1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* global_cwq flags */ 49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 54 55 /* worker flags */ 56 WORKER_STARTED = 1 << 0, /* started */ 57 WORKER_DIE = 1 << 1, /* die die die */ 58 WORKER_IDLE = 1 << 2, /* is idle */ 59 WORKER_PREP = 1 << 3, /* preparing to run works */ 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 64 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 67 68 /* gcwq->trustee_state */ 69 TRUSTEE_START = 0, /* start */ 70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 71 TRUSTEE_BUTCHER = 2, /* butcher workers */ 72 TRUSTEE_RELEASE = 3, /* release workers */ 73 TRUSTEE_DONE = 4, /* trustee is done */ 74 75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 78 79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 81 82 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ 83 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 84 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 85 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 86 87 /* 88 * Rescue workers are used only on emergencies and shared by 89 * all cpus. Give -20. 90 */ 91 RESCUER_NICE_LEVEL = -20, 92 }; 93 94 /* 95 * Structure fields follow one of the following exclusion rules. 96 * 97 * I: Modifiable by initialization/destruction paths and read-only for 98 * everyone else. 99 * 100 * P: Preemption protected. Disabling preemption is enough and should 101 * only be modified and accessed from the local cpu. 102 * 103 * L: gcwq->lock protected. Access with gcwq->lock held. 104 * 105 * X: During normal operation, modification requires gcwq->lock and 106 * should be done only from local cpu. Either disabling preemption 107 * on local cpu or grabbing gcwq->lock is enough for read access. 108 * If GCWQ_DISASSOCIATED is set, it's identical to L. 109 * 110 * F: wq->flush_mutex protected. 111 * 112 * W: workqueue_lock protected. 113 */ 114 115 struct global_cwq; 116 117 /* 118 * The poor guys doing the actual heavy lifting. All on-duty workers 119 * are either serving the manager role, on idle list or on busy hash. 120 */ 121 struct worker { 122 /* on idle list while idle, on busy hash table while busy */ 123 union { 124 struct list_head entry; /* L: while idle */ 125 struct hlist_node hentry; /* L: while busy */ 126 }; 127 128 struct work_struct *current_work; /* L: work being processed */ 129 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 130 struct list_head scheduled; /* L: scheduled works */ 131 struct task_struct *task; /* I: worker task */ 132 struct global_cwq *gcwq; /* I: the associated gcwq */ 133 /* 64 bytes boundary on 64bit, 32 on 32bit */ 134 unsigned long last_active; /* L: last active timestamp */ 135 unsigned int flags; /* X: flags */ 136 int id; /* I: worker id */ 137 struct work_struct rebind_work; /* L: rebind worker to cpu */ 138 }; 139 140 /* 141 * Global per-cpu workqueue. There's one and only one for each cpu 142 * and all works are queued and processed here regardless of their 143 * target workqueues. 144 */ 145 struct global_cwq { 146 spinlock_t lock; /* the gcwq lock */ 147 struct list_head worklist; /* L: list of pending works */ 148 unsigned int cpu; /* I: the associated cpu */ 149 unsigned int flags; /* L: GCWQ_* flags */ 150 151 int nr_workers; /* L: total number of workers */ 152 int nr_idle; /* L: currently idle ones */ 153 154 /* workers are chained either in the idle_list or busy_hash */ 155 struct list_head idle_list; /* X: list of idle workers */ 156 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 157 /* L: hash of busy workers */ 158 159 struct timer_list idle_timer; /* L: worker idle timeout */ 160 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 161 162 struct ida worker_ida; /* L: for worker IDs */ 163 164 struct task_struct *trustee; /* L: for gcwq shutdown */ 165 unsigned int trustee_state; /* L: trustee state */ 166 wait_queue_head_t trustee_wait; /* trustee wait */ 167 struct worker *first_idle; /* L: first idle worker */ 168 } ____cacheline_aligned_in_smp; 169 170 /* 171 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 172 * work_struct->data are used for flags and thus cwqs need to be 173 * aligned at two's power of the number of flag bits. 174 */ 175 struct cpu_workqueue_struct { 176 struct global_cwq *gcwq; /* I: the associated gcwq */ 177 struct workqueue_struct *wq; /* I: the owning workqueue */ 178 int work_color; /* L: current color */ 179 int flush_color; /* L: flushing color */ 180 int nr_in_flight[WORK_NR_COLORS]; 181 /* L: nr of in_flight works */ 182 int nr_active; /* L: nr of active works */ 183 int max_active; /* L: max active works */ 184 struct list_head delayed_works; /* L: delayed works */ 185 }; 186 187 /* 188 * Structure used to wait for workqueue flush. 189 */ 190 struct wq_flusher { 191 struct list_head list; /* F: list of flushers */ 192 int flush_color; /* F: flush color waiting for */ 193 struct completion done; /* flush completion */ 194 }; 195 196 /* 197 * All cpumasks are assumed to be always set on UP and thus can't be 198 * used to determine whether there's something to be done. 199 */ 200 #ifdef CONFIG_SMP 201 typedef cpumask_var_t mayday_mask_t; 202 #define mayday_test_and_set_cpu(cpu, mask) \ 203 cpumask_test_and_set_cpu((cpu), (mask)) 204 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 205 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 206 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 207 #define free_mayday_mask(mask) free_cpumask_var((mask)) 208 #else 209 typedef unsigned long mayday_mask_t; 210 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 211 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 212 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 213 #define alloc_mayday_mask(maskp, gfp) true 214 #define free_mayday_mask(mask) do { } while (0) 215 #endif 216 217 /* 218 * The externally visible workqueue abstraction is an array of 219 * per-CPU workqueues: 220 */ 221 struct workqueue_struct { 222 unsigned int flags; /* I: WQ_* flags */ 223 union { 224 struct cpu_workqueue_struct __percpu *pcpu; 225 struct cpu_workqueue_struct *single; 226 unsigned long v; 227 } cpu_wq; /* I: cwq's */ 228 struct list_head list; /* W: list of all workqueues */ 229 230 struct mutex flush_mutex; /* protects wq flushing */ 231 int work_color; /* F: current work color */ 232 int flush_color; /* F: current flush color */ 233 atomic_t nr_cwqs_to_flush; /* flush in progress */ 234 struct wq_flusher *first_flusher; /* F: first flusher */ 235 struct list_head flusher_queue; /* F: flush waiters */ 236 struct list_head flusher_overflow; /* F: flush overflow list */ 237 238 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 239 struct worker *rescuer; /* I: rescue worker */ 240 241 int saved_max_active; /* W: saved cwq max_active */ 242 const char *name; /* I: workqueue name */ 243 #ifdef CONFIG_LOCKDEP 244 struct lockdep_map lockdep_map; 245 #endif 246 }; 247 248 struct workqueue_struct *system_wq __read_mostly; 249 struct workqueue_struct *system_long_wq __read_mostly; 250 struct workqueue_struct *system_nrt_wq __read_mostly; 251 struct workqueue_struct *system_unbound_wq __read_mostly; 252 EXPORT_SYMBOL_GPL(system_wq); 253 EXPORT_SYMBOL_GPL(system_long_wq); 254 EXPORT_SYMBOL_GPL(system_nrt_wq); 255 EXPORT_SYMBOL_GPL(system_unbound_wq); 256 257 #define CREATE_TRACE_POINTS 258 #include <trace/events/workqueue.h> 259 260 #define for_each_busy_worker(worker, i, pos, gcwq) \ 261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 263 264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 265 unsigned int sw) 266 { 267 if (cpu < nr_cpu_ids) { 268 if (sw & 1) { 269 cpu = cpumask_next(cpu, mask); 270 if (cpu < nr_cpu_ids) 271 return cpu; 272 } 273 if (sw & 2) 274 return WORK_CPU_UNBOUND; 275 } 276 return WORK_CPU_NONE; 277 } 278 279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 280 struct workqueue_struct *wq) 281 { 282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 283 } 284 285 /* 286 * CPU iterators 287 * 288 * An extra gcwq is defined for an invalid cpu number 289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 290 * specific CPU. The following iterators are similar to 291 * for_each_*_cpu() iterators but also considers the unbound gcwq. 292 * 293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 295 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 296 * WORK_CPU_UNBOUND for unbound workqueues 297 */ 298 #define for_each_gcwq_cpu(cpu) \ 299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 300 (cpu) < WORK_CPU_NONE; \ 301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 302 303 #define for_each_online_gcwq_cpu(cpu) \ 304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 305 (cpu) < WORK_CPU_NONE; \ 306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 307 308 #define for_each_cwq_cpu(cpu, wq) \ 309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 310 (cpu) < WORK_CPU_NONE; \ 311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 312 313 #ifdef CONFIG_DEBUG_OBJECTS_WORK 314 315 static struct debug_obj_descr work_debug_descr; 316 317 /* 318 * fixup_init is called when: 319 * - an active object is initialized 320 */ 321 static int work_fixup_init(void *addr, enum debug_obj_state state) 322 { 323 struct work_struct *work = addr; 324 325 switch (state) { 326 case ODEBUG_STATE_ACTIVE: 327 cancel_work_sync(work); 328 debug_object_init(work, &work_debug_descr); 329 return 1; 330 default: 331 return 0; 332 } 333 } 334 335 /* 336 * fixup_activate is called when: 337 * - an active object is activated 338 * - an unknown object is activated (might be a statically initialized object) 339 */ 340 static int work_fixup_activate(void *addr, enum debug_obj_state state) 341 { 342 struct work_struct *work = addr; 343 344 switch (state) { 345 346 case ODEBUG_STATE_NOTAVAILABLE: 347 /* 348 * This is not really a fixup. The work struct was 349 * statically initialized. We just make sure that it 350 * is tracked in the object tracker. 351 */ 352 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 353 debug_object_init(work, &work_debug_descr); 354 debug_object_activate(work, &work_debug_descr); 355 return 0; 356 } 357 WARN_ON_ONCE(1); 358 return 0; 359 360 case ODEBUG_STATE_ACTIVE: 361 WARN_ON(1); 362 363 default: 364 return 0; 365 } 366 } 367 368 /* 369 * fixup_free is called when: 370 * - an active object is freed 371 */ 372 static int work_fixup_free(void *addr, enum debug_obj_state state) 373 { 374 struct work_struct *work = addr; 375 376 switch (state) { 377 case ODEBUG_STATE_ACTIVE: 378 cancel_work_sync(work); 379 debug_object_free(work, &work_debug_descr); 380 return 1; 381 default: 382 return 0; 383 } 384 } 385 386 static struct debug_obj_descr work_debug_descr = { 387 .name = "work_struct", 388 .fixup_init = work_fixup_init, 389 .fixup_activate = work_fixup_activate, 390 .fixup_free = work_fixup_free, 391 }; 392 393 static inline void debug_work_activate(struct work_struct *work) 394 { 395 debug_object_activate(work, &work_debug_descr); 396 } 397 398 static inline void debug_work_deactivate(struct work_struct *work) 399 { 400 debug_object_deactivate(work, &work_debug_descr); 401 } 402 403 void __init_work(struct work_struct *work, int onstack) 404 { 405 if (onstack) 406 debug_object_init_on_stack(work, &work_debug_descr); 407 else 408 debug_object_init(work, &work_debug_descr); 409 } 410 EXPORT_SYMBOL_GPL(__init_work); 411 412 void destroy_work_on_stack(struct work_struct *work) 413 { 414 debug_object_free(work, &work_debug_descr); 415 } 416 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 417 418 #else 419 static inline void debug_work_activate(struct work_struct *work) { } 420 static inline void debug_work_deactivate(struct work_struct *work) { } 421 #endif 422 423 /* Serializes the accesses to the list of workqueues. */ 424 static DEFINE_SPINLOCK(workqueue_lock); 425 static LIST_HEAD(workqueues); 426 static bool workqueue_freezing; /* W: have wqs started freezing? */ 427 428 /* 429 * The almighty global cpu workqueues. nr_running is the only field 430 * which is expected to be used frequently by other cpus via 431 * try_to_wake_up(). Put it in a separate cacheline. 432 */ 433 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 434 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 435 436 /* 437 * Global cpu workqueue and nr_running counter for unbound gcwq. The 438 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 439 * workers have WORKER_UNBOUND set. 440 */ 441 static struct global_cwq unbound_global_cwq; 442 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 443 444 static int worker_thread(void *__worker); 445 446 static struct global_cwq *get_gcwq(unsigned int cpu) 447 { 448 if (cpu != WORK_CPU_UNBOUND) 449 return &per_cpu(global_cwq, cpu); 450 else 451 return &unbound_global_cwq; 452 } 453 454 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 455 { 456 if (cpu != WORK_CPU_UNBOUND) 457 return &per_cpu(gcwq_nr_running, cpu); 458 else 459 return &unbound_gcwq_nr_running; 460 } 461 462 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 463 struct workqueue_struct *wq) 464 { 465 if (!(wq->flags & WQ_UNBOUND)) { 466 if (likely(cpu < nr_cpu_ids)) { 467 #ifdef CONFIG_SMP 468 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 469 #else 470 return wq->cpu_wq.single; 471 #endif 472 } 473 } else if (likely(cpu == WORK_CPU_UNBOUND)) 474 return wq->cpu_wq.single; 475 return NULL; 476 } 477 478 static unsigned int work_color_to_flags(int color) 479 { 480 return color << WORK_STRUCT_COLOR_SHIFT; 481 } 482 483 static int get_work_color(struct work_struct *work) 484 { 485 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 486 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 487 } 488 489 static int work_next_color(int color) 490 { 491 return (color + 1) % WORK_NR_COLORS; 492 } 493 494 /* 495 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 496 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 497 * cleared and the work data contains the cpu number it was last on. 498 * 499 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 500 * cwq, cpu or clear work->data. These functions should only be 501 * called while the work is owned - ie. while the PENDING bit is set. 502 * 503 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 504 * corresponding to a work. gcwq is available once the work has been 505 * queued anywhere after initialization. cwq is available only from 506 * queueing until execution starts. 507 */ 508 static inline void set_work_data(struct work_struct *work, unsigned long data, 509 unsigned long flags) 510 { 511 BUG_ON(!work_pending(work)); 512 atomic_long_set(&work->data, data | flags | work_static(work)); 513 } 514 515 static void set_work_cwq(struct work_struct *work, 516 struct cpu_workqueue_struct *cwq, 517 unsigned long extra_flags) 518 { 519 set_work_data(work, (unsigned long)cwq, 520 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 521 } 522 523 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 524 { 525 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 526 } 527 528 static void clear_work_data(struct work_struct *work) 529 { 530 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 531 } 532 533 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 534 { 535 unsigned long data = atomic_long_read(&work->data); 536 537 if (data & WORK_STRUCT_CWQ) 538 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 539 else 540 return NULL; 541 } 542 543 static struct global_cwq *get_work_gcwq(struct work_struct *work) 544 { 545 unsigned long data = atomic_long_read(&work->data); 546 unsigned int cpu; 547 548 if (data & WORK_STRUCT_CWQ) 549 return ((struct cpu_workqueue_struct *) 550 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 551 552 cpu = data >> WORK_STRUCT_FLAG_BITS; 553 if (cpu == WORK_CPU_NONE) 554 return NULL; 555 556 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 557 return get_gcwq(cpu); 558 } 559 560 /* 561 * Policy functions. These define the policies on how the global 562 * worker pool is managed. Unless noted otherwise, these functions 563 * assume that they're being called with gcwq->lock held. 564 */ 565 566 static bool __need_more_worker(struct global_cwq *gcwq) 567 { 568 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 569 gcwq->flags & GCWQ_HIGHPRI_PENDING; 570 } 571 572 /* 573 * Need to wake up a worker? Called from anything but currently 574 * running workers. 575 */ 576 static bool need_more_worker(struct global_cwq *gcwq) 577 { 578 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 579 } 580 581 /* Can I start working? Called from busy but !running workers. */ 582 static bool may_start_working(struct global_cwq *gcwq) 583 { 584 return gcwq->nr_idle; 585 } 586 587 /* Do I need to keep working? Called from currently running workers. */ 588 static bool keep_working(struct global_cwq *gcwq) 589 { 590 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 591 592 return !list_empty(&gcwq->worklist) && 593 (atomic_read(nr_running) <= 1 || 594 gcwq->flags & GCWQ_HIGHPRI_PENDING); 595 } 596 597 /* Do we need a new worker? Called from manager. */ 598 static bool need_to_create_worker(struct global_cwq *gcwq) 599 { 600 return need_more_worker(gcwq) && !may_start_working(gcwq); 601 } 602 603 /* Do I need to be the manager? */ 604 static bool need_to_manage_workers(struct global_cwq *gcwq) 605 { 606 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 607 } 608 609 /* Do we have too many workers and should some go away? */ 610 static bool too_many_workers(struct global_cwq *gcwq) 611 { 612 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 613 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 614 int nr_busy = gcwq->nr_workers - nr_idle; 615 616 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 617 } 618 619 /* 620 * Wake up functions. 621 */ 622 623 /* Return the first worker. Safe with preemption disabled */ 624 static struct worker *first_worker(struct global_cwq *gcwq) 625 { 626 if (unlikely(list_empty(&gcwq->idle_list))) 627 return NULL; 628 629 return list_first_entry(&gcwq->idle_list, struct worker, entry); 630 } 631 632 /** 633 * wake_up_worker - wake up an idle worker 634 * @gcwq: gcwq to wake worker for 635 * 636 * Wake up the first idle worker of @gcwq. 637 * 638 * CONTEXT: 639 * spin_lock_irq(gcwq->lock). 640 */ 641 static void wake_up_worker(struct global_cwq *gcwq) 642 { 643 struct worker *worker = first_worker(gcwq); 644 645 if (likely(worker)) 646 wake_up_process(worker->task); 647 } 648 649 /** 650 * wq_worker_waking_up - a worker is waking up 651 * @task: task waking up 652 * @cpu: CPU @task is waking up to 653 * 654 * This function is called during try_to_wake_up() when a worker is 655 * being awoken. 656 * 657 * CONTEXT: 658 * spin_lock_irq(rq->lock) 659 */ 660 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 661 { 662 struct worker *worker = kthread_data(task); 663 664 if (!(worker->flags & WORKER_NOT_RUNNING)) 665 atomic_inc(get_gcwq_nr_running(cpu)); 666 } 667 668 /** 669 * wq_worker_sleeping - a worker is going to sleep 670 * @task: task going to sleep 671 * @cpu: CPU in question, must be the current CPU number 672 * 673 * This function is called during schedule() when a busy worker is 674 * going to sleep. Worker on the same cpu can be woken up by 675 * returning pointer to its task. 676 * 677 * CONTEXT: 678 * spin_lock_irq(rq->lock) 679 * 680 * RETURNS: 681 * Worker task on @cpu to wake up, %NULL if none. 682 */ 683 struct task_struct *wq_worker_sleeping(struct task_struct *task, 684 unsigned int cpu) 685 { 686 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 687 struct global_cwq *gcwq = get_gcwq(cpu); 688 atomic_t *nr_running = get_gcwq_nr_running(cpu); 689 690 if (worker->flags & WORKER_NOT_RUNNING) 691 return NULL; 692 693 /* this can only happen on the local cpu */ 694 BUG_ON(cpu != raw_smp_processor_id()); 695 696 /* 697 * The counterpart of the following dec_and_test, implied mb, 698 * worklist not empty test sequence is in insert_work(). 699 * Please read comment there. 700 * 701 * NOT_RUNNING is clear. This means that trustee is not in 702 * charge and we're running on the local cpu w/ rq lock held 703 * and preemption disabled, which in turn means that none else 704 * could be manipulating idle_list, so dereferencing idle_list 705 * without gcwq lock is safe. 706 */ 707 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 708 to_wakeup = first_worker(gcwq); 709 return to_wakeup ? to_wakeup->task : NULL; 710 } 711 712 /** 713 * worker_set_flags - set worker flags and adjust nr_running accordingly 714 * @worker: self 715 * @flags: flags to set 716 * @wakeup: wakeup an idle worker if necessary 717 * 718 * Set @flags in @worker->flags and adjust nr_running accordingly. If 719 * nr_running becomes zero and @wakeup is %true, an idle worker is 720 * woken up. 721 * 722 * CONTEXT: 723 * spin_lock_irq(gcwq->lock) 724 */ 725 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 726 bool wakeup) 727 { 728 struct global_cwq *gcwq = worker->gcwq; 729 730 WARN_ON_ONCE(worker->task != current); 731 732 /* 733 * If transitioning into NOT_RUNNING, adjust nr_running and 734 * wake up an idle worker as necessary if requested by 735 * @wakeup. 736 */ 737 if ((flags & WORKER_NOT_RUNNING) && 738 !(worker->flags & WORKER_NOT_RUNNING)) { 739 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 740 741 if (wakeup) { 742 if (atomic_dec_and_test(nr_running) && 743 !list_empty(&gcwq->worklist)) 744 wake_up_worker(gcwq); 745 } else 746 atomic_dec(nr_running); 747 } 748 749 worker->flags |= flags; 750 } 751 752 /** 753 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 754 * @worker: self 755 * @flags: flags to clear 756 * 757 * Clear @flags in @worker->flags and adjust nr_running accordingly. 758 * 759 * CONTEXT: 760 * spin_lock_irq(gcwq->lock) 761 */ 762 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 763 { 764 struct global_cwq *gcwq = worker->gcwq; 765 unsigned int oflags = worker->flags; 766 767 WARN_ON_ONCE(worker->task != current); 768 769 worker->flags &= ~flags; 770 771 /* 772 * If transitioning out of NOT_RUNNING, increment nr_running. Note 773 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 774 * of multiple flags, not a single flag. 775 */ 776 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 777 if (!(worker->flags & WORKER_NOT_RUNNING)) 778 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 779 } 780 781 /** 782 * busy_worker_head - return the busy hash head for a work 783 * @gcwq: gcwq of interest 784 * @work: work to be hashed 785 * 786 * Return hash head of @gcwq for @work. 787 * 788 * CONTEXT: 789 * spin_lock_irq(gcwq->lock). 790 * 791 * RETURNS: 792 * Pointer to the hash head. 793 */ 794 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 795 struct work_struct *work) 796 { 797 const int base_shift = ilog2(sizeof(struct work_struct)); 798 unsigned long v = (unsigned long)work; 799 800 /* simple shift and fold hash, do we need something better? */ 801 v >>= base_shift; 802 v += v >> BUSY_WORKER_HASH_ORDER; 803 v &= BUSY_WORKER_HASH_MASK; 804 805 return &gcwq->busy_hash[v]; 806 } 807 808 /** 809 * __find_worker_executing_work - find worker which is executing a work 810 * @gcwq: gcwq of interest 811 * @bwh: hash head as returned by busy_worker_head() 812 * @work: work to find worker for 813 * 814 * Find a worker which is executing @work on @gcwq. @bwh should be 815 * the hash head obtained by calling busy_worker_head() with the same 816 * work. 817 * 818 * CONTEXT: 819 * spin_lock_irq(gcwq->lock). 820 * 821 * RETURNS: 822 * Pointer to worker which is executing @work if found, NULL 823 * otherwise. 824 */ 825 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 826 struct hlist_head *bwh, 827 struct work_struct *work) 828 { 829 struct worker *worker; 830 struct hlist_node *tmp; 831 832 hlist_for_each_entry(worker, tmp, bwh, hentry) 833 if (worker->current_work == work) 834 return worker; 835 return NULL; 836 } 837 838 /** 839 * find_worker_executing_work - find worker which is executing a work 840 * @gcwq: gcwq of interest 841 * @work: work to find worker for 842 * 843 * Find a worker which is executing @work on @gcwq. This function is 844 * identical to __find_worker_executing_work() except that this 845 * function calculates @bwh itself. 846 * 847 * CONTEXT: 848 * spin_lock_irq(gcwq->lock). 849 * 850 * RETURNS: 851 * Pointer to worker which is executing @work if found, NULL 852 * otherwise. 853 */ 854 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 855 struct work_struct *work) 856 { 857 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 858 work); 859 } 860 861 /** 862 * gcwq_determine_ins_pos - find insertion position 863 * @gcwq: gcwq of interest 864 * @cwq: cwq a work is being queued for 865 * 866 * A work for @cwq is about to be queued on @gcwq, determine insertion 867 * position for the work. If @cwq is for HIGHPRI wq, the work is 868 * queued at the head of the queue but in FIFO order with respect to 869 * other HIGHPRI works; otherwise, at the end of the queue. This 870 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 871 * there are HIGHPRI works pending. 872 * 873 * CONTEXT: 874 * spin_lock_irq(gcwq->lock). 875 * 876 * RETURNS: 877 * Pointer to inserstion position. 878 */ 879 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 880 struct cpu_workqueue_struct *cwq) 881 { 882 struct work_struct *twork; 883 884 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 885 return &gcwq->worklist; 886 887 list_for_each_entry(twork, &gcwq->worklist, entry) { 888 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 889 890 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 891 break; 892 } 893 894 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 895 return &twork->entry; 896 } 897 898 /** 899 * insert_work - insert a work into gcwq 900 * @cwq: cwq @work belongs to 901 * @work: work to insert 902 * @head: insertion point 903 * @extra_flags: extra WORK_STRUCT_* flags to set 904 * 905 * Insert @work which belongs to @cwq into @gcwq after @head. 906 * @extra_flags is or'd to work_struct flags. 907 * 908 * CONTEXT: 909 * spin_lock_irq(gcwq->lock). 910 */ 911 static void insert_work(struct cpu_workqueue_struct *cwq, 912 struct work_struct *work, struct list_head *head, 913 unsigned int extra_flags) 914 { 915 struct global_cwq *gcwq = cwq->gcwq; 916 917 /* we own @work, set data and link */ 918 set_work_cwq(work, cwq, extra_flags); 919 920 /* 921 * Ensure that we get the right work->data if we see the 922 * result of list_add() below, see try_to_grab_pending(). 923 */ 924 smp_wmb(); 925 926 list_add_tail(&work->entry, head); 927 928 /* 929 * Ensure either worker_sched_deactivated() sees the above 930 * list_add_tail() or we see zero nr_running to avoid workers 931 * lying around lazily while there are works to be processed. 932 */ 933 smp_mb(); 934 935 if (__need_more_worker(gcwq)) 936 wake_up_worker(gcwq); 937 } 938 939 /* 940 * Test whether @work is being queued from another work executing on the 941 * same workqueue. This is rather expensive and should only be used from 942 * cold paths. 943 */ 944 static bool is_chained_work(struct workqueue_struct *wq) 945 { 946 unsigned long flags; 947 unsigned int cpu; 948 949 for_each_gcwq_cpu(cpu) { 950 struct global_cwq *gcwq = get_gcwq(cpu); 951 struct worker *worker; 952 struct hlist_node *pos; 953 int i; 954 955 spin_lock_irqsave(&gcwq->lock, flags); 956 for_each_busy_worker(worker, i, pos, gcwq) { 957 if (worker->task != current) 958 continue; 959 spin_unlock_irqrestore(&gcwq->lock, flags); 960 /* 961 * I'm @worker, no locking necessary. See if @work 962 * is headed to the same workqueue. 963 */ 964 return worker->current_cwq->wq == wq; 965 } 966 spin_unlock_irqrestore(&gcwq->lock, flags); 967 } 968 return false; 969 } 970 971 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 972 struct work_struct *work) 973 { 974 struct global_cwq *gcwq; 975 struct cpu_workqueue_struct *cwq; 976 struct list_head *worklist; 977 unsigned int work_flags; 978 unsigned long flags; 979 980 debug_work_activate(work); 981 982 /* if dying, only works from the same workqueue are allowed */ 983 if (unlikely(wq->flags & WQ_DYING) && 984 WARN_ON_ONCE(!is_chained_work(wq))) 985 return; 986 987 /* determine gcwq to use */ 988 if (!(wq->flags & WQ_UNBOUND)) { 989 struct global_cwq *last_gcwq; 990 991 if (unlikely(cpu == WORK_CPU_UNBOUND)) 992 cpu = raw_smp_processor_id(); 993 994 /* 995 * It's multi cpu. If @wq is non-reentrant and @work 996 * was previously on a different cpu, it might still 997 * be running there, in which case the work needs to 998 * be queued on that cpu to guarantee non-reentrance. 999 */ 1000 gcwq = get_gcwq(cpu); 1001 if (wq->flags & WQ_NON_REENTRANT && 1002 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 1003 struct worker *worker; 1004 1005 spin_lock_irqsave(&last_gcwq->lock, flags); 1006 1007 worker = find_worker_executing_work(last_gcwq, work); 1008 1009 if (worker && worker->current_cwq->wq == wq) 1010 gcwq = last_gcwq; 1011 else { 1012 /* meh... not running there, queue here */ 1013 spin_unlock_irqrestore(&last_gcwq->lock, flags); 1014 spin_lock_irqsave(&gcwq->lock, flags); 1015 } 1016 } else 1017 spin_lock_irqsave(&gcwq->lock, flags); 1018 } else { 1019 gcwq = get_gcwq(WORK_CPU_UNBOUND); 1020 spin_lock_irqsave(&gcwq->lock, flags); 1021 } 1022 1023 /* gcwq determined, get cwq and queue */ 1024 cwq = get_cwq(gcwq->cpu, wq); 1025 trace_workqueue_queue_work(cpu, cwq, work); 1026 1027 BUG_ON(!list_empty(&work->entry)); 1028 1029 cwq->nr_in_flight[cwq->work_color]++; 1030 work_flags = work_color_to_flags(cwq->work_color); 1031 1032 if (likely(cwq->nr_active < cwq->max_active)) { 1033 trace_workqueue_activate_work(work); 1034 cwq->nr_active++; 1035 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1036 } else { 1037 work_flags |= WORK_STRUCT_DELAYED; 1038 worklist = &cwq->delayed_works; 1039 } 1040 1041 insert_work(cwq, work, worklist, work_flags); 1042 1043 spin_unlock_irqrestore(&gcwq->lock, flags); 1044 } 1045 1046 /** 1047 * queue_work - queue work on a workqueue 1048 * @wq: workqueue to use 1049 * @work: work to queue 1050 * 1051 * Returns 0 if @work was already on a queue, non-zero otherwise. 1052 * 1053 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1054 * it can be processed by another CPU. 1055 */ 1056 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1057 { 1058 int ret; 1059 1060 ret = queue_work_on(get_cpu(), wq, work); 1061 put_cpu(); 1062 1063 return ret; 1064 } 1065 EXPORT_SYMBOL_GPL(queue_work); 1066 1067 /** 1068 * queue_work_on - queue work on specific cpu 1069 * @cpu: CPU number to execute work on 1070 * @wq: workqueue to use 1071 * @work: work to queue 1072 * 1073 * Returns 0 if @work was already on a queue, non-zero otherwise. 1074 * 1075 * We queue the work to a specific CPU, the caller must ensure it 1076 * can't go away. 1077 */ 1078 int 1079 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1080 { 1081 int ret = 0; 1082 1083 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1084 __queue_work(cpu, wq, work); 1085 ret = 1; 1086 } 1087 return ret; 1088 } 1089 EXPORT_SYMBOL_GPL(queue_work_on); 1090 1091 static void delayed_work_timer_fn(unsigned long __data) 1092 { 1093 struct delayed_work *dwork = (struct delayed_work *)__data; 1094 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1095 1096 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1097 } 1098 1099 /** 1100 * queue_delayed_work - queue work on a workqueue after delay 1101 * @wq: workqueue to use 1102 * @dwork: delayable work to queue 1103 * @delay: number of jiffies to wait before queueing 1104 * 1105 * Returns 0 if @work was already on a queue, non-zero otherwise. 1106 */ 1107 int queue_delayed_work(struct workqueue_struct *wq, 1108 struct delayed_work *dwork, unsigned long delay) 1109 { 1110 if (delay == 0) 1111 return queue_work(wq, &dwork->work); 1112 1113 return queue_delayed_work_on(-1, wq, dwork, delay); 1114 } 1115 EXPORT_SYMBOL_GPL(queue_delayed_work); 1116 1117 /** 1118 * queue_delayed_work_on - queue work on specific CPU after delay 1119 * @cpu: CPU number to execute work on 1120 * @wq: workqueue to use 1121 * @dwork: work to queue 1122 * @delay: number of jiffies to wait before queueing 1123 * 1124 * Returns 0 if @work was already on a queue, non-zero otherwise. 1125 */ 1126 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1127 struct delayed_work *dwork, unsigned long delay) 1128 { 1129 int ret = 0; 1130 struct timer_list *timer = &dwork->timer; 1131 struct work_struct *work = &dwork->work; 1132 1133 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1134 unsigned int lcpu; 1135 1136 BUG_ON(timer_pending(timer)); 1137 BUG_ON(!list_empty(&work->entry)); 1138 1139 timer_stats_timer_set_start_info(&dwork->timer); 1140 1141 /* 1142 * This stores cwq for the moment, for the timer_fn. 1143 * Note that the work's gcwq is preserved to allow 1144 * reentrance detection for delayed works. 1145 */ 1146 if (!(wq->flags & WQ_UNBOUND)) { 1147 struct global_cwq *gcwq = get_work_gcwq(work); 1148 1149 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1150 lcpu = gcwq->cpu; 1151 else 1152 lcpu = raw_smp_processor_id(); 1153 } else 1154 lcpu = WORK_CPU_UNBOUND; 1155 1156 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1157 1158 timer->expires = jiffies + delay; 1159 timer->data = (unsigned long)dwork; 1160 timer->function = delayed_work_timer_fn; 1161 1162 if (unlikely(cpu >= 0)) 1163 add_timer_on(timer, cpu); 1164 else 1165 add_timer(timer); 1166 ret = 1; 1167 } 1168 return ret; 1169 } 1170 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1171 1172 /** 1173 * worker_enter_idle - enter idle state 1174 * @worker: worker which is entering idle state 1175 * 1176 * @worker is entering idle state. Update stats and idle timer if 1177 * necessary. 1178 * 1179 * LOCKING: 1180 * spin_lock_irq(gcwq->lock). 1181 */ 1182 static void worker_enter_idle(struct worker *worker) 1183 { 1184 struct global_cwq *gcwq = worker->gcwq; 1185 1186 BUG_ON(worker->flags & WORKER_IDLE); 1187 BUG_ON(!list_empty(&worker->entry) && 1188 (worker->hentry.next || worker->hentry.pprev)); 1189 1190 /* can't use worker_set_flags(), also called from start_worker() */ 1191 worker->flags |= WORKER_IDLE; 1192 gcwq->nr_idle++; 1193 worker->last_active = jiffies; 1194 1195 /* idle_list is LIFO */ 1196 list_add(&worker->entry, &gcwq->idle_list); 1197 1198 if (likely(!(worker->flags & WORKER_ROGUE))) { 1199 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1200 mod_timer(&gcwq->idle_timer, 1201 jiffies + IDLE_WORKER_TIMEOUT); 1202 } else 1203 wake_up_all(&gcwq->trustee_wait); 1204 1205 /* sanity check nr_running */ 1206 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1207 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1208 } 1209 1210 /** 1211 * worker_leave_idle - leave idle state 1212 * @worker: worker which is leaving idle state 1213 * 1214 * @worker is leaving idle state. Update stats. 1215 * 1216 * LOCKING: 1217 * spin_lock_irq(gcwq->lock). 1218 */ 1219 static void worker_leave_idle(struct worker *worker) 1220 { 1221 struct global_cwq *gcwq = worker->gcwq; 1222 1223 BUG_ON(!(worker->flags & WORKER_IDLE)); 1224 worker_clr_flags(worker, WORKER_IDLE); 1225 gcwq->nr_idle--; 1226 list_del_init(&worker->entry); 1227 } 1228 1229 /** 1230 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1231 * @worker: self 1232 * 1233 * Works which are scheduled while the cpu is online must at least be 1234 * scheduled to a worker which is bound to the cpu so that if they are 1235 * flushed from cpu callbacks while cpu is going down, they are 1236 * guaranteed to execute on the cpu. 1237 * 1238 * This function is to be used by rogue workers and rescuers to bind 1239 * themselves to the target cpu and may race with cpu going down or 1240 * coming online. kthread_bind() can't be used because it may put the 1241 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1242 * verbatim as it's best effort and blocking and gcwq may be 1243 * [dis]associated in the meantime. 1244 * 1245 * This function tries set_cpus_allowed() and locks gcwq and verifies 1246 * the binding against GCWQ_DISASSOCIATED which is set during 1247 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1248 * idle state or fetches works without dropping lock, it can guarantee 1249 * the scheduling requirement described in the first paragraph. 1250 * 1251 * CONTEXT: 1252 * Might sleep. Called without any lock but returns with gcwq->lock 1253 * held. 1254 * 1255 * RETURNS: 1256 * %true if the associated gcwq is online (@worker is successfully 1257 * bound), %false if offline. 1258 */ 1259 static bool worker_maybe_bind_and_lock(struct worker *worker) 1260 __acquires(&gcwq->lock) 1261 { 1262 struct global_cwq *gcwq = worker->gcwq; 1263 struct task_struct *task = worker->task; 1264 1265 while (true) { 1266 /* 1267 * The following call may fail, succeed or succeed 1268 * without actually migrating the task to the cpu if 1269 * it races with cpu hotunplug operation. Verify 1270 * against GCWQ_DISASSOCIATED. 1271 */ 1272 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1273 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1274 1275 spin_lock_irq(&gcwq->lock); 1276 if (gcwq->flags & GCWQ_DISASSOCIATED) 1277 return false; 1278 if (task_cpu(task) == gcwq->cpu && 1279 cpumask_equal(¤t->cpus_allowed, 1280 get_cpu_mask(gcwq->cpu))) 1281 return true; 1282 spin_unlock_irq(&gcwq->lock); 1283 1284 /* CPU has come up inbetween, retry migration */ 1285 cpu_relax(); 1286 } 1287 } 1288 1289 /* 1290 * Function for worker->rebind_work used to rebind rogue busy workers 1291 * to the associated cpu which is coming back online. This is 1292 * scheduled by cpu up but can race with other cpu hotplug operations 1293 * and may be executed twice without intervening cpu down. 1294 */ 1295 static void worker_rebind_fn(struct work_struct *work) 1296 { 1297 struct worker *worker = container_of(work, struct worker, rebind_work); 1298 struct global_cwq *gcwq = worker->gcwq; 1299 1300 if (worker_maybe_bind_and_lock(worker)) 1301 worker_clr_flags(worker, WORKER_REBIND); 1302 1303 spin_unlock_irq(&gcwq->lock); 1304 } 1305 1306 static struct worker *alloc_worker(void) 1307 { 1308 struct worker *worker; 1309 1310 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1311 if (worker) { 1312 INIT_LIST_HEAD(&worker->entry); 1313 INIT_LIST_HEAD(&worker->scheduled); 1314 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1315 /* on creation a worker is in !idle && prep state */ 1316 worker->flags = WORKER_PREP; 1317 } 1318 return worker; 1319 } 1320 1321 /** 1322 * create_worker - create a new workqueue worker 1323 * @gcwq: gcwq the new worker will belong to 1324 * @bind: whether to set affinity to @cpu or not 1325 * 1326 * Create a new worker which is bound to @gcwq. The returned worker 1327 * can be started by calling start_worker() or destroyed using 1328 * destroy_worker(). 1329 * 1330 * CONTEXT: 1331 * Might sleep. Does GFP_KERNEL allocations. 1332 * 1333 * RETURNS: 1334 * Pointer to the newly created worker. 1335 */ 1336 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1337 { 1338 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1339 struct worker *worker = NULL; 1340 int id = -1; 1341 1342 spin_lock_irq(&gcwq->lock); 1343 while (ida_get_new(&gcwq->worker_ida, &id)) { 1344 spin_unlock_irq(&gcwq->lock); 1345 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1346 goto fail; 1347 spin_lock_irq(&gcwq->lock); 1348 } 1349 spin_unlock_irq(&gcwq->lock); 1350 1351 worker = alloc_worker(); 1352 if (!worker) 1353 goto fail; 1354 1355 worker->gcwq = gcwq; 1356 worker->id = id; 1357 1358 if (!on_unbound_cpu) 1359 worker->task = kthread_create(worker_thread, worker, 1360 "kworker/%u:%d", gcwq->cpu, id); 1361 else 1362 worker->task = kthread_create(worker_thread, worker, 1363 "kworker/u:%d", id); 1364 if (IS_ERR(worker->task)) 1365 goto fail; 1366 1367 /* 1368 * A rogue worker will become a regular one if CPU comes 1369 * online later on. Make sure every worker has 1370 * PF_THREAD_BOUND set. 1371 */ 1372 if (bind && !on_unbound_cpu) 1373 kthread_bind(worker->task, gcwq->cpu); 1374 else { 1375 worker->task->flags |= PF_THREAD_BOUND; 1376 if (on_unbound_cpu) 1377 worker->flags |= WORKER_UNBOUND; 1378 } 1379 1380 return worker; 1381 fail: 1382 if (id >= 0) { 1383 spin_lock_irq(&gcwq->lock); 1384 ida_remove(&gcwq->worker_ida, id); 1385 spin_unlock_irq(&gcwq->lock); 1386 } 1387 kfree(worker); 1388 return NULL; 1389 } 1390 1391 /** 1392 * start_worker - start a newly created worker 1393 * @worker: worker to start 1394 * 1395 * Make the gcwq aware of @worker and start it. 1396 * 1397 * CONTEXT: 1398 * spin_lock_irq(gcwq->lock). 1399 */ 1400 static void start_worker(struct worker *worker) 1401 { 1402 worker->flags |= WORKER_STARTED; 1403 worker->gcwq->nr_workers++; 1404 worker_enter_idle(worker); 1405 wake_up_process(worker->task); 1406 } 1407 1408 /** 1409 * destroy_worker - destroy a workqueue worker 1410 * @worker: worker to be destroyed 1411 * 1412 * Destroy @worker and adjust @gcwq stats accordingly. 1413 * 1414 * CONTEXT: 1415 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1416 */ 1417 static void destroy_worker(struct worker *worker) 1418 { 1419 struct global_cwq *gcwq = worker->gcwq; 1420 int id = worker->id; 1421 1422 /* sanity check frenzy */ 1423 BUG_ON(worker->current_work); 1424 BUG_ON(!list_empty(&worker->scheduled)); 1425 1426 if (worker->flags & WORKER_STARTED) 1427 gcwq->nr_workers--; 1428 if (worker->flags & WORKER_IDLE) 1429 gcwq->nr_idle--; 1430 1431 list_del_init(&worker->entry); 1432 worker->flags |= WORKER_DIE; 1433 1434 spin_unlock_irq(&gcwq->lock); 1435 1436 kthread_stop(worker->task); 1437 kfree(worker); 1438 1439 spin_lock_irq(&gcwq->lock); 1440 ida_remove(&gcwq->worker_ida, id); 1441 } 1442 1443 static void idle_worker_timeout(unsigned long __gcwq) 1444 { 1445 struct global_cwq *gcwq = (void *)__gcwq; 1446 1447 spin_lock_irq(&gcwq->lock); 1448 1449 if (too_many_workers(gcwq)) { 1450 struct worker *worker; 1451 unsigned long expires; 1452 1453 /* idle_list is kept in LIFO order, check the last one */ 1454 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1455 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1456 1457 if (time_before(jiffies, expires)) 1458 mod_timer(&gcwq->idle_timer, expires); 1459 else { 1460 /* it's been idle for too long, wake up manager */ 1461 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1462 wake_up_worker(gcwq); 1463 } 1464 } 1465 1466 spin_unlock_irq(&gcwq->lock); 1467 } 1468 1469 static bool send_mayday(struct work_struct *work) 1470 { 1471 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1472 struct workqueue_struct *wq = cwq->wq; 1473 unsigned int cpu; 1474 1475 if (!(wq->flags & WQ_RESCUER)) 1476 return false; 1477 1478 /* mayday mayday mayday */ 1479 cpu = cwq->gcwq->cpu; 1480 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1481 if (cpu == WORK_CPU_UNBOUND) 1482 cpu = 0; 1483 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1484 wake_up_process(wq->rescuer->task); 1485 return true; 1486 } 1487 1488 static void gcwq_mayday_timeout(unsigned long __gcwq) 1489 { 1490 struct global_cwq *gcwq = (void *)__gcwq; 1491 struct work_struct *work; 1492 1493 spin_lock_irq(&gcwq->lock); 1494 1495 if (need_to_create_worker(gcwq)) { 1496 /* 1497 * We've been trying to create a new worker but 1498 * haven't been successful. We might be hitting an 1499 * allocation deadlock. Send distress signals to 1500 * rescuers. 1501 */ 1502 list_for_each_entry(work, &gcwq->worklist, entry) 1503 send_mayday(work); 1504 } 1505 1506 spin_unlock_irq(&gcwq->lock); 1507 1508 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1509 } 1510 1511 /** 1512 * maybe_create_worker - create a new worker if necessary 1513 * @gcwq: gcwq to create a new worker for 1514 * 1515 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1516 * have at least one idle worker on return from this function. If 1517 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1518 * sent to all rescuers with works scheduled on @gcwq to resolve 1519 * possible allocation deadlock. 1520 * 1521 * On return, need_to_create_worker() is guaranteed to be false and 1522 * may_start_working() true. 1523 * 1524 * LOCKING: 1525 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1526 * multiple times. Does GFP_KERNEL allocations. Called only from 1527 * manager. 1528 * 1529 * RETURNS: 1530 * false if no action was taken and gcwq->lock stayed locked, true 1531 * otherwise. 1532 */ 1533 static bool maybe_create_worker(struct global_cwq *gcwq) 1534 __releases(&gcwq->lock) 1535 __acquires(&gcwq->lock) 1536 { 1537 if (!need_to_create_worker(gcwq)) 1538 return false; 1539 restart: 1540 spin_unlock_irq(&gcwq->lock); 1541 1542 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1543 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1544 1545 while (true) { 1546 struct worker *worker; 1547 1548 worker = create_worker(gcwq, true); 1549 if (worker) { 1550 del_timer_sync(&gcwq->mayday_timer); 1551 spin_lock_irq(&gcwq->lock); 1552 start_worker(worker); 1553 BUG_ON(need_to_create_worker(gcwq)); 1554 return true; 1555 } 1556 1557 if (!need_to_create_worker(gcwq)) 1558 break; 1559 1560 __set_current_state(TASK_INTERRUPTIBLE); 1561 schedule_timeout(CREATE_COOLDOWN); 1562 1563 if (!need_to_create_worker(gcwq)) 1564 break; 1565 } 1566 1567 del_timer_sync(&gcwq->mayday_timer); 1568 spin_lock_irq(&gcwq->lock); 1569 if (need_to_create_worker(gcwq)) 1570 goto restart; 1571 return true; 1572 } 1573 1574 /** 1575 * maybe_destroy_worker - destroy workers which have been idle for a while 1576 * @gcwq: gcwq to destroy workers for 1577 * 1578 * Destroy @gcwq workers which have been idle for longer than 1579 * IDLE_WORKER_TIMEOUT. 1580 * 1581 * LOCKING: 1582 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1583 * multiple times. Called only from manager. 1584 * 1585 * RETURNS: 1586 * false if no action was taken and gcwq->lock stayed locked, true 1587 * otherwise. 1588 */ 1589 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1590 { 1591 bool ret = false; 1592 1593 while (too_many_workers(gcwq)) { 1594 struct worker *worker; 1595 unsigned long expires; 1596 1597 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1598 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1599 1600 if (time_before(jiffies, expires)) { 1601 mod_timer(&gcwq->idle_timer, expires); 1602 break; 1603 } 1604 1605 destroy_worker(worker); 1606 ret = true; 1607 } 1608 1609 return ret; 1610 } 1611 1612 /** 1613 * manage_workers - manage worker pool 1614 * @worker: self 1615 * 1616 * Assume the manager role and manage gcwq worker pool @worker belongs 1617 * to. At any given time, there can be only zero or one manager per 1618 * gcwq. The exclusion is handled automatically by this function. 1619 * 1620 * The caller can safely start processing works on false return. On 1621 * true return, it's guaranteed that need_to_create_worker() is false 1622 * and may_start_working() is true. 1623 * 1624 * CONTEXT: 1625 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1626 * multiple times. Does GFP_KERNEL allocations. 1627 * 1628 * RETURNS: 1629 * false if no action was taken and gcwq->lock stayed locked, true if 1630 * some action was taken. 1631 */ 1632 static bool manage_workers(struct worker *worker) 1633 { 1634 struct global_cwq *gcwq = worker->gcwq; 1635 bool ret = false; 1636 1637 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1638 return ret; 1639 1640 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1641 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1642 1643 /* 1644 * Destroy and then create so that may_start_working() is true 1645 * on return. 1646 */ 1647 ret |= maybe_destroy_workers(gcwq); 1648 ret |= maybe_create_worker(gcwq); 1649 1650 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1651 1652 /* 1653 * The trustee might be waiting to take over the manager 1654 * position, tell it we're done. 1655 */ 1656 if (unlikely(gcwq->trustee)) 1657 wake_up_all(&gcwq->trustee_wait); 1658 1659 return ret; 1660 } 1661 1662 /** 1663 * move_linked_works - move linked works to a list 1664 * @work: start of series of works to be scheduled 1665 * @head: target list to append @work to 1666 * @nextp: out paramter for nested worklist walking 1667 * 1668 * Schedule linked works starting from @work to @head. Work series to 1669 * be scheduled starts at @work and includes any consecutive work with 1670 * WORK_STRUCT_LINKED set in its predecessor. 1671 * 1672 * If @nextp is not NULL, it's updated to point to the next work of 1673 * the last scheduled work. This allows move_linked_works() to be 1674 * nested inside outer list_for_each_entry_safe(). 1675 * 1676 * CONTEXT: 1677 * spin_lock_irq(gcwq->lock). 1678 */ 1679 static void move_linked_works(struct work_struct *work, struct list_head *head, 1680 struct work_struct **nextp) 1681 { 1682 struct work_struct *n; 1683 1684 /* 1685 * Linked worklist will always end before the end of the list, 1686 * use NULL for list head. 1687 */ 1688 list_for_each_entry_safe_from(work, n, NULL, entry) { 1689 list_move_tail(&work->entry, head); 1690 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1691 break; 1692 } 1693 1694 /* 1695 * If we're already inside safe list traversal and have moved 1696 * multiple works to the scheduled queue, the next position 1697 * needs to be updated. 1698 */ 1699 if (nextp) 1700 *nextp = n; 1701 } 1702 1703 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1704 { 1705 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1706 struct work_struct, entry); 1707 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1708 1709 trace_workqueue_activate_work(work); 1710 move_linked_works(work, pos, NULL); 1711 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1712 cwq->nr_active++; 1713 } 1714 1715 /** 1716 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1717 * @cwq: cwq of interest 1718 * @color: color of work which left the queue 1719 * @delayed: for a delayed work 1720 * 1721 * A work either has completed or is removed from pending queue, 1722 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1723 * 1724 * CONTEXT: 1725 * spin_lock_irq(gcwq->lock). 1726 */ 1727 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1728 bool delayed) 1729 { 1730 /* ignore uncolored works */ 1731 if (color == WORK_NO_COLOR) 1732 return; 1733 1734 cwq->nr_in_flight[color]--; 1735 1736 if (!delayed) { 1737 cwq->nr_active--; 1738 if (!list_empty(&cwq->delayed_works)) { 1739 /* one down, submit a delayed one */ 1740 if (cwq->nr_active < cwq->max_active) 1741 cwq_activate_first_delayed(cwq); 1742 } 1743 } 1744 1745 /* is flush in progress and are we at the flushing tip? */ 1746 if (likely(cwq->flush_color != color)) 1747 return; 1748 1749 /* are there still in-flight works? */ 1750 if (cwq->nr_in_flight[color]) 1751 return; 1752 1753 /* this cwq is done, clear flush_color */ 1754 cwq->flush_color = -1; 1755 1756 /* 1757 * If this was the last cwq, wake up the first flusher. It 1758 * will handle the rest. 1759 */ 1760 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1761 complete(&cwq->wq->first_flusher->done); 1762 } 1763 1764 /** 1765 * process_one_work - process single work 1766 * @worker: self 1767 * @work: work to process 1768 * 1769 * Process @work. This function contains all the logics necessary to 1770 * process a single work including synchronization against and 1771 * interaction with other workers on the same cpu, queueing and 1772 * flushing. As long as context requirement is met, any worker can 1773 * call this function to process a work. 1774 * 1775 * CONTEXT: 1776 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1777 */ 1778 static void process_one_work(struct worker *worker, struct work_struct *work) 1779 __releases(&gcwq->lock) 1780 __acquires(&gcwq->lock) 1781 { 1782 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1783 struct global_cwq *gcwq = cwq->gcwq; 1784 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1785 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1786 work_func_t f = work->func; 1787 int work_color; 1788 struct worker *collision; 1789 #ifdef CONFIG_LOCKDEP 1790 /* 1791 * It is permissible to free the struct work_struct from 1792 * inside the function that is called from it, this we need to 1793 * take into account for lockdep too. To avoid bogus "held 1794 * lock freed" warnings as well as problems when looking into 1795 * work->lockdep_map, make a copy and use that here. 1796 */ 1797 struct lockdep_map lockdep_map = work->lockdep_map; 1798 #endif 1799 /* 1800 * A single work shouldn't be executed concurrently by 1801 * multiple workers on a single cpu. Check whether anyone is 1802 * already processing the work. If so, defer the work to the 1803 * currently executing one. 1804 */ 1805 collision = __find_worker_executing_work(gcwq, bwh, work); 1806 if (unlikely(collision)) { 1807 move_linked_works(work, &collision->scheduled, NULL); 1808 return; 1809 } 1810 1811 /* claim and process */ 1812 debug_work_deactivate(work); 1813 hlist_add_head(&worker->hentry, bwh); 1814 worker->current_work = work; 1815 worker->current_cwq = cwq; 1816 work_color = get_work_color(work); 1817 1818 /* record the current cpu number in the work data and dequeue */ 1819 set_work_cpu(work, gcwq->cpu); 1820 list_del_init(&work->entry); 1821 1822 /* 1823 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1824 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1825 */ 1826 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1827 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1828 struct work_struct, entry); 1829 1830 if (!list_empty(&gcwq->worklist) && 1831 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1832 wake_up_worker(gcwq); 1833 else 1834 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1835 } 1836 1837 /* 1838 * CPU intensive works don't participate in concurrency 1839 * management. They're the scheduler's responsibility. 1840 */ 1841 if (unlikely(cpu_intensive)) 1842 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1843 1844 spin_unlock_irq(&gcwq->lock); 1845 1846 work_clear_pending(work); 1847 lock_map_acquire_read(&cwq->wq->lockdep_map); 1848 lock_map_acquire(&lockdep_map); 1849 trace_workqueue_execute_start(work); 1850 f(work); 1851 /* 1852 * While we must be careful to not use "work" after this, the trace 1853 * point will only record its address. 1854 */ 1855 trace_workqueue_execute_end(work); 1856 lock_map_release(&lockdep_map); 1857 lock_map_release(&cwq->wq->lockdep_map); 1858 1859 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1860 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1861 "%s/0x%08x/%d\n", 1862 current->comm, preempt_count(), task_pid_nr(current)); 1863 printk(KERN_ERR " last function: "); 1864 print_symbol("%s\n", (unsigned long)f); 1865 debug_show_held_locks(current); 1866 dump_stack(); 1867 } 1868 1869 spin_lock_irq(&gcwq->lock); 1870 1871 /* clear cpu intensive status */ 1872 if (unlikely(cpu_intensive)) 1873 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1874 1875 /* we're done with it, release */ 1876 hlist_del_init(&worker->hentry); 1877 worker->current_work = NULL; 1878 worker->current_cwq = NULL; 1879 cwq_dec_nr_in_flight(cwq, work_color, false); 1880 } 1881 1882 /** 1883 * process_scheduled_works - process scheduled works 1884 * @worker: self 1885 * 1886 * Process all scheduled works. Please note that the scheduled list 1887 * may change while processing a work, so this function repeatedly 1888 * fetches a work from the top and executes it. 1889 * 1890 * CONTEXT: 1891 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1892 * multiple times. 1893 */ 1894 static void process_scheduled_works(struct worker *worker) 1895 { 1896 while (!list_empty(&worker->scheduled)) { 1897 struct work_struct *work = list_first_entry(&worker->scheduled, 1898 struct work_struct, entry); 1899 process_one_work(worker, work); 1900 } 1901 } 1902 1903 /** 1904 * worker_thread - the worker thread function 1905 * @__worker: self 1906 * 1907 * The gcwq worker thread function. There's a single dynamic pool of 1908 * these per each cpu. These workers process all works regardless of 1909 * their specific target workqueue. The only exception is works which 1910 * belong to workqueues with a rescuer which will be explained in 1911 * rescuer_thread(). 1912 */ 1913 static int worker_thread(void *__worker) 1914 { 1915 struct worker *worker = __worker; 1916 struct global_cwq *gcwq = worker->gcwq; 1917 1918 /* tell the scheduler that this is a workqueue worker */ 1919 worker->task->flags |= PF_WQ_WORKER; 1920 woke_up: 1921 spin_lock_irq(&gcwq->lock); 1922 1923 /* DIE can be set only while we're idle, checking here is enough */ 1924 if (worker->flags & WORKER_DIE) { 1925 spin_unlock_irq(&gcwq->lock); 1926 worker->task->flags &= ~PF_WQ_WORKER; 1927 return 0; 1928 } 1929 1930 worker_leave_idle(worker); 1931 recheck: 1932 /* no more worker necessary? */ 1933 if (!need_more_worker(gcwq)) 1934 goto sleep; 1935 1936 /* do we need to manage? */ 1937 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1938 goto recheck; 1939 1940 /* 1941 * ->scheduled list can only be filled while a worker is 1942 * preparing to process a work or actually processing it. 1943 * Make sure nobody diddled with it while I was sleeping. 1944 */ 1945 BUG_ON(!list_empty(&worker->scheduled)); 1946 1947 /* 1948 * When control reaches this point, we're guaranteed to have 1949 * at least one idle worker or that someone else has already 1950 * assumed the manager role. 1951 */ 1952 worker_clr_flags(worker, WORKER_PREP); 1953 1954 do { 1955 struct work_struct *work = 1956 list_first_entry(&gcwq->worklist, 1957 struct work_struct, entry); 1958 1959 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1960 /* optimization path, not strictly necessary */ 1961 process_one_work(worker, work); 1962 if (unlikely(!list_empty(&worker->scheduled))) 1963 process_scheduled_works(worker); 1964 } else { 1965 move_linked_works(work, &worker->scheduled, NULL); 1966 process_scheduled_works(worker); 1967 } 1968 } while (keep_working(gcwq)); 1969 1970 worker_set_flags(worker, WORKER_PREP, false); 1971 sleep: 1972 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1973 goto recheck; 1974 1975 /* 1976 * gcwq->lock is held and there's no work to process and no 1977 * need to manage, sleep. Workers are woken up only while 1978 * holding gcwq->lock or from local cpu, so setting the 1979 * current state before releasing gcwq->lock is enough to 1980 * prevent losing any event. 1981 */ 1982 worker_enter_idle(worker); 1983 __set_current_state(TASK_INTERRUPTIBLE); 1984 spin_unlock_irq(&gcwq->lock); 1985 schedule(); 1986 goto woke_up; 1987 } 1988 1989 /** 1990 * rescuer_thread - the rescuer thread function 1991 * @__wq: the associated workqueue 1992 * 1993 * Workqueue rescuer thread function. There's one rescuer for each 1994 * workqueue which has WQ_RESCUER set. 1995 * 1996 * Regular work processing on a gcwq may block trying to create a new 1997 * worker which uses GFP_KERNEL allocation which has slight chance of 1998 * developing into deadlock if some works currently on the same queue 1999 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2000 * the problem rescuer solves. 2001 * 2002 * When such condition is possible, the gcwq summons rescuers of all 2003 * workqueues which have works queued on the gcwq and let them process 2004 * those works so that forward progress can be guaranteed. 2005 * 2006 * This should happen rarely. 2007 */ 2008 static int rescuer_thread(void *__wq) 2009 { 2010 struct workqueue_struct *wq = __wq; 2011 struct worker *rescuer = wq->rescuer; 2012 struct list_head *scheduled = &rescuer->scheduled; 2013 bool is_unbound = wq->flags & WQ_UNBOUND; 2014 unsigned int cpu; 2015 2016 set_user_nice(current, RESCUER_NICE_LEVEL); 2017 repeat: 2018 set_current_state(TASK_INTERRUPTIBLE); 2019 2020 if (kthread_should_stop()) 2021 return 0; 2022 2023 /* 2024 * See whether any cpu is asking for help. Unbounded 2025 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2026 */ 2027 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2028 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2029 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2030 struct global_cwq *gcwq = cwq->gcwq; 2031 struct work_struct *work, *n; 2032 2033 __set_current_state(TASK_RUNNING); 2034 mayday_clear_cpu(cpu, wq->mayday_mask); 2035 2036 /* migrate to the target cpu if possible */ 2037 rescuer->gcwq = gcwq; 2038 worker_maybe_bind_and_lock(rescuer); 2039 2040 /* 2041 * Slurp in all works issued via this workqueue and 2042 * process'em. 2043 */ 2044 BUG_ON(!list_empty(&rescuer->scheduled)); 2045 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2046 if (get_work_cwq(work) == cwq) 2047 move_linked_works(work, scheduled, &n); 2048 2049 process_scheduled_works(rescuer); 2050 spin_unlock_irq(&gcwq->lock); 2051 } 2052 2053 schedule(); 2054 goto repeat; 2055 } 2056 2057 struct wq_barrier { 2058 struct work_struct work; 2059 struct completion done; 2060 }; 2061 2062 static void wq_barrier_func(struct work_struct *work) 2063 { 2064 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2065 complete(&barr->done); 2066 } 2067 2068 /** 2069 * insert_wq_barrier - insert a barrier work 2070 * @cwq: cwq to insert barrier into 2071 * @barr: wq_barrier to insert 2072 * @target: target work to attach @barr to 2073 * @worker: worker currently executing @target, NULL if @target is not executing 2074 * 2075 * @barr is linked to @target such that @barr is completed only after 2076 * @target finishes execution. Please note that the ordering 2077 * guarantee is observed only with respect to @target and on the local 2078 * cpu. 2079 * 2080 * Currently, a queued barrier can't be canceled. This is because 2081 * try_to_grab_pending() can't determine whether the work to be 2082 * grabbed is at the head of the queue and thus can't clear LINKED 2083 * flag of the previous work while there must be a valid next work 2084 * after a work with LINKED flag set. 2085 * 2086 * Note that when @worker is non-NULL, @target may be modified 2087 * underneath us, so we can't reliably determine cwq from @target. 2088 * 2089 * CONTEXT: 2090 * spin_lock_irq(gcwq->lock). 2091 */ 2092 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2093 struct wq_barrier *barr, 2094 struct work_struct *target, struct worker *worker) 2095 { 2096 struct list_head *head; 2097 unsigned int linked = 0; 2098 2099 /* 2100 * debugobject calls are safe here even with gcwq->lock locked 2101 * as we know for sure that this will not trigger any of the 2102 * checks and call back into the fixup functions where we 2103 * might deadlock. 2104 */ 2105 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2106 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2107 init_completion(&barr->done); 2108 2109 /* 2110 * If @target is currently being executed, schedule the 2111 * barrier to the worker; otherwise, put it after @target. 2112 */ 2113 if (worker) 2114 head = worker->scheduled.next; 2115 else { 2116 unsigned long *bits = work_data_bits(target); 2117 2118 head = target->entry.next; 2119 /* there can already be other linked works, inherit and set */ 2120 linked = *bits & WORK_STRUCT_LINKED; 2121 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2122 } 2123 2124 debug_work_activate(&barr->work); 2125 insert_work(cwq, &barr->work, head, 2126 work_color_to_flags(WORK_NO_COLOR) | linked); 2127 } 2128 2129 /** 2130 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2131 * @wq: workqueue being flushed 2132 * @flush_color: new flush color, < 0 for no-op 2133 * @work_color: new work color, < 0 for no-op 2134 * 2135 * Prepare cwqs for workqueue flushing. 2136 * 2137 * If @flush_color is non-negative, flush_color on all cwqs should be 2138 * -1. If no cwq has in-flight commands at the specified color, all 2139 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2140 * has in flight commands, its cwq->flush_color is set to 2141 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2142 * wakeup logic is armed and %true is returned. 2143 * 2144 * The caller should have initialized @wq->first_flusher prior to 2145 * calling this function with non-negative @flush_color. If 2146 * @flush_color is negative, no flush color update is done and %false 2147 * is returned. 2148 * 2149 * If @work_color is non-negative, all cwqs should have the same 2150 * work_color which is previous to @work_color and all will be 2151 * advanced to @work_color. 2152 * 2153 * CONTEXT: 2154 * mutex_lock(wq->flush_mutex). 2155 * 2156 * RETURNS: 2157 * %true if @flush_color >= 0 and there's something to flush. %false 2158 * otherwise. 2159 */ 2160 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2161 int flush_color, int work_color) 2162 { 2163 bool wait = false; 2164 unsigned int cpu; 2165 2166 if (flush_color >= 0) { 2167 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2168 atomic_set(&wq->nr_cwqs_to_flush, 1); 2169 } 2170 2171 for_each_cwq_cpu(cpu, wq) { 2172 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2173 struct global_cwq *gcwq = cwq->gcwq; 2174 2175 spin_lock_irq(&gcwq->lock); 2176 2177 if (flush_color >= 0) { 2178 BUG_ON(cwq->flush_color != -1); 2179 2180 if (cwq->nr_in_flight[flush_color]) { 2181 cwq->flush_color = flush_color; 2182 atomic_inc(&wq->nr_cwqs_to_flush); 2183 wait = true; 2184 } 2185 } 2186 2187 if (work_color >= 0) { 2188 BUG_ON(work_color != work_next_color(cwq->work_color)); 2189 cwq->work_color = work_color; 2190 } 2191 2192 spin_unlock_irq(&gcwq->lock); 2193 } 2194 2195 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2196 complete(&wq->first_flusher->done); 2197 2198 return wait; 2199 } 2200 2201 /** 2202 * flush_workqueue - ensure that any scheduled work has run to completion. 2203 * @wq: workqueue to flush 2204 * 2205 * Forces execution of the workqueue and blocks until its completion. 2206 * This is typically used in driver shutdown handlers. 2207 * 2208 * We sleep until all works which were queued on entry have been handled, 2209 * but we are not livelocked by new incoming ones. 2210 */ 2211 void flush_workqueue(struct workqueue_struct *wq) 2212 { 2213 struct wq_flusher this_flusher = { 2214 .list = LIST_HEAD_INIT(this_flusher.list), 2215 .flush_color = -1, 2216 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2217 }; 2218 int next_color; 2219 2220 lock_map_acquire(&wq->lockdep_map); 2221 lock_map_release(&wq->lockdep_map); 2222 2223 mutex_lock(&wq->flush_mutex); 2224 2225 /* 2226 * Start-to-wait phase 2227 */ 2228 next_color = work_next_color(wq->work_color); 2229 2230 if (next_color != wq->flush_color) { 2231 /* 2232 * Color space is not full. The current work_color 2233 * becomes our flush_color and work_color is advanced 2234 * by one. 2235 */ 2236 BUG_ON(!list_empty(&wq->flusher_overflow)); 2237 this_flusher.flush_color = wq->work_color; 2238 wq->work_color = next_color; 2239 2240 if (!wq->first_flusher) { 2241 /* no flush in progress, become the first flusher */ 2242 BUG_ON(wq->flush_color != this_flusher.flush_color); 2243 2244 wq->first_flusher = &this_flusher; 2245 2246 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2247 wq->work_color)) { 2248 /* nothing to flush, done */ 2249 wq->flush_color = next_color; 2250 wq->first_flusher = NULL; 2251 goto out_unlock; 2252 } 2253 } else { 2254 /* wait in queue */ 2255 BUG_ON(wq->flush_color == this_flusher.flush_color); 2256 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2257 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2258 } 2259 } else { 2260 /* 2261 * Oops, color space is full, wait on overflow queue. 2262 * The next flush completion will assign us 2263 * flush_color and transfer to flusher_queue. 2264 */ 2265 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2266 } 2267 2268 mutex_unlock(&wq->flush_mutex); 2269 2270 wait_for_completion(&this_flusher.done); 2271 2272 /* 2273 * Wake-up-and-cascade phase 2274 * 2275 * First flushers are responsible for cascading flushes and 2276 * handling overflow. Non-first flushers can simply return. 2277 */ 2278 if (wq->first_flusher != &this_flusher) 2279 return; 2280 2281 mutex_lock(&wq->flush_mutex); 2282 2283 /* we might have raced, check again with mutex held */ 2284 if (wq->first_flusher != &this_flusher) 2285 goto out_unlock; 2286 2287 wq->first_flusher = NULL; 2288 2289 BUG_ON(!list_empty(&this_flusher.list)); 2290 BUG_ON(wq->flush_color != this_flusher.flush_color); 2291 2292 while (true) { 2293 struct wq_flusher *next, *tmp; 2294 2295 /* complete all the flushers sharing the current flush color */ 2296 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2297 if (next->flush_color != wq->flush_color) 2298 break; 2299 list_del_init(&next->list); 2300 complete(&next->done); 2301 } 2302 2303 BUG_ON(!list_empty(&wq->flusher_overflow) && 2304 wq->flush_color != work_next_color(wq->work_color)); 2305 2306 /* this flush_color is finished, advance by one */ 2307 wq->flush_color = work_next_color(wq->flush_color); 2308 2309 /* one color has been freed, handle overflow queue */ 2310 if (!list_empty(&wq->flusher_overflow)) { 2311 /* 2312 * Assign the same color to all overflowed 2313 * flushers, advance work_color and append to 2314 * flusher_queue. This is the start-to-wait 2315 * phase for these overflowed flushers. 2316 */ 2317 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2318 tmp->flush_color = wq->work_color; 2319 2320 wq->work_color = work_next_color(wq->work_color); 2321 2322 list_splice_tail_init(&wq->flusher_overflow, 2323 &wq->flusher_queue); 2324 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2325 } 2326 2327 if (list_empty(&wq->flusher_queue)) { 2328 BUG_ON(wq->flush_color != wq->work_color); 2329 break; 2330 } 2331 2332 /* 2333 * Need to flush more colors. Make the next flusher 2334 * the new first flusher and arm cwqs. 2335 */ 2336 BUG_ON(wq->flush_color == wq->work_color); 2337 BUG_ON(wq->flush_color != next->flush_color); 2338 2339 list_del_init(&next->list); 2340 wq->first_flusher = next; 2341 2342 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2343 break; 2344 2345 /* 2346 * Meh... this color is already done, clear first 2347 * flusher and repeat cascading. 2348 */ 2349 wq->first_flusher = NULL; 2350 } 2351 2352 out_unlock: 2353 mutex_unlock(&wq->flush_mutex); 2354 } 2355 EXPORT_SYMBOL_GPL(flush_workqueue); 2356 2357 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2358 bool wait_executing) 2359 { 2360 struct worker *worker = NULL; 2361 struct global_cwq *gcwq; 2362 struct cpu_workqueue_struct *cwq; 2363 2364 might_sleep(); 2365 gcwq = get_work_gcwq(work); 2366 if (!gcwq) 2367 return false; 2368 2369 spin_lock_irq(&gcwq->lock); 2370 if (!list_empty(&work->entry)) { 2371 /* 2372 * See the comment near try_to_grab_pending()->smp_rmb(). 2373 * If it was re-queued to a different gcwq under us, we 2374 * are not going to wait. 2375 */ 2376 smp_rmb(); 2377 cwq = get_work_cwq(work); 2378 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2379 goto already_gone; 2380 } else if (wait_executing) { 2381 worker = find_worker_executing_work(gcwq, work); 2382 if (!worker) 2383 goto already_gone; 2384 cwq = worker->current_cwq; 2385 } else 2386 goto already_gone; 2387 2388 insert_wq_barrier(cwq, barr, work, worker); 2389 spin_unlock_irq(&gcwq->lock); 2390 2391 /* 2392 * If @max_active is 1 or rescuer is in use, flushing another work 2393 * item on the same workqueue may lead to deadlock. Make sure the 2394 * flusher is not running on the same workqueue by verifying write 2395 * access. 2396 */ 2397 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER) 2398 lock_map_acquire(&cwq->wq->lockdep_map); 2399 else 2400 lock_map_acquire_read(&cwq->wq->lockdep_map); 2401 lock_map_release(&cwq->wq->lockdep_map); 2402 2403 return true; 2404 already_gone: 2405 spin_unlock_irq(&gcwq->lock); 2406 return false; 2407 } 2408 2409 /** 2410 * flush_work - wait for a work to finish executing the last queueing instance 2411 * @work: the work to flush 2412 * 2413 * Wait until @work has finished execution. This function considers 2414 * only the last queueing instance of @work. If @work has been 2415 * enqueued across different CPUs on a non-reentrant workqueue or on 2416 * multiple workqueues, @work might still be executing on return on 2417 * some of the CPUs from earlier queueing. 2418 * 2419 * If @work was queued only on a non-reentrant, ordered or unbound 2420 * workqueue, @work is guaranteed to be idle on return if it hasn't 2421 * been requeued since flush started. 2422 * 2423 * RETURNS: 2424 * %true if flush_work() waited for the work to finish execution, 2425 * %false if it was already idle. 2426 */ 2427 bool flush_work(struct work_struct *work) 2428 { 2429 struct wq_barrier barr; 2430 2431 if (start_flush_work(work, &barr, true)) { 2432 wait_for_completion(&barr.done); 2433 destroy_work_on_stack(&barr.work); 2434 return true; 2435 } else 2436 return false; 2437 } 2438 EXPORT_SYMBOL_GPL(flush_work); 2439 2440 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2441 { 2442 struct wq_barrier barr; 2443 struct worker *worker; 2444 2445 spin_lock_irq(&gcwq->lock); 2446 2447 worker = find_worker_executing_work(gcwq, work); 2448 if (unlikely(worker)) 2449 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2450 2451 spin_unlock_irq(&gcwq->lock); 2452 2453 if (unlikely(worker)) { 2454 wait_for_completion(&barr.done); 2455 destroy_work_on_stack(&barr.work); 2456 return true; 2457 } else 2458 return false; 2459 } 2460 2461 static bool wait_on_work(struct work_struct *work) 2462 { 2463 bool ret = false; 2464 int cpu; 2465 2466 might_sleep(); 2467 2468 lock_map_acquire(&work->lockdep_map); 2469 lock_map_release(&work->lockdep_map); 2470 2471 for_each_gcwq_cpu(cpu) 2472 ret |= wait_on_cpu_work(get_gcwq(cpu), work); 2473 return ret; 2474 } 2475 2476 /** 2477 * flush_work_sync - wait until a work has finished execution 2478 * @work: the work to flush 2479 * 2480 * Wait until @work has finished execution. On return, it's 2481 * guaranteed that all queueing instances of @work which happened 2482 * before this function is called are finished. In other words, if 2483 * @work hasn't been requeued since this function was called, @work is 2484 * guaranteed to be idle on return. 2485 * 2486 * RETURNS: 2487 * %true if flush_work_sync() waited for the work to finish execution, 2488 * %false if it was already idle. 2489 */ 2490 bool flush_work_sync(struct work_struct *work) 2491 { 2492 struct wq_barrier barr; 2493 bool pending, waited; 2494 2495 /* we'll wait for executions separately, queue barr only if pending */ 2496 pending = start_flush_work(work, &barr, false); 2497 2498 /* wait for executions to finish */ 2499 waited = wait_on_work(work); 2500 2501 /* wait for the pending one */ 2502 if (pending) { 2503 wait_for_completion(&barr.done); 2504 destroy_work_on_stack(&barr.work); 2505 } 2506 2507 return pending || waited; 2508 } 2509 EXPORT_SYMBOL_GPL(flush_work_sync); 2510 2511 /* 2512 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2513 * so this work can't be re-armed in any way. 2514 */ 2515 static int try_to_grab_pending(struct work_struct *work) 2516 { 2517 struct global_cwq *gcwq; 2518 int ret = -1; 2519 2520 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2521 return 0; 2522 2523 /* 2524 * The queueing is in progress, or it is already queued. Try to 2525 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2526 */ 2527 gcwq = get_work_gcwq(work); 2528 if (!gcwq) 2529 return ret; 2530 2531 spin_lock_irq(&gcwq->lock); 2532 if (!list_empty(&work->entry)) { 2533 /* 2534 * This work is queued, but perhaps we locked the wrong gcwq. 2535 * In that case we must see the new value after rmb(), see 2536 * insert_work()->wmb(). 2537 */ 2538 smp_rmb(); 2539 if (gcwq == get_work_gcwq(work)) { 2540 debug_work_deactivate(work); 2541 list_del_init(&work->entry); 2542 cwq_dec_nr_in_flight(get_work_cwq(work), 2543 get_work_color(work), 2544 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2545 ret = 1; 2546 } 2547 } 2548 spin_unlock_irq(&gcwq->lock); 2549 2550 return ret; 2551 } 2552 2553 static bool __cancel_work_timer(struct work_struct *work, 2554 struct timer_list* timer) 2555 { 2556 int ret; 2557 2558 do { 2559 ret = (timer && likely(del_timer(timer))); 2560 if (!ret) 2561 ret = try_to_grab_pending(work); 2562 wait_on_work(work); 2563 } while (unlikely(ret < 0)); 2564 2565 clear_work_data(work); 2566 return ret; 2567 } 2568 2569 /** 2570 * cancel_work_sync - cancel a work and wait for it to finish 2571 * @work: the work to cancel 2572 * 2573 * Cancel @work and wait for its execution to finish. This function 2574 * can be used even if the work re-queues itself or migrates to 2575 * another workqueue. On return from this function, @work is 2576 * guaranteed to be not pending or executing on any CPU. 2577 * 2578 * cancel_work_sync(&delayed_work->work) must not be used for 2579 * delayed_work's. Use cancel_delayed_work_sync() instead. 2580 * 2581 * The caller must ensure that the workqueue on which @work was last 2582 * queued can't be destroyed before this function returns. 2583 * 2584 * RETURNS: 2585 * %true if @work was pending, %false otherwise. 2586 */ 2587 bool cancel_work_sync(struct work_struct *work) 2588 { 2589 return __cancel_work_timer(work, NULL); 2590 } 2591 EXPORT_SYMBOL_GPL(cancel_work_sync); 2592 2593 /** 2594 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2595 * @dwork: the delayed work to flush 2596 * 2597 * Delayed timer is cancelled and the pending work is queued for 2598 * immediate execution. Like flush_work(), this function only 2599 * considers the last queueing instance of @dwork. 2600 * 2601 * RETURNS: 2602 * %true if flush_work() waited for the work to finish execution, 2603 * %false if it was already idle. 2604 */ 2605 bool flush_delayed_work(struct delayed_work *dwork) 2606 { 2607 if (del_timer_sync(&dwork->timer)) 2608 __queue_work(raw_smp_processor_id(), 2609 get_work_cwq(&dwork->work)->wq, &dwork->work); 2610 return flush_work(&dwork->work); 2611 } 2612 EXPORT_SYMBOL(flush_delayed_work); 2613 2614 /** 2615 * flush_delayed_work_sync - wait for a dwork to finish 2616 * @dwork: the delayed work to flush 2617 * 2618 * Delayed timer is cancelled and the pending work is queued for 2619 * execution immediately. Other than timer handling, its behavior 2620 * is identical to flush_work_sync(). 2621 * 2622 * RETURNS: 2623 * %true if flush_work_sync() waited for the work to finish execution, 2624 * %false if it was already idle. 2625 */ 2626 bool flush_delayed_work_sync(struct delayed_work *dwork) 2627 { 2628 if (del_timer_sync(&dwork->timer)) 2629 __queue_work(raw_smp_processor_id(), 2630 get_work_cwq(&dwork->work)->wq, &dwork->work); 2631 return flush_work_sync(&dwork->work); 2632 } 2633 EXPORT_SYMBOL(flush_delayed_work_sync); 2634 2635 /** 2636 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2637 * @dwork: the delayed work cancel 2638 * 2639 * This is cancel_work_sync() for delayed works. 2640 * 2641 * RETURNS: 2642 * %true if @dwork was pending, %false otherwise. 2643 */ 2644 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2645 { 2646 return __cancel_work_timer(&dwork->work, &dwork->timer); 2647 } 2648 EXPORT_SYMBOL(cancel_delayed_work_sync); 2649 2650 /** 2651 * schedule_work - put work task in global workqueue 2652 * @work: job to be done 2653 * 2654 * Returns zero if @work was already on the kernel-global workqueue and 2655 * non-zero otherwise. 2656 * 2657 * This puts a job in the kernel-global workqueue if it was not already 2658 * queued and leaves it in the same position on the kernel-global 2659 * workqueue otherwise. 2660 */ 2661 int schedule_work(struct work_struct *work) 2662 { 2663 return queue_work(system_wq, work); 2664 } 2665 EXPORT_SYMBOL(schedule_work); 2666 2667 /* 2668 * schedule_work_on - put work task on a specific cpu 2669 * @cpu: cpu to put the work task on 2670 * @work: job to be done 2671 * 2672 * This puts a job on a specific cpu 2673 */ 2674 int schedule_work_on(int cpu, struct work_struct *work) 2675 { 2676 return queue_work_on(cpu, system_wq, work); 2677 } 2678 EXPORT_SYMBOL(schedule_work_on); 2679 2680 /** 2681 * schedule_delayed_work - put work task in global workqueue after delay 2682 * @dwork: job to be done 2683 * @delay: number of jiffies to wait or 0 for immediate execution 2684 * 2685 * After waiting for a given time this puts a job in the kernel-global 2686 * workqueue. 2687 */ 2688 int schedule_delayed_work(struct delayed_work *dwork, 2689 unsigned long delay) 2690 { 2691 return queue_delayed_work(system_wq, dwork, delay); 2692 } 2693 EXPORT_SYMBOL(schedule_delayed_work); 2694 2695 /** 2696 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2697 * @cpu: cpu to use 2698 * @dwork: job to be done 2699 * @delay: number of jiffies to wait 2700 * 2701 * After waiting for a given time this puts a job in the kernel-global 2702 * workqueue on the specified CPU. 2703 */ 2704 int schedule_delayed_work_on(int cpu, 2705 struct delayed_work *dwork, unsigned long delay) 2706 { 2707 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2708 } 2709 EXPORT_SYMBOL(schedule_delayed_work_on); 2710 2711 /** 2712 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2713 * @func: the function to call 2714 * 2715 * schedule_on_each_cpu() executes @func on each online CPU using the 2716 * system workqueue and blocks until all CPUs have completed. 2717 * schedule_on_each_cpu() is very slow. 2718 * 2719 * RETURNS: 2720 * 0 on success, -errno on failure. 2721 */ 2722 int schedule_on_each_cpu(work_func_t func) 2723 { 2724 int cpu; 2725 struct work_struct __percpu *works; 2726 2727 works = alloc_percpu(struct work_struct); 2728 if (!works) 2729 return -ENOMEM; 2730 2731 get_online_cpus(); 2732 2733 for_each_online_cpu(cpu) { 2734 struct work_struct *work = per_cpu_ptr(works, cpu); 2735 2736 INIT_WORK(work, func); 2737 schedule_work_on(cpu, work); 2738 } 2739 2740 for_each_online_cpu(cpu) 2741 flush_work(per_cpu_ptr(works, cpu)); 2742 2743 put_online_cpus(); 2744 free_percpu(works); 2745 return 0; 2746 } 2747 2748 /** 2749 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2750 * 2751 * Forces execution of the kernel-global workqueue and blocks until its 2752 * completion. 2753 * 2754 * Think twice before calling this function! It's very easy to get into 2755 * trouble if you don't take great care. Either of the following situations 2756 * will lead to deadlock: 2757 * 2758 * One of the work items currently on the workqueue needs to acquire 2759 * a lock held by your code or its caller. 2760 * 2761 * Your code is running in the context of a work routine. 2762 * 2763 * They will be detected by lockdep when they occur, but the first might not 2764 * occur very often. It depends on what work items are on the workqueue and 2765 * what locks they need, which you have no control over. 2766 * 2767 * In most situations flushing the entire workqueue is overkill; you merely 2768 * need to know that a particular work item isn't queued and isn't running. 2769 * In such cases you should use cancel_delayed_work_sync() or 2770 * cancel_work_sync() instead. 2771 */ 2772 void flush_scheduled_work(void) 2773 { 2774 flush_workqueue(system_wq); 2775 } 2776 EXPORT_SYMBOL(flush_scheduled_work); 2777 2778 /** 2779 * execute_in_process_context - reliably execute the routine with user context 2780 * @fn: the function to execute 2781 * @ew: guaranteed storage for the execute work structure (must 2782 * be available when the work executes) 2783 * 2784 * Executes the function immediately if process context is available, 2785 * otherwise schedules the function for delayed execution. 2786 * 2787 * Returns: 0 - function was executed 2788 * 1 - function was scheduled for execution 2789 */ 2790 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2791 { 2792 if (!in_interrupt()) { 2793 fn(&ew->work); 2794 return 0; 2795 } 2796 2797 INIT_WORK(&ew->work, fn); 2798 schedule_work(&ew->work); 2799 2800 return 1; 2801 } 2802 EXPORT_SYMBOL_GPL(execute_in_process_context); 2803 2804 int keventd_up(void) 2805 { 2806 return system_wq != NULL; 2807 } 2808 2809 static int alloc_cwqs(struct workqueue_struct *wq) 2810 { 2811 /* 2812 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2813 * Make sure that the alignment isn't lower than that of 2814 * unsigned long long. 2815 */ 2816 const size_t size = sizeof(struct cpu_workqueue_struct); 2817 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2818 __alignof__(unsigned long long)); 2819 #ifdef CONFIG_SMP 2820 bool percpu = !(wq->flags & WQ_UNBOUND); 2821 #else 2822 bool percpu = false; 2823 #endif 2824 2825 if (percpu) 2826 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2827 else { 2828 void *ptr; 2829 2830 /* 2831 * Allocate enough room to align cwq and put an extra 2832 * pointer at the end pointing back to the originally 2833 * allocated pointer which will be used for free. 2834 */ 2835 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2836 if (ptr) { 2837 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2838 *(void **)(wq->cpu_wq.single + 1) = ptr; 2839 } 2840 } 2841 2842 /* just in case, make sure it's actually aligned 2843 * - this is affected by PERCPU() alignment in vmlinux.lds.S 2844 */ 2845 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2846 return wq->cpu_wq.v ? 0 : -ENOMEM; 2847 } 2848 2849 static void free_cwqs(struct workqueue_struct *wq) 2850 { 2851 #ifdef CONFIG_SMP 2852 bool percpu = !(wq->flags & WQ_UNBOUND); 2853 #else 2854 bool percpu = false; 2855 #endif 2856 2857 if (percpu) 2858 free_percpu(wq->cpu_wq.pcpu); 2859 else if (wq->cpu_wq.single) { 2860 /* the pointer to free is stored right after the cwq */ 2861 kfree(*(void **)(wq->cpu_wq.single + 1)); 2862 } 2863 } 2864 2865 static int wq_clamp_max_active(int max_active, unsigned int flags, 2866 const char *name) 2867 { 2868 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2869 2870 if (max_active < 1 || max_active > lim) 2871 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2872 "is out of range, clamping between %d and %d\n", 2873 max_active, name, 1, lim); 2874 2875 return clamp_val(max_active, 1, lim); 2876 } 2877 2878 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2879 unsigned int flags, 2880 int max_active, 2881 struct lock_class_key *key, 2882 const char *lock_name) 2883 { 2884 struct workqueue_struct *wq; 2885 unsigned int cpu; 2886 2887 /* 2888 * Workqueues which may be used during memory reclaim should 2889 * have a rescuer to guarantee forward progress. 2890 */ 2891 if (flags & WQ_MEM_RECLAIM) 2892 flags |= WQ_RESCUER; 2893 2894 /* 2895 * Unbound workqueues aren't concurrency managed and should be 2896 * dispatched to workers immediately. 2897 */ 2898 if (flags & WQ_UNBOUND) 2899 flags |= WQ_HIGHPRI; 2900 2901 max_active = max_active ?: WQ_DFL_ACTIVE; 2902 max_active = wq_clamp_max_active(max_active, flags, name); 2903 2904 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2905 if (!wq) 2906 goto err; 2907 2908 wq->flags = flags; 2909 wq->saved_max_active = max_active; 2910 mutex_init(&wq->flush_mutex); 2911 atomic_set(&wq->nr_cwqs_to_flush, 0); 2912 INIT_LIST_HEAD(&wq->flusher_queue); 2913 INIT_LIST_HEAD(&wq->flusher_overflow); 2914 2915 wq->name = name; 2916 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2917 INIT_LIST_HEAD(&wq->list); 2918 2919 if (alloc_cwqs(wq) < 0) 2920 goto err; 2921 2922 for_each_cwq_cpu(cpu, wq) { 2923 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2924 struct global_cwq *gcwq = get_gcwq(cpu); 2925 2926 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 2927 cwq->gcwq = gcwq; 2928 cwq->wq = wq; 2929 cwq->flush_color = -1; 2930 cwq->max_active = max_active; 2931 INIT_LIST_HEAD(&cwq->delayed_works); 2932 } 2933 2934 if (flags & WQ_RESCUER) { 2935 struct worker *rescuer; 2936 2937 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 2938 goto err; 2939 2940 wq->rescuer = rescuer = alloc_worker(); 2941 if (!rescuer) 2942 goto err; 2943 2944 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 2945 if (IS_ERR(rescuer->task)) 2946 goto err; 2947 2948 rescuer->task->flags |= PF_THREAD_BOUND; 2949 wake_up_process(rescuer->task); 2950 } 2951 2952 /* 2953 * workqueue_lock protects global freeze state and workqueues 2954 * list. Grab it, set max_active accordingly and add the new 2955 * workqueue to workqueues list. 2956 */ 2957 spin_lock(&workqueue_lock); 2958 2959 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) 2960 for_each_cwq_cpu(cpu, wq) 2961 get_cwq(cpu, wq)->max_active = 0; 2962 2963 list_add(&wq->list, &workqueues); 2964 2965 spin_unlock(&workqueue_lock); 2966 2967 return wq; 2968 err: 2969 if (wq) { 2970 free_cwqs(wq); 2971 free_mayday_mask(wq->mayday_mask); 2972 kfree(wq->rescuer); 2973 kfree(wq); 2974 } 2975 return NULL; 2976 } 2977 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 2978 2979 /** 2980 * destroy_workqueue - safely terminate a workqueue 2981 * @wq: target workqueue 2982 * 2983 * Safely destroy a workqueue. All work currently pending will be done first. 2984 */ 2985 void destroy_workqueue(struct workqueue_struct *wq) 2986 { 2987 unsigned int flush_cnt = 0; 2988 unsigned int cpu; 2989 2990 /* 2991 * Mark @wq dying and drain all pending works. Once WQ_DYING is 2992 * set, only chain queueing is allowed. IOW, only currently 2993 * pending or running work items on @wq can queue further work 2994 * items on it. @wq is flushed repeatedly until it becomes empty. 2995 * The number of flushing is detemined by the depth of chaining and 2996 * should be relatively short. Whine if it takes too long. 2997 */ 2998 wq->flags |= WQ_DYING; 2999 reflush: 3000 flush_workqueue(wq); 3001 3002 for_each_cwq_cpu(cpu, wq) { 3003 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3004 3005 if (!cwq->nr_active && list_empty(&cwq->delayed_works)) 3006 continue; 3007 3008 if (++flush_cnt == 10 || 3009 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3010 printk(KERN_WARNING "workqueue %s: flush on " 3011 "destruction isn't complete after %u tries\n", 3012 wq->name, flush_cnt); 3013 goto reflush; 3014 } 3015 3016 /* 3017 * wq list is used to freeze wq, remove from list after 3018 * flushing is complete in case freeze races us. 3019 */ 3020 spin_lock(&workqueue_lock); 3021 list_del(&wq->list); 3022 spin_unlock(&workqueue_lock); 3023 3024 /* sanity check */ 3025 for_each_cwq_cpu(cpu, wq) { 3026 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3027 int i; 3028 3029 for (i = 0; i < WORK_NR_COLORS; i++) 3030 BUG_ON(cwq->nr_in_flight[i]); 3031 BUG_ON(cwq->nr_active); 3032 BUG_ON(!list_empty(&cwq->delayed_works)); 3033 } 3034 3035 if (wq->flags & WQ_RESCUER) { 3036 kthread_stop(wq->rescuer->task); 3037 free_mayday_mask(wq->mayday_mask); 3038 kfree(wq->rescuer); 3039 } 3040 3041 free_cwqs(wq); 3042 kfree(wq); 3043 } 3044 EXPORT_SYMBOL_GPL(destroy_workqueue); 3045 3046 /** 3047 * workqueue_set_max_active - adjust max_active of a workqueue 3048 * @wq: target workqueue 3049 * @max_active: new max_active value. 3050 * 3051 * Set max_active of @wq to @max_active. 3052 * 3053 * CONTEXT: 3054 * Don't call from IRQ context. 3055 */ 3056 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3057 { 3058 unsigned int cpu; 3059 3060 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3061 3062 spin_lock(&workqueue_lock); 3063 3064 wq->saved_max_active = max_active; 3065 3066 for_each_cwq_cpu(cpu, wq) { 3067 struct global_cwq *gcwq = get_gcwq(cpu); 3068 3069 spin_lock_irq(&gcwq->lock); 3070 3071 if (!(wq->flags & WQ_FREEZEABLE) || 3072 !(gcwq->flags & GCWQ_FREEZING)) 3073 get_cwq(gcwq->cpu, wq)->max_active = max_active; 3074 3075 spin_unlock_irq(&gcwq->lock); 3076 } 3077 3078 spin_unlock(&workqueue_lock); 3079 } 3080 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3081 3082 /** 3083 * workqueue_congested - test whether a workqueue is congested 3084 * @cpu: CPU in question 3085 * @wq: target workqueue 3086 * 3087 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3088 * no synchronization around this function and the test result is 3089 * unreliable and only useful as advisory hints or for debugging. 3090 * 3091 * RETURNS: 3092 * %true if congested, %false otherwise. 3093 */ 3094 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3095 { 3096 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3097 3098 return !list_empty(&cwq->delayed_works); 3099 } 3100 EXPORT_SYMBOL_GPL(workqueue_congested); 3101 3102 /** 3103 * work_cpu - return the last known associated cpu for @work 3104 * @work: the work of interest 3105 * 3106 * RETURNS: 3107 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3108 */ 3109 unsigned int work_cpu(struct work_struct *work) 3110 { 3111 struct global_cwq *gcwq = get_work_gcwq(work); 3112 3113 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3114 } 3115 EXPORT_SYMBOL_GPL(work_cpu); 3116 3117 /** 3118 * work_busy - test whether a work is currently pending or running 3119 * @work: the work to be tested 3120 * 3121 * Test whether @work is currently pending or running. There is no 3122 * synchronization around this function and the test result is 3123 * unreliable and only useful as advisory hints or for debugging. 3124 * Especially for reentrant wqs, the pending state might hide the 3125 * running state. 3126 * 3127 * RETURNS: 3128 * OR'd bitmask of WORK_BUSY_* bits. 3129 */ 3130 unsigned int work_busy(struct work_struct *work) 3131 { 3132 struct global_cwq *gcwq = get_work_gcwq(work); 3133 unsigned long flags; 3134 unsigned int ret = 0; 3135 3136 if (!gcwq) 3137 return false; 3138 3139 spin_lock_irqsave(&gcwq->lock, flags); 3140 3141 if (work_pending(work)) 3142 ret |= WORK_BUSY_PENDING; 3143 if (find_worker_executing_work(gcwq, work)) 3144 ret |= WORK_BUSY_RUNNING; 3145 3146 spin_unlock_irqrestore(&gcwq->lock, flags); 3147 3148 return ret; 3149 } 3150 EXPORT_SYMBOL_GPL(work_busy); 3151 3152 /* 3153 * CPU hotplug. 3154 * 3155 * There are two challenges in supporting CPU hotplug. Firstly, there 3156 * are a lot of assumptions on strong associations among work, cwq and 3157 * gcwq which make migrating pending and scheduled works very 3158 * difficult to implement without impacting hot paths. Secondly, 3159 * gcwqs serve mix of short, long and very long running works making 3160 * blocked draining impractical. 3161 * 3162 * This is solved by allowing a gcwq to be detached from CPU, running 3163 * it with unbound (rogue) workers and allowing it to be reattached 3164 * later if the cpu comes back online. A separate thread is created 3165 * to govern a gcwq in such state and is called the trustee of the 3166 * gcwq. 3167 * 3168 * Trustee states and their descriptions. 3169 * 3170 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3171 * new trustee is started with this state. 3172 * 3173 * IN_CHARGE Once started, trustee will enter this state after 3174 * assuming the manager role and making all existing 3175 * workers rogue. DOWN_PREPARE waits for trustee to 3176 * enter this state. After reaching IN_CHARGE, trustee 3177 * tries to execute the pending worklist until it's empty 3178 * and the state is set to BUTCHER, or the state is set 3179 * to RELEASE. 3180 * 3181 * BUTCHER Command state which is set by the cpu callback after 3182 * the cpu has went down. Once this state is set trustee 3183 * knows that there will be no new works on the worklist 3184 * and once the worklist is empty it can proceed to 3185 * killing idle workers. 3186 * 3187 * RELEASE Command state which is set by the cpu callback if the 3188 * cpu down has been canceled or it has come online 3189 * again. After recognizing this state, trustee stops 3190 * trying to drain or butcher and clears ROGUE, rebinds 3191 * all remaining workers back to the cpu and releases 3192 * manager role. 3193 * 3194 * DONE Trustee will enter this state after BUTCHER or RELEASE 3195 * is complete. 3196 * 3197 * trustee CPU draining 3198 * took over down complete 3199 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3200 * | | ^ 3201 * | CPU is back online v return workers | 3202 * ----------------> RELEASE -------------- 3203 */ 3204 3205 /** 3206 * trustee_wait_event_timeout - timed event wait for trustee 3207 * @cond: condition to wait for 3208 * @timeout: timeout in jiffies 3209 * 3210 * wait_event_timeout() for trustee to use. Handles locking and 3211 * checks for RELEASE request. 3212 * 3213 * CONTEXT: 3214 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3215 * multiple times. To be used by trustee. 3216 * 3217 * RETURNS: 3218 * Positive indicating left time if @cond is satisfied, 0 if timed 3219 * out, -1 if canceled. 3220 */ 3221 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3222 long __ret = (timeout); \ 3223 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3224 __ret) { \ 3225 spin_unlock_irq(&gcwq->lock); \ 3226 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3227 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3228 __ret); \ 3229 spin_lock_irq(&gcwq->lock); \ 3230 } \ 3231 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3232 }) 3233 3234 /** 3235 * trustee_wait_event - event wait for trustee 3236 * @cond: condition to wait for 3237 * 3238 * wait_event() for trustee to use. Automatically handles locking and 3239 * checks for CANCEL request. 3240 * 3241 * CONTEXT: 3242 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3243 * multiple times. To be used by trustee. 3244 * 3245 * RETURNS: 3246 * 0 if @cond is satisfied, -1 if canceled. 3247 */ 3248 #define trustee_wait_event(cond) ({ \ 3249 long __ret1; \ 3250 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3251 __ret1 < 0 ? -1 : 0; \ 3252 }) 3253 3254 static int __cpuinit trustee_thread(void *__gcwq) 3255 { 3256 struct global_cwq *gcwq = __gcwq; 3257 struct worker *worker; 3258 struct work_struct *work; 3259 struct hlist_node *pos; 3260 long rc; 3261 int i; 3262 3263 BUG_ON(gcwq->cpu != smp_processor_id()); 3264 3265 spin_lock_irq(&gcwq->lock); 3266 /* 3267 * Claim the manager position and make all workers rogue. 3268 * Trustee must be bound to the target cpu and can't be 3269 * cancelled. 3270 */ 3271 BUG_ON(gcwq->cpu != smp_processor_id()); 3272 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3273 BUG_ON(rc < 0); 3274 3275 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3276 3277 list_for_each_entry(worker, &gcwq->idle_list, entry) 3278 worker->flags |= WORKER_ROGUE; 3279 3280 for_each_busy_worker(worker, i, pos, gcwq) 3281 worker->flags |= WORKER_ROGUE; 3282 3283 /* 3284 * Call schedule() so that we cross rq->lock and thus can 3285 * guarantee sched callbacks see the rogue flag. This is 3286 * necessary as scheduler callbacks may be invoked from other 3287 * cpus. 3288 */ 3289 spin_unlock_irq(&gcwq->lock); 3290 schedule(); 3291 spin_lock_irq(&gcwq->lock); 3292 3293 /* 3294 * Sched callbacks are disabled now. Zap nr_running. After 3295 * this, nr_running stays zero and need_more_worker() and 3296 * keep_working() are always true as long as the worklist is 3297 * not empty. 3298 */ 3299 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3300 3301 spin_unlock_irq(&gcwq->lock); 3302 del_timer_sync(&gcwq->idle_timer); 3303 spin_lock_irq(&gcwq->lock); 3304 3305 /* 3306 * We're now in charge. Notify and proceed to drain. We need 3307 * to keep the gcwq running during the whole CPU down 3308 * procedure as other cpu hotunplug callbacks may need to 3309 * flush currently running tasks. 3310 */ 3311 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3312 wake_up_all(&gcwq->trustee_wait); 3313 3314 /* 3315 * The original cpu is in the process of dying and may go away 3316 * anytime now. When that happens, we and all workers would 3317 * be migrated to other cpus. Try draining any left work. We 3318 * want to get it over with ASAP - spam rescuers, wake up as 3319 * many idlers as necessary and create new ones till the 3320 * worklist is empty. Note that if the gcwq is frozen, there 3321 * may be frozen works in freezeable cwqs. Don't declare 3322 * completion while frozen. 3323 */ 3324 while (gcwq->nr_workers != gcwq->nr_idle || 3325 gcwq->flags & GCWQ_FREEZING || 3326 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3327 int nr_works = 0; 3328 3329 list_for_each_entry(work, &gcwq->worklist, entry) { 3330 send_mayday(work); 3331 nr_works++; 3332 } 3333 3334 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3335 if (!nr_works--) 3336 break; 3337 wake_up_process(worker->task); 3338 } 3339 3340 if (need_to_create_worker(gcwq)) { 3341 spin_unlock_irq(&gcwq->lock); 3342 worker = create_worker(gcwq, false); 3343 spin_lock_irq(&gcwq->lock); 3344 if (worker) { 3345 worker->flags |= WORKER_ROGUE; 3346 start_worker(worker); 3347 } 3348 } 3349 3350 /* give a breather */ 3351 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3352 break; 3353 } 3354 3355 /* 3356 * Either all works have been scheduled and cpu is down, or 3357 * cpu down has already been canceled. Wait for and butcher 3358 * all workers till we're canceled. 3359 */ 3360 do { 3361 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3362 while (!list_empty(&gcwq->idle_list)) 3363 destroy_worker(list_first_entry(&gcwq->idle_list, 3364 struct worker, entry)); 3365 } while (gcwq->nr_workers && rc >= 0); 3366 3367 /* 3368 * At this point, either draining has completed and no worker 3369 * is left, or cpu down has been canceled or the cpu is being 3370 * brought back up. There shouldn't be any idle one left. 3371 * Tell the remaining busy ones to rebind once it finishes the 3372 * currently scheduled works by scheduling the rebind_work. 3373 */ 3374 WARN_ON(!list_empty(&gcwq->idle_list)); 3375 3376 for_each_busy_worker(worker, i, pos, gcwq) { 3377 struct work_struct *rebind_work = &worker->rebind_work; 3378 3379 /* 3380 * Rebind_work may race with future cpu hotplug 3381 * operations. Use a separate flag to mark that 3382 * rebinding is scheduled. 3383 */ 3384 worker->flags |= WORKER_REBIND; 3385 worker->flags &= ~WORKER_ROGUE; 3386 3387 /* queue rebind_work, wq doesn't matter, use the default one */ 3388 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3389 work_data_bits(rebind_work))) 3390 continue; 3391 3392 debug_work_activate(rebind_work); 3393 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3394 worker->scheduled.next, 3395 work_color_to_flags(WORK_NO_COLOR)); 3396 } 3397 3398 /* relinquish manager role */ 3399 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3400 3401 /* notify completion */ 3402 gcwq->trustee = NULL; 3403 gcwq->trustee_state = TRUSTEE_DONE; 3404 wake_up_all(&gcwq->trustee_wait); 3405 spin_unlock_irq(&gcwq->lock); 3406 return 0; 3407 } 3408 3409 /** 3410 * wait_trustee_state - wait for trustee to enter the specified state 3411 * @gcwq: gcwq the trustee of interest belongs to 3412 * @state: target state to wait for 3413 * 3414 * Wait for the trustee to reach @state. DONE is already matched. 3415 * 3416 * CONTEXT: 3417 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3418 * multiple times. To be used by cpu_callback. 3419 */ 3420 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3421 __releases(&gcwq->lock) 3422 __acquires(&gcwq->lock) 3423 { 3424 if (!(gcwq->trustee_state == state || 3425 gcwq->trustee_state == TRUSTEE_DONE)) { 3426 spin_unlock_irq(&gcwq->lock); 3427 __wait_event(gcwq->trustee_wait, 3428 gcwq->trustee_state == state || 3429 gcwq->trustee_state == TRUSTEE_DONE); 3430 spin_lock_irq(&gcwq->lock); 3431 } 3432 } 3433 3434 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3435 unsigned long action, 3436 void *hcpu) 3437 { 3438 unsigned int cpu = (unsigned long)hcpu; 3439 struct global_cwq *gcwq = get_gcwq(cpu); 3440 struct task_struct *new_trustee = NULL; 3441 struct worker *uninitialized_var(new_worker); 3442 unsigned long flags; 3443 3444 action &= ~CPU_TASKS_FROZEN; 3445 3446 switch (action) { 3447 case CPU_DOWN_PREPARE: 3448 new_trustee = kthread_create(trustee_thread, gcwq, 3449 "workqueue_trustee/%d\n", cpu); 3450 if (IS_ERR(new_trustee)) 3451 return notifier_from_errno(PTR_ERR(new_trustee)); 3452 kthread_bind(new_trustee, cpu); 3453 /* fall through */ 3454 case CPU_UP_PREPARE: 3455 BUG_ON(gcwq->first_idle); 3456 new_worker = create_worker(gcwq, false); 3457 if (!new_worker) { 3458 if (new_trustee) 3459 kthread_stop(new_trustee); 3460 return NOTIFY_BAD; 3461 } 3462 } 3463 3464 /* some are called w/ irq disabled, don't disturb irq status */ 3465 spin_lock_irqsave(&gcwq->lock, flags); 3466 3467 switch (action) { 3468 case CPU_DOWN_PREPARE: 3469 /* initialize trustee and tell it to acquire the gcwq */ 3470 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3471 gcwq->trustee = new_trustee; 3472 gcwq->trustee_state = TRUSTEE_START; 3473 wake_up_process(gcwq->trustee); 3474 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3475 /* fall through */ 3476 case CPU_UP_PREPARE: 3477 BUG_ON(gcwq->first_idle); 3478 gcwq->first_idle = new_worker; 3479 break; 3480 3481 case CPU_DYING: 3482 /* 3483 * Before this, the trustee and all workers except for 3484 * the ones which are still executing works from 3485 * before the last CPU down must be on the cpu. After 3486 * this, they'll all be diasporas. 3487 */ 3488 gcwq->flags |= GCWQ_DISASSOCIATED; 3489 break; 3490 3491 case CPU_POST_DEAD: 3492 gcwq->trustee_state = TRUSTEE_BUTCHER; 3493 /* fall through */ 3494 case CPU_UP_CANCELED: 3495 destroy_worker(gcwq->first_idle); 3496 gcwq->first_idle = NULL; 3497 break; 3498 3499 case CPU_DOWN_FAILED: 3500 case CPU_ONLINE: 3501 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3502 if (gcwq->trustee_state != TRUSTEE_DONE) { 3503 gcwq->trustee_state = TRUSTEE_RELEASE; 3504 wake_up_process(gcwq->trustee); 3505 wait_trustee_state(gcwq, TRUSTEE_DONE); 3506 } 3507 3508 /* 3509 * Trustee is done and there might be no worker left. 3510 * Put the first_idle in and request a real manager to 3511 * take a look. 3512 */ 3513 spin_unlock_irq(&gcwq->lock); 3514 kthread_bind(gcwq->first_idle->task, cpu); 3515 spin_lock_irq(&gcwq->lock); 3516 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3517 start_worker(gcwq->first_idle); 3518 gcwq->first_idle = NULL; 3519 break; 3520 } 3521 3522 spin_unlock_irqrestore(&gcwq->lock, flags); 3523 3524 return notifier_from_errno(0); 3525 } 3526 3527 #ifdef CONFIG_SMP 3528 3529 struct work_for_cpu { 3530 struct completion completion; 3531 long (*fn)(void *); 3532 void *arg; 3533 long ret; 3534 }; 3535 3536 static int do_work_for_cpu(void *_wfc) 3537 { 3538 struct work_for_cpu *wfc = _wfc; 3539 wfc->ret = wfc->fn(wfc->arg); 3540 complete(&wfc->completion); 3541 return 0; 3542 } 3543 3544 /** 3545 * work_on_cpu - run a function in user context on a particular cpu 3546 * @cpu: the cpu to run on 3547 * @fn: the function to run 3548 * @arg: the function arg 3549 * 3550 * This will return the value @fn returns. 3551 * It is up to the caller to ensure that the cpu doesn't go offline. 3552 * The caller must not hold any locks which would prevent @fn from completing. 3553 */ 3554 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3555 { 3556 struct task_struct *sub_thread; 3557 struct work_for_cpu wfc = { 3558 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3559 .fn = fn, 3560 .arg = arg, 3561 }; 3562 3563 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3564 if (IS_ERR(sub_thread)) 3565 return PTR_ERR(sub_thread); 3566 kthread_bind(sub_thread, cpu); 3567 wake_up_process(sub_thread); 3568 wait_for_completion(&wfc.completion); 3569 return wfc.ret; 3570 } 3571 EXPORT_SYMBOL_GPL(work_on_cpu); 3572 #endif /* CONFIG_SMP */ 3573 3574 #ifdef CONFIG_FREEZER 3575 3576 /** 3577 * freeze_workqueues_begin - begin freezing workqueues 3578 * 3579 * Start freezing workqueues. After this function returns, all 3580 * freezeable workqueues will queue new works to their frozen_works 3581 * list instead of gcwq->worklist. 3582 * 3583 * CONTEXT: 3584 * Grabs and releases workqueue_lock and gcwq->lock's. 3585 */ 3586 void freeze_workqueues_begin(void) 3587 { 3588 unsigned int cpu; 3589 3590 spin_lock(&workqueue_lock); 3591 3592 BUG_ON(workqueue_freezing); 3593 workqueue_freezing = true; 3594 3595 for_each_gcwq_cpu(cpu) { 3596 struct global_cwq *gcwq = get_gcwq(cpu); 3597 struct workqueue_struct *wq; 3598 3599 spin_lock_irq(&gcwq->lock); 3600 3601 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3602 gcwq->flags |= GCWQ_FREEZING; 3603 3604 list_for_each_entry(wq, &workqueues, list) { 3605 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3606 3607 if (cwq && wq->flags & WQ_FREEZEABLE) 3608 cwq->max_active = 0; 3609 } 3610 3611 spin_unlock_irq(&gcwq->lock); 3612 } 3613 3614 spin_unlock(&workqueue_lock); 3615 } 3616 3617 /** 3618 * freeze_workqueues_busy - are freezeable workqueues still busy? 3619 * 3620 * Check whether freezing is complete. This function must be called 3621 * between freeze_workqueues_begin() and thaw_workqueues(). 3622 * 3623 * CONTEXT: 3624 * Grabs and releases workqueue_lock. 3625 * 3626 * RETURNS: 3627 * %true if some freezeable workqueues are still busy. %false if 3628 * freezing is complete. 3629 */ 3630 bool freeze_workqueues_busy(void) 3631 { 3632 unsigned int cpu; 3633 bool busy = false; 3634 3635 spin_lock(&workqueue_lock); 3636 3637 BUG_ON(!workqueue_freezing); 3638 3639 for_each_gcwq_cpu(cpu) { 3640 struct workqueue_struct *wq; 3641 /* 3642 * nr_active is monotonically decreasing. It's safe 3643 * to peek without lock. 3644 */ 3645 list_for_each_entry(wq, &workqueues, list) { 3646 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3647 3648 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3649 continue; 3650 3651 BUG_ON(cwq->nr_active < 0); 3652 if (cwq->nr_active) { 3653 busy = true; 3654 goto out_unlock; 3655 } 3656 } 3657 } 3658 out_unlock: 3659 spin_unlock(&workqueue_lock); 3660 return busy; 3661 } 3662 3663 /** 3664 * thaw_workqueues - thaw workqueues 3665 * 3666 * Thaw workqueues. Normal queueing is restored and all collected 3667 * frozen works are transferred to their respective gcwq worklists. 3668 * 3669 * CONTEXT: 3670 * Grabs and releases workqueue_lock and gcwq->lock's. 3671 */ 3672 void thaw_workqueues(void) 3673 { 3674 unsigned int cpu; 3675 3676 spin_lock(&workqueue_lock); 3677 3678 if (!workqueue_freezing) 3679 goto out_unlock; 3680 3681 for_each_gcwq_cpu(cpu) { 3682 struct global_cwq *gcwq = get_gcwq(cpu); 3683 struct workqueue_struct *wq; 3684 3685 spin_lock_irq(&gcwq->lock); 3686 3687 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3688 gcwq->flags &= ~GCWQ_FREEZING; 3689 3690 list_for_each_entry(wq, &workqueues, list) { 3691 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3692 3693 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3694 continue; 3695 3696 /* restore max_active and repopulate worklist */ 3697 cwq->max_active = wq->saved_max_active; 3698 3699 while (!list_empty(&cwq->delayed_works) && 3700 cwq->nr_active < cwq->max_active) 3701 cwq_activate_first_delayed(cwq); 3702 } 3703 3704 wake_up_worker(gcwq); 3705 3706 spin_unlock_irq(&gcwq->lock); 3707 } 3708 3709 workqueue_freezing = false; 3710 out_unlock: 3711 spin_unlock(&workqueue_lock); 3712 } 3713 #endif /* CONFIG_FREEZER */ 3714 3715 static int __init init_workqueues(void) 3716 { 3717 unsigned int cpu; 3718 int i; 3719 3720 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3721 3722 /* initialize gcwqs */ 3723 for_each_gcwq_cpu(cpu) { 3724 struct global_cwq *gcwq = get_gcwq(cpu); 3725 3726 spin_lock_init(&gcwq->lock); 3727 INIT_LIST_HEAD(&gcwq->worklist); 3728 gcwq->cpu = cpu; 3729 gcwq->flags |= GCWQ_DISASSOCIATED; 3730 3731 INIT_LIST_HEAD(&gcwq->idle_list); 3732 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3733 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3734 3735 init_timer_deferrable(&gcwq->idle_timer); 3736 gcwq->idle_timer.function = idle_worker_timeout; 3737 gcwq->idle_timer.data = (unsigned long)gcwq; 3738 3739 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3740 (unsigned long)gcwq); 3741 3742 ida_init(&gcwq->worker_ida); 3743 3744 gcwq->trustee_state = TRUSTEE_DONE; 3745 init_waitqueue_head(&gcwq->trustee_wait); 3746 } 3747 3748 /* create the initial worker */ 3749 for_each_online_gcwq_cpu(cpu) { 3750 struct global_cwq *gcwq = get_gcwq(cpu); 3751 struct worker *worker; 3752 3753 if (cpu != WORK_CPU_UNBOUND) 3754 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3755 worker = create_worker(gcwq, true); 3756 BUG_ON(!worker); 3757 spin_lock_irq(&gcwq->lock); 3758 start_worker(worker); 3759 spin_unlock_irq(&gcwq->lock); 3760 } 3761 3762 system_wq = alloc_workqueue("events", 0, 0); 3763 system_long_wq = alloc_workqueue("events_long", 0, 0); 3764 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3765 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3766 WQ_UNBOUND_MAX_ACTIVE); 3767 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq || 3768 !system_unbound_wq); 3769 return 0; 3770 } 3771 early_initcall(init_workqueues); 3772