1 /* 2 * The "user cache". 3 * 4 * (C) Copyright 1991-2000 Linus Torvalds 5 * 6 * We have a per-user structure to keep track of how many 7 * processes, files etc the user has claimed, in order to be 8 * able to have per-user limits for system resources. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/bitops.h> 15 #include <linux/key.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/user_namespace.h> 19 20 /* 21 * UID task count cache, to get fast user lookup in "alloc_uid" 22 * when changing user ID's (ie setuid() and friends). 23 */ 24 25 #define UIDHASH_MASK (UIDHASH_SZ - 1) 26 #define __uidhashfn(uid) (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK) 27 #define uidhashentry(ns, uid) ((ns)->uidhash_table + __uidhashfn((uid))) 28 29 static struct kmem_cache *uid_cachep; 30 31 /* 32 * The uidhash_lock is mostly taken from process context, but it is 33 * occasionally also taken from softirq/tasklet context, when 34 * task-structs get RCU-freed. Hence all locking must be softirq-safe. 35 * But free_uid() is also called with local interrupts disabled, and running 36 * local_bh_enable() with local interrupts disabled is an error - we'll run 37 * softirq callbacks, and they can unconditionally enable interrupts, and 38 * the caller of free_uid() didn't expect that.. 39 */ 40 static DEFINE_SPINLOCK(uidhash_lock); 41 42 struct user_struct root_user = { 43 .__count = ATOMIC_INIT(1), 44 .processes = ATOMIC_INIT(1), 45 .files = ATOMIC_INIT(0), 46 .sigpending = ATOMIC_INIT(0), 47 .locked_shm = 0, 48 #ifdef CONFIG_KEYS 49 .uid_keyring = &root_user_keyring, 50 .session_keyring = &root_session_keyring, 51 #endif 52 #ifdef CONFIG_FAIR_USER_SCHED 53 .tg = &init_task_group, 54 #endif 55 }; 56 57 /* 58 * These routines must be called with the uidhash spinlock held! 59 */ 60 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent) 61 { 62 hlist_add_head(&up->uidhash_node, hashent); 63 } 64 65 static void uid_hash_remove(struct user_struct *up) 66 { 67 hlist_del_init(&up->uidhash_node); 68 } 69 70 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) 71 { 72 struct user_struct *user; 73 struct hlist_node *h; 74 75 hlist_for_each_entry(user, h, hashent, uidhash_node) { 76 if (user->uid == uid) { 77 atomic_inc(&user->__count); 78 return user; 79 } 80 } 81 82 return NULL; 83 } 84 85 #ifdef CONFIG_FAIR_USER_SCHED 86 87 static void sched_destroy_user(struct user_struct *up) 88 { 89 sched_destroy_group(up->tg); 90 } 91 92 static int sched_create_user(struct user_struct *up) 93 { 94 int rc = 0; 95 96 up->tg = sched_create_group(); 97 if (IS_ERR(up->tg)) 98 rc = -ENOMEM; 99 100 return rc; 101 } 102 103 static void sched_switch_user(struct task_struct *p) 104 { 105 sched_move_task(p); 106 } 107 108 #else /* CONFIG_FAIR_USER_SCHED */ 109 110 static void sched_destroy_user(struct user_struct *up) { } 111 static int sched_create_user(struct user_struct *up) { return 0; } 112 static void sched_switch_user(struct task_struct *p) { } 113 114 #endif /* CONFIG_FAIR_USER_SCHED */ 115 116 #if defined(CONFIG_FAIR_USER_SCHED) && defined(CONFIG_SYSFS) 117 118 static struct kobject uids_kobject; /* represents /sys/kernel/uids directory */ 119 static DEFINE_MUTEX(uids_mutex); 120 121 static inline void uids_mutex_lock(void) 122 { 123 mutex_lock(&uids_mutex); 124 } 125 126 static inline void uids_mutex_unlock(void) 127 { 128 mutex_unlock(&uids_mutex); 129 } 130 131 /* return cpu shares held by the user */ 132 ssize_t cpu_shares_show(struct kset *kset, char *buffer) 133 { 134 struct user_struct *up = container_of(kset, struct user_struct, kset); 135 136 return sprintf(buffer, "%lu\n", sched_group_shares(up->tg)); 137 } 138 139 /* modify cpu shares held by the user */ 140 ssize_t cpu_shares_store(struct kset *kset, const char *buffer, size_t size) 141 { 142 struct user_struct *up = container_of(kset, struct user_struct, kset); 143 unsigned long shares; 144 int rc; 145 146 sscanf(buffer, "%lu", &shares); 147 148 rc = sched_group_set_shares(up->tg, shares); 149 150 return (rc ? rc : size); 151 } 152 153 static void user_attr_init(struct subsys_attribute *sa, char *name, int mode) 154 { 155 sa->attr.name = name; 156 sa->attr.mode = mode; 157 sa->show = cpu_shares_show; 158 sa->store = cpu_shares_store; 159 } 160 161 /* Create "/sys/kernel/uids/<uid>" directory and 162 * "/sys/kernel/uids/<uid>/cpu_share" file for this user. 163 */ 164 static int user_kobject_create(struct user_struct *up) 165 { 166 struct kset *kset = &up->kset; 167 struct kobject *kobj = &kset->kobj; 168 int error; 169 170 memset(kset, 0, sizeof(struct kset)); 171 kobj->parent = &uids_kobject; /* create under /sys/kernel/uids dir */ 172 kobject_set_name(kobj, "%d", up->uid); 173 kset_init(kset); 174 user_attr_init(&up->user_attr, "cpu_share", 0644); 175 176 error = kobject_add(kobj); 177 if (error) 178 goto done; 179 180 error = sysfs_create_file(kobj, &up->user_attr.attr); 181 if (error) 182 kobject_del(kobj); 183 184 kobject_uevent(kobj, KOBJ_ADD); 185 186 done: 187 return error; 188 } 189 190 /* create these in sysfs filesystem: 191 * "/sys/kernel/uids" directory 192 * "/sys/kernel/uids/0" directory (for root user) 193 * "/sys/kernel/uids/0/cpu_share" file (for root user) 194 */ 195 int __init uids_kobject_init(void) 196 { 197 int error; 198 199 /* create under /sys/kernel dir */ 200 uids_kobject.parent = &kernel_subsys.kobj; 201 uids_kobject.kset = &kernel_subsys; 202 kobject_set_name(&uids_kobject, "uids"); 203 kobject_init(&uids_kobject); 204 205 error = kobject_add(&uids_kobject); 206 if (!error) 207 error = user_kobject_create(&root_user); 208 209 return error; 210 } 211 212 /* work function to remove sysfs directory for a user and free up 213 * corresponding structures. 214 */ 215 static void remove_user_sysfs_dir(struct work_struct *w) 216 { 217 struct user_struct *up = container_of(w, struct user_struct, work); 218 struct kobject *kobj = &up->kset.kobj; 219 unsigned long flags; 220 int remove_user = 0; 221 222 /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del() 223 * atomic. 224 */ 225 uids_mutex_lock(); 226 227 local_irq_save(flags); 228 229 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) { 230 uid_hash_remove(up); 231 remove_user = 1; 232 spin_unlock_irqrestore(&uidhash_lock, flags); 233 } else { 234 local_irq_restore(flags); 235 } 236 237 if (!remove_user) 238 goto done; 239 240 sysfs_remove_file(kobj, &up->user_attr.attr); 241 kobject_uevent(kobj, KOBJ_REMOVE); 242 kobject_del(kobj); 243 244 sched_destroy_user(up); 245 key_put(up->uid_keyring); 246 key_put(up->session_keyring); 247 kmem_cache_free(uid_cachep, up); 248 249 done: 250 uids_mutex_unlock(); 251 } 252 253 /* IRQs are disabled and uidhash_lock is held upon function entry. 254 * IRQ state (as stored in flags) is restored and uidhash_lock released 255 * upon function exit. 256 */ 257 static inline void free_user(struct user_struct *up, unsigned long flags) 258 { 259 /* restore back the count */ 260 atomic_inc(&up->__count); 261 spin_unlock_irqrestore(&uidhash_lock, flags); 262 263 INIT_WORK(&up->work, remove_user_sysfs_dir); 264 schedule_work(&up->work); 265 } 266 267 #else /* CONFIG_FAIR_USER_SCHED && CONFIG_SYSFS */ 268 269 static inline int user_kobject_create(struct user_struct *up) { return 0; } 270 static inline void uids_mutex_lock(void) { } 271 static inline void uids_mutex_unlock(void) { } 272 273 /* IRQs are disabled and uidhash_lock is held upon function entry. 274 * IRQ state (as stored in flags) is restored and uidhash_lock released 275 * upon function exit. 276 */ 277 static inline void free_user(struct user_struct *up, unsigned long flags) 278 { 279 uid_hash_remove(up); 280 spin_unlock_irqrestore(&uidhash_lock, flags); 281 sched_destroy_user(up); 282 key_put(up->uid_keyring); 283 key_put(up->session_keyring); 284 kmem_cache_free(uid_cachep, up); 285 } 286 287 #endif 288 289 /* 290 * Locate the user_struct for the passed UID. If found, take a ref on it. The 291 * caller must undo that ref with free_uid(). 292 * 293 * If the user_struct could not be found, return NULL. 294 */ 295 struct user_struct *find_user(uid_t uid) 296 { 297 struct user_struct *ret; 298 unsigned long flags; 299 struct user_namespace *ns = current->nsproxy->user_ns; 300 301 spin_lock_irqsave(&uidhash_lock, flags); 302 ret = uid_hash_find(uid, uidhashentry(ns, uid)); 303 spin_unlock_irqrestore(&uidhash_lock, flags); 304 return ret; 305 } 306 307 void free_uid(struct user_struct *up) 308 { 309 unsigned long flags; 310 311 if (!up) 312 return; 313 314 local_irq_save(flags); 315 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) 316 free_user(up, flags); 317 else 318 local_irq_restore(flags); 319 } 320 321 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid) 322 { 323 struct hlist_head *hashent = uidhashentry(ns, uid); 324 struct user_struct *up; 325 326 /* Make uid_hash_find() + user_kobject_create() + uid_hash_insert() 327 * atomic. 328 */ 329 uids_mutex_lock(); 330 331 spin_lock_irq(&uidhash_lock); 332 up = uid_hash_find(uid, hashent); 333 spin_unlock_irq(&uidhash_lock); 334 335 if (!up) { 336 struct user_struct *new; 337 338 new = kmem_cache_alloc(uid_cachep, GFP_KERNEL); 339 if (!new) 340 return NULL; 341 new->uid = uid; 342 atomic_set(&new->__count, 1); 343 atomic_set(&new->processes, 0); 344 atomic_set(&new->files, 0); 345 atomic_set(&new->sigpending, 0); 346 #ifdef CONFIG_INOTIFY_USER 347 atomic_set(&new->inotify_watches, 0); 348 atomic_set(&new->inotify_devs, 0); 349 #endif 350 #ifdef CONFIG_POSIX_MQUEUE 351 new->mq_bytes = 0; 352 #endif 353 new->locked_shm = 0; 354 355 if (alloc_uid_keyring(new, current) < 0) { 356 kmem_cache_free(uid_cachep, new); 357 return NULL; 358 } 359 360 if (sched_create_user(new) < 0) { 361 key_put(new->uid_keyring); 362 key_put(new->session_keyring); 363 kmem_cache_free(uid_cachep, new); 364 return NULL; 365 } 366 367 if (user_kobject_create(new)) { 368 sched_destroy_user(new); 369 key_put(new->uid_keyring); 370 key_put(new->session_keyring); 371 kmem_cache_free(uid_cachep, new); 372 uids_mutex_unlock(); 373 return NULL; 374 } 375 376 /* 377 * Before adding this, check whether we raced 378 * on adding the same user already.. 379 */ 380 spin_lock_irq(&uidhash_lock); 381 up = uid_hash_find(uid, hashent); 382 if (up) { 383 /* This case is not possible when CONFIG_FAIR_USER_SCHED 384 * is defined, since we serialize alloc_uid() using 385 * uids_mutex. Hence no need to call 386 * sched_destroy_user() or remove_user_sysfs_dir(). 387 */ 388 key_put(new->uid_keyring); 389 key_put(new->session_keyring); 390 kmem_cache_free(uid_cachep, new); 391 } else { 392 uid_hash_insert(new, hashent); 393 up = new; 394 } 395 spin_unlock_irq(&uidhash_lock); 396 397 } 398 399 uids_mutex_unlock(); 400 401 return up; 402 } 403 404 void switch_uid(struct user_struct *new_user) 405 { 406 struct user_struct *old_user; 407 408 /* What if a process setreuid()'s and this brings the 409 * new uid over his NPROC rlimit? We can check this now 410 * cheaply with the new uid cache, so if it matters 411 * we should be checking for it. -DaveM 412 */ 413 old_user = current->user; 414 atomic_inc(&new_user->processes); 415 atomic_dec(&old_user->processes); 416 switch_uid_keyring(new_user); 417 current->user = new_user; 418 sched_switch_user(current); 419 420 /* 421 * We need to synchronize with __sigqueue_alloc() 422 * doing a get_uid(p->user).. If that saw the old 423 * user value, we need to wait until it has exited 424 * its critical region before we can free the old 425 * structure. 426 */ 427 smp_mb(); 428 spin_unlock_wait(¤t->sighand->siglock); 429 430 free_uid(old_user); 431 suid_keys(current); 432 } 433 434 void release_uids(struct user_namespace *ns) 435 { 436 int i; 437 unsigned long flags; 438 struct hlist_head *head; 439 struct hlist_node *nd; 440 441 spin_lock_irqsave(&uidhash_lock, flags); 442 /* 443 * collapse the chains so that the user_struct-s will 444 * be still alive, but not in hashes. subsequent free_uid() 445 * will free them. 446 */ 447 for (i = 0; i < UIDHASH_SZ; i++) { 448 head = ns->uidhash_table + i; 449 while (!hlist_empty(head)) { 450 nd = head->first; 451 hlist_del_init(nd); 452 } 453 } 454 spin_unlock_irqrestore(&uidhash_lock, flags); 455 456 free_uid(ns->root_user); 457 } 458 459 static int __init uid_cache_init(void) 460 { 461 int n; 462 463 uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct), 464 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 465 466 for(n = 0; n < UIDHASH_SZ; ++n) 467 INIT_HLIST_HEAD(init_user_ns.uidhash_table + n); 468 469 /* Insert the root user immediately (init already runs as root) */ 470 spin_lock_irq(&uidhash_lock); 471 uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0)); 472 spin_unlock_irq(&uidhash_lock); 473 474 return 0; 475 } 476 477 module_init(uid_cache_init); 478