xref: /openbmc/linux/kernel/workqueue.c (revision 0a9d59a2461477bd9ed143c01af9df3f8f00fa81)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT	= HZ / 100,	/* call for help after 10ms */
83 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
84 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
85 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
86 
87 	/*
88 	 * Rescue workers are used only on emergencies and shared by
89 	 * all cpus.  Give -20.
90 	 */
91 	RESCUER_NICE_LEVEL	= -20,
92 };
93 
94 /*
95  * Structure fields follow one of the following exclusion rules.
96  *
97  * I: Modifiable by initialization/destruction paths and read-only for
98  *    everyone else.
99  *
100  * P: Preemption protected.  Disabling preemption is enough and should
101  *    only be modified and accessed from the local cpu.
102  *
103  * L: gcwq->lock protected.  Access with gcwq->lock held.
104  *
105  * X: During normal operation, modification requires gcwq->lock and
106  *    should be done only from local cpu.  Either disabling preemption
107  *    on local cpu or grabbing gcwq->lock is enough for read access.
108  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
109  *
110  * F: wq->flush_mutex protected.
111  *
112  * W: workqueue_lock protected.
113  */
114 
115 struct global_cwq;
116 
117 /*
118  * The poor guys doing the actual heavy lifting.  All on-duty workers
119  * are either serving the manager role, on idle list or on busy hash.
120  */
121 struct worker {
122 	/* on idle list while idle, on busy hash table while busy */
123 	union {
124 		struct list_head	entry;	/* L: while idle */
125 		struct hlist_node	hentry;	/* L: while busy */
126 	};
127 
128 	struct work_struct	*current_work;	/* L: work being processed */
129 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
130 	struct list_head	scheduled;	/* L: scheduled works */
131 	struct task_struct	*task;		/* I: worker task */
132 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
133 	/* 64 bytes boundary on 64bit, 32 on 32bit */
134 	unsigned long		last_active;	/* L: last active timestamp */
135 	unsigned int		flags;		/* X: flags */
136 	int			id;		/* I: worker id */
137 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
138 };
139 
140 /*
141  * Global per-cpu workqueue.  There's one and only one for each cpu
142  * and all works are queued and processed here regardless of their
143  * target workqueues.
144  */
145 struct global_cwq {
146 	spinlock_t		lock;		/* the gcwq lock */
147 	struct list_head	worklist;	/* L: list of pending works */
148 	unsigned int		cpu;		/* I: the associated cpu */
149 	unsigned int		flags;		/* L: GCWQ_* flags */
150 
151 	int			nr_workers;	/* L: total number of workers */
152 	int			nr_idle;	/* L: currently idle ones */
153 
154 	/* workers are chained either in the idle_list or busy_hash */
155 	struct list_head	idle_list;	/* X: list of idle workers */
156 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
157 						/* L: hash of busy workers */
158 
159 	struct timer_list	idle_timer;	/* L: worker idle timeout */
160 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
161 
162 	struct ida		worker_ida;	/* L: for worker IDs */
163 
164 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
165 	unsigned int		trustee_state;	/* L: trustee state */
166 	wait_queue_head_t	trustee_wait;	/* trustee wait */
167 	struct worker		*first_idle;	/* L: first idle worker */
168 } ____cacheline_aligned_in_smp;
169 
170 /*
171  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
172  * work_struct->data are used for flags and thus cwqs need to be
173  * aligned at two's power of the number of flag bits.
174  */
175 struct cpu_workqueue_struct {
176 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
177 	struct workqueue_struct *wq;		/* I: the owning workqueue */
178 	int			work_color;	/* L: current color */
179 	int			flush_color;	/* L: flushing color */
180 	int			nr_in_flight[WORK_NR_COLORS];
181 						/* L: nr of in_flight works */
182 	int			nr_active;	/* L: nr of active works */
183 	int			max_active;	/* L: max active works */
184 	struct list_head	delayed_works;	/* L: delayed works */
185 };
186 
187 /*
188  * Structure used to wait for workqueue flush.
189  */
190 struct wq_flusher {
191 	struct list_head	list;		/* F: list of flushers */
192 	int			flush_color;	/* F: flush color waiting for */
193 	struct completion	done;		/* flush completion */
194 };
195 
196 /*
197  * All cpumasks are assumed to be always set on UP and thus can't be
198  * used to determine whether there's something to be done.
199  */
200 #ifdef CONFIG_SMP
201 typedef cpumask_var_t mayday_mask_t;
202 #define mayday_test_and_set_cpu(cpu, mask)	\
203 	cpumask_test_and_set_cpu((cpu), (mask))
204 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
205 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
206 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
207 #define free_mayday_mask(mask)			free_cpumask_var((mask))
208 #else
209 typedef unsigned long mayday_mask_t;
210 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
211 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
212 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
213 #define alloc_mayday_mask(maskp, gfp)		true
214 #define free_mayday_mask(mask)			do { } while (0)
215 #endif
216 
217 /*
218  * The externally visible workqueue abstraction is an array of
219  * per-CPU workqueues:
220  */
221 struct workqueue_struct {
222 	unsigned int		flags;		/* I: WQ_* flags */
223 	union {
224 		struct cpu_workqueue_struct __percpu	*pcpu;
225 		struct cpu_workqueue_struct		*single;
226 		unsigned long				v;
227 	} cpu_wq;				/* I: cwq's */
228 	struct list_head	list;		/* W: list of all workqueues */
229 
230 	struct mutex		flush_mutex;	/* protects wq flushing */
231 	int			work_color;	/* F: current work color */
232 	int			flush_color;	/* F: current flush color */
233 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
234 	struct wq_flusher	*first_flusher;	/* F: first flusher */
235 	struct list_head	flusher_queue;	/* F: flush waiters */
236 	struct list_head	flusher_overflow; /* F: flush overflow list */
237 
238 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
239 	struct worker		*rescuer;	/* I: rescue worker */
240 
241 	int			saved_max_active; /* W: saved cwq max_active */
242 	const char		*name;		/* I: workqueue name */
243 #ifdef CONFIG_LOCKDEP
244 	struct lockdep_map	lockdep_map;
245 #endif
246 };
247 
248 struct workqueue_struct *system_wq __read_mostly;
249 struct workqueue_struct *system_long_wq __read_mostly;
250 struct workqueue_struct *system_nrt_wq __read_mostly;
251 struct workqueue_struct *system_unbound_wq __read_mostly;
252 EXPORT_SYMBOL_GPL(system_wq);
253 EXPORT_SYMBOL_GPL(system_long_wq);
254 EXPORT_SYMBOL_GPL(system_nrt_wq);
255 EXPORT_SYMBOL_GPL(system_unbound_wq);
256 
257 #define CREATE_TRACE_POINTS
258 #include <trace/events/workqueue.h>
259 
260 #define for_each_busy_worker(worker, i, pos, gcwq)			\
261 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
262 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
263 
264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 				  unsigned int sw)
266 {
267 	if (cpu < nr_cpu_ids) {
268 		if (sw & 1) {
269 			cpu = cpumask_next(cpu, mask);
270 			if (cpu < nr_cpu_ids)
271 				return cpu;
272 		}
273 		if (sw & 2)
274 			return WORK_CPU_UNBOUND;
275 	}
276 	return WORK_CPU_NONE;
277 }
278 
279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 				struct workqueue_struct *wq)
281 {
282 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
283 }
284 
285 /*
286  * CPU iterators
287  *
288  * An extra gcwq is defined for an invalid cpu number
289  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290  * specific CPU.  The following iterators are similar to
291  * for_each_*_cpu() iterators but also considers the unbound gcwq.
292  *
293  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
294  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
295  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
296  *				  WORK_CPU_UNBOUND for unbound workqueues
297  */
298 #define for_each_gcwq_cpu(cpu)						\
299 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
300 	     (cpu) < WORK_CPU_NONE;					\
301 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
302 
303 #define for_each_online_gcwq_cpu(cpu)					\
304 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
305 	     (cpu) < WORK_CPU_NONE;					\
306 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
307 
308 #define for_each_cwq_cpu(cpu, wq)					\
309 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
310 	     (cpu) < WORK_CPU_NONE;					\
311 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
312 
313 #ifdef CONFIG_DEBUG_OBJECTS_WORK
314 
315 static struct debug_obj_descr work_debug_descr;
316 
317 /*
318  * fixup_init is called when:
319  * - an active object is initialized
320  */
321 static int work_fixup_init(void *addr, enum debug_obj_state state)
322 {
323 	struct work_struct *work = addr;
324 
325 	switch (state) {
326 	case ODEBUG_STATE_ACTIVE:
327 		cancel_work_sync(work);
328 		debug_object_init(work, &work_debug_descr);
329 		return 1;
330 	default:
331 		return 0;
332 	}
333 }
334 
335 /*
336  * fixup_activate is called when:
337  * - an active object is activated
338  * - an unknown object is activated (might be a statically initialized object)
339  */
340 static int work_fixup_activate(void *addr, enum debug_obj_state state)
341 {
342 	struct work_struct *work = addr;
343 
344 	switch (state) {
345 
346 	case ODEBUG_STATE_NOTAVAILABLE:
347 		/*
348 		 * This is not really a fixup. The work struct was
349 		 * statically initialized. We just make sure that it
350 		 * is tracked in the object tracker.
351 		 */
352 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
353 			debug_object_init(work, &work_debug_descr);
354 			debug_object_activate(work, &work_debug_descr);
355 			return 0;
356 		}
357 		WARN_ON_ONCE(1);
358 		return 0;
359 
360 	case ODEBUG_STATE_ACTIVE:
361 		WARN_ON(1);
362 
363 	default:
364 		return 0;
365 	}
366 }
367 
368 /*
369  * fixup_free is called when:
370  * - an active object is freed
371  */
372 static int work_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 	struct work_struct *work = addr;
375 
376 	switch (state) {
377 	case ODEBUG_STATE_ACTIVE:
378 		cancel_work_sync(work);
379 		debug_object_free(work, &work_debug_descr);
380 		return 1;
381 	default:
382 		return 0;
383 	}
384 }
385 
386 static struct debug_obj_descr work_debug_descr = {
387 	.name		= "work_struct",
388 	.fixup_init	= work_fixup_init,
389 	.fixup_activate	= work_fixup_activate,
390 	.fixup_free	= work_fixup_free,
391 };
392 
393 static inline void debug_work_activate(struct work_struct *work)
394 {
395 	debug_object_activate(work, &work_debug_descr);
396 }
397 
398 static inline void debug_work_deactivate(struct work_struct *work)
399 {
400 	debug_object_deactivate(work, &work_debug_descr);
401 }
402 
403 void __init_work(struct work_struct *work, int onstack)
404 {
405 	if (onstack)
406 		debug_object_init_on_stack(work, &work_debug_descr);
407 	else
408 		debug_object_init(work, &work_debug_descr);
409 }
410 EXPORT_SYMBOL_GPL(__init_work);
411 
412 void destroy_work_on_stack(struct work_struct *work)
413 {
414 	debug_object_free(work, &work_debug_descr);
415 }
416 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
417 
418 #else
419 static inline void debug_work_activate(struct work_struct *work) { }
420 static inline void debug_work_deactivate(struct work_struct *work) { }
421 #endif
422 
423 /* Serializes the accesses to the list of workqueues. */
424 static DEFINE_SPINLOCK(workqueue_lock);
425 static LIST_HEAD(workqueues);
426 static bool workqueue_freezing;		/* W: have wqs started freezing? */
427 
428 /*
429  * The almighty global cpu workqueues.  nr_running is the only field
430  * which is expected to be used frequently by other cpus via
431  * try_to_wake_up().  Put it in a separate cacheline.
432  */
433 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
434 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
435 
436 /*
437  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
438  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
439  * workers have WORKER_UNBOUND set.
440  */
441 static struct global_cwq unbound_global_cwq;
442 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
443 
444 static int worker_thread(void *__worker);
445 
446 static struct global_cwq *get_gcwq(unsigned int cpu)
447 {
448 	if (cpu != WORK_CPU_UNBOUND)
449 		return &per_cpu(global_cwq, cpu);
450 	else
451 		return &unbound_global_cwq;
452 }
453 
454 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
455 {
456 	if (cpu != WORK_CPU_UNBOUND)
457 		return &per_cpu(gcwq_nr_running, cpu);
458 	else
459 		return &unbound_gcwq_nr_running;
460 }
461 
462 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
463 					    struct workqueue_struct *wq)
464 {
465 	if (!(wq->flags & WQ_UNBOUND)) {
466 		if (likely(cpu < nr_cpu_ids)) {
467 #ifdef CONFIG_SMP
468 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
469 #else
470 			return wq->cpu_wq.single;
471 #endif
472 		}
473 	} else if (likely(cpu == WORK_CPU_UNBOUND))
474 		return wq->cpu_wq.single;
475 	return NULL;
476 }
477 
478 static unsigned int work_color_to_flags(int color)
479 {
480 	return color << WORK_STRUCT_COLOR_SHIFT;
481 }
482 
483 static int get_work_color(struct work_struct *work)
484 {
485 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
486 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
487 }
488 
489 static int work_next_color(int color)
490 {
491 	return (color + 1) % WORK_NR_COLORS;
492 }
493 
494 /*
495  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
496  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
497  * cleared and the work data contains the cpu number it was last on.
498  *
499  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
500  * cwq, cpu or clear work->data.  These functions should only be
501  * called while the work is owned - ie. while the PENDING bit is set.
502  *
503  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
504  * corresponding to a work.  gcwq is available once the work has been
505  * queued anywhere after initialization.  cwq is available only from
506  * queueing until execution starts.
507  */
508 static inline void set_work_data(struct work_struct *work, unsigned long data,
509 				 unsigned long flags)
510 {
511 	BUG_ON(!work_pending(work));
512 	atomic_long_set(&work->data, data | flags | work_static(work));
513 }
514 
515 static void set_work_cwq(struct work_struct *work,
516 			 struct cpu_workqueue_struct *cwq,
517 			 unsigned long extra_flags)
518 {
519 	set_work_data(work, (unsigned long)cwq,
520 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
521 }
522 
523 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
524 {
525 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
526 }
527 
528 static void clear_work_data(struct work_struct *work)
529 {
530 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
531 }
532 
533 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
534 {
535 	unsigned long data = atomic_long_read(&work->data);
536 
537 	if (data & WORK_STRUCT_CWQ)
538 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
539 	else
540 		return NULL;
541 }
542 
543 static struct global_cwq *get_work_gcwq(struct work_struct *work)
544 {
545 	unsigned long data = atomic_long_read(&work->data);
546 	unsigned int cpu;
547 
548 	if (data & WORK_STRUCT_CWQ)
549 		return ((struct cpu_workqueue_struct *)
550 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
551 
552 	cpu = data >> WORK_STRUCT_FLAG_BITS;
553 	if (cpu == WORK_CPU_NONE)
554 		return NULL;
555 
556 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
557 	return get_gcwq(cpu);
558 }
559 
560 /*
561  * Policy functions.  These define the policies on how the global
562  * worker pool is managed.  Unless noted otherwise, these functions
563  * assume that they're being called with gcwq->lock held.
564  */
565 
566 static bool __need_more_worker(struct global_cwq *gcwq)
567 {
568 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
569 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
570 }
571 
572 /*
573  * Need to wake up a worker?  Called from anything but currently
574  * running workers.
575  */
576 static bool need_more_worker(struct global_cwq *gcwq)
577 {
578 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
579 }
580 
581 /* Can I start working?  Called from busy but !running workers. */
582 static bool may_start_working(struct global_cwq *gcwq)
583 {
584 	return gcwq->nr_idle;
585 }
586 
587 /* Do I need to keep working?  Called from currently running workers. */
588 static bool keep_working(struct global_cwq *gcwq)
589 {
590 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
591 
592 	return !list_empty(&gcwq->worklist) &&
593 		(atomic_read(nr_running) <= 1 ||
594 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
595 }
596 
597 /* Do we need a new worker?  Called from manager. */
598 static bool need_to_create_worker(struct global_cwq *gcwq)
599 {
600 	return need_more_worker(gcwq) && !may_start_working(gcwq);
601 }
602 
603 /* Do I need to be the manager? */
604 static bool need_to_manage_workers(struct global_cwq *gcwq)
605 {
606 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
607 }
608 
609 /* Do we have too many workers and should some go away? */
610 static bool too_many_workers(struct global_cwq *gcwq)
611 {
612 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
613 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
614 	int nr_busy = gcwq->nr_workers - nr_idle;
615 
616 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
617 }
618 
619 /*
620  * Wake up functions.
621  */
622 
623 /* Return the first worker.  Safe with preemption disabled */
624 static struct worker *first_worker(struct global_cwq *gcwq)
625 {
626 	if (unlikely(list_empty(&gcwq->idle_list)))
627 		return NULL;
628 
629 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
630 }
631 
632 /**
633  * wake_up_worker - wake up an idle worker
634  * @gcwq: gcwq to wake worker for
635  *
636  * Wake up the first idle worker of @gcwq.
637  *
638  * CONTEXT:
639  * spin_lock_irq(gcwq->lock).
640  */
641 static void wake_up_worker(struct global_cwq *gcwq)
642 {
643 	struct worker *worker = first_worker(gcwq);
644 
645 	if (likely(worker))
646 		wake_up_process(worker->task);
647 }
648 
649 /**
650  * wq_worker_waking_up - a worker is waking up
651  * @task: task waking up
652  * @cpu: CPU @task is waking up to
653  *
654  * This function is called during try_to_wake_up() when a worker is
655  * being awoken.
656  *
657  * CONTEXT:
658  * spin_lock_irq(rq->lock)
659  */
660 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
661 {
662 	struct worker *worker = kthread_data(task);
663 
664 	if (!(worker->flags & WORKER_NOT_RUNNING))
665 		atomic_inc(get_gcwq_nr_running(cpu));
666 }
667 
668 /**
669  * wq_worker_sleeping - a worker is going to sleep
670  * @task: task going to sleep
671  * @cpu: CPU in question, must be the current CPU number
672  *
673  * This function is called during schedule() when a busy worker is
674  * going to sleep.  Worker on the same cpu can be woken up by
675  * returning pointer to its task.
676  *
677  * CONTEXT:
678  * spin_lock_irq(rq->lock)
679  *
680  * RETURNS:
681  * Worker task on @cpu to wake up, %NULL if none.
682  */
683 struct task_struct *wq_worker_sleeping(struct task_struct *task,
684 				       unsigned int cpu)
685 {
686 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
687 	struct global_cwq *gcwq = get_gcwq(cpu);
688 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
689 
690 	if (worker->flags & WORKER_NOT_RUNNING)
691 		return NULL;
692 
693 	/* this can only happen on the local cpu */
694 	BUG_ON(cpu != raw_smp_processor_id());
695 
696 	/*
697 	 * The counterpart of the following dec_and_test, implied mb,
698 	 * worklist not empty test sequence is in insert_work().
699 	 * Please read comment there.
700 	 *
701 	 * NOT_RUNNING is clear.  This means that trustee is not in
702 	 * charge and we're running on the local cpu w/ rq lock held
703 	 * and preemption disabled, which in turn means that none else
704 	 * could be manipulating idle_list, so dereferencing idle_list
705 	 * without gcwq lock is safe.
706 	 */
707 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
708 		to_wakeup = first_worker(gcwq);
709 	return to_wakeup ? to_wakeup->task : NULL;
710 }
711 
712 /**
713  * worker_set_flags - set worker flags and adjust nr_running accordingly
714  * @worker: self
715  * @flags: flags to set
716  * @wakeup: wakeup an idle worker if necessary
717  *
718  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
719  * nr_running becomes zero and @wakeup is %true, an idle worker is
720  * woken up.
721  *
722  * CONTEXT:
723  * spin_lock_irq(gcwq->lock)
724  */
725 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
726 				    bool wakeup)
727 {
728 	struct global_cwq *gcwq = worker->gcwq;
729 
730 	WARN_ON_ONCE(worker->task != current);
731 
732 	/*
733 	 * If transitioning into NOT_RUNNING, adjust nr_running and
734 	 * wake up an idle worker as necessary if requested by
735 	 * @wakeup.
736 	 */
737 	if ((flags & WORKER_NOT_RUNNING) &&
738 	    !(worker->flags & WORKER_NOT_RUNNING)) {
739 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
740 
741 		if (wakeup) {
742 			if (atomic_dec_and_test(nr_running) &&
743 			    !list_empty(&gcwq->worklist))
744 				wake_up_worker(gcwq);
745 		} else
746 			atomic_dec(nr_running);
747 	}
748 
749 	worker->flags |= flags;
750 }
751 
752 /**
753  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
754  * @worker: self
755  * @flags: flags to clear
756  *
757  * Clear @flags in @worker->flags and adjust nr_running accordingly.
758  *
759  * CONTEXT:
760  * spin_lock_irq(gcwq->lock)
761  */
762 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
763 {
764 	struct global_cwq *gcwq = worker->gcwq;
765 	unsigned int oflags = worker->flags;
766 
767 	WARN_ON_ONCE(worker->task != current);
768 
769 	worker->flags &= ~flags;
770 
771 	/*
772 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
773 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
774 	 * of multiple flags, not a single flag.
775 	 */
776 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
777 		if (!(worker->flags & WORKER_NOT_RUNNING))
778 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
779 }
780 
781 /**
782  * busy_worker_head - return the busy hash head for a work
783  * @gcwq: gcwq of interest
784  * @work: work to be hashed
785  *
786  * Return hash head of @gcwq for @work.
787  *
788  * CONTEXT:
789  * spin_lock_irq(gcwq->lock).
790  *
791  * RETURNS:
792  * Pointer to the hash head.
793  */
794 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
795 					   struct work_struct *work)
796 {
797 	const int base_shift = ilog2(sizeof(struct work_struct));
798 	unsigned long v = (unsigned long)work;
799 
800 	/* simple shift and fold hash, do we need something better? */
801 	v >>= base_shift;
802 	v += v >> BUSY_WORKER_HASH_ORDER;
803 	v &= BUSY_WORKER_HASH_MASK;
804 
805 	return &gcwq->busy_hash[v];
806 }
807 
808 /**
809  * __find_worker_executing_work - find worker which is executing a work
810  * @gcwq: gcwq of interest
811  * @bwh: hash head as returned by busy_worker_head()
812  * @work: work to find worker for
813  *
814  * Find a worker which is executing @work on @gcwq.  @bwh should be
815  * the hash head obtained by calling busy_worker_head() with the same
816  * work.
817  *
818  * CONTEXT:
819  * spin_lock_irq(gcwq->lock).
820  *
821  * RETURNS:
822  * Pointer to worker which is executing @work if found, NULL
823  * otherwise.
824  */
825 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
826 						   struct hlist_head *bwh,
827 						   struct work_struct *work)
828 {
829 	struct worker *worker;
830 	struct hlist_node *tmp;
831 
832 	hlist_for_each_entry(worker, tmp, bwh, hentry)
833 		if (worker->current_work == work)
834 			return worker;
835 	return NULL;
836 }
837 
838 /**
839  * find_worker_executing_work - find worker which is executing a work
840  * @gcwq: gcwq of interest
841  * @work: work to find worker for
842  *
843  * Find a worker which is executing @work on @gcwq.  This function is
844  * identical to __find_worker_executing_work() except that this
845  * function calculates @bwh itself.
846  *
847  * CONTEXT:
848  * spin_lock_irq(gcwq->lock).
849  *
850  * RETURNS:
851  * Pointer to worker which is executing @work if found, NULL
852  * otherwise.
853  */
854 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
855 						 struct work_struct *work)
856 {
857 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
858 					    work);
859 }
860 
861 /**
862  * gcwq_determine_ins_pos - find insertion position
863  * @gcwq: gcwq of interest
864  * @cwq: cwq a work is being queued for
865  *
866  * A work for @cwq is about to be queued on @gcwq, determine insertion
867  * position for the work.  If @cwq is for HIGHPRI wq, the work is
868  * queued at the head of the queue but in FIFO order with respect to
869  * other HIGHPRI works; otherwise, at the end of the queue.  This
870  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
871  * there are HIGHPRI works pending.
872  *
873  * CONTEXT:
874  * spin_lock_irq(gcwq->lock).
875  *
876  * RETURNS:
877  * Pointer to inserstion position.
878  */
879 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
880 					       struct cpu_workqueue_struct *cwq)
881 {
882 	struct work_struct *twork;
883 
884 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
885 		return &gcwq->worklist;
886 
887 	list_for_each_entry(twork, &gcwq->worklist, entry) {
888 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
889 
890 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
891 			break;
892 	}
893 
894 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
895 	return &twork->entry;
896 }
897 
898 /**
899  * insert_work - insert a work into gcwq
900  * @cwq: cwq @work belongs to
901  * @work: work to insert
902  * @head: insertion point
903  * @extra_flags: extra WORK_STRUCT_* flags to set
904  *
905  * Insert @work which belongs to @cwq into @gcwq after @head.
906  * @extra_flags is or'd to work_struct flags.
907  *
908  * CONTEXT:
909  * spin_lock_irq(gcwq->lock).
910  */
911 static void insert_work(struct cpu_workqueue_struct *cwq,
912 			struct work_struct *work, struct list_head *head,
913 			unsigned int extra_flags)
914 {
915 	struct global_cwq *gcwq = cwq->gcwq;
916 
917 	/* we own @work, set data and link */
918 	set_work_cwq(work, cwq, extra_flags);
919 
920 	/*
921 	 * Ensure that we get the right work->data if we see the
922 	 * result of list_add() below, see try_to_grab_pending().
923 	 */
924 	smp_wmb();
925 
926 	list_add_tail(&work->entry, head);
927 
928 	/*
929 	 * Ensure either worker_sched_deactivated() sees the above
930 	 * list_add_tail() or we see zero nr_running to avoid workers
931 	 * lying around lazily while there are works to be processed.
932 	 */
933 	smp_mb();
934 
935 	if (__need_more_worker(gcwq))
936 		wake_up_worker(gcwq);
937 }
938 
939 /*
940  * Test whether @work is being queued from another work executing on the
941  * same workqueue.  This is rather expensive and should only be used from
942  * cold paths.
943  */
944 static bool is_chained_work(struct workqueue_struct *wq)
945 {
946 	unsigned long flags;
947 	unsigned int cpu;
948 
949 	for_each_gcwq_cpu(cpu) {
950 		struct global_cwq *gcwq = get_gcwq(cpu);
951 		struct worker *worker;
952 		struct hlist_node *pos;
953 		int i;
954 
955 		spin_lock_irqsave(&gcwq->lock, flags);
956 		for_each_busy_worker(worker, i, pos, gcwq) {
957 			if (worker->task != current)
958 				continue;
959 			spin_unlock_irqrestore(&gcwq->lock, flags);
960 			/*
961 			 * I'm @worker, no locking necessary.  See if @work
962 			 * is headed to the same workqueue.
963 			 */
964 			return worker->current_cwq->wq == wq;
965 		}
966 		spin_unlock_irqrestore(&gcwq->lock, flags);
967 	}
968 	return false;
969 }
970 
971 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
972 			 struct work_struct *work)
973 {
974 	struct global_cwq *gcwq;
975 	struct cpu_workqueue_struct *cwq;
976 	struct list_head *worklist;
977 	unsigned int work_flags;
978 	unsigned long flags;
979 
980 	debug_work_activate(work);
981 
982 	/* if dying, only works from the same workqueue are allowed */
983 	if (unlikely(wq->flags & WQ_DYING) &&
984 	    WARN_ON_ONCE(!is_chained_work(wq)))
985 		return;
986 
987 	/* determine gcwq to use */
988 	if (!(wq->flags & WQ_UNBOUND)) {
989 		struct global_cwq *last_gcwq;
990 
991 		if (unlikely(cpu == WORK_CPU_UNBOUND))
992 			cpu = raw_smp_processor_id();
993 
994 		/*
995 		 * It's multi cpu.  If @wq is non-reentrant and @work
996 		 * was previously on a different cpu, it might still
997 		 * be running there, in which case the work needs to
998 		 * be queued on that cpu to guarantee non-reentrance.
999 		 */
1000 		gcwq = get_gcwq(cpu);
1001 		if (wq->flags & WQ_NON_REENTRANT &&
1002 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1003 			struct worker *worker;
1004 
1005 			spin_lock_irqsave(&last_gcwq->lock, flags);
1006 
1007 			worker = find_worker_executing_work(last_gcwq, work);
1008 
1009 			if (worker && worker->current_cwq->wq == wq)
1010 				gcwq = last_gcwq;
1011 			else {
1012 				/* meh... not running there, queue here */
1013 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1014 				spin_lock_irqsave(&gcwq->lock, flags);
1015 			}
1016 		} else
1017 			spin_lock_irqsave(&gcwq->lock, flags);
1018 	} else {
1019 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1020 		spin_lock_irqsave(&gcwq->lock, flags);
1021 	}
1022 
1023 	/* gcwq determined, get cwq and queue */
1024 	cwq = get_cwq(gcwq->cpu, wq);
1025 	trace_workqueue_queue_work(cpu, cwq, work);
1026 
1027 	BUG_ON(!list_empty(&work->entry));
1028 
1029 	cwq->nr_in_flight[cwq->work_color]++;
1030 	work_flags = work_color_to_flags(cwq->work_color);
1031 
1032 	if (likely(cwq->nr_active < cwq->max_active)) {
1033 		trace_workqueue_activate_work(work);
1034 		cwq->nr_active++;
1035 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1036 	} else {
1037 		work_flags |= WORK_STRUCT_DELAYED;
1038 		worklist = &cwq->delayed_works;
1039 	}
1040 
1041 	insert_work(cwq, work, worklist, work_flags);
1042 
1043 	spin_unlock_irqrestore(&gcwq->lock, flags);
1044 }
1045 
1046 /**
1047  * queue_work - queue work on a workqueue
1048  * @wq: workqueue to use
1049  * @work: work to queue
1050  *
1051  * Returns 0 if @work was already on a queue, non-zero otherwise.
1052  *
1053  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1054  * it can be processed by another CPU.
1055  */
1056 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1057 {
1058 	int ret;
1059 
1060 	ret = queue_work_on(get_cpu(), wq, work);
1061 	put_cpu();
1062 
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(queue_work);
1066 
1067 /**
1068  * queue_work_on - queue work on specific cpu
1069  * @cpu: CPU number to execute work on
1070  * @wq: workqueue to use
1071  * @work: work to queue
1072  *
1073  * Returns 0 if @work was already on a queue, non-zero otherwise.
1074  *
1075  * We queue the work to a specific CPU, the caller must ensure it
1076  * can't go away.
1077  */
1078 int
1079 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1080 {
1081 	int ret = 0;
1082 
1083 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1084 		__queue_work(cpu, wq, work);
1085 		ret = 1;
1086 	}
1087 	return ret;
1088 }
1089 EXPORT_SYMBOL_GPL(queue_work_on);
1090 
1091 static void delayed_work_timer_fn(unsigned long __data)
1092 {
1093 	struct delayed_work *dwork = (struct delayed_work *)__data;
1094 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1095 
1096 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1097 }
1098 
1099 /**
1100  * queue_delayed_work - queue work on a workqueue after delay
1101  * @wq: workqueue to use
1102  * @dwork: delayable work to queue
1103  * @delay: number of jiffies to wait before queueing
1104  *
1105  * Returns 0 if @work was already on a queue, non-zero otherwise.
1106  */
1107 int queue_delayed_work(struct workqueue_struct *wq,
1108 			struct delayed_work *dwork, unsigned long delay)
1109 {
1110 	if (delay == 0)
1111 		return queue_work(wq, &dwork->work);
1112 
1113 	return queue_delayed_work_on(-1, wq, dwork, delay);
1114 }
1115 EXPORT_SYMBOL_GPL(queue_delayed_work);
1116 
1117 /**
1118  * queue_delayed_work_on - queue work on specific CPU after delay
1119  * @cpu: CPU number to execute work on
1120  * @wq: workqueue to use
1121  * @dwork: work to queue
1122  * @delay: number of jiffies to wait before queueing
1123  *
1124  * Returns 0 if @work was already on a queue, non-zero otherwise.
1125  */
1126 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1127 			struct delayed_work *dwork, unsigned long delay)
1128 {
1129 	int ret = 0;
1130 	struct timer_list *timer = &dwork->timer;
1131 	struct work_struct *work = &dwork->work;
1132 
1133 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1134 		unsigned int lcpu;
1135 
1136 		BUG_ON(timer_pending(timer));
1137 		BUG_ON(!list_empty(&work->entry));
1138 
1139 		timer_stats_timer_set_start_info(&dwork->timer);
1140 
1141 		/*
1142 		 * This stores cwq for the moment, for the timer_fn.
1143 		 * Note that the work's gcwq is preserved to allow
1144 		 * reentrance detection for delayed works.
1145 		 */
1146 		if (!(wq->flags & WQ_UNBOUND)) {
1147 			struct global_cwq *gcwq = get_work_gcwq(work);
1148 
1149 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1150 				lcpu = gcwq->cpu;
1151 			else
1152 				lcpu = raw_smp_processor_id();
1153 		} else
1154 			lcpu = WORK_CPU_UNBOUND;
1155 
1156 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1157 
1158 		timer->expires = jiffies + delay;
1159 		timer->data = (unsigned long)dwork;
1160 		timer->function = delayed_work_timer_fn;
1161 
1162 		if (unlikely(cpu >= 0))
1163 			add_timer_on(timer, cpu);
1164 		else
1165 			add_timer(timer);
1166 		ret = 1;
1167 	}
1168 	return ret;
1169 }
1170 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1171 
1172 /**
1173  * worker_enter_idle - enter idle state
1174  * @worker: worker which is entering idle state
1175  *
1176  * @worker is entering idle state.  Update stats and idle timer if
1177  * necessary.
1178  *
1179  * LOCKING:
1180  * spin_lock_irq(gcwq->lock).
1181  */
1182 static void worker_enter_idle(struct worker *worker)
1183 {
1184 	struct global_cwq *gcwq = worker->gcwq;
1185 
1186 	BUG_ON(worker->flags & WORKER_IDLE);
1187 	BUG_ON(!list_empty(&worker->entry) &&
1188 	       (worker->hentry.next || worker->hentry.pprev));
1189 
1190 	/* can't use worker_set_flags(), also called from start_worker() */
1191 	worker->flags |= WORKER_IDLE;
1192 	gcwq->nr_idle++;
1193 	worker->last_active = jiffies;
1194 
1195 	/* idle_list is LIFO */
1196 	list_add(&worker->entry, &gcwq->idle_list);
1197 
1198 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1199 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1200 			mod_timer(&gcwq->idle_timer,
1201 				  jiffies + IDLE_WORKER_TIMEOUT);
1202 	} else
1203 		wake_up_all(&gcwq->trustee_wait);
1204 
1205 	/* sanity check nr_running */
1206 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1207 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1208 }
1209 
1210 /**
1211  * worker_leave_idle - leave idle state
1212  * @worker: worker which is leaving idle state
1213  *
1214  * @worker is leaving idle state.  Update stats.
1215  *
1216  * LOCKING:
1217  * spin_lock_irq(gcwq->lock).
1218  */
1219 static void worker_leave_idle(struct worker *worker)
1220 {
1221 	struct global_cwq *gcwq = worker->gcwq;
1222 
1223 	BUG_ON(!(worker->flags & WORKER_IDLE));
1224 	worker_clr_flags(worker, WORKER_IDLE);
1225 	gcwq->nr_idle--;
1226 	list_del_init(&worker->entry);
1227 }
1228 
1229 /**
1230  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1231  * @worker: self
1232  *
1233  * Works which are scheduled while the cpu is online must at least be
1234  * scheduled to a worker which is bound to the cpu so that if they are
1235  * flushed from cpu callbacks while cpu is going down, they are
1236  * guaranteed to execute on the cpu.
1237  *
1238  * This function is to be used by rogue workers and rescuers to bind
1239  * themselves to the target cpu and may race with cpu going down or
1240  * coming online.  kthread_bind() can't be used because it may put the
1241  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1242  * verbatim as it's best effort and blocking and gcwq may be
1243  * [dis]associated in the meantime.
1244  *
1245  * This function tries set_cpus_allowed() and locks gcwq and verifies
1246  * the binding against GCWQ_DISASSOCIATED which is set during
1247  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1248  * idle state or fetches works without dropping lock, it can guarantee
1249  * the scheduling requirement described in the first paragraph.
1250  *
1251  * CONTEXT:
1252  * Might sleep.  Called without any lock but returns with gcwq->lock
1253  * held.
1254  *
1255  * RETURNS:
1256  * %true if the associated gcwq is online (@worker is successfully
1257  * bound), %false if offline.
1258  */
1259 static bool worker_maybe_bind_and_lock(struct worker *worker)
1260 __acquires(&gcwq->lock)
1261 {
1262 	struct global_cwq *gcwq = worker->gcwq;
1263 	struct task_struct *task = worker->task;
1264 
1265 	while (true) {
1266 		/*
1267 		 * The following call may fail, succeed or succeed
1268 		 * without actually migrating the task to the cpu if
1269 		 * it races with cpu hotunplug operation.  Verify
1270 		 * against GCWQ_DISASSOCIATED.
1271 		 */
1272 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1273 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1274 
1275 		spin_lock_irq(&gcwq->lock);
1276 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1277 			return false;
1278 		if (task_cpu(task) == gcwq->cpu &&
1279 		    cpumask_equal(&current->cpus_allowed,
1280 				  get_cpu_mask(gcwq->cpu)))
1281 			return true;
1282 		spin_unlock_irq(&gcwq->lock);
1283 
1284 		/* CPU has come up inbetween, retry migration */
1285 		cpu_relax();
1286 	}
1287 }
1288 
1289 /*
1290  * Function for worker->rebind_work used to rebind rogue busy workers
1291  * to the associated cpu which is coming back online.  This is
1292  * scheduled by cpu up but can race with other cpu hotplug operations
1293  * and may be executed twice without intervening cpu down.
1294  */
1295 static void worker_rebind_fn(struct work_struct *work)
1296 {
1297 	struct worker *worker = container_of(work, struct worker, rebind_work);
1298 	struct global_cwq *gcwq = worker->gcwq;
1299 
1300 	if (worker_maybe_bind_and_lock(worker))
1301 		worker_clr_flags(worker, WORKER_REBIND);
1302 
1303 	spin_unlock_irq(&gcwq->lock);
1304 }
1305 
1306 static struct worker *alloc_worker(void)
1307 {
1308 	struct worker *worker;
1309 
1310 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1311 	if (worker) {
1312 		INIT_LIST_HEAD(&worker->entry);
1313 		INIT_LIST_HEAD(&worker->scheduled);
1314 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1315 		/* on creation a worker is in !idle && prep state */
1316 		worker->flags = WORKER_PREP;
1317 	}
1318 	return worker;
1319 }
1320 
1321 /**
1322  * create_worker - create a new workqueue worker
1323  * @gcwq: gcwq the new worker will belong to
1324  * @bind: whether to set affinity to @cpu or not
1325  *
1326  * Create a new worker which is bound to @gcwq.  The returned worker
1327  * can be started by calling start_worker() or destroyed using
1328  * destroy_worker().
1329  *
1330  * CONTEXT:
1331  * Might sleep.  Does GFP_KERNEL allocations.
1332  *
1333  * RETURNS:
1334  * Pointer to the newly created worker.
1335  */
1336 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1337 {
1338 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1339 	struct worker *worker = NULL;
1340 	int id = -1;
1341 
1342 	spin_lock_irq(&gcwq->lock);
1343 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1344 		spin_unlock_irq(&gcwq->lock);
1345 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1346 			goto fail;
1347 		spin_lock_irq(&gcwq->lock);
1348 	}
1349 	spin_unlock_irq(&gcwq->lock);
1350 
1351 	worker = alloc_worker();
1352 	if (!worker)
1353 		goto fail;
1354 
1355 	worker->gcwq = gcwq;
1356 	worker->id = id;
1357 
1358 	if (!on_unbound_cpu)
1359 		worker->task = kthread_create(worker_thread, worker,
1360 					      "kworker/%u:%d", gcwq->cpu, id);
1361 	else
1362 		worker->task = kthread_create(worker_thread, worker,
1363 					      "kworker/u:%d", id);
1364 	if (IS_ERR(worker->task))
1365 		goto fail;
1366 
1367 	/*
1368 	 * A rogue worker will become a regular one if CPU comes
1369 	 * online later on.  Make sure every worker has
1370 	 * PF_THREAD_BOUND set.
1371 	 */
1372 	if (bind && !on_unbound_cpu)
1373 		kthread_bind(worker->task, gcwq->cpu);
1374 	else {
1375 		worker->task->flags |= PF_THREAD_BOUND;
1376 		if (on_unbound_cpu)
1377 			worker->flags |= WORKER_UNBOUND;
1378 	}
1379 
1380 	return worker;
1381 fail:
1382 	if (id >= 0) {
1383 		spin_lock_irq(&gcwq->lock);
1384 		ida_remove(&gcwq->worker_ida, id);
1385 		spin_unlock_irq(&gcwq->lock);
1386 	}
1387 	kfree(worker);
1388 	return NULL;
1389 }
1390 
1391 /**
1392  * start_worker - start a newly created worker
1393  * @worker: worker to start
1394  *
1395  * Make the gcwq aware of @worker and start it.
1396  *
1397  * CONTEXT:
1398  * spin_lock_irq(gcwq->lock).
1399  */
1400 static void start_worker(struct worker *worker)
1401 {
1402 	worker->flags |= WORKER_STARTED;
1403 	worker->gcwq->nr_workers++;
1404 	worker_enter_idle(worker);
1405 	wake_up_process(worker->task);
1406 }
1407 
1408 /**
1409  * destroy_worker - destroy a workqueue worker
1410  * @worker: worker to be destroyed
1411  *
1412  * Destroy @worker and adjust @gcwq stats accordingly.
1413  *
1414  * CONTEXT:
1415  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1416  */
1417 static void destroy_worker(struct worker *worker)
1418 {
1419 	struct global_cwq *gcwq = worker->gcwq;
1420 	int id = worker->id;
1421 
1422 	/* sanity check frenzy */
1423 	BUG_ON(worker->current_work);
1424 	BUG_ON(!list_empty(&worker->scheduled));
1425 
1426 	if (worker->flags & WORKER_STARTED)
1427 		gcwq->nr_workers--;
1428 	if (worker->flags & WORKER_IDLE)
1429 		gcwq->nr_idle--;
1430 
1431 	list_del_init(&worker->entry);
1432 	worker->flags |= WORKER_DIE;
1433 
1434 	spin_unlock_irq(&gcwq->lock);
1435 
1436 	kthread_stop(worker->task);
1437 	kfree(worker);
1438 
1439 	spin_lock_irq(&gcwq->lock);
1440 	ida_remove(&gcwq->worker_ida, id);
1441 }
1442 
1443 static void idle_worker_timeout(unsigned long __gcwq)
1444 {
1445 	struct global_cwq *gcwq = (void *)__gcwq;
1446 
1447 	spin_lock_irq(&gcwq->lock);
1448 
1449 	if (too_many_workers(gcwq)) {
1450 		struct worker *worker;
1451 		unsigned long expires;
1452 
1453 		/* idle_list is kept in LIFO order, check the last one */
1454 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1455 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1456 
1457 		if (time_before(jiffies, expires))
1458 			mod_timer(&gcwq->idle_timer, expires);
1459 		else {
1460 			/* it's been idle for too long, wake up manager */
1461 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1462 			wake_up_worker(gcwq);
1463 		}
1464 	}
1465 
1466 	spin_unlock_irq(&gcwq->lock);
1467 }
1468 
1469 static bool send_mayday(struct work_struct *work)
1470 {
1471 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1472 	struct workqueue_struct *wq = cwq->wq;
1473 	unsigned int cpu;
1474 
1475 	if (!(wq->flags & WQ_RESCUER))
1476 		return false;
1477 
1478 	/* mayday mayday mayday */
1479 	cpu = cwq->gcwq->cpu;
1480 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1481 	if (cpu == WORK_CPU_UNBOUND)
1482 		cpu = 0;
1483 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1484 		wake_up_process(wq->rescuer->task);
1485 	return true;
1486 }
1487 
1488 static void gcwq_mayday_timeout(unsigned long __gcwq)
1489 {
1490 	struct global_cwq *gcwq = (void *)__gcwq;
1491 	struct work_struct *work;
1492 
1493 	spin_lock_irq(&gcwq->lock);
1494 
1495 	if (need_to_create_worker(gcwq)) {
1496 		/*
1497 		 * We've been trying to create a new worker but
1498 		 * haven't been successful.  We might be hitting an
1499 		 * allocation deadlock.  Send distress signals to
1500 		 * rescuers.
1501 		 */
1502 		list_for_each_entry(work, &gcwq->worklist, entry)
1503 			send_mayday(work);
1504 	}
1505 
1506 	spin_unlock_irq(&gcwq->lock);
1507 
1508 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1509 }
1510 
1511 /**
1512  * maybe_create_worker - create a new worker if necessary
1513  * @gcwq: gcwq to create a new worker for
1514  *
1515  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1516  * have at least one idle worker on return from this function.  If
1517  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1518  * sent to all rescuers with works scheduled on @gcwq to resolve
1519  * possible allocation deadlock.
1520  *
1521  * On return, need_to_create_worker() is guaranteed to be false and
1522  * may_start_working() true.
1523  *
1524  * LOCKING:
1525  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1526  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1527  * manager.
1528  *
1529  * RETURNS:
1530  * false if no action was taken and gcwq->lock stayed locked, true
1531  * otherwise.
1532  */
1533 static bool maybe_create_worker(struct global_cwq *gcwq)
1534 __releases(&gcwq->lock)
1535 __acquires(&gcwq->lock)
1536 {
1537 	if (!need_to_create_worker(gcwq))
1538 		return false;
1539 restart:
1540 	spin_unlock_irq(&gcwq->lock);
1541 
1542 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1543 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1544 
1545 	while (true) {
1546 		struct worker *worker;
1547 
1548 		worker = create_worker(gcwq, true);
1549 		if (worker) {
1550 			del_timer_sync(&gcwq->mayday_timer);
1551 			spin_lock_irq(&gcwq->lock);
1552 			start_worker(worker);
1553 			BUG_ON(need_to_create_worker(gcwq));
1554 			return true;
1555 		}
1556 
1557 		if (!need_to_create_worker(gcwq))
1558 			break;
1559 
1560 		__set_current_state(TASK_INTERRUPTIBLE);
1561 		schedule_timeout(CREATE_COOLDOWN);
1562 
1563 		if (!need_to_create_worker(gcwq))
1564 			break;
1565 	}
1566 
1567 	del_timer_sync(&gcwq->mayday_timer);
1568 	spin_lock_irq(&gcwq->lock);
1569 	if (need_to_create_worker(gcwq))
1570 		goto restart;
1571 	return true;
1572 }
1573 
1574 /**
1575  * maybe_destroy_worker - destroy workers which have been idle for a while
1576  * @gcwq: gcwq to destroy workers for
1577  *
1578  * Destroy @gcwq workers which have been idle for longer than
1579  * IDLE_WORKER_TIMEOUT.
1580  *
1581  * LOCKING:
1582  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1583  * multiple times.  Called only from manager.
1584  *
1585  * RETURNS:
1586  * false if no action was taken and gcwq->lock stayed locked, true
1587  * otherwise.
1588  */
1589 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1590 {
1591 	bool ret = false;
1592 
1593 	while (too_many_workers(gcwq)) {
1594 		struct worker *worker;
1595 		unsigned long expires;
1596 
1597 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1598 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1599 
1600 		if (time_before(jiffies, expires)) {
1601 			mod_timer(&gcwq->idle_timer, expires);
1602 			break;
1603 		}
1604 
1605 		destroy_worker(worker);
1606 		ret = true;
1607 	}
1608 
1609 	return ret;
1610 }
1611 
1612 /**
1613  * manage_workers - manage worker pool
1614  * @worker: self
1615  *
1616  * Assume the manager role and manage gcwq worker pool @worker belongs
1617  * to.  At any given time, there can be only zero or one manager per
1618  * gcwq.  The exclusion is handled automatically by this function.
1619  *
1620  * The caller can safely start processing works on false return.  On
1621  * true return, it's guaranteed that need_to_create_worker() is false
1622  * and may_start_working() is true.
1623  *
1624  * CONTEXT:
1625  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1626  * multiple times.  Does GFP_KERNEL allocations.
1627  *
1628  * RETURNS:
1629  * false if no action was taken and gcwq->lock stayed locked, true if
1630  * some action was taken.
1631  */
1632 static bool manage_workers(struct worker *worker)
1633 {
1634 	struct global_cwq *gcwq = worker->gcwq;
1635 	bool ret = false;
1636 
1637 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1638 		return ret;
1639 
1640 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1641 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1642 
1643 	/*
1644 	 * Destroy and then create so that may_start_working() is true
1645 	 * on return.
1646 	 */
1647 	ret |= maybe_destroy_workers(gcwq);
1648 	ret |= maybe_create_worker(gcwq);
1649 
1650 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1651 
1652 	/*
1653 	 * The trustee might be waiting to take over the manager
1654 	 * position, tell it we're done.
1655 	 */
1656 	if (unlikely(gcwq->trustee))
1657 		wake_up_all(&gcwq->trustee_wait);
1658 
1659 	return ret;
1660 }
1661 
1662 /**
1663  * move_linked_works - move linked works to a list
1664  * @work: start of series of works to be scheduled
1665  * @head: target list to append @work to
1666  * @nextp: out paramter for nested worklist walking
1667  *
1668  * Schedule linked works starting from @work to @head.  Work series to
1669  * be scheduled starts at @work and includes any consecutive work with
1670  * WORK_STRUCT_LINKED set in its predecessor.
1671  *
1672  * If @nextp is not NULL, it's updated to point to the next work of
1673  * the last scheduled work.  This allows move_linked_works() to be
1674  * nested inside outer list_for_each_entry_safe().
1675  *
1676  * CONTEXT:
1677  * spin_lock_irq(gcwq->lock).
1678  */
1679 static void move_linked_works(struct work_struct *work, struct list_head *head,
1680 			      struct work_struct **nextp)
1681 {
1682 	struct work_struct *n;
1683 
1684 	/*
1685 	 * Linked worklist will always end before the end of the list,
1686 	 * use NULL for list head.
1687 	 */
1688 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1689 		list_move_tail(&work->entry, head);
1690 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1691 			break;
1692 	}
1693 
1694 	/*
1695 	 * If we're already inside safe list traversal and have moved
1696 	 * multiple works to the scheduled queue, the next position
1697 	 * needs to be updated.
1698 	 */
1699 	if (nextp)
1700 		*nextp = n;
1701 }
1702 
1703 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1704 {
1705 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1706 						    struct work_struct, entry);
1707 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1708 
1709 	trace_workqueue_activate_work(work);
1710 	move_linked_works(work, pos, NULL);
1711 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1712 	cwq->nr_active++;
1713 }
1714 
1715 /**
1716  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1717  * @cwq: cwq of interest
1718  * @color: color of work which left the queue
1719  * @delayed: for a delayed work
1720  *
1721  * A work either has completed or is removed from pending queue,
1722  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1723  *
1724  * CONTEXT:
1725  * spin_lock_irq(gcwq->lock).
1726  */
1727 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1728 				 bool delayed)
1729 {
1730 	/* ignore uncolored works */
1731 	if (color == WORK_NO_COLOR)
1732 		return;
1733 
1734 	cwq->nr_in_flight[color]--;
1735 
1736 	if (!delayed) {
1737 		cwq->nr_active--;
1738 		if (!list_empty(&cwq->delayed_works)) {
1739 			/* one down, submit a delayed one */
1740 			if (cwq->nr_active < cwq->max_active)
1741 				cwq_activate_first_delayed(cwq);
1742 		}
1743 	}
1744 
1745 	/* is flush in progress and are we at the flushing tip? */
1746 	if (likely(cwq->flush_color != color))
1747 		return;
1748 
1749 	/* are there still in-flight works? */
1750 	if (cwq->nr_in_flight[color])
1751 		return;
1752 
1753 	/* this cwq is done, clear flush_color */
1754 	cwq->flush_color = -1;
1755 
1756 	/*
1757 	 * If this was the last cwq, wake up the first flusher.  It
1758 	 * will handle the rest.
1759 	 */
1760 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1761 		complete(&cwq->wq->first_flusher->done);
1762 }
1763 
1764 /**
1765  * process_one_work - process single work
1766  * @worker: self
1767  * @work: work to process
1768  *
1769  * Process @work.  This function contains all the logics necessary to
1770  * process a single work including synchronization against and
1771  * interaction with other workers on the same cpu, queueing and
1772  * flushing.  As long as context requirement is met, any worker can
1773  * call this function to process a work.
1774  *
1775  * CONTEXT:
1776  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1777  */
1778 static void process_one_work(struct worker *worker, struct work_struct *work)
1779 __releases(&gcwq->lock)
1780 __acquires(&gcwq->lock)
1781 {
1782 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1783 	struct global_cwq *gcwq = cwq->gcwq;
1784 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1785 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1786 	work_func_t f = work->func;
1787 	int work_color;
1788 	struct worker *collision;
1789 #ifdef CONFIG_LOCKDEP
1790 	/*
1791 	 * It is permissible to free the struct work_struct from
1792 	 * inside the function that is called from it, this we need to
1793 	 * take into account for lockdep too.  To avoid bogus "held
1794 	 * lock freed" warnings as well as problems when looking into
1795 	 * work->lockdep_map, make a copy and use that here.
1796 	 */
1797 	struct lockdep_map lockdep_map = work->lockdep_map;
1798 #endif
1799 	/*
1800 	 * A single work shouldn't be executed concurrently by
1801 	 * multiple workers on a single cpu.  Check whether anyone is
1802 	 * already processing the work.  If so, defer the work to the
1803 	 * currently executing one.
1804 	 */
1805 	collision = __find_worker_executing_work(gcwq, bwh, work);
1806 	if (unlikely(collision)) {
1807 		move_linked_works(work, &collision->scheduled, NULL);
1808 		return;
1809 	}
1810 
1811 	/* claim and process */
1812 	debug_work_deactivate(work);
1813 	hlist_add_head(&worker->hentry, bwh);
1814 	worker->current_work = work;
1815 	worker->current_cwq = cwq;
1816 	work_color = get_work_color(work);
1817 
1818 	/* record the current cpu number in the work data and dequeue */
1819 	set_work_cpu(work, gcwq->cpu);
1820 	list_del_init(&work->entry);
1821 
1822 	/*
1823 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1824 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1825 	 */
1826 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1827 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1828 						struct work_struct, entry);
1829 
1830 		if (!list_empty(&gcwq->worklist) &&
1831 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1832 			wake_up_worker(gcwq);
1833 		else
1834 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1835 	}
1836 
1837 	/*
1838 	 * CPU intensive works don't participate in concurrency
1839 	 * management.  They're the scheduler's responsibility.
1840 	 */
1841 	if (unlikely(cpu_intensive))
1842 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1843 
1844 	spin_unlock_irq(&gcwq->lock);
1845 
1846 	work_clear_pending(work);
1847 	lock_map_acquire_read(&cwq->wq->lockdep_map);
1848 	lock_map_acquire(&lockdep_map);
1849 	trace_workqueue_execute_start(work);
1850 	f(work);
1851 	/*
1852 	 * While we must be careful to not use "work" after this, the trace
1853 	 * point will only record its address.
1854 	 */
1855 	trace_workqueue_execute_end(work);
1856 	lock_map_release(&lockdep_map);
1857 	lock_map_release(&cwq->wq->lockdep_map);
1858 
1859 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1860 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1861 		       "%s/0x%08x/%d\n",
1862 		       current->comm, preempt_count(), task_pid_nr(current));
1863 		printk(KERN_ERR "    last function: ");
1864 		print_symbol("%s\n", (unsigned long)f);
1865 		debug_show_held_locks(current);
1866 		dump_stack();
1867 	}
1868 
1869 	spin_lock_irq(&gcwq->lock);
1870 
1871 	/* clear cpu intensive status */
1872 	if (unlikely(cpu_intensive))
1873 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1874 
1875 	/* we're done with it, release */
1876 	hlist_del_init(&worker->hentry);
1877 	worker->current_work = NULL;
1878 	worker->current_cwq = NULL;
1879 	cwq_dec_nr_in_flight(cwq, work_color, false);
1880 }
1881 
1882 /**
1883  * process_scheduled_works - process scheduled works
1884  * @worker: self
1885  *
1886  * Process all scheduled works.  Please note that the scheduled list
1887  * may change while processing a work, so this function repeatedly
1888  * fetches a work from the top and executes it.
1889  *
1890  * CONTEXT:
1891  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1892  * multiple times.
1893  */
1894 static void process_scheduled_works(struct worker *worker)
1895 {
1896 	while (!list_empty(&worker->scheduled)) {
1897 		struct work_struct *work = list_first_entry(&worker->scheduled,
1898 						struct work_struct, entry);
1899 		process_one_work(worker, work);
1900 	}
1901 }
1902 
1903 /**
1904  * worker_thread - the worker thread function
1905  * @__worker: self
1906  *
1907  * The gcwq worker thread function.  There's a single dynamic pool of
1908  * these per each cpu.  These workers process all works regardless of
1909  * their specific target workqueue.  The only exception is works which
1910  * belong to workqueues with a rescuer which will be explained in
1911  * rescuer_thread().
1912  */
1913 static int worker_thread(void *__worker)
1914 {
1915 	struct worker *worker = __worker;
1916 	struct global_cwq *gcwq = worker->gcwq;
1917 
1918 	/* tell the scheduler that this is a workqueue worker */
1919 	worker->task->flags |= PF_WQ_WORKER;
1920 woke_up:
1921 	spin_lock_irq(&gcwq->lock);
1922 
1923 	/* DIE can be set only while we're idle, checking here is enough */
1924 	if (worker->flags & WORKER_DIE) {
1925 		spin_unlock_irq(&gcwq->lock);
1926 		worker->task->flags &= ~PF_WQ_WORKER;
1927 		return 0;
1928 	}
1929 
1930 	worker_leave_idle(worker);
1931 recheck:
1932 	/* no more worker necessary? */
1933 	if (!need_more_worker(gcwq))
1934 		goto sleep;
1935 
1936 	/* do we need to manage? */
1937 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1938 		goto recheck;
1939 
1940 	/*
1941 	 * ->scheduled list can only be filled while a worker is
1942 	 * preparing to process a work or actually processing it.
1943 	 * Make sure nobody diddled with it while I was sleeping.
1944 	 */
1945 	BUG_ON(!list_empty(&worker->scheduled));
1946 
1947 	/*
1948 	 * When control reaches this point, we're guaranteed to have
1949 	 * at least one idle worker or that someone else has already
1950 	 * assumed the manager role.
1951 	 */
1952 	worker_clr_flags(worker, WORKER_PREP);
1953 
1954 	do {
1955 		struct work_struct *work =
1956 			list_first_entry(&gcwq->worklist,
1957 					 struct work_struct, entry);
1958 
1959 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1960 			/* optimization path, not strictly necessary */
1961 			process_one_work(worker, work);
1962 			if (unlikely(!list_empty(&worker->scheduled)))
1963 				process_scheduled_works(worker);
1964 		} else {
1965 			move_linked_works(work, &worker->scheduled, NULL);
1966 			process_scheduled_works(worker);
1967 		}
1968 	} while (keep_working(gcwq));
1969 
1970 	worker_set_flags(worker, WORKER_PREP, false);
1971 sleep:
1972 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1973 		goto recheck;
1974 
1975 	/*
1976 	 * gcwq->lock is held and there's no work to process and no
1977 	 * need to manage, sleep.  Workers are woken up only while
1978 	 * holding gcwq->lock or from local cpu, so setting the
1979 	 * current state before releasing gcwq->lock is enough to
1980 	 * prevent losing any event.
1981 	 */
1982 	worker_enter_idle(worker);
1983 	__set_current_state(TASK_INTERRUPTIBLE);
1984 	spin_unlock_irq(&gcwq->lock);
1985 	schedule();
1986 	goto woke_up;
1987 }
1988 
1989 /**
1990  * rescuer_thread - the rescuer thread function
1991  * @__wq: the associated workqueue
1992  *
1993  * Workqueue rescuer thread function.  There's one rescuer for each
1994  * workqueue which has WQ_RESCUER set.
1995  *
1996  * Regular work processing on a gcwq may block trying to create a new
1997  * worker which uses GFP_KERNEL allocation which has slight chance of
1998  * developing into deadlock if some works currently on the same queue
1999  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2000  * the problem rescuer solves.
2001  *
2002  * When such condition is possible, the gcwq summons rescuers of all
2003  * workqueues which have works queued on the gcwq and let them process
2004  * those works so that forward progress can be guaranteed.
2005  *
2006  * This should happen rarely.
2007  */
2008 static int rescuer_thread(void *__wq)
2009 {
2010 	struct workqueue_struct *wq = __wq;
2011 	struct worker *rescuer = wq->rescuer;
2012 	struct list_head *scheduled = &rescuer->scheduled;
2013 	bool is_unbound = wq->flags & WQ_UNBOUND;
2014 	unsigned int cpu;
2015 
2016 	set_user_nice(current, RESCUER_NICE_LEVEL);
2017 repeat:
2018 	set_current_state(TASK_INTERRUPTIBLE);
2019 
2020 	if (kthread_should_stop())
2021 		return 0;
2022 
2023 	/*
2024 	 * See whether any cpu is asking for help.  Unbounded
2025 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2026 	 */
2027 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2028 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2029 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2030 		struct global_cwq *gcwq = cwq->gcwq;
2031 		struct work_struct *work, *n;
2032 
2033 		__set_current_state(TASK_RUNNING);
2034 		mayday_clear_cpu(cpu, wq->mayday_mask);
2035 
2036 		/* migrate to the target cpu if possible */
2037 		rescuer->gcwq = gcwq;
2038 		worker_maybe_bind_and_lock(rescuer);
2039 
2040 		/*
2041 		 * Slurp in all works issued via this workqueue and
2042 		 * process'em.
2043 		 */
2044 		BUG_ON(!list_empty(&rescuer->scheduled));
2045 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2046 			if (get_work_cwq(work) == cwq)
2047 				move_linked_works(work, scheduled, &n);
2048 
2049 		process_scheduled_works(rescuer);
2050 		spin_unlock_irq(&gcwq->lock);
2051 	}
2052 
2053 	schedule();
2054 	goto repeat;
2055 }
2056 
2057 struct wq_barrier {
2058 	struct work_struct	work;
2059 	struct completion	done;
2060 };
2061 
2062 static void wq_barrier_func(struct work_struct *work)
2063 {
2064 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2065 	complete(&barr->done);
2066 }
2067 
2068 /**
2069  * insert_wq_barrier - insert a barrier work
2070  * @cwq: cwq to insert barrier into
2071  * @barr: wq_barrier to insert
2072  * @target: target work to attach @barr to
2073  * @worker: worker currently executing @target, NULL if @target is not executing
2074  *
2075  * @barr is linked to @target such that @barr is completed only after
2076  * @target finishes execution.  Please note that the ordering
2077  * guarantee is observed only with respect to @target and on the local
2078  * cpu.
2079  *
2080  * Currently, a queued barrier can't be canceled.  This is because
2081  * try_to_grab_pending() can't determine whether the work to be
2082  * grabbed is at the head of the queue and thus can't clear LINKED
2083  * flag of the previous work while there must be a valid next work
2084  * after a work with LINKED flag set.
2085  *
2086  * Note that when @worker is non-NULL, @target may be modified
2087  * underneath us, so we can't reliably determine cwq from @target.
2088  *
2089  * CONTEXT:
2090  * spin_lock_irq(gcwq->lock).
2091  */
2092 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2093 			      struct wq_barrier *barr,
2094 			      struct work_struct *target, struct worker *worker)
2095 {
2096 	struct list_head *head;
2097 	unsigned int linked = 0;
2098 
2099 	/*
2100 	 * debugobject calls are safe here even with gcwq->lock locked
2101 	 * as we know for sure that this will not trigger any of the
2102 	 * checks and call back into the fixup functions where we
2103 	 * might deadlock.
2104 	 */
2105 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2106 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2107 	init_completion(&barr->done);
2108 
2109 	/*
2110 	 * If @target is currently being executed, schedule the
2111 	 * barrier to the worker; otherwise, put it after @target.
2112 	 */
2113 	if (worker)
2114 		head = worker->scheduled.next;
2115 	else {
2116 		unsigned long *bits = work_data_bits(target);
2117 
2118 		head = target->entry.next;
2119 		/* there can already be other linked works, inherit and set */
2120 		linked = *bits & WORK_STRUCT_LINKED;
2121 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2122 	}
2123 
2124 	debug_work_activate(&barr->work);
2125 	insert_work(cwq, &barr->work, head,
2126 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2127 }
2128 
2129 /**
2130  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2131  * @wq: workqueue being flushed
2132  * @flush_color: new flush color, < 0 for no-op
2133  * @work_color: new work color, < 0 for no-op
2134  *
2135  * Prepare cwqs for workqueue flushing.
2136  *
2137  * If @flush_color is non-negative, flush_color on all cwqs should be
2138  * -1.  If no cwq has in-flight commands at the specified color, all
2139  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2140  * has in flight commands, its cwq->flush_color is set to
2141  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2142  * wakeup logic is armed and %true is returned.
2143  *
2144  * The caller should have initialized @wq->first_flusher prior to
2145  * calling this function with non-negative @flush_color.  If
2146  * @flush_color is negative, no flush color update is done and %false
2147  * is returned.
2148  *
2149  * If @work_color is non-negative, all cwqs should have the same
2150  * work_color which is previous to @work_color and all will be
2151  * advanced to @work_color.
2152  *
2153  * CONTEXT:
2154  * mutex_lock(wq->flush_mutex).
2155  *
2156  * RETURNS:
2157  * %true if @flush_color >= 0 and there's something to flush.  %false
2158  * otherwise.
2159  */
2160 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2161 				      int flush_color, int work_color)
2162 {
2163 	bool wait = false;
2164 	unsigned int cpu;
2165 
2166 	if (flush_color >= 0) {
2167 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2168 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2169 	}
2170 
2171 	for_each_cwq_cpu(cpu, wq) {
2172 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2173 		struct global_cwq *gcwq = cwq->gcwq;
2174 
2175 		spin_lock_irq(&gcwq->lock);
2176 
2177 		if (flush_color >= 0) {
2178 			BUG_ON(cwq->flush_color != -1);
2179 
2180 			if (cwq->nr_in_flight[flush_color]) {
2181 				cwq->flush_color = flush_color;
2182 				atomic_inc(&wq->nr_cwqs_to_flush);
2183 				wait = true;
2184 			}
2185 		}
2186 
2187 		if (work_color >= 0) {
2188 			BUG_ON(work_color != work_next_color(cwq->work_color));
2189 			cwq->work_color = work_color;
2190 		}
2191 
2192 		spin_unlock_irq(&gcwq->lock);
2193 	}
2194 
2195 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2196 		complete(&wq->first_flusher->done);
2197 
2198 	return wait;
2199 }
2200 
2201 /**
2202  * flush_workqueue - ensure that any scheduled work has run to completion.
2203  * @wq: workqueue to flush
2204  *
2205  * Forces execution of the workqueue and blocks until its completion.
2206  * This is typically used in driver shutdown handlers.
2207  *
2208  * We sleep until all works which were queued on entry have been handled,
2209  * but we are not livelocked by new incoming ones.
2210  */
2211 void flush_workqueue(struct workqueue_struct *wq)
2212 {
2213 	struct wq_flusher this_flusher = {
2214 		.list = LIST_HEAD_INIT(this_flusher.list),
2215 		.flush_color = -1,
2216 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2217 	};
2218 	int next_color;
2219 
2220 	lock_map_acquire(&wq->lockdep_map);
2221 	lock_map_release(&wq->lockdep_map);
2222 
2223 	mutex_lock(&wq->flush_mutex);
2224 
2225 	/*
2226 	 * Start-to-wait phase
2227 	 */
2228 	next_color = work_next_color(wq->work_color);
2229 
2230 	if (next_color != wq->flush_color) {
2231 		/*
2232 		 * Color space is not full.  The current work_color
2233 		 * becomes our flush_color and work_color is advanced
2234 		 * by one.
2235 		 */
2236 		BUG_ON(!list_empty(&wq->flusher_overflow));
2237 		this_flusher.flush_color = wq->work_color;
2238 		wq->work_color = next_color;
2239 
2240 		if (!wq->first_flusher) {
2241 			/* no flush in progress, become the first flusher */
2242 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2243 
2244 			wq->first_flusher = &this_flusher;
2245 
2246 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2247 						       wq->work_color)) {
2248 				/* nothing to flush, done */
2249 				wq->flush_color = next_color;
2250 				wq->first_flusher = NULL;
2251 				goto out_unlock;
2252 			}
2253 		} else {
2254 			/* wait in queue */
2255 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2256 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2257 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2258 		}
2259 	} else {
2260 		/*
2261 		 * Oops, color space is full, wait on overflow queue.
2262 		 * The next flush completion will assign us
2263 		 * flush_color and transfer to flusher_queue.
2264 		 */
2265 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2266 	}
2267 
2268 	mutex_unlock(&wq->flush_mutex);
2269 
2270 	wait_for_completion(&this_flusher.done);
2271 
2272 	/*
2273 	 * Wake-up-and-cascade phase
2274 	 *
2275 	 * First flushers are responsible for cascading flushes and
2276 	 * handling overflow.  Non-first flushers can simply return.
2277 	 */
2278 	if (wq->first_flusher != &this_flusher)
2279 		return;
2280 
2281 	mutex_lock(&wq->flush_mutex);
2282 
2283 	/* we might have raced, check again with mutex held */
2284 	if (wq->first_flusher != &this_flusher)
2285 		goto out_unlock;
2286 
2287 	wq->first_flusher = NULL;
2288 
2289 	BUG_ON(!list_empty(&this_flusher.list));
2290 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2291 
2292 	while (true) {
2293 		struct wq_flusher *next, *tmp;
2294 
2295 		/* complete all the flushers sharing the current flush color */
2296 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2297 			if (next->flush_color != wq->flush_color)
2298 				break;
2299 			list_del_init(&next->list);
2300 			complete(&next->done);
2301 		}
2302 
2303 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2304 		       wq->flush_color != work_next_color(wq->work_color));
2305 
2306 		/* this flush_color is finished, advance by one */
2307 		wq->flush_color = work_next_color(wq->flush_color);
2308 
2309 		/* one color has been freed, handle overflow queue */
2310 		if (!list_empty(&wq->flusher_overflow)) {
2311 			/*
2312 			 * Assign the same color to all overflowed
2313 			 * flushers, advance work_color and append to
2314 			 * flusher_queue.  This is the start-to-wait
2315 			 * phase for these overflowed flushers.
2316 			 */
2317 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2318 				tmp->flush_color = wq->work_color;
2319 
2320 			wq->work_color = work_next_color(wq->work_color);
2321 
2322 			list_splice_tail_init(&wq->flusher_overflow,
2323 					      &wq->flusher_queue);
2324 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2325 		}
2326 
2327 		if (list_empty(&wq->flusher_queue)) {
2328 			BUG_ON(wq->flush_color != wq->work_color);
2329 			break;
2330 		}
2331 
2332 		/*
2333 		 * Need to flush more colors.  Make the next flusher
2334 		 * the new first flusher and arm cwqs.
2335 		 */
2336 		BUG_ON(wq->flush_color == wq->work_color);
2337 		BUG_ON(wq->flush_color != next->flush_color);
2338 
2339 		list_del_init(&next->list);
2340 		wq->first_flusher = next;
2341 
2342 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2343 			break;
2344 
2345 		/*
2346 		 * Meh... this color is already done, clear first
2347 		 * flusher and repeat cascading.
2348 		 */
2349 		wq->first_flusher = NULL;
2350 	}
2351 
2352 out_unlock:
2353 	mutex_unlock(&wq->flush_mutex);
2354 }
2355 EXPORT_SYMBOL_GPL(flush_workqueue);
2356 
2357 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2358 			     bool wait_executing)
2359 {
2360 	struct worker *worker = NULL;
2361 	struct global_cwq *gcwq;
2362 	struct cpu_workqueue_struct *cwq;
2363 
2364 	might_sleep();
2365 	gcwq = get_work_gcwq(work);
2366 	if (!gcwq)
2367 		return false;
2368 
2369 	spin_lock_irq(&gcwq->lock);
2370 	if (!list_empty(&work->entry)) {
2371 		/*
2372 		 * See the comment near try_to_grab_pending()->smp_rmb().
2373 		 * If it was re-queued to a different gcwq under us, we
2374 		 * are not going to wait.
2375 		 */
2376 		smp_rmb();
2377 		cwq = get_work_cwq(work);
2378 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2379 			goto already_gone;
2380 	} else if (wait_executing) {
2381 		worker = find_worker_executing_work(gcwq, work);
2382 		if (!worker)
2383 			goto already_gone;
2384 		cwq = worker->current_cwq;
2385 	} else
2386 		goto already_gone;
2387 
2388 	insert_wq_barrier(cwq, barr, work, worker);
2389 	spin_unlock_irq(&gcwq->lock);
2390 
2391 	/*
2392 	 * If @max_active is 1 or rescuer is in use, flushing another work
2393 	 * item on the same workqueue may lead to deadlock.  Make sure the
2394 	 * flusher is not running on the same workqueue by verifying write
2395 	 * access.
2396 	 */
2397 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2398 		lock_map_acquire(&cwq->wq->lockdep_map);
2399 	else
2400 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2401 	lock_map_release(&cwq->wq->lockdep_map);
2402 
2403 	return true;
2404 already_gone:
2405 	spin_unlock_irq(&gcwq->lock);
2406 	return false;
2407 }
2408 
2409 /**
2410  * flush_work - wait for a work to finish executing the last queueing instance
2411  * @work: the work to flush
2412  *
2413  * Wait until @work has finished execution.  This function considers
2414  * only the last queueing instance of @work.  If @work has been
2415  * enqueued across different CPUs on a non-reentrant workqueue or on
2416  * multiple workqueues, @work might still be executing on return on
2417  * some of the CPUs from earlier queueing.
2418  *
2419  * If @work was queued only on a non-reentrant, ordered or unbound
2420  * workqueue, @work is guaranteed to be idle on return if it hasn't
2421  * been requeued since flush started.
2422  *
2423  * RETURNS:
2424  * %true if flush_work() waited for the work to finish execution,
2425  * %false if it was already idle.
2426  */
2427 bool flush_work(struct work_struct *work)
2428 {
2429 	struct wq_barrier barr;
2430 
2431 	if (start_flush_work(work, &barr, true)) {
2432 		wait_for_completion(&barr.done);
2433 		destroy_work_on_stack(&barr.work);
2434 		return true;
2435 	} else
2436 		return false;
2437 }
2438 EXPORT_SYMBOL_GPL(flush_work);
2439 
2440 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2441 {
2442 	struct wq_barrier barr;
2443 	struct worker *worker;
2444 
2445 	spin_lock_irq(&gcwq->lock);
2446 
2447 	worker = find_worker_executing_work(gcwq, work);
2448 	if (unlikely(worker))
2449 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2450 
2451 	spin_unlock_irq(&gcwq->lock);
2452 
2453 	if (unlikely(worker)) {
2454 		wait_for_completion(&barr.done);
2455 		destroy_work_on_stack(&barr.work);
2456 		return true;
2457 	} else
2458 		return false;
2459 }
2460 
2461 static bool wait_on_work(struct work_struct *work)
2462 {
2463 	bool ret = false;
2464 	int cpu;
2465 
2466 	might_sleep();
2467 
2468 	lock_map_acquire(&work->lockdep_map);
2469 	lock_map_release(&work->lockdep_map);
2470 
2471 	for_each_gcwq_cpu(cpu)
2472 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2473 	return ret;
2474 }
2475 
2476 /**
2477  * flush_work_sync - wait until a work has finished execution
2478  * @work: the work to flush
2479  *
2480  * Wait until @work has finished execution.  On return, it's
2481  * guaranteed that all queueing instances of @work which happened
2482  * before this function is called are finished.  In other words, if
2483  * @work hasn't been requeued since this function was called, @work is
2484  * guaranteed to be idle on return.
2485  *
2486  * RETURNS:
2487  * %true if flush_work_sync() waited for the work to finish execution,
2488  * %false if it was already idle.
2489  */
2490 bool flush_work_sync(struct work_struct *work)
2491 {
2492 	struct wq_barrier barr;
2493 	bool pending, waited;
2494 
2495 	/* we'll wait for executions separately, queue barr only if pending */
2496 	pending = start_flush_work(work, &barr, false);
2497 
2498 	/* wait for executions to finish */
2499 	waited = wait_on_work(work);
2500 
2501 	/* wait for the pending one */
2502 	if (pending) {
2503 		wait_for_completion(&barr.done);
2504 		destroy_work_on_stack(&barr.work);
2505 	}
2506 
2507 	return pending || waited;
2508 }
2509 EXPORT_SYMBOL_GPL(flush_work_sync);
2510 
2511 /*
2512  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2513  * so this work can't be re-armed in any way.
2514  */
2515 static int try_to_grab_pending(struct work_struct *work)
2516 {
2517 	struct global_cwq *gcwq;
2518 	int ret = -1;
2519 
2520 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2521 		return 0;
2522 
2523 	/*
2524 	 * The queueing is in progress, or it is already queued. Try to
2525 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2526 	 */
2527 	gcwq = get_work_gcwq(work);
2528 	if (!gcwq)
2529 		return ret;
2530 
2531 	spin_lock_irq(&gcwq->lock);
2532 	if (!list_empty(&work->entry)) {
2533 		/*
2534 		 * This work is queued, but perhaps we locked the wrong gcwq.
2535 		 * In that case we must see the new value after rmb(), see
2536 		 * insert_work()->wmb().
2537 		 */
2538 		smp_rmb();
2539 		if (gcwq == get_work_gcwq(work)) {
2540 			debug_work_deactivate(work);
2541 			list_del_init(&work->entry);
2542 			cwq_dec_nr_in_flight(get_work_cwq(work),
2543 				get_work_color(work),
2544 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2545 			ret = 1;
2546 		}
2547 	}
2548 	spin_unlock_irq(&gcwq->lock);
2549 
2550 	return ret;
2551 }
2552 
2553 static bool __cancel_work_timer(struct work_struct *work,
2554 				struct timer_list* timer)
2555 {
2556 	int ret;
2557 
2558 	do {
2559 		ret = (timer && likely(del_timer(timer)));
2560 		if (!ret)
2561 			ret = try_to_grab_pending(work);
2562 		wait_on_work(work);
2563 	} while (unlikely(ret < 0));
2564 
2565 	clear_work_data(work);
2566 	return ret;
2567 }
2568 
2569 /**
2570  * cancel_work_sync - cancel a work and wait for it to finish
2571  * @work: the work to cancel
2572  *
2573  * Cancel @work and wait for its execution to finish.  This function
2574  * can be used even if the work re-queues itself or migrates to
2575  * another workqueue.  On return from this function, @work is
2576  * guaranteed to be not pending or executing on any CPU.
2577  *
2578  * cancel_work_sync(&delayed_work->work) must not be used for
2579  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2580  *
2581  * The caller must ensure that the workqueue on which @work was last
2582  * queued can't be destroyed before this function returns.
2583  *
2584  * RETURNS:
2585  * %true if @work was pending, %false otherwise.
2586  */
2587 bool cancel_work_sync(struct work_struct *work)
2588 {
2589 	return __cancel_work_timer(work, NULL);
2590 }
2591 EXPORT_SYMBOL_GPL(cancel_work_sync);
2592 
2593 /**
2594  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2595  * @dwork: the delayed work to flush
2596  *
2597  * Delayed timer is cancelled and the pending work is queued for
2598  * immediate execution.  Like flush_work(), this function only
2599  * considers the last queueing instance of @dwork.
2600  *
2601  * RETURNS:
2602  * %true if flush_work() waited for the work to finish execution,
2603  * %false if it was already idle.
2604  */
2605 bool flush_delayed_work(struct delayed_work *dwork)
2606 {
2607 	if (del_timer_sync(&dwork->timer))
2608 		__queue_work(raw_smp_processor_id(),
2609 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2610 	return flush_work(&dwork->work);
2611 }
2612 EXPORT_SYMBOL(flush_delayed_work);
2613 
2614 /**
2615  * flush_delayed_work_sync - wait for a dwork to finish
2616  * @dwork: the delayed work to flush
2617  *
2618  * Delayed timer is cancelled and the pending work is queued for
2619  * execution immediately.  Other than timer handling, its behavior
2620  * is identical to flush_work_sync().
2621  *
2622  * RETURNS:
2623  * %true if flush_work_sync() waited for the work to finish execution,
2624  * %false if it was already idle.
2625  */
2626 bool flush_delayed_work_sync(struct delayed_work *dwork)
2627 {
2628 	if (del_timer_sync(&dwork->timer))
2629 		__queue_work(raw_smp_processor_id(),
2630 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2631 	return flush_work_sync(&dwork->work);
2632 }
2633 EXPORT_SYMBOL(flush_delayed_work_sync);
2634 
2635 /**
2636  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2637  * @dwork: the delayed work cancel
2638  *
2639  * This is cancel_work_sync() for delayed works.
2640  *
2641  * RETURNS:
2642  * %true if @dwork was pending, %false otherwise.
2643  */
2644 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2645 {
2646 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2647 }
2648 EXPORT_SYMBOL(cancel_delayed_work_sync);
2649 
2650 /**
2651  * schedule_work - put work task in global workqueue
2652  * @work: job to be done
2653  *
2654  * Returns zero if @work was already on the kernel-global workqueue and
2655  * non-zero otherwise.
2656  *
2657  * This puts a job in the kernel-global workqueue if it was not already
2658  * queued and leaves it in the same position on the kernel-global
2659  * workqueue otherwise.
2660  */
2661 int schedule_work(struct work_struct *work)
2662 {
2663 	return queue_work(system_wq, work);
2664 }
2665 EXPORT_SYMBOL(schedule_work);
2666 
2667 /*
2668  * schedule_work_on - put work task on a specific cpu
2669  * @cpu: cpu to put the work task on
2670  * @work: job to be done
2671  *
2672  * This puts a job on a specific cpu
2673  */
2674 int schedule_work_on(int cpu, struct work_struct *work)
2675 {
2676 	return queue_work_on(cpu, system_wq, work);
2677 }
2678 EXPORT_SYMBOL(schedule_work_on);
2679 
2680 /**
2681  * schedule_delayed_work - put work task in global workqueue after delay
2682  * @dwork: job to be done
2683  * @delay: number of jiffies to wait or 0 for immediate execution
2684  *
2685  * After waiting for a given time this puts a job in the kernel-global
2686  * workqueue.
2687  */
2688 int schedule_delayed_work(struct delayed_work *dwork,
2689 					unsigned long delay)
2690 {
2691 	return queue_delayed_work(system_wq, dwork, delay);
2692 }
2693 EXPORT_SYMBOL(schedule_delayed_work);
2694 
2695 /**
2696  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2697  * @cpu: cpu to use
2698  * @dwork: job to be done
2699  * @delay: number of jiffies to wait
2700  *
2701  * After waiting for a given time this puts a job in the kernel-global
2702  * workqueue on the specified CPU.
2703  */
2704 int schedule_delayed_work_on(int cpu,
2705 			struct delayed_work *dwork, unsigned long delay)
2706 {
2707 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2708 }
2709 EXPORT_SYMBOL(schedule_delayed_work_on);
2710 
2711 /**
2712  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2713  * @func: the function to call
2714  *
2715  * schedule_on_each_cpu() executes @func on each online CPU using the
2716  * system workqueue and blocks until all CPUs have completed.
2717  * schedule_on_each_cpu() is very slow.
2718  *
2719  * RETURNS:
2720  * 0 on success, -errno on failure.
2721  */
2722 int schedule_on_each_cpu(work_func_t func)
2723 {
2724 	int cpu;
2725 	struct work_struct __percpu *works;
2726 
2727 	works = alloc_percpu(struct work_struct);
2728 	if (!works)
2729 		return -ENOMEM;
2730 
2731 	get_online_cpus();
2732 
2733 	for_each_online_cpu(cpu) {
2734 		struct work_struct *work = per_cpu_ptr(works, cpu);
2735 
2736 		INIT_WORK(work, func);
2737 		schedule_work_on(cpu, work);
2738 	}
2739 
2740 	for_each_online_cpu(cpu)
2741 		flush_work(per_cpu_ptr(works, cpu));
2742 
2743 	put_online_cpus();
2744 	free_percpu(works);
2745 	return 0;
2746 }
2747 
2748 /**
2749  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2750  *
2751  * Forces execution of the kernel-global workqueue and blocks until its
2752  * completion.
2753  *
2754  * Think twice before calling this function!  It's very easy to get into
2755  * trouble if you don't take great care.  Either of the following situations
2756  * will lead to deadlock:
2757  *
2758  *	One of the work items currently on the workqueue needs to acquire
2759  *	a lock held by your code or its caller.
2760  *
2761  *	Your code is running in the context of a work routine.
2762  *
2763  * They will be detected by lockdep when they occur, but the first might not
2764  * occur very often.  It depends on what work items are on the workqueue and
2765  * what locks they need, which you have no control over.
2766  *
2767  * In most situations flushing the entire workqueue is overkill; you merely
2768  * need to know that a particular work item isn't queued and isn't running.
2769  * In such cases you should use cancel_delayed_work_sync() or
2770  * cancel_work_sync() instead.
2771  */
2772 void flush_scheduled_work(void)
2773 {
2774 	flush_workqueue(system_wq);
2775 }
2776 EXPORT_SYMBOL(flush_scheduled_work);
2777 
2778 /**
2779  * execute_in_process_context - reliably execute the routine with user context
2780  * @fn:		the function to execute
2781  * @ew:		guaranteed storage for the execute work structure (must
2782  *		be available when the work executes)
2783  *
2784  * Executes the function immediately if process context is available,
2785  * otherwise schedules the function for delayed execution.
2786  *
2787  * Returns:	0 - function was executed
2788  *		1 - function was scheduled for execution
2789  */
2790 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2791 {
2792 	if (!in_interrupt()) {
2793 		fn(&ew->work);
2794 		return 0;
2795 	}
2796 
2797 	INIT_WORK(&ew->work, fn);
2798 	schedule_work(&ew->work);
2799 
2800 	return 1;
2801 }
2802 EXPORT_SYMBOL_GPL(execute_in_process_context);
2803 
2804 int keventd_up(void)
2805 {
2806 	return system_wq != NULL;
2807 }
2808 
2809 static int alloc_cwqs(struct workqueue_struct *wq)
2810 {
2811 	/*
2812 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2813 	 * Make sure that the alignment isn't lower than that of
2814 	 * unsigned long long.
2815 	 */
2816 	const size_t size = sizeof(struct cpu_workqueue_struct);
2817 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2818 				   __alignof__(unsigned long long));
2819 #ifdef CONFIG_SMP
2820 	bool percpu = !(wq->flags & WQ_UNBOUND);
2821 #else
2822 	bool percpu = false;
2823 #endif
2824 
2825 	if (percpu)
2826 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2827 	else {
2828 		void *ptr;
2829 
2830 		/*
2831 		 * Allocate enough room to align cwq and put an extra
2832 		 * pointer at the end pointing back to the originally
2833 		 * allocated pointer which will be used for free.
2834 		 */
2835 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2836 		if (ptr) {
2837 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2838 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2839 		}
2840 	}
2841 
2842 	/* just in case, make sure it's actually aligned
2843 	 * - this is affected by PERCPU() alignment in vmlinux.lds.S
2844 	 */
2845 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2846 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2847 }
2848 
2849 static void free_cwqs(struct workqueue_struct *wq)
2850 {
2851 #ifdef CONFIG_SMP
2852 	bool percpu = !(wq->flags & WQ_UNBOUND);
2853 #else
2854 	bool percpu = false;
2855 #endif
2856 
2857 	if (percpu)
2858 		free_percpu(wq->cpu_wq.pcpu);
2859 	else if (wq->cpu_wq.single) {
2860 		/* the pointer to free is stored right after the cwq */
2861 		kfree(*(void **)(wq->cpu_wq.single + 1));
2862 	}
2863 }
2864 
2865 static int wq_clamp_max_active(int max_active, unsigned int flags,
2866 			       const char *name)
2867 {
2868 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2869 
2870 	if (max_active < 1 || max_active > lim)
2871 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2872 		       "is out of range, clamping between %d and %d\n",
2873 		       max_active, name, 1, lim);
2874 
2875 	return clamp_val(max_active, 1, lim);
2876 }
2877 
2878 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2879 					       unsigned int flags,
2880 					       int max_active,
2881 					       struct lock_class_key *key,
2882 					       const char *lock_name)
2883 {
2884 	struct workqueue_struct *wq;
2885 	unsigned int cpu;
2886 
2887 	/*
2888 	 * Workqueues which may be used during memory reclaim should
2889 	 * have a rescuer to guarantee forward progress.
2890 	 */
2891 	if (flags & WQ_MEM_RECLAIM)
2892 		flags |= WQ_RESCUER;
2893 
2894 	/*
2895 	 * Unbound workqueues aren't concurrency managed and should be
2896 	 * dispatched to workers immediately.
2897 	 */
2898 	if (flags & WQ_UNBOUND)
2899 		flags |= WQ_HIGHPRI;
2900 
2901 	max_active = max_active ?: WQ_DFL_ACTIVE;
2902 	max_active = wq_clamp_max_active(max_active, flags, name);
2903 
2904 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2905 	if (!wq)
2906 		goto err;
2907 
2908 	wq->flags = flags;
2909 	wq->saved_max_active = max_active;
2910 	mutex_init(&wq->flush_mutex);
2911 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2912 	INIT_LIST_HEAD(&wq->flusher_queue);
2913 	INIT_LIST_HEAD(&wq->flusher_overflow);
2914 
2915 	wq->name = name;
2916 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2917 	INIT_LIST_HEAD(&wq->list);
2918 
2919 	if (alloc_cwqs(wq) < 0)
2920 		goto err;
2921 
2922 	for_each_cwq_cpu(cpu, wq) {
2923 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2924 		struct global_cwq *gcwq = get_gcwq(cpu);
2925 
2926 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2927 		cwq->gcwq = gcwq;
2928 		cwq->wq = wq;
2929 		cwq->flush_color = -1;
2930 		cwq->max_active = max_active;
2931 		INIT_LIST_HEAD(&cwq->delayed_works);
2932 	}
2933 
2934 	if (flags & WQ_RESCUER) {
2935 		struct worker *rescuer;
2936 
2937 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2938 			goto err;
2939 
2940 		wq->rescuer = rescuer = alloc_worker();
2941 		if (!rescuer)
2942 			goto err;
2943 
2944 		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2945 		if (IS_ERR(rescuer->task))
2946 			goto err;
2947 
2948 		rescuer->task->flags |= PF_THREAD_BOUND;
2949 		wake_up_process(rescuer->task);
2950 	}
2951 
2952 	/*
2953 	 * workqueue_lock protects global freeze state and workqueues
2954 	 * list.  Grab it, set max_active accordingly and add the new
2955 	 * workqueue to workqueues list.
2956 	 */
2957 	spin_lock(&workqueue_lock);
2958 
2959 	if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2960 		for_each_cwq_cpu(cpu, wq)
2961 			get_cwq(cpu, wq)->max_active = 0;
2962 
2963 	list_add(&wq->list, &workqueues);
2964 
2965 	spin_unlock(&workqueue_lock);
2966 
2967 	return wq;
2968 err:
2969 	if (wq) {
2970 		free_cwqs(wq);
2971 		free_mayday_mask(wq->mayday_mask);
2972 		kfree(wq->rescuer);
2973 		kfree(wq);
2974 	}
2975 	return NULL;
2976 }
2977 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2978 
2979 /**
2980  * destroy_workqueue - safely terminate a workqueue
2981  * @wq: target workqueue
2982  *
2983  * Safely destroy a workqueue. All work currently pending will be done first.
2984  */
2985 void destroy_workqueue(struct workqueue_struct *wq)
2986 {
2987 	unsigned int flush_cnt = 0;
2988 	unsigned int cpu;
2989 
2990 	/*
2991 	 * Mark @wq dying and drain all pending works.  Once WQ_DYING is
2992 	 * set, only chain queueing is allowed.  IOW, only currently
2993 	 * pending or running work items on @wq can queue further work
2994 	 * items on it.  @wq is flushed repeatedly until it becomes empty.
2995 	 * The number of flushing is detemined by the depth of chaining and
2996 	 * should be relatively short.  Whine if it takes too long.
2997 	 */
2998 	wq->flags |= WQ_DYING;
2999 reflush:
3000 	flush_workqueue(wq);
3001 
3002 	for_each_cwq_cpu(cpu, wq) {
3003 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3004 
3005 		if (!cwq->nr_active && list_empty(&cwq->delayed_works))
3006 			continue;
3007 
3008 		if (++flush_cnt == 10 ||
3009 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3010 			printk(KERN_WARNING "workqueue %s: flush on "
3011 			       "destruction isn't complete after %u tries\n",
3012 			       wq->name, flush_cnt);
3013 		goto reflush;
3014 	}
3015 
3016 	/*
3017 	 * wq list is used to freeze wq, remove from list after
3018 	 * flushing is complete in case freeze races us.
3019 	 */
3020 	spin_lock(&workqueue_lock);
3021 	list_del(&wq->list);
3022 	spin_unlock(&workqueue_lock);
3023 
3024 	/* sanity check */
3025 	for_each_cwq_cpu(cpu, wq) {
3026 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3027 		int i;
3028 
3029 		for (i = 0; i < WORK_NR_COLORS; i++)
3030 			BUG_ON(cwq->nr_in_flight[i]);
3031 		BUG_ON(cwq->nr_active);
3032 		BUG_ON(!list_empty(&cwq->delayed_works));
3033 	}
3034 
3035 	if (wq->flags & WQ_RESCUER) {
3036 		kthread_stop(wq->rescuer->task);
3037 		free_mayday_mask(wq->mayday_mask);
3038 		kfree(wq->rescuer);
3039 	}
3040 
3041 	free_cwqs(wq);
3042 	kfree(wq);
3043 }
3044 EXPORT_SYMBOL_GPL(destroy_workqueue);
3045 
3046 /**
3047  * workqueue_set_max_active - adjust max_active of a workqueue
3048  * @wq: target workqueue
3049  * @max_active: new max_active value.
3050  *
3051  * Set max_active of @wq to @max_active.
3052  *
3053  * CONTEXT:
3054  * Don't call from IRQ context.
3055  */
3056 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3057 {
3058 	unsigned int cpu;
3059 
3060 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3061 
3062 	spin_lock(&workqueue_lock);
3063 
3064 	wq->saved_max_active = max_active;
3065 
3066 	for_each_cwq_cpu(cpu, wq) {
3067 		struct global_cwq *gcwq = get_gcwq(cpu);
3068 
3069 		spin_lock_irq(&gcwq->lock);
3070 
3071 		if (!(wq->flags & WQ_FREEZEABLE) ||
3072 		    !(gcwq->flags & GCWQ_FREEZING))
3073 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3074 
3075 		spin_unlock_irq(&gcwq->lock);
3076 	}
3077 
3078 	spin_unlock(&workqueue_lock);
3079 }
3080 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3081 
3082 /**
3083  * workqueue_congested - test whether a workqueue is congested
3084  * @cpu: CPU in question
3085  * @wq: target workqueue
3086  *
3087  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3088  * no synchronization around this function and the test result is
3089  * unreliable and only useful as advisory hints or for debugging.
3090  *
3091  * RETURNS:
3092  * %true if congested, %false otherwise.
3093  */
3094 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3095 {
3096 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3097 
3098 	return !list_empty(&cwq->delayed_works);
3099 }
3100 EXPORT_SYMBOL_GPL(workqueue_congested);
3101 
3102 /**
3103  * work_cpu - return the last known associated cpu for @work
3104  * @work: the work of interest
3105  *
3106  * RETURNS:
3107  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3108  */
3109 unsigned int work_cpu(struct work_struct *work)
3110 {
3111 	struct global_cwq *gcwq = get_work_gcwq(work);
3112 
3113 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3114 }
3115 EXPORT_SYMBOL_GPL(work_cpu);
3116 
3117 /**
3118  * work_busy - test whether a work is currently pending or running
3119  * @work: the work to be tested
3120  *
3121  * Test whether @work is currently pending or running.  There is no
3122  * synchronization around this function and the test result is
3123  * unreliable and only useful as advisory hints or for debugging.
3124  * Especially for reentrant wqs, the pending state might hide the
3125  * running state.
3126  *
3127  * RETURNS:
3128  * OR'd bitmask of WORK_BUSY_* bits.
3129  */
3130 unsigned int work_busy(struct work_struct *work)
3131 {
3132 	struct global_cwq *gcwq = get_work_gcwq(work);
3133 	unsigned long flags;
3134 	unsigned int ret = 0;
3135 
3136 	if (!gcwq)
3137 		return false;
3138 
3139 	spin_lock_irqsave(&gcwq->lock, flags);
3140 
3141 	if (work_pending(work))
3142 		ret |= WORK_BUSY_PENDING;
3143 	if (find_worker_executing_work(gcwq, work))
3144 		ret |= WORK_BUSY_RUNNING;
3145 
3146 	spin_unlock_irqrestore(&gcwq->lock, flags);
3147 
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(work_busy);
3151 
3152 /*
3153  * CPU hotplug.
3154  *
3155  * There are two challenges in supporting CPU hotplug.  Firstly, there
3156  * are a lot of assumptions on strong associations among work, cwq and
3157  * gcwq which make migrating pending and scheduled works very
3158  * difficult to implement without impacting hot paths.  Secondly,
3159  * gcwqs serve mix of short, long and very long running works making
3160  * blocked draining impractical.
3161  *
3162  * This is solved by allowing a gcwq to be detached from CPU, running
3163  * it with unbound (rogue) workers and allowing it to be reattached
3164  * later if the cpu comes back online.  A separate thread is created
3165  * to govern a gcwq in such state and is called the trustee of the
3166  * gcwq.
3167  *
3168  * Trustee states and their descriptions.
3169  *
3170  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3171  *		new trustee is started with this state.
3172  *
3173  * IN_CHARGE	Once started, trustee will enter this state after
3174  *		assuming the manager role and making all existing
3175  *		workers rogue.  DOWN_PREPARE waits for trustee to
3176  *		enter this state.  After reaching IN_CHARGE, trustee
3177  *		tries to execute the pending worklist until it's empty
3178  *		and the state is set to BUTCHER, or the state is set
3179  *		to RELEASE.
3180  *
3181  * BUTCHER	Command state which is set by the cpu callback after
3182  *		the cpu has went down.  Once this state is set trustee
3183  *		knows that there will be no new works on the worklist
3184  *		and once the worklist is empty it can proceed to
3185  *		killing idle workers.
3186  *
3187  * RELEASE	Command state which is set by the cpu callback if the
3188  *		cpu down has been canceled or it has come online
3189  *		again.  After recognizing this state, trustee stops
3190  *		trying to drain or butcher and clears ROGUE, rebinds
3191  *		all remaining workers back to the cpu and releases
3192  *		manager role.
3193  *
3194  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3195  *		is complete.
3196  *
3197  *          trustee                 CPU                draining
3198  *         took over                down               complete
3199  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3200  *                        |                     |                  ^
3201  *                        | CPU is back online  v   return workers |
3202  *                         ----------------> RELEASE --------------
3203  */
3204 
3205 /**
3206  * trustee_wait_event_timeout - timed event wait for trustee
3207  * @cond: condition to wait for
3208  * @timeout: timeout in jiffies
3209  *
3210  * wait_event_timeout() for trustee to use.  Handles locking and
3211  * checks for RELEASE request.
3212  *
3213  * CONTEXT:
3214  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3215  * multiple times.  To be used by trustee.
3216  *
3217  * RETURNS:
3218  * Positive indicating left time if @cond is satisfied, 0 if timed
3219  * out, -1 if canceled.
3220  */
3221 #define trustee_wait_event_timeout(cond, timeout) ({			\
3222 	long __ret = (timeout);						\
3223 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3224 	       __ret) {							\
3225 		spin_unlock_irq(&gcwq->lock);				\
3226 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3227 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3228 			__ret);						\
3229 		spin_lock_irq(&gcwq->lock);				\
3230 	}								\
3231 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3232 })
3233 
3234 /**
3235  * trustee_wait_event - event wait for trustee
3236  * @cond: condition to wait for
3237  *
3238  * wait_event() for trustee to use.  Automatically handles locking and
3239  * checks for CANCEL request.
3240  *
3241  * CONTEXT:
3242  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3243  * multiple times.  To be used by trustee.
3244  *
3245  * RETURNS:
3246  * 0 if @cond is satisfied, -1 if canceled.
3247  */
3248 #define trustee_wait_event(cond) ({					\
3249 	long __ret1;							\
3250 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3251 	__ret1 < 0 ? -1 : 0;						\
3252 })
3253 
3254 static int __cpuinit trustee_thread(void *__gcwq)
3255 {
3256 	struct global_cwq *gcwq = __gcwq;
3257 	struct worker *worker;
3258 	struct work_struct *work;
3259 	struct hlist_node *pos;
3260 	long rc;
3261 	int i;
3262 
3263 	BUG_ON(gcwq->cpu != smp_processor_id());
3264 
3265 	spin_lock_irq(&gcwq->lock);
3266 	/*
3267 	 * Claim the manager position and make all workers rogue.
3268 	 * Trustee must be bound to the target cpu and can't be
3269 	 * cancelled.
3270 	 */
3271 	BUG_ON(gcwq->cpu != smp_processor_id());
3272 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3273 	BUG_ON(rc < 0);
3274 
3275 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3276 
3277 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3278 		worker->flags |= WORKER_ROGUE;
3279 
3280 	for_each_busy_worker(worker, i, pos, gcwq)
3281 		worker->flags |= WORKER_ROGUE;
3282 
3283 	/*
3284 	 * Call schedule() so that we cross rq->lock and thus can
3285 	 * guarantee sched callbacks see the rogue flag.  This is
3286 	 * necessary as scheduler callbacks may be invoked from other
3287 	 * cpus.
3288 	 */
3289 	spin_unlock_irq(&gcwq->lock);
3290 	schedule();
3291 	spin_lock_irq(&gcwq->lock);
3292 
3293 	/*
3294 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3295 	 * this, nr_running stays zero and need_more_worker() and
3296 	 * keep_working() are always true as long as the worklist is
3297 	 * not empty.
3298 	 */
3299 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3300 
3301 	spin_unlock_irq(&gcwq->lock);
3302 	del_timer_sync(&gcwq->idle_timer);
3303 	spin_lock_irq(&gcwq->lock);
3304 
3305 	/*
3306 	 * We're now in charge.  Notify and proceed to drain.  We need
3307 	 * to keep the gcwq running during the whole CPU down
3308 	 * procedure as other cpu hotunplug callbacks may need to
3309 	 * flush currently running tasks.
3310 	 */
3311 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3312 	wake_up_all(&gcwq->trustee_wait);
3313 
3314 	/*
3315 	 * The original cpu is in the process of dying and may go away
3316 	 * anytime now.  When that happens, we and all workers would
3317 	 * be migrated to other cpus.  Try draining any left work.  We
3318 	 * want to get it over with ASAP - spam rescuers, wake up as
3319 	 * many idlers as necessary and create new ones till the
3320 	 * worklist is empty.  Note that if the gcwq is frozen, there
3321 	 * may be frozen works in freezeable cwqs.  Don't declare
3322 	 * completion while frozen.
3323 	 */
3324 	while (gcwq->nr_workers != gcwq->nr_idle ||
3325 	       gcwq->flags & GCWQ_FREEZING ||
3326 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3327 		int nr_works = 0;
3328 
3329 		list_for_each_entry(work, &gcwq->worklist, entry) {
3330 			send_mayday(work);
3331 			nr_works++;
3332 		}
3333 
3334 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3335 			if (!nr_works--)
3336 				break;
3337 			wake_up_process(worker->task);
3338 		}
3339 
3340 		if (need_to_create_worker(gcwq)) {
3341 			spin_unlock_irq(&gcwq->lock);
3342 			worker = create_worker(gcwq, false);
3343 			spin_lock_irq(&gcwq->lock);
3344 			if (worker) {
3345 				worker->flags |= WORKER_ROGUE;
3346 				start_worker(worker);
3347 			}
3348 		}
3349 
3350 		/* give a breather */
3351 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3352 			break;
3353 	}
3354 
3355 	/*
3356 	 * Either all works have been scheduled and cpu is down, or
3357 	 * cpu down has already been canceled.  Wait for and butcher
3358 	 * all workers till we're canceled.
3359 	 */
3360 	do {
3361 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3362 		while (!list_empty(&gcwq->idle_list))
3363 			destroy_worker(list_first_entry(&gcwq->idle_list,
3364 							struct worker, entry));
3365 	} while (gcwq->nr_workers && rc >= 0);
3366 
3367 	/*
3368 	 * At this point, either draining has completed and no worker
3369 	 * is left, or cpu down has been canceled or the cpu is being
3370 	 * brought back up.  There shouldn't be any idle one left.
3371 	 * Tell the remaining busy ones to rebind once it finishes the
3372 	 * currently scheduled works by scheduling the rebind_work.
3373 	 */
3374 	WARN_ON(!list_empty(&gcwq->idle_list));
3375 
3376 	for_each_busy_worker(worker, i, pos, gcwq) {
3377 		struct work_struct *rebind_work = &worker->rebind_work;
3378 
3379 		/*
3380 		 * Rebind_work may race with future cpu hotplug
3381 		 * operations.  Use a separate flag to mark that
3382 		 * rebinding is scheduled.
3383 		 */
3384 		worker->flags |= WORKER_REBIND;
3385 		worker->flags &= ~WORKER_ROGUE;
3386 
3387 		/* queue rebind_work, wq doesn't matter, use the default one */
3388 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3389 				     work_data_bits(rebind_work)))
3390 			continue;
3391 
3392 		debug_work_activate(rebind_work);
3393 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3394 			    worker->scheduled.next,
3395 			    work_color_to_flags(WORK_NO_COLOR));
3396 	}
3397 
3398 	/* relinquish manager role */
3399 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3400 
3401 	/* notify completion */
3402 	gcwq->trustee = NULL;
3403 	gcwq->trustee_state = TRUSTEE_DONE;
3404 	wake_up_all(&gcwq->trustee_wait);
3405 	spin_unlock_irq(&gcwq->lock);
3406 	return 0;
3407 }
3408 
3409 /**
3410  * wait_trustee_state - wait for trustee to enter the specified state
3411  * @gcwq: gcwq the trustee of interest belongs to
3412  * @state: target state to wait for
3413  *
3414  * Wait for the trustee to reach @state.  DONE is already matched.
3415  *
3416  * CONTEXT:
3417  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3418  * multiple times.  To be used by cpu_callback.
3419  */
3420 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3421 __releases(&gcwq->lock)
3422 __acquires(&gcwq->lock)
3423 {
3424 	if (!(gcwq->trustee_state == state ||
3425 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3426 		spin_unlock_irq(&gcwq->lock);
3427 		__wait_event(gcwq->trustee_wait,
3428 			     gcwq->trustee_state == state ||
3429 			     gcwq->trustee_state == TRUSTEE_DONE);
3430 		spin_lock_irq(&gcwq->lock);
3431 	}
3432 }
3433 
3434 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3435 						unsigned long action,
3436 						void *hcpu)
3437 {
3438 	unsigned int cpu = (unsigned long)hcpu;
3439 	struct global_cwq *gcwq = get_gcwq(cpu);
3440 	struct task_struct *new_trustee = NULL;
3441 	struct worker *uninitialized_var(new_worker);
3442 	unsigned long flags;
3443 
3444 	action &= ~CPU_TASKS_FROZEN;
3445 
3446 	switch (action) {
3447 	case CPU_DOWN_PREPARE:
3448 		new_trustee = kthread_create(trustee_thread, gcwq,
3449 					     "workqueue_trustee/%d\n", cpu);
3450 		if (IS_ERR(new_trustee))
3451 			return notifier_from_errno(PTR_ERR(new_trustee));
3452 		kthread_bind(new_trustee, cpu);
3453 		/* fall through */
3454 	case CPU_UP_PREPARE:
3455 		BUG_ON(gcwq->first_idle);
3456 		new_worker = create_worker(gcwq, false);
3457 		if (!new_worker) {
3458 			if (new_trustee)
3459 				kthread_stop(new_trustee);
3460 			return NOTIFY_BAD;
3461 		}
3462 	}
3463 
3464 	/* some are called w/ irq disabled, don't disturb irq status */
3465 	spin_lock_irqsave(&gcwq->lock, flags);
3466 
3467 	switch (action) {
3468 	case CPU_DOWN_PREPARE:
3469 		/* initialize trustee and tell it to acquire the gcwq */
3470 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3471 		gcwq->trustee = new_trustee;
3472 		gcwq->trustee_state = TRUSTEE_START;
3473 		wake_up_process(gcwq->trustee);
3474 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3475 		/* fall through */
3476 	case CPU_UP_PREPARE:
3477 		BUG_ON(gcwq->first_idle);
3478 		gcwq->first_idle = new_worker;
3479 		break;
3480 
3481 	case CPU_DYING:
3482 		/*
3483 		 * Before this, the trustee and all workers except for
3484 		 * the ones which are still executing works from
3485 		 * before the last CPU down must be on the cpu.  After
3486 		 * this, they'll all be diasporas.
3487 		 */
3488 		gcwq->flags |= GCWQ_DISASSOCIATED;
3489 		break;
3490 
3491 	case CPU_POST_DEAD:
3492 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3493 		/* fall through */
3494 	case CPU_UP_CANCELED:
3495 		destroy_worker(gcwq->first_idle);
3496 		gcwq->first_idle = NULL;
3497 		break;
3498 
3499 	case CPU_DOWN_FAILED:
3500 	case CPU_ONLINE:
3501 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3502 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3503 			gcwq->trustee_state = TRUSTEE_RELEASE;
3504 			wake_up_process(gcwq->trustee);
3505 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3506 		}
3507 
3508 		/*
3509 		 * Trustee is done and there might be no worker left.
3510 		 * Put the first_idle in and request a real manager to
3511 		 * take a look.
3512 		 */
3513 		spin_unlock_irq(&gcwq->lock);
3514 		kthread_bind(gcwq->first_idle->task, cpu);
3515 		spin_lock_irq(&gcwq->lock);
3516 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3517 		start_worker(gcwq->first_idle);
3518 		gcwq->first_idle = NULL;
3519 		break;
3520 	}
3521 
3522 	spin_unlock_irqrestore(&gcwq->lock, flags);
3523 
3524 	return notifier_from_errno(0);
3525 }
3526 
3527 #ifdef CONFIG_SMP
3528 
3529 struct work_for_cpu {
3530 	struct completion completion;
3531 	long (*fn)(void *);
3532 	void *arg;
3533 	long ret;
3534 };
3535 
3536 static int do_work_for_cpu(void *_wfc)
3537 {
3538 	struct work_for_cpu *wfc = _wfc;
3539 	wfc->ret = wfc->fn(wfc->arg);
3540 	complete(&wfc->completion);
3541 	return 0;
3542 }
3543 
3544 /**
3545  * work_on_cpu - run a function in user context on a particular cpu
3546  * @cpu: the cpu to run on
3547  * @fn: the function to run
3548  * @arg: the function arg
3549  *
3550  * This will return the value @fn returns.
3551  * It is up to the caller to ensure that the cpu doesn't go offline.
3552  * The caller must not hold any locks which would prevent @fn from completing.
3553  */
3554 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3555 {
3556 	struct task_struct *sub_thread;
3557 	struct work_for_cpu wfc = {
3558 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3559 		.fn = fn,
3560 		.arg = arg,
3561 	};
3562 
3563 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3564 	if (IS_ERR(sub_thread))
3565 		return PTR_ERR(sub_thread);
3566 	kthread_bind(sub_thread, cpu);
3567 	wake_up_process(sub_thread);
3568 	wait_for_completion(&wfc.completion);
3569 	return wfc.ret;
3570 }
3571 EXPORT_SYMBOL_GPL(work_on_cpu);
3572 #endif /* CONFIG_SMP */
3573 
3574 #ifdef CONFIG_FREEZER
3575 
3576 /**
3577  * freeze_workqueues_begin - begin freezing workqueues
3578  *
3579  * Start freezing workqueues.  After this function returns, all
3580  * freezeable workqueues will queue new works to their frozen_works
3581  * list instead of gcwq->worklist.
3582  *
3583  * CONTEXT:
3584  * Grabs and releases workqueue_lock and gcwq->lock's.
3585  */
3586 void freeze_workqueues_begin(void)
3587 {
3588 	unsigned int cpu;
3589 
3590 	spin_lock(&workqueue_lock);
3591 
3592 	BUG_ON(workqueue_freezing);
3593 	workqueue_freezing = true;
3594 
3595 	for_each_gcwq_cpu(cpu) {
3596 		struct global_cwq *gcwq = get_gcwq(cpu);
3597 		struct workqueue_struct *wq;
3598 
3599 		spin_lock_irq(&gcwq->lock);
3600 
3601 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3602 		gcwq->flags |= GCWQ_FREEZING;
3603 
3604 		list_for_each_entry(wq, &workqueues, list) {
3605 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3606 
3607 			if (cwq && wq->flags & WQ_FREEZEABLE)
3608 				cwq->max_active = 0;
3609 		}
3610 
3611 		spin_unlock_irq(&gcwq->lock);
3612 	}
3613 
3614 	spin_unlock(&workqueue_lock);
3615 }
3616 
3617 /**
3618  * freeze_workqueues_busy - are freezeable workqueues still busy?
3619  *
3620  * Check whether freezing is complete.  This function must be called
3621  * between freeze_workqueues_begin() and thaw_workqueues().
3622  *
3623  * CONTEXT:
3624  * Grabs and releases workqueue_lock.
3625  *
3626  * RETURNS:
3627  * %true if some freezeable workqueues are still busy.  %false if
3628  * freezing is complete.
3629  */
3630 bool freeze_workqueues_busy(void)
3631 {
3632 	unsigned int cpu;
3633 	bool busy = false;
3634 
3635 	spin_lock(&workqueue_lock);
3636 
3637 	BUG_ON(!workqueue_freezing);
3638 
3639 	for_each_gcwq_cpu(cpu) {
3640 		struct workqueue_struct *wq;
3641 		/*
3642 		 * nr_active is monotonically decreasing.  It's safe
3643 		 * to peek without lock.
3644 		 */
3645 		list_for_each_entry(wq, &workqueues, list) {
3646 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3647 
3648 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3649 				continue;
3650 
3651 			BUG_ON(cwq->nr_active < 0);
3652 			if (cwq->nr_active) {
3653 				busy = true;
3654 				goto out_unlock;
3655 			}
3656 		}
3657 	}
3658 out_unlock:
3659 	spin_unlock(&workqueue_lock);
3660 	return busy;
3661 }
3662 
3663 /**
3664  * thaw_workqueues - thaw workqueues
3665  *
3666  * Thaw workqueues.  Normal queueing is restored and all collected
3667  * frozen works are transferred to their respective gcwq worklists.
3668  *
3669  * CONTEXT:
3670  * Grabs and releases workqueue_lock and gcwq->lock's.
3671  */
3672 void thaw_workqueues(void)
3673 {
3674 	unsigned int cpu;
3675 
3676 	spin_lock(&workqueue_lock);
3677 
3678 	if (!workqueue_freezing)
3679 		goto out_unlock;
3680 
3681 	for_each_gcwq_cpu(cpu) {
3682 		struct global_cwq *gcwq = get_gcwq(cpu);
3683 		struct workqueue_struct *wq;
3684 
3685 		spin_lock_irq(&gcwq->lock);
3686 
3687 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3688 		gcwq->flags &= ~GCWQ_FREEZING;
3689 
3690 		list_for_each_entry(wq, &workqueues, list) {
3691 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3692 
3693 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3694 				continue;
3695 
3696 			/* restore max_active and repopulate worklist */
3697 			cwq->max_active = wq->saved_max_active;
3698 
3699 			while (!list_empty(&cwq->delayed_works) &&
3700 			       cwq->nr_active < cwq->max_active)
3701 				cwq_activate_first_delayed(cwq);
3702 		}
3703 
3704 		wake_up_worker(gcwq);
3705 
3706 		spin_unlock_irq(&gcwq->lock);
3707 	}
3708 
3709 	workqueue_freezing = false;
3710 out_unlock:
3711 	spin_unlock(&workqueue_lock);
3712 }
3713 #endif /* CONFIG_FREEZER */
3714 
3715 static int __init init_workqueues(void)
3716 {
3717 	unsigned int cpu;
3718 	int i;
3719 
3720 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3721 
3722 	/* initialize gcwqs */
3723 	for_each_gcwq_cpu(cpu) {
3724 		struct global_cwq *gcwq = get_gcwq(cpu);
3725 
3726 		spin_lock_init(&gcwq->lock);
3727 		INIT_LIST_HEAD(&gcwq->worklist);
3728 		gcwq->cpu = cpu;
3729 		gcwq->flags |= GCWQ_DISASSOCIATED;
3730 
3731 		INIT_LIST_HEAD(&gcwq->idle_list);
3732 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3733 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3734 
3735 		init_timer_deferrable(&gcwq->idle_timer);
3736 		gcwq->idle_timer.function = idle_worker_timeout;
3737 		gcwq->idle_timer.data = (unsigned long)gcwq;
3738 
3739 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3740 			    (unsigned long)gcwq);
3741 
3742 		ida_init(&gcwq->worker_ida);
3743 
3744 		gcwq->trustee_state = TRUSTEE_DONE;
3745 		init_waitqueue_head(&gcwq->trustee_wait);
3746 	}
3747 
3748 	/* create the initial worker */
3749 	for_each_online_gcwq_cpu(cpu) {
3750 		struct global_cwq *gcwq = get_gcwq(cpu);
3751 		struct worker *worker;
3752 
3753 		if (cpu != WORK_CPU_UNBOUND)
3754 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3755 		worker = create_worker(gcwq, true);
3756 		BUG_ON(!worker);
3757 		spin_lock_irq(&gcwq->lock);
3758 		start_worker(worker);
3759 		spin_unlock_irq(&gcwq->lock);
3760 	}
3761 
3762 	system_wq = alloc_workqueue("events", 0, 0);
3763 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3764 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3765 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3766 					    WQ_UNBOUND_MAX_ACTIVE);
3767 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3768 	       !system_unbound_wq);
3769 	return 0;
3770 }
3771 early_initcall(init_workqueues);
3772