov_iter_ubuf(i, rw, buf, len); 1546 return 0; 1547 } 1548 EXPORT_SYMBOL(import_single_range); 1549 1550 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1551 { 1552 if (len > MAX_RW_COUNT) 1553 len = MAX_RW_COUNT; 1554 if (unlikely(!access_ok(buf, len))) 1555 return -EFAULT; 1556 1557 iov_iter_ubuf(i, rw, buf, len); 1558 return 0; 1559 } 1560 EXPORT_SYMBOL_GPL(import_ubuf); 1561 1562 /** 1563 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1564 * iov_iter_save_state() was called. 1565 * 1566 * @i: &struct iov_iter to restore 1567 * @state: state to restore from 1568 * 1569 * Used after iov_iter_save_state() to bring restore @i, if operations may 1570 * have advanced it. 1571 * 1572 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1573 */ 1574 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1575 { 1576 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1577 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1578 return; 1579 i->iov_offset = state->iov_offset; 1580 i->count = state->count; 1581 if (iter_is_ubuf(i)) 1582 return; 1583 /* 1584 * For the *vec iters, nr_segs + iov is constant - if we increment 1585 * the vec, then we also decrement the nr_segs count. Hence we don't 1586 * need to track both of these, just one is enough and we can deduct 1587 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1588 * size, so we can just increment the iov pointer as they are unionzed. 1589 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1590 * not. Be safe and handle it separately. 1591 */ 1592 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1593 if (iov_iter_is_bvec(i)) 1594 i->bvec -= state->nr_segs - i->nr_segs; 1595 else 1596 i->__iov -= state->nr_segs - i->nr_segs; 1597 i->nr_segs = state->nr_segs; 1598 } 1599 1600 /* 1601 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1602 * get references on the pages, nor does it get a pin on them. 1603 */ 1604 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1605 struct page ***pages, size_t maxsize, 1606 unsigned int maxpages, 1607 iov_iter_extraction_t extraction_flags, 1608 size_t *offset0) 1609 { 1610 struct page *page, **p; 1611 unsigned int nr = 0, offset; 1612 loff_t pos = i->xarray_start + i->iov_offset; 1613 pgoff_t index = pos >> PAGE_SHIFT; 1614 XA_STATE(xas, i->xarray, index); 1615 1616 offset = pos & ~PAGE_MASK; 1617 *offset0 = offset; 1618 1619 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1620 if (!maxpages) 1621 return -ENOMEM; 1622 p = *pages; 1623 1624 rcu_read_lock(); 1625 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1626 if (xas_retry(&xas, page)) 1627 continue; 1628 1629 /* Has the page moved or been split? */ 1630 if (unlikely(page != xas_reload(&xas))) { 1631 xas_reset(&xas); 1632 continue; 1633 } 1634 1635 p[nr++] = find_subpage(page, xas.xa_index); 1636 if (nr == maxpages) 1637 break; 1638 } 1639 rcu_read_unlock(); 1640 1641 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1642 iov_iter_advance(i, maxsize); 1643 return maxsize; 1644 } 1645 1646 /* 1647 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does 1648 * not get references on the pages, nor does it get a pin on them. 1649 */ 1650 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1651 struct page ***pages, size_t maxsize, 1652 unsigned int maxpages, 1653 iov_iter_extraction_t extraction_flags, 1654 size_t *offset0) 1655 { 1656 struct page **p, *page; 1657 size_t skip = i->iov_offset, offset; 1658 int k; 1659 1660 for (;;) { 1661 if (i->nr_segs == 0) 1662 return 0; 1663 maxsize = min(maxsize, i->bvec->bv_len - skip); 1664 if (maxsize) 1665 break; 1666 i->iov_offset = 0; 1667 i->nr_segs--; 1668 i->bvec++; 1669 skip = 0; 1670 } 1671 1672 skip += i->bvec->bv_offset; 1673 page = i->bvec->bv_page + skip / PAGE_SIZE; 1674 offset = skip % PAGE_SIZE; 1675 *offset0 = offset; 1676 1677 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1678 if (!maxpages) 1679 return -ENOMEM; 1680 p = *pages; 1681 for (k = 0; k < maxpages; k++) 1682 p[k] = page + k; 1683 1684 maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset); 1685 iov_iter_advance(i, maxsize); 1686 return maxsize; 1687 } 1688 1689 /* 1690 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1691 * This does not get references on the pages, nor does it get a pin on them. 1692 */ 1693 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1694 struct page ***pages, size_t maxsize, 1695 unsigned int maxpages, 1696 iov_iter_extraction_t extraction_flags, 1697 size_t *offset0) 1698 { 1699 struct page **p, *page; 1700 const void *kaddr; 1701 size_t skip = i->iov_offset, offset, len; 1702 int k; 1703 1704 for (;;) { 1705 if (i->nr_segs == 0) 1706 return 0; 1707 maxsize = min(maxsize, i->kvec->iov_len - skip); 1708 if (maxsize) 1709 break; 1710 i->iov_offset = 0; 1711 i->nr_segs--; 1712 i->kvec++; 1713 skip = 0; 1714 } 1715 1716 kaddr = i->kvec->iov_base + skip; 1717 offset = (unsigned long)kaddr & ~PAGE_MASK; 1718 *offset0 = offset; 1719 1720 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1721 if (!maxpages) 1722 return -ENOMEM; 1723 p = *pages; 1724 1725 kaddr -= offset; 1726 len = offset + maxsize; 1727 for (k = 0; k < maxpages; k++) { 1728 size_t seg = min_t(size_t, len, PAGE_SIZE); 1729 1730 if (is_vmalloc_or_module_addr(kaddr)) 1731 page = vmalloc_to_page(kaddr); 1732 else 1733 page = virt_to_page(kaddr); 1734 1735 p[k] = page; 1736 len -= seg; 1737 kaddr += PAGE_SIZE; 1738 } 1739 1740 maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset); 1741 iov_iter_advance(i, maxsize); 1742 return maxsize; 1743 } 1744 1745 /* 1746 * Extract a list of contiguous pages from a user iterator and get a pin on 1747 * each of them. This should only be used if the iterator is user-backed 1748 * (IOBUF/UBUF). 1749 * 1750 * It does not get refs on the pages, but the pages must be unpinned by the 1751 * caller once the transfer is complete. 1752 * 1753 * This is safe to be used where background IO/DMA *is* going to be modifying 1754 * the buffer; using a pin rather than a ref makes forces fork() to give the 1755 * child a copy of the page. 1756 */ 1757 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1758 struct page ***pages, 1759 size_t maxsize, 1760 unsigned int maxpages, 1761 iov_iter_extraction_t extraction_flags, 1762 size_t *offset0) 1763 { 1764 unsigned long addr; 1765 unsigned int gup_flags = 0; 1766 size_t offset; 1767 int res; 1768 1769 if (i->data_source == ITER_DEST) 1770 gup_flags |= FOLL_WRITE; 1771 if (extraction_flags & ITER_ALLOW_P2PDMA) 1772 gup_flags |= FOLL_PCI_P2PDMA; 1773 if (i->nofault) 1774 gup_flags |= FOLL_NOFAULT; 1775 1776 addr = first_iovec_segment(i, &maxsize); 1777 *offset0 = offset = addr % PAGE_SIZE; 1778 addr &= PAGE_MASK; 1779 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1780 if (!maxpages) 1781 return -ENOMEM; 1782 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1783 if (unlikely(res <= 0)) 1784 return res; 1785 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1786 iov_iter_advance(i, maxsize); 1787 return maxsize; 1788 } 1789 1790 /** 1791 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1792 * @i: The iterator to extract from 1793 * @pages: Where to return the list of pages 1794 * @maxsize: The maximum amount of iterator to extract 1795 * @maxpages: The maximum size of the list of pages 1796 * @extraction_flags: Flags to qualify request 1797 * @offset0: Where to return the starting offset into (*@pages)[0] 1798 * 1799 * Extract a list of contiguous pages from the current point of the iterator, 1800 * advancing the iterator. The maximum number of pages and the maximum amount 1801 * of page contents can be set. 1802 * 1803 * If *@pages is NULL, a page list will be allocated to the required size and 1804 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1805 * that the caller allocated a page list at least @maxpages in size and this 1806 * will be filled in. 1807 * 1808 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1809 * be allowed on the pages extracted. 1810 * 1811 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1812 * should be performed. 1813 * 1814 * Extra refs or pins on the pages may be obtained as follows: 1815 * 1816 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1817 * added to the pages, but refs will not be taken. 1818 * iov_iter_extract_will_pin() will return true. 1819 * 1820 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are 1821 * merely listed; no extra refs or pins are obtained. 1822 * iov_iter_extract_will_pin() will return 0. 1823 * 1824 * Note also: 1825 * 1826 * (*) Use with ITER_DISCARD is not supported as that has no content. 1827 * 1828 * On success, the function sets *@pages to the new pagelist, if allocated, and 1829 * sets *offset0 to the offset into the first page. 1830 * 1831 * It may also return -ENOMEM and -EFAULT. 1832 */ 1833 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1834 struct page ***pages, 1835 size_t maxsize, 1836 unsigned int maxpages, 1837 iov_iter_extraction_t extraction_flags, 1838 size_t *offset0) 1839 { 1840 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1841 if (!maxsize) 1842 return 0; 1843 1844 if (likely(user_backed_iter(i))) 1845 return iov_iter_extract_user_pages(i, pages, maxsize, 1846 maxpages, extraction_flags, 1847 offset0); 1848 if (iov_iter_is_kvec(i)) 1849 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1850 maxpages, extraction_flags, 1851 offset0); 1852 if (iov_iter_is_bvec(i)) 1853 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1854 maxpages, extraction_flags, 1855 offset0); 1856 if (iov_iter_is_xarray(i)) 1857 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1858 maxpages, extraction_flags, 1859 offset0); 1860 return -EFAULT; 1861 } 1862 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1863