xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 918143e8b7d6153d7a83a3f854323407939f4a7e)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21 
22 #include "trace.h"
23 
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29 	int ret;
30 
31 	ret = trace_seq_printf(s, "# compressed entry header\n");
32 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
33 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35 	ret = trace_seq_printf(s, "\n");
36 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37 			       RINGBUF_TYPE_PADDING);
38 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 			       RINGBUF_TYPE_TIME_EXTEND);
40 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
41 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
42 
43 	return ret;
44 }
45 
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113 
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131 
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142 
143 enum {
144 	RB_BUFFERS_ON_BIT	= 0,
145 	RB_BUFFERS_DISABLED_BIT	= 1,
146 };
147 
148 enum {
149 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
150 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152 
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154 
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156 
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168 
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182 
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193 
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199 	return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202 
203 #include "trace.h"
204 
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT		4U
207 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211 
212 enum {
213 	RB_LEN_TIME_EXTEND = 8,
214 	RB_LEN_TIME_STAMP = 16,
215 };
216 
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219 	return event->type_len == RINGBUF_TYPE_PADDING
220 			&& event->time_delta == 0;
221 }
222 
223 static inline int rb_discarded_event(struct ring_buffer_event *event)
224 {
225 	return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
226 }
227 
228 static void rb_event_set_padding(struct ring_buffer_event *event)
229 {
230 	event->type_len = RINGBUF_TYPE_PADDING;
231 	event->time_delta = 0;
232 }
233 
234 static unsigned
235 rb_event_data_length(struct ring_buffer_event *event)
236 {
237 	unsigned length;
238 
239 	if (event->type_len)
240 		length = event->type_len * RB_ALIGNMENT;
241 	else
242 		length = event->array[0];
243 	return length + RB_EVNT_HDR_SIZE;
244 }
245 
246 /* inline for ring buffer fast paths */
247 static unsigned
248 rb_event_length(struct ring_buffer_event *event)
249 {
250 	switch (event->type_len) {
251 	case RINGBUF_TYPE_PADDING:
252 		if (rb_null_event(event))
253 			/* undefined */
254 			return -1;
255 		return  event->array[0] + RB_EVNT_HDR_SIZE;
256 
257 	case RINGBUF_TYPE_TIME_EXTEND:
258 		return RB_LEN_TIME_EXTEND;
259 
260 	case RINGBUF_TYPE_TIME_STAMP:
261 		return RB_LEN_TIME_STAMP;
262 
263 	case RINGBUF_TYPE_DATA:
264 		return rb_event_data_length(event);
265 	default:
266 		BUG();
267 	}
268 	/* not hit */
269 	return 0;
270 }
271 
272 /**
273  * ring_buffer_event_length - return the length of the event
274  * @event: the event to get the length of
275  */
276 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277 {
278 	unsigned length = rb_event_length(event);
279 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 		return length;
281 	length -= RB_EVNT_HDR_SIZE;
282 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284 	return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287 
288 /* inline for ring buffer fast paths */
289 static void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
293 	/* If length is in len field, then array[0] has the data */
294 	if (event->type_len)
295 		return (void *)&event->array[0];
296 	/* Otherwise length is in array[0] and array[1] has the data */
297 	return (void *)&event->array[1];
298 }
299 
300 /**
301  * ring_buffer_event_data - return the data of the event
302  * @event: the event to get the data from
303  */
304 void *ring_buffer_event_data(struct ring_buffer_event *event)
305 {
306 	return rb_event_data(event);
307 }
308 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
309 
310 #define for_each_buffer_cpu(buffer, cpu)		\
311 	for_each_cpu(cpu, buffer->cpumask)
312 
313 #define TS_SHIFT	27
314 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
315 #define TS_DELTA_TEST	(~TS_MASK)
316 
317 struct buffer_data_page {
318 	u64		 time_stamp;	/* page time stamp */
319 	local_t		 commit;	/* write committed index */
320 	unsigned char	 data[];	/* data of buffer page */
321 };
322 
323 struct buffer_page {
324 	struct list_head list;		/* list of buffer pages */
325 	local_t		 write;		/* index for next write */
326 	unsigned	 read;		/* index for next read */
327 	local_t		 entries;	/* entries on this page */
328 	struct buffer_data_page *page;	/* Actual data page */
329 };
330 
331 static void rb_init_page(struct buffer_data_page *bpage)
332 {
333 	local_set(&bpage->commit, 0);
334 }
335 
336 /**
337  * ring_buffer_page_len - the size of data on the page.
338  * @page: The page to read
339  *
340  * Returns the amount of data on the page, including buffer page header.
341  */
342 size_t ring_buffer_page_len(void *page)
343 {
344 	return local_read(&((struct buffer_data_page *)page)->commit)
345 		+ BUF_PAGE_HDR_SIZE;
346 }
347 
348 /*
349  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350  * this issue out.
351  */
352 static void free_buffer_page(struct buffer_page *bpage)
353 {
354 	free_page((unsigned long)bpage->page);
355 	kfree(bpage);
356 }
357 
358 /*
359  * We need to fit the time_stamp delta into 27 bits.
360  */
361 static inline int test_time_stamp(u64 delta)
362 {
363 	if (delta & TS_DELTA_TEST)
364 		return 1;
365 	return 0;
366 }
367 
368 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
369 
370 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
371 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
372 
373 /* Max number of timestamps that can fit on a page */
374 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
375 
376 int ring_buffer_print_page_header(struct trace_seq *s)
377 {
378 	struct buffer_data_page field;
379 	int ret;
380 
381 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
382 			       "offset:0;\tsize:%u;\n",
383 			       (unsigned int)sizeof(field.time_stamp));
384 
385 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
386 			       "offset:%u;\tsize:%u;\n",
387 			       (unsigned int)offsetof(typeof(field), commit),
388 			       (unsigned int)sizeof(field.commit));
389 
390 	ret = trace_seq_printf(s, "\tfield: char data;\t"
391 			       "offset:%u;\tsize:%u;\n",
392 			       (unsigned int)offsetof(typeof(field), data),
393 			       (unsigned int)BUF_PAGE_SIZE);
394 
395 	return ret;
396 }
397 
398 /*
399  * head_page == tail_page && head == tail then buffer is empty.
400  */
401 struct ring_buffer_per_cpu {
402 	int				cpu;
403 	struct ring_buffer		*buffer;
404 	spinlock_t			reader_lock; /* serialize readers */
405 	raw_spinlock_t			lock;
406 	struct lock_class_key		lock_key;
407 	struct list_head		pages;
408 	struct buffer_page		*head_page;	/* read from head */
409 	struct buffer_page		*tail_page;	/* write to tail */
410 	struct buffer_page		*commit_page;	/* committed pages */
411 	struct buffer_page		*reader_page;
412 	unsigned long			nmi_dropped;
413 	unsigned long			commit_overrun;
414 	unsigned long			overrun;
415 	unsigned long			read;
416 	local_t				entries;
417 	u64				write_stamp;
418 	u64				read_stamp;
419 	atomic_t			record_disabled;
420 };
421 
422 struct ring_buffer {
423 	unsigned			pages;
424 	unsigned			flags;
425 	int				cpus;
426 	atomic_t			record_disabled;
427 	cpumask_var_t			cpumask;
428 
429 	struct mutex			mutex;
430 
431 	struct ring_buffer_per_cpu	**buffers;
432 
433 #ifdef CONFIG_HOTPLUG_CPU
434 	struct notifier_block		cpu_notify;
435 #endif
436 	u64				(*clock)(void);
437 };
438 
439 struct ring_buffer_iter {
440 	struct ring_buffer_per_cpu	*cpu_buffer;
441 	unsigned long			head;
442 	struct buffer_page		*head_page;
443 	u64				read_stamp;
444 };
445 
446 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
447 #define RB_WARN_ON(buffer, cond)				\
448 	({							\
449 		int _____ret = unlikely(cond);			\
450 		if (_____ret) {					\
451 			atomic_inc(&buffer->record_disabled);	\
452 			WARN_ON(1);				\
453 		}						\
454 		_____ret;					\
455 	})
456 
457 /* Up this if you want to test the TIME_EXTENTS and normalization */
458 #define DEBUG_SHIFT 0
459 
460 static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
461 {
462 	/* shift to debug/test normalization and TIME_EXTENTS */
463 	return buffer->clock() << DEBUG_SHIFT;
464 }
465 
466 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
467 {
468 	u64 time;
469 
470 	preempt_disable_notrace();
471 	time = rb_time_stamp(buffer, cpu);
472 	preempt_enable_no_resched_notrace();
473 
474 	return time;
475 }
476 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
477 
478 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
479 				      int cpu, u64 *ts)
480 {
481 	/* Just stupid testing the normalize function and deltas */
482 	*ts >>= DEBUG_SHIFT;
483 }
484 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
485 
486 /**
487  * check_pages - integrity check of buffer pages
488  * @cpu_buffer: CPU buffer with pages to test
489  *
490  * As a safety measure we check to make sure the data pages have not
491  * been corrupted.
492  */
493 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
494 {
495 	struct list_head *head = &cpu_buffer->pages;
496 	struct buffer_page *bpage, *tmp;
497 
498 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
499 		return -1;
500 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
501 		return -1;
502 
503 	list_for_each_entry_safe(bpage, tmp, head, list) {
504 		if (RB_WARN_ON(cpu_buffer,
505 			       bpage->list.next->prev != &bpage->list))
506 			return -1;
507 		if (RB_WARN_ON(cpu_buffer,
508 			       bpage->list.prev->next != &bpage->list))
509 			return -1;
510 	}
511 
512 	return 0;
513 }
514 
515 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
516 			     unsigned nr_pages)
517 {
518 	struct list_head *head = &cpu_buffer->pages;
519 	struct buffer_page *bpage, *tmp;
520 	unsigned long addr;
521 	LIST_HEAD(pages);
522 	unsigned i;
523 
524 	for (i = 0; i < nr_pages; i++) {
525 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
526 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
527 		if (!bpage)
528 			goto free_pages;
529 		list_add(&bpage->list, &pages);
530 
531 		addr = __get_free_page(GFP_KERNEL);
532 		if (!addr)
533 			goto free_pages;
534 		bpage->page = (void *)addr;
535 		rb_init_page(bpage->page);
536 	}
537 
538 	list_splice(&pages, head);
539 
540 	rb_check_pages(cpu_buffer);
541 
542 	return 0;
543 
544  free_pages:
545 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
546 		list_del_init(&bpage->list);
547 		free_buffer_page(bpage);
548 	}
549 	return -ENOMEM;
550 }
551 
552 static struct ring_buffer_per_cpu *
553 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
554 {
555 	struct ring_buffer_per_cpu *cpu_buffer;
556 	struct buffer_page *bpage;
557 	unsigned long addr;
558 	int ret;
559 
560 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
561 				  GFP_KERNEL, cpu_to_node(cpu));
562 	if (!cpu_buffer)
563 		return NULL;
564 
565 	cpu_buffer->cpu = cpu;
566 	cpu_buffer->buffer = buffer;
567 	spin_lock_init(&cpu_buffer->reader_lock);
568 	cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
569 	INIT_LIST_HEAD(&cpu_buffer->pages);
570 
571 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
572 			    GFP_KERNEL, cpu_to_node(cpu));
573 	if (!bpage)
574 		goto fail_free_buffer;
575 
576 	cpu_buffer->reader_page = bpage;
577 	addr = __get_free_page(GFP_KERNEL);
578 	if (!addr)
579 		goto fail_free_reader;
580 	bpage->page = (void *)addr;
581 	rb_init_page(bpage->page);
582 
583 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
584 
585 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
586 	if (ret < 0)
587 		goto fail_free_reader;
588 
589 	cpu_buffer->head_page
590 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
591 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
592 
593 	return cpu_buffer;
594 
595  fail_free_reader:
596 	free_buffer_page(cpu_buffer->reader_page);
597 
598  fail_free_buffer:
599 	kfree(cpu_buffer);
600 	return NULL;
601 }
602 
603 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
604 {
605 	struct list_head *head = &cpu_buffer->pages;
606 	struct buffer_page *bpage, *tmp;
607 
608 	free_buffer_page(cpu_buffer->reader_page);
609 
610 	list_for_each_entry_safe(bpage, tmp, head, list) {
611 		list_del_init(&bpage->list);
612 		free_buffer_page(bpage);
613 	}
614 	kfree(cpu_buffer);
615 }
616 
617 /*
618  * Causes compile errors if the struct buffer_page gets bigger
619  * than the struct page.
620  */
621 extern int ring_buffer_page_too_big(void);
622 
623 #ifdef CONFIG_HOTPLUG_CPU
624 static int rb_cpu_notify(struct notifier_block *self,
625 			 unsigned long action, void *hcpu);
626 #endif
627 
628 /**
629  * ring_buffer_alloc - allocate a new ring_buffer
630  * @size: the size in bytes per cpu that is needed.
631  * @flags: attributes to set for the ring buffer.
632  *
633  * Currently the only flag that is available is the RB_FL_OVERWRITE
634  * flag. This flag means that the buffer will overwrite old data
635  * when the buffer wraps. If this flag is not set, the buffer will
636  * drop data when the tail hits the head.
637  */
638 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
639 {
640 	struct ring_buffer *buffer;
641 	int bsize;
642 	int cpu;
643 
644 	/* Paranoid! Optimizes out when all is well */
645 	if (sizeof(struct buffer_page) > sizeof(struct page))
646 		ring_buffer_page_too_big();
647 
648 
649 	/* keep it in its own cache line */
650 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
651 			 GFP_KERNEL);
652 	if (!buffer)
653 		return NULL;
654 
655 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
656 		goto fail_free_buffer;
657 
658 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
659 	buffer->flags = flags;
660 	buffer->clock = trace_clock_local;
661 
662 	/* need at least two pages */
663 	if (buffer->pages == 1)
664 		buffer->pages++;
665 
666 	/*
667 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
668 	 * in early initcall, it will not be notified of secondary cpus.
669 	 * In that off case, we need to allocate for all possible cpus.
670 	 */
671 #ifdef CONFIG_HOTPLUG_CPU
672 	get_online_cpus();
673 	cpumask_copy(buffer->cpumask, cpu_online_mask);
674 #else
675 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
676 #endif
677 	buffer->cpus = nr_cpu_ids;
678 
679 	bsize = sizeof(void *) * nr_cpu_ids;
680 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
681 				  GFP_KERNEL);
682 	if (!buffer->buffers)
683 		goto fail_free_cpumask;
684 
685 	for_each_buffer_cpu(buffer, cpu) {
686 		buffer->buffers[cpu] =
687 			rb_allocate_cpu_buffer(buffer, cpu);
688 		if (!buffer->buffers[cpu])
689 			goto fail_free_buffers;
690 	}
691 
692 #ifdef CONFIG_HOTPLUG_CPU
693 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
694 	buffer->cpu_notify.priority = 0;
695 	register_cpu_notifier(&buffer->cpu_notify);
696 #endif
697 
698 	put_online_cpus();
699 	mutex_init(&buffer->mutex);
700 
701 	return buffer;
702 
703  fail_free_buffers:
704 	for_each_buffer_cpu(buffer, cpu) {
705 		if (buffer->buffers[cpu])
706 			rb_free_cpu_buffer(buffer->buffers[cpu]);
707 	}
708 	kfree(buffer->buffers);
709 
710  fail_free_cpumask:
711 	free_cpumask_var(buffer->cpumask);
712 	put_online_cpus();
713 
714  fail_free_buffer:
715 	kfree(buffer);
716 	return NULL;
717 }
718 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
719 
720 /**
721  * ring_buffer_free - free a ring buffer.
722  * @buffer: the buffer to free.
723  */
724 void
725 ring_buffer_free(struct ring_buffer *buffer)
726 {
727 	int cpu;
728 
729 	get_online_cpus();
730 
731 #ifdef CONFIG_HOTPLUG_CPU
732 	unregister_cpu_notifier(&buffer->cpu_notify);
733 #endif
734 
735 	for_each_buffer_cpu(buffer, cpu)
736 		rb_free_cpu_buffer(buffer->buffers[cpu]);
737 
738 	put_online_cpus();
739 
740 	free_cpumask_var(buffer->cpumask);
741 
742 	kfree(buffer);
743 }
744 EXPORT_SYMBOL_GPL(ring_buffer_free);
745 
746 void ring_buffer_set_clock(struct ring_buffer *buffer,
747 			   u64 (*clock)(void))
748 {
749 	buffer->clock = clock;
750 }
751 
752 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
753 
754 static void
755 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
756 {
757 	struct buffer_page *bpage;
758 	struct list_head *p;
759 	unsigned i;
760 
761 	atomic_inc(&cpu_buffer->record_disabled);
762 	synchronize_sched();
763 
764 	for (i = 0; i < nr_pages; i++) {
765 		if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
766 			return;
767 		p = cpu_buffer->pages.next;
768 		bpage = list_entry(p, struct buffer_page, list);
769 		list_del_init(&bpage->list);
770 		free_buffer_page(bpage);
771 	}
772 	if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
773 		return;
774 
775 	rb_reset_cpu(cpu_buffer);
776 
777 	rb_check_pages(cpu_buffer);
778 
779 	atomic_dec(&cpu_buffer->record_disabled);
780 
781 }
782 
783 static void
784 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
785 		struct list_head *pages, unsigned nr_pages)
786 {
787 	struct buffer_page *bpage;
788 	struct list_head *p;
789 	unsigned i;
790 
791 	atomic_inc(&cpu_buffer->record_disabled);
792 	synchronize_sched();
793 
794 	for (i = 0; i < nr_pages; i++) {
795 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
796 			return;
797 		p = pages->next;
798 		bpage = list_entry(p, struct buffer_page, list);
799 		list_del_init(&bpage->list);
800 		list_add_tail(&bpage->list, &cpu_buffer->pages);
801 	}
802 	rb_reset_cpu(cpu_buffer);
803 
804 	rb_check_pages(cpu_buffer);
805 
806 	atomic_dec(&cpu_buffer->record_disabled);
807 }
808 
809 /**
810  * ring_buffer_resize - resize the ring buffer
811  * @buffer: the buffer to resize.
812  * @size: the new size.
813  *
814  * The tracer is responsible for making sure that the buffer is
815  * not being used while changing the size.
816  * Note: We may be able to change the above requirement by using
817  *  RCU synchronizations.
818  *
819  * Minimum size is 2 * BUF_PAGE_SIZE.
820  *
821  * Returns -1 on failure.
822  */
823 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
824 {
825 	struct ring_buffer_per_cpu *cpu_buffer;
826 	unsigned nr_pages, rm_pages, new_pages;
827 	struct buffer_page *bpage, *tmp;
828 	unsigned long buffer_size;
829 	unsigned long addr;
830 	LIST_HEAD(pages);
831 	int i, cpu;
832 
833 	/*
834 	 * Always succeed at resizing a non-existent buffer:
835 	 */
836 	if (!buffer)
837 		return size;
838 
839 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
840 	size *= BUF_PAGE_SIZE;
841 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
842 
843 	/* we need a minimum of two pages */
844 	if (size < BUF_PAGE_SIZE * 2)
845 		size = BUF_PAGE_SIZE * 2;
846 
847 	if (size == buffer_size)
848 		return size;
849 
850 	mutex_lock(&buffer->mutex);
851 	get_online_cpus();
852 
853 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
854 
855 	if (size < buffer_size) {
856 
857 		/* easy case, just free pages */
858 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
859 			goto out_fail;
860 
861 		rm_pages = buffer->pages - nr_pages;
862 
863 		for_each_buffer_cpu(buffer, cpu) {
864 			cpu_buffer = buffer->buffers[cpu];
865 			rb_remove_pages(cpu_buffer, rm_pages);
866 		}
867 		goto out;
868 	}
869 
870 	/*
871 	 * This is a bit more difficult. We only want to add pages
872 	 * when we can allocate enough for all CPUs. We do this
873 	 * by allocating all the pages and storing them on a local
874 	 * link list. If we succeed in our allocation, then we
875 	 * add these pages to the cpu_buffers. Otherwise we just free
876 	 * them all and return -ENOMEM;
877 	 */
878 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
879 		goto out_fail;
880 
881 	new_pages = nr_pages - buffer->pages;
882 
883 	for_each_buffer_cpu(buffer, cpu) {
884 		for (i = 0; i < new_pages; i++) {
885 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
886 						  cache_line_size()),
887 					    GFP_KERNEL, cpu_to_node(cpu));
888 			if (!bpage)
889 				goto free_pages;
890 			list_add(&bpage->list, &pages);
891 			addr = __get_free_page(GFP_KERNEL);
892 			if (!addr)
893 				goto free_pages;
894 			bpage->page = (void *)addr;
895 			rb_init_page(bpage->page);
896 		}
897 	}
898 
899 	for_each_buffer_cpu(buffer, cpu) {
900 		cpu_buffer = buffer->buffers[cpu];
901 		rb_insert_pages(cpu_buffer, &pages, new_pages);
902 	}
903 
904 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
905 		goto out_fail;
906 
907  out:
908 	buffer->pages = nr_pages;
909 	put_online_cpus();
910 	mutex_unlock(&buffer->mutex);
911 
912 	return size;
913 
914  free_pages:
915 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
916 		list_del_init(&bpage->list);
917 		free_buffer_page(bpage);
918 	}
919 	put_online_cpus();
920 	mutex_unlock(&buffer->mutex);
921 	return -ENOMEM;
922 
923 	/*
924 	 * Something went totally wrong, and we are too paranoid
925 	 * to even clean up the mess.
926 	 */
927  out_fail:
928 	put_online_cpus();
929 	mutex_unlock(&buffer->mutex);
930 	return -1;
931 }
932 EXPORT_SYMBOL_GPL(ring_buffer_resize);
933 
934 static inline void *
935 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
936 {
937 	return bpage->data + index;
938 }
939 
940 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
941 {
942 	return bpage->page->data + index;
943 }
944 
945 static inline struct ring_buffer_event *
946 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
947 {
948 	return __rb_page_index(cpu_buffer->reader_page,
949 			       cpu_buffer->reader_page->read);
950 }
951 
952 static inline struct ring_buffer_event *
953 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955 	return __rb_page_index(cpu_buffer->head_page,
956 			       cpu_buffer->head_page->read);
957 }
958 
959 static inline struct ring_buffer_event *
960 rb_iter_head_event(struct ring_buffer_iter *iter)
961 {
962 	return __rb_page_index(iter->head_page, iter->head);
963 }
964 
965 static inline unsigned rb_page_write(struct buffer_page *bpage)
966 {
967 	return local_read(&bpage->write);
968 }
969 
970 static inline unsigned rb_page_commit(struct buffer_page *bpage)
971 {
972 	return local_read(&bpage->page->commit);
973 }
974 
975 /* Size is determined by what has been commited */
976 static inline unsigned rb_page_size(struct buffer_page *bpage)
977 {
978 	return rb_page_commit(bpage);
979 }
980 
981 static inline unsigned
982 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
983 {
984 	return rb_page_commit(cpu_buffer->commit_page);
985 }
986 
987 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
988 {
989 	return rb_page_commit(cpu_buffer->head_page);
990 }
991 
992 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
993 			       struct buffer_page **bpage)
994 {
995 	struct list_head *p = (*bpage)->list.next;
996 
997 	if (p == &cpu_buffer->pages)
998 		p = p->next;
999 
1000 	*bpage = list_entry(p, struct buffer_page, list);
1001 }
1002 
1003 static inline unsigned
1004 rb_event_index(struct ring_buffer_event *event)
1005 {
1006 	unsigned long addr = (unsigned long)event;
1007 
1008 	return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1009 }
1010 
1011 static inline int
1012 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1013 	     struct ring_buffer_event *event)
1014 {
1015 	unsigned long addr = (unsigned long)event;
1016 	unsigned long index;
1017 
1018 	index = rb_event_index(event);
1019 	addr &= PAGE_MASK;
1020 
1021 	return cpu_buffer->commit_page->page == (void *)addr &&
1022 		rb_commit_index(cpu_buffer) == index;
1023 }
1024 
1025 static void
1026 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1027 		    struct ring_buffer_event *event)
1028 {
1029 	unsigned long addr = (unsigned long)event;
1030 	unsigned long index;
1031 
1032 	index = rb_event_index(event);
1033 	addr &= PAGE_MASK;
1034 
1035 	while (cpu_buffer->commit_page->page != (void *)addr) {
1036 		if (RB_WARN_ON(cpu_buffer,
1037 			  cpu_buffer->commit_page == cpu_buffer->tail_page))
1038 			return;
1039 		cpu_buffer->commit_page->page->commit =
1040 			cpu_buffer->commit_page->write;
1041 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1042 		cpu_buffer->write_stamp =
1043 			cpu_buffer->commit_page->page->time_stamp;
1044 	}
1045 
1046 	/* Now set the commit to the event's index */
1047 	local_set(&cpu_buffer->commit_page->page->commit, index);
1048 }
1049 
1050 static void
1051 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1052 {
1053 	/*
1054 	 * We only race with interrupts and NMIs on this CPU.
1055 	 * If we own the commit event, then we can commit
1056 	 * all others that interrupted us, since the interruptions
1057 	 * are in stack format (they finish before they come
1058 	 * back to us). This allows us to do a simple loop to
1059 	 * assign the commit to the tail.
1060 	 */
1061  again:
1062 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1063 		cpu_buffer->commit_page->page->commit =
1064 			cpu_buffer->commit_page->write;
1065 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1066 		cpu_buffer->write_stamp =
1067 			cpu_buffer->commit_page->page->time_stamp;
1068 		/* add barrier to keep gcc from optimizing too much */
1069 		barrier();
1070 	}
1071 	while (rb_commit_index(cpu_buffer) !=
1072 	       rb_page_write(cpu_buffer->commit_page)) {
1073 		cpu_buffer->commit_page->page->commit =
1074 			cpu_buffer->commit_page->write;
1075 		barrier();
1076 	}
1077 
1078 	/* again, keep gcc from optimizing */
1079 	barrier();
1080 
1081 	/*
1082 	 * If an interrupt came in just after the first while loop
1083 	 * and pushed the tail page forward, we will be left with
1084 	 * a dangling commit that will never go forward.
1085 	 */
1086 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1087 		goto again;
1088 }
1089 
1090 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1091 {
1092 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1093 	cpu_buffer->reader_page->read = 0;
1094 }
1095 
1096 static void rb_inc_iter(struct ring_buffer_iter *iter)
1097 {
1098 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1099 
1100 	/*
1101 	 * The iterator could be on the reader page (it starts there).
1102 	 * But the head could have moved, since the reader was
1103 	 * found. Check for this case and assign the iterator
1104 	 * to the head page instead of next.
1105 	 */
1106 	if (iter->head_page == cpu_buffer->reader_page)
1107 		iter->head_page = cpu_buffer->head_page;
1108 	else
1109 		rb_inc_page(cpu_buffer, &iter->head_page);
1110 
1111 	iter->read_stamp = iter->head_page->page->time_stamp;
1112 	iter->head = 0;
1113 }
1114 
1115 /**
1116  * ring_buffer_update_event - update event type and data
1117  * @event: the even to update
1118  * @type: the type of event
1119  * @length: the size of the event field in the ring buffer
1120  *
1121  * Update the type and data fields of the event. The length
1122  * is the actual size that is written to the ring buffer,
1123  * and with this, we can determine what to place into the
1124  * data field.
1125  */
1126 static void
1127 rb_update_event(struct ring_buffer_event *event,
1128 			 unsigned type, unsigned length)
1129 {
1130 	event->type_len = type;
1131 
1132 	switch (type) {
1133 
1134 	case RINGBUF_TYPE_PADDING:
1135 	case RINGBUF_TYPE_TIME_EXTEND:
1136 	case RINGBUF_TYPE_TIME_STAMP:
1137 		break;
1138 
1139 	case 0:
1140 		length -= RB_EVNT_HDR_SIZE;
1141 		if (length > RB_MAX_SMALL_DATA)
1142 			event->array[0] = length;
1143 		else
1144 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1145 		break;
1146 	default:
1147 		BUG();
1148 	}
1149 }
1150 
1151 static unsigned rb_calculate_event_length(unsigned length)
1152 {
1153 	struct ring_buffer_event event; /* Used only for sizeof array */
1154 
1155 	/* zero length can cause confusions */
1156 	if (!length)
1157 		length = 1;
1158 
1159 	if (length > RB_MAX_SMALL_DATA)
1160 		length += sizeof(event.array[0]);
1161 
1162 	length += RB_EVNT_HDR_SIZE;
1163 	length = ALIGN(length, RB_ALIGNMENT);
1164 
1165 	return length;
1166 }
1167 
1168 
1169 static struct ring_buffer_event *
1170 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1171 	     unsigned long length, unsigned long tail,
1172 	     struct buffer_page *commit_page,
1173 	     struct buffer_page *tail_page, u64 *ts)
1174 {
1175 	struct buffer_page *next_page, *head_page, *reader_page;
1176 	struct ring_buffer *buffer = cpu_buffer->buffer;
1177 	struct ring_buffer_event *event;
1178 	bool lock_taken = false;
1179 	unsigned long flags;
1180 
1181 	next_page = tail_page;
1182 
1183 	local_irq_save(flags);
1184 	/*
1185 	 * Since the write to the buffer is still not
1186 	 * fully lockless, we must be careful with NMIs.
1187 	 * The locks in the writers are taken when a write
1188 	 * crosses to a new page. The locks protect against
1189 	 * races with the readers (this will soon be fixed
1190 	 * with a lockless solution).
1191 	 *
1192 	 * Because we can not protect against NMIs, and we
1193 	 * want to keep traces reentrant, we need to manage
1194 	 * what happens when we are in an NMI.
1195 	 *
1196 	 * NMIs can happen after we take the lock.
1197 	 * If we are in an NMI, only take the lock
1198 	 * if it is not already taken. Otherwise
1199 	 * simply fail.
1200 	 */
1201 	if (unlikely(in_nmi())) {
1202 		if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1203 			cpu_buffer->nmi_dropped++;
1204 			goto out_reset;
1205 		}
1206 	} else
1207 		__raw_spin_lock(&cpu_buffer->lock);
1208 
1209 	lock_taken = true;
1210 
1211 	rb_inc_page(cpu_buffer, &next_page);
1212 
1213 	head_page = cpu_buffer->head_page;
1214 	reader_page = cpu_buffer->reader_page;
1215 
1216 	/* we grabbed the lock before incrementing */
1217 	if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1218 		goto out_reset;
1219 
1220 	/*
1221 	 * If for some reason, we had an interrupt storm that made
1222 	 * it all the way around the buffer, bail, and warn
1223 	 * about it.
1224 	 */
1225 	if (unlikely(next_page == commit_page)) {
1226 		cpu_buffer->commit_overrun++;
1227 		goto out_reset;
1228 	}
1229 
1230 	if (next_page == head_page) {
1231 		if (!(buffer->flags & RB_FL_OVERWRITE))
1232 			goto out_reset;
1233 
1234 		/* tail_page has not moved yet? */
1235 		if (tail_page == cpu_buffer->tail_page) {
1236 			/* count overflows */
1237 			cpu_buffer->overrun +=
1238 				local_read(&head_page->entries);
1239 
1240 			rb_inc_page(cpu_buffer, &head_page);
1241 			cpu_buffer->head_page = head_page;
1242 			cpu_buffer->head_page->read = 0;
1243 		}
1244 	}
1245 
1246 	/*
1247 	 * If the tail page is still the same as what we think
1248 	 * it is, then it is up to us to update the tail
1249 	 * pointer.
1250 	 */
1251 	if (tail_page == cpu_buffer->tail_page) {
1252 		local_set(&next_page->write, 0);
1253 		local_set(&next_page->entries, 0);
1254 		local_set(&next_page->page->commit, 0);
1255 		cpu_buffer->tail_page = next_page;
1256 
1257 		/* reread the time stamp */
1258 		*ts = rb_time_stamp(buffer, cpu_buffer->cpu);
1259 		cpu_buffer->tail_page->page->time_stamp = *ts;
1260 	}
1261 
1262 	/*
1263 	 * The actual tail page has moved forward.
1264 	 */
1265 	if (tail < BUF_PAGE_SIZE) {
1266 		/* Mark the rest of the page with padding */
1267 		event = __rb_page_index(tail_page, tail);
1268 		rb_event_set_padding(event);
1269 	}
1270 
1271 	/* Set the write back to the previous setting */
1272 	local_sub(length, &tail_page->write);
1273 
1274 	/*
1275 	 * If this was a commit entry that failed,
1276 	 * increment that too
1277 	 */
1278 	if (tail_page == cpu_buffer->commit_page &&
1279 	    tail == rb_commit_index(cpu_buffer)) {
1280 		rb_set_commit_to_write(cpu_buffer);
1281 	}
1282 
1283 	__raw_spin_unlock(&cpu_buffer->lock);
1284 	local_irq_restore(flags);
1285 
1286 	/* fail and let the caller try again */
1287 	return ERR_PTR(-EAGAIN);
1288 
1289  out_reset:
1290 	/* reset write */
1291 	local_sub(length, &tail_page->write);
1292 
1293 	if (likely(lock_taken))
1294 		__raw_spin_unlock(&cpu_buffer->lock);
1295 	local_irq_restore(flags);
1296 	return NULL;
1297 }
1298 
1299 static struct ring_buffer_event *
1300 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1301 		  unsigned type, unsigned long length, u64 *ts)
1302 {
1303 	struct buffer_page *tail_page, *commit_page;
1304 	struct ring_buffer_event *event;
1305 	unsigned long tail, write;
1306 
1307 	commit_page = cpu_buffer->commit_page;
1308 	/* we just need to protect against interrupts */
1309 	barrier();
1310 	tail_page = cpu_buffer->tail_page;
1311 	write = local_add_return(length, &tail_page->write);
1312 	tail = write - length;
1313 
1314 	/* See if we shot pass the end of this buffer page */
1315 	if (write > BUF_PAGE_SIZE)
1316 		return rb_move_tail(cpu_buffer, length, tail,
1317 				    commit_page, tail_page, ts);
1318 
1319 	/* We reserved something on the buffer */
1320 
1321 	if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1322 		return NULL;
1323 
1324 	event = __rb_page_index(tail_page, tail);
1325 	rb_update_event(event, type, length);
1326 
1327 	/* The passed in type is zero for DATA */
1328 	if (likely(!type))
1329 		local_inc(&tail_page->entries);
1330 
1331 	/*
1332 	 * If this is a commit and the tail is zero, then update
1333 	 * this page's time stamp.
1334 	 */
1335 	if (!tail && rb_is_commit(cpu_buffer, event))
1336 		cpu_buffer->commit_page->page->time_stamp = *ts;
1337 
1338 	return event;
1339 }
1340 
1341 static inline int
1342 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1343 		  struct ring_buffer_event *event)
1344 {
1345 	unsigned long new_index, old_index;
1346 	struct buffer_page *bpage;
1347 	unsigned long index;
1348 	unsigned long addr;
1349 
1350 	new_index = rb_event_index(event);
1351 	old_index = new_index + rb_event_length(event);
1352 	addr = (unsigned long)event;
1353 	addr &= PAGE_MASK;
1354 
1355 	bpage = cpu_buffer->tail_page;
1356 
1357 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1358 		/*
1359 		 * This is on the tail page. It is possible that
1360 		 * a write could come in and move the tail page
1361 		 * and write to the next page. That is fine
1362 		 * because we just shorten what is on this page.
1363 		 */
1364 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1365 		if (index == old_index)
1366 			return 1;
1367 	}
1368 
1369 	/* could not discard */
1370 	return 0;
1371 }
1372 
1373 static int
1374 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1375 		  u64 *ts, u64 *delta)
1376 {
1377 	struct ring_buffer_event *event;
1378 	static int once;
1379 	int ret;
1380 
1381 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1382 		printk(KERN_WARNING "Delta way too big! %llu"
1383 		       " ts=%llu write stamp = %llu\n",
1384 		       (unsigned long long)*delta,
1385 		       (unsigned long long)*ts,
1386 		       (unsigned long long)cpu_buffer->write_stamp);
1387 		WARN_ON(1);
1388 	}
1389 
1390 	/*
1391 	 * The delta is too big, we to add a
1392 	 * new timestamp.
1393 	 */
1394 	event = __rb_reserve_next(cpu_buffer,
1395 				  RINGBUF_TYPE_TIME_EXTEND,
1396 				  RB_LEN_TIME_EXTEND,
1397 				  ts);
1398 	if (!event)
1399 		return -EBUSY;
1400 
1401 	if (PTR_ERR(event) == -EAGAIN)
1402 		return -EAGAIN;
1403 
1404 	/* Only a commited time event can update the write stamp */
1405 	if (rb_is_commit(cpu_buffer, event)) {
1406 		/*
1407 		 * If this is the first on the page, then we need to
1408 		 * update the page itself, and just put in a zero.
1409 		 */
1410 		if (rb_event_index(event)) {
1411 			event->time_delta = *delta & TS_MASK;
1412 			event->array[0] = *delta >> TS_SHIFT;
1413 		} else {
1414 			cpu_buffer->commit_page->page->time_stamp = *ts;
1415 			/* try to discard, since we do not need this */
1416 			if (!rb_try_to_discard(cpu_buffer, event)) {
1417 				/* nope, just zero it */
1418 				event->time_delta = 0;
1419 				event->array[0] = 0;
1420 			}
1421 		}
1422 		cpu_buffer->write_stamp = *ts;
1423 		/* let the caller know this was the commit */
1424 		ret = 1;
1425 	} else {
1426 		/* Try to discard the event */
1427 		if (!rb_try_to_discard(cpu_buffer, event)) {
1428 			/* Darn, this is just wasted space */
1429 			event->time_delta = 0;
1430 			event->array[0] = 0;
1431 			ret = 0;
1432 		}
1433 	}
1434 
1435 	*delta = 0;
1436 
1437 	return ret;
1438 }
1439 
1440 static struct ring_buffer_event *
1441 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1442 		      unsigned long length)
1443 {
1444 	struct ring_buffer_event *event;
1445 	u64 ts, delta = 0;
1446 	int commit = 0;
1447 	int nr_loops = 0;
1448 
1449 	length = rb_calculate_event_length(length);
1450  again:
1451 	/*
1452 	 * We allow for interrupts to reenter here and do a trace.
1453 	 * If one does, it will cause this original code to loop
1454 	 * back here. Even with heavy interrupts happening, this
1455 	 * should only happen a few times in a row. If this happens
1456 	 * 1000 times in a row, there must be either an interrupt
1457 	 * storm or we have something buggy.
1458 	 * Bail!
1459 	 */
1460 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1461 		return NULL;
1462 
1463 	ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1464 
1465 	/*
1466 	 * Only the first commit can update the timestamp.
1467 	 * Yes there is a race here. If an interrupt comes in
1468 	 * just after the conditional and it traces too, then it
1469 	 * will also check the deltas. More than one timestamp may
1470 	 * also be made. But only the entry that did the actual
1471 	 * commit will be something other than zero.
1472 	 */
1473 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1474 		   rb_page_write(cpu_buffer->tail_page) ==
1475 		   rb_commit_index(cpu_buffer))) {
1476 		u64 diff;
1477 
1478 		diff = ts - cpu_buffer->write_stamp;
1479 
1480 		/* make sure this diff is calculated here */
1481 		barrier();
1482 
1483 		/* Did the write stamp get updated already? */
1484 		if (unlikely(ts < cpu_buffer->write_stamp))
1485 			goto get_event;
1486 
1487 		delta = diff;
1488 		if (unlikely(test_time_stamp(delta))) {
1489 
1490 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1491 			if (commit == -EBUSY)
1492 				return NULL;
1493 
1494 			if (commit == -EAGAIN)
1495 				goto again;
1496 
1497 			RB_WARN_ON(cpu_buffer, commit < 0);
1498 		}
1499 	}
1500 
1501  get_event:
1502 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
1503 	if (unlikely(PTR_ERR(event) == -EAGAIN))
1504 		goto again;
1505 
1506 	if (!event) {
1507 		if (unlikely(commit))
1508 			/*
1509 			 * Ouch! We needed a timestamp and it was commited. But
1510 			 * we didn't get our event reserved.
1511 			 */
1512 			rb_set_commit_to_write(cpu_buffer);
1513 		return NULL;
1514 	}
1515 
1516 	/*
1517 	 * If the timestamp was commited, make the commit our entry
1518 	 * now so that we will update it when needed.
1519 	 */
1520 	if (unlikely(commit))
1521 		rb_set_commit_event(cpu_buffer, event);
1522 	else if (!rb_is_commit(cpu_buffer, event))
1523 		delta = 0;
1524 
1525 	event->time_delta = delta;
1526 
1527 	return event;
1528 }
1529 
1530 #define TRACE_RECURSIVE_DEPTH 16
1531 
1532 static int trace_recursive_lock(void)
1533 {
1534 	current->trace_recursion++;
1535 
1536 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1537 		return 0;
1538 
1539 	/* Disable all tracing before we do anything else */
1540 	tracing_off_permanent();
1541 
1542 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
1543 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1544 		    current->trace_recursion,
1545 		    hardirq_count() >> HARDIRQ_SHIFT,
1546 		    softirq_count() >> SOFTIRQ_SHIFT,
1547 		    in_nmi());
1548 
1549 	WARN_ON_ONCE(1);
1550 	return -1;
1551 }
1552 
1553 static void trace_recursive_unlock(void)
1554 {
1555 	WARN_ON_ONCE(!current->trace_recursion);
1556 
1557 	current->trace_recursion--;
1558 }
1559 
1560 static DEFINE_PER_CPU(int, rb_need_resched);
1561 
1562 /**
1563  * ring_buffer_lock_reserve - reserve a part of the buffer
1564  * @buffer: the ring buffer to reserve from
1565  * @length: the length of the data to reserve (excluding event header)
1566  *
1567  * Returns a reseverd event on the ring buffer to copy directly to.
1568  * The user of this interface will need to get the body to write into
1569  * and can use the ring_buffer_event_data() interface.
1570  *
1571  * The length is the length of the data needed, not the event length
1572  * which also includes the event header.
1573  *
1574  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1575  * If NULL is returned, then nothing has been allocated or locked.
1576  */
1577 struct ring_buffer_event *
1578 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1579 {
1580 	struct ring_buffer_per_cpu *cpu_buffer;
1581 	struct ring_buffer_event *event;
1582 	int cpu, resched;
1583 
1584 	if (ring_buffer_flags != RB_BUFFERS_ON)
1585 		return NULL;
1586 
1587 	if (atomic_read(&buffer->record_disabled))
1588 		return NULL;
1589 
1590 	/* If we are tracing schedule, we don't want to recurse */
1591 	resched = ftrace_preempt_disable();
1592 
1593 	if (trace_recursive_lock())
1594 		goto out_nocheck;
1595 
1596 	cpu = raw_smp_processor_id();
1597 
1598 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1599 		goto out;
1600 
1601 	cpu_buffer = buffer->buffers[cpu];
1602 
1603 	if (atomic_read(&cpu_buffer->record_disabled))
1604 		goto out;
1605 
1606 	if (length > BUF_MAX_DATA_SIZE)
1607 		goto out;
1608 
1609 	event = rb_reserve_next_event(cpu_buffer, length);
1610 	if (!event)
1611 		goto out;
1612 
1613 	/*
1614 	 * Need to store resched state on this cpu.
1615 	 * Only the first needs to.
1616 	 */
1617 
1618 	if (preempt_count() == 1)
1619 		per_cpu(rb_need_resched, cpu) = resched;
1620 
1621 	return event;
1622 
1623  out:
1624 	trace_recursive_unlock();
1625 
1626  out_nocheck:
1627 	ftrace_preempt_enable(resched);
1628 	return NULL;
1629 }
1630 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1631 
1632 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1633 		      struct ring_buffer_event *event)
1634 {
1635 	local_inc(&cpu_buffer->entries);
1636 
1637 	/* Only process further if we own the commit */
1638 	if (!rb_is_commit(cpu_buffer, event))
1639 		return;
1640 
1641 	cpu_buffer->write_stamp += event->time_delta;
1642 
1643 	rb_set_commit_to_write(cpu_buffer);
1644 }
1645 
1646 /**
1647  * ring_buffer_unlock_commit - commit a reserved
1648  * @buffer: The buffer to commit to
1649  * @event: The event pointer to commit.
1650  *
1651  * This commits the data to the ring buffer, and releases any locks held.
1652  *
1653  * Must be paired with ring_buffer_lock_reserve.
1654  */
1655 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1656 			      struct ring_buffer_event *event)
1657 {
1658 	struct ring_buffer_per_cpu *cpu_buffer;
1659 	int cpu = raw_smp_processor_id();
1660 
1661 	cpu_buffer = buffer->buffers[cpu];
1662 
1663 	rb_commit(cpu_buffer, event);
1664 
1665 	trace_recursive_unlock();
1666 
1667 	/*
1668 	 * Only the last preempt count needs to restore preemption.
1669 	 */
1670 	if (preempt_count() == 1)
1671 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1672 	else
1673 		preempt_enable_no_resched_notrace();
1674 
1675 	return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1678 
1679 static inline void rb_event_discard(struct ring_buffer_event *event)
1680 {
1681 	/* array[0] holds the actual length for the discarded event */
1682 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1683 	event->type_len = RINGBUF_TYPE_PADDING;
1684 	/* time delta must be non zero */
1685 	if (!event->time_delta)
1686 		event->time_delta = 1;
1687 }
1688 
1689 /**
1690  * ring_buffer_event_discard - discard any event in the ring buffer
1691  * @event: the event to discard
1692  *
1693  * Sometimes a event that is in the ring buffer needs to be ignored.
1694  * This function lets the user discard an event in the ring buffer
1695  * and then that event will not be read later.
1696  *
1697  * Note, it is up to the user to be careful with this, and protect
1698  * against races. If the user discards an event that has been consumed
1699  * it is possible that it could corrupt the ring buffer.
1700  */
1701 void ring_buffer_event_discard(struct ring_buffer_event *event)
1702 {
1703 	rb_event_discard(event);
1704 }
1705 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1706 
1707 /**
1708  * ring_buffer_commit_discard - discard an event that has not been committed
1709  * @buffer: the ring buffer
1710  * @event: non committed event to discard
1711  *
1712  * This is similar to ring_buffer_event_discard but must only be
1713  * performed on an event that has not been committed yet. The difference
1714  * is that this will also try to free the event from the ring buffer
1715  * if another event has not been added behind it.
1716  *
1717  * If another event has been added behind it, it will set the event
1718  * up as discarded, and perform the commit.
1719  *
1720  * If this function is called, do not call ring_buffer_unlock_commit on
1721  * the event.
1722  */
1723 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1724 				struct ring_buffer_event *event)
1725 {
1726 	struct ring_buffer_per_cpu *cpu_buffer;
1727 	int cpu;
1728 
1729 	/* The event is discarded regardless */
1730 	rb_event_discard(event);
1731 
1732 	/*
1733 	 * This must only be called if the event has not been
1734 	 * committed yet. Thus we can assume that preemption
1735 	 * is still disabled.
1736 	 */
1737 	RB_WARN_ON(buffer, preemptible());
1738 
1739 	cpu = smp_processor_id();
1740 	cpu_buffer = buffer->buffers[cpu];
1741 
1742 	if (!rb_try_to_discard(cpu_buffer, event))
1743 		goto out;
1744 
1745 	/*
1746 	 * The commit is still visible by the reader, so we
1747 	 * must increment entries.
1748 	 */
1749 	local_inc(&cpu_buffer->entries);
1750  out:
1751 	/*
1752 	 * If a write came in and pushed the tail page
1753 	 * we still need to update the commit pointer
1754 	 * if we were the commit.
1755 	 */
1756 	if (rb_is_commit(cpu_buffer, event))
1757 		rb_set_commit_to_write(cpu_buffer);
1758 
1759 	trace_recursive_unlock();
1760 
1761 	/*
1762 	 * Only the last preempt count needs to restore preemption.
1763 	 */
1764 	if (preempt_count() == 1)
1765 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1766 	else
1767 		preempt_enable_no_resched_notrace();
1768 
1769 }
1770 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1771 
1772 /**
1773  * ring_buffer_write - write data to the buffer without reserving
1774  * @buffer: The ring buffer to write to.
1775  * @length: The length of the data being written (excluding the event header)
1776  * @data: The data to write to the buffer.
1777  *
1778  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1779  * one function. If you already have the data to write to the buffer, it
1780  * may be easier to simply call this function.
1781  *
1782  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1783  * and not the length of the event which would hold the header.
1784  */
1785 int ring_buffer_write(struct ring_buffer *buffer,
1786 			unsigned long length,
1787 			void *data)
1788 {
1789 	struct ring_buffer_per_cpu *cpu_buffer;
1790 	struct ring_buffer_event *event;
1791 	void *body;
1792 	int ret = -EBUSY;
1793 	int cpu, resched;
1794 
1795 	if (ring_buffer_flags != RB_BUFFERS_ON)
1796 		return -EBUSY;
1797 
1798 	if (atomic_read(&buffer->record_disabled))
1799 		return -EBUSY;
1800 
1801 	resched = ftrace_preempt_disable();
1802 
1803 	cpu = raw_smp_processor_id();
1804 
1805 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1806 		goto out;
1807 
1808 	cpu_buffer = buffer->buffers[cpu];
1809 
1810 	if (atomic_read(&cpu_buffer->record_disabled))
1811 		goto out;
1812 
1813 	if (length > BUF_MAX_DATA_SIZE)
1814 		goto out;
1815 
1816 	event = rb_reserve_next_event(cpu_buffer, length);
1817 	if (!event)
1818 		goto out;
1819 
1820 	body = rb_event_data(event);
1821 
1822 	memcpy(body, data, length);
1823 
1824 	rb_commit(cpu_buffer, event);
1825 
1826 	ret = 0;
1827  out:
1828 	ftrace_preempt_enable(resched);
1829 
1830 	return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(ring_buffer_write);
1833 
1834 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1835 {
1836 	struct buffer_page *reader = cpu_buffer->reader_page;
1837 	struct buffer_page *head = cpu_buffer->head_page;
1838 	struct buffer_page *commit = cpu_buffer->commit_page;
1839 
1840 	return reader->read == rb_page_commit(reader) &&
1841 		(commit == reader ||
1842 		 (commit == head &&
1843 		  head->read == rb_page_commit(commit)));
1844 }
1845 
1846 /**
1847  * ring_buffer_record_disable - stop all writes into the buffer
1848  * @buffer: The ring buffer to stop writes to.
1849  *
1850  * This prevents all writes to the buffer. Any attempt to write
1851  * to the buffer after this will fail and return NULL.
1852  *
1853  * The caller should call synchronize_sched() after this.
1854  */
1855 void ring_buffer_record_disable(struct ring_buffer *buffer)
1856 {
1857 	atomic_inc(&buffer->record_disabled);
1858 }
1859 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1860 
1861 /**
1862  * ring_buffer_record_enable - enable writes to the buffer
1863  * @buffer: The ring buffer to enable writes
1864  *
1865  * Note, multiple disables will need the same number of enables
1866  * to truely enable the writing (much like preempt_disable).
1867  */
1868 void ring_buffer_record_enable(struct ring_buffer *buffer)
1869 {
1870 	atomic_dec(&buffer->record_disabled);
1871 }
1872 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1873 
1874 /**
1875  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1876  * @buffer: The ring buffer to stop writes to.
1877  * @cpu: The CPU buffer to stop
1878  *
1879  * This prevents all writes to the buffer. Any attempt to write
1880  * to the buffer after this will fail and return NULL.
1881  *
1882  * The caller should call synchronize_sched() after this.
1883  */
1884 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1885 {
1886 	struct ring_buffer_per_cpu *cpu_buffer;
1887 
1888 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1889 		return;
1890 
1891 	cpu_buffer = buffer->buffers[cpu];
1892 	atomic_inc(&cpu_buffer->record_disabled);
1893 }
1894 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1895 
1896 /**
1897  * ring_buffer_record_enable_cpu - enable writes to the buffer
1898  * @buffer: The ring buffer to enable writes
1899  * @cpu: The CPU to enable.
1900  *
1901  * Note, multiple disables will need the same number of enables
1902  * to truely enable the writing (much like preempt_disable).
1903  */
1904 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1905 {
1906 	struct ring_buffer_per_cpu *cpu_buffer;
1907 
1908 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1909 		return;
1910 
1911 	cpu_buffer = buffer->buffers[cpu];
1912 	atomic_dec(&cpu_buffer->record_disabled);
1913 }
1914 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1915 
1916 /**
1917  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1918  * @buffer: The ring buffer
1919  * @cpu: The per CPU buffer to get the entries from.
1920  */
1921 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1922 {
1923 	struct ring_buffer_per_cpu *cpu_buffer;
1924 	unsigned long ret;
1925 
1926 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1927 		return 0;
1928 
1929 	cpu_buffer = buffer->buffers[cpu];
1930 	ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1931 		- cpu_buffer->read;
1932 
1933 	return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1936 
1937 /**
1938  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1939  * @buffer: The ring buffer
1940  * @cpu: The per CPU buffer to get the number of overruns from
1941  */
1942 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1943 {
1944 	struct ring_buffer_per_cpu *cpu_buffer;
1945 	unsigned long ret;
1946 
1947 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1948 		return 0;
1949 
1950 	cpu_buffer = buffer->buffers[cpu];
1951 	ret = cpu_buffer->overrun;
1952 
1953 	return ret;
1954 }
1955 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1956 
1957 /**
1958  * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1959  * @buffer: The ring buffer
1960  * @cpu: The per CPU buffer to get the number of overruns from
1961  */
1962 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1963 {
1964 	struct ring_buffer_per_cpu *cpu_buffer;
1965 	unsigned long ret;
1966 
1967 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1968 		return 0;
1969 
1970 	cpu_buffer = buffer->buffers[cpu];
1971 	ret = cpu_buffer->nmi_dropped;
1972 
1973 	return ret;
1974 }
1975 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1976 
1977 /**
1978  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1979  * @buffer: The ring buffer
1980  * @cpu: The per CPU buffer to get the number of overruns from
1981  */
1982 unsigned long
1983 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1984 {
1985 	struct ring_buffer_per_cpu *cpu_buffer;
1986 	unsigned long ret;
1987 
1988 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1989 		return 0;
1990 
1991 	cpu_buffer = buffer->buffers[cpu];
1992 	ret = cpu_buffer->commit_overrun;
1993 
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1997 
1998 /**
1999  * ring_buffer_entries - get the number of entries in a buffer
2000  * @buffer: The ring buffer
2001  *
2002  * Returns the total number of entries in the ring buffer
2003  * (all CPU entries)
2004  */
2005 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2006 {
2007 	struct ring_buffer_per_cpu *cpu_buffer;
2008 	unsigned long entries = 0;
2009 	int cpu;
2010 
2011 	/* if you care about this being correct, lock the buffer */
2012 	for_each_buffer_cpu(buffer, cpu) {
2013 		cpu_buffer = buffer->buffers[cpu];
2014 		entries += (local_read(&cpu_buffer->entries) -
2015 			    cpu_buffer->overrun) - cpu_buffer->read;
2016 	}
2017 
2018 	return entries;
2019 }
2020 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2021 
2022 /**
2023  * ring_buffer_overrun_cpu - get the number of overruns in buffer
2024  * @buffer: The ring buffer
2025  *
2026  * Returns the total number of overruns in the ring buffer
2027  * (all CPU entries)
2028  */
2029 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2030 {
2031 	struct ring_buffer_per_cpu *cpu_buffer;
2032 	unsigned long overruns = 0;
2033 	int cpu;
2034 
2035 	/* if you care about this being correct, lock the buffer */
2036 	for_each_buffer_cpu(buffer, cpu) {
2037 		cpu_buffer = buffer->buffers[cpu];
2038 		overruns += cpu_buffer->overrun;
2039 	}
2040 
2041 	return overruns;
2042 }
2043 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2044 
2045 static void rb_iter_reset(struct ring_buffer_iter *iter)
2046 {
2047 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2048 
2049 	/* Iterator usage is expected to have record disabled */
2050 	if (list_empty(&cpu_buffer->reader_page->list)) {
2051 		iter->head_page = cpu_buffer->head_page;
2052 		iter->head = cpu_buffer->head_page->read;
2053 	} else {
2054 		iter->head_page = cpu_buffer->reader_page;
2055 		iter->head = cpu_buffer->reader_page->read;
2056 	}
2057 	if (iter->head)
2058 		iter->read_stamp = cpu_buffer->read_stamp;
2059 	else
2060 		iter->read_stamp = iter->head_page->page->time_stamp;
2061 }
2062 
2063 /**
2064  * ring_buffer_iter_reset - reset an iterator
2065  * @iter: The iterator to reset
2066  *
2067  * Resets the iterator, so that it will start from the beginning
2068  * again.
2069  */
2070 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2071 {
2072 	struct ring_buffer_per_cpu *cpu_buffer;
2073 	unsigned long flags;
2074 
2075 	if (!iter)
2076 		return;
2077 
2078 	cpu_buffer = iter->cpu_buffer;
2079 
2080 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2081 	rb_iter_reset(iter);
2082 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2083 }
2084 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2085 
2086 /**
2087  * ring_buffer_iter_empty - check if an iterator has no more to read
2088  * @iter: The iterator to check
2089  */
2090 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2091 {
2092 	struct ring_buffer_per_cpu *cpu_buffer;
2093 
2094 	cpu_buffer = iter->cpu_buffer;
2095 
2096 	return iter->head_page == cpu_buffer->commit_page &&
2097 		iter->head == rb_commit_index(cpu_buffer);
2098 }
2099 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2100 
2101 static void
2102 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2103 		     struct ring_buffer_event *event)
2104 {
2105 	u64 delta;
2106 
2107 	switch (event->type_len) {
2108 	case RINGBUF_TYPE_PADDING:
2109 		return;
2110 
2111 	case RINGBUF_TYPE_TIME_EXTEND:
2112 		delta = event->array[0];
2113 		delta <<= TS_SHIFT;
2114 		delta += event->time_delta;
2115 		cpu_buffer->read_stamp += delta;
2116 		return;
2117 
2118 	case RINGBUF_TYPE_TIME_STAMP:
2119 		/* FIXME: not implemented */
2120 		return;
2121 
2122 	case RINGBUF_TYPE_DATA:
2123 		cpu_buffer->read_stamp += event->time_delta;
2124 		return;
2125 
2126 	default:
2127 		BUG();
2128 	}
2129 	return;
2130 }
2131 
2132 static void
2133 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2134 			  struct ring_buffer_event *event)
2135 {
2136 	u64 delta;
2137 
2138 	switch (event->type_len) {
2139 	case RINGBUF_TYPE_PADDING:
2140 		return;
2141 
2142 	case RINGBUF_TYPE_TIME_EXTEND:
2143 		delta = event->array[0];
2144 		delta <<= TS_SHIFT;
2145 		delta += event->time_delta;
2146 		iter->read_stamp += delta;
2147 		return;
2148 
2149 	case RINGBUF_TYPE_TIME_STAMP:
2150 		/* FIXME: not implemented */
2151 		return;
2152 
2153 	case RINGBUF_TYPE_DATA:
2154 		iter->read_stamp += event->time_delta;
2155 		return;
2156 
2157 	default:
2158 		BUG();
2159 	}
2160 	return;
2161 }
2162 
2163 static struct buffer_page *
2164 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2165 {
2166 	struct buffer_page *reader = NULL;
2167 	unsigned long flags;
2168 	int nr_loops = 0;
2169 
2170 	local_irq_save(flags);
2171 	__raw_spin_lock(&cpu_buffer->lock);
2172 
2173  again:
2174 	/*
2175 	 * This should normally only loop twice. But because the
2176 	 * start of the reader inserts an empty page, it causes
2177 	 * a case where we will loop three times. There should be no
2178 	 * reason to loop four times (that I know of).
2179 	 */
2180 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2181 		reader = NULL;
2182 		goto out;
2183 	}
2184 
2185 	reader = cpu_buffer->reader_page;
2186 
2187 	/* If there's more to read, return this page */
2188 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2189 		goto out;
2190 
2191 	/* Never should we have an index greater than the size */
2192 	if (RB_WARN_ON(cpu_buffer,
2193 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2194 		goto out;
2195 
2196 	/* check if we caught up to the tail */
2197 	reader = NULL;
2198 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2199 		goto out;
2200 
2201 	/*
2202 	 * Splice the empty reader page into the list around the head.
2203 	 * Reset the reader page to size zero.
2204 	 */
2205 
2206 	reader = cpu_buffer->head_page;
2207 	cpu_buffer->reader_page->list.next = reader->list.next;
2208 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2209 
2210 	local_set(&cpu_buffer->reader_page->write, 0);
2211 	local_set(&cpu_buffer->reader_page->entries, 0);
2212 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2213 
2214 	/* Make the reader page now replace the head */
2215 	reader->list.prev->next = &cpu_buffer->reader_page->list;
2216 	reader->list.next->prev = &cpu_buffer->reader_page->list;
2217 
2218 	/*
2219 	 * If the tail is on the reader, then we must set the head
2220 	 * to the inserted page, otherwise we set it one before.
2221 	 */
2222 	cpu_buffer->head_page = cpu_buffer->reader_page;
2223 
2224 	if (cpu_buffer->commit_page != reader)
2225 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2226 
2227 	/* Finally update the reader page to the new head */
2228 	cpu_buffer->reader_page = reader;
2229 	rb_reset_reader_page(cpu_buffer);
2230 
2231 	goto again;
2232 
2233  out:
2234 	__raw_spin_unlock(&cpu_buffer->lock);
2235 	local_irq_restore(flags);
2236 
2237 	return reader;
2238 }
2239 
2240 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2241 {
2242 	struct ring_buffer_event *event;
2243 	struct buffer_page *reader;
2244 	unsigned length;
2245 
2246 	reader = rb_get_reader_page(cpu_buffer);
2247 
2248 	/* This function should not be called when buffer is empty */
2249 	if (RB_WARN_ON(cpu_buffer, !reader))
2250 		return;
2251 
2252 	event = rb_reader_event(cpu_buffer);
2253 
2254 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2255 			|| rb_discarded_event(event))
2256 		cpu_buffer->read++;
2257 
2258 	rb_update_read_stamp(cpu_buffer, event);
2259 
2260 	length = rb_event_length(event);
2261 	cpu_buffer->reader_page->read += length;
2262 }
2263 
2264 static void rb_advance_iter(struct ring_buffer_iter *iter)
2265 {
2266 	struct ring_buffer *buffer;
2267 	struct ring_buffer_per_cpu *cpu_buffer;
2268 	struct ring_buffer_event *event;
2269 	unsigned length;
2270 
2271 	cpu_buffer = iter->cpu_buffer;
2272 	buffer = cpu_buffer->buffer;
2273 
2274 	/*
2275 	 * Check if we are at the end of the buffer.
2276 	 */
2277 	if (iter->head >= rb_page_size(iter->head_page)) {
2278 		/* discarded commits can make the page empty */
2279 		if (iter->head_page == cpu_buffer->commit_page)
2280 			return;
2281 		rb_inc_iter(iter);
2282 		return;
2283 	}
2284 
2285 	event = rb_iter_head_event(iter);
2286 
2287 	length = rb_event_length(event);
2288 
2289 	/*
2290 	 * This should not be called to advance the header if we are
2291 	 * at the tail of the buffer.
2292 	 */
2293 	if (RB_WARN_ON(cpu_buffer,
2294 		       (iter->head_page == cpu_buffer->commit_page) &&
2295 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2296 		return;
2297 
2298 	rb_update_iter_read_stamp(iter, event);
2299 
2300 	iter->head += length;
2301 
2302 	/* check for end of page padding */
2303 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2304 	    (iter->head_page != cpu_buffer->commit_page))
2305 		rb_advance_iter(iter);
2306 }
2307 
2308 static struct ring_buffer_event *
2309 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2310 {
2311 	struct ring_buffer_per_cpu *cpu_buffer;
2312 	struct ring_buffer_event *event;
2313 	struct buffer_page *reader;
2314 	int nr_loops = 0;
2315 
2316 	cpu_buffer = buffer->buffers[cpu];
2317 
2318  again:
2319 	/*
2320 	 * We repeat when a timestamp is encountered. It is possible
2321 	 * to get multiple timestamps from an interrupt entering just
2322 	 * as one timestamp is about to be written, or from discarded
2323 	 * commits. The most that we can have is the number on a single page.
2324 	 */
2325 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2326 		return NULL;
2327 
2328 	reader = rb_get_reader_page(cpu_buffer);
2329 	if (!reader)
2330 		return NULL;
2331 
2332 	event = rb_reader_event(cpu_buffer);
2333 
2334 	switch (event->type_len) {
2335 	case RINGBUF_TYPE_PADDING:
2336 		if (rb_null_event(event))
2337 			RB_WARN_ON(cpu_buffer, 1);
2338 		/*
2339 		 * Because the writer could be discarding every
2340 		 * event it creates (which would probably be bad)
2341 		 * if we were to go back to "again" then we may never
2342 		 * catch up, and will trigger the warn on, or lock
2343 		 * the box. Return the padding, and we will release
2344 		 * the current locks, and try again.
2345 		 */
2346 		rb_advance_reader(cpu_buffer);
2347 		return event;
2348 
2349 	case RINGBUF_TYPE_TIME_EXTEND:
2350 		/* Internal data, OK to advance */
2351 		rb_advance_reader(cpu_buffer);
2352 		goto again;
2353 
2354 	case RINGBUF_TYPE_TIME_STAMP:
2355 		/* FIXME: not implemented */
2356 		rb_advance_reader(cpu_buffer);
2357 		goto again;
2358 
2359 	case RINGBUF_TYPE_DATA:
2360 		if (ts) {
2361 			*ts = cpu_buffer->read_stamp + event->time_delta;
2362 			ring_buffer_normalize_time_stamp(buffer,
2363 							 cpu_buffer->cpu, ts);
2364 		}
2365 		return event;
2366 
2367 	default:
2368 		BUG();
2369 	}
2370 
2371 	return NULL;
2372 }
2373 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2374 
2375 static struct ring_buffer_event *
2376 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2377 {
2378 	struct ring_buffer *buffer;
2379 	struct ring_buffer_per_cpu *cpu_buffer;
2380 	struct ring_buffer_event *event;
2381 	int nr_loops = 0;
2382 
2383 	if (ring_buffer_iter_empty(iter))
2384 		return NULL;
2385 
2386 	cpu_buffer = iter->cpu_buffer;
2387 	buffer = cpu_buffer->buffer;
2388 
2389  again:
2390 	/*
2391 	 * We repeat when a timestamp is encountered.
2392 	 * We can get multiple timestamps by nested interrupts or also
2393 	 * if filtering is on (discarding commits). Since discarding
2394 	 * commits can be frequent we can get a lot of timestamps.
2395 	 * But we limit them by not adding timestamps if they begin
2396 	 * at the start of a page.
2397 	 */
2398 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
2399 		return NULL;
2400 
2401 	if (rb_per_cpu_empty(cpu_buffer))
2402 		return NULL;
2403 
2404 	event = rb_iter_head_event(iter);
2405 
2406 	switch (event->type_len) {
2407 	case RINGBUF_TYPE_PADDING:
2408 		if (rb_null_event(event)) {
2409 			rb_inc_iter(iter);
2410 			goto again;
2411 		}
2412 		rb_advance_iter(iter);
2413 		return event;
2414 
2415 	case RINGBUF_TYPE_TIME_EXTEND:
2416 		/* Internal data, OK to advance */
2417 		rb_advance_iter(iter);
2418 		goto again;
2419 
2420 	case RINGBUF_TYPE_TIME_STAMP:
2421 		/* FIXME: not implemented */
2422 		rb_advance_iter(iter);
2423 		goto again;
2424 
2425 	case RINGBUF_TYPE_DATA:
2426 		if (ts) {
2427 			*ts = iter->read_stamp + event->time_delta;
2428 			ring_buffer_normalize_time_stamp(buffer,
2429 							 cpu_buffer->cpu, ts);
2430 		}
2431 		return event;
2432 
2433 	default:
2434 		BUG();
2435 	}
2436 
2437 	return NULL;
2438 }
2439 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2440 
2441 /**
2442  * ring_buffer_peek - peek at the next event to be read
2443  * @buffer: The ring buffer to read
2444  * @cpu: The cpu to peak at
2445  * @ts: The timestamp counter of this event.
2446  *
2447  * This will return the event that will be read next, but does
2448  * not consume the data.
2449  */
2450 struct ring_buffer_event *
2451 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2452 {
2453 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2454 	struct ring_buffer_event *event;
2455 	unsigned long flags;
2456 
2457 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2458 		return NULL;
2459 
2460  again:
2461 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2462 	event = rb_buffer_peek(buffer, cpu, ts);
2463 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2464 
2465 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2466 		cpu_relax();
2467 		goto again;
2468 	}
2469 
2470 	return event;
2471 }
2472 
2473 /**
2474  * ring_buffer_iter_peek - peek at the next event to be read
2475  * @iter: The ring buffer iterator
2476  * @ts: The timestamp counter of this event.
2477  *
2478  * This will return the event that will be read next, but does
2479  * not increment the iterator.
2480  */
2481 struct ring_buffer_event *
2482 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2483 {
2484 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2485 	struct ring_buffer_event *event;
2486 	unsigned long flags;
2487 
2488  again:
2489 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2490 	event = rb_iter_peek(iter, ts);
2491 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2492 
2493 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2494 		cpu_relax();
2495 		goto again;
2496 	}
2497 
2498 	return event;
2499 }
2500 
2501 /**
2502  * ring_buffer_consume - return an event and consume it
2503  * @buffer: The ring buffer to get the next event from
2504  *
2505  * Returns the next event in the ring buffer, and that event is consumed.
2506  * Meaning, that sequential reads will keep returning a different event,
2507  * and eventually empty the ring buffer if the producer is slower.
2508  */
2509 struct ring_buffer_event *
2510 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2511 {
2512 	struct ring_buffer_per_cpu *cpu_buffer;
2513 	struct ring_buffer_event *event = NULL;
2514 	unsigned long flags;
2515 
2516  again:
2517 	/* might be called in atomic */
2518 	preempt_disable();
2519 
2520 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2521 		goto out;
2522 
2523 	cpu_buffer = buffer->buffers[cpu];
2524 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2525 
2526 	event = rb_buffer_peek(buffer, cpu, ts);
2527 	if (!event)
2528 		goto out_unlock;
2529 
2530 	rb_advance_reader(cpu_buffer);
2531 
2532  out_unlock:
2533 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2534 
2535  out:
2536 	preempt_enable();
2537 
2538 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2539 		cpu_relax();
2540 		goto again;
2541 	}
2542 
2543 	return event;
2544 }
2545 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2546 
2547 /**
2548  * ring_buffer_read_start - start a non consuming read of the buffer
2549  * @buffer: The ring buffer to read from
2550  * @cpu: The cpu buffer to iterate over
2551  *
2552  * This starts up an iteration through the buffer. It also disables
2553  * the recording to the buffer until the reading is finished.
2554  * This prevents the reading from being corrupted. This is not
2555  * a consuming read, so a producer is not expected.
2556  *
2557  * Must be paired with ring_buffer_finish.
2558  */
2559 struct ring_buffer_iter *
2560 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2561 {
2562 	struct ring_buffer_per_cpu *cpu_buffer;
2563 	struct ring_buffer_iter *iter;
2564 	unsigned long flags;
2565 
2566 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2567 		return NULL;
2568 
2569 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2570 	if (!iter)
2571 		return NULL;
2572 
2573 	cpu_buffer = buffer->buffers[cpu];
2574 
2575 	iter->cpu_buffer = cpu_buffer;
2576 
2577 	atomic_inc(&cpu_buffer->record_disabled);
2578 	synchronize_sched();
2579 
2580 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2581 	__raw_spin_lock(&cpu_buffer->lock);
2582 	rb_iter_reset(iter);
2583 	__raw_spin_unlock(&cpu_buffer->lock);
2584 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2585 
2586 	return iter;
2587 }
2588 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2589 
2590 /**
2591  * ring_buffer_finish - finish reading the iterator of the buffer
2592  * @iter: The iterator retrieved by ring_buffer_start
2593  *
2594  * This re-enables the recording to the buffer, and frees the
2595  * iterator.
2596  */
2597 void
2598 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2599 {
2600 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2601 
2602 	atomic_dec(&cpu_buffer->record_disabled);
2603 	kfree(iter);
2604 }
2605 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2606 
2607 /**
2608  * ring_buffer_read - read the next item in the ring buffer by the iterator
2609  * @iter: The ring buffer iterator
2610  * @ts: The time stamp of the event read.
2611  *
2612  * This reads the next event in the ring buffer and increments the iterator.
2613  */
2614 struct ring_buffer_event *
2615 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2616 {
2617 	struct ring_buffer_event *event;
2618 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2619 	unsigned long flags;
2620 
2621  again:
2622 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2623 	event = rb_iter_peek(iter, ts);
2624 	if (!event)
2625 		goto out;
2626 
2627 	rb_advance_iter(iter);
2628  out:
2629 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2630 
2631 	if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2632 		cpu_relax();
2633 		goto again;
2634 	}
2635 
2636 	return event;
2637 }
2638 EXPORT_SYMBOL_GPL(ring_buffer_read);
2639 
2640 /**
2641  * ring_buffer_size - return the size of the ring buffer (in bytes)
2642  * @buffer: The ring buffer.
2643  */
2644 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2645 {
2646 	return BUF_PAGE_SIZE * buffer->pages;
2647 }
2648 EXPORT_SYMBOL_GPL(ring_buffer_size);
2649 
2650 static void
2651 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2652 {
2653 	cpu_buffer->head_page
2654 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2655 	local_set(&cpu_buffer->head_page->write, 0);
2656 	local_set(&cpu_buffer->head_page->entries, 0);
2657 	local_set(&cpu_buffer->head_page->page->commit, 0);
2658 
2659 	cpu_buffer->head_page->read = 0;
2660 
2661 	cpu_buffer->tail_page = cpu_buffer->head_page;
2662 	cpu_buffer->commit_page = cpu_buffer->head_page;
2663 
2664 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2665 	local_set(&cpu_buffer->reader_page->write, 0);
2666 	local_set(&cpu_buffer->reader_page->entries, 0);
2667 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2668 	cpu_buffer->reader_page->read = 0;
2669 
2670 	cpu_buffer->nmi_dropped = 0;
2671 	cpu_buffer->commit_overrun = 0;
2672 	cpu_buffer->overrun = 0;
2673 	cpu_buffer->read = 0;
2674 	local_set(&cpu_buffer->entries, 0);
2675 
2676 	cpu_buffer->write_stamp = 0;
2677 	cpu_buffer->read_stamp = 0;
2678 }
2679 
2680 /**
2681  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2682  * @buffer: The ring buffer to reset a per cpu buffer of
2683  * @cpu: The CPU buffer to be reset
2684  */
2685 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2686 {
2687 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2688 	unsigned long flags;
2689 
2690 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2691 		return;
2692 
2693 	atomic_inc(&cpu_buffer->record_disabled);
2694 
2695 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2696 
2697 	__raw_spin_lock(&cpu_buffer->lock);
2698 
2699 	rb_reset_cpu(cpu_buffer);
2700 
2701 	__raw_spin_unlock(&cpu_buffer->lock);
2702 
2703 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2704 
2705 	atomic_dec(&cpu_buffer->record_disabled);
2706 }
2707 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2708 
2709 /**
2710  * ring_buffer_reset - reset a ring buffer
2711  * @buffer: The ring buffer to reset all cpu buffers
2712  */
2713 void ring_buffer_reset(struct ring_buffer *buffer)
2714 {
2715 	int cpu;
2716 
2717 	for_each_buffer_cpu(buffer, cpu)
2718 		ring_buffer_reset_cpu(buffer, cpu);
2719 }
2720 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2721 
2722 /**
2723  * rind_buffer_empty - is the ring buffer empty?
2724  * @buffer: The ring buffer to test
2725  */
2726 int ring_buffer_empty(struct ring_buffer *buffer)
2727 {
2728 	struct ring_buffer_per_cpu *cpu_buffer;
2729 	int cpu;
2730 
2731 	/* yes this is racy, but if you don't like the race, lock the buffer */
2732 	for_each_buffer_cpu(buffer, cpu) {
2733 		cpu_buffer = buffer->buffers[cpu];
2734 		if (!rb_per_cpu_empty(cpu_buffer))
2735 			return 0;
2736 	}
2737 
2738 	return 1;
2739 }
2740 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2741 
2742 /**
2743  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2744  * @buffer: The ring buffer
2745  * @cpu: The CPU buffer to test
2746  */
2747 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2748 {
2749 	struct ring_buffer_per_cpu *cpu_buffer;
2750 	int ret;
2751 
2752 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2753 		return 1;
2754 
2755 	cpu_buffer = buffer->buffers[cpu];
2756 	ret = rb_per_cpu_empty(cpu_buffer);
2757 
2758 
2759 	return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2762 
2763 /**
2764  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2765  * @buffer_a: One buffer to swap with
2766  * @buffer_b: The other buffer to swap with
2767  *
2768  * This function is useful for tracers that want to take a "snapshot"
2769  * of a CPU buffer and has another back up buffer lying around.
2770  * it is expected that the tracer handles the cpu buffer not being
2771  * used at the moment.
2772  */
2773 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2774 			 struct ring_buffer *buffer_b, int cpu)
2775 {
2776 	struct ring_buffer_per_cpu *cpu_buffer_a;
2777 	struct ring_buffer_per_cpu *cpu_buffer_b;
2778 	int ret = -EINVAL;
2779 
2780 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2781 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
2782 		goto out;
2783 
2784 	/* At least make sure the two buffers are somewhat the same */
2785 	if (buffer_a->pages != buffer_b->pages)
2786 		goto out;
2787 
2788 	ret = -EAGAIN;
2789 
2790 	if (ring_buffer_flags != RB_BUFFERS_ON)
2791 		goto out;
2792 
2793 	if (atomic_read(&buffer_a->record_disabled))
2794 		goto out;
2795 
2796 	if (atomic_read(&buffer_b->record_disabled))
2797 		goto out;
2798 
2799 	cpu_buffer_a = buffer_a->buffers[cpu];
2800 	cpu_buffer_b = buffer_b->buffers[cpu];
2801 
2802 	if (atomic_read(&cpu_buffer_a->record_disabled))
2803 		goto out;
2804 
2805 	if (atomic_read(&cpu_buffer_b->record_disabled))
2806 		goto out;
2807 
2808 	/*
2809 	 * We can't do a synchronize_sched here because this
2810 	 * function can be called in atomic context.
2811 	 * Normally this will be called from the same CPU as cpu.
2812 	 * If not it's up to the caller to protect this.
2813 	 */
2814 	atomic_inc(&cpu_buffer_a->record_disabled);
2815 	atomic_inc(&cpu_buffer_b->record_disabled);
2816 
2817 	buffer_a->buffers[cpu] = cpu_buffer_b;
2818 	buffer_b->buffers[cpu] = cpu_buffer_a;
2819 
2820 	cpu_buffer_b->buffer = buffer_a;
2821 	cpu_buffer_a->buffer = buffer_b;
2822 
2823 	atomic_dec(&cpu_buffer_a->record_disabled);
2824 	atomic_dec(&cpu_buffer_b->record_disabled);
2825 
2826 	ret = 0;
2827 out:
2828 	return ret;
2829 }
2830 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2831 
2832 /**
2833  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2834  * @buffer: the buffer to allocate for.
2835  *
2836  * This function is used in conjunction with ring_buffer_read_page.
2837  * When reading a full page from the ring buffer, these functions
2838  * can be used to speed up the process. The calling function should
2839  * allocate a few pages first with this function. Then when it
2840  * needs to get pages from the ring buffer, it passes the result
2841  * of this function into ring_buffer_read_page, which will swap
2842  * the page that was allocated, with the read page of the buffer.
2843  *
2844  * Returns:
2845  *  The page allocated, or NULL on error.
2846  */
2847 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2848 {
2849 	struct buffer_data_page *bpage;
2850 	unsigned long addr;
2851 
2852 	addr = __get_free_page(GFP_KERNEL);
2853 	if (!addr)
2854 		return NULL;
2855 
2856 	bpage = (void *)addr;
2857 
2858 	rb_init_page(bpage);
2859 
2860 	return bpage;
2861 }
2862 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
2863 
2864 /**
2865  * ring_buffer_free_read_page - free an allocated read page
2866  * @buffer: the buffer the page was allocate for
2867  * @data: the page to free
2868  *
2869  * Free a page allocated from ring_buffer_alloc_read_page.
2870  */
2871 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2872 {
2873 	free_page((unsigned long)data);
2874 }
2875 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
2876 
2877 /**
2878  * ring_buffer_read_page - extract a page from the ring buffer
2879  * @buffer: buffer to extract from
2880  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2881  * @len: amount to extract
2882  * @cpu: the cpu of the buffer to extract
2883  * @full: should the extraction only happen when the page is full.
2884  *
2885  * This function will pull out a page from the ring buffer and consume it.
2886  * @data_page must be the address of the variable that was returned
2887  * from ring_buffer_alloc_read_page. This is because the page might be used
2888  * to swap with a page in the ring buffer.
2889  *
2890  * for example:
2891  *	rpage = ring_buffer_alloc_read_page(buffer);
2892  *	if (!rpage)
2893  *		return error;
2894  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2895  *	if (ret >= 0)
2896  *		process_page(rpage, ret);
2897  *
2898  * When @full is set, the function will not return true unless
2899  * the writer is off the reader page.
2900  *
2901  * Note: it is up to the calling functions to handle sleeps and wakeups.
2902  *  The ring buffer can be used anywhere in the kernel and can not
2903  *  blindly call wake_up. The layer that uses the ring buffer must be
2904  *  responsible for that.
2905  *
2906  * Returns:
2907  *  >=0 if data has been transferred, returns the offset of consumed data.
2908  *  <0 if no data has been transferred.
2909  */
2910 int ring_buffer_read_page(struct ring_buffer *buffer,
2911 			  void **data_page, size_t len, int cpu, int full)
2912 {
2913 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2914 	struct ring_buffer_event *event;
2915 	struct buffer_data_page *bpage;
2916 	struct buffer_page *reader;
2917 	unsigned long flags;
2918 	unsigned int commit;
2919 	unsigned int read;
2920 	u64 save_timestamp;
2921 	int ret = -1;
2922 
2923 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2924 		goto out;
2925 
2926 	/*
2927 	 * If len is not big enough to hold the page header, then
2928 	 * we can not copy anything.
2929 	 */
2930 	if (len <= BUF_PAGE_HDR_SIZE)
2931 		goto out;
2932 
2933 	len -= BUF_PAGE_HDR_SIZE;
2934 
2935 	if (!data_page)
2936 		goto out;
2937 
2938 	bpage = *data_page;
2939 	if (!bpage)
2940 		goto out;
2941 
2942 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2943 
2944 	reader = rb_get_reader_page(cpu_buffer);
2945 	if (!reader)
2946 		goto out_unlock;
2947 
2948 	event = rb_reader_event(cpu_buffer);
2949 
2950 	read = reader->read;
2951 	commit = rb_page_commit(reader);
2952 
2953 	/*
2954 	 * If this page has been partially read or
2955 	 * if len is not big enough to read the rest of the page or
2956 	 * a writer is still on the page, then
2957 	 * we must copy the data from the page to the buffer.
2958 	 * Otherwise, we can simply swap the page with the one passed in.
2959 	 */
2960 	if (read || (len < (commit - read)) ||
2961 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
2962 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2963 		unsigned int rpos = read;
2964 		unsigned int pos = 0;
2965 		unsigned int size;
2966 
2967 		if (full)
2968 			goto out_unlock;
2969 
2970 		if (len > (commit - read))
2971 			len = (commit - read);
2972 
2973 		size = rb_event_length(event);
2974 
2975 		if (len < size)
2976 			goto out_unlock;
2977 
2978 		/* save the current timestamp, since the user will need it */
2979 		save_timestamp = cpu_buffer->read_stamp;
2980 
2981 		/* Need to copy one event at a time */
2982 		do {
2983 			memcpy(bpage->data + pos, rpage->data + rpos, size);
2984 
2985 			len -= size;
2986 
2987 			rb_advance_reader(cpu_buffer);
2988 			rpos = reader->read;
2989 			pos += size;
2990 
2991 			event = rb_reader_event(cpu_buffer);
2992 			size = rb_event_length(event);
2993 		} while (len > size);
2994 
2995 		/* update bpage */
2996 		local_set(&bpage->commit, pos);
2997 		bpage->time_stamp = save_timestamp;
2998 
2999 		/* we copied everything to the beginning */
3000 		read = 0;
3001 	} else {
3002 		/* update the entry counter */
3003 		cpu_buffer->read += local_read(&reader->entries);
3004 
3005 		/* swap the pages */
3006 		rb_init_page(bpage);
3007 		bpage = reader->page;
3008 		reader->page = *data_page;
3009 		local_set(&reader->write, 0);
3010 		local_set(&reader->entries, 0);
3011 		reader->read = 0;
3012 		*data_page = bpage;
3013 	}
3014 	ret = read;
3015 
3016  out_unlock:
3017 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3018 
3019  out:
3020 	return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3023 
3024 static ssize_t
3025 rb_simple_read(struct file *filp, char __user *ubuf,
3026 	       size_t cnt, loff_t *ppos)
3027 {
3028 	unsigned long *p = filp->private_data;
3029 	char buf[64];
3030 	int r;
3031 
3032 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3033 		r = sprintf(buf, "permanently disabled\n");
3034 	else
3035 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3036 
3037 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3038 }
3039 
3040 static ssize_t
3041 rb_simple_write(struct file *filp, const char __user *ubuf,
3042 		size_t cnt, loff_t *ppos)
3043 {
3044 	unsigned long *p = filp->private_data;
3045 	char buf[64];
3046 	unsigned long val;
3047 	int ret;
3048 
3049 	if (cnt >= sizeof(buf))
3050 		return -EINVAL;
3051 
3052 	if (copy_from_user(&buf, ubuf, cnt))
3053 		return -EFAULT;
3054 
3055 	buf[cnt] = 0;
3056 
3057 	ret = strict_strtoul(buf, 10, &val);
3058 	if (ret < 0)
3059 		return ret;
3060 
3061 	if (val)
3062 		set_bit(RB_BUFFERS_ON_BIT, p);
3063 	else
3064 		clear_bit(RB_BUFFERS_ON_BIT, p);
3065 
3066 	(*ppos)++;
3067 
3068 	return cnt;
3069 }
3070 
3071 static const struct file_operations rb_simple_fops = {
3072 	.open		= tracing_open_generic,
3073 	.read		= rb_simple_read,
3074 	.write		= rb_simple_write,
3075 };
3076 
3077 
3078 static __init int rb_init_debugfs(void)
3079 {
3080 	struct dentry *d_tracer;
3081 
3082 	d_tracer = tracing_init_dentry();
3083 
3084 	trace_create_file("tracing_on", 0644, d_tracer,
3085 			    &ring_buffer_flags, &rb_simple_fops);
3086 
3087 	return 0;
3088 }
3089 
3090 fs_initcall(rb_init_debugfs);
3091 
3092 #ifdef CONFIG_HOTPLUG_CPU
3093 static int rb_cpu_notify(struct notifier_block *self,
3094 			 unsigned long action, void *hcpu)
3095 {
3096 	struct ring_buffer *buffer =
3097 		container_of(self, struct ring_buffer, cpu_notify);
3098 	long cpu = (long)hcpu;
3099 
3100 	switch (action) {
3101 	case CPU_UP_PREPARE:
3102 	case CPU_UP_PREPARE_FROZEN:
3103 		if (cpu_isset(cpu, *buffer->cpumask))
3104 			return NOTIFY_OK;
3105 
3106 		buffer->buffers[cpu] =
3107 			rb_allocate_cpu_buffer(buffer, cpu);
3108 		if (!buffer->buffers[cpu]) {
3109 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3110 			     cpu);
3111 			return NOTIFY_OK;
3112 		}
3113 		smp_wmb();
3114 		cpu_set(cpu, *buffer->cpumask);
3115 		break;
3116 	case CPU_DOWN_PREPARE:
3117 	case CPU_DOWN_PREPARE_FROZEN:
3118 		/*
3119 		 * Do nothing.
3120 		 *  If we were to free the buffer, then the user would
3121 		 *  lose any trace that was in the buffer.
3122 		 */
3123 		break;
3124 	default:
3125 		break;
3126 	}
3127 	return NOTIFY_OK;
3128 }
3129 #endif
3130