xref: /openbmc/linux/kernel/workqueue.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 
37 /*
38  * The per-CPU workqueue (if single thread, we always use the first
39  * possible cpu).
40  */
41 struct cpu_workqueue_struct {
42 
43 	spinlock_t lock;
44 
45 	struct list_head worklist;
46 	wait_queue_head_t more_work;
47 	struct work_struct *current_work;
48 
49 	struct workqueue_struct *wq;
50 	struct task_struct *thread;
51 
52 	int run_depth;		/* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54 
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60 	struct cpu_workqueue_struct *cpu_wq;
61 	struct list_head list;
62 	const char *name;
63 	int singlethread;
64 	int freezeable;		/* Freeze threads during suspend */
65 #ifdef CONFIG_LOCKDEP
66 	struct lockdep_map lockdep_map;
67 #endif
68 };
69 
70 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
71    threads to each one as cpus come/go. */
72 static DEFINE_MUTEX(workqueue_mutex);
73 static LIST_HEAD(workqueues);
74 
75 static int singlethread_cpu __read_mostly;
76 static cpumask_t cpu_singlethread_map __read_mostly;
77 /*
78  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
79  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
80  * which comes in between can't use for_each_online_cpu(). We could
81  * use cpu_possible_map, the cpumask below is more a documentation
82  * than optimization.
83  */
84 static cpumask_t cpu_populated_map __read_mostly;
85 
86 /* If it's single threaded, it isn't in the list of workqueues. */
87 static inline int is_single_threaded(struct workqueue_struct *wq)
88 {
89 	return wq->singlethread;
90 }
91 
92 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
93 {
94 	return is_single_threaded(wq)
95 		? &cpu_singlethread_map : &cpu_populated_map;
96 }
97 
98 static
99 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
100 {
101 	if (unlikely(is_single_threaded(wq)))
102 		cpu = singlethread_cpu;
103 	return per_cpu_ptr(wq->cpu_wq, cpu);
104 }
105 
106 /*
107  * Set the workqueue on which a work item is to be run
108  * - Must *only* be called if the pending flag is set
109  */
110 static inline void set_wq_data(struct work_struct *work,
111 				struct cpu_workqueue_struct *cwq)
112 {
113 	unsigned long new;
114 
115 	BUG_ON(!work_pending(work));
116 
117 	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
118 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
119 	atomic_long_set(&work->data, new);
120 }
121 
122 static inline
123 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
124 {
125 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
126 }
127 
128 static void insert_work(struct cpu_workqueue_struct *cwq,
129 				struct work_struct *work, int tail)
130 {
131 	set_wq_data(work, cwq);
132 	/*
133 	 * Ensure that we get the right work->data if we see the
134 	 * result of list_add() below, see try_to_grab_pending().
135 	 */
136 	smp_wmb();
137 	if (tail)
138 		list_add_tail(&work->entry, &cwq->worklist);
139 	else
140 		list_add(&work->entry, &cwq->worklist);
141 	wake_up(&cwq->more_work);
142 }
143 
144 /* Preempt must be disabled. */
145 static void __queue_work(struct cpu_workqueue_struct *cwq,
146 			 struct work_struct *work)
147 {
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&cwq->lock, flags);
151 	insert_work(cwq, work, 1);
152 	spin_unlock_irqrestore(&cwq->lock, flags);
153 }
154 
155 /**
156  * queue_work - queue work on a workqueue
157  * @wq: workqueue to use
158  * @work: work to queue
159  *
160  * Returns 0 if @work was already on a queue, non-zero otherwise.
161  *
162  * We queue the work to the CPU it was submitted, but there is no
163  * guarantee that it will be processed by that CPU.
164  */
165 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
166 {
167 	int ret = 0;
168 
169 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
170 		BUG_ON(!list_empty(&work->entry));
171 		__queue_work(wq_per_cpu(wq, get_cpu()), work);
172 		put_cpu();
173 		ret = 1;
174 	}
175 	return ret;
176 }
177 EXPORT_SYMBOL_GPL(queue_work);
178 
179 void delayed_work_timer_fn(unsigned long __data)
180 {
181 	struct delayed_work *dwork = (struct delayed_work *)__data;
182 	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
183 	struct workqueue_struct *wq = cwq->wq;
184 
185 	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
186 }
187 
188 /**
189  * queue_delayed_work - queue work on a workqueue after delay
190  * @wq: workqueue to use
191  * @dwork: delayable work to queue
192  * @delay: number of jiffies to wait before queueing
193  *
194  * Returns 0 if @work was already on a queue, non-zero otherwise.
195  */
196 int fastcall queue_delayed_work(struct workqueue_struct *wq,
197 			struct delayed_work *dwork, unsigned long delay)
198 {
199 	timer_stats_timer_set_start_info(&dwork->timer);
200 	if (delay == 0)
201 		return queue_work(wq, &dwork->work);
202 
203 	return queue_delayed_work_on(-1, wq, dwork, delay);
204 }
205 EXPORT_SYMBOL_GPL(queue_delayed_work);
206 
207 /**
208  * queue_delayed_work_on - queue work on specific CPU after delay
209  * @cpu: CPU number to execute work on
210  * @wq: workqueue to use
211  * @dwork: work to queue
212  * @delay: number of jiffies to wait before queueing
213  *
214  * Returns 0 if @work was already on a queue, non-zero otherwise.
215  */
216 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
217 			struct delayed_work *dwork, unsigned long delay)
218 {
219 	int ret = 0;
220 	struct timer_list *timer = &dwork->timer;
221 	struct work_struct *work = &dwork->work;
222 
223 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
224 		BUG_ON(timer_pending(timer));
225 		BUG_ON(!list_empty(&work->entry));
226 
227 		/* This stores cwq for the moment, for the timer_fn */
228 		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
229 		timer->expires = jiffies + delay;
230 		timer->data = (unsigned long)dwork;
231 		timer->function = delayed_work_timer_fn;
232 
233 		if (unlikely(cpu >= 0))
234 			add_timer_on(timer, cpu);
235 		else
236 			add_timer(timer);
237 		ret = 1;
238 	}
239 	return ret;
240 }
241 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
242 
243 static void run_workqueue(struct cpu_workqueue_struct *cwq)
244 {
245 	spin_lock_irq(&cwq->lock);
246 	cwq->run_depth++;
247 	if (cwq->run_depth > 3) {
248 		/* morton gets to eat his hat */
249 		printk("%s: recursion depth exceeded: %d\n",
250 			__FUNCTION__, cwq->run_depth);
251 		dump_stack();
252 	}
253 	while (!list_empty(&cwq->worklist)) {
254 		struct work_struct *work = list_entry(cwq->worklist.next,
255 						struct work_struct, entry);
256 		work_func_t f = work->func;
257 #ifdef CONFIG_LOCKDEP
258 		/*
259 		 * It is permissible to free the struct work_struct
260 		 * from inside the function that is called from it,
261 		 * this we need to take into account for lockdep too.
262 		 * To avoid bogus "held lock freed" warnings as well
263 		 * as problems when looking into work->lockdep_map,
264 		 * make a copy and use that here.
265 		 */
266 		struct lockdep_map lockdep_map = work->lockdep_map;
267 #endif
268 
269 		cwq->current_work = work;
270 		list_del_init(cwq->worklist.next);
271 		spin_unlock_irq(&cwq->lock);
272 
273 		BUG_ON(get_wq_data(work) != cwq);
274 		work_clear_pending(work);
275 		lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
276 		lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_);
277 		f(work);
278 		lock_release(&lockdep_map, 1, _THIS_IP_);
279 		lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
280 
281 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
282 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
283 					"%s/0x%08x/%d\n",
284 					current->comm, preempt_count(),
285 				       	task_pid_nr(current));
286 			printk(KERN_ERR "    last function: ");
287 			print_symbol("%s\n", (unsigned long)f);
288 			debug_show_held_locks(current);
289 			dump_stack();
290 		}
291 
292 		spin_lock_irq(&cwq->lock);
293 		cwq->current_work = NULL;
294 	}
295 	cwq->run_depth--;
296 	spin_unlock_irq(&cwq->lock);
297 }
298 
299 static int worker_thread(void *__cwq)
300 {
301 	struct cpu_workqueue_struct *cwq = __cwq;
302 	DEFINE_WAIT(wait);
303 
304 	if (cwq->wq->freezeable)
305 		set_freezable();
306 
307 	set_user_nice(current, -5);
308 
309 	for (;;) {
310 		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
311 		if (!freezing(current) &&
312 		    !kthread_should_stop() &&
313 		    list_empty(&cwq->worklist))
314 			schedule();
315 		finish_wait(&cwq->more_work, &wait);
316 
317 		try_to_freeze();
318 
319 		if (kthread_should_stop())
320 			break;
321 
322 		run_workqueue(cwq);
323 	}
324 
325 	return 0;
326 }
327 
328 struct wq_barrier {
329 	struct work_struct	work;
330 	struct completion	done;
331 };
332 
333 static void wq_barrier_func(struct work_struct *work)
334 {
335 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
336 	complete(&barr->done);
337 }
338 
339 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
340 					struct wq_barrier *barr, int tail)
341 {
342 	INIT_WORK(&barr->work, wq_barrier_func);
343 	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
344 
345 	init_completion(&barr->done);
346 
347 	insert_work(cwq, &barr->work, tail);
348 }
349 
350 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
351 {
352 	int active;
353 
354 	if (cwq->thread == current) {
355 		/*
356 		 * Probably keventd trying to flush its own queue. So simply run
357 		 * it by hand rather than deadlocking.
358 		 */
359 		run_workqueue(cwq);
360 		active = 1;
361 	} else {
362 		struct wq_barrier barr;
363 
364 		active = 0;
365 		spin_lock_irq(&cwq->lock);
366 		if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
367 			insert_wq_barrier(cwq, &barr, 1);
368 			active = 1;
369 		}
370 		spin_unlock_irq(&cwq->lock);
371 
372 		if (active)
373 			wait_for_completion(&barr.done);
374 	}
375 
376 	return active;
377 }
378 
379 /**
380  * flush_workqueue - ensure that any scheduled work has run to completion.
381  * @wq: workqueue to flush
382  *
383  * Forces execution of the workqueue and blocks until its completion.
384  * This is typically used in driver shutdown handlers.
385  *
386  * We sleep until all works which were queued on entry have been handled,
387  * but we are not livelocked by new incoming ones.
388  *
389  * This function used to run the workqueues itself.  Now we just wait for the
390  * helper threads to do it.
391  */
392 void fastcall flush_workqueue(struct workqueue_struct *wq)
393 {
394 	const cpumask_t *cpu_map = wq_cpu_map(wq);
395 	int cpu;
396 
397 	might_sleep();
398 	lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
399 	lock_release(&wq->lockdep_map, 1, _THIS_IP_);
400 	for_each_cpu_mask(cpu, *cpu_map)
401 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
402 }
403 EXPORT_SYMBOL_GPL(flush_workqueue);
404 
405 /*
406  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
407  * so this work can't be re-armed in any way.
408  */
409 static int try_to_grab_pending(struct work_struct *work)
410 {
411 	struct cpu_workqueue_struct *cwq;
412 	int ret = -1;
413 
414 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
415 		return 0;
416 
417 	/*
418 	 * The queueing is in progress, or it is already queued. Try to
419 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
420 	 */
421 
422 	cwq = get_wq_data(work);
423 	if (!cwq)
424 		return ret;
425 
426 	spin_lock_irq(&cwq->lock);
427 	if (!list_empty(&work->entry)) {
428 		/*
429 		 * This work is queued, but perhaps we locked the wrong cwq.
430 		 * In that case we must see the new value after rmb(), see
431 		 * insert_work()->wmb().
432 		 */
433 		smp_rmb();
434 		if (cwq == get_wq_data(work)) {
435 			list_del_init(&work->entry);
436 			ret = 1;
437 		}
438 	}
439 	spin_unlock_irq(&cwq->lock);
440 
441 	return ret;
442 }
443 
444 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
445 				struct work_struct *work)
446 {
447 	struct wq_barrier barr;
448 	int running = 0;
449 
450 	spin_lock_irq(&cwq->lock);
451 	if (unlikely(cwq->current_work == work)) {
452 		insert_wq_barrier(cwq, &barr, 0);
453 		running = 1;
454 	}
455 	spin_unlock_irq(&cwq->lock);
456 
457 	if (unlikely(running))
458 		wait_for_completion(&barr.done);
459 }
460 
461 static void wait_on_work(struct work_struct *work)
462 {
463 	struct cpu_workqueue_struct *cwq;
464 	struct workqueue_struct *wq;
465 	const cpumask_t *cpu_map;
466 	int cpu;
467 
468 	might_sleep();
469 
470 	lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
471 	lock_release(&work->lockdep_map, 1, _THIS_IP_);
472 
473 	cwq = get_wq_data(work);
474 	if (!cwq)
475 		return;
476 
477 	wq = cwq->wq;
478 	cpu_map = wq_cpu_map(wq);
479 
480 	for_each_cpu_mask(cpu, *cpu_map)
481 		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
482 }
483 
484 static int __cancel_work_timer(struct work_struct *work,
485 				struct timer_list* timer)
486 {
487 	int ret;
488 
489 	do {
490 		ret = (timer && likely(del_timer(timer)));
491 		if (!ret)
492 			ret = try_to_grab_pending(work);
493 		wait_on_work(work);
494 	} while (unlikely(ret < 0));
495 
496 	work_clear_pending(work);
497 	return ret;
498 }
499 
500 /**
501  * cancel_work_sync - block until a work_struct's callback has terminated
502  * @work: the work which is to be flushed
503  *
504  * Returns true if @work was pending.
505  *
506  * cancel_work_sync() will cancel the work if it is queued. If the work's
507  * callback appears to be running, cancel_work_sync() will block until it
508  * has completed.
509  *
510  * It is possible to use this function if the work re-queues itself. It can
511  * cancel the work even if it migrates to another workqueue, however in that
512  * case it only guarantees that work->func() has completed on the last queued
513  * workqueue.
514  *
515  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
516  * pending, otherwise it goes into a busy-wait loop until the timer expires.
517  *
518  * The caller must ensure that workqueue_struct on which this work was last
519  * queued can't be destroyed before this function returns.
520  */
521 int cancel_work_sync(struct work_struct *work)
522 {
523 	return __cancel_work_timer(work, NULL);
524 }
525 EXPORT_SYMBOL_GPL(cancel_work_sync);
526 
527 /**
528  * cancel_delayed_work_sync - reliably kill off a delayed work.
529  * @dwork: the delayed work struct
530  *
531  * Returns true if @dwork was pending.
532  *
533  * It is possible to use this function if @dwork rearms itself via queue_work()
534  * or queue_delayed_work(). See also the comment for cancel_work_sync().
535  */
536 int cancel_delayed_work_sync(struct delayed_work *dwork)
537 {
538 	return __cancel_work_timer(&dwork->work, &dwork->timer);
539 }
540 EXPORT_SYMBOL(cancel_delayed_work_sync);
541 
542 static struct workqueue_struct *keventd_wq __read_mostly;
543 
544 /**
545  * schedule_work - put work task in global workqueue
546  * @work: job to be done
547  *
548  * This puts a job in the kernel-global workqueue.
549  */
550 int fastcall schedule_work(struct work_struct *work)
551 {
552 	return queue_work(keventd_wq, work);
553 }
554 EXPORT_SYMBOL(schedule_work);
555 
556 /**
557  * schedule_delayed_work - put work task in global workqueue after delay
558  * @dwork: job to be done
559  * @delay: number of jiffies to wait or 0 for immediate execution
560  *
561  * After waiting for a given time this puts a job in the kernel-global
562  * workqueue.
563  */
564 int fastcall schedule_delayed_work(struct delayed_work *dwork,
565 					unsigned long delay)
566 {
567 	timer_stats_timer_set_start_info(&dwork->timer);
568 	return queue_delayed_work(keventd_wq, dwork, delay);
569 }
570 EXPORT_SYMBOL(schedule_delayed_work);
571 
572 /**
573  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
574  * @cpu: cpu to use
575  * @dwork: job to be done
576  * @delay: number of jiffies to wait
577  *
578  * After waiting for a given time this puts a job in the kernel-global
579  * workqueue on the specified CPU.
580  */
581 int schedule_delayed_work_on(int cpu,
582 			struct delayed_work *dwork, unsigned long delay)
583 {
584 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
585 }
586 EXPORT_SYMBOL(schedule_delayed_work_on);
587 
588 /**
589  * schedule_on_each_cpu - call a function on each online CPU from keventd
590  * @func: the function to call
591  *
592  * Returns zero on success.
593  * Returns -ve errno on failure.
594  *
595  * Appears to be racy against CPU hotplug.
596  *
597  * schedule_on_each_cpu() is very slow.
598  */
599 int schedule_on_each_cpu(work_func_t func)
600 {
601 	int cpu;
602 	struct work_struct *works;
603 
604 	works = alloc_percpu(struct work_struct);
605 	if (!works)
606 		return -ENOMEM;
607 
608 	preempt_disable();		/* CPU hotplug */
609 	for_each_online_cpu(cpu) {
610 		struct work_struct *work = per_cpu_ptr(works, cpu);
611 
612 		INIT_WORK(work, func);
613 		set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
614 		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
615 	}
616 	preempt_enable();
617 	flush_workqueue(keventd_wq);
618 	free_percpu(works);
619 	return 0;
620 }
621 
622 void flush_scheduled_work(void)
623 {
624 	flush_workqueue(keventd_wq);
625 }
626 EXPORT_SYMBOL(flush_scheduled_work);
627 
628 /**
629  * execute_in_process_context - reliably execute the routine with user context
630  * @fn:		the function to execute
631  * @ew:		guaranteed storage for the execute work structure (must
632  *		be available when the work executes)
633  *
634  * Executes the function immediately if process context is available,
635  * otherwise schedules the function for delayed execution.
636  *
637  * Returns:	0 - function was executed
638  *		1 - function was scheduled for execution
639  */
640 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
641 {
642 	if (!in_interrupt()) {
643 		fn(&ew->work);
644 		return 0;
645 	}
646 
647 	INIT_WORK(&ew->work, fn);
648 	schedule_work(&ew->work);
649 
650 	return 1;
651 }
652 EXPORT_SYMBOL_GPL(execute_in_process_context);
653 
654 int keventd_up(void)
655 {
656 	return keventd_wq != NULL;
657 }
658 
659 int current_is_keventd(void)
660 {
661 	struct cpu_workqueue_struct *cwq;
662 	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
663 	int ret = 0;
664 
665 	BUG_ON(!keventd_wq);
666 
667 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
668 	if (current == cwq->thread)
669 		ret = 1;
670 
671 	return ret;
672 
673 }
674 
675 static struct cpu_workqueue_struct *
676 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
677 {
678 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
679 
680 	cwq->wq = wq;
681 	spin_lock_init(&cwq->lock);
682 	INIT_LIST_HEAD(&cwq->worklist);
683 	init_waitqueue_head(&cwq->more_work);
684 
685 	return cwq;
686 }
687 
688 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
689 {
690 	struct workqueue_struct *wq = cwq->wq;
691 	const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
692 	struct task_struct *p;
693 
694 	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
695 	/*
696 	 * Nobody can add the work_struct to this cwq,
697 	 *	if (caller is __create_workqueue)
698 	 *		nobody should see this wq
699 	 *	else // caller is CPU_UP_PREPARE
700 	 *		cpu is not on cpu_online_map
701 	 * so we can abort safely.
702 	 */
703 	if (IS_ERR(p))
704 		return PTR_ERR(p);
705 
706 	cwq->thread = p;
707 
708 	return 0;
709 }
710 
711 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
712 {
713 	struct task_struct *p = cwq->thread;
714 
715 	if (p != NULL) {
716 		if (cpu >= 0)
717 			kthread_bind(p, cpu);
718 		wake_up_process(p);
719 	}
720 }
721 
722 struct workqueue_struct *__create_workqueue_key(const char *name,
723 						int singlethread,
724 						int freezeable,
725 						struct lock_class_key *key)
726 {
727 	struct workqueue_struct *wq;
728 	struct cpu_workqueue_struct *cwq;
729 	int err = 0, cpu;
730 
731 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
732 	if (!wq)
733 		return NULL;
734 
735 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
736 	if (!wq->cpu_wq) {
737 		kfree(wq);
738 		return NULL;
739 	}
740 
741 	wq->name = name;
742 	lockdep_init_map(&wq->lockdep_map, name, key, 0);
743 	wq->singlethread = singlethread;
744 	wq->freezeable = freezeable;
745 	INIT_LIST_HEAD(&wq->list);
746 
747 	if (singlethread) {
748 		cwq = init_cpu_workqueue(wq, singlethread_cpu);
749 		err = create_workqueue_thread(cwq, singlethread_cpu);
750 		start_workqueue_thread(cwq, -1);
751 	} else {
752 		mutex_lock(&workqueue_mutex);
753 		list_add(&wq->list, &workqueues);
754 
755 		for_each_possible_cpu(cpu) {
756 			cwq = init_cpu_workqueue(wq, cpu);
757 			if (err || !cpu_online(cpu))
758 				continue;
759 			err = create_workqueue_thread(cwq, cpu);
760 			start_workqueue_thread(cwq, cpu);
761 		}
762 		mutex_unlock(&workqueue_mutex);
763 	}
764 
765 	if (err) {
766 		destroy_workqueue(wq);
767 		wq = NULL;
768 	}
769 	return wq;
770 }
771 EXPORT_SYMBOL_GPL(__create_workqueue_key);
772 
773 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
774 {
775 	/*
776 	 * Our caller is either destroy_workqueue() or CPU_DEAD,
777 	 * workqueue_mutex protects cwq->thread
778 	 */
779 	if (cwq->thread == NULL)
780 		return;
781 
782 	lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
783 	lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
784 
785 	flush_cpu_workqueue(cwq);
786 	/*
787 	 * If the caller is CPU_DEAD and cwq->worklist was not empty,
788 	 * a concurrent flush_workqueue() can insert a barrier after us.
789 	 * However, in that case run_workqueue() won't return and check
790 	 * kthread_should_stop() until it flushes all work_struct's.
791 	 * When ->worklist becomes empty it is safe to exit because no
792 	 * more work_structs can be queued on this cwq: flush_workqueue
793 	 * checks list_empty(), and a "normal" queue_work() can't use
794 	 * a dead CPU.
795 	 */
796 	kthread_stop(cwq->thread);
797 	cwq->thread = NULL;
798 }
799 
800 /**
801  * destroy_workqueue - safely terminate a workqueue
802  * @wq: target workqueue
803  *
804  * Safely destroy a workqueue. All work currently pending will be done first.
805  */
806 void destroy_workqueue(struct workqueue_struct *wq)
807 {
808 	const cpumask_t *cpu_map = wq_cpu_map(wq);
809 	struct cpu_workqueue_struct *cwq;
810 	int cpu;
811 
812 	mutex_lock(&workqueue_mutex);
813 	list_del(&wq->list);
814 	mutex_unlock(&workqueue_mutex);
815 
816 	for_each_cpu_mask(cpu, *cpu_map) {
817 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
818 		cleanup_workqueue_thread(cwq, cpu);
819 	}
820 
821 	free_percpu(wq->cpu_wq);
822 	kfree(wq);
823 }
824 EXPORT_SYMBOL_GPL(destroy_workqueue);
825 
826 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
827 						unsigned long action,
828 						void *hcpu)
829 {
830 	unsigned int cpu = (unsigned long)hcpu;
831 	struct cpu_workqueue_struct *cwq;
832 	struct workqueue_struct *wq;
833 
834 	action &= ~CPU_TASKS_FROZEN;
835 
836 	switch (action) {
837 	case CPU_LOCK_ACQUIRE:
838 		mutex_lock(&workqueue_mutex);
839 		return NOTIFY_OK;
840 
841 	case CPU_LOCK_RELEASE:
842 		mutex_unlock(&workqueue_mutex);
843 		return NOTIFY_OK;
844 
845 	case CPU_UP_PREPARE:
846 		cpu_set(cpu, cpu_populated_map);
847 	}
848 
849 	list_for_each_entry(wq, &workqueues, list) {
850 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
851 
852 		switch (action) {
853 		case CPU_UP_PREPARE:
854 			if (!create_workqueue_thread(cwq, cpu))
855 				break;
856 			printk(KERN_ERR "workqueue for %i failed\n", cpu);
857 			return NOTIFY_BAD;
858 
859 		case CPU_ONLINE:
860 			start_workqueue_thread(cwq, cpu);
861 			break;
862 
863 		case CPU_UP_CANCELED:
864 			start_workqueue_thread(cwq, -1);
865 		case CPU_DEAD:
866 			cleanup_workqueue_thread(cwq, cpu);
867 			break;
868 		}
869 	}
870 
871 	return NOTIFY_OK;
872 }
873 
874 void __init init_workqueues(void)
875 {
876 	cpu_populated_map = cpu_online_map;
877 	singlethread_cpu = first_cpu(cpu_possible_map);
878 	cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
879 	hotcpu_notifier(workqueue_cpu_callback, 0);
880 	keventd_wq = create_workqueue("events");
881 	BUG_ON(!keventd_wq);
882 }
883