xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 750912fa366312e9c5bc83eab352898a26750401)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23 
24 #include <asm/local.h>
25 #include "trace.h"
26 
27 /*
28  * The ring buffer header is special. We must manually up keep it.
29  */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32 	int ret;
33 
34 	ret = trace_seq_printf(s, "# compressed entry header\n");
35 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38 	ret = trace_seq_printf(s, "\n");
39 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40 			       RINGBUF_TYPE_PADDING);
41 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 			       RINGBUF_TYPE_TIME_EXTEND);
43 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45 
46 	return ret;
47 }
48 
49 /*
50  * The ring buffer is made up of a list of pages. A separate list of pages is
51  * allocated for each CPU. A writer may only write to a buffer that is
52  * associated with the CPU it is currently executing on.  A reader may read
53  * from any per cpu buffer.
54  *
55  * The reader is special. For each per cpu buffer, the reader has its own
56  * reader page. When a reader has read the entire reader page, this reader
57  * page is swapped with another page in the ring buffer.
58  *
59  * Now, as long as the writer is off the reader page, the reader can do what
60  * ever it wants with that page. The writer will never write to that page
61  * again (as long as it is out of the ring buffer).
62  *
63  * Here's some silly ASCII art.
64  *
65  *   +------+
66  *   |reader|          RING BUFFER
67  *   |page  |
68  *   +------+        +---+   +---+   +---+
69  *                   |   |-->|   |-->|   |
70  *                   +---+   +---+   +---+
71  *                     ^               |
72  *                     |               |
73  *                     +---------------+
74  *
75  *
76  *   +------+
77  *   |reader|          RING BUFFER
78  *   |page  |------------------v
79  *   +------+        +---+   +---+   +---+
80  *                   |   |-->|   |-->|   |
81  *                   +---+   +---+   +---+
82  *                     ^               |
83  *                     |               |
84  *                     +---------------+
85  *
86  *
87  *   +------+
88  *   |reader|          RING BUFFER
89  *   |page  |------------------v
90  *   +------+        +---+   +---+   +---+
91  *      ^            |   |-->|   |-->|   |
92  *      |            +---+   +---+   +---+
93  *      |                              |
94  *      |                              |
95  *      +------------------------------+
96  *
97  *
98  *   +------+
99  *   |buffer|          RING BUFFER
100  *   |page  |------------------v
101  *   +------+        +---+   +---+   +---+
102  *      ^            |   |   |   |-->|   |
103  *      |   New      +---+   +---+   +---+
104  *      |  Reader------^               |
105  *      |   page                       |
106  *      +------------------------------+
107  *
108  *
109  * After we make this swap, the reader can hand this page off to the splice
110  * code and be done with it. It can even allocate a new page if it needs to
111  * and swap that into the ring buffer.
112  *
113  * We will be using cmpxchg soon to make all this lockless.
114  *
115  */
116 
117 /*
118  * A fast way to enable or disable all ring buffers is to
119  * call tracing_on or tracing_off. Turning off the ring buffers
120  * prevents all ring buffers from being recorded to.
121  * Turning this switch on, makes it OK to write to the
122  * ring buffer, if the ring buffer is enabled itself.
123  *
124  * There's three layers that must be on in order to write
125  * to the ring buffer.
126  *
127  * 1) This global flag must be set.
128  * 2) The ring buffer must be enabled for recording.
129  * 3) The per cpu buffer must be enabled for recording.
130  *
131  * In case of an anomaly, this global flag has a bit set that
132  * will permantly disable all ring buffers.
133  */
134 
135 /*
136  * Global flag to disable all recording to ring buffers
137  *  This has two bits: ON, DISABLED
138  *
139  *  ON   DISABLED
140  * ---- ----------
141  *   0      0        : ring buffers are off
142  *   1      0        : ring buffers are on
143  *   X      1        : ring buffers are permanently disabled
144  */
145 
146 enum {
147 	RB_BUFFERS_ON_BIT	= 0,
148 	RB_BUFFERS_DISABLED_BIT	= 1,
149 };
150 
151 enum {
152 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
153 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155 
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157 
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 
160 /**
161  * tracing_on - enable all tracing buffers
162  *
163  * This function enables all tracing buffers that may have been
164  * disabled with tracing_off.
165  */
166 void tracing_on(void)
167 {
168 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171 
172 /**
173  * tracing_off - turn off all tracing buffers
174  *
175  * This function stops all tracing buffers from recording data.
176  * It does not disable any overhead the tracers themselves may
177  * be causing. This function simply causes all recording to
178  * the ring buffers to fail.
179  */
180 void tracing_off(void)
181 {
182 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185 
186 /**
187  * tracing_off_permanent - permanently disable ring buffers
188  *
189  * This function, once called, will disable all ring buffers
190  * permanently.
191  */
192 void tracing_off_permanent(void)
193 {
194 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196 
197 /**
198  * tracing_is_on - show state of ring buffers enabled
199  */
200 int tracing_is_on(void)
201 {
202 	return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205 
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT		4U
208 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
210 
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT	0
213 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT	1
216 # define RB_ARCH_ALIGNMENT		8U
217 #endif
218 
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221 
222 enum {
223 	RB_LEN_TIME_EXTEND = 8,
224 	RB_LEN_TIME_STAMP = 16,
225 };
226 
227 #define skip_time_extend(event) \
228 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229 
230 static inline int rb_null_event(struct ring_buffer_event *event)
231 {
232 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
233 }
234 
235 static void rb_event_set_padding(struct ring_buffer_event *event)
236 {
237 	/* padding has a NULL time_delta */
238 	event->type_len = RINGBUF_TYPE_PADDING;
239 	event->time_delta = 0;
240 }
241 
242 static unsigned
243 rb_event_data_length(struct ring_buffer_event *event)
244 {
245 	unsigned length;
246 
247 	if (event->type_len)
248 		length = event->type_len * RB_ALIGNMENT;
249 	else
250 		length = event->array[0];
251 	return length + RB_EVNT_HDR_SIZE;
252 }
253 
254 /*
255  * Return the length of the given event. Will return
256  * the length of the time extend if the event is a
257  * time extend.
258  */
259 static inline unsigned
260 rb_event_length(struct ring_buffer_event *event)
261 {
262 	switch (event->type_len) {
263 	case RINGBUF_TYPE_PADDING:
264 		if (rb_null_event(event))
265 			/* undefined */
266 			return -1;
267 		return  event->array[0] + RB_EVNT_HDR_SIZE;
268 
269 	case RINGBUF_TYPE_TIME_EXTEND:
270 		return RB_LEN_TIME_EXTEND;
271 
272 	case RINGBUF_TYPE_TIME_STAMP:
273 		return RB_LEN_TIME_STAMP;
274 
275 	case RINGBUF_TYPE_DATA:
276 		return rb_event_data_length(event);
277 	default:
278 		BUG();
279 	}
280 	/* not hit */
281 	return 0;
282 }
283 
284 /*
285  * Return total length of time extend and data,
286  *   or just the event length for all other events.
287  */
288 static inline unsigned
289 rb_event_ts_length(struct ring_buffer_event *event)
290 {
291 	unsigned len = 0;
292 
293 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
294 		/* time extends include the data event after it */
295 		len = RB_LEN_TIME_EXTEND;
296 		event = skip_time_extend(event);
297 	}
298 	return len + rb_event_length(event);
299 }
300 
301 /**
302  * ring_buffer_event_length - return the length of the event
303  * @event: the event to get the length of
304  *
305  * Returns the size of the data load of a data event.
306  * If the event is something other than a data event, it
307  * returns the size of the event itself. With the exception
308  * of a TIME EXTEND, where it still returns the size of the
309  * data load of the data event after it.
310  */
311 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
312 {
313 	unsigned length;
314 
315 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
316 		event = skip_time_extend(event);
317 
318 	length = rb_event_length(event);
319 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
320 		return length;
321 	length -= RB_EVNT_HDR_SIZE;
322 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
323                 length -= sizeof(event->array[0]);
324 	return length;
325 }
326 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
327 
328 /* inline for ring buffer fast paths */
329 static void *
330 rb_event_data(struct ring_buffer_event *event)
331 {
332 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
333 		event = skip_time_extend(event);
334 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
335 	/* If length is in len field, then array[0] has the data */
336 	if (event->type_len)
337 		return (void *)&event->array[0];
338 	/* Otherwise length is in array[0] and array[1] has the data */
339 	return (void *)&event->array[1];
340 }
341 
342 /**
343  * ring_buffer_event_data - return the data of the event
344  * @event: the event to get the data from
345  */
346 void *ring_buffer_event_data(struct ring_buffer_event *event)
347 {
348 	return rb_event_data(event);
349 }
350 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
351 
352 #define for_each_buffer_cpu(buffer, cpu)		\
353 	for_each_cpu(cpu, buffer->cpumask)
354 
355 #define TS_SHIFT	27
356 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
357 #define TS_DELTA_TEST	(~TS_MASK)
358 
359 /* Flag when events were overwritten */
360 #define RB_MISSED_EVENTS	(1 << 31)
361 /* Missed count stored at end */
362 #define RB_MISSED_STORED	(1 << 30)
363 
364 struct buffer_data_page {
365 	u64		 time_stamp;	/* page time stamp */
366 	local_t		 commit;	/* write committed index */
367 	unsigned char	 data[];	/* data of buffer page */
368 };
369 
370 /*
371  * Note, the buffer_page list must be first. The buffer pages
372  * are allocated in cache lines, which means that each buffer
373  * page will be at the beginning of a cache line, and thus
374  * the least significant bits will be zero. We use this to
375  * add flags in the list struct pointers, to make the ring buffer
376  * lockless.
377  */
378 struct buffer_page {
379 	struct list_head list;		/* list of buffer pages */
380 	local_t		 write;		/* index for next write */
381 	unsigned	 read;		/* index for next read */
382 	local_t		 entries;	/* entries on this page */
383 	unsigned long	 real_end;	/* real end of data */
384 	struct buffer_data_page *page;	/* Actual data page */
385 };
386 
387 /*
388  * The buffer page counters, write and entries, must be reset
389  * atomically when crossing page boundaries. To synchronize this
390  * update, two counters are inserted into the number. One is
391  * the actual counter for the write position or count on the page.
392  *
393  * The other is a counter of updaters. Before an update happens
394  * the update partition of the counter is incremented. This will
395  * allow the updater to update the counter atomically.
396  *
397  * The counter is 20 bits, and the state data is 12.
398  */
399 #define RB_WRITE_MASK		0xfffff
400 #define RB_WRITE_INTCNT		(1 << 20)
401 
402 static void rb_init_page(struct buffer_data_page *bpage)
403 {
404 	local_set(&bpage->commit, 0);
405 }
406 
407 /**
408  * ring_buffer_page_len - the size of data on the page.
409  * @page: The page to read
410  *
411  * Returns the amount of data on the page, including buffer page header.
412  */
413 size_t ring_buffer_page_len(void *page)
414 {
415 	return local_read(&((struct buffer_data_page *)page)->commit)
416 		+ BUF_PAGE_HDR_SIZE;
417 }
418 
419 /*
420  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
421  * this issue out.
422  */
423 static void free_buffer_page(struct buffer_page *bpage)
424 {
425 	free_page((unsigned long)bpage->page);
426 	kfree(bpage);
427 }
428 
429 /*
430  * We need to fit the time_stamp delta into 27 bits.
431  */
432 static inline int test_time_stamp(u64 delta)
433 {
434 	if (delta & TS_DELTA_TEST)
435 		return 1;
436 	return 0;
437 }
438 
439 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440 
441 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
442 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443 
444 int ring_buffer_print_page_header(struct trace_seq *s)
445 {
446 	struct buffer_data_page field;
447 	int ret;
448 
449 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
450 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
451 			       (unsigned int)sizeof(field.time_stamp),
452 			       (unsigned int)is_signed_type(u64));
453 
454 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
455 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
456 			       (unsigned int)offsetof(typeof(field), commit),
457 			       (unsigned int)sizeof(field.commit),
458 			       (unsigned int)is_signed_type(long));
459 
460 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
461 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
462 			       (unsigned int)offsetof(typeof(field), commit),
463 			       1,
464 			       (unsigned int)is_signed_type(long));
465 
466 	ret = trace_seq_printf(s, "\tfield: char data;\t"
467 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
468 			       (unsigned int)offsetof(typeof(field), data),
469 			       (unsigned int)BUF_PAGE_SIZE,
470 			       (unsigned int)is_signed_type(char));
471 
472 	return ret;
473 }
474 
475 /*
476  * head_page == tail_page && head == tail then buffer is empty.
477  */
478 struct ring_buffer_per_cpu {
479 	int				cpu;
480 	atomic_t			record_disabled;
481 	struct ring_buffer		*buffer;
482 	spinlock_t			reader_lock;	/* serialize readers */
483 	arch_spinlock_t			lock;
484 	struct lock_class_key		lock_key;
485 	struct list_head		*pages;
486 	struct buffer_page		*head_page;	/* read from head */
487 	struct buffer_page		*tail_page;	/* write to tail */
488 	struct buffer_page		*commit_page;	/* committed pages */
489 	struct buffer_page		*reader_page;
490 	unsigned long			lost_events;
491 	unsigned long			last_overrun;
492 	local_t				commit_overrun;
493 	local_t				overrun;
494 	local_t				entries;
495 	local_t				committing;
496 	local_t				commits;
497 	unsigned long			read;
498 	u64				write_stamp;
499 	u64				read_stamp;
500 };
501 
502 struct ring_buffer {
503 	unsigned			pages;
504 	unsigned			flags;
505 	int				cpus;
506 	atomic_t			record_disabled;
507 	cpumask_var_t			cpumask;
508 
509 	struct lock_class_key		*reader_lock_key;
510 
511 	struct mutex			mutex;
512 
513 	struct ring_buffer_per_cpu	**buffers;
514 
515 #ifdef CONFIG_HOTPLUG_CPU
516 	struct notifier_block		cpu_notify;
517 #endif
518 	u64				(*clock)(void);
519 };
520 
521 struct ring_buffer_iter {
522 	struct ring_buffer_per_cpu	*cpu_buffer;
523 	unsigned long			head;
524 	struct buffer_page		*head_page;
525 	struct buffer_page		*cache_reader_page;
526 	unsigned long			cache_read;
527 	u64				read_stamp;
528 };
529 
530 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
531 #define RB_WARN_ON(b, cond)						\
532 	({								\
533 		int _____ret = unlikely(cond);				\
534 		if (_____ret) {						\
535 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
536 				struct ring_buffer_per_cpu *__b =	\
537 					(void *)b;			\
538 				atomic_inc(&__b->buffer->record_disabled); \
539 			} else						\
540 				atomic_inc(&b->record_disabled);	\
541 			WARN_ON(1);					\
542 		}							\
543 		_____ret;						\
544 	})
545 
546 /* Up this if you want to test the TIME_EXTENTS and normalization */
547 #define DEBUG_SHIFT 0
548 
549 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
550 {
551 	/* shift to debug/test normalization and TIME_EXTENTS */
552 	return buffer->clock() << DEBUG_SHIFT;
553 }
554 
555 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
556 {
557 	u64 time;
558 
559 	preempt_disable_notrace();
560 	time = rb_time_stamp(buffer);
561 	preempt_enable_no_resched_notrace();
562 
563 	return time;
564 }
565 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
566 
567 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
568 				      int cpu, u64 *ts)
569 {
570 	/* Just stupid testing the normalize function and deltas */
571 	*ts >>= DEBUG_SHIFT;
572 }
573 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
574 
575 /*
576  * Making the ring buffer lockless makes things tricky.
577  * Although writes only happen on the CPU that they are on,
578  * and they only need to worry about interrupts. Reads can
579  * happen on any CPU.
580  *
581  * The reader page is always off the ring buffer, but when the
582  * reader finishes with a page, it needs to swap its page with
583  * a new one from the buffer. The reader needs to take from
584  * the head (writes go to the tail). But if a writer is in overwrite
585  * mode and wraps, it must push the head page forward.
586  *
587  * Here lies the problem.
588  *
589  * The reader must be careful to replace only the head page, and
590  * not another one. As described at the top of the file in the
591  * ASCII art, the reader sets its old page to point to the next
592  * page after head. It then sets the page after head to point to
593  * the old reader page. But if the writer moves the head page
594  * during this operation, the reader could end up with the tail.
595  *
596  * We use cmpxchg to help prevent this race. We also do something
597  * special with the page before head. We set the LSB to 1.
598  *
599  * When the writer must push the page forward, it will clear the
600  * bit that points to the head page, move the head, and then set
601  * the bit that points to the new head page.
602  *
603  * We also don't want an interrupt coming in and moving the head
604  * page on another writer. Thus we use the second LSB to catch
605  * that too. Thus:
606  *
607  * head->list->prev->next        bit 1          bit 0
608  *                              -------        -------
609  * Normal page                     0              0
610  * Points to head page             0              1
611  * New head page                   1              0
612  *
613  * Note we can not trust the prev pointer of the head page, because:
614  *
615  * +----+       +-----+        +-----+
616  * |    |------>|  T  |---X--->|  N  |
617  * |    |<------|     |        |     |
618  * +----+       +-----+        +-----+
619  *   ^                           ^ |
620  *   |          +-----+          | |
621  *   +----------|  R  |----------+ |
622  *              |     |<-----------+
623  *              +-----+
624  *
625  * Key:  ---X-->  HEAD flag set in pointer
626  *         T      Tail page
627  *         R      Reader page
628  *         N      Next page
629  *
630  * (see __rb_reserve_next() to see where this happens)
631  *
632  *  What the above shows is that the reader just swapped out
633  *  the reader page with a page in the buffer, but before it
634  *  could make the new header point back to the new page added
635  *  it was preempted by a writer. The writer moved forward onto
636  *  the new page added by the reader and is about to move forward
637  *  again.
638  *
639  *  You can see, it is legitimate for the previous pointer of
640  *  the head (or any page) not to point back to itself. But only
641  *  temporarially.
642  */
643 
644 #define RB_PAGE_NORMAL		0UL
645 #define RB_PAGE_HEAD		1UL
646 #define RB_PAGE_UPDATE		2UL
647 
648 
649 #define RB_FLAG_MASK		3UL
650 
651 /* PAGE_MOVED is not part of the mask */
652 #define RB_PAGE_MOVED		4UL
653 
654 /*
655  * rb_list_head - remove any bit
656  */
657 static struct list_head *rb_list_head(struct list_head *list)
658 {
659 	unsigned long val = (unsigned long)list;
660 
661 	return (struct list_head *)(val & ~RB_FLAG_MASK);
662 }
663 
664 /*
665  * rb_is_head_page - test if the given page is the head page
666  *
667  * Because the reader may move the head_page pointer, we can
668  * not trust what the head page is (it may be pointing to
669  * the reader page). But if the next page is a header page,
670  * its flags will be non zero.
671  */
672 static int inline
673 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
674 		struct buffer_page *page, struct list_head *list)
675 {
676 	unsigned long val;
677 
678 	val = (unsigned long)list->next;
679 
680 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
681 		return RB_PAGE_MOVED;
682 
683 	return val & RB_FLAG_MASK;
684 }
685 
686 /*
687  * rb_is_reader_page
688  *
689  * The unique thing about the reader page, is that, if the
690  * writer is ever on it, the previous pointer never points
691  * back to the reader page.
692  */
693 static int rb_is_reader_page(struct buffer_page *page)
694 {
695 	struct list_head *list = page->list.prev;
696 
697 	return rb_list_head(list->next) != &page->list;
698 }
699 
700 /*
701  * rb_set_list_to_head - set a list_head to be pointing to head.
702  */
703 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
704 				struct list_head *list)
705 {
706 	unsigned long *ptr;
707 
708 	ptr = (unsigned long *)&list->next;
709 	*ptr |= RB_PAGE_HEAD;
710 	*ptr &= ~RB_PAGE_UPDATE;
711 }
712 
713 /*
714  * rb_head_page_activate - sets up head page
715  */
716 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
717 {
718 	struct buffer_page *head;
719 
720 	head = cpu_buffer->head_page;
721 	if (!head)
722 		return;
723 
724 	/*
725 	 * Set the previous list pointer to have the HEAD flag.
726 	 */
727 	rb_set_list_to_head(cpu_buffer, head->list.prev);
728 }
729 
730 static void rb_list_head_clear(struct list_head *list)
731 {
732 	unsigned long *ptr = (unsigned long *)&list->next;
733 
734 	*ptr &= ~RB_FLAG_MASK;
735 }
736 
737 /*
738  * rb_head_page_dactivate - clears head page ptr (for free list)
739  */
740 static void
741 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
742 {
743 	struct list_head *hd;
744 
745 	/* Go through the whole list and clear any pointers found. */
746 	rb_list_head_clear(cpu_buffer->pages);
747 
748 	list_for_each(hd, cpu_buffer->pages)
749 		rb_list_head_clear(hd);
750 }
751 
752 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
753 			    struct buffer_page *head,
754 			    struct buffer_page *prev,
755 			    int old_flag, int new_flag)
756 {
757 	struct list_head *list;
758 	unsigned long val = (unsigned long)&head->list;
759 	unsigned long ret;
760 
761 	list = &prev->list;
762 
763 	val &= ~RB_FLAG_MASK;
764 
765 	ret = cmpxchg((unsigned long *)&list->next,
766 		      val | old_flag, val | new_flag);
767 
768 	/* check if the reader took the page */
769 	if ((ret & ~RB_FLAG_MASK) != val)
770 		return RB_PAGE_MOVED;
771 
772 	return ret & RB_FLAG_MASK;
773 }
774 
775 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
776 				   struct buffer_page *head,
777 				   struct buffer_page *prev,
778 				   int old_flag)
779 {
780 	return rb_head_page_set(cpu_buffer, head, prev,
781 				old_flag, RB_PAGE_UPDATE);
782 }
783 
784 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
785 				 struct buffer_page *head,
786 				 struct buffer_page *prev,
787 				 int old_flag)
788 {
789 	return rb_head_page_set(cpu_buffer, head, prev,
790 				old_flag, RB_PAGE_HEAD);
791 }
792 
793 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
794 				   struct buffer_page *head,
795 				   struct buffer_page *prev,
796 				   int old_flag)
797 {
798 	return rb_head_page_set(cpu_buffer, head, prev,
799 				old_flag, RB_PAGE_NORMAL);
800 }
801 
802 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
803 			       struct buffer_page **bpage)
804 {
805 	struct list_head *p = rb_list_head((*bpage)->list.next);
806 
807 	*bpage = list_entry(p, struct buffer_page, list);
808 }
809 
810 static struct buffer_page *
811 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
812 {
813 	struct buffer_page *head;
814 	struct buffer_page *page;
815 	struct list_head *list;
816 	int i;
817 
818 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
819 		return NULL;
820 
821 	/* sanity check */
822 	list = cpu_buffer->pages;
823 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
824 		return NULL;
825 
826 	page = head = cpu_buffer->head_page;
827 	/*
828 	 * It is possible that the writer moves the header behind
829 	 * where we started, and we miss in one loop.
830 	 * A second loop should grab the header, but we'll do
831 	 * three loops just because I'm paranoid.
832 	 */
833 	for (i = 0; i < 3; i++) {
834 		do {
835 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
836 				cpu_buffer->head_page = page;
837 				return page;
838 			}
839 			rb_inc_page(cpu_buffer, &page);
840 		} while (page != head);
841 	}
842 
843 	RB_WARN_ON(cpu_buffer, 1);
844 
845 	return NULL;
846 }
847 
848 static int rb_head_page_replace(struct buffer_page *old,
849 				struct buffer_page *new)
850 {
851 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
852 	unsigned long val;
853 	unsigned long ret;
854 
855 	val = *ptr & ~RB_FLAG_MASK;
856 	val |= RB_PAGE_HEAD;
857 
858 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
859 
860 	return ret == val;
861 }
862 
863 /*
864  * rb_tail_page_update - move the tail page forward
865  *
866  * Returns 1 if moved tail page, 0 if someone else did.
867  */
868 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
869 			       struct buffer_page *tail_page,
870 			       struct buffer_page *next_page)
871 {
872 	struct buffer_page *old_tail;
873 	unsigned long old_entries;
874 	unsigned long old_write;
875 	int ret = 0;
876 
877 	/*
878 	 * The tail page now needs to be moved forward.
879 	 *
880 	 * We need to reset the tail page, but without messing
881 	 * with possible erasing of data brought in by interrupts
882 	 * that have moved the tail page and are currently on it.
883 	 *
884 	 * We add a counter to the write field to denote this.
885 	 */
886 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
887 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
888 
889 	/*
890 	 * Just make sure we have seen our old_write and synchronize
891 	 * with any interrupts that come in.
892 	 */
893 	barrier();
894 
895 	/*
896 	 * If the tail page is still the same as what we think
897 	 * it is, then it is up to us to update the tail
898 	 * pointer.
899 	 */
900 	if (tail_page == cpu_buffer->tail_page) {
901 		/* Zero the write counter */
902 		unsigned long val = old_write & ~RB_WRITE_MASK;
903 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
904 
905 		/*
906 		 * This will only succeed if an interrupt did
907 		 * not come in and change it. In which case, we
908 		 * do not want to modify it.
909 		 *
910 		 * We add (void) to let the compiler know that we do not care
911 		 * about the return value of these functions. We use the
912 		 * cmpxchg to only update if an interrupt did not already
913 		 * do it for us. If the cmpxchg fails, we don't care.
914 		 */
915 		(void)local_cmpxchg(&next_page->write, old_write, val);
916 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
917 
918 		/*
919 		 * No need to worry about races with clearing out the commit.
920 		 * it only can increment when a commit takes place. But that
921 		 * only happens in the outer most nested commit.
922 		 */
923 		local_set(&next_page->page->commit, 0);
924 
925 		old_tail = cmpxchg(&cpu_buffer->tail_page,
926 				   tail_page, next_page);
927 
928 		if (old_tail == tail_page)
929 			ret = 1;
930 	}
931 
932 	return ret;
933 }
934 
935 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
936 			  struct buffer_page *bpage)
937 {
938 	unsigned long val = (unsigned long)bpage;
939 
940 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
941 		return 1;
942 
943 	return 0;
944 }
945 
946 /**
947  * rb_check_list - make sure a pointer to a list has the last bits zero
948  */
949 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
950 			 struct list_head *list)
951 {
952 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
953 		return 1;
954 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
955 		return 1;
956 	return 0;
957 }
958 
959 /**
960  * check_pages - integrity check of buffer pages
961  * @cpu_buffer: CPU buffer with pages to test
962  *
963  * As a safety measure we check to make sure the data pages have not
964  * been corrupted.
965  */
966 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
967 {
968 	struct list_head *head = cpu_buffer->pages;
969 	struct buffer_page *bpage, *tmp;
970 
971 	rb_head_page_deactivate(cpu_buffer);
972 
973 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
974 		return -1;
975 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
976 		return -1;
977 
978 	if (rb_check_list(cpu_buffer, head))
979 		return -1;
980 
981 	list_for_each_entry_safe(bpage, tmp, head, list) {
982 		if (RB_WARN_ON(cpu_buffer,
983 			       bpage->list.next->prev != &bpage->list))
984 			return -1;
985 		if (RB_WARN_ON(cpu_buffer,
986 			       bpage->list.prev->next != &bpage->list))
987 			return -1;
988 		if (rb_check_list(cpu_buffer, &bpage->list))
989 			return -1;
990 	}
991 
992 	rb_head_page_activate(cpu_buffer);
993 
994 	return 0;
995 }
996 
997 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
998 			     unsigned nr_pages)
999 {
1000 	struct buffer_page *bpage, *tmp;
1001 	unsigned long addr;
1002 	LIST_HEAD(pages);
1003 	unsigned i;
1004 
1005 	WARN_ON(!nr_pages);
1006 
1007 	for (i = 0; i < nr_pages; i++) {
1008 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1009 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
1010 		if (!bpage)
1011 			goto free_pages;
1012 
1013 		rb_check_bpage(cpu_buffer, bpage);
1014 
1015 		list_add(&bpage->list, &pages);
1016 
1017 		addr = __get_free_page(GFP_KERNEL);
1018 		if (!addr)
1019 			goto free_pages;
1020 		bpage->page = (void *)addr;
1021 		rb_init_page(bpage->page);
1022 	}
1023 
1024 	/*
1025 	 * The ring buffer page list is a circular list that does not
1026 	 * start and end with a list head. All page list items point to
1027 	 * other pages.
1028 	 */
1029 	cpu_buffer->pages = pages.next;
1030 	list_del(&pages);
1031 
1032 	rb_check_pages(cpu_buffer);
1033 
1034 	return 0;
1035 
1036  free_pages:
1037 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1038 		list_del_init(&bpage->list);
1039 		free_buffer_page(bpage);
1040 	}
1041 	return -ENOMEM;
1042 }
1043 
1044 static struct ring_buffer_per_cpu *
1045 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1046 {
1047 	struct ring_buffer_per_cpu *cpu_buffer;
1048 	struct buffer_page *bpage;
1049 	unsigned long addr;
1050 	int ret;
1051 
1052 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1053 				  GFP_KERNEL, cpu_to_node(cpu));
1054 	if (!cpu_buffer)
1055 		return NULL;
1056 
1057 	cpu_buffer->cpu = cpu;
1058 	cpu_buffer->buffer = buffer;
1059 	spin_lock_init(&cpu_buffer->reader_lock);
1060 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1061 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1062 
1063 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064 			    GFP_KERNEL, cpu_to_node(cpu));
1065 	if (!bpage)
1066 		goto fail_free_buffer;
1067 
1068 	rb_check_bpage(cpu_buffer, bpage);
1069 
1070 	cpu_buffer->reader_page = bpage;
1071 	addr = __get_free_page(GFP_KERNEL);
1072 	if (!addr)
1073 		goto fail_free_reader;
1074 	bpage->page = (void *)addr;
1075 	rb_init_page(bpage->page);
1076 
1077 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078 
1079 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1080 	if (ret < 0)
1081 		goto fail_free_reader;
1082 
1083 	cpu_buffer->head_page
1084 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1085 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1086 
1087 	rb_head_page_activate(cpu_buffer);
1088 
1089 	return cpu_buffer;
1090 
1091  fail_free_reader:
1092 	free_buffer_page(cpu_buffer->reader_page);
1093 
1094  fail_free_buffer:
1095 	kfree(cpu_buffer);
1096 	return NULL;
1097 }
1098 
1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 	struct list_head *head = cpu_buffer->pages;
1102 	struct buffer_page *bpage, *tmp;
1103 
1104 	free_buffer_page(cpu_buffer->reader_page);
1105 
1106 	rb_head_page_deactivate(cpu_buffer);
1107 
1108 	if (head) {
1109 		list_for_each_entry_safe(bpage, tmp, head, list) {
1110 			list_del_init(&bpage->list);
1111 			free_buffer_page(bpage);
1112 		}
1113 		bpage = list_entry(head, struct buffer_page, list);
1114 		free_buffer_page(bpage);
1115 	}
1116 
1117 	kfree(cpu_buffer);
1118 }
1119 
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 static int rb_cpu_notify(struct notifier_block *self,
1122 			 unsigned long action, void *hcpu);
1123 #endif
1124 
1125 /**
1126  * ring_buffer_alloc - allocate a new ring_buffer
1127  * @size: the size in bytes per cpu that is needed.
1128  * @flags: attributes to set for the ring buffer.
1129  *
1130  * Currently the only flag that is available is the RB_FL_OVERWRITE
1131  * flag. This flag means that the buffer will overwrite old data
1132  * when the buffer wraps. If this flag is not set, the buffer will
1133  * drop data when the tail hits the head.
1134  */
1135 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1136 					struct lock_class_key *key)
1137 {
1138 	struct ring_buffer *buffer;
1139 	int bsize;
1140 	int cpu;
1141 
1142 	/* keep it in its own cache line */
1143 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1144 			 GFP_KERNEL);
1145 	if (!buffer)
1146 		return NULL;
1147 
1148 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1149 		goto fail_free_buffer;
1150 
1151 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1152 	buffer->flags = flags;
1153 	buffer->clock = trace_clock_local;
1154 	buffer->reader_lock_key = key;
1155 
1156 	/* need at least two pages */
1157 	if (buffer->pages < 2)
1158 		buffer->pages = 2;
1159 
1160 	/*
1161 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1162 	 * in early initcall, it will not be notified of secondary cpus.
1163 	 * In that off case, we need to allocate for all possible cpus.
1164 	 */
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 	get_online_cpus();
1167 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1168 #else
1169 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1170 #endif
1171 	buffer->cpus = nr_cpu_ids;
1172 
1173 	bsize = sizeof(void *) * nr_cpu_ids;
1174 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1175 				  GFP_KERNEL);
1176 	if (!buffer->buffers)
1177 		goto fail_free_cpumask;
1178 
1179 	for_each_buffer_cpu(buffer, cpu) {
1180 		buffer->buffers[cpu] =
1181 			rb_allocate_cpu_buffer(buffer, cpu);
1182 		if (!buffer->buffers[cpu])
1183 			goto fail_free_buffers;
1184 	}
1185 
1186 #ifdef CONFIG_HOTPLUG_CPU
1187 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1188 	buffer->cpu_notify.priority = 0;
1189 	register_cpu_notifier(&buffer->cpu_notify);
1190 #endif
1191 
1192 	put_online_cpus();
1193 	mutex_init(&buffer->mutex);
1194 
1195 	return buffer;
1196 
1197  fail_free_buffers:
1198 	for_each_buffer_cpu(buffer, cpu) {
1199 		if (buffer->buffers[cpu])
1200 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1201 	}
1202 	kfree(buffer->buffers);
1203 
1204  fail_free_cpumask:
1205 	free_cpumask_var(buffer->cpumask);
1206 	put_online_cpus();
1207 
1208  fail_free_buffer:
1209 	kfree(buffer);
1210 	return NULL;
1211 }
1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1213 
1214 /**
1215  * ring_buffer_free - free a ring buffer.
1216  * @buffer: the buffer to free.
1217  */
1218 void
1219 ring_buffer_free(struct ring_buffer *buffer)
1220 {
1221 	int cpu;
1222 
1223 	get_online_cpus();
1224 
1225 #ifdef CONFIG_HOTPLUG_CPU
1226 	unregister_cpu_notifier(&buffer->cpu_notify);
1227 #endif
1228 
1229 	for_each_buffer_cpu(buffer, cpu)
1230 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1231 
1232 	put_online_cpus();
1233 
1234 	kfree(buffer->buffers);
1235 	free_cpumask_var(buffer->cpumask);
1236 
1237 	kfree(buffer);
1238 }
1239 EXPORT_SYMBOL_GPL(ring_buffer_free);
1240 
1241 void ring_buffer_set_clock(struct ring_buffer *buffer,
1242 			   u64 (*clock)(void))
1243 {
1244 	buffer->clock = clock;
1245 }
1246 
1247 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1248 
1249 static void
1250 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1251 {
1252 	struct buffer_page *bpage;
1253 	struct list_head *p;
1254 	unsigned i;
1255 
1256 	spin_lock_irq(&cpu_buffer->reader_lock);
1257 	rb_head_page_deactivate(cpu_buffer);
1258 
1259 	for (i = 0; i < nr_pages; i++) {
1260 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1261 			goto out;
1262 		p = cpu_buffer->pages->next;
1263 		bpage = list_entry(p, struct buffer_page, list);
1264 		list_del_init(&bpage->list);
1265 		free_buffer_page(bpage);
1266 	}
1267 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1268 		goto out;
1269 
1270 	rb_reset_cpu(cpu_buffer);
1271 	rb_check_pages(cpu_buffer);
1272 
1273 out:
1274 	spin_unlock_irq(&cpu_buffer->reader_lock);
1275 }
1276 
1277 static void
1278 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1279 		struct list_head *pages, unsigned nr_pages)
1280 {
1281 	struct buffer_page *bpage;
1282 	struct list_head *p;
1283 	unsigned i;
1284 
1285 	spin_lock_irq(&cpu_buffer->reader_lock);
1286 	rb_head_page_deactivate(cpu_buffer);
1287 
1288 	for (i = 0; i < nr_pages; i++) {
1289 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1290 			goto out;
1291 		p = pages->next;
1292 		bpage = list_entry(p, struct buffer_page, list);
1293 		list_del_init(&bpage->list);
1294 		list_add_tail(&bpage->list, cpu_buffer->pages);
1295 	}
1296 	rb_reset_cpu(cpu_buffer);
1297 	rb_check_pages(cpu_buffer);
1298 
1299 out:
1300 	spin_unlock_irq(&cpu_buffer->reader_lock);
1301 }
1302 
1303 /**
1304  * ring_buffer_resize - resize the ring buffer
1305  * @buffer: the buffer to resize.
1306  * @size: the new size.
1307  *
1308  * Minimum size is 2 * BUF_PAGE_SIZE.
1309  *
1310  * Returns -1 on failure.
1311  */
1312 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1313 {
1314 	struct ring_buffer_per_cpu *cpu_buffer;
1315 	unsigned nr_pages, rm_pages, new_pages;
1316 	struct buffer_page *bpage, *tmp;
1317 	unsigned long buffer_size;
1318 	unsigned long addr;
1319 	LIST_HEAD(pages);
1320 	int i, cpu;
1321 
1322 	/*
1323 	 * Always succeed at resizing a non-existent buffer:
1324 	 */
1325 	if (!buffer)
1326 		return size;
1327 
1328 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1329 	size *= BUF_PAGE_SIZE;
1330 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1331 
1332 	/* we need a minimum of two pages */
1333 	if (size < BUF_PAGE_SIZE * 2)
1334 		size = BUF_PAGE_SIZE * 2;
1335 
1336 	if (size == buffer_size)
1337 		return size;
1338 
1339 	atomic_inc(&buffer->record_disabled);
1340 
1341 	/* Make sure all writers are done with this buffer. */
1342 	synchronize_sched();
1343 
1344 	mutex_lock(&buffer->mutex);
1345 	get_online_cpus();
1346 
1347 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1348 
1349 	if (size < buffer_size) {
1350 
1351 		/* easy case, just free pages */
1352 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1353 			goto out_fail;
1354 
1355 		rm_pages = buffer->pages - nr_pages;
1356 
1357 		for_each_buffer_cpu(buffer, cpu) {
1358 			cpu_buffer = buffer->buffers[cpu];
1359 			rb_remove_pages(cpu_buffer, rm_pages);
1360 		}
1361 		goto out;
1362 	}
1363 
1364 	/*
1365 	 * This is a bit more difficult. We only want to add pages
1366 	 * when we can allocate enough for all CPUs. We do this
1367 	 * by allocating all the pages and storing them on a local
1368 	 * link list. If we succeed in our allocation, then we
1369 	 * add these pages to the cpu_buffers. Otherwise we just free
1370 	 * them all and return -ENOMEM;
1371 	 */
1372 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1373 		goto out_fail;
1374 
1375 	new_pages = nr_pages - buffer->pages;
1376 
1377 	for_each_buffer_cpu(buffer, cpu) {
1378 		for (i = 0; i < new_pages; i++) {
1379 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1380 						  cache_line_size()),
1381 					    GFP_KERNEL, cpu_to_node(cpu));
1382 			if (!bpage)
1383 				goto free_pages;
1384 			list_add(&bpage->list, &pages);
1385 			addr = __get_free_page(GFP_KERNEL);
1386 			if (!addr)
1387 				goto free_pages;
1388 			bpage->page = (void *)addr;
1389 			rb_init_page(bpage->page);
1390 		}
1391 	}
1392 
1393 	for_each_buffer_cpu(buffer, cpu) {
1394 		cpu_buffer = buffer->buffers[cpu];
1395 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1396 	}
1397 
1398 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1399 		goto out_fail;
1400 
1401  out:
1402 	buffer->pages = nr_pages;
1403 	put_online_cpus();
1404 	mutex_unlock(&buffer->mutex);
1405 
1406 	atomic_dec(&buffer->record_disabled);
1407 
1408 	return size;
1409 
1410  free_pages:
1411 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1412 		list_del_init(&bpage->list);
1413 		free_buffer_page(bpage);
1414 	}
1415 	put_online_cpus();
1416 	mutex_unlock(&buffer->mutex);
1417 	atomic_dec(&buffer->record_disabled);
1418 	return -ENOMEM;
1419 
1420 	/*
1421 	 * Something went totally wrong, and we are too paranoid
1422 	 * to even clean up the mess.
1423 	 */
1424  out_fail:
1425 	put_online_cpus();
1426 	mutex_unlock(&buffer->mutex);
1427 	atomic_dec(&buffer->record_disabled);
1428 	return -1;
1429 }
1430 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1431 
1432 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1433 {
1434 	mutex_lock(&buffer->mutex);
1435 	if (val)
1436 		buffer->flags |= RB_FL_OVERWRITE;
1437 	else
1438 		buffer->flags &= ~RB_FL_OVERWRITE;
1439 	mutex_unlock(&buffer->mutex);
1440 }
1441 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1442 
1443 static inline void *
1444 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1445 {
1446 	return bpage->data + index;
1447 }
1448 
1449 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1450 {
1451 	return bpage->page->data + index;
1452 }
1453 
1454 static inline struct ring_buffer_event *
1455 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1456 {
1457 	return __rb_page_index(cpu_buffer->reader_page,
1458 			       cpu_buffer->reader_page->read);
1459 }
1460 
1461 static inline struct ring_buffer_event *
1462 rb_iter_head_event(struct ring_buffer_iter *iter)
1463 {
1464 	return __rb_page_index(iter->head_page, iter->head);
1465 }
1466 
1467 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1468 {
1469 	return local_read(&bpage->write) & RB_WRITE_MASK;
1470 }
1471 
1472 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1473 {
1474 	return local_read(&bpage->page->commit);
1475 }
1476 
1477 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1478 {
1479 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1480 }
1481 
1482 /* Size is determined by what has been commited */
1483 static inline unsigned rb_page_size(struct buffer_page *bpage)
1484 {
1485 	return rb_page_commit(bpage);
1486 }
1487 
1488 static inline unsigned
1489 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1490 {
1491 	return rb_page_commit(cpu_buffer->commit_page);
1492 }
1493 
1494 static inline unsigned
1495 rb_event_index(struct ring_buffer_event *event)
1496 {
1497 	unsigned long addr = (unsigned long)event;
1498 
1499 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1500 }
1501 
1502 static inline int
1503 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1504 		   struct ring_buffer_event *event)
1505 {
1506 	unsigned long addr = (unsigned long)event;
1507 	unsigned long index;
1508 
1509 	index = rb_event_index(event);
1510 	addr &= PAGE_MASK;
1511 
1512 	return cpu_buffer->commit_page->page == (void *)addr &&
1513 		rb_commit_index(cpu_buffer) == index;
1514 }
1515 
1516 static void
1517 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1518 {
1519 	unsigned long max_count;
1520 
1521 	/*
1522 	 * We only race with interrupts and NMIs on this CPU.
1523 	 * If we own the commit event, then we can commit
1524 	 * all others that interrupted us, since the interruptions
1525 	 * are in stack format (they finish before they come
1526 	 * back to us). This allows us to do a simple loop to
1527 	 * assign the commit to the tail.
1528 	 */
1529  again:
1530 	max_count = cpu_buffer->buffer->pages * 100;
1531 
1532 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1533 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1534 			return;
1535 		if (RB_WARN_ON(cpu_buffer,
1536 			       rb_is_reader_page(cpu_buffer->tail_page)))
1537 			return;
1538 		local_set(&cpu_buffer->commit_page->page->commit,
1539 			  rb_page_write(cpu_buffer->commit_page));
1540 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1541 		cpu_buffer->write_stamp =
1542 			cpu_buffer->commit_page->page->time_stamp;
1543 		/* add barrier to keep gcc from optimizing too much */
1544 		barrier();
1545 	}
1546 	while (rb_commit_index(cpu_buffer) !=
1547 	       rb_page_write(cpu_buffer->commit_page)) {
1548 
1549 		local_set(&cpu_buffer->commit_page->page->commit,
1550 			  rb_page_write(cpu_buffer->commit_page));
1551 		RB_WARN_ON(cpu_buffer,
1552 			   local_read(&cpu_buffer->commit_page->page->commit) &
1553 			   ~RB_WRITE_MASK);
1554 		barrier();
1555 	}
1556 
1557 	/* again, keep gcc from optimizing */
1558 	barrier();
1559 
1560 	/*
1561 	 * If an interrupt came in just after the first while loop
1562 	 * and pushed the tail page forward, we will be left with
1563 	 * a dangling commit that will never go forward.
1564 	 */
1565 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1566 		goto again;
1567 }
1568 
1569 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1570 {
1571 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1572 	cpu_buffer->reader_page->read = 0;
1573 }
1574 
1575 static void rb_inc_iter(struct ring_buffer_iter *iter)
1576 {
1577 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1578 
1579 	/*
1580 	 * The iterator could be on the reader page (it starts there).
1581 	 * But the head could have moved, since the reader was
1582 	 * found. Check for this case and assign the iterator
1583 	 * to the head page instead of next.
1584 	 */
1585 	if (iter->head_page == cpu_buffer->reader_page)
1586 		iter->head_page = rb_set_head_page(cpu_buffer);
1587 	else
1588 		rb_inc_page(cpu_buffer, &iter->head_page);
1589 
1590 	iter->read_stamp = iter->head_page->page->time_stamp;
1591 	iter->head = 0;
1592 }
1593 
1594 /* Slow path, do not inline */
1595 static noinline struct ring_buffer_event *
1596 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1597 {
1598 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1599 
1600 	/* Not the first event on the page? */
1601 	if (rb_event_index(event)) {
1602 		event->time_delta = delta & TS_MASK;
1603 		event->array[0] = delta >> TS_SHIFT;
1604 	} else {
1605 		/* nope, just zero it */
1606 		event->time_delta = 0;
1607 		event->array[0] = 0;
1608 	}
1609 
1610 	return skip_time_extend(event);
1611 }
1612 
1613 /**
1614  * ring_buffer_update_event - update event type and data
1615  * @event: the even to update
1616  * @type: the type of event
1617  * @length: the size of the event field in the ring buffer
1618  *
1619  * Update the type and data fields of the event. The length
1620  * is the actual size that is written to the ring buffer,
1621  * and with this, we can determine what to place into the
1622  * data field.
1623  */
1624 static void
1625 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1626 		struct ring_buffer_event *event, unsigned length,
1627 		int add_timestamp, u64 delta)
1628 {
1629 	/* Only a commit updates the timestamp */
1630 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1631 		delta = 0;
1632 
1633 	/*
1634 	 * If we need to add a timestamp, then we
1635 	 * add it to the start of the resevered space.
1636 	 */
1637 	if (unlikely(add_timestamp)) {
1638 		event = rb_add_time_stamp(event, delta);
1639 		length -= RB_LEN_TIME_EXTEND;
1640 		delta = 0;
1641 	}
1642 
1643 	event->time_delta = delta;
1644 	length -= RB_EVNT_HDR_SIZE;
1645 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1646 		event->type_len = 0;
1647 		event->array[0] = length;
1648 	} else
1649 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1650 }
1651 
1652 /*
1653  * rb_handle_head_page - writer hit the head page
1654  *
1655  * Returns: +1 to retry page
1656  *           0 to continue
1657  *          -1 on error
1658  */
1659 static int
1660 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1661 		    struct buffer_page *tail_page,
1662 		    struct buffer_page *next_page)
1663 {
1664 	struct buffer_page *new_head;
1665 	int entries;
1666 	int type;
1667 	int ret;
1668 
1669 	entries = rb_page_entries(next_page);
1670 
1671 	/*
1672 	 * The hard part is here. We need to move the head
1673 	 * forward, and protect against both readers on
1674 	 * other CPUs and writers coming in via interrupts.
1675 	 */
1676 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1677 				       RB_PAGE_HEAD);
1678 
1679 	/*
1680 	 * type can be one of four:
1681 	 *  NORMAL - an interrupt already moved it for us
1682 	 *  HEAD   - we are the first to get here.
1683 	 *  UPDATE - we are the interrupt interrupting
1684 	 *           a current move.
1685 	 *  MOVED  - a reader on another CPU moved the next
1686 	 *           pointer to its reader page. Give up
1687 	 *           and try again.
1688 	 */
1689 
1690 	switch (type) {
1691 	case RB_PAGE_HEAD:
1692 		/*
1693 		 * We changed the head to UPDATE, thus
1694 		 * it is our responsibility to update
1695 		 * the counters.
1696 		 */
1697 		local_add(entries, &cpu_buffer->overrun);
1698 
1699 		/*
1700 		 * The entries will be zeroed out when we move the
1701 		 * tail page.
1702 		 */
1703 
1704 		/* still more to do */
1705 		break;
1706 
1707 	case RB_PAGE_UPDATE:
1708 		/*
1709 		 * This is an interrupt that interrupt the
1710 		 * previous update. Still more to do.
1711 		 */
1712 		break;
1713 	case RB_PAGE_NORMAL:
1714 		/*
1715 		 * An interrupt came in before the update
1716 		 * and processed this for us.
1717 		 * Nothing left to do.
1718 		 */
1719 		return 1;
1720 	case RB_PAGE_MOVED:
1721 		/*
1722 		 * The reader is on another CPU and just did
1723 		 * a swap with our next_page.
1724 		 * Try again.
1725 		 */
1726 		return 1;
1727 	default:
1728 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1729 		return -1;
1730 	}
1731 
1732 	/*
1733 	 * Now that we are here, the old head pointer is
1734 	 * set to UPDATE. This will keep the reader from
1735 	 * swapping the head page with the reader page.
1736 	 * The reader (on another CPU) will spin till
1737 	 * we are finished.
1738 	 *
1739 	 * We just need to protect against interrupts
1740 	 * doing the job. We will set the next pointer
1741 	 * to HEAD. After that, we set the old pointer
1742 	 * to NORMAL, but only if it was HEAD before.
1743 	 * otherwise we are an interrupt, and only
1744 	 * want the outer most commit to reset it.
1745 	 */
1746 	new_head = next_page;
1747 	rb_inc_page(cpu_buffer, &new_head);
1748 
1749 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1750 				    RB_PAGE_NORMAL);
1751 
1752 	/*
1753 	 * Valid returns are:
1754 	 *  HEAD   - an interrupt came in and already set it.
1755 	 *  NORMAL - One of two things:
1756 	 *            1) We really set it.
1757 	 *            2) A bunch of interrupts came in and moved
1758 	 *               the page forward again.
1759 	 */
1760 	switch (ret) {
1761 	case RB_PAGE_HEAD:
1762 	case RB_PAGE_NORMAL:
1763 		/* OK */
1764 		break;
1765 	default:
1766 		RB_WARN_ON(cpu_buffer, 1);
1767 		return -1;
1768 	}
1769 
1770 	/*
1771 	 * It is possible that an interrupt came in,
1772 	 * set the head up, then more interrupts came in
1773 	 * and moved it again. When we get back here,
1774 	 * the page would have been set to NORMAL but we
1775 	 * just set it back to HEAD.
1776 	 *
1777 	 * How do you detect this? Well, if that happened
1778 	 * the tail page would have moved.
1779 	 */
1780 	if (ret == RB_PAGE_NORMAL) {
1781 		/*
1782 		 * If the tail had moved passed next, then we need
1783 		 * to reset the pointer.
1784 		 */
1785 		if (cpu_buffer->tail_page != tail_page &&
1786 		    cpu_buffer->tail_page != next_page)
1787 			rb_head_page_set_normal(cpu_buffer, new_head,
1788 						next_page,
1789 						RB_PAGE_HEAD);
1790 	}
1791 
1792 	/*
1793 	 * If this was the outer most commit (the one that
1794 	 * changed the original pointer from HEAD to UPDATE),
1795 	 * then it is up to us to reset it to NORMAL.
1796 	 */
1797 	if (type == RB_PAGE_HEAD) {
1798 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1799 					      tail_page,
1800 					      RB_PAGE_UPDATE);
1801 		if (RB_WARN_ON(cpu_buffer,
1802 			       ret != RB_PAGE_UPDATE))
1803 			return -1;
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 static unsigned rb_calculate_event_length(unsigned length)
1810 {
1811 	struct ring_buffer_event event; /* Used only for sizeof array */
1812 
1813 	/* zero length can cause confusions */
1814 	if (!length)
1815 		length = 1;
1816 
1817 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1818 		length += sizeof(event.array[0]);
1819 
1820 	length += RB_EVNT_HDR_SIZE;
1821 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
1822 
1823 	return length;
1824 }
1825 
1826 static inline void
1827 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1828 	      struct buffer_page *tail_page,
1829 	      unsigned long tail, unsigned long length)
1830 {
1831 	struct ring_buffer_event *event;
1832 
1833 	/*
1834 	 * Only the event that crossed the page boundary
1835 	 * must fill the old tail_page with padding.
1836 	 */
1837 	if (tail >= BUF_PAGE_SIZE) {
1838 		/*
1839 		 * If the page was filled, then we still need
1840 		 * to update the real_end. Reset it to zero
1841 		 * and the reader will ignore it.
1842 		 */
1843 		if (tail == BUF_PAGE_SIZE)
1844 			tail_page->real_end = 0;
1845 
1846 		local_sub(length, &tail_page->write);
1847 		return;
1848 	}
1849 
1850 	event = __rb_page_index(tail_page, tail);
1851 	kmemcheck_annotate_bitfield(event, bitfield);
1852 
1853 	/*
1854 	 * Save the original length to the meta data.
1855 	 * This will be used by the reader to add lost event
1856 	 * counter.
1857 	 */
1858 	tail_page->real_end = tail;
1859 
1860 	/*
1861 	 * If this event is bigger than the minimum size, then
1862 	 * we need to be careful that we don't subtract the
1863 	 * write counter enough to allow another writer to slip
1864 	 * in on this page.
1865 	 * We put in a discarded commit instead, to make sure
1866 	 * that this space is not used again.
1867 	 *
1868 	 * If we are less than the minimum size, we don't need to
1869 	 * worry about it.
1870 	 */
1871 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1872 		/* No room for any events */
1873 
1874 		/* Mark the rest of the page with padding */
1875 		rb_event_set_padding(event);
1876 
1877 		/* Set the write back to the previous setting */
1878 		local_sub(length, &tail_page->write);
1879 		return;
1880 	}
1881 
1882 	/* Put in a discarded event */
1883 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1884 	event->type_len = RINGBUF_TYPE_PADDING;
1885 	/* time delta must be non zero */
1886 	event->time_delta = 1;
1887 
1888 	/* Set write to end of buffer */
1889 	length = (tail + length) - BUF_PAGE_SIZE;
1890 	local_sub(length, &tail_page->write);
1891 }
1892 
1893 /*
1894  * This is the slow path, force gcc not to inline it.
1895  */
1896 static noinline struct ring_buffer_event *
1897 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1898 	     unsigned long length, unsigned long tail,
1899 	     struct buffer_page *tail_page, u64 ts)
1900 {
1901 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1902 	struct ring_buffer *buffer = cpu_buffer->buffer;
1903 	struct buffer_page *next_page;
1904 	int ret;
1905 
1906 	next_page = tail_page;
1907 
1908 	rb_inc_page(cpu_buffer, &next_page);
1909 
1910 	/*
1911 	 * If for some reason, we had an interrupt storm that made
1912 	 * it all the way around the buffer, bail, and warn
1913 	 * about it.
1914 	 */
1915 	if (unlikely(next_page == commit_page)) {
1916 		local_inc(&cpu_buffer->commit_overrun);
1917 		goto out_reset;
1918 	}
1919 
1920 	/*
1921 	 * This is where the fun begins!
1922 	 *
1923 	 * We are fighting against races between a reader that
1924 	 * could be on another CPU trying to swap its reader
1925 	 * page with the buffer head.
1926 	 *
1927 	 * We are also fighting against interrupts coming in and
1928 	 * moving the head or tail on us as well.
1929 	 *
1930 	 * If the next page is the head page then we have filled
1931 	 * the buffer, unless the commit page is still on the
1932 	 * reader page.
1933 	 */
1934 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1935 
1936 		/*
1937 		 * If the commit is not on the reader page, then
1938 		 * move the header page.
1939 		 */
1940 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1941 			/*
1942 			 * If we are not in overwrite mode,
1943 			 * this is easy, just stop here.
1944 			 */
1945 			if (!(buffer->flags & RB_FL_OVERWRITE))
1946 				goto out_reset;
1947 
1948 			ret = rb_handle_head_page(cpu_buffer,
1949 						  tail_page,
1950 						  next_page);
1951 			if (ret < 0)
1952 				goto out_reset;
1953 			if (ret)
1954 				goto out_again;
1955 		} else {
1956 			/*
1957 			 * We need to be careful here too. The
1958 			 * commit page could still be on the reader
1959 			 * page. We could have a small buffer, and
1960 			 * have filled up the buffer with events
1961 			 * from interrupts and such, and wrapped.
1962 			 *
1963 			 * Note, if the tail page is also the on the
1964 			 * reader_page, we let it move out.
1965 			 */
1966 			if (unlikely((cpu_buffer->commit_page !=
1967 				      cpu_buffer->tail_page) &&
1968 				     (cpu_buffer->commit_page ==
1969 				      cpu_buffer->reader_page))) {
1970 				local_inc(&cpu_buffer->commit_overrun);
1971 				goto out_reset;
1972 			}
1973 		}
1974 	}
1975 
1976 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1977 	if (ret) {
1978 		/*
1979 		 * Nested commits always have zero deltas, so
1980 		 * just reread the time stamp
1981 		 */
1982 		ts = rb_time_stamp(buffer);
1983 		next_page->page->time_stamp = ts;
1984 	}
1985 
1986  out_again:
1987 
1988 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1989 
1990 	/* fail and let the caller try again */
1991 	return ERR_PTR(-EAGAIN);
1992 
1993  out_reset:
1994 	/* reset write */
1995 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1996 
1997 	return NULL;
1998 }
1999 
2000 static struct ring_buffer_event *
2001 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2002 		  unsigned long length, u64 ts,
2003 		  u64 delta, int add_timestamp)
2004 {
2005 	struct buffer_page *tail_page;
2006 	struct ring_buffer_event *event;
2007 	unsigned long tail, write;
2008 
2009 	/*
2010 	 * If the time delta since the last event is too big to
2011 	 * hold in the time field of the event, then we append a
2012 	 * TIME EXTEND event ahead of the data event.
2013 	 */
2014 	if (unlikely(add_timestamp))
2015 		length += RB_LEN_TIME_EXTEND;
2016 
2017 	tail_page = cpu_buffer->tail_page;
2018 	write = local_add_return(length, &tail_page->write);
2019 
2020 	/* set write to only the index of the write */
2021 	write &= RB_WRITE_MASK;
2022 	tail = write - length;
2023 
2024 	/* See if we shot pass the end of this buffer page */
2025 	if (unlikely(write > BUF_PAGE_SIZE))
2026 		return rb_move_tail(cpu_buffer, length, tail,
2027 				    tail_page, ts);
2028 
2029 	/* We reserved something on the buffer */
2030 
2031 	event = __rb_page_index(tail_page, tail);
2032 	kmemcheck_annotate_bitfield(event, bitfield);
2033 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2034 
2035 	local_inc(&tail_page->entries);
2036 
2037 	/*
2038 	 * If this is the first commit on the page, then update
2039 	 * its timestamp.
2040 	 */
2041 	if (!tail)
2042 		tail_page->page->time_stamp = ts;
2043 
2044 	return event;
2045 }
2046 
2047 static inline int
2048 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2049 		  struct ring_buffer_event *event)
2050 {
2051 	unsigned long new_index, old_index;
2052 	struct buffer_page *bpage;
2053 	unsigned long index;
2054 	unsigned long addr;
2055 
2056 	new_index = rb_event_index(event);
2057 	old_index = new_index + rb_event_ts_length(event);
2058 	addr = (unsigned long)event;
2059 	addr &= PAGE_MASK;
2060 
2061 	bpage = cpu_buffer->tail_page;
2062 
2063 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2064 		unsigned long write_mask =
2065 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2066 		/*
2067 		 * This is on the tail page. It is possible that
2068 		 * a write could come in and move the tail page
2069 		 * and write to the next page. That is fine
2070 		 * because we just shorten what is on this page.
2071 		 */
2072 		old_index += write_mask;
2073 		new_index += write_mask;
2074 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2075 		if (index == old_index)
2076 			return 1;
2077 	}
2078 
2079 	/* could not discard */
2080 	return 0;
2081 }
2082 
2083 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2084 {
2085 	local_inc(&cpu_buffer->committing);
2086 	local_inc(&cpu_buffer->commits);
2087 }
2088 
2089 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2090 {
2091 	unsigned long commits;
2092 
2093 	if (RB_WARN_ON(cpu_buffer,
2094 		       !local_read(&cpu_buffer->committing)))
2095 		return;
2096 
2097  again:
2098 	commits = local_read(&cpu_buffer->commits);
2099 	/* synchronize with interrupts */
2100 	barrier();
2101 	if (local_read(&cpu_buffer->committing) == 1)
2102 		rb_set_commit_to_write(cpu_buffer);
2103 
2104 	local_dec(&cpu_buffer->committing);
2105 
2106 	/* synchronize with interrupts */
2107 	barrier();
2108 
2109 	/*
2110 	 * Need to account for interrupts coming in between the
2111 	 * updating of the commit page and the clearing of the
2112 	 * committing counter.
2113 	 */
2114 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2115 	    !local_read(&cpu_buffer->committing)) {
2116 		local_inc(&cpu_buffer->committing);
2117 		goto again;
2118 	}
2119 }
2120 
2121 static struct ring_buffer_event *
2122 rb_reserve_next_event(struct ring_buffer *buffer,
2123 		      struct ring_buffer_per_cpu *cpu_buffer,
2124 		      unsigned long length)
2125 {
2126 	struct ring_buffer_event *event;
2127 	u64 ts, delta;
2128 	int nr_loops = 0;
2129 	int add_timestamp;
2130 	u64 diff;
2131 
2132 	rb_start_commit(cpu_buffer);
2133 
2134 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2135 	/*
2136 	 * Due to the ability to swap a cpu buffer from a buffer
2137 	 * it is possible it was swapped before we committed.
2138 	 * (committing stops a swap). We check for it here and
2139 	 * if it happened, we have to fail the write.
2140 	 */
2141 	barrier();
2142 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2143 		local_dec(&cpu_buffer->committing);
2144 		local_dec(&cpu_buffer->commits);
2145 		return NULL;
2146 	}
2147 #endif
2148 
2149 	length = rb_calculate_event_length(length);
2150  again:
2151 	add_timestamp = 0;
2152 	delta = 0;
2153 
2154 	/*
2155 	 * We allow for interrupts to reenter here and do a trace.
2156 	 * If one does, it will cause this original code to loop
2157 	 * back here. Even with heavy interrupts happening, this
2158 	 * should only happen a few times in a row. If this happens
2159 	 * 1000 times in a row, there must be either an interrupt
2160 	 * storm or we have something buggy.
2161 	 * Bail!
2162 	 */
2163 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2164 		goto out_fail;
2165 
2166 	ts = rb_time_stamp(cpu_buffer->buffer);
2167 	diff = ts - cpu_buffer->write_stamp;
2168 
2169 	/* make sure this diff is calculated here */
2170 	barrier();
2171 
2172 	/* Did the write stamp get updated already? */
2173 	if (likely(ts >= cpu_buffer->write_stamp)) {
2174 		delta = diff;
2175 		if (unlikely(test_time_stamp(delta))) {
2176 			WARN_ONCE(delta > (1ULL << 59),
2177 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2178 				  (unsigned long long)delta,
2179 				  (unsigned long long)ts,
2180 				  (unsigned long long)cpu_buffer->write_stamp);
2181 			add_timestamp = 1;
2182 		}
2183 	}
2184 
2185 	event = __rb_reserve_next(cpu_buffer, length, ts,
2186 				  delta, add_timestamp);
2187 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2188 		goto again;
2189 
2190 	if (!event)
2191 		goto out_fail;
2192 
2193 	return event;
2194 
2195  out_fail:
2196 	rb_end_commit(cpu_buffer);
2197 	return NULL;
2198 }
2199 
2200 #ifdef CONFIG_TRACING
2201 
2202 #define TRACE_RECURSIVE_DEPTH 16
2203 
2204 /* Keep this code out of the fast path cache */
2205 static noinline void trace_recursive_fail(void)
2206 {
2207 	/* Disable all tracing before we do anything else */
2208 	tracing_off_permanent();
2209 
2210 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2211 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2212 		    current->trace_recursion,
2213 		    hardirq_count() >> HARDIRQ_SHIFT,
2214 		    softirq_count() >> SOFTIRQ_SHIFT,
2215 		    in_nmi());
2216 
2217 	WARN_ON_ONCE(1);
2218 }
2219 
2220 static inline int trace_recursive_lock(void)
2221 {
2222 	current->trace_recursion++;
2223 
2224 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2225 		return 0;
2226 
2227 	trace_recursive_fail();
2228 
2229 	return -1;
2230 }
2231 
2232 static inline void trace_recursive_unlock(void)
2233 {
2234 	WARN_ON_ONCE(!current->trace_recursion);
2235 
2236 	current->trace_recursion--;
2237 }
2238 
2239 #else
2240 
2241 #define trace_recursive_lock()		(0)
2242 #define trace_recursive_unlock()	do { } while (0)
2243 
2244 #endif
2245 
2246 /**
2247  * ring_buffer_lock_reserve - reserve a part of the buffer
2248  * @buffer: the ring buffer to reserve from
2249  * @length: the length of the data to reserve (excluding event header)
2250  *
2251  * Returns a reseverd event on the ring buffer to copy directly to.
2252  * The user of this interface will need to get the body to write into
2253  * and can use the ring_buffer_event_data() interface.
2254  *
2255  * The length is the length of the data needed, not the event length
2256  * which also includes the event header.
2257  *
2258  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2259  * If NULL is returned, then nothing has been allocated or locked.
2260  */
2261 struct ring_buffer_event *
2262 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2263 {
2264 	struct ring_buffer_per_cpu *cpu_buffer;
2265 	struct ring_buffer_event *event;
2266 	int cpu;
2267 
2268 	if (ring_buffer_flags != RB_BUFFERS_ON)
2269 		return NULL;
2270 
2271 	/* If we are tracing schedule, we don't want to recurse */
2272 	preempt_disable_notrace();
2273 
2274 	if (atomic_read(&buffer->record_disabled))
2275 		goto out_nocheck;
2276 
2277 	if (trace_recursive_lock())
2278 		goto out_nocheck;
2279 
2280 	cpu = raw_smp_processor_id();
2281 
2282 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2283 		goto out;
2284 
2285 	cpu_buffer = buffer->buffers[cpu];
2286 
2287 	if (atomic_read(&cpu_buffer->record_disabled))
2288 		goto out;
2289 
2290 	if (length > BUF_MAX_DATA_SIZE)
2291 		goto out;
2292 
2293 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2294 	if (!event)
2295 		goto out;
2296 
2297 	return event;
2298 
2299  out:
2300 	trace_recursive_unlock();
2301 
2302  out_nocheck:
2303 	preempt_enable_notrace();
2304 	return NULL;
2305 }
2306 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2307 
2308 static void
2309 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2310 		      struct ring_buffer_event *event)
2311 {
2312 	u64 delta;
2313 
2314 	/*
2315 	 * The event first in the commit queue updates the
2316 	 * time stamp.
2317 	 */
2318 	if (rb_event_is_commit(cpu_buffer, event)) {
2319 		/*
2320 		 * A commit event that is first on a page
2321 		 * updates the write timestamp with the page stamp
2322 		 */
2323 		if (!rb_event_index(event))
2324 			cpu_buffer->write_stamp =
2325 				cpu_buffer->commit_page->page->time_stamp;
2326 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2327 			delta = event->array[0];
2328 			delta <<= TS_SHIFT;
2329 			delta += event->time_delta;
2330 			cpu_buffer->write_stamp += delta;
2331 		} else
2332 			cpu_buffer->write_stamp += event->time_delta;
2333 	}
2334 }
2335 
2336 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2337 		      struct ring_buffer_event *event)
2338 {
2339 	local_inc(&cpu_buffer->entries);
2340 	rb_update_write_stamp(cpu_buffer, event);
2341 	rb_end_commit(cpu_buffer);
2342 }
2343 
2344 /**
2345  * ring_buffer_unlock_commit - commit a reserved
2346  * @buffer: The buffer to commit to
2347  * @event: The event pointer to commit.
2348  *
2349  * This commits the data to the ring buffer, and releases any locks held.
2350  *
2351  * Must be paired with ring_buffer_lock_reserve.
2352  */
2353 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2354 			      struct ring_buffer_event *event)
2355 {
2356 	struct ring_buffer_per_cpu *cpu_buffer;
2357 	int cpu = raw_smp_processor_id();
2358 
2359 	cpu_buffer = buffer->buffers[cpu];
2360 
2361 	rb_commit(cpu_buffer, event);
2362 
2363 	trace_recursive_unlock();
2364 
2365 	preempt_enable_notrace();
2366 
2367 	return 0;
2368 }
2369 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2370 
2371 static inline void rb_event_discard(struct ring_buffer_event *event)
2372 {
2373 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2374 		event = skip_time_extend(event);
2375 
2376 	/* array[0] holds the actual length for the discarded event */
2377 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2378 	event->type_len = RINGBUF_TYPE_PADDING;
2379 	/* time delta must be non zero */
2380 	if (!event->time_delta)
2381 		event->time_delta = 1;
2382 }
2383 
2384 /*
2385  * Decrement the entries to the page that an event is on.
2386  * The event does not even need to exist, only the pointer
2387  * to the page it is on. This may only be called before the commit
2388  * takes place.
2389  */
2390 static inline void
2391 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2392 		   struct ring_buffer_event *event)
2393 {
2394 	unsigned long addr = (unsigned long)event;
2395 	struct buffer_page *bpage = cpu_buffer->commit_page;
2396 	struct buffer_page *start;
2397 
2398 	addr &= PAGE_MASK;
2399 
2400 	/* Do the likely case first */
2401 	if (likely(bpage->page == (void *)addr)) {
2402 		local_dec(&bpage->entries);
2403 		return;
2404 	}
2405 
2406 	/*
2407 	 * Because the commit page may be on the reader page we
2408 	 * start with the next page and check the end loop there.
2409 	 */
2410 	rb_inc_page(cpu_buffer, &bpage);
2411 	start = bpage;
2412 	do {
2413 		if (bpage->page == (void *)addr) {
2414 			local_dec(&bpage->entries);
2415 			return;
2416 		}
2417 		rb_inc_page(cpu_buffer, &bpage);
2418 	} while (bpage != start);
2419 
2420 	/* commit not part of this buffer?? */
2421 	RB_WARN_ON(cpu_buffer, 1);
2422 }
2423 
2424 /**
2425  * ring_buffer_commit_discard - discard an event that has not been committed
2426  * @buffer: the ring buffer
2427  * @event: non committed event to discard
2428  *
2429  * Sometimes an event that is in the ring buffer needs to be ignored.
2430  * This function lets the user discard an event in the ring buffer
2431  * and then that event will not be read later.
2432  *
2433  * This function only works if it is called before the the item has been
2434  * committed. It will try to free the event from the ring buffer
2435  * if another event has not been added behind it.
2436  *
2437  * If another event has been added behind it, it will set the event
2438  * up as discarded, and perform the commit.
2439  *
2440  * If this function is called, do not call ring_buffer_unlock_commit on
2441  * the event.
2442  */
2443 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2444 				struct ring_buffer_event *event)
2445 {
2446 	struct ring_buffer_per_cpu *cpu_buffer;
2447 	int cpu;
2448 
2449 	/* The event is discarded regardless */
2450 	rb_event_discard(event);
2451 
2452 	cpu = smp_processor_id();
2453 	cpu_buffer = buffer->buffers[cpu];
2454 
2455 	/*
2456 	 * This must only be called if the event has not been
2457 	 * committed yet. Thus we can assume that preemption
2458 	 * is still disabled.
2459 	 */
2460 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2461 
2462 	rb_decrement_entry(cpu_buffer, event);
2463 	if (rb_try_to_discard(cpu_buffer, event))
2464 		goto out;
2465 
2466 	/*
2467 	 * The commit is still visible by the reader, so we
2468 	 * must still update the timestamp.
2469 	 */
2470 	rb_update_write_stamp(cpu_buffer, event);
2471  out:
2472 	rb_end_commit(cpu_buffer);
2473 
2474 	trace_recursive_unlock();
2475 
2476 	preempt_enable_notrace();
2477 
2478 }
2479 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2480 
2481 /**
2482  * ring_buffer_write - write data to the buffer without reserving
2483  * @buffer: The ring buffer to write to.
2484  * @length: The length of the data being written (excluding the event header)
2485  * @data: The data to write to the buffer.
2486  *
2487  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2488  * one function. If you already have the data to write to the buffer, it
2489  * may be easier to simply call this function.
2490  *
2491  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2492  * and not the length of the event which would hold the header.
2493  */
2494 int ring_buffer_write(struct ring_buffer *buffer,
2495 			unsigned long length,
2496 			void *data)
2497 {
2498 	struct ring_buffer_per_cpu *cpu_buffer;
2499 	struct ring_buffer_event *event;
2500 	void *body;
2501 	int ret = -EBUSY;
2502 	int cpu;
2503 
2504 	if (ring_buffer_flags != RB_BUFFERS_ON)
2505 		return -EBUSY;
2506 
2507 	preempt_disable_notrace();
2508 
2509 	if (atomic_read(&buffer->record_disabled))
2510 		goto out;
2511 
2512 	cpu = raw_smp_processor_id();
2513 
2514 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2515 		goto out;
2516 
2517 	cpu_buffer = buffer->buffers[cpu];
2518 
2519 	if (atomic_read(&cpu_buffer->record_disabled))
2520 		goto out;
2521 
2522 	if (length > BUF_MAX_DATA_SIZE)
2523 		goto out;
2524 
2525 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2526 	if (!event)
2527 		goto out;
2528 
2529 	body = rb_event_data(event);
2530 
2531 	memcpy(body, data, length);
2532 
2533 	rb_commit(cpu_buffer, event);
2534 
2535 	ret = 0;
2536  out:
2537 	preempt_enable_notrace();
2538 
2539 	return ret;
2540 }
2541 EXPORT_SYMBOL_GPL(ring_buffer_write);
2542 
2543 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2544 {
2545 	struct buffer_page *reader = cpu_buffer->reader_page;
2546 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2547 	struct buffer_page *commit = cpu_buffer->commit_page;
2548 
2549 	/* In case of error, head will be NULL */
2550 	if (unlikely(!head))
2551 		return 1;
2552 
2553 	return reader->read == rb_page_commit(reader) &&
2554 		(commit == reader ||
2555 		 (commit == head &&
2556 		  head->read == rb_page_commit(commit)));
2557 }
2558 
2559 /**
2560  * ring_buffer_record_disable - stop all writes into the buffer
2561  * @buffer: The ring buffer to stop writes to.
2562  *
2563  * This prevents all writes to the buffer. Any attempt to write
2564  * to the buffer after this will fail and return NULL.
2565  *
2566  * The caller should call synchronize_sched() after this.
2567  */
2568 void ring_buffer_record_disable(struct ring_buffer *buffer)
2569 {
2570 	atomic_inc(&buffer->record_disabled);
2571 }
2572 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2573 
2574 /**
2575  * ring_buffer_record_enable - enable writes to the buffer
2576  * @buffer: The ring buffer to enable writes
2577  *
2578  * Note, multiple disables will need the same number of enables
2579  * to truly enable the writing (much like preempt_disable).
2580  */
2581 void ring_buffer_record_enable(struct ring_buffer *buffer)
2582 {
2583 	atomic_dec(&buffer->record_disabled);
2584 }
2585 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2586 
2587 /**
2588  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2589  * @buffer: The ring buffer to stop writes to.
2590  * @cpu: The CPU buffer to stop
2591  *
2592  * This prevents all writes to the buffer. Any attempt to write
2593  * to the buffer after this will fail and return NULL.
2594  *
2595  * The caller should call synchronize_sched() after this.
2596  */
2597 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2598 {
2599 	struct ring_buffer_per_cpu *cpu_buffer;
2600 
2601 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2602 		return;
2603 
2604 	cpu_buffer = buffer->buffers[cpu];
2605 	atomic_inc(&cpu_buffer->record_disabled);
2606 }
2607 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2608 
2609 /**
2610  * ring_buffer_record_enable_cpu - enable writes to the buffer
2611  * @buffer: The ring buffer to enable writes
2612  * @cpu: The CPU to enable.
2613  *
2614  * Note, multiple disables will need the same number of enables
2615  * to truly enable the writing (much like preempt_disable).
2616  */
2617 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2618 {
2619 	struct ring_buffer_per_cpu *cpu_buffer;
2620 
2621 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2622 		return;
2623 
2624 	cpu_buffer = buffer->buffers[cpu];
2625 	atomic_dec(&cpu_buffer->record_disabled);
2626 }
2627 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2628 
2629 /*
2630  * The total entries in the ring buffer is the running counter
2631  * of entries entered into the ring buffer, minus the sum of
2632  * the entries read from the ring buffer and the number of
2633  * entries that were overwritten.
2634  */
2635 static inline unsigned long
2636 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2637 {
2638 	return local_read(&cpu_buffer->entries) -
2639 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2640 }
2641 
2642 /**
2643  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2644  * @buffer: The ring buffer
2645  * @cpu: The per CPU buffer to get the entries from.
2646  */
2647 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2648 {
2649 	struct ring_buffer_per_cpu *cpu_buffer;
2650 
2651 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2652 		return 0;
2653 
2654 	cpu_buffer = buffer->buffers[cpu];
2655 
2656 	return rb_num_of_entries(cpu_buffer);
2657 }
2658 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2659 
2660 /**
2661  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2662  * @buffer: The ring buffer
2663  * @cpu: The per CPU buffer to get the number of overruns from
2664  */
2665 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2666 {
2667 	struct ring_buffer_per_cpu *cpu_buffer;
2668 	unsigned long ret;
2669 
2670 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2671 		return 0;
2672 
2673 	cpu_buffer = buffer->buffers[cpu];
2674 	ret = local_read(&cpu_buffer->overrun);
2675 
2676 	return ret;
2677 }
2678 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2679 
2680 /**
2681  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2682  * @buffer: The ring buffer
2683  * @cpu: The per CPU buffer to get the number of overruns from
2684  */
2685 unsigned long
2686 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2687 {
2688 	struct ring_buffer_per_cpu *cpu_buffer;
2689 	unsigned long ret;
2690 
2691 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2692 		return 0;
2693 
2694 	cpu_buffer = buffer->buffers[cpu];
2695 	ret = local_read(&cpu_buffer->commit_overrun);
2696 
2697 	return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2700 
2701 /**
2702  * ring_buffer_entries - get the number of entries in a buffer
2703  * @buffer: The ring buffer
2704  *
2705  * Returns the total number of entries in the ring buffer
2706  * (all CPU entries)
2707  */
2708 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2709 {
2710 	struct ring_buffer_per_cpu *cpu_buffer;
2711 	unsigned long entries = 0;
2712 	int cpu;
2713 
2714 	/* if you care about this being correct, lock the buffer */
2715 	for_each_buffer_cpu(buffer, cpu) {
2716 		cpu_buffer = buffer->buffers[cpu];
2717 		entries += rb_num_of_entries(cpu_buffer);
2718 	}
2719 
2720 	return entries;
2721 }
2722 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2723 
2724 /**
2725  * ring_buffer_overruns - get the number of overruns in buffer
2726  * @buffer: The ring buffer
2727  *
2728  * Returns the total number of overruns in the ring buffer
2729  * (all CPU entries)
2730  */
2731 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2732 {
2733 	struct ring_buffer_per_cpu *cpu_buffer;
2734 	unsigned long overruns = 0;
2735 	int cpu;
2736 
2737 	/* if you care about this being correct, lock the buffer */
2738 	for_each_buffer_cpu(buffer, cpu) {
2739 		cpu_buffer = buffer->buffers[cpu];
2740 		overruns += local_read(&cpu_buffer->overrun);
2741 	}
2742 
2743 	return overruns;
2744 }
2745 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2746 
2747 static void rb_iter_reset(struct ring_buffer_iter *iter)
2748 {
2749 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2750 
2751 	/* Iterator usage is expected to have record disabled */
2752 	if (list_empty(&cpu_buffer->reader_page->list)) {
2753 		iter->head_page = rb_set_head_page(cpu_buffer);
2754 		if (unlikely(!iter->head_page))
2755 			return;
2756 		iter->head = iter->head_page->read;
2757 	} else {
2758 		iter->head_page = cpu_buffer->reader_page;
2759 		iter->head = cpu_buffer->reader_page->read;
2760 	}
2761 	if (iter->head)
2762 		iter->read_stamp = cpu_buffer->read_stamp;
2763 	else
2764 		iter->read_stamp = iter->head_page->page->time_stamp;
2765 	iter->cache_reader_page = cpu_buffer->reader_page;
2766 	iter->cache_read = cpu_buffer->read;
2767 }
2768 
2769 /**
2770  * ring_buffer_iter_reset - reset an iterator
2771  * @iter: The iterator to reset
2772  *
2773  * Resets the iterator, so that it will start from the beginning
2774  * again.
2775  */
2776 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2777 {
2778 	struct ring_buffer_per_cpu *cpu_buffer;
2779 	unsigned long flags;
2780 
2781 	if (!iter)
2782 		return;
2783 
2784 	cpu_buffer = iter->cpu_buffer;
2785 
2786 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2787 	rb_iter_reset(iter);
2788 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2789 }
2790 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2791 
2792 /**
2793  * ring_buffer_iter_empty - check if an iterator has no more to read
2794  * @iter: The iterator to check
2795  */
2796 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2797 {
2798 	struct ring_buffer_per_cpu *cpu_buffer;
2799 
2800 	cpu_buffer = iter->cpu_buffer;
2801 
2802 	return iter->head_page == cpu_buffer->commit_page &&
2803 		iter->head == rb_commit_index(cpu_buffer);
2804 }
2805 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2806 
2807 static void
2808 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2809 		     struct ring_buffer_event *event)
2810 {
2811 	u64 delta;
2812 
2813 	switch (event->type_len) {
2814 	case RINGBUF_TYPE_PADDING:
2815 		return;
2816 
2817 	case RINGBUF_TYPE_TIME_EXTEND:
2818 		delta = event->array[0];
2819 		delta <<= TS_SHIFT;
2820 		delta += event->time_delta;
2821 		cpu_buffer->read_stamp += delta;
2822 		return;
2823 
2824 	case RINGBUF_TYPE_TIME_STAMP:
2825 		/* FIXME: not implemented */
2826 		return;
2827 
2828 	case RINGBUF_TYPE_DATA:
2829 		cpu_buffer->read_stamp += event->time_delta;
2830 		return;
2831 
2832 	default:
2833 		BUG();
2834 	}
2835 	return;
2836 }
2837 
2838 static void
2839 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2840 			  struct ring_buffer_event *event)
2841 {
2842 	u64 delta;
2843 
2844 	switch (event->type_len) {
2845 	case RINGBUF_TYPE_PADDING:
2846 		return;
2847 
2848 	case RINGBUF_TYPE_TIME_EXTEND:
2849 		delta = event->array[0];
2850 		delta <<= TS_SHIFT;
2851 		delta += event->time_delta;
2852 		iter->read_stamp += delta;
2853 		return;
2854 
2855 	case RINGBUF_TYPE_TIME_STAMP:
2856 		/* FIXME: not implemented */
2857 		return;
2858 
2859 	case RINGBUF_TYPE_DATA:
2860 		iter->read_stamp += event->time_delta;
2861 		return;
2862 
2863 	default:
2864 		BUG();
2865 	}
2866 	return;
2867 }
2868 
2869 static struct buffer_page *
2870 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2871 {
2872 	struct buffer_page *reader = NULL;
2873 	unsigned long overwrite;
2874 	unsigned long flags;
2875 	int nr_loops = 0;
2876 	int ret;
2877 
2878 	local_irq_save(flags);
2879 	arch_spin_lock(&cpu_buffer->lock);
2880 
2881  again:
2882 	/*
2883 	 * This should normally only loop twice. But because the
2884 	 * start of the reader inserts an empty page, it causes
2885 	 * a case where we will loop three times. There should be no
2886 	 * reason to loop four times (that I know of).
2887 	 */
2888 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2889 		reader = NULL;
2890 		goto out;
2891 	}
2892 
2893 	reader = cpu_buffer->reader_page;
2894 
2895 	/* If there's more to read, return this page */
2896 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2897 		goto out;
2898 
2899 	/* Never should we have an index greater than the size */
2900 	if (RB_WARN_ON(cpu_buffer,
2901 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2902 		goto out;
2903 
2904 	/* check if we caught up to the tail */
2905 	reader = NULL;
2906 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2907 		goto out;
2908 
2909 	/*
2910 	 * Reset the reader page to size zero.
2911 	 */
2912 	local_set(&cpu_buffer->reader_page->write, 0);
2913 	local_set(&cpu_buffer->reader_page->entries, 0);
2914 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2915 	cpu_buffer->reader_page->real_end = 0;
2916 
2917  spin:
2918 	/*
2919 	 * Splice the empty reader page into the list around the head.
2920 	 */
2921 	reader = rb_set_head_page(cpu_buffer);
2922 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2923 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2924 
2925 	/*
2926 	 * cpu_buffer->pages just needs to point to the buffer, it
2927 	 *  has no specific buffer page to point to. Lets move it out
2928 	 *  of our way so we don't accidently swap it.
2929 	 */
2930 	cpu_buffer->pages = reader->list.prev;
2931 
2932 	/* The reader page will be pointing to the new head */
2933 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2934 
2935 	/*
2936 	 * We want to make sure we read the overruns after we set up our
2937 	 * pointers to the next object. The writer side does a
2938 	 * cmpxchg to cross pages which acts as the mb on the writer
2939 	 * side. Note, the reader will constantly fail the swap
2940 	 * while the writer is updating the pointers, so this
2941 	 * guarantees that the overwrite recorded here is the one we
2942 	 * want to compare with the last_overrun.
2943 	 */
2944 	smp_mb();
2945 	overwrite = local_read(&(cpu_buffer->overrun));
2946 
2947 	/*
2948 	 * Here's the tricky part.
2949 	 *
2950 	 * We need to move the pointer past the header page.
2951 	 * But we can only do that if a writer is not currently
2952 	 * moving it. The page before the header page has the
2953 	 * flag bit '1' set if it is pointing to the page we want.
2954 	 * but if the writer is in the process of moving it
2955 	 * than it will be '2' or already moved '0'.
2956 	 */
2957 
2958 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2959 
2960 	/*
2961 	 * If we did not convert it, then we must try again.
2962 	 */
2963 	if (!ret)
2964 		goto spin;
2965 
2966 	/*
2967 	 * Yeah! We succeeded in replacing the page.
2968 	 *
2969 	 * Now make the new head point back to the reader page.
2970 	 */
2971 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2972 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2973 
2974 	/* Finally update the reader page to the new head */
2975 	cpu_buffer->reader_page = reader;
2976 	rb_reset_reader_page(cpu_buffer);
2977 
2978 	if (overwrite != cpu_buffer->last_overrun) {
2979 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2980 		cpu_buffer->last_overrun = overwrite;
2981 	}
2982 
2983 	goto again;
2984 
2985  out:
2986 	arch_spin_unlock(&cpu_buffer->lock);
2987 	local_irq_restore(flags);
2988 
2989 	return reader;
2990 }
2991 
2992 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2993 {
2994 	struct ring_buffer_event *event;
2995 	struct buffer_page *reader;
2996 	unsigned length;
2997 
2998 	reader = rb_get_reader_page(cpu_buffer);
2999 
3000 	/* This function should not be called when buffer is empty */
3001 	if (RB_WARN_ON(cpu_buffer, !reader))
3002 		return;
3003 
3004 	event = rb_reader_event(cpu_buffer);
3005 
3006 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3007 		cpu_buffer->read++;
3008 
3009 	rb_update_read_stamp(cpu_buffer, event);
3010 
3011 	length = rb_event_length(event);
3012 	cpu_buffer->reader_page->read += length;
3013 }
3014 
3015 static void rb_advance_iter(struct ring_buffer_iter *iter)
3016 {
3017 	struct ring_buffer_per_cpu *cpu_buffer;
3018 	struct ring_buffer_event *event;
3019 	unsigned length;
3020 
3021 	cpu_buffer = iter->cpu_buffer;
3022 
3023 	/*
3024 	 * Check if we are at the end of the buffer.
3025 	 */
3026 	if (iter->head >= rb_page_size(iter->head_page)) {
3027 		/* discarded commits can make the page empty */
3028 		if (iter->head_page == cpu_buffer->commit_page)
3029 			return;
3030 		rb_inc_iter(iter);
3031 		return;
3032 	}
3033 
3034 	event = rb_iter_head_event(iter);
3035 
3036 	length = rb_event_length(event);
3037 
3038 	/*
3039 	 * This should not be called to advance the header if we are
3040 	 * at the tail of the buffer.
3041 	 */
3042 	if (RB_WARN_ON(cpu_buffer,
3043 		       (iter->head_page == cpu_buffer->commit_page) &&
3044 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3045 		return;
3046 
3047 	rb_update_iter_read_stamp(iter, event);
3048 
3049 	iter->head += length;
3050 
3051 	/* check for end of page padding */
3052 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3053 	    (iter->head_page != cpu_buffer->commit_page))
3054 		rb_advance_iter(iter);
3055 }
3056 
3057 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3058 {
3059 	return cpu_buffer->lost_events;
3060 }
3061 
3062 static struct ring_buffer_event *
3063 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3064 	       unsigned long *lost_events)
3065 {
3066 	struct ring_buffer_event *event;
3067 	struct buffer_page *reader;
3068 	int nr_loops = 0;
3069 
3070  again:
3071 	/*
3072 	 * We repeat when a time extend is encountered.
3073 	 * Since the time extend is always attached to a data event,
3074 	 * we should never loop more than once.
3075 	 * (We never hit the following condition more than twice).
3076 	 */
3077 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3078 		return NULL;
3079 
3080 	reader = rb_get_reader_page(cpu_buffer);
3081 	if (!reader)
3082 		return NULL;
3083 
3084 	event = rb_reader_event(cpu_buffer);
3085 
3086 	switch (event->type_len) {
3087 	case RINGBUF_TYPE_PADDING:
3088 		if (rb_null_event(event))
3089 			RB_WARN_ON(cpu_buffer, 1);
3090 		/*
3091 		 * Because the writer could be discarding every
3092 		 * event it creates (which would probably be bad)
3093 		 * if we were to go back to "again" then we may never
3094 		 * catch up, and will trigger the warn on, or lock
3095 		 * the box. Return the padding, and we will release
3096 		 * the current locks, and try again.
3097 		 */
3098 		return event;
3099 
3100 	case RINGBUF_TYPE_TIME_EXTEND:
3101 		/* Internal data, OK to advance */
3102 		rb_advance_reader(cpu_buffer);
3103 		goto again;
3104 
3105 	case RINGBUF_TYPE_TIME_STAMP:
3106 		/* FIXME: not implemented */
3107 		rb_advance_reader(cpu_buffer);
3108 		goto again;
3109 
3110 	case RINGBUF_TYPE_DATA:
3111 		if (ts) {
3112 			*ts = cpu_buffer->read_stamp + event->time_delta;
3113 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3114 							 cpu_buffer->cpu, ts);
3115 		}
3116 		if (lost_events)
3117 			*lost_events = rb_lost_events(cpu_buffer);
3118 		return event;
3119 
3120 	default:
3121 		BUG();
3122 	}
3123 
3124 	return NULL;
3125 }
3126 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3127 
3128 static struct ring_buffer_event *
3129 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3130 {
3131 	struct ring_buffer *buffer;
3132 	struct ring_buffer_per_cpu *cpu_buffer;
3133 	struct ring_buffer_event *event;
3134 	int nr_loops = 0;
3135 
3136 	cpu_buffer = iter->cpu_buffer;
3137 	buffer = cpu_buffer->buffer;
3138 
3139 	/*
3140 	 * Check if someone performed a consuming read to
3141 	 * the buffer. A consuming read invalidates the iterator
3142 	 * and we need to reset the iterator in this case.
3143 	 */
3144 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3145 		     iter->cache_reader_page != cpu_buffer->reader_page))
3146 		rb_iter_reset(iter);
3147 
3148  again:
3149 	if (ring_buffer_iter_empty(iter))
3150 		return NULL;
3151 
3152 	/*
3153 	 * We repeat when a time extend is encountered.
3154 	 * Since the time extend is always attached to a data event,
3155 	 * we should never loop more than once.
3156 	 * (We never hit the following condition more than twice).
3157 	 */
3158 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3159 		return NULL;
3160 
3161 	if (rb_per_cpu_empty(cpu_buffer))
3162 		return NULL;
3163 
3164 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3165 		rb_inc_iter(iter);
3166 		goto again;
3167 	}
3168 
3169 	event = rb_iter_head_event(iter);
3170 
3171 	switch (event->type_len) {
3172 	case RINGBUF_TYPE_PADDING:
3173 		if (rb_null_event(event)) {
3174 			rb_inc_iter(iter);
3175 			goto again;
3176 		}
3177 		rb_advance_iter(iter);
3178 		return event;
3179 
3180 	case RINGBUF_TYPE_TIME_EXTEND:
3181 		/* Internal data, OK to advance */
3182 		rb_advance_iter(iter);
3183 		goto again;
3184 
3185 	case RINGBUF_TYPE_TIME_STAMP:
3186 		/* FIXME: not implemented */
3187 		rb_advance_iter(iter);
3188 		goto again;
3189 
3190 	case RINGBUF_TYPE_DATA:
3191 		if (ts) {
3192 			*ts = iter->read_stamp + event->time_delta;
3193 			ring_buffer_normalize_time_stamp(buffer,
3194 							 cpu_buffer->cpu, ts);
3195 		}
3196 		return event;
3197 
3198 	default:
3199 		BUG();
3200 	}
3201 
3202 	return NULL;
3203 }
3204 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3205 
3206 static inline int rb_ok_to_lock(void)
3207 {
3208 	/*
3209 	 * If an NMI die dumps out the content of the ring buffer
3210 	 * do not grab locks. We also permanently disable the ring
3211 	 * buffer too. A one time deal is all you get from reading
3212 	 * the ring buffer from an NMI.
3213 	 */
3214 	if (likely(!in_nmi()))
3215 		return 1;
3216 
3217 	tracing_off_permanent();
3218 	return 0;
3219 }
3220 
3221 /**
3222  * ring_buffer_peek - peek at the next event to be read
3223  * @buffer: The ring buffer to read
3224  * @cpu: The cpu to peak at
3225  * @ts: The timestamp counter of this event.
3226  * @lost_events: a variable to store if events were lost (may be NULL)
3227  *
3228  * This will return the event that will be read next, but does
3229  * not consume the data.
3230  */
3231 struct ring_buffer_event *
3232 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3233 		 unsigned long *lost_events)
3234 {
3235 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3236 	struct ring_buffer_event *event;
3237 	unsigned long flags;
3238 	int dolock;
3239 
3240 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3241 		return NULL;
3242 
3243 	dolock = rb_ok_to_lock();
3244  again:
3245 	local_irq_save(flags);
3246 	if (dolock)
3247 		spin_lock(&cpu_buffer->reader_lock);
3248 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3249 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3250 		rb_advance_reader(cpu_buffer);
3251 	if (dolock)
3252 		spin_unlock(&cpu_buffer->reader_lock);
3253 	local_irq_restore(flags);
3254 
3255 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3256 		goto again;
3257 
3258 	return event;
3259 }
3260 
3261 /**
3262  * ring_buffer_iter_peek - peek at the next event to be read
3263  * @iter: The ring buffer iterator
3264  * @ts: The timestamp counter of this event.
3265  *
3266  * This will return the event that will be read next, but does
3267  * not increment the iterator.
3268  */
3269 struct ring_buffer_event *
3270 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3271 {
3272 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3273 	struct ring_buffer_event *event;
3274 	unsigned long flags;
3275 
3276  again:
3277 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3278 	event = rb_iter_peek(iter, ts);
3279 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3280 
3281 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3282 		goto again;
3283 
3284 	return event;
3285 }
3286 
3287 /**
3288  * ring_buffer_consume - return an event and consume it
3289  * @buffer: The ring buffer to get the next event from
3290  * @cpu: the cpu to read the buffer from
3291  * @ts: a variable to store the timestamp (may be NULL)
3292  * @lost_events: a variable to store if events were lost (may be NULL)
3293  *
3294  * Returns the next event in the ring buffer, and that event is consumed.
3295  * Meaning, that sequential reads will keep returning a different event,
3296  * and eventually empty the ring buffer if the producer is slower.
3297  */
3298 struct ring_buffer_event *
3299 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3300 		    unsigned long *lost_events)
3301 {
3302 	struct ring_buffer_per_cpu *cpu_buffer;
3303 	struct ring_buffer_event *event = NULL;
3304 	unsigned long flags;
3305 	int dolock;
3306 
3307 	dolock = rb_ok_to_lock();
3308 
3309  again:
3310 	/* might be called in atomic */
3311 	preempt_disable();
3312 
3313 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3314 		goto out;
3315 
3316 	cpu_buffer = buffer->buffers[cpu];
3317 	local_irq_save(flags);
3318 	if (dolock)
3319 		spin_lock(&cpu_buffer->reader_lock);
3320 
3321 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3322 	if (event) {
3323 		cpu_buffer->lost_events = 0;
3324 		rb_advance_reader(cpu_buffer);
3325 	}
3326 
3327 	if (dolock)
3328 		spin_unlock(&cpu_buffer->reader_lock);
3329 	local_irq_restore(flags);
3330 
3331  out:
3332 	preempt_enable();
3333 
3334 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3335 		goto again;
3336 
3337 	return event;
3338 }
3339 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3340 
3341 /**
3342  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3343  * @buffer: The ring buffer to read from
3344  * @cpu: The cpu buffer to iterate over
3345  *
3346  * This performs the initial preparations necessary to iterate
3347  * through the buffer.  Memory is allocated, buffer recording
3348  * is disabled, and the iterator pointer is returned to the caller.
3349  *
3350  * Disabling buffer recordng prevents the reading from being
3351  * corrupted. This is not a consuming read, so a producer is not
3352  * expected.
3353  *
3354  * After a sequence of ring_buffer_read_prepare calls, the user is
3355  * expected to make at least one call to ring_buffer_prepare_sync.
3356  * Afterwards, ring_buffer_read_start is invoked to get things going
3357  * for real.
3358  *
3359  * This overall must be paired with ring_buffer_finish.
3360  */
3361 struct ring_buffer_iter *
3362 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3363 {
3364 	struct ring_buffer_per_cpu *cpu_buffer;
3365 	struct ring_buffer_iter *iter;
3366 
3367 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3368 		return NULL;
3369 
3370 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3371 	if (!iter)
3372 		return NULL;
3373 
3374 	cpu_buffer = buffer->buffers[cpu];
3375 
3376 	iter->cpu_buffer = cpu_buffer;
3377 
3378 	atomic_inc(&cpu_buffer->record_disabled);
3379 
3380 	return iter;
3381 }
3382 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3383 
3384 /**
3385  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3386  *
3387  * All previously invoked ring_buffer_read_prepare calls to prepare
3388  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3389  * calls on those iterators are allowed.
3390  */
3391 void
3392 ring_buffer_read_prepare_sync(void)
3393 {
3394 	synchronize_sched();
3395 }
3396 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3397 
3398 /**
3399  * ring_buffer_read_start - start a non consuming read of the buffer
3400  * @iter: The iterator returned by ring_buffer_read_prepare
3401  *
3402  * This finalizes the startup of an iteration through the buffer.
3403  * The iterator comes from a call to ring_buffer_read_prepare and
3404  * an intervening ring_buffer_read_prepare_sync must have been
3405  * performed.
3406  *
3407  * Must be paired with ring_buffer_finish.
3408  */
3409 void
3410 ring_buffer_read_start(struct ring_buffer_iter *iter)
3411 {
3412 	struct ring_buffer_per_cpu *cpu_buffer;
3413 	unsigned long flags;
3414 
3415 	if (!iter)
3416 		return;
3417 
3418 	cpu_buffer = iter->cpu_buffer;
3419 
3420 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3421 	arch_spin_lock(&cpu_buffer->lock);
3422 	rb_iter_reset(iter);
3423 	arch_spin_unlock(&cpu_buffer->lock);
3424 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3425 }
3426 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3427 
3428 /**
3429  * ring_buffer_finish - finish reading the iterator of the buffer
3430  * @iter: The iterator retrieved by ring_buffer_start
3431  *
3432  * This re-enables the recording to the buffer, and frees the
3433  * iterator.
3434  */
3435 void
3436 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3437 {
3438 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3439 
3440 	atomic_dec(&cpu_buffer->record_disabled);
3441 	kfree(iter);
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3444 
3445 /**
3446  * ring_buffer_read - read the next item in the ring buffer by the iterator
3447  * @iter: The ring buffer iterator
3448  * @ts: The time stamp of the event read.
3449  *
3450  * This reads the next event in the ring buffer and increments the iterator.
3451  */
3452 struct ring_buffer_event *
3453 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3454 {
3455 	struct ring_buffer_event *event;
3456 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3457 	unsigned long flags;
3458 
3459 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3460  again:
3461 	event = rb_iter_peek(iter, ts);
3462 	if (!event)
3463 		goto out;
3464 
3465 	if (event->type_len == RINGBUF_TYPE_PADDING)
3466 		goto again;
3467 
3468 	rb_advance_iter(iter);
3469  out:
3470 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3471 
3472 	return event;
3473 }
3474 EXPORT_SYMBOL_GPL(ring_buffer_read);
3475 
3476 /**
3477  * ring_buffer_size - return the size of the ring buffer (in bytes)
3478  * @buffer: The ring buffer.
3479  */
3480 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3481 {
3482 	return BUF_PAGE_SIZE * buffer->pages;
3483 }
3484 EXPORT_SYMBOL_GPL(ring_buffer_size);
3485 
3486 static void
3487 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3488 {
3489 	rb_head_page_deactivate(cpu_buffer);
3490 
3491 	cpu_buffer->head_page
3492 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3493 	local_set(&cpu_buffer->head_page->write, 0);
3494 	local_set(&cpu_buffer->head_page->entries, 0);
3495 	local_set(&cpu_buffer->head_page->page->commit, 0);
3496 
3497 	cpu_buffer->head_page->read = 0;
3498 
3499 	cpu_buffer->tail_page = cpu_buffer->head_page;
3500 	cpu_buffer->commit_page = cpu_buffer->head_page;
3501 
3502 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3503 	local_set(&cpu_buffer->reader_page->write, 0);
3504 	local_set(&cpu_buffer->reader_page->entries, 0);
3505 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3506 	cpu_buffer->reader_page->read = 0;
3507 
3508 	local_set(&cpu_buffer->commit_overrun, 0);
3509 	local_set(&cpu_buffer->overrun, 0);
3510 	local_set(&cpu_buffer->entries, 0);
3511 	local_set(&cpu_buffer->committing, 0);
3512 	local_set(&cpu_buffer->commits, 0);
3513 	cpu_buffer->read = 0;
3514 
3515 	cpu_buffer->write_stamp = 0;
3516 	cpu_buffer->read_stamp = 0;
3517 
3518 	cpu_buffer->lost_events = 0;
3519 	cpu_buffer->last_overrun = 0;
3520 
3521 	rb_head_page_activate(cpu_buffer);
3522 }
3523 
3524 /**
3525  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3526  * @buffer: The ring buffer to reset a per cpu buffer of
3527  * @cpu: The CPU buffer to be reset
3528  */
3529 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3530 {
3531 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3532 	unsigned long flags;
3533 
3534 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3535 		return;
3536 
3537 	atomic_inc(&cpu_buffer->record_disabled);
3538 
3539 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3540 
3541 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3542 		goto out;
3543 
3544 	arch_spin_lock(&cpu_buffer->lock);
3545 
3546 	rb_reset_cpu(cpu_buffer);
3547 
3548 	arch_spin_unlock(&cpu_buffer->lock);
3549 
3550  out:
3551 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3552 
3553 	atomic_dec(&cpu_buffer->record_disabled);
3554 }
3555 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3556 
3557 /**
3558  * ring_buffer_reset - reset a ring buffer
3559  * @buffer: The ring buffer to reset all cpu buffers
3560  */
3561 void ring_buffer_reset(struct ring_buffer *buffer)
3562 {
3563 	int cpu;
3564 
3565 	for_each_buffer_cpu(buffer, cpu)
3566 		ring_buffer_reset_cpu(buffer, cpu);
3567 }
3568 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3569 
3570 /**
3571  * rind_buffer_empty - is the ring buffer empty?
3572  * @buffer: The ring buffer to test
3573  */
3574 int ring_buffer_empty(struct ring_buffer *buffer)
3575 {
3576 	struct ring_buffer_per_cpu *cpu_buffer;
3577 	unsigned long flags;
3578 	int dolock;
3579 	int cpu;
3580 	int ret;
3581 
3582 	dolock = rb_ok_to_lock();
3583 
3584 	/* yes this is racy, but if you don't like the race, lock the buffer */
3585 	for_each_buffer_cpu(buffer, cpu) {
3586 		cpu_buffer = buffer->buffers[cpu];
3587 		local_irq_save(flags);
3588 		if (dolock)
3589 			spin_lock(&cpu_buffer->reader_lock);
3590 		ret = rb_per_cpu_empty(cpu_buffer);
3591 		if (dolock)
3592 			spin_unlock(&cpu_buffer->reader_lock);
3593 		local_irq_restore(flags);
3594 
3595 		if (!ret)
3596 			return 0;
3597 	}
3598 
3599 	return 1;
3600 }
3601 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3602 
3603 /**
3604  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3605  * @buffer: The ring buffer
3606  * @cpu: The CPU buffer to test
3607  */
3608 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3609 {
3610 	struct ring_buffer_per_cpu *cpu_buffer;
3611 	unsigned long flags;
3612 	int dolock;
3613 	int ret;
3614 
3615 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3616 		return 1;
3617 
3618 	dolock = rb_ok_to_lock();
3619 
3620 	cpu_buffer = buffer->buffers[cpu];
3621 	local_irq_save(flags);
3622 	if (dolock)
3623 		spin_lock(&cpu_buffer->reader_lock);
3624 	ret = rb_per_cpu_empty(cpu_buffer);
3625 	if (dolock)
3626 		spin_unlock(&cpu_buffer->reader_lock);
3627 	local_irq_restore(flags);
3628 
3629 	return ret;
3630 }
3631 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3632 
3633 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3634 /**
3635  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3636  * @buffer_a: One buffer to swap with
3637  * @buffer_b: The other buffer to swap with
3638  *
3639  * This function is useful for tracers that want to take a "snapshot"
3640  * of a CPU buffer and has another back up buffer lying around.
3641  * it is expected that the tracer handles the cpu buffer not being
3642  * used at the moment.
3643  */
3644 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3645 			 struct ring_buffer *buffer_b, int cpu)
3646 {
3647 	struct ring_buffer_per_cpu *cpu_buffer_a;
3648 	struct ring_buffer_per_cpu *cpu_buffer_b;
3649 	int ret = -EINVAL;
3650 
3651 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3652 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3653 		goto out;
3654 
3655 	/* At least make sure the two buffers are somewhat the same */
3656 	if (buffer_a->pages != buffer_b->pages)
3657 		goto out;
3658 
3659 	ret = -EAGAIN;
3660 
3661 	if (ring_buffer_flags != RB_BUFFERS_ON)
3662 		goto out;
3663 
3664 	if (atomic_read(&buffer_a->record_disabled))
3665 		goto out;
3666 
3667 	if (atomic_read(&buffer_b->record_disabled))
3668 		goto out;
3669 
3670 	cpu_buffer_a = buffer_a->buffers[cpu];
3671 	cpu_buffer_b = buffer_b->buffers[cpu];
3672 
3673 	if (atomic_read(&cpu_buffer_a->record_disabled))
3674 		goto out;
3675 
3676 	if (atomic_read(&cpu_buffer_b->record_disabled))
3677 		goto out;
3678 
3679 	/*
3680 	 * We can't do a synchronize_sched here because this
3681 	 * function can be called in atomic context.
3682 	 * Normally this will be called from the same CPU as cpu.
3683 	 * If not it's up to the caller to protect this.
3684 	 */
3685 	atomic_inc(&cpu_buffer_a->record_disabled);
3686 	atomic_inc(&cpu_buffer_b->record_disabled);
3687 
3688 	ret = -EBUSY;
3689 	if (local_read(&cpu_buffer_a->committing))
3690 		goto out_dec;
3691 	if (local_read(&cpu_buffer_b->committing))
3692 		goto out_dec;
3693 
3694 	buffer_a->buffers[cpu] = cpu_buffer_b;
3695 	buffer_b->buffers[cpu] = cpu_buffer_a;
3696 
3697 	cpu_buffer_b->buffer = buffer_a;
3698 	cpu_buffer_a->buffer = buffer_b;
3699 
3700 	ret = 0;
3701 
3702 out_dec:
3703 	atomic_dec(&cpu_buffer_a->record_disabled);
3704 	atomic_dec(&cpu_buffer_b->record_disabled);
3705 out:
3706 	return ret;
3707 }
3708 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3709 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3710 
3711 /**
3712  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3713  * @buffer: the buffer to allocate for.
3714  *
3715  * This function is used in conjunction with ring_buffer_read_page.
3716  * When reading a full page from the ring buffer, these functions
3717  * can be used to speed up the process. The calling function should
3718  * allocate a few pages first with this function. Then when it
3719  * needs to get pages from the ring buffer, it passes the result
3720  * of this function into ring_buffer_read_page, which will swap
3721  * the page that was allocated, with the read page of the buffer.
3722  *
3723  * Returns:
3724  *  The page allocated, or NULL on error.
3725  */
3726 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3727 {
3728 	struct buffer_data_page *bpage;
3729 	unsigned long addr;
3730 
3731 	addr = __get_free_page(GFP_KERNEL);
3732 	if (!addr)
3733 		return NULL;
3734 
3735 	bpage = (void *)addr;
3736 
3737 	rb_init_page(bpage);
3738 
3739 	return bpage;
3740 }
3741 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3742 
3743 /**
3744  * ring_buffer_free_read_page - free an allocated read page
3745  * @buffer: the buffer the page was allocate for
3746  * @data: the page to free
3747  *
3748  * Free a page allocated from ring_buffer_alloc_read_page.
3749  */
3750 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3751 {
3752 	free_page((unsigned long)data);
3753 }
3754 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3755 
3756 /**
3757  * ring_buffer_read_page - extract a page from the ring buffer
3758  * @buffer: buffer to extract from
3759  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3760  * @len: amount to extract
3761  * @cpu: the cpu of the buffer to extract
3762  * @full: should the extraction only happen when the page is full.
3763  *
3764  * This function will pull out a page from the ring buffer and consume it.
3765  * @data_page must be the address of the variable that was returned
3766  * from ring_buffer_alloc_read_page. This is because the page might be used
3767  * to swap with a page in the ring buffer.
3768  *
3769  * for example:
3770  *	rpage = ring_buffer_alloc_read_page(buffer);
3771  *	if (!rpage)
3772  *		return error;
3773  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3774  *	if (ret >= 0)
3775  *		process_page(rpage, ret);
3776  *
3777  * When @full is set, the function will not return true unless
3778  * the writer is off the reader page.
3779  *
3780  * Note: it is up to the calling functions to handle sleeps and wakeups.
3781  *  The ring buffer can be used anywhere in the kernel and can not
3782  *  blindly call wake_up. The layer that uses the ring buffer must be
3783  *  responsible for that.
3784  *
3785  * Returns:
3786  *  >=0 if data has been transferred, returns the offset of consumed data.
3787  *  <0 if no data has been transferred.
3788  */
3789 int ring_buffer_read_page(struct ring_buffer *buffer,
3790 			  void **data_page, size_t len, int cpu, int full)
3791 {
3792 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3793 	struct ring_buffer_event *event;
3794 	struct buffer_data_page *bpage;
3795 	struct buffer_page *reader;
3796 	unsigned long missed_events;
3797 	unsigned long flags;
3798 	unsigned int commit;
3799 	unsigned int read;
3800 	u64 save_timestamp;
3801 	int ret = -1;
3802 
3803 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3804 		goto out;
3805 
3806 	/*
3807 	 * If len is not big enough to hold the page header, then
3808 	 * we can not copy anything.
3809 	 */
3810 	if (len <= BUF_PAGE_HDR_SIZE)
3811 		goto out;
3812 
3813 	len -= BUF_PAGE_HDR_SIZE;
3814 
3815 	if (!data_page)
3816 		goto out;
3817 
3818 	bpage = *data_page;
3819 	if (!bpage)
3820 		goto out;
3821 
3822 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3823 
3824 	reader = rb_get_reader_page(cpu_buffer);
3825 	if (!reader)
3826 		goto out_unlock;
3827 
3828 	event = rb_reader_event(cpu_buffer);
3829 
3830 	read = reader->read;
3831 	commit = rb_page_commit(reader);
3832 
3833 	/* Check if any events were dropped */
3834 	missed_events = cpu_buffer->lost_events;
3835 
3836 	/*
3837 	 * If this page has been partially read or
3838 	 * if len is not big enough to read the rest of the page or
3839 	 * a writer is still on the page, then
3840 	 * we must copy the data from the page to the buffer.
3841 	 * Otherwise, we can simply swap the page with the one passed in.
3842 	 */
3843 	if (read || (len < (commit - read)) ||
3844 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3845 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3846 		unsigned int rpos = read;
3847 		unsigned int pos = 0;
3848 		unsigned int size;
3849 
3850 		if (full)
3851 			goto out_unlock;
3852 
3853 		if (len > (commit - read))
3854 			len = (commit - read);
3855 
3856 		/* Always keep the time extend and data together */
3857 		size = rb_event_ts_length(event);
3858 
3859 		if (len < size)
3860 			goto out_unlock;
3861 
3862 		/* save the current timestamp, since the user will need it */
3863 		save_timestamp = cpu_buffer->read_stamp;
3864 
3865 		/* Need to copy one event at a time */
3866 		do {
3867 			/* We need the size of one event, because
3868 			 * rb_advance_reader only advances by one event,
3869 			 * whereas rb_event_ts_length may include the size of
3870 			 * one or two events.
3871 			 * We have already ensured there's enough space if this
3872 			 * is a time extend. */
3873 			size = rb_event_length(event);
3874 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3875 
3876 			len -= size;
3877 
3878 			rb_advance_reader(cpu_buffer);
3879 			rpos = reader->read;
3880 			pos += size;
3881 
3882 			if (rpos >= commit)
3883 				break;
3884 
3885 			event = rb_reader_event(cpu_buffer);
3886 			/* Always keep the time extend and data together */
3887 			size = rb_event_ts_length(event);
3888 		} while (len >= size);
3889 
3890 		/* update bpage */
3891 		local_set(&bpage->commit, pos);
3892 		bpage->time_stamp = save_timestamp;
3893 
3894 		/* we copied everything to the beginning */
3895 		read = 0;
3896 	} else {
3897 		/* update the entry counter */
3898 		cpu_buffer->read += rb_page_entries(reader);
3899 
3900 		/* swap the pages */
3901 		rb_init_page(bpage);
3902 		bpage = reader->page;
3903 		reader->page = *data_page;
3904 		local_set(&reader->write, 0);
3905 		local_set(&reader->entries, 0);
3906 		reader->read = 0;
3907 		*data_page = bpage;
3908 
3909 		/*
3910 		 * Use the real_end for the data size,
3911 		 * This gives us a chance to store the lost events
3912 		 * on the page.
3913 		 */
3914 		if (reader->real_end)
3915 			local_set(&bpage->commit, reader->real_end);
3916 	}
3917 	ret = read;
3918 
3919 	cpu_buffer->lost_events = 0;
3920 
3921 	commit = local_read(&bpage->commit);
3922 	/*
3923 	 * Set a flag in the commit field if we lost events
3924 	 */
3925 	if (missed_events) {
3926 		/* If there is room at the end of the page to save the
3927 		 * missed events, then record it there.
3928 		 */
3929 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3930 			memcpy(&bpage->data[commit], &missed_events,
3931 			       sizeof(missed_events));
3932 			local_add(RB_MISSED_STORED, &bpage->commit);
3933 			commit += sizeof(missed_events);
3934 		}
3935 		local_add(RB_MISSED_EVENTS, &bpage->commit);
3936 	}
3937 
3938 	/*
3939 	 * This page may be off to user land. Zero it out here.
3940 	 */
3941 	if (commit < BUF_PAGE_SIZE)
3942 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3943 
3944  out_unlock:
3945 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3946 
3947  out:
3948 	return ret;
3949 }
3950 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3951 
3952 #ifdef CONFIG_TRACING
3953 static ssize_t
3954 rb_simple_read(struct file *filp, char __user *ubuf,
3955 	       size_t cnt, loff_t *ppos)
3956 {
3957 	unsigned long *p = filp->private_data;
3958 	char buf[64];
3959 	int r;
3960 
3961 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3962 		r = sprintf(buf, "permanently disabled\n");
3963 	else
3964 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3965 
3966 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3967 }
3968 
3969 static ssize_t
3970 rb_simple_write(struct file *filp, const char __user *ubuf,
3971 		size_t cnt, loff_t *ppos)
3972 {
3973 	unsigned long *p = filp->private_data;
3974 	char buf[64];
3975 	unsigned long val;
3976 	int ret;
3977 
3978 	if (cnt >= sizeof(buf))
3979 		return -EINVAL;
3980 
3981 	if (copy_from_user(&buf, ubuf, cnt))
3982 		return -EFAULT;
3983 
3984 	buf[cnt] = 0;
3985 
3986 	ret = strict_strtoul(buf, 10, &val);
3987 	if (ret < 0)
3988 		return ret;
3989 
3990 	if (val)
3991 		set_bit(RB_BUFFERS_ON_BIT, p);
3992 	else
3993 		clear_bit(RB_BUFFERS_ON_BIT, p);
3994 
3995 	(*ppos)++;
3996 
3997 	return cnt;
3998 }
3999 
4000 static const struct file_operations rb_simple_fops = {
4001 	.open		= tracing_open_generic,
4002 	.read		= rb_simple_read,
4003 	.write		= rb_simple_write,
4004 	.llseek		= default_llseek,
4005 };
4006 
4007 
4008 static __init int rb_init_debugfs(void)
4009 {
4010 	struct dentry *d_tracer;
4011 
4012 	d_tracer = tracing_init_dentry();
4013 
4014 	trace_create_file("tracing_on", 0644, d_tracer,
4015 			    &ring_buffer_flags, &rb_simple_fops);
4016 
4017 	return 0;
4018 }
4019 
4020 fs_initcall(rb_init_debugfs);
4021 #endif
4022 
4023 #ifdef CONFIG_HOTPLUG_CPU
4024 static int rb_cpu_notify(struct notifier_block *self,
4025 			 unsigned long action, void *hcpu)
4026 {
4027 	struct ring_buffer *buffer =
4028 		container_of(self, struct ring_buffer, cpu_notify);
4029 	long cpu = (long)hcpu;
4030 
4031 	switch (action) {
4032 	case CPU_UP_PREPARE:
4033 	case CPU_UP_PREPARE_FROZEN:
4034 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4035 			return NOTIFY_OK;
4036 
4037 		buffer->buffers[cpu] =
4038 			rb_allocate_cpu_buffer(buffer, cpu);
4039 		if (!buffer->buffers[cpu]) {
4040 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4041 			     cpu);
4042 			return NOTIFY_OK;
4043 		}
4044 		smp_wmb();
4045 		cpumask_set_cpu(cpu, buffer->cpumask);
4046 		break;
4047 	case CPU_DOWN_PREPARE:
4048 	case CPU_DOWN_PREPARE_FROZEN:
4049 		/*
4050 		 * Do nothing.
4051 		 *  If we were to free the buffer, then the user would
4052 		 *  lose any trace that was in the buffer.
4053 		 */
4054 		break;
4055 	default:
4056 		break;
4057 	}
4058 	return NOTIFY_OK;
4059 }
4060 #endif
4061