xref: /openbmc/linux/lib/bitmap.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
14 
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.  See the big-endian headers
37  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38  * for the best explanations of this ordering.
39  */
40 
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
42 {
43 	int k, lim = bits/BITS_PER_LONG;
44 	for (k = 0; k < lim; ++k)
45 		if (bitmap[k])
46 			return 0;
47 
48 	if (bits % BITS_PER_LONG)
49 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 			return 0;
51 
52 	return 1;
53 }
54 EXPORT_SYMBOL(__bitmap_empty);
55 
56 int __bitmap_full(const unsigned long *bitmap, int bits)
57 {
58 	int k, lim = bits/BITS_PER_LONG;
59 	for (k = 0; k < lim; ++k)
60 		if (~bitmap[k])
61 			return 0;
62 
63 	if (bits % BITS_PER_LONG)
64 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 			return 0;
66 
67 	return 1;
68 }
69 EXPORT_SYMBOL(__bitmap_full);
70 
71 int __bitmap_equal(const unsigned long *bitmap1,
72 		const unsigned long *bitmap2, int bits)
73 {
74 	int k, lim = bits/BITS_PER_LONG;
75 	for (k = 0; k < lim; ++k)
76 		if (bitmap1[k] != bitmap2[k])
77 			return 0;
78 
79 	if (bits % BITS_PER_LONG)
80 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 			return 0;
82 
83 	return 1;
84 }
85 EXPORT_SYMBOL(__bitmap_equal);
86 
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88 {
89 	int k, lim = bits/BITS_PER_LONG;
90 	for (k = 0; k < lim; ++k)
91 		dst[k] = ~src[k];
92 
93 	if (bits % BITS_PER_LONG)
94 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95 }
96 EXPORT_SYMBOL(__bitmap_complement);
97 
98 /**
99  * __bitmap_shift_right - logical right shift of the bits in a bitmap
100  *   @dst : destination bitmap
101  *   @src : source bitmap
102  *   @shift : shift by this many bits
103  *   @bits : bitmap size, in bits
104  *
105  * Shifting right (dividing) means moving bits in the MS -> LS bit
106  * direction.  Zeros are fed into the vacated MS positions and the
107  * LS bits shifted off the bottom are lost.
108  */
109 void __bitmap_shift_right(unsigned long *dst,
110 			const unsigned long *src, int shift, int bits)
111 {
112 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 	unsigned long mask = (1UL << left) - 1;
115 	for (k = 0; off + k < lim; ++k) {
116 		unsigned long upper, lower;
117 
118 		/*
119 		 * If shift is not word aligned, take lower rem bits of
120 		 * word above and make them the top rem bits of result.
121 		 */
122 		if (!rem || off + k + 1 >= lim)
123 			upper = 0;
124 		else {
125 			upper = src[off + k + 1];
126 			if (off + k + 1 == lim - 1 && left)
127 				upper &= mask;
128 		}
129 		lower = src[off + k];
130 		if (left && off + k == lim - 1)
131 			lower &= mask;
132 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 		if (left && k == lim - 1)
134 			dst[k] &= mask;
135 	}
136 	if (off)
137 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138 }
139 EXPORT_SYMBOL(__bitmap_shift_right);
140 
141 
142 /**
143  * __bitmap_shift_left - logical left shift of the bits in a bitmap
144  *   @dst : destination bitmap
145  *   @src : source bitmap
146  *   @shift : shift by this many bits
147  *   @bits : bitmap size, in bits
148  *
149  * Shifting left (multiplying) means moving bits in the LS -> MS
150  * direction.  Zeros are fed into the vacated LS bit positions
151  * and those MS bits shifted off the top are lost.
152  */
153 
154 void __bitmap_shift_left(unsigned long *dst,
155 			const unsigned long *src, int shift, int bits)
156 {
157 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 	for (k = lim - off - 1; k >= 0; --k) {
160 		unsigned long upper, lower;
161 
162 		/*
163 		 * If shift is not word aligned, take upper rem bits of
164 		 * word below and make them the bottom rem bits of result.
165 		 */
166 		if (rem && k > 0)
167 			lower = src[k - 1];
168 		else
169 			lower = 0;
170 		upper = src[k];
171 		if (left && k == lim - 1)
172 			upper &= (1UL << left) - 1;
173 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174 		if (left && k + off == lim - 1)
175 			dst[k + off] &= (1UL << left) - 1;
176 	}
177 	if (off)
178 		memset(dst, 0, off*sizeof(unsigned long));
179 }
180 EXPORT_SYMBOL(__bitmap_shift_left);
181 
182 void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, int bits)
184 {
185 	int k;
186 	int nr = BITS_TO_LONGS(bits);
187 
188 	for (k = 0; k < nr; k++)
189 		dst[k] = bitmap1[k] & bitmap2[k];
190 }
191 EXPORT_SYMBOL(__bitmap_and);
192 
193 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
194 				const unsigned long *bitmap2, int bits)
195 {
196 	int k;
197 	int nr = BITS_TO_LONGS(bits);
198 
199 	for (k = 0; k < nr; k++)
200 		dst[k] = bitmap1[k] | bitmap2[k];
201 }
202 EXPORT_SYMBOL(__bitmap_or);
203 
204 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
205 				const unsigned long *bitmap2, int bits)
206 {
207 	int k;
208 	int nr = BITS_TO_LONGS(bits);
209 
210 	for (k = 0; k < nr; k++)
211 		dst[k] = bitmap1[k] ^ bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_xor);
214 
215 void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
216 				const unsigned long *bitmap2, int bits)
217 {
218 	int k;
219 	int nr = BITS_TO_LONGS(bits);
220 
221 	for (k = 0; k < nr; k++)
222 		dst[k] = bitmap1[k] & ~bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_andnot);
225 
226 int __bitmap_intersects(const unsigned long *bitmap1,
227 				const unsigned long *bitmap2, int bits)
228 {
229 	int k, lim = bits/BITS_PER_LONG;
230 	for (k = 0; k < lim; ++k)
231 		if (bitmap1[k] & bitmap2[k])
232 			return 1;
233 
234 	if (bits % BITS_PER_LONG)
235 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236 			return 1;
237 	return 0;
238 }
239 EXPORT_SYMBOL(__bitmap_intersects);
240 
241 int __bitmap_subset(const unsigned long *bitmap1,
242 				const unsigned long *bitmap2, int bits)
243 {
244 	int k, lim = bits/BITS_PER_LONG;
245 	for (k = 0; k < lim; ++k)
246 		if (bitmap1[k] & ~bitmap2[k])
247 			return 0;
248 
249 	if (bits % BITS_PER_LONG)
250 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251 			return 0;
252 	return 1;
253 }
254 EXPORT_SYMBOL(__bitmap_subset);
255 
256 int __bitmap_weight(const unsigned long *bitmap, int bits)
257 {
258 	int k, w = 0, lim = bits/BITS_PER_LONG;
259 
260 	for (k = 0; k < lim; k++)
261 		w += hweight_long(bitmap[k]);
262 
263 	if (bits % BITS_PER_LONG)
264 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
265 
266 	return w;
267 }
268 EXPORT_SYMBOL(__bitmap_weight);
269 
270 /*
271  * Bitmap printing & parsing functions: first version by Bill Irwin,
272  * second version by Paul Jackson, third by Joe Korty.
273  */
274 
275 #define CHUNKSZ				32
276 #define nbits_to_hold_value(val)	fls(val)
277 #define unhex(c)			(isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
279 
280 /**
281  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282  * @buf: byte buffer into which string is placed
283  * @buflen: reserved size of @buf, in bytes
284  * @maskp: pointer to bitmap to convert
285  * @nmaskbits: size of bitmap, in bits
286  *
287  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
288  * comma-separated sets of eight digits per set.
289  */
290 int bitmap_scnprintf(char *buf, unsigned int buflen,
291 	const unsigned long *maskp, int nmaskbits)
292 {
293 	int i, word, bit, len = 0;
294 	unsigned long val;
295 	const char *sep = "";
296 	int chunksz;
297 	u32 chunkmask;
298 
299 	chunksz = nmaskbits & (CHUNKSZ - 1);
300 	if (chunksz == 0)
301 		chunksz = CHUNKSZ;
302 
303 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
304 	for (; i >= 0; i -= CHUNKSZ) {
305 		chunkmask = ((1ULL << chunksz) - 1);
306 		word = i / BITS_PER_LONG;
307 		bit = i % BITS_PER_LONG;
308 		val = (maskp[word] >> bit) & chunkmask;
309 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
310 			(chunksz+3)/4, val);
311 		chunksz = CHUNKSZ;
312 		sep = ",";
313 	}
314 	return len;
315 }
316 EXPORT_SYMBOL(bitmap_scnprintf);
317 
318 /**
319  * __bitmap_parse - convert an ASCII hex string into a bitmap.
320  * @buf: pointer to buffer containing string.
321  * @buflen: buffer size in bytes.  If string is smaller than this
322  *    then it must be terminated with a \0.
323  * @is_user: location of buffer, 0 indicates kernel space
324  * @maskp: pointer to bitmap array that will contain result.
325  * @nmaskbits: size of bitmap, in bits.
326  *
327  * Commas group hex digits into chunks.  Each chunk defines exactly 32
328  * bits of the resultant bitmask.  No chunk may specify a value larger
329  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
330  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
331  * characters and for grouping errors such as "1,,5", ",44", "," and "".
332  * Leading and trailing whitespace accepted, but not embedded whitespace.
333  */
334 int __bitmap_parse(const char *buf, unsigned int buflen,
335 		int is_user, unsigned long *maskp,
336 		int nmaskbits)
337 {
338 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
339 	u32 chunk;
340 	const char __user *ubuf = buf;
341 
342 	bitmap_zero(maskp, nmaskbits);
343 
344 	nchunks = nbits = totaldigits = c = 0;
345 	do {
346 		chunk = ndigits = 0;
347 
348 		/* Get the next chunk of the bitmap */
349 		while (buflen) {
350 			old_c = c;
351 			if (is_user) {
352 				if (__get_user(c, ubuf++))
353 					return -EFAULT;
354 			}
355 			else
356 				c = *buf++;
357 			buflen--;
358 			if (isspace(c))
359 				continue;
360 
361 			/*
362 			 * If the last character was a space and the current
363 			 * character isn't '\0', we've got embedded whitespace.
364 			 * This is a no-no, so throw an error.
365 			 */
366 			if (totaldigits && c && isspace(old_c))
367 				return -EINVAL;
368 
369 			/* A '\0' or a ',' signal the end of the chunk */
370 			if (c == '\0' || c == ',')
371 				break;
372 
373 			if (!isxdigit(c))
374 				return -EINVAL;
375 
376 			/*
377 			 * Make sure there are at least 4 free bits in 'chunk'.
378 			 * If not, this hexdigit will overflow 'chunk', so
379 			 * throw an error.
380 			 */
381 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
382 				return -EOVERFLOW;
383 
384 			chunk = (chunk << 4) | unhex(c);
385 			ndigits++; totaldigits++;
386 		}
387 		if (ndigits == 0)
388 			return -EINVAL;
389 		if (nchunks == 0 && chunk == 0)
390 			continue;
391 
392 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
393 		*maskp |= chunk;
394 		nchunks++;
395 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
396 		if (nbits > nmaskbits)
397 			return -EOVERFLOW;
398 	} while (buflen && c == ',');
399 
400 	return 0;
401 }
402 EXPORT_SYMBOL(__bitmap_parse);
403 
404 /**
405  * bitmap_parse_user()
406  *
407  * @ubuf: pointer to user buffer containing string.
408  * @ulen: buffer size in bytes.  If string is smaller than this
409  *    then it must be terminated with a \0.
410  * @maskp: pointer to bitmap array that will contain result.
411  * @nmaskbits: size of bitmap, in bits.
412  *
413  * Wrapper for __bitmap_parse(), providing it with user buffer.
414  *
415  * We cannot have this as an inline function in bitmap.h because it needs
416  * linux/uaccess.h to get the access_ok() declaration and this causes
417  * cyclic dependencies.
418  */
419 int bitmap_parse_user(const char __user *ubuf,
420 			unsigned int ulen, unsigned long *maskp,
421 			int nmaskbits)
422 {
423 	if (!access_ok(VERIFY_READ, ubuf, ulen))
424 		return -EFAULT;
425 	return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
426 }
427 EXPORT_SYMBOL(bitmap_parse_user);
428 
429 /*
430  * bscnl_emit(buf, buflen, rbot, rtop, bp)
431  *
432  * Helper routine for bitmap_scnlistprintf().  Write decimal number
433  * or range to buf, suppressing output past buf+buflen, with optional
434  * comma-prefix.  Return len of what would be written to buf, if it
435  * all fit.
436  */
437 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
438 {
439 	if (len > 0)
440 		len += scnprintf(buf + len, buflen - len, ",");
441 	if (rbot == rtop)
442 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
443 	else
444 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
445 	return len;
446 }
447 
448 /**
449  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
450  * @buf: byte buffer into which string is placed
451  * @buflen: reserved size of @buf, in bytes
452  * @maskp: pointer to bitmap to convert
453  * @nmaskbits: size of bitmap, in bits
454  *
455  * Output format is a comma-separated list of decimal numbers and
456  * ranges.  Consecutively set bits are shown as two hyphen-separated
457  * decimal numbers, the smallest and largest bit numbers set in
458  * the range.  Output format is compatible with the format
459  * accepted as input by bitmap_parselist().
460  *
461  * The return value is the number of characters which would be
462  * generated for the given input, excluding the trailing '\0', as
463  * per ISO C99.
464  */
465 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
466 	const unsigned long *maskp, int nmaskbits)
467 {
468 	int len = 0;
469 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
470 	int cur, rbot, rtop;
471 
472 	rbot = cur = find_first_bit(maskp, nmaskbits);
473 	while (cur < nmaskbits) {
474 		rtop = cur;
475 		cur = find_next_bit(maskp, nmaskbits, cur+1);
476 		if (cur >= nmaskbits || cur > rtop + 1) {
477 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
478 			rbot = cur;
479 		}
480 	}
481 	return len;
482 }
483 EXPORT_SYMBOL(bitmap_scnlistprintf);
484 
485 /**
486  * bitmap_parselist - convert list format ASCII string to bitmap
487  * @bp: read nul-terminated user string from this buffer
488  * @maskp: write resulting mask here
489  * @nmaskbits: number of bits in mask to be written
490  *
491  * Input format is a comma-separated list of decimal numbers and
492  * ranges.  Consecutively set bits are shown as two hyphen-separated
493  * decimal numbers, the smallest and largest bit numbers set in
494  * the range.
495  *
496  * Returns 0 on success, -errno on invalid input strings.
497  * Error values:
498  *    %-EINVAL: second number in range smaller than first
499  *    %-EINVAL: invalid character in string
500  *    %-ERANGE: bit number specified too large for mask
501  */
502 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
503 {
504 	unsigned a, b;
505 
506 	bitmap_zero(maskp, nmaskbits);
507 	do {
508 		if (!isdigit(*bp))
509 			return -EINVAL;
510 		b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
511 		if (*bp == '-') {
512 			bp++;
513 			if (!isdigit(*bp))
514 				return -EINVAL;
515 			b = simple_strtoul(bp, (char **)&bp, BASEDEC);
516 		}
517 		if (!(a <= b))
518 			return -EINVAL;
519 		if (b >= nmaskbits)
520 			return -ERANGE;
521 		while (a <= b) {
522 			set_bit(a, maskp);
523 			a++;
524 		}
525 		if (*bp == ',')
526 			bp++;
527 	} while (*bp != '\0' && *bp != '\n');
528 	return 0;
529 }
530 EXPORT_SYMBOL(bitmap_parselist);
531 
532 /**
533  * bitmap_pos_to_ord(buf, pos, bits)
534  *	@buf: pointer to a bitmap
535  *	@pos: a bit position in @buf (0 <= @pos < @bits)
536  *	@bits: number of valid bit positions in @buf
537  *
538  * Map the bit at position @pos in @buf (of length @bits) to the
539  * ordinal of which set bit it is.  If it is not set or if @pos
540  * is not a valid bit position, map to -1.
541  *
542  * If for example, just bits 4 through 7 are set in @buf, then @pos
543  * values 4 through 7 will get mapped to 0 through 3, respectively,
544  * and other @pos values will get mapped to 0.  When @pos value 7
545  * gets mapped to (returns) @ord value 3 in this example, that means
546  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
547  *
548  * The bit positions 0 through @bits are valid positions in @buf.
549  */
550 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
551 {
552 	int i, ord;
553 
554 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
555 		return -1;
556 
557 	i = find_first_bit(buf, bits);
558 	ord = 0;
559 	while (i < pos) {
560 		i = find_next_bit(buf, bits, i + 1);
561 	     	ord++;
562 	}
563 	BUG_ON(i != pos);
564 
565 	return ord;
566 }
567 
568 /**
569  * bitmap_ord_to_pos(buf, ord, bits)
570  *	@buf: pointer to bitmap
571  *	@ord: ordinal bit position (n-th set bit, n >= 0)
572  *	@bits: number of valid bit positions in @buf
573  *
574  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
575  * Value of @ord should be in range 0 <= @ord < weight(buf), else
576  * results are undefined.
577  *
578  * If for example, just bits 4 through 7 are set in @buf, then @ord
579  * values 0 through 3 will get mapped to 4 through 7, respectively,
580  * and all other @ord values return undefined values.  When @ord value 3
581  * gets mapped to (returns) @pos value 7 in this example, that means
582  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
583  *
584  * The bit positions 0 through @bits are valid positions in @buf.
585  */
586 static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
587 {
588 	int pos = 0;
589 
590 	if (ord >= 0 && ord < bits) {
591 		int i;
592 
593 		for (i = find_first_bit(buf, bits);
594 		     i < bits && ord > 0;
595 		     i = find_next_bit(buf, bits, i + 1))
596 	     		ord--;
597 		if (i < bits && ord == 0)
598 			pos = i;
599 	}
600 
601 	return pos;
602 }
603 
604 /**
605  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
606  *	@dst: remapped result
607  *	@src: subset to be remapped
608  *	@old: defines domain of map
609  *	@new: defines range of map
610  *	@bits: number of bits in each of these bitmaps
611  *
612  * Let @old and @new define a mapping of bit positions, such that
613  * whatever position is held by the n-th set bit in @old is mapped
614  * to the n-th set bit in @new.  In the more general case, allowing
615  * for the possibility that the weight 'w' of @new is less than the
616  * weight of @old, map the position of the n-th set bit in @old to
617  * the position of the m-th set bit in @new, where m == n % w.
618  *
619  * If either of the @old and @new bitmaps are empty, or if @src and
620  * @dst point to the same location, then this routine copies @src
621  * to @dst.
622  *
623  * The positions of unset bits in @old are mapped to themselves
624  * (the identify map).
625  *
626  * Apply the above specified mapping to @src, placing the result in
627  * @dst, clearing any bits previously set in @dst.
628  *
629  * For example, lets say that @old has bits 4 through 7 set, and
630  * @new has bits 12 through 15 set.  This defines the mapping of bit
631  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
632  * bit positions unchanged.  So if say @src comes into this routine
633  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
634  * 13 and 15 set.
635  */
636 void bitmap_remap(unsigned long *dst, const unsigned long *src,
637 		const unsigned long *old, const unsigned long *new,
638 		int bits)
639 {
640 	int oldbit, w;
641 
642 	if (dst == src)		/* following doesn't handle inplace remaps */
643 		return;
644 	bitmap_zero(dst, bits);
645 
646 	w = bitmap_weight(new, bits);
647 	for (oldbit = find_first_bit(src, bits);
648 	     oldbit < bits;
649 	     oldbit = find_next_bit(src, bits, oldbit + 1)) {
650 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
651 		if (n < 0 || w == 0)
652 			set_bit(oldbit, dst);	/* identity map */
653 		else
654 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
655 	}
656 }
657 EXPORT_SYMBOL(bitmap_remap);
658 
659 /**
660  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
661  *	@oldbit: bit position to be mapped
662  *	@old: defines domain of map
663  *	@new: defines range of map
664  *	@bits: number of bits in each of these bitmaps
665  *
666  * Let @old and @new define a mapping of bit positions, such that
667  * whatever position is held by the n-th set bit in @old is mapped
668  * to the n-th set bit in @new.  In the more general case, allowing
669  * for the possibility that the weight 'w' of @new is less than the
670  * weight of @old, map the position of the n-th set bit in @old to
671  * the position of the m-th set bit in @new, where m == n % w.
672  *
673  * The positions of unset bits in @old are mapped to themselves
674  * (the identify map).
675  *
676  * Apply the above specified mapping to bit position @oldbit, returning
677  * the new bit position.
678  *
679  * For example, lets say that @old has bits 4 through 7 set, and
680  * @new has bits 12 through 15 set.  This defines the mapping of bit
681  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
682  * bit positions unchanged.  So if say @oldbit is 5, then this routine
683  * returns 13.
684  */
685 int bitmap_bitremap(int oldbit, const unsigned long *old,
686 				const unsigned long *new, int bits)
687 {
688 	int w = bitmap_weight(new, bits);
689 	int n = bitmap_pos_to_ord(old, oldbit, bits);
690 	if (n < 0 || w == 0)
691 		return oldbit;
692 	else
693 		return bitmap_ord_to_pos(new, n % w, bits);
694 }
695 EXPORT_SYMBOL(bitmap_bitremap);
696 
697 /*
698  * Common code for bitmap_*_region() routines.
699  *	bitmap: array of unsigned longs corresponding to the bitmap
700  *	pos: the beginning of the region
701  *	order: region size (log base 2 of number of bits)
702  *	reg_op: operation(s) to perform on that region of bitmap
703  *
704  * Can set, verify and/or release a region of bits in a bitmap,
705  * depending on which combination of REG_OP_* flag bits is set.
706  *
707  * A region of a bitmap is a sequence of bits in the bitmap, of
708  * some size '1 << order' (a power of two), aligned to that same
709  * '1 << order' power of two.
710  *
711  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
712  * Returns 0 in all other cases and reg_ops.
713  */
714 
715 enum {
716 	REG_OP_ISFREE,		/* true if region is all zero bits */
717 	REG_OP_ALLOC,		/* set all bits in region */
718 	REG_OP_RELEASE,		/* clear all bits in region */
719 };
720 
721 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
722 {
723 	int nbits_reg;		/* number of bits in region */
724 	int index;		/* index first long of region in bitmap */
725 	int offset;		/* bit offset region in bitmap[index] */
726 	int nlongs_reg;		/* num longs spanned by region in bitmap */
727 	int nbitsinlong;	/* num bits of region in each spanned long */
728 	unsigned long mask;	/* bitmask for one long of region */
729 	int i;			/* scans bitmap by longs */
730 	int ret = 0;		/* return value */
731 
732 	/*
733 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
734 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
735 	 */
736 	nbits_reg = 1 << order;
737 	index = pos / BITS_PER_LONG;
738 	offset = pos - (index * BITS_PER_LONG);
739 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
740 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
741 
742 	/*
743 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
744 	 * overflows if nbitsinlong == BITS_PER_LONG.
745 	 */
746 	mask = (1UL << (nbitsinlong - 1));
747 	mask += mask - 1;
748 	mask <<= offset;
749 
750 	switch (reg_op) {
751 	case REG_OP_ISFREE:
752 		for (i = 0; i < nlongs_reg; i++) {
753 			if (bitmap[index + i] & mask)
754 				goto done;
755 		}
756 		ret = 1;	/* all bits in region free (zero) */
757 		break;
758 
759 	case REG_OP_ALLOC:
760 		for (i = 0; i < nlongs_reg; i++)
761 			bitmap[index + i] |= mask;
762 		break;
763 
764 	case REG_OP_RELEASE:
765 		for (i = 0; i < nlongs_reg; i++)
766 			bitmap[index + i] &= ~mask;
767 		break;
768 	}
769 done:
770 	return ret;
771 }
772 
773 /**
774  * bitmap_find_free_region - find a contiguous aligned mem region
775  *	@bitmap: array of unsigned longs corresponding to the bitmap
776  *	@bits: number of bits in the bitmap
777  *	@order: region size (log base 2 of number of bits) to find
778  *
779  * Find a region of free (zero) bits in a @bitmap of @bits bits and
780  * allocate them (set them to one).  Only consider regions of length
781  * a power (@order) of two, aligned to that power of two, which
782  * makes the search algorithm much faster.
783  *
784  * Return the bit offset in bitmap of the allocated region,
785  * or -errno on failure.
786  */
787 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
788 {
789 	int pos;		/* scans bitmap by regions of size order */
790 
791 	for (pos = 0; pos < bits; pos += (1 << order))
792 		if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
793 			break;
794 	if (pos == bits)
795 		return -ENOMEM;
796 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
797 	return pos;
798 }
799 EXPORT_SYMBOL(bitmap_find_free_region);
800 
801 /**
802  * bitmap_release_region - release allocated bitmap region
803  *	@bitmap: array of unsigned longs corresponding to the bitmap
804  *	@pos: beginning of bit region to release
805  *	@order: region size (log base 2 of number of bits) to release
806  *
807  * This is the complement to __bitmap_find_free_region() and releases
808  * the found region (by clearing it in the bitmap).
809  *
810  * No return value.
811  */
812 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
813 {
814 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
815 }
816 EXPORT_SYMBOL(bitmap_release_region);
817 
818 /**
819  * bitmap_allocate_region - allocate bitmap region
820  *	@bitmap: array of unsigned longs corresponding to the bitmap
821  *	@pos: beginning of bit region to allocate
822  *	@order: region size (log base 2 of number of bits) to allocate
823  *
824  * Allocate (set bits in) a specified region of a bitmap.
825  *
826  * Return 0 on success, or %-EBUSY if specified region wasn't
827  * free (not all bits were zero).
828  */
829 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
830 {
831 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
832 		return -EBUSY;
833 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
834 	return 0;
835 }
836 EXPORT_SYMBOL(bitmap_allocate_region);
837