1 /* 2 * trace_hwlatdetect.c - A simple Hardware Latency detector. 3 * 4 * Use this tracer to detect large system latencies induced by the behavior of 5 * certain underlying system hardware or firmware, independent of Linux itself. 6 * The code was developed originally to detect the presence of SMIs on Intel 7 * and AMD systems, although there is no dependency upon x86 herein. 8 * 9 * The classical example usage of this tracer is in detecting the presence of 10 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a 11 * somewhat special form of hardware interrupt spawned from earlier CPU debug 12 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge 13 * LPC (or other device) to generate a special interrupt under certain 14 * circumstances, for example, upon expiration of a special SMI timer device, 15 * due to certain external thermal readings, on certain I/O address accesses, 16 * and other situations. An SMI hits a special CPU pin, triggers a special 17 * SMI mode (complete with special memory map), and the OS is unaware. 18 * 19 * Although certain hardware-inducing latencies are necessary (for example, 20 * a modern system often requires an SMI handler for correct thermal control 21 * and remote management) they can wreak havoc upon any OS-level performance 22 * guarantees toward low-latency, especially when the OS is not even made 23 * aware of the presence of these interrupts. For this reason, we need a 24 * somewhat brute force mechanism to detect these interrupts. In this case, 25 * we do it by hogging all of the CPU(s) for configurable timer intervals, 26 * sampling the built-in CPU timer, looking for discontiguous readings. 27 * 28 * WARNING: This implementation necessarily introduces latencies. Therefore, 29 * you should NEVER use this tracer while running in a production 30 * environment requiring any kind of low-latency performance 31 * guarantee(s). 32 * 33 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com> 34 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com> 35 * 36 * Includes useful feedback from Clark Williams <clark@redhat.com> 37 * 38 * This file is licensed under the terms of the GNU General Public 39 * License version 2. This program is licensed "as is" without any 40 * warranty of any kind, whether express or implied. 41 */ 42 #include <linux/kthread.h> 43 #include <linux/tracefs.h> 44 #include <linux/uaccess.h> 45 #include <linux/cpumask.h> 46 #include <linux/delay.h> 47 #include "trace.h" 48 49 static struct trace_array *hwlat_trace; 50 51 #define U64STR_SIZE 22 /* 20 digits max */ 52 53 #define BANNER "hwlat_detector: " 54 #define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */ 55 #define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */ 56 #define DEFAULT_LAT_THRESHOLD 10 /* 10us */ 57 58 /* sampling thread*/ 59 static struct task_struct *hwlat_kthread; 60 61 static struct dentry *hwlat_sample_width; /* sample width us */ 62 static struct dentry *hwlat_sample_window; /* sample window us */ 63 64 /* Save the previous tracing_thresh value */ 65 static unsigned long save_tracing_thresh; 66 67 /* If the user changed threshold, remember it */ 68 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC; 69 70 /* Individual latency samples are stored here when detected. */ 71 struct hwlat_sample { 72 u64 seqnum; /* unique sequence */ 73 u64 duration; /* delta */ 74 u64 outer_duration; /* delta (outer loop) */ 75 struct timespec timestamp; /* wall time */ 76 }; 77 78 /* keep the global state somewhere. */ 79 static struct hwlat_data { 80 81 struct mutex lock; /* protect changes */ 82 83 u64 count; /* total since reset */ 84 85 u64 sample_window; /* total sampling window (on+off) */ 86 u64 sample_width; /* active sampling portion of window */ 87 88 } hwlat_data = { 89 .sample_window = DEFAULT_SAMPLE_WINDOW, 90 .sample_width = DEFAULT_SAMPLE_WIDTH, 91 }; 92 93 static void trace_hwlat_sample(struct hwlat_sample *sample) 94 { 95 struct trace_array *tr = hwlat_trace; 96 struct trace_event_call *call = &event_hwlat; 97 struct ring_buffer *buffer = tr->trace_buffer.buffer; 98 struct ring_buffer_event *event; 99 struct hwlat_entry *entry; 100 unsigned long flags; 101 int pc; 102 103 pc = preempt_count(); 104 local_save_flags(flags); 105 106 event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry), 107 flags, pc); 108 if (!event) 109 return; 110 entry = ring_buffer_event_data(event); 111 entry->seqnum = sample->seqnum; 112 entry->duration = sample->duration; 113 entry->outer_duration = sample->outer_duration; 114 entry->timestamp = sample->timestamp; 115 116 if (!call_filter_check_discard(call, entry, buffer, event)) 117 __buffer_unlock_commit(buffer, event); 118 } 119 120 /* Macros to encapsulate the time capturing infrastructure */ 121 #define time_type u64 122 #define time_get() trace_clock_local() 123 #define time_to_us(x) div_u64(x, 1000) 124 #define time_sub(a, b) ((a) - (b)) 125 #define init_time(a, b) (a = b) 126 #define time_u64(a) a 127 128 /** 129 * get_sample - sample the CPU TSC and look for likely hardware latencies 130 * 131 * Used to repeatedly capture the CPU TSC (or similar), looking for potential 132 * hardware-induced latency. Called with interrupts disabled and with 133 * hwlat_data.lock held. 134 */ 135 static int get_sample(void) 136 { 137 struct trace_array *tr = hwlat_trace; 138 time_type start, t1, t2, last_t2; 139 s64 diff, total, last_total = 0; 140 u64 sample = 0; 141 u64 thresh = tracing_thresh; 142 u64 outer_sample = 0; 143 int ret = -1; 144 145 do_div(thresh, NSEC_PER_USEC); /* modifies interval value */ 146 147 init_time(last_t2, 0); 148 start = time_get(); /* start timestamp */ 149 150 do { 151 152 t1 = time_get(); /* we'll look for a discontinuity */ 153 t2 = time_get(); 154 155 if (time_u64(last_t2)) { 156 /* Check the delta from outer loop (t2 to next t1) */ 157 diff = time_to_us(time_sub(t1, last_t2)); 158 /* This shouldn't happen */ 159 if (diff < 0) { 160 pr_err(BANNER "time running backwards\n"); 161 goto out; 162 } 163 if (diff > outer_sample) 164 outer_sample = diff; 165 } 166 last_t2 = t2; 167 168 total = time_to_us(time_sub(t2, start)); /* sample width */ 169 170 /* Check for possible overflows */ 171 if (total < last_total) { 172 pr_err("Time total overflowed\n"); 173 break; 174 } 175 last_total = total; 176 177 /* This checks the inner loop (t1 to t2) */ 178 diff = time_to_us(time_sub(t2, t1)); /* current diff */ 179 180 /* This shouldn't happen */ 181 if (diff < 0) { 182 pr_err(BANNER "time running backwards\n"); 183 goto out; 184 } 185 186 if (diff > sample) 187 sample = diff; /* only want highest value */ 188 189 } while (total <= hwlat_data.sample_width); 190 191 ret = 0; 192 193 /* If we exceed the threshold value, we have found a hardware latency */ 194 if (sample > thresh || outer_sample > thresh) { 195 struct hwlat_sample s; 196 197 ret = 1; 198 199 hwlat_data.count++; 200 s.seqnum = hwlat_data.count; 201 s.duration = sample; 202 s.outer_duration = outer_sample; 203 s.timestamp = CURRENT_TIME; 204 trace_hwlat_sample(&s); 205 206 /* Keep a running maximum ever recorded hardware latency */ 207 if (sample > tr->max_latency) 208 tr->max_latency = sample; 209 } 210 211 out: 212 return ret; 213 } 214 215 static struct cpumask save_cpumask; 216 static bool disable_migrate; 217 218 static void move_to_next_cpu(void) 219 { 220 static struct cpumask *current_mask; 221 int next_cpu; 222 223 if (disable_migrate) 224 return; 225 226 /* Just pick the first CPU on first iteration */ 227 if (!current_mask) { 228 current_mask = &save_cpumask; 229 get_online_cpus(); 230 cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask); 231 put_online_cpus(); 232 next_cpu = cpumask_first(current_mask); 233 goto set_affinity; 234 } 235 236 /* 237 * If for some reason the user modifies the CPU affinity 238 * of this thread, than stop migrating for the duration 239 * of the current test. 240 */ 241 if (!cpumask_equal(current_mask, ¤t->cpus_allowed)) 242 goto disable; 243 244 get_online_cpus(); 245 cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask); 246 next_cpu = cpumask_next(smp_processor_id(), current_mask); 247 put_online_cpus(); 248 249 if (next_cpu >= nr_cpu_ids) 250 next_cpu = cpumask_first(current_mask); 251 252 set_affinity: 253 if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */ 254 goto disable; 255 256 cpumask_clear(current_mask); 257 cpumask_set_cpu(next_cpu, current_mask); 258 259 sched_setaffinity(0, current_mask); 260 return; 261 262 disable: 263 disable_migrate = true; 264 } 265 266 /* 267 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread 268 * 269 * Used to periodically sample the CPU TSC via a call to get_sample. We 270 * disable interrupts, which does (intentionally) introduce latency since we 271 * need to ensure nothing else might be running (and thus preempting). 272 * Obviously this should never be used in production environments. 273 * 274 * Currently this runs on which ever CPU it was scheduled on, but most 275 * real-world hardware latency situations occur across several CPUs, 276 * but we might later generalize this if we find there are any actualy 277 * systems with alternate SMI delivery or other hardware latencies. 278 */ 279 static int kthread_fn(void *data) 280 { 281 u64 interval; 282 283 while (!kthread_should_stop()) { 284 285 move_to_next_cpu(); 286 287 local_irq_disable(); 288 get_sample(); 289 local_irq_enable(); 290 291 mutex_lock(&hwlat_data.lock); 292 interval = hwlat_data.sample_window - hwlat_data.sample_width; 293 mutex_unlock(&hwlat_data.lock); 294 295 do_div(interval, USEC_PER_MSEC); /* modifies interval value */ 296 297 /* Always sleep for at least 1ms */ 298 if (interval < 1) 299 interval = 1; 300 301 if (msleep_interruptible(interval)) 302 break; 303 } 304 305 return 0; 306 } 307 308 /** 309 * start_kthread - Kick off the hardware latency sampling/detector kthread 310 * 311 * This starts the kernel thread that will sit and sample the CPU timestamp 312 * counter (TSC or similar) and look for potential hardware latencies. 313 */ 314 static int start_kthread(struct trace_array *tr) 315 { 316 struct task_struct *kthread; 317 318 kthread = kthread_create(kthread_fn, NULL, "hwlatd"); 319 if (IS_ERR(kthread)) { 320 pr_err(BANNER "could not start sampling thread\n"); 321 return -ENOMEM; 322 } 323 hwlat_kthread = kthread; 324 wake_up_process(kthread); 325 326 return 0; 327 } 328 329 /** 330 * stop_kthread - Inform the hardware latency samping/detector kthread to stop 331 * 332 * This kicks the running hardware latency sampling/detector kernel thread and 333 * tells it to stop sampling now. Use this on unload and at system shutdown. 334 */ 335 static void stop_kthread(void) 336 { 337 if (!hwlat_kthread) 338 return; 339 kthread_stop(hwlat_kthread); 340 hwlat_kthread = NULL; 341 } 342 343 /* 344 * hwlat_read - Wrapper read function for reading both window and width 345 * @filp: The active open file structure 346 * @ubuf: The userspace provided buffer to read value into 347 * @cnt: The maximum number of bytes to read 348 * @ppos: The current "file" position 349 * 350 * This function provides a generic read implementation for the global state 351 * "hwlat_data" structure filesystem entries. 352 */ 353 static ssize_t hwlat_read(struct file *filp, char __user *ubuf, 354 size_t cnt, loff_t *ppos) 355 { 356 char buf[U64STR_SIZE]; 357 u64 *entry = filp->private_data; 358 u64 val; 359 int len; 360 361 if (!entry) 362 return -EFAULT; 363 364 if (cnt > sizeof(buf)) 365 cnt = sizeof(buf); 366 367 val = *entry; 368 369 len = snprintf(buf, sizeof(buf), "%llu\n", val); 370 371 return simple_read_from_buffer(ubuf, cnt, ppos, buf, len); 372 } 373 374 /** 375 * hwlat_width_write - Write function for "width" entry 376 * @filp: The active open file structure 377 * @ubuf: The user buffer that contains the value to write 378 * @cnt: The maximum number of bytes to write to "file" 379 * @ppos: The current position in @file 380 * 381 * This function provides a write implementation for the "width" interface 382 * to the hardware latency detector. It can be used to configure 383 * for how many us of the total window us we will actively sample for any 384 * hardware-induced latency periods. Obviously, it is not possible to 385 * sample constantly and have the system respond to a sample reader, or, 386 * worse, without having the system appear to have gone out to lunch. It 387 * is enforced that width is less that the total window size. 388 */ 389 static ssize_t 390 hwlat_width_write(struct file *filp, const char __user *ubuf, 391 size_t cnt, loff_t *ppos) 392 { 393 u64 val; 394 int err; 395 396 err = kstrtoull_from_user(ubuf, cnt, 10, &val); 397 if (err) 398 return err; 399 400 mutex_lock(&hwlat_data.lock); 401 if (val < hwlat_data.sample_window) 402 hwlat_data.sample_width = val; 403 else 404 err = -EINVAL; 405 mutex_unlock(&hwlat_data.lock); 406 407 if (err) 408 return err; 409 410 return cnt; 411 } 412 413 /** 414 * hwlat_window_write - Write function for "window" entry 415 * @filp: The active open file structure 416 * @ubuf: The user buffer that contains the value to write 417 * @cnt: The maximum number of bytes to write to "file" 418 * @ppos: The current position in @file 419 * 420 * This function provides a write implementation for the "window" interface 421 * to the hardware latency detetector. The window is the total time 422 * in us that will be considered one sample period. Conceptually, windows 423 * occur back-to-back and contain a sample width period during which 424 * actual sampling occurs. Can be used to write a new total window size. It 425 * is enfoced that any value written must be greater than the sample width 426 * size, or an error results. 427 */ 428 static ssize_t 429 hwlat_window_write(struct file *filp, const char __user *ubuf, 430 size_t cnt, loff_t *ppos) 431 { 432 u64 val; 433 int err; 434 435 err = kstrtoull_from_user(ubuf, cnt, 10, &val); 436 if (err) 437 return err; 438 439 mutex_lock(&hwlat_data.lock); 440 if (hwlat_data.sample_width < val) 441 hwlat_data.sample_window = val; 442 else 443 err = -EINVAL; 444 mutex_unlock(&hwlat_data.lock); 445 446 if (err) 447 return err; 448 449 return cnt; 450 } 451 452 static const struct file_operations width_fops = { 453 .open = tracing_open_generic, 454 .read = hwlat_read, 455 .write = hwlat_width_write, 456 }; 457 458 static const struct file_operations window_fops = { 459 .open = tracing_open_generic, 460 .read = hwlat_read, 461 .write = hwlat_window_write, 462 }; 463 464 /** 465 * init_tracefs - A function to initialize the tracefs interface files 466 * 467 * This function creates entries in tracefs for "hwlat_detector". 468 * It creates the hwlat_detector directory in the tracing directory, 469 * and within that directory is the count, width and window files to 470 * change and view those values. 471 */ 472 static int init_tracefs(void) 473 { 474 struct dentry *d_tracer; 475 struct dentry *top_dir; 476 477 d_tracer = tracing_init_dentry(); 478 if (IS_ERR(d_tracer)) 479 return -ENOMEM; 480 481 top_dir = tracefs_create_dir("hwlat_detector", d_tracer); 482 if (!top_dir) 483 return -ENOMEM; 484 485 hwlat_sample_window = tracefs_create_file("window", 0640, 486 top_dir, 487 &hwlat_data.sample_window, 488 &window_fops); 489 if (!hwlat_sample_window) 490 goto err; 491 492 hwlat_sample_width = tracefs_create_file("width", 0644, 493 top_dir, 494 &hwlat_data.sample_width, 495 &width_fops); 496 if (!hwlat_sample_width) 497 goto err; 498 499 return 0; 500 501 err: 502 tracefs_remove_recursive(top_dir); 503 return -ENOMEM; 504 } 505 506 static void hwlat_tracer_start(struct trace_array *tr) 507 { 508 int err; 509 510 err = start_kthread(tr); 511 if (err) 512 pr_err(BANNER "Cannot start hwlat kthread\n"); 513 } 514 515 static void hwlat_tracer_stop(struct trace_array *tr) 516 { 517 stop_kthread(); 518 } 519 520 static bool hwlat_busy; 521 522 static int hwlat_tracer_init(struct trace_array *tr) 523 { 524 /* Only allow one instance to enable this */ 525 if (hwlat_busy) 526 return -EBUSY; 527 528 hwlat_trace = tr; 529 530 disable_migrate = false; 531 hwlat_data.count = 0; 532 tr->max_latency = 0; 533 save_tracing_thresh = tracing_thresh; 534 535 /* tracing_thresh is in nsecs, we speak in usecs */ 536 if (!tracing_thresh) 537 tracing_thresh = last_tracing_thresh; 538 539 if (tracer_tracing_is_on(tr)) 540 hwlat_tracer_start(tr); 541 542 hwlat_busy = true; 543 544 return 0; 545 } 546 547 static void hwlat_tracer_reset(struct trace_array *tr) 548 { 549 stop_kthread(); 550 551 /* the tracing threshold is static between runs */ 552 last_tracing_thresh = tracing_thresh; 553 554 tracing_thresh = save_tracing_thresh; 555 hwlat_busy = false; 556 } 557 558 static struct tracer hwlat_tracer __read_mostly = 559 { 560 .name = "hwlat", 561 .init = hwlat_tracer_init, 562 .reset = hwlat_tracer_reset, 563 .start = hwlat_tracer_start, 564 .stop = hwlat_tracer_stop, 565 .allow_instances = true, 566 }; 567 568 __init static int init_hwlat_tracer(void) 569 { 570 int ret; 571 572 mutex_init(&hwlat_data.lock); 573 574 ret = register_tracer(&hwlat_tracer); 575 if (ret) 576 return ret; 577 578 init_tracefs(); 579 580 return 0; 581 } 582 late_initcall(init_hwlat_tracer); 583