1 /* 2 * trace_hwlatdetect.c - A simple Hardware Latency detector. 3 * 4 * Use this tracer to detect large system latencies induced by the behavior of 5 * certain underlying system hardware or firmware, independent of Linux itself. 6 * The code was developed originally to detect the presence of SMIs on Intel 7 * and AMD systems, although there is no dependency upon x86 herein. 8 * 9 * The classical example usage of this tracer is in detecting the presence of 10 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a 11 * somewhat special form of hardware interrupt spawned from earlier CPU debug 12 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge 13 * LPC (or other device) to generate a special interrupt under certain 14 * circumstances, for example, upon expiration of a special SMI timer device, 15 * due to certain external thermal readings, on certain I/O address accesses, 16 * and other situations. An SMI hits a special CPU pin, triggers a special 17 * SMI mode (complete with special memory map), and the OS is unaware. 18 * 19 * Although certain hardware-inducing latencies are necessary (for example, 20 * a modern system often requires an SMI handler for correct thermal control 21 * and remote management) they can wreak havoc upon any OS-level performance 22 * guarantees toward low-latency, especially when the OS is not even made 23 * aware of the presence of these interrupts. For this reason, we need a 24 * somewhat brute force mechanism to detect these interrupts. In this case, 25 * we do it by hogging all of the CPU(s) for configurable timer intervals, 26 * sampling the built-in CPU timer, looking for discontiguous readings. 27 * 28 * WARNING: This implementation necessarily introduces latencies. Therefore, 29 * you should NEVER use this tracer while running in a production 30 * environment requiring any kind of low-latency performance 31 * guarantee(s). 32 * 33 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com> 34 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com> 35 * 36 * Includes useful feedback from Clark Williams <clark@redhat.com> 37 * 38 * This file is licensed under the terms of the GNU General Public 39 * License version 2. This program is licensed "as is" without any 40 * warranty of any kind, whether express or implied. 41 */ 42 #include <linux/kthread.h> 43 #include <linux/tracefs.h> 44 #include <linux/uaccess.h> 45 #include <linux/delay.h> 46 #include "trace.h" 47 48 static struct trace_array *hwlat_trace; 49 50 #define U64STR_SIZE 22 /* 20 digits max */ 51 52 #define BANNER "hwlat_detector: " 53 #define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */ 54 #define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */ 55 #define DEFAULT_LAT_THRESHOLD 10 /* 10us */ 56 57 /* sampling thread*/ 58 static struct task_struct *hwlat_kthread; 59 60 static struct dentry *hwlat_sample_width; /* sample width us */ 61 static struct dentry *hwlat_sample_window; /* sample window us */ 62 63 /* Save the previous tracing_thresh value */ 64 static unsigned long save_tracing_thresh; 65 66 /* If the user changed threshold, remember it */ 67 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC; 68 69 /* Individual latency samples are stored here when detected. */ 70 struct hwlat_sample { 71 u64 seqnum; /* unique sequence */ 72 u64 duration; /* delta */ 73 u64 outer_duration; /* delta (outer loop) */ 74 struct timespec timestamp; /* wall time */ 75 }; 76 77 /* keep the global state somewhere. */ 78 static struct hwlat_data { 79 80 struct mutex lock; /* protect changes */ 81 82 u64 count; /* total since reset */ 83 84 u64 sample_window; /* total sampling window (on+off) */ 85 u64 sample_width; /* active sampling portion of window */ 86 87 } hwlat_data = { 88 .sample_window = DEFAULT_SAMPLE_WINDOW, 89 .sample_width = DEFAULT_SAMPLE_WIDTH, 90 }; 91 92 static void trace_hwlat_sample(struct hwlat_sample *sample) 93 { 94 struct trace_array *tr = hwlat_trace; 95 struct trace_event_call *call = &event_hwlat; 96 struct ring_buffer *buffer = tr->trace_buffer.buffer; 97 struct ring_buffer_event *event; 98 struct hwlat_entry *entry; 99 unsigned long flags; 100 int pc; 101 102 pc = preempt_count(); 103 local_save_flags(flags); 104 105 event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry), 106 flags, pc); 107 if (!event) 108 return; 109 entry = ring_buffer_event_data(event); 110 entry->seqnum = sample->seqnum; 111 entry->duration = sample->duration; 112 entry->outer_duration = sample->outer_duration; 113 entry->timestamp = sample->timestamp; 114 115 if (!call_filter_check_discard(call, entry, buffer, event)) 116 __buffer_unlock_commit(buffer, event); 117 } 118 119 /* Macros to encapsulate the time capturing infrastructure */ 120 #define time_type u64 121 #define time_get() trace_clock_local() 122 #define time_to_us(x) div_u64(x, 1000) 123 #define time_sub(a, b) ((a) - (b)) 124 #define init_time(a, b) (a = b) 125 #define time_u64(a) a 126 127 /** 128 * get_sample - sample the CPU TSC and look for likely hardware latencies 129 * 130 * Used to repeatedly capture the CPU TSC (or similar), looking for potential 131 * hardware-induced latency. Called with interrupts disabled and with 132 * hwlat_data.lock held. 133 */ 134 static int get_sample(void) 135 { 136 struct trace_array *tr = hwlat_trace; 137 time_type start, t1, t2, last_t2; 138 s64 diff, total, last_total = 0; 139 u64 sample = 0; 140 u64 thresh = tracing_thresh; 141 u64 outer_sample = 0; 142 int ret = -1; 143 144 do_div(thresh, NSEC_PER_USEC); /* modifies interval value */ 145 146 init_time(last_t2, 0); 147 start = time_get(); /* start timestamp */ 148 149 do { 150 151 t1 = time_get(); /* we'll look for a discontinuity */ 152 t2 = time_get(); 153 154 if (time_u64(last_t2)) { 155 /* Check the delta from outer loop (t2 to next t1) */ 156 diff = time_to_us(time_sub(t1, last_t2)); 157 /* This shouldn't happen */ 158 if (diff < 0) { 159 pr_err(BANNER "time running backwards\n"); 160 goto out; 161 } 162 if (diff > outer_sample) 163 outer_sample = diff; 164 } 165 last_t2 = t2; 166 167 total = time_to_us(time_sub(t2, start)); /* sample width */ 168 169 /* Check for possible overflows */ 170 if (total < last_total) { 171 pr_err("Time total overflowed\n"); 172 break; 173 } 174 last_total = total; 175 176 /* This checks the inner loop (t1 to t2) */ 177 diff = time_to_us(time_sub(t2, t1)); /* current diff */ 178 179 /* This shouldn't happen */ 180 if (diff < 0) { 181 pr_err(BANNER "time running backwards\n"); 182 goto out; 183 } 184 185 if (diff > sample) 186 sample = diff; /* only want highest value */ 187 188 } while (total <= hwlat_data.sample_width); 189 190 ret = 0; 191 192 /* If we exceed the threshold value, we have found a hardware latency */ 193 if (sample > thresh || outer_sample > thresh) { 194 struct hwlat_sample s; 195 196 ret = 1; 197 198 hwlat_data.count++; 199 s.seqnum = hwlat_data.count; 200 s.duration = sample; 201 s.outer_duration = outer_sample; 202 s.timestamp = CURRENT_TIME; 203 trace_hwlat_sample(&s); 204 205 /* Keep a running maximum ever recorded hardware latency */ 206 if (sample > tr->max_latency) 207 tr->max_latency = sample; 208 } 209 210 out: 211 return ret; 212 } 213 214 /* 215 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread 216 * 217 * Used to periodically sample the CPU TSC via a call to get_sample. We 218 * disable interrupts, which does (intentionally) introduce latency since we 219 * need to ensure nothing else might be running (and thus preempting). 220 * Obviously this should never be used in production environments. 221 * 222 * Currently this runs on which ever CPU it was scheduled on, but most 223 * real-world hardware latency situations occur across several CPUs, 224 * but we might later generalize this if we find there are any actualy 225 * systems with alternate SMI delivery or other hardware latencies. 226 */ 227 static int kthread_fn(void *data) 228 { 229 u64 interval; 230 231 while (!kthread_should_stop()) { 232 233 local_irq_disable(); 234 get_sample(); 235 local_irq_enable(); 236 237 mutex_lock(&hwlat_data.lock); 238 interval = hwlat_data.sample_window - hwlat_data.sample_width; 239 mutex_unlock(&hwlat_data.lock); 240 241 do_div(interval, USEC_PER_MSEC); /* modifies interval value */ 242 243 /* Always sleep for at least 1ms */ 244 if (interval < 1) 245 interval = 1; 246 247 if (msleep_interruptible(interval)) 248 break; 249 } 250 251 return 0; 252 } 253 254 /** 255 * start_kthread - Kick off the hardware latency sampling/detector kthread 256 * 257 * This starts the kernel thread that will sit and sample the CPU timestamp 258 * counter (TSC or similar) and look for potential hardware latencies. 259 */ 260 static int start_kthread(struct trace_array *tr) 261 { 262 struct task_struct *kthread; 263 264 kthread = kthread_create(kthread_fn, NULL, "hwlatd"); 265 if (IS_ERR(kthread)) { 266 pr_err(BANNER "could not start sampling thread\n"); 267 return -ENOMEM; 268 } 269 hwlat_kthread = kthread; 270 wake_up_process(kthread); 271 272 return 0; 273 } 274 275 /** 276 * stop_kthread - Inform the hardware latency samping/detector kthread to stop 277 * 278 * This kicks the running hardware latency sampling/detector kernel thread and 279 * tells it to stop sampling now. Use this on unload and at system shutdown. 280 */ 281 static void stop_kthread(void) 282 { 283 if (!hwlat_kthread) 284 return; 285 kthread_stop(hwlat_kthread); 286 hwlat_kthread = NULL; 287 } 288 289 /* 290 * hwlat_read - Wrapper read function for reading both window and width 291 * @filp: The active open file structure 292 * @ubuf: The userspace provided buffer to read value into 293 * @cnt: The maximum number of bytes to read 294 * @ppos: The current "file" position 295 * 296 * This function provides a generic read implementation for the global state 297 * "hwlat_data" structure filesystem entries. 298 */ 299 static ssize_t hwlat_read(struct file *filp, char __user *ubuf, 300 size_t cnt, loff_t *ppos) 301 { 302 char buf[U64STR_SIZE]; 303 u64 *entry = filp->private_data; 304 u64 val; 305 int len; 306 307 if (!entry) 308 return -EFAULT; 309 310 if (cnt > sizeof(buf)) 311 cnt = sizeof(buf); 312 313 val = *entry; 314 315 len = snprintf(buf, sizeof(buf), "%llu\n", val); 316 317 return simple_read_from_buffer(ubuf, cnt, ppos, buf, len); 318 } 319 320 /** 321 * hwlat_width_write - Write function for "width" entry 322 * @filp: The active open file structure 323 * @ubuf: The user buffer that contains the value to write 324 * @cnt: The maximum number of bytes to write to "file" 325 * @ppos: The current position in @file 326 * 327 * This function provides a write implementation for the "width" interface 328 * to the hardware latency detector. It can be used to configure 329 * for how many us of the total window us we will actively sample for any 330 * hardware-induced latency periods. Obviously, it is not possible to 331 * sample constantly and have the system respond to a sample reader, or, 332 * worse, without having the system appear to have gone out to lunch. It 333 * is enforced that width is less that the total window size. 334 */ 335 static ssize_t 336 hwlat_width_write(struct file *filp, const char __user *ubuf, 337 size_t cnt, loff_t *ppos) 338 { 339 u64 val; 340 int err; 341 342 err = kstrtoull_from_user(ubuf, cnt, 10, &val); 343 if (err) 344 return err; 345 346 mutex_lock(&hwlat_data.lock); 347 if (val < hwlat_data.sample_window) 348 hwlat_data.sample_width = val; 349 else 350 err = -EINVAL; 351 mutex_unlock(&hwlat_data.lock); 352 353 if (err) 354 return err; 355 356 return cnt; 357 } 358 359 /** 360 * hwlat_window_write - Write function for "window" entry 361 * @filp: The active open file structure 362 * @ubuf: The user buffer that contains the value to write 363 * @cnt: The maximum number of bytes to write to "file" 364 * @ppos: The current position in @file 365 * 366 * This function provides a write implementation for the "window" interface 367 * to the hardware latency detetector. The window is the total time 368 * in us that will be considered one sample period. Conceptually, windows 369 * occur back-to-back and contain a sample width period during which 370 * actual sampling occurs. Can be used to write a new total window size. It 371 * is enfoced that any value written must be greater than the sample width 372 * size, or an error results. 373 */ 374 static ssize_t 375 hwlat_window_write(struct file *filp, const char __user *ubuf, 376 size_t cnt, loff_t *ppos) 377 { 378 u64 val; 379 int err; 380 381 err = kstrtoull_from_user(ubuf, cnt, 10, &val); 382 if (err) 383 return err; 384 385 mutex_lock(&hwlat_data.lock); 386 if (hwlat_data.sample_width < val) 387 hwlat_data.sample_window = val; 388 else 389 err = -EINVAL; 390 mutex_unlock(&hwlat_data.lock); 391 392 if (err) 393 return err; 394 395 return cnt; 396 } 397 398 static const struct file_operations width_fops = { 399 .open = tracing_open_generic, 400 .read = hwlat_read, 401 .write = hwlat_width_write, 402 }; 403 404 static const struct file_operations window_fops = { 405 .open = tracing_open_generic, 406 .read = hwlat_read, 407 .write = hwlat_window_write, 408 }; 409 410 /** 411 * init_tracefs - A function to initialize the tracefs interface files 412 * 413 * This function creates entries in tracefs for "hwlat_detector". 414 * It creates the hwlat_detector directory in the tracing directory, 415 * and within that directory is the count, width and window files to 416 * change and view those values. 417 */ 418 static int init_tracefs(void) 419 { 420 struct dentry *d_tracer; 421 struct dentry *top_dir; 422 423 d_tracer = tracing_init_dentry(); 424 if (IS_ERR(d_tracer)) 425 return -ENOMEM; 426 427 top_dir = tracefs_create_dir("hwlat_detector", d_tracer); 428 if (!top_dir) 429 return -ENOMEM; 430 431 hwlat_sample_window = tracefs_create_file("window", 0640, 432 top_dir, 433 &hwlat_data.sample_window, 434 &window_fops); 435 if (!hwlat_sample_window) 436 goto err; 437 438 hwlat_sample_width = tracefs_create_file("width", 0644, 439 top_dir, 440 &hwlat_data.sample_width, 441 &width_fops); 442 if (!hwlat_sample_width) 443 goto err; 444 445 return 0; 446 447 err: 448 tracefs_remove_recursive(top_dir); 449 return -ENOMEM; 450 } 451 452 static void hwlat_tracer_start(struct trace_array *tr) 453 { 454 int err; 455 456 err = start_kthread(tr); 457 if (err) 458 pr_err(BANNER "Cannot start hwlat kthread\n"); 459 } 460 461 static void hwlat_tracer_stop(struct trace_array *tr) 462 { 463 stop_kthread(); 464 } 465 466 static bool hwlat_busy; 467 468 static int hwlat_tracer_init(struct trace_array *tr) 469 { 470 /* Only allow one instance to enable this */ 471 if (hwlat_busy) 472 return -EBUSY; 473 474 hwlat_trace = tr; 475 476 hwlat_data.count = 0; 477 tr->max_latency = 0; 478 save_tracing_thresh = tracing_thresh; 479 480 /* tracing_thresh is in nsecs, we speak in usecs */ 481 if (!tracing_thresh) 482 tracing_thresh = last_tracing_thresh; 483 484 if (tracer_tracing_is_on(tr)) 485 hwlat_tracer_start(tr); 486 487 hwlat_busy = true; 488 489 return 0; 490 } 491 492 static void hwlat_tracer_reset(struct trace_array *tr) 493 { 494 stop_kthread(); 495 496 /* the tracing threshold is static between runs */ 497 last_tracing_thresh = tracing_thresh; 498 499 tracing_thresh = save_tracing_thresh; 500 hwlat_busy = false; 501 } 502 503 static struct tracer hwlat_tracer __read_mostly = 504 { 505 .name = "hwlat", 506 .init = hwlat_tracer_init, 507 .reset = hwlat_tracer_reset, 508 .start = hwlat_tracer_start, 509 .stop = hwlat_tracer_stop, 510 .allow_instances = true, 511 }; 512 513 __init static int init_hwlat_tracer(void) 514 { 515 int ret; 516 517 mutex_init(&hwlat_data.lock); 518 519 ret = register_tracer(&hwlat_tracer); 520 if (ret) 521 return ret; 522 523 init_tracefs(); 524 525 return 0; 526 } 527 late_initcall(init_hwlat_tracer); 528