1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ftrace_event.h> 7 #include <linux/ring_buffer.h> 8 #include <linux/trace_clock.h> 9 #include <linux/trace_seq.h> 10 #include <linux/spinlock.h> 11 #include <linux/irq_work.h> 12 #include <linux/debugfs.h> 13 #include <linux/uaccess.h> 14 #include <linux/hardirq.h> 15 #include <linux/kthread.h> /* for self test */ 16 #include <linux/kmemcheck.h> 17 #include <linux/module.h> 18 #include <linux/percpu.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/slab.h> 22 #include <linux/init.h> 23 #include <linux/hash.h> 24 #include <linux/list.h> 25 #include <linux/cpu.h> 26 #include <linux/fs.h> 27 28 #include <asm/local.h> 29 30 static void update_pages_handler(struct work_struct *work); 31 32 /* 33 * The ring buffer header is special. We must manually up keep it. 34 */ 35 int ring_buffer_print_entry_header(struct trace_seq *s) 36 { 37 int ret; 38 39 ret = trace_seq_puts(s, "# compressed entry header\n"); 40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n"); 41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 42 ret = trace_seq_puts(s, "\tarray : 32 bits\n"); 43 ret = trace_seq_putc(s, '\n'); 44 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 45 RINGBUF_TYPE_PADDING); 46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 47 RINGBUF_TYPE_TIME_EXTEND); 48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 50 51 return ret; 52 } 53 54 /* 55 * The ring buffer is made up of a list of pages. A separate list of pages is 56 * allocated for each CPU. A writer may only write to a buffer that is 57 * associated with the CPU it is currently executing on. A reader may read 58 * from any per cpu buffer. 59 * 60 * The reader is special. For each per cpu buffer, the reader has its own 61 * reader page. When a reader has read the entire reader page, this reader 62 * page is swapped with another page in the ring buffer. 63 * 64 * Now, as long as the writer is off the reader page, the reader can do what 65 * ever it wants with that page. The writer will never write to that page 66 * again (as long as it is out of the ring buffer). 67 * 68 * Here's some silly ASCII art. 69 * 70 * +------+ 71 * |reader| RING BUFFER 72 * |page | 73 * +------+ +---+ +---+ +---+ 74 * | |-->| |-->| | 75 * +---+ +---+ +---+ 76 * ^ | 77 * | | 78 * +---------------+ 79 * 80 * 81 * +------+ 82 * |reader| RING BUFFER 83 * |page |------------------v 84 * +------+ +---+ +---+ +---+ 85 * | |-->| |-->| | 86 * +---+ +---+ +---+ 87 * ^ | 88 * | | 89 * +---------------+ 90 * 91 * 92 * +------+ 93 * |reader| RING BUFFER 94 * |page |------------------v 95 * +------+ +---+ +---+ +---+ 96 * ^ | |-->| |-->| | 97 * | +---+ +---+ +---+ 98 * | | 99 * | | 100 * +------------------------------+ 101 * 102 * 103 * +------+ 104 * |buffer| RING BUFFER 105 * |page |------------------v 106 * +------+ +---+ +---+ +---+ 107 * ^ | | | |-->| | 108 * | New +---+ +---+ +---+ 109 * | Reader------^ | 110 * | page | 111 * +------------------------------+ 112 * 113 * 114 * After we make this swap, the reader can hand this page off to the splice 115 * code and be done with it. It can even allocate a new page if it needs to 116 * and swap that into the ring buffer. 117 * 118 * We will be using cmpxchg soon to make all this lockless. 119 * 120 */ 121 122 /* 123 * A fast way to enable or disable all ring buffers is to 124 * call tracing_on or tracing_off. Turning off the ring buffers 125 * prevents all ring buffers from being recorded to. 126 * Turning this switch on, makes it OK to write to the 127 * ring buffer, if the ring buffer is enabled itself. 128 * 129 * There's three layers that must be on in order to write 130 * to the ring buffer. 131 * 132 * 1) This global flag must be set. 133 * 2) The ring buffer must be enabled for recording. 134 * 3) The per cpu buffer must be enabled for recording. 135 * 136 * In case of an anomaly, this global flag has a bit set that 137 * will permantly disable all ring buffers. 138 */ 139 140 /* 141 * Global flag to disable all recording to ring buffers 142 * This has two bits: ON, DISABLED 143 * 144 * ON DISABLED 145 * ---- ---------- 146 * 0 0 : ring buffers are off 147 * 1 0 : ring buffers are on 148 * X 1 : ring buffers are permanently disabled 149 */ 150 151 enum { 152 RB_BUFFERS_ON_BIT = 0, 153 RB_BUFFERS_DISABLED_BIT = 1, 154 }; 155 156 enum { 157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 159 }; 160 161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 162 163 /* Used for individual buffers (after the counter) */ 164 #define RB_BUFFER_OFF (1 << 20) 165 166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 167 168 /** 169 * tracing_off_permanent - permanently disable ring buffers 170 * 171 * This function, once called, will disable all ring buffers 172 * permanently. 173 */ 174 void tracing_off_permanent(void) 175 { 176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 177 } 178 179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 180 #define RB_ALIGNMENT 4U 181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 183 184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 185 # define RB_FORCE_8BYTE_ALIGNMENT 0 186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 187 #else 188 # define RB_FORCE_8BYTE_ALIGNMENT 1 189 # define RB_ARCH_ALIGNMENT 8U 190 #endif 191 192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 193 194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 196 197 enum { 198 RB_LEN_TIME_EXTEND = 8, 199 RB_LEN_TIME_STAMP = 16, 200 }; 201 202 #define skip_time_extend(event) \ 203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 204 205 static inline int rb_null_event(struct ring_buffer_event *event) 206 { 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 208 } 209 210 static void rb_event_set_padding(struct ring_buffer_event *event) 211 { 212 /* padding has a NULL time_delta */ 213 event->type_len = RINGBUF_TYPE_PADDING; 214 event->time_delta = 0; 215 } 216 217 static unsigned 218 rb_event_data_length(struct ring_buffer_event *event) 219 { 220 unsigned length; 221 222 if (event->type_len) 223 length = event->type_len * RB_ALIGNMENT; 224 else 225 length = event->array[0]; 226 return length + RB_EVNT_HDR_SIZE; 227 } 228 229 /* 230 * Return the length of the given event. Will return 231 * the length of the time extend if the event is a 232 * time extend. 233 */ 234 static inline unsigned 235 rb_event_length(struct ring_buffer_event *event) 236 { 237 switch (event->type_len) { 238 case RINGBUF_TYPE_PADDING: 239 if (rb_null_event(event)) 240 /* undefined */ 241 return -1; 242 return event->array[0] + RB_EVNT_HDR_SIZE; 243 244 case RINGBUF_TYPE_TIME_EXTEND: 245 return RB_LEN_TIME_EXTEND; 246 247 case RINGBUF_TYPE_TIME_STAMP: 248 return RB_LEN_TIME_STAMP; 249 250 case RINGBUF_TYPE_DATA: 251 return rb_event_data_length(event); 252 default: 253 BUG(); 254 } 255 /* not hit */ 256 return 0; 257 } 258 259 /* 260 * Return total length of time extend and data, 261 * or just the event length for all other events. 262 */ 263 static inline unsigned 264 rb_event_ts_length(struct ring_buffer_event *event) 265 { 266 unsigned len = 0; 267 268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 269 /* time extends include the data event after it */ 270 len = RB_LEN_TIME_EXTEND; 271 event = skip_time_extend(event); 272 } 273 return len + rb_event_length(event); 274 } 275 276 /** 277 * ring_buffer_event_length - return the length of the event 278 * @event: the event to get the length of 279 * 280 * Returns the size of the data load of a data event. 281 * If the event is something other than a data event, it 282 * returns the size of the event itself. With the exception 283 * of a TIME EXTEND, where it still returns the size of the 284 * data load of the data event after it. 285 */ 286 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 287 { 288 unsigned length; 289 290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 291 event = skip_time_extend(event); 292 293 length = rb_event_length(event); 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 295 return length; 296 length -= RB_EVNT_HDR_SIZE; 297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 298 length -= sizeof(event->array[0]); 299 return length; 300 } 301 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 302 303 /* inline for ring buffer fast paths */ 304 static void * 305 rb_event_data(struct ring_buffer_event *event) 306 { 307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 308 event = skip_time_extend(event); 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 310 /* If length is in len field, then array[0] has the data */ 311 if (event->type_len) 312 return (void *)&event->array[0]; 313 /* Otherwise length is in array[0] and array[1] has the data */ 314 return (void *)&event->array[1]; 315 } 316 317 /** 318 * ring_buffer_event_data - return the data of the event 319 * @event: the event to get the data from 320 */ 321 void *ring_buffer_event_data(struct ring_buffer_event *event) 322 { 323 return rb_event_data(event); 324 } 325 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 326 327 #define for_each_buffer_cpu(buffer, cpu) \ 328 for_each_cpu(cpu, buffer->cpumask) 329 330 #define TS_SHIFT 27 331 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 332 #define TS_DELTA_TEST (~TS_MASK) 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 struct buffer_data_page { 340 u64 time_stamp; /* page time stamp */ 341 local_t commit; /* write committed index */ 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 343 }; 344 345 /* 346 * Note, the buffer_page list must be first. The buffer pages 347 * are allocated in cache lines, which means that each buffer 348 * page will be at the beginning of a cache line, and thus 349 * the least significant bits will be zero. We use this to 350 * add flags in the list struct pointers, to make the ring buffer 351 * lockless. 352 */ 353 struct buffer_page { 354 struct list_head list; /* list of buffer pages */ 355 local_t write; /* index for next write */ 356 unsigned read; /* index for next read */ 357 local_t entries; /* entries on this page */ 358 unsigned long real_end; /* real end of data */ 359 struct buffer_data_page *page; /* Actual data page */ 360 }; 361 362 /* 363 * The buffer page counters, write and entries, must be reset 364 * atomically when crossing page boundaries. To synchronize this 365 * update, two counters are inserted into the number. One is 366 * the actual counter for the write position or count on the page. 367 * 368 * The other is a counter of updaters. Before an update happens 369 * the update partition of the counter is incremented. This will 370 * allow the updater to update the counter atomically. 371 * 372 * The counter is 20 bits, and the state data is 12. 373 */ 374 #define RB_WRITE_MASK 0xfffff 375 #define RB_WRITE_INTCNT (1 << 20) 376 377 static void rb_init_page(struct buffer_data_page *bpage) 378 { 379 local_set(&bpage->commit, 0); 380 } 381 382 /** 383 * ring_buffer_page_len - the size of data on the page. 384 * @page: The page to read 385 * 386 * Returns the amount of data on the page, including buffer page header. 387 */ 388 size_t ring_buffer_page_len(void *page) 389 { 390 return local_read(&((struct buffer_data_page *)page)->commit) 391 + BUF_PAGE_HDR_SIZE; 392 } 393 394 /* 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 396 * this issue out. 397 */ 398 static void free_buffer_page(struct buffer_page *bpage) 399 { 400 free_page((unsigned long)bpage->page); 401 kfree(bpage); 402 } 403 404 /* 405 * We need to fit the time_stamp delta into 27 bits. 406 */ 407 static inline int test_time_stamp(u64 delta) 408 { 409 if (delta & TS_DELTA_TEST) 410 return 1; 411 return 0; 412 } 413 414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 415 416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 418 419 int ring_buffer_print_page_header(struct trace_seq *s) 420 { 421 struct buffer_data_page field; 422 int ret; 423 424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 425 "offset:0;\tsize:%u;\tsigned:%u;\n", 426 (unsigned int)sizeof(field.time_stamp), 427 (unsigned int)is_signed_type(u64)); 428 429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 (unsigned int)sizeof(field.commit), 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), commit), 438 1, 439 (unsigned int)is_signed_type(long)); 440 441 ret = trace_seq_printf(s, "\tfield: char data;\t" 442 "offset:%u;\tsize:%u;\tsigned:%u;\n", 443 (unsigned int)offsetof(typeof(field), data), 444 (unsigned int)BUF_PAGE_SIZE, 445 (unsigned int)is_signed_type(char)); 446 447 return ret; 448 } 449 450 struct rb_irq_work { 451 struct irq_work work; 452 wait_queue_head_t waiters; 453 bool waiters_pending; 454 }; 455 456 /* 457 * head_page == tail_page && head == tail then buffer is empty. 458 */ 459 struct ring_buffer_per_cpu { 460 int cpu; 461 atomic_t record_disabled; 462 struct ring_buffer *buffer; 463 raw_spinlock_t reader_lock; /* serialize readers */ 464 arch_spinlock_t lock; 465 struct lock_class_key lock_key; 466 unsigned int nr_pages; 467 struct list_head *pages; 468 struct buffer_page *head_page; /* read from head */ 469 struct buffer_page *tail_page; /* write to tail */ 470 struct buffer_page *commit_page; /* committed pages */ 471 struct buffer_page *reader_page; 472 unsigned long lost_events; 473 unsigned long last_overrun; 474 local_t entries_bytes; 475 local_t entries; 476 local_t overrun; 477 local_t commit_overrun; 478 local_t dropped_events; 479 local_t committing; 480 local_t commits; 481 unsigned long read; 482 unsigned long read_bytes; 483 u64 write_stamp; 484 u64 read_stamp; 485 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 486 int nr_pages_to_update; 487 struct list_head new_pages; /* new pages to add */ 488 struct work_struct update_pages_work; 489 struct completion update_done; 490 491 struct rb_irq_work irq_work; 492 }; 493 494 struct ring_buffer { 495 unsigned flags; 496 int cpus; 497 atomic_t record_disabled; 498 atomic_t resize_disabled; 499 cpumask_var_t cpumask; 500 501 struct lock_class_key *reader_lock_key; 502 503 struct mutex mutex; 504 505 struct ring_buffer_per_cpu **buffers; 506 507 #ifdef CONFIG_HOTPLUG_CPU 508 struct notifier_block cpu_notify; 509 #endif 510 u64 (*clock)(void); 511 512 struct rb_irq_work irq_work; 513 }; 514 515 struct ring_buffer_iter { 516 struct ring_buffer_per_cpu *cpu_buffer; 517 unsigned long head; 518 struct buffer_page *head_page; 519 struct buffer_page *cache_reader_page; 520 unsigned long cache_read; 521 u64 read_stamp; 522 }; 523 524 /* 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 526 * 527 * Schedules a delayed work to wake up any task that is blocked on the 528 * ring buffer waiters queue. 529 */ 530 static void rb_wake_up_waiters(struct irq_work *work) 531 { 532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 533 534 wake_up_all(&rbwork->waiters); 535 } 536 537 /** 538 * ring_buffer_wait - wait for input to the ring buffer 539 * @buffer: buffer to wait on 540 * @cpu: the cpu buffer to wait on 541 * 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 543 * as data is added to any of the @buffer's cpu buffers. Otherwise 544 * it will wait for data to be added to a specific cpu buffer. 545 */ 546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu) 547 { 548 struct ring_buffer_per_cpu *cpu_buffer; 549 DEFINE_WAIT(wait); 550 struct rb_irq_work *work; 551 552 /* 553 * Depending on what the caller is waiting for, either any 554 * data in any cpu buffer, or a specific buffer, put the 555 * caller on the appropriate wait queue. 556 */ 557 if (cpu == RING_BUFFER_ALL_CPUS) 558 work = &buffer->irq_work; 559 else { 560 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 561 return -ENODEV; 562 cpu_buffer = buffer->buffers[cpu]; 563 work = &cpu_buffer->irq_work; 564 } 565 566 567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 568 569 /* 570 * The events can happen in critical sections where 571 * checking a work queue can cause deadlocks. 572 * After adding a task to the queue, this flag is set 573 * only to notify events to try to wake up the queue 574 * using irq_work. 575 * 576 * We don't clear it even if the buffer is no longer 577 * empty. The flag only causes the next event to run 578 * irq_work to do the work queue wake up. The worse 579 * that can happen if we race with !trace_empty() is that 580 * an event will cause an irq_work to try to wake up 581 * an empty queue. 582 * 583 * There's no reason to protect this flag either, as 584 * the work queue and irq_work logic will do the necessary 585 * synchronization for the wake ups. The only thing 586 * that is necessary is that the wake up happens after 587 * a task has been queued. It's OK for spurious wake ups. 588 */ 589 work->waiters_pending = true; 590 591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) || 592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu))) 593 schedule(); 594 595 finish_wait(&work->waiters, &wait); 596 return 0; 597 } 598 599 /** 600 * ring_buffer_poll_wait - poll on buffer input 601 * @buffer: buffer to wait on 602 * @cpu: the cpu buffer to wait on 603 * @filp: the file descriptor 604 * @poll_table: The poll descriptor 605 * 606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 607 * as data is added to any of the @buffer's cpu buffers. Otherwise 608 * it will wait for data to be added to a specific cpu buffer. 609 * 610 * Returns POLLIN | POLLRDNORM if data exists in the buffers, 611 * zero otherwise. 612 */ 613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu, 614 struct file *filp, poll_table *poll_table) 615 { 616 struct ring_buffer_per_cpu *cpu_buffer; 617 struct rb_irq_work *work; 618 619 if (cpu == RING_BUFFER_ALL_CPUS) 620 work = &buffer->irq_work; 621 else { 622 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 623 return -EINVAL; 624 625 cpu_buffer = buffer->buffers[cpu]; 626 work = &cpu_buffer->irq_work; 627 } 628 629 poll_wait(filp, &work->waiters, poll_table); 630 work->waiters_pending = true; 631 /* 632 * There's a tight race between setting the waiters_pending and 633 * checking if the ring buffer is empty. Once the waiters_pending bit 634 * is set, the next event will wake the task up, but we can get stuck 635 * if there's only a single event in. 636 * 637 * FIXME: Ideally, we need a memory barrier on the writer side as well, 638 * but adding a memory barrier to all events will cause too much of a 639 * performance hit in the fast path. We only need a memory barrier when 640 * the buffer goes from empty to having content. But as this race is 641 * extremely small, and it's not a problem if another event comes in, we 642 * will fix it later. 643 */ 644 smp_mb(); 645 646 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 647 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 648 return POLLIN | POLLRDNORM; 649 return 0; 650 } 651 652 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 653 #define RB_WARN_ON(b, cond) \ 654 ({ \ 655 int _____ret = unlikely(cond); \ 656 if (_____ret) { \ 657 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 658 struct ring_buffer_per_cpu *__b = \ 659 (void *)b; \ 660 atomic_inc(&__b->buffer->record_disabled); \ 661 } else \ 662 atomic_inc(&b->record_disabled); \ 663 WARN_ON(1); \ 664 } \ 665 _____ret; \ 666 }) 667 668 /* Up this if you want to test the TIME_EXTENTS and normalization */ 669 #define DEBUG_SHIFT 0 670 671 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 672 { 673 /* shift to debug/test normalization and TIME_EXTENTS */ 674 return buffer->clock() << DEBUG_SHIFT; 675 } 676 677 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 678 { 679 u64 time; 680 681 preempt_disable_notrace(); 682 time = rb_time_stamp(buffer); 683 preempt_enable_no_resched_notrace(); 684 685 return time; 686 } 687 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 688 689 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 690 int cpu, u64 *ts) 691 { 692 /* Just stupid testing the normalize function and deltas */ 693 *ts >>= DEBUG_SHIFT; 694 } 695 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 696 697 /* 698 * Making the ring buffer lockless makes things tricky. 699 * Although writes only happen on the CPU that they are on, 700 * and they only need to worry about interrupts. Reads can 701 * happen on any CPU. 702 * 703 * The reader page is always off the ring buffer, but when the 704 * reader finishes with a page, it needs to swap its page with 705 * a new one from the buffer. The reader needs to take from 706 * the head (writes go to the tail). But if a writer is in overwrite 707 * mode and wraps, it must push the head page forward. 708 * 709 * Here lies the problem. 710 * 711 * The reader must be careful to replace only the head page, and 712 * not another one. As described at the top of the file in the 713 * ASCII art, the reader sets its old page to point to the next 714 * page after head. It then sets the page after head to point to 715 * the old reader page. But if the writer moves the head page 716 * during this operation, the reader could end up with the tail. 717 * 718 * We use cmpxchg to help prevent this race. We also do something 719 * special with the page before head. We set the LSB to 1. 720 * 721 * When the writer must push the page forward, it will clear the 722 * bit that points to the head page, move the head, and then set 723 * the bit that points to the new head page. 724 * 725 * We also don't want an interrupt coming in and moving the head 726 * page on another writer. Thus we use the second LSB to catch 727 * that too. Thus: 728 * 729 * head->list->prev->next bit 1 bit 0 730 * ------- ------- 731 * Normal page 0 0 732 * Points to head page 0 1 733 * New head page 1 0 734 * 735 * Note we can not trust the prev pointer of the head page, because: 736 * 737 * +----+ +-----+ +-----+ 738 * | |------>| T |---X--->| N | 739 * | |<------| | | | 740 * +----+ +-----+ +-----+ 741 * ^ ^ | 742 * | +-----+ | | 743 * +----------| R |----------+ | 744 * | |<-----------+ 745 * +-----+ 746 * 747 * Key: ---X--> HEAD flag set in pointer 748 * T Tail page 749 * R Reader page 750 * N Next page 751 * 752 * (see __rb_reserve_next() to see where this happens) 753 * 754 * What the above shows is that the reader just swapped out 755 * the reader page with a page in the buffer, but before it 756 * could make the new header point back to the new page added 757 * it was preempted by a writer. The writer moved forward onto 758 * the new page added by the reader and is about to move forward 759 * again. 760 * 761 * You can see, it is legitimate for the previous pointer of 762 * the head (or any page) not to point back to itself. But only 763 * temporarially. 764 */ 765 766 #define RB_PAGE_NORMAL 0UL 767 #define RB_PAGE_HEAD 1UL 768 #define RB_PAGE_UPDATE 2UL 769 770 771 #define RB_FLAG_MASK 3UL 772 773 /* PAGE_MOVED is not part of the mask */ 774 #define RB_PAGE_MOVED 4UL 775 776 /* 777 * rb_list_head - remove any bit 778 */ 779 static struct list_head *rb_list_head(struct list_head *list) 780 { 781 unsigned long val = (unsigned long)list; 782 783 return (struct list_head *)(val & ~RB_FLAG_MASK); 784 } 785 786 /* 787 * rb_is_head_page - test if the given page is the head page 788 * 789 * Because the reader may move the head_page pointer, we can 790 * not trust what the head page is (it may be pointing to 791 * the reader page). But if the next page is a header page, 792 * its flags will be non zero. 793 */ 794 static inline int 795 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 796 struct buffer_page *page, struct list_head *list) 797 { 798 unsigned long val; 799 800 val = (unsigned long)list->next; 801 802 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 803 return RB_PAGE_MOVED; 804 805 return val & RB_FLAG_MASK; 806 } 807 808 /* 809 * rb_is_reader_page 810 * 811 * The unique thing about the reader page, is that, if the 812 * writer is ever on it, the previous pointer never points 813 * back to the reader page. 814 */ 815 static int rb_is_reader_page(struct buffer_page *page) 816 { 817 struct list_head *list = page->list.prev; 818 819 return rb_list_head(list->next) != &page->list; 820 } 821 822 /* 823 * rb_set_list_to_head - set a list_head to be pointing to head. 824 */ 825 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 826 struct list_head *list) 827 { 828 unsigned long *ptr; 829 830 ptr = (unsigned long *)&list->next; 831 *ptr |= RB_PAGE_HEAD; 832 *ptr &= ~RB_PAGE_UPDATE; 833 } 834 835 /* 836 * rb_head_page_activate - sets up head page 837 */ 838 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 839 { 840 struct buffer_page *head; 841 842 head = cpu_buffer->head_page; 843 if (!head) 844 return; 845 846 /* 847 * Set the previous list pointer to have the HEAD flag. 848 */ 849 rb_set_list_to_head(cpu_buffer, head->list.prev); 850 } 851 852 static void rb_list_head_clear(struct list_head *list) 853 { 854 unsigned long *ptr = (unsigned long *)&list->next; 855 856 *ptr &= ~RB_FLAG_MASK; 857 } 858 859 /* 860 * rb_head_page_dactivate - clears head page ptr (for free list) 861 */ 862 static void 863 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 864 { 865 struct list_head *hd; 866 867 /* Go through the whole list and clear any pointers found. */ 868 rb_list_head_clear(cpu_buffer->pages); 869 870 list_for_each(hd, cpu_buffer->pages) 871 rb_list_head_clear(hd); 872 } 873 874 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 875 struct buffer_page *head, 876 struct buffer_page *prev, 877 int old_flag, int new_flag) 878 { 879 struct list_head *list; 880 unsigned long val = (unsigned long)&head->list; 881 unsigned long ret; 882 883 list = &prev->list; 884 885 val &= ~RB_FLAG_MASK; 886 887 ret = cmpxchg((unsigned long *)&list->next, 888 val | old_flag, val | new_flag); 889 890 /* check if the reader took the page */ 891 if ((ret & ~RB_FLAG_MASK) != val) 892 return RB_PAGE_MOVED; 893 894 return ret & RB_FLAG_MASK; 895 } 896 897 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 898 struct buffer_page *head, 899 struct buffer_page *prev, 900 int old_flag) 901 { 902 return rb_head_page_set(cpu_buffer, head, prev, 903 old_flag, RB_PAGE_UPDATE); 904 } 905 906 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 907 struct buffer_page *head, 908 struct buffer_page *prev, 909 int old_flag) 910 { 911 return rb_head_page_set(cpu_buffer, head, prev, 912 old_flag, RB_PAGE_HEAD); 913 } 914 915 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 916 struct buffer_page *head, 917 struct buffer_page *prev, 918 int old_flag) 919 { 920 return rb_head_page_set(cpu_buffer, head, prev, 921 old_flag, RB_PAGE_NORMAL); 922 } 923 924 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 925 struct buffer_page **bpage) 926 { 927 struct list_head *p = rb_list_head((*bpage)->list.next); 928 929 *bpage = list_entry(p, struct buffer_page, list); 930 } 931 932 static struct buffer_page * 933 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 934 { 935 struct buffer_page *head; 936 struct buffer_page *page; 937 struct list_head *list; 938 int i; 939 940 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 941 return NULL; 942 943 /* sanity check */ 944 list = cpu_buffer->pages; 945 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 946 return NULL; 947 948 page = head = cpu_buffer->head_page; 949 /* 950 * It is possible that the writer moves the header behind 951 * where we started, and we miss in one loop. 952 * A second loop should grab the header, but we'll do 953 * three loops just because I'm paranoid. 954 */ 955 for (i = 0; i < 3; i++) { 956 do { 957 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 958 cpu_buffer->head_page = page; 959 return page; 960 } 961 rb_inc_page(cpu_buffer, &page); 962 } while (page != head); 963 } 964 965 RB_WARN_ON(cpu_buffer, 1); 966 967 return NULL; 968 } 969 970 static int rb_head_page_replace(struct buffer_page *old, 971 struct buffer_page *new) 972 { 973 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 974 unsigned long val; 975 unsigned long ret; 976 977 val = *ptr & ~RB_FLAG_MASK; 978 val |= RB_PAGE_HEAD; 979 980 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 981 982 return ret == val; 983 } 984 985 /* 986 * rb_tail_page_update - move the tail page forward 987 * 988 * Returns 1 if moved tail page, 0 if someone else did. 989 */ 990 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 991 struct buffer_page *tail_page, 992 struct buffer_page *next_page) 993 { 994 struct buffer_page *old_tail; 995 unsigned long old_entries; 996 unsigned long old_write; 997 int ret = 0; 998 999 /* 1000 * The tail page now needs to be moved forward. 1001 * 1002 * We need to reset the tail page, but without messing 1003 * with possible erasing of data brought in by interrupts 1004 * that have moved the tail page and are currently on it. 1005 * 1006 * We add a counter to the write field to denote this. 1007 */ 1008 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1009 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1010 1011 /* 1012 * Just make sure we have seen our old_write and synchronize 1013 * with any interrupts that come in. 1014 */ 1015 barrier(); 1016 1017 /* 1018 * If the tail page is still the same as what we think 1019 * it is, then it is up to us to update the tail 1020 * pointer. 1021 */ 1022 if (tail_page == cpu_buffer->tail_page) { 1023 /* Zero the write counter */ 1024 unsigned long val = old_write & ~RB_WRITE_MASK; 1025 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1026 1027 /* 1028 * This will only succeed if an interrupt did 1029 * not come in and change it. In which case, we 1030 * do not want to modify it. 1031 * 1032 * We add (void) to let the compiler know that we do not care 1033 * about the return value of these functions. We use the 1034 * cmpxchg to only update if an interrupt did not already 1035 * do it for us. If the cmpxchg fails, we don't care. 1036 */ 1037 (void)local_cmpxchg(&next_page->write, old_write, val); 1038 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1039 1040 /* 1041 * No need to worry about races with clearing out the commit. 1042 * it only can increment when a commit takes place. But that 1043 * only happens in the outer most nested commit. 1044 */ 1045 local_set(&next_page->page->commit, 0); 1046 1047 old_tail = cmpxchg(&cpu_buffer->tail_page, 1048 tail_page, next_page); 1049 1050 if (old_tail == tail_page) 1051 ret = 1; 1052 } 1053 1054 return ret; 1055 } 1056 1057 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1058 struct buffer_page *bpage) 1059 { 1060 unsigned long val = (unsigned long)bpage; 1061 1062 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1063 return 1; 1064 1065 return 0; 1066 } 1067 1068 /** 1069 * rb_check_list - make sure a pointer to a list has the last bits zero 1070 */ 1071 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1072 struct list_head *list) 1073 { 1074 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1075 return 1; 1076 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1077 return 1; 1078 return 0; 1079 } 1080 1081 /** 1082 * rb_check_pages - integrity check of buffer pages 1083 * @cpu_buffer: CPU buffer with pages to test 1084 * 1085 * As a safety measure we check to make sure the data pages have not 1086 * been corrupted. 1087 */ 1088 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1089 { 1090 struct list_head *head = cpu_buffer->pages; 1091 struct buffer_page *bpage, *tmp; 1092 1093 /* Reset the head page if it exists */ 1094 if (cpu_buffer->head_page) 1095 rb_set_head_page(cpu_buffer); 1096 1097 rb_head_page_deactivate(cpu_buffer); 1098 1099 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1100 return -1; 1101 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1102 return -1; 1103 1104 if (rb_check_list(cpu_buffer, head)) 1105 return -1; 1106 1107 list_for_each_entry_safe(bpage, tmp, head, list) { 1108 if (RB_WARN_ON(cpu_buffer, 1109 bpage->list.next->prev != &bpage->list)) 1110 return -1; 1111 if (RB_WARN_ON(cpu_buffer, 1112 bpage->list.prev->next != &bpage->list)) 1113 return -1; 1114 if (rb_check_list(cpu_buffer, &bpage->list)) 1115 return -1; 1116 } 1117 1118 rb_head_page_activate(cpu_buffer); 1119 1120 return 0; 1121 } 1122 1123 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 1124 { 1125 int i; 1126 struct buffer_page *bpage, *tmp; 1127 1128 for (i = 0; i < nr_pages; i++) { 1129 struct page *page; 1130 /* 1131 * __GFP_NORETRY flag makes sure that the allocation fails 1132 * gracefully without invoking oom-killer and the system is 1133 * not destabilized. 1134 */ 1135 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1136 GFP_KERNEL | __GFP_NORETRY, 1137 cpu_to_node(cpu)); 1138 if (!bpage) 1139 goto free_pages; 1140 1141 list_add(&bpage->list, pages); 1142 1143 page = alloc_pages_node(cpu_to_node(cpu), 1144 GFP_KERNEL | __GFP_NORETRY, 0); 1145 if (!page) 1146 goto free_pages; 1147 bpage->page = page_address(page); 1148 rb_init_page(bpage->page); 1149 } 1150 1151 return 0; 1152 1153 free_pages: 1154 list_for_each_entry_safe(bpage, tmp, pages, list) { 1155 list_del_init(&bpage->list); 1156 free_buffer_page(bpage); 1157 } 1158 1159 return -ENOMEM; 1160 } 1161 1162 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1163 unsigned nr_pages) 1164 { 1165 LIST_HEAD(pages); 1166 1167 WARN_ON(!nr_pages); 1168 1169 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1170 return -ENOMEM; 1171 1172 /* 1173 * The ring buffer page list is a circular list that does not 1174 * start and end with a list head. All page list items point to 1175 * other pages. 1176 */ 1177 cpu_buffer->pages = pages.next; 1178 list_del(&pages); 1179 1180 cpu_buffer->nr_pages = nr_pages; 1181 1182 rb_check_pages(cpu_buffer); 1183 1184 return 0; 1185 } 1186 1187 static struct ring_buffer_per_cpu * 1188 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1189 { 1190 struct ring_buffer_per_cpu *cpu_buffer; 1191 struct buffer_page *bpage; 1192 struct page *page; 1193 int ret; 1194 1195 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1196 GFP_KERNEL, cpu_to_node(cpu)); 1197 if (!cpu_buffer) 1198 return NULL; 1199 1200 cpu_buffer->cpu = cpu; 1201 cpu_buffer->buffer = buffer; 1202 raw_spin_lock_init(&cpu_buffer->reader_lock); 1203 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1204 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1205 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1206 init_completion(&cpu_buffer->update_done); 1207 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1208 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1209 1210 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1211 GFP_KERNEL, cpu_to_node(cpu)); 1212 if (!bpage) 1213 goto fail_free_buffer; 1214 1215 rb_check_bpage(cpu_buffer, bpage); 1216 1217 cpu_buffer->reader_page = bpage; 1218 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1219 if (!page) 1220 goto fail_free_reader; 1221 bpage->page = page_address(page); 1222 rb_init_page(bpage->page); 1223 1224 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1225 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1226 1227 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1228 if (ret < 0) 1229 goto fail_free_reader; 1230 1231 cpu_buffer->head_page 1232 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1233 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1234 1235 rb_head_page_activate(cpu_buffer); 1236 1237 return cpu_buffer; 1238 1239 fail_free_reader: 1240 free_buffer_page(cpu_buffer->reader_page); 1241 1242 fail_free_buffer: 1243 kfree(cpu_buffer); 1244 return NULL; 1245 } 1246 1247 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1248 { 1249 struct list_head *head = cpu_buffer->pages; 1250 struct buffer_page *bpage, *tmp; 1251 1252 free_buffer_page(cpu_buffer->reader_page); 1253 1254 rb_head_page_deactivate(cpu_buffer); 1255 1256 if (head) { 1257 list_for_each_entry_safe(bpage, tmp, head, list) { 1258 list_del_init(&bpage->list); 1259 free_buffer_page(bpage); 1260 } 1261 bpage = list_entry(head, struct buffer_page, list); 1262 free_buffer_page(bpage); 1263 } 1264 1265 kfree(cpu_buffer); 1266 } 1267 1268 #ifdef CONFIG_HOTPLUG_CPU 1269 static int rb_cpu_notify(struct notifier_block *self, 1270 unsigned long action, void *hcpu); 1271 #endif 1272 1273 /** 1274 * __ring_buffer_alloc - allocate a new ring_buffer 1275 * @size: the size in bytes per cpu that is needed. 1276 * @flags: attributes to set for the ring buffer. 1277 * 1278 * Currently the only flag that is available is the RB_FL_OVERWRITE 1279 * flag. This flag means that the buffer will overwrite old data 1280 * when the buffer wraps. If this flag is not set, the buffer will 1281 * drop data when the tail hits the head. 1282 */ 1283 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1284 struct lock_class_key *key) 1285 { 1286 struct ring_buffer *buffer; 1287 int bsize; 1288 int cpu, nr_pages; 1289 1290 /* keep it in its own cache line */ 1291 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1292 GFP_KERNEL); 1293 if (!buffer) 1294 return NULL; 1295 1296 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1297 goto fail_free_buffer; 1298 1299 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1300 buffer->flags = flags; 1301 buffer->clock = trace_clock_local; 1302 buffer->reader_lock_key = key; 1303 1304 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1305 init_waitqueue_head(&buffer->irq_work.waiters); 1306 1307 /* need at least two pages */ 1308 if (nr_pages < 2) 1309 nr_pages = 2; 1310 1311 /* 1312 * In case of non-hotplug cpu, if the ring-buffer is allocated 1313 * in early initcall, it will not be notified of secondary cpus. 1314 * In that off case, we need to allocate for all possible cpus. 1315 */ 1316 #ifdef CONFIG_HOTPLUG_CPU 1317 cpu_notifier_register_begin(); 1318 cpumask_copy(buffer->cpumask, cpu_online_mask); 1319 #else 1320 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1321 #endif 1322 buffer->cpus = nr_cpu_ids; 1323 1324 bsize = sizeof(void *) * nr_cpu_ids; 1325 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1326 GFP_KERNEL); 1327 if (!buffer->buffers) 1328 goto fail_free_cpumask; 1329 1330 for_each_buffer_cpu(buffer, cpu) { 1331 buffer->buffers[cpu] = 1332 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1333 if (!buffer->buffers[cpu]) 1334 goto fail_free_buffers; 1335 } 1336 1337 #ifdef CONFIG_HOTPLUG_CPU 1338 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1339 buffer->cpu_notify.priority = 0; 1340 __register_cpu_notifier(&buffer->cpu_notify); 1341 cpu_notifier_register_done(); 1342 #endif 1343 1344 mutex_init(&buffer->mutex); 1345 1346 return buffer; 1347 1348 fail_free_buffers: 1349 for_each_buffer_cpu(buffer, cpu) { 1350 if (buffer->buffers[cpu]) 1351 rb_free_cpu_buffer(buffer->buffers[cpu]); 1352 } 1353 kfree(buffer->buffers); 1354 1355 fail_free_cpumask: 1356 free_cpumask_var(buffer->cpumask); 1357 #ifdef CONFIG_HOTPLUG_CPU 1358 cpu_notifier_register_done(); 1359 #endif 1360 1361 fail_free_buffer: 1362 kfree(buffer); 1363 return NULL; 1364 } 1365 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1366 1367 /** 1368 * ring_buffer_free - free a ring buffer. 1369 * @buffer: the buffer to free. 1370 */ 1371 void 1372 ring_buffer_free(struct ring_buffer *buffer) 1373 { 1374 int cpu; 1375 1376 #ifdef CONFIG_HOTPLUG_CPU 1377 cpu_notifier_register_begin(); 1378 __unregister_cpu_notifier(&buffer->cpu_notify); 1379 #endif 1380 1381 for_each_buffer_cpu(buffer, cpu) 1382 rb_free_cpu_buffer(buffer->buffers[cpu]); 1383 1384 #ifdef CONFIG_HOTPLUG_CPU 1385 cpu_notifier_register_done(); 1386 #endif 1387 1388 kfree(buffer->buffers); 1389 free_cpumask_var(buffer->cpumask); 1390 1391 kfree(buffer); 1392 } 1393 EXPORT_SYMBOL_GPL(ring_buffer_free); 1394 1395 void ring_buffer_set_clock(struct ring_buffer *buffer, 1396 u64 (*clock)(void)) 1397 { 1398 buffer->clock = clock; 1399 } 1400 1401 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1402 1403 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1404 { 1405 return local_read(&bpage->entries) & RB_WRITE_MASK; 1406 } 1407 1408 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1409 { 1410 return local_read(&bpage->write) & RB_WRITE_MASK; 1411 } 1412 1413 static int 1414 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1415 { 1416 struct list_head *tail_page, *to_remove, *next_page; 1417 struct buffer_page *to_remove_page, *tmp_iter_page; 1418 struct buffer_page *last_page, *first_page; 1419 unsigned int nr_removed; 1420 unsigned long head_bit; 1421 int page_entries; 1422 1423 head_bit = 0; 1424 1425 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1426 atomic_inc(&cpu_buffer->record_disabled); 1427 /* 1428 * We don't race with the readers since we have acquired the reader 1429 * lock. We also don't race with writers after disabling recording. 1430 * This makes it easy to figure out the first and the last page to be 1431 * removed from the list. We unlink all the pages in between including 1432 * the first and last pages. This is done in a busy loop so that we 1433 * lose the least number of traces. 1434 * The pages are freed after we restart recording and unlock readers. 1435 */ 1436 tail_page = &cpu_buffer->tail_page->list; 1437 1438 /* 1439 * tail page might be on reader page, we remove the next page 1440 * from the ring buffer 1441 */ 1442 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1443 tail_page = rb_list_head(tail_page->next); 1444 to_remove = tail_page; 1445 1446 /* start of pages to remove */ 1447 first_page = list_entry(rb_list_head(to_remove->next), 1448 struct buffer_page, list); 1449 1450 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1451 to_remove = rb_list_head(to_remove)->next; 1452 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1453 } 1454 1455 next_page = rb_list_head(to_remove)->next; 1456 1457 /* 1458 * Now we remove all pages between tail_page and next_page. 1459 * Make sure that we have head_bit value preserved for the 1460 * next page 1461 */ 1462 tail_page->next = (struct list_head *)((unsigned long)next_page | 1463 head_bit); 1464 next_page = rb_list_head(next_page); 1465 next_page->prev = tail_page; 1466 1467 /* make sure pages points to a valid page in the ring buffer */ 1468 cpu_buffer->pages = next_page; 1469 1470 /* update head page */ 1471 if (head_bit) 1472 cpu_buffer->head_page = list_entry(next_page, 1473 struct buffer_page, list); 1474 1475 /* 1476 * change read pointer to make sure any read iterators reset 1477 * themselves 1478 */ 1479 cpu_buffer->read = 0; 1480 1481 /* pages are removed, resume tracing and then free the pages */ 1482 atomic_dec(&cpu_buffer->record_disabled); 1483 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1484 1485 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1486 1487 /* last buffer page to remove */ 1488 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1489 list); 1490 tmp_iter_page = first_page; 1491 1492 do { 1493 to_remove_page = tmp_iter_page; 1494 rb_inc_page(cpu_buffer, &tmp_iter_page); 1495 1496 /* update the counters */ 1497 page_entries = rb_page_entries(to_remove_page); 1498 if (page_entries) { 1499 /* 1500 * If something was added to this page, it was full 1501 * since it is not the tail page. So we deduct the 1502 * bytes consumed in ring buffer from here. 1503 * Increment overrun to account for the lost events. 1504 */ 1505 local_add(page_entries, &cpu_buffer->overrun); 1506 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1507 } 1508 1509 /* 1510 * We have already removed references to this list item, just 1511 * free up the buffer_page and its page 1512 */ 1513 free_buffer_page(to_remove_page); 1514 nr_removed--; 1515 1516 } while (to_remove_page != last_page); 1517 1518 RB_WARN_ON(cpu_buffer, nr_removed); 1519 1520 return nr_removed == 0; 1521 } 1522 1523 static int 1524 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1525 { 1526 struct list_head *pages = &cpu_buffer->new_pages; 1527 int retries, success; 1528 1529 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1530 /* 1531 * We are holding the reader lock, so the reader page won't be swapped 1532 * in the ring buffer. Now we are racing with the writer trying to 1533 * move head page and the tail page. 1534 * We are going to adapt the reader page update process where: 1535 * 1. We first splice the start and end of list of new pages between 1536 * the head page and its previous page. 1537 * 2. We cmpxchg the prev_page->next to point from head page to the 1538 * start of new pages list. 1539 * 3. Finally, we update the head->prev to the end of new list. 1540 * 1541 * We will try this process 10 times, to make sure that we don't keep 1542 * spinning. 1543 */ 1544 retries = 10; 1545 success = 0; 1546 while (retries--) { 1547 struct list_head *head_page, *prev_page, *r; 1548 struct list_head *last_page, *first_page; 1549 struct list_head *head_page_with_bit; 1550 1551 head_page = &rb_set_head_page(cpu_buffer)->list; 1552 if (!head_page) 1553 break; 1554 prev_page = head_page->prev; 1555 1556 first_page = pages->next; 1557 last_page = pages->prev; 1558 1559 head_page_with_bit = (struct list_head *) 1560 ((unsigned long)head_page | RB_PAGE_HEAD); 1561 1562 last_page->next = head_page_with_bit; 1563 first_page->prev = prev_page; 1564 1565 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1566 1567 if (r == head_page_with_bit) { 1568 /* 1569 * yay, we replaced the page pointer to our new list, 1570 * now, we just have to update to head page's prev 1571 * pointer to point to end of list 1572 */ 1573 head_page->prev = last_page; 1574 success = 1; 1575 break; 1576 } 1577 } 1578 1579 if (success) 1580 INIT_LIST_HEAD(pages); 1581 /* 1582 * If we weren't successful in adding in new pages, warn and stop 1583 * tracing 1584 */ 1585 RB_WARN_ON(cpu_buffer, !success); 1586 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1587 1588 /* free pages if they weren't inserted */ 1589 if (!success) { 1590 struct buffer_page *bpage, *tmp; 1591 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1592 list) { 1593 list_del_init(&bpage->list); 1594 free_buffer_page(bpage); 1595 } 1596 } 1597 return success; 1598 } 1599 1600 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1601 { 1602 int success; 1603 1604 if (cpu_buffer->nr_pages_to_update > 0) 1605 success = rb_insert_pages(cpu_buffer); 1606 else 1607 success = rb_remove_pages(cpu_buffer, 1608 -cpu_buffer->nr_pages_to_update); 1609 1610 if (success) 1611 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1612 } 1613 1614 static void update_pages_handler(struct work_struct *work) 1615 { 1616 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1617 struct ring_buffer_per_cpu, update_pages_work); 1618 rb_update_pages(cpu_buffer); 1619 complete(&cpu_buffer->update_done); 1620 } 1621 1622 /** 1623 * ring_buffer_resize - resize the ring buffer 1624 * @buffer: the buffer to resize. 1625 * @size: the new size. 1626 * @cpu_id: the cpu buffer to resize 1627 * 1628 * Minimum size is 2 * BUF_PAGE_SIZE. 1629 * 1630 * Returns 0 on success and < 0 on failure. 1631 */ 1632 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1633 int cpu_id) 1634 { 1635 struct ring_buffer_per_cpu *cpu_buffer; 1636 unsigned nr_pages; 1637 int cpu, err = 0; 1638 1639 /* 1640 * Always succeed at resizing a non-existent buffer: 1641 */ 1642 if (!buffer) 1643 return size; 1644 1645 /* Make sure the requested buffer exists */ 1646 if (cpu_id != RING_BUFFER_ALL_CPUS && 1647 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1648 return size; 1649 1650 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1651 size *= BUF_PAGE_SIZE; 1652 1653 /* we need a minimum of two pages */ 1654 if (size < BUF_PAGE_SIZE * 2) 1655 size = BUF_PAGE_SIZE * 2; 1656 1657 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1658 1659 /* 1660 * Don't succeed if resizing is disabled, as a reader might be 1661 * manipulating the ring buffer and is expecting a sane state while 1662 * this is true. 1663 */ 1664 if (atomic_read(&buffer->resize_disabled)) 1665 return -EBUSY; 1666 1667 /* prevent another thread from changing buffer sizes */ 1668 mutex_lock(&buffer->mutex); 1669 1670 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1671 /* calculate the pages to update */ 1672 for_each_buffer_cpu(buffer, cpu) { 1673 cpu_buffer = buffer->buffers[cpu]; 1674 1675 cpu_buffer->nr_pages_to_update = nr_pages - 1676 cpu_buffer->nr_pages; 1677 /* 1678 * nothing more to do for removing pages or no update 1679 */ 1680 if (cpu_buffer->nr_pages_to_update <= 0) 1681 continue; 1682 /* 1683 * to add pages, make sure all new pages can be 1684 * allocated without receiving ENOMEM 1685 */ 1686 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1687 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1688 &cpu_buffer->new_pages, cpu)) { 1689 /* not enough memory for new pages */ 1690 err = -ENOMEM; 1691 goto out_err; 1692 } 1693 } 1694 1695 get_online_cpus(); 1696 /* 1697 * Fire off all the required work handlers 1698 * We can't schedule on offline CPUs, but it's not necessary 1699 * since we can change their buffer sizes without any race. 1700 */ 1701 for_each_buffer_cpu(buffer, cpu) { 1702 cpu_buffer = buffer->buffers[cpu]; 1703 if (!cpu_buffer->nr_pages_to_update) 1704 continue; 1705 1706 /* Can't run something on an offline CPU. */ 1707 if (!cpu_online(cpu)) { 1708 rb_update_pages(cpu_buffer); 1709 cpu_buffer->nr_pages_to_update = 0; 1710 } else { 1711 schedule_work_on(cpu, 1712 &cpu_buffer->update_pages_work); 1713 } 1714 } 1715 1716 /* wait for all the updates to complete */ 1717 for_each_buffer_cpu(buffer, cpu) { 1718 cpu_buffer = buffer->buffers[cpu]; 1719 if (!cpu_buffer->nr_pages_to_update) 1720 continue; 1721 1722 if (cpu_online(cpu)) 1723 wait_for_completion(&cpu_buffer->update_done); 1724 cpu_buffer->nr_pages_to_update = 0; 1725 } 1726 1727 put_online_cpus(); 1728 } else { 1729 /* Make sure this CPU has been intitialized */ 1730 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 1731 goto out; 1732 1733 cpu_buffer = buffer->buffers[cpu_id]; 1734 1735 if (nr_pages == cpu_buffer->nr_pages) 1736 goto out; 1737 1738 cpu_buffer->nr_pages_to_update = nr_pages - 1739 cpu_buffer->nr_pages; 1740 1741 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1742 if (cpu_buffer->nr_pages_to_update > 0 && 1743 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1744 &cpu_buffer->new_pages, cpu_id)) { 1745 err = -ENOMEM; 1746 goto out_err; 1747 } 1748 1749 get_online_cpus(); 1750 1751 /* Can't run something on an offline CPU. */ 1752 if (!cpu_online(cpu_id)) 1753 rb_update_pages(cpu_buffer); 1754 else { 1755 schedule_work_on(cpu_id, 1756 &cpu_buffer->update_pages_work); 1757 wait_for_completion(&cpu_buffer->update_done); 1758 } 1759 1760 cpu_buffer->nr_pages_to_update = 0; 1761 put_online_cpus(); 1762 } 1763 1764 out: 1765 /* 1766 * The ring buffer resize can happen with the ring buffer 1767 * enabled, so that the update disturbs the tracing as little 1768 * as possible. But if the buffer is disabled, we do not need 1769 * to worry about that, and we can take the time to verify 1770 * that the buffer is not corrupt. 1771 */ 1772 if (atomic_read(&buffer->record_disabled)) { 1773 atomic_inc(&buffer->record_disabled); 1774 /* 1775 * Even though the buffer was disabled, we must make sure 1776 * that it is truly disabled before calling rb_check_pages. 1777 * There could have been a race between checking 1778 * record_disable and incrementing it. 1779 */ 1780 synchronize_sched(); 1781 for_each_buffer_cpu(buffer, cpu) { 1782 cpu_buffer = buffer->buffers[cpu]; 1783 rb_check_pages(cpu_buffer); 1784 } 1785 atomic_dec(&buffer->record_disabled); 1786 } 1787 1788 mutex_unlock(&buffer->mutex); 1789 return size; 1790 1791 out_err: 1792 for_each_buffer_cpu(buffer, cpu) { 1793 struct buffer_page *bpage, *tmp; 1794 1795 cpu_buffer = buffer->buffers[cpu]; 1796 cpu_buffer->nr_pages_to_update = 0; 1797 1798 if (list_empty(&cpu_buffer->new_pages)) 1799 continue; 1800 1801 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1802 list) { 1803 list_del_init(&bpage->list); 1804 free_buffer_page(bpage); 1805 } 1806 } 1807 mutex_unlock(&buffer->mutex); 1808 return err; 1809 } 1810 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1811 1812 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1813 { 1814 mutex_lock(&buffer->mutex); 1815 if (val) 1816 buffer->flags |= RB_FL_OVERWRITE; 1817 else 1818 buffer->flags &= ~RB_FL_OVERWRITE; 1819 mutex_unlock(&buffer->mutex); 1820 } 1821 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1822 1823 static inline void * 1824 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1825 { 1826 return bpage->data + index; 1827 } 1828 1829 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1830 { 1831 return bpage->page->data + index; 1832 } 1833 1834 static inline struct ring_buffer_event * 1835 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1836 { 1837 return __rb_page_index(cpu_buffer->reader_page, 1838 cpu_buffer->reader_page->read); 1839 } 1840 1841 static inline struct ring_buffer_event * 1842 rb_iter_head_event(struct ring_buffer_iter *iter) 1843 { 1844 return __rb_page_index(iter->head_page, iter->head); 1845 } 1846 1847 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1848 { 1849 return local_read(&bpage->page->commit); 1850 } 1851 1852 /* Size is determined by what has been committed */ 1853 static inline unsigned rb_page_size(struct buffer_page *bpage) 1854 { 1855 return rb_page_commit(bpage); 1856 } 1857 1858 static inline unsigned 1859 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1860 { 1861 return rb_page_commit(cpu_buffer->commit_page); 1862 } 1863 1864 static inline unsigned 1865 rb_event_index(struct ring_buffer_event *event) 1866 { 1867 unsigned long addr = (unsigned long)event; 1868 1869 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1870 } 1871 1872 static inline int 1873 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1874 struct ring_buffer_event *event) 1875 { 1876 unsigned long addr = (unsigned long)event; 1877 unsigned long index; 1878 1879 index = rb_event_index(event); 1880 addr &= PAGE_MASK; 1881 1882 return cpu_buffer->commit_page->page == (void *)addr && 1883 rb_commit_index(cpu_buffer) == index; 1884 } 1885 1886 static void 1887 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1888 { 1889 unsigned long max_count; 1890 1891 /* 1892 * We only race with interrupts and NMIs on this CPU. 1893 * If we own the commit event, then we can commit 1894 * all others that interrupted us, since the interruptions 1895 * are in stack format (they finish before they come 1896 * back to us). This allows us to do a simple loop to 1897 * assign the commit to the tail. 1898 */ 1899 again: 1900 max_count = cpu_buffer->nr_pages * 100; 1901 1902 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1903 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1904 return; 1905 if (RB_WARN_ON(cpu_buffer, 1906 rb_is_reader_page(cpu_buffer->tail_page))) 1907 return; 1908 local_set(&cpu_buffer->commit_page->page->commit, 1909 rb_page_write(cpu_buffer->commit_page)); 1910 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1911 cpu_buffer->write_stamp = 1912 cpu_buffer->commit_page->page->time_stamp; 1913 /* add barrier to keep gcc from optimizing too much */ 1914 barrier(); 1915 } 1916 while (rb_commit_index(cpu_buffer) != 1917 rb_page_write(cpu_buffer->commit_page)) { 1918 1919 local_set(&cpu_buffer->commit_page->page->commit, 1920 rb_page_write(cpu_buffer->commit_page)); 1921 RB_WARN_ON(cpu_buffer, 1922 local_read(&cpu_buffer->commit_page->page->commit) & 1923 ~RB_WRITE_MASK); 1924 barrier(); 1925 } 1926 1927 /* again, keep gcc from optimizing */ 1928 barrier(); 1929 1930 /* 1931 * If an interrupt came in just after the first while loop 1932 * and pushed the tail page forward, we will be left with 1933 * a dangling commit that will never go forward. 1934 */ 1935 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1936 goto again; 1937 } 1938 1939 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1940 { 1941 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1942 cpu_buffer->reader_page->read = 0; 1943 } 1944 1945 static void rb_inc_iter(struct ring_buffer_iter *iter) 1946 { 1947 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1948 1949 /* 1950 * The iterator could be on the reader page (it starts there). 1951 * But the head could have moved, since the reader was 1952 * found. Check for this case and assign the iterator 1953 * to the head page instead of next. 1954 */ 1955 if (iter->head_page == cpu_buffer->reader_page) 1956 iter->head_page = rb_set_head_page(cpu_buffer); 1957 else 1958 rb_inc_page(cpu_buffer, &iter->head_page); 1959 1960 iter->read_stamp = iter->head_page->page->time_stamp; 1961 iter->head = 0; 1962 } 1963 1964 /* Slow path, do not inline */ 1965 static noinline struct ring_buffer_event * 1966 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1967 { 1968 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1969 1970 /* Not the first event on the page? */ 1971 if (rb_event_index(event)) { 1972 event->time_delta = delta & TS_MASK; 1973 event->array[0] = delta >> TS_SHIFT; 1974 } else { 1975 /* nope, just zero it */ 1976 event->time_delta = 0; 1977 event->array[0] = 0; 1978 } 1979 1980 return skip_time_extend(event); 1981 } 1982 1983 /** 1984 * rb_update_event - update event type and data 1985 * @event: the event to update 1986 * @type: the type of event 1987 * @length: the size of the event field in the ring buffer 1988 * 1989 * Update the type and data fields of the event. The length 1990 * is the actual size that is written to the ring buffer, 1991 * and with this, we can determine what to place into the 1992 * data field. 1993 */ 1994 static void 1995 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1996 struct ring_buffer_event *event, unsigned length, 1997 int add_timestamp, u64 delta) 1998 { 1999 /* Only a commit updates the timestamp */ 2000 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 2001 delta = 0; 2002 2003 /* 2004 * If we need to add a timestamp, then we 2005 * add it to the start of the resevered space. 2006 */ 2007 if (unlikely(add_timestamp)) { 2008 event = rb_add_time_stamp(event, delta); 2009 length -= RB_LEN_TIME_EXTEND; 2010 delta = 0; 2011 } 2012 2013 event->time_delta = delta; 2014 length -= RB_EVNT_HDR_SIZE; 2015 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 2016 event->type_len = 0; 2017 event->array[0] = length; 2018 } else 2019 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2020 } 2021 2022 /* 2023 * rb_handle_head_page - writer hit the head page 2024 * 2025 * Returns: +1 to retry page 2026 * 0 to continue 2027 * -1 on error 2028 */ 2029 static int 2030 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2031 struct buffer_page *tail_page, 2032 struct buffer_page *next_page) 2033 { 2034 struct buffer_page *new_head; 2035 int entries; 2036 int type; 2037 int ret; 2038 2039 entries = rb_page_entries(next_page); 2040 2041 /* 2042 * The hard part is here. We need to move the head 2043 * forward, and protect against both readers on 2044 * other CPUs and writers coming in via interrupts. 2045 */ 2046 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2047 RB_PAGE_HEAD); 2048 2049 /* 2050 * type can be one of four: 2051 * NORMAL - an interrupt already moved it for us 2052 * HEAD - we are the first to get here. 2053 * UPDATE - we are the interrupt interrupting 2054 * a current move. 2055 * MOVED - a reader on another CPU moved the next 2056 * pointer to its reader page. Give up 2057 * and try again. 2058 */ 2059 2060 switch (type) { 2061 case RB_PAGE_HEAD: 2062 /* 2063 * We changed the head to UPDATE, thus 2064 * it is our responsibility to update 2065 * the counters. 2066 */ 2067 local_add(entries, &cpu_buffer->overrun); 2068 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2069 2070 /* 2071 * The entries will be zeroed out when we move the 2072 * tail page. 2073 */ 2074 2075 /* still more to do */ 2076 break; 2077 2078 case RB_PAGE_UPDATE: 2079 /* 2080 * This is an interrupt that interrupt the 2081 * previous update. Still more to do. 2082 */ 2083 break; 2084 case RB_PAGE_NORMAL: 2085 /* 2086 * An interrupt came in before the update 2087 * and processed this for us. 2088 * Nothing left to do. 2089 */ 2090 return 1; 2091 case RB_PAGE_MOVED: 2092 /* 2093 * The reader is on another CPU and just did 2094 * a swap with our next_page. 2095 * Try again. 2096 */ 2097 return 1; 2098 default: 2099 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2100 return -1; 2101 } 2102 2103 /* 2104 * Now that we are here, the old head pointer is 2105 * set to UPDATE. This will keep the reader from 2106 * swapping the head page with the reader page. 2107 * The reader (on another CPU) will spin till 2108 * we are finished. 2109 * 2110 * We just need to protect against interrupts 2111 * doing the job. We will set the next pointer 2112 * to HEAD. After that, we set the old pointer 2113 * to NORMAL, but only if it was HEAD before. 2114 * otherwise we are an interrupt, and only 2115 * want the outer most commit to reset it. 2116 */ 2117 new_head = next_page; 2118 rb_inc_page(cpu_buffer, &new_head); 2119 2120 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2121 RB_PAGE_NORMAL); 2122 2123 /* 2124 * Valid returns are: 2125 * HEAD - an interrupt came in and already set it. 2126 * NORMAL - One of two things: 2127 * 1) We really set it. 2128 * 2) A bunch of interrupts came in and moved 2129 * the page forward again. 2130 */ 2131 switch (ret) { 2132 case RB_PAGE_HEAD: 2133 case RB_PAGE_NORMAL: 2134 /* OK */ 2135 break; 2136 default: 2137 RB_WARN_ON(cpu_buffer, 1); 2138 return -1; 2139 } 2140 2141 /* 2142 * It is possible that an interrupt came in, 2143 * set the head up, then more interrupts came in 2144 * and moved it again. When we get back here, 2145 * the page would have been set to NORMAL but we 2146 * just set it back to HEAD. 2147 * 2148 * How do you detect this? Well, if that happened 2149 * the tail page would have moved. 2150 */ 2151 if (ret == RB_PAGE_NORMAL) { 2152 /* 2153 * If the tail had moved passed next, then we need 2154 * to reset the pointer. 2155 */ 2156 if (cpu_buffer->tail_page != tail_page && 2157 cpu_buffer->tail_page != next_page) 2158 rb_head_page_set_normal(cpu_buffer, new_head, 2159 next_page, 2160 RB_PAGE_HEAD); 2161 } 2162 2163 /* 2164 * If this was the outer most commit (the one that 2165 * changed the original pointer from HEAD to UPDATE), 2166 * then it is up to us to reset it to NORMAL. 2167 */ 2168 if (type == RB_PAGE_HEAD) { 2169 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2170 tail_page, 2171 RB_PAGE_UPDATE); 2172 if (RB_WARN_ON(cpu_buffer, 2173 ret != RB_PAGE_UPDATE)) 2174 return -1; 2175 } 2176 2177 return 0; 2178 } 2179 2180 static unsigned rb_calculate_event_length(unsigned length) 2181 { 2182 struct ring_buffer_event event; /* Used only for sizeof array */ 2183 2184 /* zero length can cause confusions */ 2185 if (!length) 2186 length = 1; 2187 2188 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2189 length += sizeof(event.array[0]); 2190 2191 length += RB_EVNT_HDR_SIZE; 2192 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2193 2194 return length; 2195 } 2196 2197 static inline void 2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2199 struct buffer_page *tail_page, 2200 unsigned long tail, unsigned long length) 2201 { 2202 struct ring_buffer_event *event; 2203 2204 /* 2205 * Only the event that crossed the page boundary 2206 * must fill the old tail_page with padding. 2207 */ 2208 if (tail >= BUF_PAGE_SIZE) { 2209 /* 2210 * If the page was filled, then we still need 2211 * to update the real_end. Reset it to zero 2212 * and the reader will ignore it. 2213 */ 2214 if (tail == BUF_PAGE_SIZE) 2215 tail_page->real_end = 0; 2216 2217 local_sub(length, &tail_page->write); 2218 return; 2219 } 2220 2221 event = __rb_page_index(tail_page, tail); 2222 kmemcheck_annotate_bitfield(event, bitfield); 2223 2224 /* account for padding bytes */ 2225 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2226 2227 /* 2228 * Save the original length to the meta data. 2229 * This will be used by the reader to add lost event 2230 * counter. 2231 */ 2232 tail_page->real_end = tail; 2233 2234 /* 2235 * If this event is bigger than the minimum size, then 2236 * we need to be careful that we don't subtract the 2237 * write counter enough to allow another writer to slip 2238 * in on this page. 2239 * We put in a discarded commit instead, to make sure 2240 * that this space is not used again. 2241 * 2242 * If we are less than the minimum size, we don't need to 2243 * worry about it. 2244 */ 2245 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2246 /* No room for any events */ 2247 2248 /* Mark the rest of the page with padding */ 2249 rb_event_set_padding(event); 2250 2251 /* Set the write back to the previous setting */ 2252 local_sub(length, &tail_page->write); 2253 return; 2254 } 2255 2256 /* Put in a discarded event */ 2257 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2258 event->type_len = RINGBUF_TYPE_PADDING; 2259 /* time delta must be non zero */ 2260 event->time_delta = 1; 2261 2262 /* Set write to end of buffer */ 2263 length = (tail + length) - BUF_PAGE_SIZE; 2264 local_sub(length, &tail_page->write); 2265 } 2266 2267 /* 2268 * This is the slow path, force gcc not to inline it. 2269 */ 2270 static noinline struct ring_buffer_event * 2271 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2272 unsigned long length, unsigned long tail, 2273 struct buffer_page *tail_page, u64 ts) 2274 { 2275 struct buffer_page *commit_page = cpu_buffer->commit_page; 2276 struct ring_buffer *buffer = cpu_buffer->buffer; 2277 struct buffer_page *next_page; 2278 int ret; 2279 2280 next_page = tail_page; 2281 2282 rb_inc_page(cpu_buffer, &next_page); 2283 2284 /* 2285 * If for some reason, we had an interrupt storm that made 2286 * it all the way around the buffer, bail, and warn 2287 * about it. 2288 */ 2289 if (unlikely(next_page == commit_page)) { 2290 local_inc(&cpu_buffer->commit_overrun); 2291 goto out_reset; 2292 } 2293 2294 /* 2295 * This is where the fun begins! 2296 * 2297 * We are fighting against races between a reader that 2298 * could be on another CPU trying to swap its reader 2299 * page with the buffer head. 2300 * 2301 * We are also fighting against interrupts coming in and 2302 * moving the head or tail on us as well. 2303 * 2304 * If the next page is the head page then we have filled 2305 * the buffer, unless the commit page is still on the 2306 * reader page. 2307 */ 2308 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2309 2310 /* 2311 * If the commit is not on the reader page, then 2312 * move the header page. 2313 */ 2314 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2315 /* 2316 * If we are not in overwrite mode, 2317 * this is easy, just stop here. 2318 */ 2319 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2320 local_inc(&cpu_buffer->dropped_events); 2321 goto out_reset; 2322 } 2323 2324 ret = rb_handle_head_page(cpu_buffer, 2325 tail_page, 2326 next_page); 2327 if (ret < 0) 2328 goto out_reset; 2329 if (ret) 2330 goto out_again; 2331 } else { 2332 /* 2333 * We need to be careful here too. The 2334 * commit page could still be on the reader 2335 * page. We could have a small buffer, and 2336 * have filled up the buffer with events 2337 * from interrupts and such, and wrapped. 2338 * 2339 * Note, if the tail page is also the on the 2340 * reader_page, we let it move out. 2341 */ 2342 if (unlikely((cpu_buffer->commit_page != 2343 cpu_buffer->tail_page) && 2344 (cpu_buffer->commit_page == 2345 cpu_buffer->reader_page))) { 2346 local_inc(&cpu_buffer->commit_overrun); 2347 goto out_reset; 2348 } 2349 } 2350 } 2351 2352 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2353 if (ret) { 2354 /* 2355 * Nested commits always have zero deltas, so 2356 * just reread the time stamp 2357 */ 2358 ts = rb_time_stamp(buffer); 2359 next_page->page->time_stamp = ts; 2360 } 2361 2362 out_again: 2363 2364 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2365 2366 /* fail and let the caller try again */ 2367 return ERR_PTR(-EAGAIN); 2368 2369 out_reset: 2370 /* reset write */ 2371 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2372 2373 return NULL; 2374 } 2375 2376 static struct ring_buffer_event * 2377 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2378 unsigned long length, u64 ts, 2379 u64 delta, int add_timestamp) 2380 { 2381 struct buffer_page *tail_page; 2382 struct ring_buffer_event *event; 2383 unsigned long tail, write; 2384 2385 /* 2386 * If the time delta since the last event is too big to 2387 * hold in the time field of the event, then we append a 2388 * TIME EXTEND event ahead of the data event. 2389 */ 2390 if (unlikely(add_timestamp)) 2391 length += RB_LEN_TIME_EXTEND; 2392 2393 tail_page = cpu_buffer->tail_page; 2394 write = local_add_return(length, &tail_page->write); 2395 2396 /* set write to only the index of the write */ 2397 write &= RB_WRITE_MASK; 2398 tail = write - length; 2399 2400 /* 2401 * If this is the first commit on the page, then it has the same 2402 * timestamp as the page itself. 2403 */ 2404 if (!tail) 2405 delta = 0; 2406 2407 /* See if we shot pass the end of this buffer page */ 2408 if (unlikely(write > BUF_PAGE_SIZE)) 2409 return rb_move_tail(cpu_buffer, length, tail, 2410 tail_page, ts); 2411 2412 /* We reserved something on the buffer */ 2413 2414 event = __rb_page_index(tail_page, tail); 2415 kmemcheck_annotate_bitfield(event, bitfield); 2416 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2417 2418 local_inc(&tail_page->entries); 2419 2420 /* 2421 * If this is the first commit on the page, then update 2422 * its timestamp. 2423 */ 2424 if (!tail) 2425 tail_page->page->time_stamp = ts; 2426 2427 /* account for these added bytes */ 2428 local_add(length, &cpu_buffer->entries_bytes); 2429 2430 return event; 2431 } 2432 2433 static inline int 2434 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2435 struct ring_buffer_event *event) 2436 { 2437 unsigned long new_index, old_index; 2438 struct buffer_page *bpage; 2439 unsigned long index; 2440 unsigned long addr; 2441 2442 new_index = rb_event_index(event); 2443 old_index = new_index + rb_event_ts_length(event); 2444 addr = (unsigned long)event; 2445 addr &= PAGE_MASK; 2446 2447 bpage = cpu_buffer->tail_page; 2448 2449 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2450 unsigned long write_mask = 2451 local_read(&bpage->write) & ~RB_WRITE_MASK; 2452 unsigned long event_length = rb_event_length(event); 2453 /* 2454 * This is on the tail page. It is possible that 2455 * a write could come in and move the tail page 2456 * and write to the next page. That is fine 2457 * because we just shorten what is on this page. 2458 */ 2459 old_index += write_mask; 2460 new_index += write_mask; 2461 index = local_cmpxchg(&bpage->write, old_index, new_index); 2462 if (index == old_index) { 2463 /* update counters */ 2464 local_sub(event_length, &cpu_buffer->entries_bytes); 2465 return 1; 2466 } 2467 } 2468 2469 /* could not discard */ 2470 return 0; 2471 } 2472 2473 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2474 { 2475 local_inc(&cpu_buffer->committing); 2476 local_inc(&cpu_buffer->commits); 2477 } 2478 2479 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2480 { 2481 unsigned long commits; 2482 2483 if (RB_WARN_ON(cpu_buffer, 2484 !local_read(&cpu_buffer->committing))) 2485 return; 2486 2487 again: 2488 commits = local_read(&cpu_buffer->commits); 2489 /* synchronize with interrupts */ 2490 barrier(); 2491 if (local_read(&cpu_buffer->committing) == 1) 2492 rb_set_commit_to_write(cpu_buffer); 2493 2494 local_dec(&cpu_buffer->committing); 2495 2496 /* synchronize with interrupts */ 2497 barrier(); 2498 2499 /* 2500 * Need to account for interrupts coming in between the 2501 * updating of the commit page and the clearing of the 2502 * committing counter. 2503 */ 2504 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2505 !local_read(&cpu_buffer->committing)) { 2506 local_inc(&cpu_buffer->committing); 2507 goto again; 2508 } 2509 } 2510 2511 static struct ring_buffer_event * 2512 rb_reserve_next_event(struct ring_buffer *buffer, 2513 struct ring_buffer_per_cpu *cpu_buffer, 2514 unsigned long length) 2515 { 2516 struct ring_buffer_event *event; 2517 u64 ts, delta; 2518 int nr_loops = 0; 2519 int add_timestamp; 2520 u64 diff; 2521 2522 rb_start_commit(cpu_buffer); 2523 2524 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2525 /* 2526 * Due to the ability to swap a cpu buffer from a buffer 2527 * it is possible it was swapped before we committed. 2528 * (committing stops a swap). We check for it here and 2529 * if it happened, we have to fail the write. 2530 */ 2531 barrier(); 2532 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2533 local_dec(&cpu_buffer->committing); 2534 local_dec(&cpu_buffer->commits); 2535 return NULL; 2536 } 2537 #endif 2538 2539 length = rb_calculate_event_length(length); 2540 again: 2541 add_timestamp = 0; 2542 delta = 0; 2543 2544 /* 2545 * We allow for interrupts to reenter here and do a trace. 2546 * If one does, it will cause this original code to loop 2547 * back here. Even with heavy interrupts happening, this 2548 * should only happen a few times in a row. If this happens 2549 * 1000 times in a row, there must be either an interrupt 2550 * storm or we have something buggy. 2551 * Bail! 2552 */ 2553 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2554 goto out_fail; 2555 2556 ts = rb_time_stamp(cpu_buffer->buffer); 2557 diff = ts - cpu_buffer->write_stamp; 2558 2559 /* make sure this diff is calculated here */ 2560 barrier(); 2561 2562 /* Did the write stamp get updated already? */ 2563 if (likely(ts >= cpu_buffer->write_stamp)) { 2564 delta = diff; 2565 if (unlikely(test_time_stamp(delta))) { 2566 int local_clock_stable = 1; 2567 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2568 local_clock_stable = sched_clock_stable(); 2569 #endif 2570 WARN_ONCE(delta > (1ULL << 59), 2571 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2572 (unsigned long long)delta, 2573 (unsigned long long)ts, 2574 (unsigned long long)cpu_buffer->write_stamp, 2575 local_clock_stable ? "" : 2576 "If you just came from a suspend/resume,\n" 2577 "please switch to the trace global clock:\n" 2578 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2579 add_timestamp = 1; 2580 } 2581 } 2582 2583 event = __rb_reserve_next(cpu_buffer, length, ts, 2584 delta, add_timestamp); 2585 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2586 goto again; 2587 2588 if (!event) 2589 goto out_fail; 2590 2591 return event; 2592 2593 out_fail: 2594 rb_end_commit(cpu_buffer); 2595 return NULL; 2596 } 2597 2598 #ifdef CONFIG_TRACING 2599 2600 /* 2601 * The lock and unlock are done within a preempt disable section. 2602 * The current_context per_cpu variable can only be modified 2603 * by the current task between lock and unlock. But it can 2604 * be modified more than once via an interrupt. To pass this 2605 * information from the lock to the unlock without having to 2606 * access the 'in_interrupt()' functions again (which do show 2607 * a bit of overhead in something as critical as function tracing, 2608 * we use a bitmask trick. 2609 * 2610 * bit 0 = NMI context 2611 * bit 1 = IRQ context 2612 * bit 2 = SoftIRQ context 2613 * bit 3 = normal context. 2614 * 2615 * This works because this is the order of contexts that can 2616 * preempt other contexts. A SoftIRQ never preempts an IRQ 2617 * context. 2618 * 2619 * When the context is determined, the corresponding bit is 2620 * checked and set (if it was set, then a recursion of that context 2621 * happened). 2622 * 2623 * On unlock, we need to clear this bit. To do so, just subtract 2624 * 1 from the current_context and AND it to itself. 2625 * 2626 * (binary) 2627 * 101 - 1 = 100 2628 * 101 & 100 = 100 (clearing bit zero) 2629 * 2630 * 1010 - 1 = 1001 2631 * 1010 & 1001 = 1000 (clearing bit 1) 2632 * 2633 * The least significant bit can be cleared this way, and it 2634 * just so happens that it is the same bit corresponding to 2635 * the current context. 2636 */ 2637 static DEFINE_PER_CPU(unsigned int, current_context); 2638 2639 static __always_inline int trace_recursive_lock(void) 2640 { 2641 unsigned int val = this_cpu_read(current_context); 2642 int bit; 2643 2644 if (in_interrupt()) { 2645 if (in_nmi()) 2646 bit = 0; 2647 else if (in_irq()) 2648 bit = 1; 2649 else 2650 bit = 2; 2651 } else 2652 bit = 3; 2653 2654 if (unlikely(val & (1 << bit))) 2655 return 1; 2656 2657 val |= (1 << bit); 2658 this_cpu_write(current_context, val); 2659 2660 return 0; 2661 } 2662 2663 static __always_inline void trace_recursive_unlock(void) 2664 { 2665 unsigned int val = this_cpu_read(current_context); 2666 2667 val--; 2668 val &= this_cpu_read(current_context); 2669 this_cpu_write(current_context, val); 2670 } 2671 2672 #else 2673 2674 #define trace_recursive_lock() (0) 2675 #define trace_recursive_unlock() do { } while (0) 2676 2677 #endif 2678 2679 /** 2680 * ring_buffer_lock_reserve - reserve a part of the buffer 2681 * @buffer: the ring buffer to reserve from 2682 * @length: the length of the data to reserve (excluding event header) 2683 * 2684 * Returns a reseverd event on the ring buffer to copy directly to. 2685 * The user of this interface will need to get the body to write into 2686 * and can use the ring_buffer_event_data() interface. 2687 * 2688 * The length is the length of the data needed, not the event length 2689 * which also includes the event header. 2690 * 2691 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2692 * If NULL is returned, then nothing has been allocated or locked. 2693 */ 2694 struct ring_buffer_event * 2695 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2696 { 2697 struct ring_buffer_per_cpu *cpu_buffer; 2698 struct ring_buffer_event *event; 2699 int cpu; 2700 2701 if (ring_buffer_flags != RB_BUFFERS_ON) 2702 return NULL; 2703 2704 /* If we are tracing schedule, we don't want to recurse */ 2705 preempt_disable_notrace(); 2706 2707 if (atomic_read(&buffer->record_disabled)) 2708 goto out_nocheck; 2709 2710 if (trace_recursive_lock()) 2711 goto out_nocheck; 2712 2713 cpu = raw_smp_processor_id(); 2714 2715 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2716 goto out; 2717 2718 cpu_buffer = buffer->buffers[cpu]; 2719 2720 if (atomic_read(&cpu_buffer->record_disabled)) 2721 goto out; 2722 2723 if (length > BUF_MAX_DATA_SIZE) 2724 goto out; 2725 2726 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2727 if (!event) 2728 goto out; 2729 2730 return event; 2731 2732 out: 2733 trace_recursive_unlock(); 2734 2735 out_nocheck: 2736 preempt_enable_notrace(); 2737 return NULL; 2738 } 2739 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2740 2741 static void 2742 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2743 struct ring_buffer_event *event) 2744 { 2745 u64 delta; 2746 2747 /* 2748 * The event first in the commit queue updates the 2749 * time stamp. 2750 */ 2751 if (rb_event_is_commit(cpu_buffer, event)) { 2752 /* 2753 * A commit event that is first on a page 2754 * updates the write timestamp with the page stamp 2755 */ 2756 if (!rb_event_index(event)) 2757 cpu_buffer->write_stamp = 2758 cpu_buffer->commit_page->page->time_stamp; 2759 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2760 delta = event->array[0]; 2761 delta <<= TS_SHIFT; 2762 delta += event->time_delta; 2763 cpu_buffer->write_stamp += delta; 2764 } else 2765 cpu_buffer->write_stamp += event->time_delta; 2766 } 2767 } 2768 2769 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2770 struct ring_buffer_event *event) 2771 { 2772 local_inc(&cpu_buffer->entries); 2773 rb_update_write_stamp(cpu_buffer, event); 2774 rb_end_commit(cpu_buffer); 2775 } 2776 2777 static __always_inline void 2778 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2779 { 2780 if (buffer->irq_work.waiters_pending) { 2781 buffer->irq_work.waiters_pending = false; 2782 /* irq_work_queue() supplies it's own memory barriers */ 2783 irq_work_queue(&buffer->irq_work.work); 2784 } 2785 2786 if (cpu_buffer->irq_work.waiters_pending) { 2787 cpu_buffer->irq_work.waiters_pending = false; 2788 /* irq_work_queue() supplies it's own memory barriers */ 2789 irq_work_queue(&cpu_buffer->irq_work.work); 2790 } 2791 } 2792 2793 /** 2794 * ring_buffer_unlock_commit - commit a reserved 2795 * @buffer: The buffer to commit to 2796 * @event: The event pointer to commit. 2797 * 2798 * This commits the data to the ring buffer, and releases any locks held. 2799 * 2800 * Must be paired with ring_buffer_lock_reserve. 2801 */ 2802 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2803 struct ring_buffer_event *event) 2804 { 2805 struct ring_buffer_per_cpu *cpu_buffer; 2806 int cpu = raw_smp_processor_id(); 2807 2808 cpu_buffer = buffer->buffers[cpu]; 2809 2810 rb_commit(cpu_buffer, event); 2811 2812 rb_wakeups(buffer, cpu_buffer); 2813 2814 trace_recursive_unlock(); 2815 2816 preempt_enable_notrace(); 2817 2818 return 0; 2819 } 2820 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2821 2822 static inline void rb_event_discard(struct ring_buffer_event *event) 2823 { 2824 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2825 event = skip_time_extend(event); 2826 2827 /* array[0] holds the actual length for the discarded event */ 2828 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2829 event->type_len = RINGBUF_TYPE_PADDING; 2830 /* time delta must be non zero */ 2831 if (!event->time_delta) 2832 event->time_delta = 1; 2833 } 2834 2835 /* 2836 * Decrement the entries to the page that an event is on. 2837 * The event does not even need to exist, only the pointer 2838 * to the page it is on. This may only be called before the commit 2839 * takes place. 2840 */ 2841 static inline void 2842 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2843 struct ring_buffer_event *event) 2844 { 2845 unsigned long addr = (unsigned long)event; 2846 struct buffer_page *bpage = cpu_buffer->commit_page; 2847 struct buffer_page *start; 2848 2849 addr &= PAGE_MASK; 2850 2851 /* Do the likely case first */ 2852 if (likely(bpage->page == (void *)addr)) { 2853 local_dec(&bpage->entries); 2854 return; 2855 } 2856 2857 /* 2858 * Because the commit page may be on the reader page we 2859 * start with the next page and check the end loop there. 2860 */ 2861 rb_inc_page(cpu_buffer, &bpage); 2862 start = bpage; 2863 do { 2864 if (bpage->page == (void *)addr) { 2865 local_dec(&bpage->entries); 2866 return; 2867 } 2868 rb_inc_page(cpu_buffer, &bpage); 2869 } while (bpage != start); 2870 2871 /* commit not part of this buffer?? */ 2872 RB_WARN_ON(cpu_buffer, 1); 2873 } 2874 2875 /** 2876 * ring_buffer_commit_discard - discard an event that has not been committed 2877 * @buffer: the ring buffer 2878 * @event: non committed event to discard 2879 * 2880 * Sometimes an event that is in the ring buffer needs to be ignored. 2881 * This function lets the user discard an event in the ring buffer 2882 * and then that event will not be read later. 2883 * 2884 * This function only works if it is called before the the item has been 2885 * committed. It will try to free the event from the ring buffer 2886 * if another event has not been added behind it. 2887 * 2888 * If another event has been added behind it, it will set the event 2889 * up as discarded, and perform the commit. 2890 * 2891 * If this function is called, do not call ring_buffer_unlock_commit on 2892 * the event. 2893 */ 2894 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2895 struct ring_buffer_event *event) 2896 { 2897 struct ring_buffer_per_cpu *cpu_buffer; 2898 int cpu; 2899 2900 /* The event is discarded regardless */ 2901 rb_event_discard(event); 2902 2903 cpu = smp_processor_id(); 2904 cpu_buffer = buffer->buffers[cpu]; 2905 2906 /* 2907 * This must only be called if the event has not been 2908 * committed yet. Thus we can assume that preemption 2909 * is still disabled. 2910 */ 2911 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2912 2913 rb_decrement_entry(cpu_buffer, event); 2914 if (rb_try_to_discard(cpu_buffer, event)) 2915 goto out; 2916 2917 /* 2918 * The commit is still visible by the reader, so we 2919 * must still update the timestamp. 2920 */ 2921 rb_update_write_stamp(cpu_buffer, event); 2922 out: 2923 rb_end_commit(cpu_buffer); 2924 2925 trace_recursive_unlock(); 2926 2927 preempt_enable_notrace(); 2928 2929 } 2930 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2931 2932 /** 2933 * ring_buffer_write - write data to the buffer without reserving 2934 * @buffer: The ring buffer to write to. 2935 * @length: The length of the data being written (excluding the event header) 2936 * @data: The data to write to the buffer. 2937 * 2938 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2939 * one function. If you already have the data to write to the buffer, it 2940 * may be easier to simply call this function. 2941 * 2942 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2943 * and not the length of the event which would hold the header. 2944 */ 2945 int ring_buffer_write(struct ring_buffer *buffer, 2946 unsigned long length, 2947 void *data) 2948 { 2949 struct ring_buffer_per_cpu *cpu_buffer; 2950 struct ring_buffer_event *event; 2951 void *body; 2952 int ret = -EBUSY; 2953 int cpu; 2954 2955 if (ring_buffer_flags != RB_BUFFERS_ON) 2956 return -EBUSY; 2957 2958 preempt_disable_notrace(); 2959 2960 if (atomic_read(&buffer->record_disabled)) 2961 goto out; 2962 2963 cpu = raw_smp_processor_id(); 2964 2965 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2966 goto out; 2967 2968 cpu_buffer = buffer->buffers[cpu]; 2969 2970 if (atomic_read(&cpu_buffer->record_disabled)) 2971 goto out; 2972 2973 if (length > BUF_MAX_DATA_SIZE) 2974 goto out; 2975 2976 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2977 if (!event) 2978 goto out; 2979 2980 body = rb_event_data(event); 2981 2982 memcpy(body, data, length); 2983 2984 rb_commit(cpu_buffer, event); 2985 2986 rb_wakeups(buffer, cpu_buffer); 2987 2988 ret = 0; 2989 out: 2990 preempt_enable_notrace(); 2991 2992 return ret; 2993 } 2994 EXPORT_SYMBOL_GPL(ring_buffer_write); 2995 2996 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2997 { 2998 struct buffer_page *reader = cpu_buffer->reader_page; 2999 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3000 struct buffer_page *commit = cpu_buffer->commit_page; 3001 3002 /* In case of error, head will be NULL */ 3003 if (unlikely(!head)) 3004 return 1; 3005 3006 return reader->read == rb_page_commit(reader) && 3007 (commit == reader || 3008 (commit == head && 3009 head->read == rb_page_commit(commit))); 3010 } 3011 3012 /** 3013 * ring_buffer_record_disable - stop all writes into the buffer 3014 * @buffer: The ring buffer to stop writes to. 3015 * 3016 * This prevents all writes to the buffer. Any attempt to write 3017 * to the buffer after this will fail and return NULL. 3018 * 3019 * The caller should call synchronize_sched() after this. 3020 */ 3021 void ring_buffer_record_disable(struct ring_buffer *buffer) 3022 { 3023 atomic_inc(&buffer->record_disabled); 3024 } 3025 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3026 3027 /** 3028 * ring_buffer_record_enable - enable writes to the buffer 3029 * @buffer: The ring buffer to enable writes 3030 * 3031 * Note, multiple disables will need the same number of enables 3032 * to truly enable the writing (much like preempt_disable). 3033 */ 3034 void ring_buffer_record_enable(struct ring_buffer *buffer) 3035 { 3036 atomic_dec(&buffer->record_disabled); 3037 } 3038 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3039 3040 /** 3041 * ring_buffer_record_off - stop all writes into the buffer 3042 * @buffer: The ring buffer to stop writes to. 3043 * 3044 * This prevents all writes to the buffer. Any attempt to write 3045 * to the buffer after this will fail and return NULL. 3046 * 3047 * This is different than ring_buffer_record_disable() as 3048 * it works like an on/off switch, where as the disable() version 3049 * must be paired with a enable(). 3050 */ 3051 void ring_buffer_record_off(struct ring_buffer *buffer) 3052 { 3053 unsigned int rd; 3054 unsigned int new_rd; 3055 3056 do { 3057 rd = atomic_read(&buffer->record_disabled); 3058 new_rd = rd | RB_BUFFER_OFF; 3059 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3060 } 3061 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3062 3063 /** 3064 * ring_buffer_record_on - restart writes into the buffer 3065 * @buffer: The ring buffer to start writes to. 3066 * 3067 * This enables all writes to the buffer that was disabled by 3068 * ring_buffer_record_off(). 3069 * 3070 * This is different than ring_buffer_record_enable() as 3071 * it works like an on/off switch, where as the enable() version 3072 * must be paired with a disable(). 3073 */ 3074 void ring_buffer_record_on(struct ring_buffer *buffer) 3075 { 3076 unsigned int rd; 3077 unsigned int new_rd; 3078 3079 do { 3080 rd = atomic_read(&buffer->record_disabled); 3081 new_rd = rd & ~RB_BUFFER_OFF; 3082 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3083 } 3084 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3085 3086 /** 3087 * ring_buffer_record_is_on - return true if the ring buffer can write 3088 * @buffer: The ring buffer to see if write is enabled 3089 * 3090 * Returns true if the ring buffer is in a state that it accepts writes. 3091 */ 3092 int ring_buffer_record_is_on(struct ring_buffer *buffer) 3093 { 3094 return !atomic_read(&buffer->record_disabled); 3095 } 3096 3097 /** 3098 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3099 * @buffer: The ring buffer to stop writes to. 3100 * @cpu: The CPU buffer to stop 3101 * 3102 * This prevents all writes to the buffer. Any attempt to write 3103 * to the buffer after this will fail and return NULL. 3104 * 3105 * The caller should call synchronize_sched() after this. 3106 */ 3107 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 3108 { 3109 struct ring_buffer_per_cpu *cpu_buffer; 3110 3111 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3112 return; 3113 3114 cpu_buffer = buffer->buffers[cpu]; 3115 atomic_inc(&cpu_buffer->record_disabled); 3116 } 3117 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3118 3119 /** 3120 * ring_buffer_record_enable_cpu - enable writes to the buffer 3121 * @buffer: The ring buffer to enable writes 3122 * @cpu: The CPU to enable. 3123 * 3124 * Note, multiple disables will need the same number of enables 3125 * to truly enable the writing (much like preempt_disable). 3126 */ 3127 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 3128 { 3129 struct ring_buffer_per_cpu *cpu_buffer; 3130 3131 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3132 return; 3133 3134 cpu_buffer = buffer->buffers[cpu]; 3135 atomic_dec(&cpu_buffer->record_disabled); 3136 } 3137 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3138 3139 /* 3140 * The total entries in the ring buffer is the running counter 3141 * of entries entered into the ring buffer, minus the sum of 3142 * the entries read from the ring buffer and the number of 3143 * entries that were overwritten. 3144 */ 3145 static inline unsigned long 3146 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3147 { 3148 return local_read(&cpu_buffer->entries) - 3149 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3150 } 3151 3152 /** 3153 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3154 * @buffer: The ring buffer 3155 * @cpu: The per CPU buffer to read from. 3156 */ 3157 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 3158 { 3159 unsigned long flags; 3160 struct ring_buffer_per_cpu *cpu_buffer; 3161 struct buffer_page *bpage; 3162 u64 ret = 0; 3163 3164 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3165 return 0; 3166 3167 cpu_buffer = buffer->buffers[cpu]; 3168 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3169 /* 3170 * if the tail is on reader_page, oldest time stamp is on the reader 3171 * page 3172 */ 3173 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3174 bpage = cpu_buffer->reader_page; 3175 else 3176 bpage = rb_set_head_page(cpu_buffer); 3177 if (bpage) 3178 ret = bpage->page->time_stamp; 3179 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3180 3181 return ret; 3182 } 3183 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3184 3185 /** 3186 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3187 * @buffer: The ring buffer 3188 * @cpu: The per CPU buffer to read from. 3189 */ 3190 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 3191 { 3192 struct ring_buffer_per_cpu *cpu_buffer; 3193 unsigned long ret; 3194 3195 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3196 return 0; 3197 3198 cpu_buffer = buffer->buffers[cpu]; 3199 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3200 3201 return ret; 3202 } 3203 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3204 3205 /** 3206 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3207 * @buffer: The ring buffer 3208 * @cpu: The per CPU buffer to get the entries from. 3209 */ 3210 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 3211 { 3212 struct ring_buffer_per_cpu *cpu_buffer; 3213 3214 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3215 return 0; 3216 3217 cpu_buffer = buffer->buffers[cpu]; 3218 3219 return rb_num_of_entries(cpu_buffer); 3220 } 3221 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3222 3223 /** 3224 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3225 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3226 * @buffer: The ring buffer 3227 * @cpu: The per CPU buffer to get the number of overruns from 3228 */ 3229 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 3230 { 3231 struct ring_buffer_per_cpu *cpu_buffer; 3232 unsigned long ret; 3233 3234 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3235 return 0; 3236 3237 cpu_buffer = buffer->buffers[cpu]; 3238 ret = local_read(&cpu_buffer->overrun); 3239 3240 return ret; 3241 } 3242 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3243 3244 /** 3245 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3246 * commits failing due to the buffer wrapping around while there are uncommitted 3247 * events, such as during an interrupt storm. 3248 * @buffer: The ring buffer 3249 * @cpu: The per CPU buffer to get the number of overruns from 3250 */ 3251 unsigned long 3252 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3253 { 3254 struct ring_buffer_per_cpu *cpu_buffer; 3255 unsigned long ret; 3256 3257 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3258 return 0; 3259 3260 cpu_buffer = buffer->buffers[cpu]; 3261 ret = local_read(&cpu_buffer->commit_overrun); 3262 3263 return ret; 3264 } 3265 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3266 3267 /** 3268 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3269 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3270 * @buffer: The ring buffer 3271 * @cpu: The per CPU buffer to get the number of overruns from 3272 */ 3273 unsigned long 3274 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu) 3275 { 3276 struct ring_buffer_per_cpu *cpu_buffer; 3277 unsigned long ret; 3278 3279 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3280 return 0; 3281 3282 cpu_buffer = buffer->buffers[cpu]; 3283 ret = local_read(&cpu_buffer->dropped_events); 3284 3285 return ret; 3286 } 3287 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3288 3289 /** 3290 * ring_buffer_read_events_cpu - get the number of events successfully read 3291 * @buffer: The ring buffer 3292 * @cpu: The per CPU buffer to get the number of events read 3293 */ 3294 unsigned long 3295 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu) 3296 { 3297 struct ring_buffer_per_cpu *cpu_buffer; 3298 3299 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3300 return 0; 3301 3302 cpu_buffer = buffer->buffers[cpu]; 3303 return cpu_buffer->read; 3304 } 3305 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3306 3307 /** 3308 * ring_buffer_entries - get the number of entries in a buffer 3309 * @buffer: The ring buffer 3310 * 3311 * Returns the total number of entries in the ring buffer 3312 * (all CPU entries) 3313 */ 3314 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3315 { 3316 struct ring_buffer_per_cpu *cpu_buffer; 3317 unsigned long entries = 0; 3318 int cpu; 3319 3320 /* if you care about this being correct, lock the buffer */ 3321 for_each_buffer_cpu(buffer, cpu) { 3322 cpu_buffer = buffer->buffers[cpu]; 3323 entries += rb_num_of_entries(cpu_buffer); 3324 } 3325 3326 return entries; 3327 } 3328 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3329 3330 /** 3331 * ring_buffer_overruns - get the number of overruns in buffer 3332 * @buffer: The ring buffer 3333 * 3334 * Returns the total number of overruns in the ring buffer 3335 * (all CPU entries) 3336 */ 3337 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3338 { 3339 struct ring_buffer_per_cpu *cpu_buffer; 3340 unsigned long overruns = 0; 3341 int cpu; 3342 3343 /* if you care about this being correct, lock the buffer */ 3344 for_each_buffer_cpu(buffer, cpu) { 3345 cpu_buffer = buffer->buffers[cpu]; 3346 overruns += local_read(&cpu_buffer->overrun); 3347 } 3348 3349 return overruns; 3350 } 3351 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3352 3353 static void rb_iter_reset(struct ring_buffer_iter *iter) 3354 { 3355 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3356 3357 /* Iterator usage is expected to have record disabled */ 3358 iter->head_page = cpu_buffer->reader_page; 3359 iter->head = cpu_buffer->reader_page->read; 3360 3361 iter->cache_reader_page = iter->head_page; 3362 iter->cache_read = iter->head; 3363 3364 if (iter->head) 3365 iter->read_stamp = cpu_buffer->read_stamp; 3366 else 3367 iter->read_stamp = iter->head_page->page->time_stamp; 3368 } 3369 3370 /** 3371 * ring_buffer_iter_reset - reset an iterator 3372 * @iter: The iterator to reset 3373 * 3374 * Resets the iterator, so that it will start from the beginning 3375 * again. 3376 */ 3377 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3378 { 3379 struct ring_buffer_per_cpu *cpu_buffer; 3380 unsigned long flags; 3381 3382 if (!iter) 3383 return; 3384 3385 cpu_buffer = iter->cpu_buffer; 3386 3387 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3388 rb_iter_reset(iter); 3389 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3390 } 3391 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3392 3393 /** 3394 * ring_buffer_iter_empty - check if an iterator has no more to read 3395 * @iter: The iterator to check 3396 */ 3397 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3398 { 3399 struct ring_buffer_per_cpu *cpu_buffer; 3400 3401 cpu_buffer = iter->cpu_buffer; 3402 3403 return iter->head_page == cpu_buffer->commit_page && 3404 iter->head == rb_commit_index(cpu_buffer); 3405 } 3406 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3407 3408 static void 3409 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3410 struct ring_buffer_event *event) 3411 { 3412 u64 delta; 3413 3414 switch (event->type_len) { 3415 case RINGBUF_TYPE_PADDING: 3416 return; 3417 3418 case RINGBUF_TYPE_TIME_EXTEND: 3419 delta = event->array[0]; 3420 delta <<= TS_SHIFT; 3421 delta += event->time_delta; 3422 cpu_buffer->read_stamp += delta; 3423 return; 3424 3425 case RINGBUF_TYPE_TIME_STAMP: 3426 /* FIXME: not implemented */ 3427 return; 3428 3429 case RINGBUF_TYPE_DATA: 3430 cpu_buffer->read_stamp += event->time_delta; 3431 return; 3432 3433 default: 3434 BUG(); 3435 } 3436 return; 3437 } 3438 3439 static void 3440 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3441 struct ring_buffer_event *event) 3442 { 3443 u64 delta; 3444 3445 switch (event->type_len) { 3446 case RINGBUF_TYPE_PADDING: 3447 return; 3448 3449 case RINGBUF_TYPE_TIME_EXTEND: 3450 delta = event->array[0]; 3451 delta <<= TS_SHIFT; 3452 delta += event->time_delta; 3453 iter->read_stamp += delta; 3454 return; 3455 3456 case RINGBUF_TYPE_TIME_STAMP: 3457 /* FIXME: not implemented */ 3458 return; 3459 3460 case RINGBUF_TYPE_DATA: 3461 iter->read_stamp += event->time_delta; 3462 return; 3463 3464 default: 3465 BUG(); 3466 } 3467 return; 3468 } 3469 3470 static struct buffer_page * 3471 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3472 { 3473 struct buffer_page *reader = NULL; 3474 unsigned long overwrite; 3475 unsigned long flags; 3476 int nr_loops = 0; 3477 int ret; 3478 3479 local_irq_save(flags); 3480 arch_spin_lock(&cpu_buffer->lock); 3481 3482 again: 3483 /* 3484 * This should normally only loop twice. But because the 3485 * start of the reader inserts an empty page, it causes 3486 * a case where we will loop three times. There should be no 3487 * reason to loop four times (that I know of). 3488 */ 3489 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3490 reader = NULL; 3491 goto out; 3492 } 3493 3494 reader = cpu_buffer->reader_page; 3495 3496 /* If there's more to read, return this page */ 3497 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3498 goto out; 3499 3500 /* Never should we have an index greater than the size */ 3501 if (RB_WARN_ON(cpu_buffer, 3502 cpu_buffer->reader_page->read > rb_page_size(reader))) 3503 goto out; 3504 3505 /* check if we caught up to the tail */ 3506 reader = NULL; 3507 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3508 goto out; 3509 3510 /* Don't bother swapping if the ring buffer is empty */ 3511 if (rb_num_of_entries(cpu_buffer) == 0) 3512 goto out; 3513 3514 /* 3515 * Reset the reader page to size zero. 3516 */ 3517 local_set(&cpu_buffer->reader_page->write, 0); 3518 local_set(&cpu_buffer->reader_page->entries, 0); 3519 local_set(&cpu_buffer->reader_page->page->commit, 0); 3520 cpu_buffer->reader_page->real_end = 0; 3521 3522 spin: 3523 /* 3524 * Splice the empty reader page into the list around the head. 3525 */ 3526 reader = rb_set_head_page(cpu_buffer); 3527 if (!reader) 3528 goto out; 3529 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3530 cpu_buffer->reader_page->list.prev = reader->list.prev; 3531 3532 /* 3533 * cpu_buffer->pages just needs to point to the buffer, it 3534 * has no specific buffer page to point to. Lets move it out 3535 * of our way so we don't accidentally swap it. 3536 */ 3537 cpu_buffer->pages = reader->list.prev; 3538 3539 /* The reader page will be pointing to the new head */ 3540 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3541 3542 /* 3543 * We want to make sure we read the overruns after we set up our 3544 * pointers to the next object. The writer side does a 3545 * cmpxchg to cross pages which acts as the mb on the writer 3546 * side. Note, the reader will constantly fail the swap 3547 * while the writer is updating the pointers, so this 3548 * guarantees that the overwrite recorded here is the one we 3549 * want to compare with the last_overrun. 3550 */ 3551 smp_mb(); 3552 overwrite = local_read(&(cpu_buffer->overrun)); 3553 3554 /* 3555 * Here's the tricky part. 3556 * 3557 * We need to move the pointer past the header page. 3558 * But we can only do that if a writer is not currently 3559 * moving it. The page before the header page has the 3560 * flag bit '1' set if it is pointing to the page we want. 3561 * but if the writer is in the process of moving it 3562 * than it will be '2' or already moved '0'. 3563 */ 3564 3565 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3566 3567 /* 3568 * If we did not convert it, then we must try again. 3569 */ 3570 if (!ret) 3571 goto spin; 3572 3573 /* 3574 * Yeah! We succeeded in replacing the page. 3575 * 3576 * Now make the new head point back to the reader page. 3577 */ 3578 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3579 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3580 3581 /* Finally update the reader page to the new head */ 3582 cpu_buffer->reader_page = reader; 3583 rb_reset_reader_page(cpu_buffer); 3584 3585 if (overwrite != cpu_buffer->last_overrun) { 3586 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3587 cpu_buffer->last_overrun = overwrite; 3588 } 3589 3590 goto again; 3591 3592 out: 3593 arch_spin_unlock(&cpu_buffer->lock); 3594 local_irq_restore(flags); 3595 3596 return reader; 3597 } 3598 3599 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3600 { 3601 struct ring_buffer_event *event; 3602 struct buffer_page *reader; 3603 unsigned length; 3604 3605 reader = rb_get_reader_page(cpu_buffer); 3606 3607 /* This function should not be called when buffer is empty */ 3608 if (RB_WARN_ON(cpu_buffer, !reader)) 3609 return; 3610 3611 event = rb_reader_event(cpu_buffer); 3612 3613 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3614 cpu_buffer->read++; 3615 3616 rb_update_read_stamp(cpu_buffer, event); 3617 3618 length = rb_event_length(event); 3619 cpu_buffer->reader_page->read += length; 3620 } 3621 3622 static void rb_advance_iter(struct ring_buffer_iter *iter) 3623 { 3624 struct ring_buffer_per_cpu *cpu_buffer; 3625 struct ring_buffer_event *event; 3626 unsigned length; 3627 3628 cpu_buffer = iter->cpu_buffer; 3629 3630 /* 3631 * Check if we are at the end of the buffer. 3632 */ 3633 if (iter->head >= rb_page_size(iter->head_page)) { 3634 /* discarded commits can make the page empty */ 3635 if (iter->head_page == cpu_buffer->commit_page) 3636 return; 3637 rb_inc_iter(iter); 3638 return; 3639 } 3640 3641 event = rb_iter_head_event(iter); 3642 3643 length = rb_event_length(event); 3644 3645 /* 3646 * This should not be called to advance the header if we are 3647 * at the tail of the buffer. 3648 */ 3649 if (RB_WARN_ON(cpu_buffer, 3650 (iter->head_page == cpu_buffer->commit_page) && 3651 (iter->head + length > rb_commit_index(cpu_buffer)))) 3652 return; 3653 3654 rb_update_iter_read_stamp(iter, event); 3655 3656 iter->head += length; 3657 3658 /* check for end of page padding */ 3659 if ((iter->head >= rb_page_size(iter->head_page)) && 3660 (iter->head_page != cpu_buffer->commit_page)) 3661 rb_inc_iter(iter); 3662 } 3663 3664 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3665 { 3666 return cpu_buffer->lost_events; 3667 } 3668 3669 static struct ring_buffer_event * 3670 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3671 unsigned long *lost_events) 3672 { 3673 struct ring_buffer_event *event; 3674 struct buffer_page *reader; 3675 int nr_loops = 0; 3676 3677 again: 3678 /* 3679 * We repeat when a time extend is encountered. 3680 * Since the time extend is always attached to a data event, 3681 * we should never loop more than once. 3682 * (We never hit the following condition more than twice). 3683 */ 3684 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3685 return NULL; 3686 3687 reader = rb_get_reader_page(cpu_buffer); 3688 if (!reader) 3689 return NULL; 3690 3691 event = rb_reader_event(cpu_buffer); 3692 3693 switch (event->type_len) { 3694 case RINGBUF_TYPE_PADDING: 3695 if (rb_null_event(event)) 3696 RB_WARN_ON(cpu_buffer, 1); 3697 /* 3698 * Because the writer could be discarding every 3699 * event it creates (which would probably be bad) 3700 * if we were to go back to "again" then we may never 3701 * catch up, and will trigger the warn on, or lock 3702 * the box. Return the padding, and we will release 3703 * the current locks, and try again. 3704 */ 3705 return event; 3706 3707 case RINGBUF_TYPE_TIME_EXTEND: 3708 /* Internal data, OK to advance */ 3709 rb_advance_reader(cpu_buffer); 3710 goto again; 3711 3712 case RINGBUF_TYPE_TIME_STAMP: 3713 /* FIXME: not implemented */ 3714 rb_advance_reader(cpu_buffer); 3715 goto again; 3716 3717 case RINGBUF_TYPE_DATA: 3718 if (ts) { 3719 *ts = cpu_buffer->read_stamp + event->time_delta; 3720 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3721 cpu_buffer->cpu, ts); 3722 } 3723 if (lost_events) 3724 *lost_events = rb_lost_events(cpu_buffer); 3725 return event; 3726 3727 default: 3728 BUG(); 3729 } 3730 3731 return NULL; 3732 } 3733 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3734 3735 static struct ring_buffer_event * 3736 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3737 { 3738 struct ring_buffer *buffer; 3739 struct ring_buffer_per_cpu *cpu_buffer; 3740 struct ring_buffer_event *event; 3741 int nr_loops = 0; 3742 3743 cpu_buffer = iter->cpu_buffer; 3744 buffer = cpu_buffer->buffer; 3745 3746 /* 3747 * Check if someone performed a consuming read to 3748 * the buffer. A consuming read invalidates the iterator 3749 * and we need to reset the iterator in this case. 3750 */ 3751 if (unlikely(iter->cache_read != cpu_buffer->read || 3752 iter->cache_reader_page != cpu_buffer->reader_page)) 3753 rb_iter_reset(iter); 3754 3755 again: 3756 if (ring_buffer_iter_empty(iter)) 3757 return NULL; 3758 3759 /* 3760 * We repeat when a time extend is encountered or we hit 3761 * the end of the page. Since the time extend is always attached 3762 * to a data event, we should never loop more than three times. 3763 * Once for going to next page, once on time extend, and 3764 * finally once to get the event. 3765 * (We never hit the following condition more than thrice). 3766 */ 3767 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) 3768 return NULL; 3769 3770 if (rb_per_cpu_empty(cpu_buffer)) 3771 return NULL; 3772 3773 if (iter->head >= rb_page_size(iter->head_page)) { 3774 rb_inc_iter(iter); 3775 goto again; 3776 } 3777 3778 event = rb_iter_head_event(iter); 3779 3780 switch (event->type_len) { 3781 case RINGBUF_TYPE_PADDING: 3782 if (rb_null_event(event)) { 3783 rb_inc_iter(iter); 3784 goto again; 3785 } 3786 rb_advance_iter(iter); 3787 return event; 3788 3789 case RINGBUF_TYPE_TIME_EXTEND: 3790 /* Internal data, OK to advance */ 3791 rb_advance_iter(iter); 3792 goto again; 3793 3794 case RINGBUF_TYPE_TIME_STAMP: 3795 /* FIXME: not implemented */ 3796 rb_advance_iter(iter); 3797 goto again; 3798 3799 case RINGBUF_TYPE_DATA: 3800 if (ts) { 3801 *ts = iter->read_stamp + event->time_delta; 3802 ring_buffer_normalize_time_stamp(buffer, 3803 cpu_buffer->cpu, ts); 3804 } 3805 return event; 3806 3807 default: 3808 BUG(); 3809 } 3810 3811 return NULL; 3812 } 3813 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3814 3815 static inline int rb_ok_to_lock(void) 3816 { 3817 /* 3818 * If an NMI die dumps out the content of the ring buffer 3819 * do not grab locks. We also permanently disable the ring 3820 * buffer too. A one time deal is all you get from reading 3821 * the ring buffer from an NMI. 3822 */ 3823 if (likely(!in_nmi())) 3824 return 1; 3825 3826 tracing_off_permanent(); 3827 return 0; 3828 } 3829 3830 /** 3831 * ring_buffer_peek - peek at the next event to be read 3832 * @buffer: The ring buffer to read 3833 * @cpu: The cpu to peak at 3834 * @ts: The timestamp counter of this event. 3835 * @lost_events: a variable to store if events were lost (may be NULL) 3836 * 3837 * This will return the event that will be read next, but does 3838 * not consume the data. 3839 */ 3840 struct ring_buffer_event * 3841 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3842 unsigned long *lost_events) 3843 { 3844 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3845 struct ring_buffer_event *event; 3846 unsigned long flags; 3847 int dolock; 3848 3849 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3850 return NULL; 3851 3852 dolock = rb_ok_to_lock(); 3853 again: 3854 local_irq_save(flags); 3855 if (dolock) 3856 raw_spin_lock(&cpu_buffer->reader_lock); 3857 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3858 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3859 rb_advance_reader(cpu_buffer); 3860 if (dolock) 3861 raw_spin_unlock(&cpu_buffer->reader_lock); 3862 local_irq_restore(flags); 3863 3864 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3865 goto again; 3866 3867 return event; 3868 } 3869 3870 /** 3871 * ring_buffer_iter_peek - peek at the next event to be read 3872 * @iter: The ring buffer iterator 3873 * @ts: The timestamp counter of this event. 3874 * 3875 * This will return the event that will be read next, but does 3876 * not increment the iterator. 3877 */ 3878 struct ring_buffer_event * 3879 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3880 { 3881 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3882 struct ring_buffer_event *event; 3883 unsigned long flags; 3884 3885 again: 3886 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3887 event = rb_iter_peek(iter, ts); 3888 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3889 3890 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3891 goto again; 3892 3893 return event; 3894 } 3895 3896 /** 3897 * ring_buffer_consume - return an event and consume it 3898 * @buffer: The ring buffer to get the next event from 3899 * @cpu: the cpu to read the buffer from 3900 * @ts: a variable to store the timestamp (may be NULL) 3901 * @lost_events: a variable to store if events were lost (may be NULL) 3902 * 3903 * Returns the next event in the ring buffer, and that event is consumed. 3904 * Meaning, that sequential reads will keep returning a different event, 3905 * and eventually empty the ring buffer if the producer is slower. 3906 */ 3907 struct ring_buffer_event * 3908 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3909 unsigned long *lost_events) 3910 { 3911 struct ring_buffer_per_cpu *cpu_buffer; 3912 struct ring_buffer_event *event = NULL; 3913 unsigned long flags; 3914 int dolock; 3915 3916 dolock = rb_ok_to_lock(); 3917 3918 again: 3919 /* might be called in atomic */ 3920 preempt_disable(); 3921 3922 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3923 goto out; 3924 3925 cpu_buffer = buffer->buffers[cpu]; 3926 local_irq_save(flags); 3927 if (dolock) 3928 raw_spin_lock(&cpu_buffer->reader_lock); 3929 3930 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3931 if (event) { 3932 cpu_buffer->lost_events = 0; 3933 rb_advance_reader(cpu_buffer); 3934 } 3935 3936 if (dolock) 3937 raw_spin_unlock(&cpu_buffer->reader_lock); 3938 local_irq_restore(flags); 3939 3940 out: 3941 preempt_enable(); 3942 3943 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3944 goto again; 3945 3946 return event; 3947 } 3948 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3949 3950 /** 3951 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3952 * @buffer: The ring buffer to read from 3953 * @cpu: The cpu buffer to iterate over 3954 * 3955 * This performs the initial preparations necessary to iterate 3956 * through the buffer. Memory is allocated, buffer recording 3957 * is disabled, and the iterator pointer is returned to the caller. 3958 * 3959 * Disabling buffer recordng prevents the reading from being 3960 * corrupted. This is not a consuming read, so a producer is not 3961 * expected. 3962 * 3963 * After a sequence of ring_buffer_read_prepare calls, the user is 3964 * expected to make at least one call to ring_buffer_read_prepare_sync. 3965 * Afterwards, ring_buffer_read_start is invoked to get things going 3966 * for real. 3967 * 3968 * This overall must be paired with ring_buffer_read_finish. 3969 */ 3970 struct ring_buffer_iter * 3971 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3972 { 3973 struct ring_buffer_per_cpu *cpu_buffer; 3974 struct ring_buffer_iter *iter; 3975 3976 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3977 return NULL; 3978 3979 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3980 if (!iter) 3981 return NULL; 3982 3983 cpu_buffer = buffer->buffers[cpu]; 3984 3985 iter->cpu_buffer = cpu_buffer; 3986 3987 atomic_inc(&buffer->resize_disabled); 3988 atomic_inc(&cpu_buffer->record_disabled); 3989 3990 return iter; 3991 } 3992 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3993 3994 /** 3995 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3996 * 3997 * All previously invoked ring_buffer_read_prepare calls to prepare 3998 * iterators will be synchronized. Afterwards, read_buffer_read_start 3999 * calls on those iterators are allowed. 4000 */ 4001 void 4002 ring_buffer_read_prepare_sync(void) 4003 { 4004 synchronize_sched(); 4005 } 4006 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4007 4008 /** 4009 * ring_buffer_read_start - start a non consuming read of the buffer 4010 * @iter: The iterator returned by ring_buffer_read_prepare 4011 * 4012 * This finalizes the startup of an iteration through the buffer. 4013 * The iterator comes from a call to ring_buffer_read_prepare and 4014 * an intervening ring_buffer_read_prepare_sync must have been 4015 * performed. 4016 * 4017 * Must be paired with ring_buffer_read_finish. 4018 */ 4019 void 4020 ring_buffer_read_start(struct ring_buffer_iter *iter) 4021 { 4022 struct ring_buffer_per_cpu *cpu_buffer; 4023 unsigned long flags; 4024 4025 if (!iter) 4026 return; 4027 4028 cpu_buffer = iter->cpu_buffer; 4029 4030 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4031 arch_spin_lock(&cpu_buffer->lock); 4032 rb_iter_reset(iter); 4033 arch_spin_unlock(&cpu_buffer->lock); 4034 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4035 } 4036 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4037 4038 /** 4039 * ring_buffer_read_finish - finish reading the iterator of the buffer 4040 * @iter: The iterator retrieved by ring_buffer_start 4041 * 4042 * This re-enables the recording to the buffer, and frees the 4043 * iterator. 4044 */ 4045 void 4046 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4047 { 4048 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4049 unsigned long flags; 4050 4051 /* 4052 * Ring buffer is disabled from recording, here's a good place 4053 * to check the integrity of the ring buffer. 4054 * Must prevent readers from trying to read, as the check 4055 * clears the HEAD page and readers require it. 4056 */ 4057 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4058 rb_check_pages(cpu_buffer); 4059 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4060 4061 atomic_dec(&cpu_buffer->record_disabled); 4062 atomic_dec(&cpu_buffer->buffer->resize_disabled); 4063 kfree(iter); 4064 } 4065 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4066 4067 /** 4068 * ring_buffer_read - read the next item in the ring buffer by the iterator 4069 * @iter: The ring buffer iterator 4070 * @ts: The time stamp of the event read. 4071 * 4072 * This reads the next event in the ring buffer and increments the iterator. 4073 */ 4074 struct ring_buffer_event * 4075 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 4076 { 4077 struct ring_buffer_event *event; 4078 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4079 unsigned long flags; 4080 4081 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4082 again: 4083 event = rb_iter_peek(iter, ts); 4084 if (!event) 4085 goto out; 4086 4087 if (event->type_len == RINGBUF_TYPE_PADDING) 4088 goto again; 4089 4090 rb_advance_iter(iter); 4091 out: 4092 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4093 4094 return event; 4095 } 4096 EXPORT_SYMBOL_GPL(ring_buffer_read); 4097 4098 /** 4099 * ring_buffer_size - return the size of the ring buffer (in bytes) 4100 * @buffer: The ring buffer. 4101 */ 4102 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 4103 { 4104 /* 4105 * Earlier, this method returned 4106 * BUF_PAGE_SIZE * buffer->nr_pages 4107 * Since the nr_pages field is now removed, we have converted this to 4108 * return the per cpu buffer value. 4109 */ 4110 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4111 return 0; 4112 4113 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4114 } 4115 EXPORT_SYMBOL_GPL(ring_buffer_size); 4116 4117 static void 4118 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4119 { 4120 rb_head_page_deactivate(cpu_buffer); 4121 4122 cpu_buffer->head_page 4123 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4124 local_set(&cpu_buffer->head_page->write, 0); 4125 local_set(&cpu_buffer->head_page->entries, 0); 4126 local_set(&cpu_buffer->head_page->page->commit, 0); 4127 4128 cpu_buffer->head_page->read = 0; 4129 4130 cpu_buffer->tail_page = cpu_buffer->head_page; 4131 cpu_buffer->commit_page = cpu_buffer->head_page; 4132 4133 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4134 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4135 local_set(&cpu_buffer->reader_page->write, 0); 4136 local_set(&cpu_buffer->reader_page->entries, 0); 4137 local_set(&cpu_buffer->reader_page->page->commit, 0); 4138 cpu_buffer->reader_page->read = 0; 4139 4140 local_set(&cpu_buffer->entries_bytes, 0); 4141 local_set(&cpu_buffer->overrun, 0); 4142 local_set(&cpu_buffer->commit_overrun, 0); 4143 local_set(&cpu_buffer->dropped_events, 0); 4144 local_set(&cpu_buffer->entries, 0); 4145 local_set(&cpu_buffer->committing, 0); 4146 local_set(&cpu_buffer->commits, 0); 4147 cpu_buffer->read = 0; 4148 cpu_buffer->read_bytes = 0; 4149 4150 cpu_buffer->write_stamp = 0; 4151 cpu_buffer->read_stamp = 0; 4152 4153 cpu_buffer->lost_events = 0; 4154 cpu_buffer->last_overrun = 0; 4155 4156 rb_head_page_activate(cpu_buffer); 4157 } 4158 4159 /** 4160 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4161 * @buffer: The ring buffer to reset a per cpu buffer of 4162 * @cpu: The CPU buffer to be reset 4163 */ 4164 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 4165 { 4166 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4167 unsigned long flags; 4168 4169 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4170 return; 4171 4172 atomic_inc(&buffer->resize_disabled); 4173 atomic_inc(&cpu_buffer->record_disabled); 4174 4175 /* Make sure all commits have finished */ 4176 synchronize_sched(); 4177 4178 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4179 4180 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4181 goto out; 4182 4183 arch_spin_lock(&cpu_buffer->lock); 4184 4185 rb_reset_cpu(cpu_buffer); 4186 4187 arch_spin_unlock(&cpu_buffer->lock); 4188 4189 out: 4190 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4191 4192 atomic_dec(&cpu_buffer->record_disabled); 4193 atomic_dec(&buffer->resize_disabled); 4194 } 4195 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4196 4197 /** 4198 * ring_buffer_reset - reset a ring buffer 4199 * @buffer: The ring buffer to reset all cpu buffers 4200 */ 4201 void ring_buffer_reset(struct ring_buffer *buffer) 4202 { 4203 int cpu; 4204 4205 for_each_buffer_cpu(buffer, cpu) 4206 ring_buffer_reset_cpu(buffer, cpu); 4207 } 4208 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4209 4210 /** 4211 * rind_buffer_empty - is the ring buffer empty? 4212 * @buffer: The ring buffer to test 4213 */ 4214 int ring_buffer_empty(struct ring_buffer *buffer) 4215 { 4216 struct ring_buffer_per_cpu *cpu_buffer; 4217 unsigned long flags; 4218 int dolock; 4219 int cpu; 4220 int ret; 4221 4222 dolock = rb_ok_to_lock(); 4223 4224 /* yes this is racy, but if you don't like the race, lock the buffer */ 4225 for_each_buffer_cpu(buffer, cpu) { 4226 cpu_buffer = buffer->buffers[cpu]; 4227 local_irq_save(flags); 4228 if (dolock) 4229 raw_spin_lock(&cpu_buffer->reader_lock); 4230 ret = rb_per_cpu_empty(cpu_buffer); 4231 if (dolock) 4232 raw_spin_unlock(&cpu_buffer->reader_lock); 4233 local_irq_restore(flags); 4234 4235 if (!ret) 4236 return 0; 4237 } 4238 4239 return 1; 4240 } 4241 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4242 4243 /** 4244 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4245 * @buffer: The ring buffer 4246 * @cpu: The CPU buffer to test 4247 */ 4248 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 4249 { 4250 struct ring_buffer_per_cpu *cpu_buffer; 4251 unsigned long flags; 4252 int dolock; 4253 int ret; 4254 4255 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4256 return 1; 4257 4258 dolock = rb_ok_to_lock(); 4259 4260 cpu_buffer = buffer->buffers[cpu]; 4261 local_irq_save(flags); 4262 if (dolock) 4263 raw_spin_lock(&cpu_buffer->reader_lock); 4264 ret = rb_per_cpu_empty(cpu_buffer); 4265 if (dolock) 4266 raw_spin_unlock(&cpu_buffer->reader_lock); 4267 local_irq_restore(flags); 4268 4269 return ret; 4270 } 4271 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4272 4273 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4274 /** 4275 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4276 * @buffer_a: One buffer to swap with 4277 * @buffer_b: The other buffer to swap with 4278 * 4279 * This function is useful for tracers that want to take a "snapshot" 4280 * of a CPU buffer and has another back up buffer lying around. 4281 * it is expected that the tracer handles the cpu buffer not being 4282 * used at the moment. 4283 */ 4284 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 4285 struct ring_buffer *buffer_b, int cpu) 4286 { 4287 struct ring_buffer_per_cpu *cpu_buffer_a; 4288 struct ring_buffer_per_cpu *cpu_buffer_b; 4289 int ret = -EINVAL; 4290 4291 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4292 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4293 goto out; 4294 4295 cpu_buffer_a = buffer_a->buffers[cpu]; 4296 cpu_buffer_b = buffer_b->buffers[cpu]; 4297 4298 /* At least make sure the two buffers are somewhat the same */ 4299 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4300 goto out; 4301 4302 ret = -EAGAIN; 4303 4304 if (ring_buffer_flags != RB_BUFFERS_ON) 4305 goto out; 4306 4307 if (atomic_read(&buffer_a->record_disabled)) 4308 goto out; 4309 4310 if (atomic_read(&buffer_b->record_disabled)) 4311 goto out; 4312 4313 if (atomic_read(&cpu_buffer_a->record_disabled)) 4314 goto out; 4315 4316 if (atomic_read(&cpu_buffer_b->record_disabled)) 4317 goto out; 4318 4319 /* 4320 * We can't do a synchronize_sched here because this 4321 * function can be called in atomic context. 4322 * Normally this will be called from the same CPU as cpu. 4323 * If not it's up to the caller to protect this. 4324 */ 4325 atomic_inc(&cpu_buffer_a->record_disabled); 4326 atomic_inc(&cpu_buffer_b->record_disabled); 4327 4328 ret = -EBUSY; 4329 if (local_read(&cpu_buffer_a->committing)) 4330 goto out_dec; 4331 if (local_read(&cpu_buffer_b->committing)) 4332 goto out_dec; 4333 4334 buffer_a->buffers[cpu] = cpu_buffer_b; 4335 buffer_b->buffers[cpu] = cpu_buffer_a; 4336 4337 cpu_buffer_b->buffer = buffer_a; 4338 cpu_buffer_a->buffer = buffer_b; 4339 4340 ret = 0; 4341 4342 out_dec: 4343 atomic_dec(&cpu_buffer_a->record_disabled); 4344 atomic_dec(&cpu_buffer_b->record_disabled); 4345 out: 4346 return ret; 4347 } 4348 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4349 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4350 4351 /** 4352 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4353 * @buffer: the buffer to allocate for. 4354 * @cpu: the cpu buffer to allocate. 4355 * 4356 * This function is used in conjunction with ring_buffer_read_page. 4357 * When reading a full page from the ring buffer, these functions 4358 * can be used to speed up the process. The calling function should 4359 * allocate a few pages first with this function. Then when it 4360 * needs to get pages from the ring buffer, it passes the result 4361 * of this function into ring_buffer_read_page, which will swap 4362 * the page that was allocated, with the read page of the buffer. 4363 * 4364 * Returns: 4365 * The page allocated, or NULL on error. 4366 */ 4367 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4368 { 4369 struct buffer_data_page *bpage; 4370 struct page *page; 4371 4372 page = alloc_pages_node(cpu_to_node(cpu), 4373 GFP_KERNEL | __GFP_NORETRY, 0); 4374 if (!page) 4375 return NULL; 4376 4377 bpage = page_address(page); 4378 4379 rb_init_page(bpage); 4380 4381 return bpage; 4382 } 4383 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4384 4385 /** 4386 * ring_buffer_free_read_page - free an allocated read page 4387 * @buffer: the buffer the page was allocate for 4388 * @data: the page to free 4389 * 4390 * Free a page allocated from ring_buffer_alloc_read_page. 4391 */ 4392 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4393 { 4394 free_page((unsigned long)data); 4395 } 4396 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4397 4398 /** 4399 * ring_buffer_read_page - extract a page from the ring buffer 4400 * @buffer: buffer to extract from 4401 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4402 * @len: amount to extract 4403 * @cpu: the cpu of the buffer to extract 4404 * @full: should the extraction only happen when the page is full. 4405 * 4406 * This function will pull out a page from the ring buffer and consume it. 4407 * @data_page must be the address of the variable that was returned 4408 * from ring_buffer_alloc_read_page. This is because the page might be used 4409 * to swap with a page in the ring buffer. 4410 * 4411 * for example: 4412 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 4413 * if (!rpage) 4414 * return error; 4415 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4416 * if (ret >= 0) 4417 * process_page(rpage, ret); 4418 * 4419 * When @full is set, the function will not return true unless 4420 * the writer is off the reader page. 4421 * 4422 * Note: it is up to the calling functions to handle sleeps and wakeups. 4423 * The ring buffer can be used anywhere in the kernel and can not 4424 * blindly call wake_up. The layer that uses the ring buffer must be 4425 * responsible for that. 4426 * 4427 * Returns: 4428 * >=0 if data has been transferred, returns the offset of consumed data. 4429 * <0 if no data has been transferred. 4430 */ 4431 int ring_buffer_read_page(struct ring_buffer *buffer, 4432 void **data_page, size_t len, int cpu, int full) 4433 { 4434 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4435 struct ring_buffer_event *event; 4436 struct buffer_data_page *bpage; 4437 struct buffer_page *reader; 4438 unsigned long missed_events; 4439 unsigned long flags; 4440 unsigned int commit; 4441 unsigned int read; 4442 u64 save_timestamp; 4443 int ret = -1; 4444 4445 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4446 goto out; 4447 4448 /* 4449 * If len is not big enough to hold the page header, then 4450 * we can not copy anything. 4451 */ 4452 if (len <= BUF_PAGE_HDR_SIZE) 4453 goto out; 4454 4455 len -= BUF_PAGE_HDR_SIZE; 4456 4457 if (!data_page) 4458 goto out; 4459 4460 bpage = *data_page; 4461 if (!bpage) 4462 goto out; 4463 4464 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4465 4466 reader = rb_get_reader_page(cpu_buffer); 4467 if (!reader) 4468 goto out_unlock; 4469 4470 event = rb_reader_event(cpu_buffer); 4471 4472 read = reader->read; 4473 commit = rb_page_commit(reader); 4474 4475 /* Check if any events were dropped */ 4476 missed_events = cpu_buffer->lost_events; 4477 4478 /* 4479 * If this page has been partially read or 4480 * if len is not big enough to read the rest of the page or 4481 * a writer is still on the page, then 4482 * we must copy the data from the page to the buffer. 4483 * Otherwise, we can simply swap the page with the one passed in. 4484 */ 4485 if (read || (len < (commit - read)) || 4486 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4487 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4488 unsigned int rpos = read; 4489 unsigned int pos = 0; 4490 unsigned int size; 4491 4492 if (full) 4493 goto out_unlock; 4494 4495 if (len > (commit - read)) 4496 len = (commit - read); 4497 4498 /* Always keep the time extend and data together */ 4499 size = rb_event_ts_length(event); 4500 4501 if (len < size) 4502 goto out_unlock; 4503 4504 /* save the current timestamp, since the user will need it */ 4505 save_timestamp = cpu_buffer->read_stamp; 4506 4507 /* Need to copy one event at a time */ 4508 do { 4509 /* We need the size of one event, because 4510 * rb_advance_reader only advances by one event, 4511 * whereas rb_event_ts_length may include the size of 4512 * one or two events. 4513 * We have already ensured there's enough space if this 4514 * is a time extend. */ 4515 size = rb_event_length(event); 4516 memcpy(bpage->data + pos, rpage->data + rpos, size); 4517 4518 len -= size; 4519 4520 rb_advance_reader(cpu_buffer); 4521 rpos = reader->read; 4522 pos += size; 4523 4524 if (rpos >= commit) 4525 break; 4526 4527 event = rb_reader_event(cpu_buffer); 4528 /* Always keep the time extend and data together */ 4529 size = rb_event_ts_length(event); 4530 } while (len >= size); 4531 4532 /* update bpage */ 4533 local_set(&bpage->commit, pos); 4534 bpage->time_stamp = save_timestamp; 4535 4536 /* we copied everything to the beginning */ 4537 read = 0; 4538 } else { 4539 /* update the entry counter */ 4540 cpu_buffer->read += rb_page_entries(reader); 4541 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4542 4543 /* swap the pages */ 4544 rb_init_page(bpage); 4545 bpage = reader->page; 4546 reader->page = *data_page; 4547 local_set(&reader->write, 0); 4548 local_set(&reader->entries, 0); 4549 reader->read = 0; 4550 *data_page = bpage; 4551 4552 /* 4553 * Use the real_end for the data size, 4554 * This gives us a chance to store the lost events 4555 * on the page. 4556 */ 4557 if (reader->real_end) 4558 local_set(&bpage->commit, reader->real_end); 4559 } 4560 ret = read; 4561 4562 cpu_buffer->lost_events = 0; 4563 4564 commit = local_read(&bpage->commit); 4565 /* 4566 * Set a flag in the commit field if we lost events 4567 */ 4568 if (missed_events) { 4569 /* If there is room at the end of the page to save the 4570 * missed events, then record it there. 4571 */ 4572 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4573 memcpy(&bpage->data[commit], &missed_events, 4574 sizeof(missed_events)); 4575 local_add(RB_MISSED_STORED, &bpage->commit); 4576 commit += sizeof(missed_events); 4577 } 4578 local_add(RB_MISSED_EVENTS, &bpage->commit); 4579 } 4580 4581 /* 4582 * This page may be off to user land. Zero it out here. 4583 */ 4584 if (commit < BUF_PAGE_SIZE) 4585 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4586 4587 out_unlock: 4588 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4589 4590 out: 4591 return ret; 4592 } 4593 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4594 4595 #ifdef CONFIG_HOTPLUG_CPU 4596 static int rb_cpu_notify(struct notifier_block *self, 4597 unsigned long action, void *hcpu) 4598 { 4599 struct ring_buffer *buffer = 4600 container_of(self, struct ring_buffer, cpu_notify); 4601 long cpu = (long)hcpu; 4602 int cpu_i, nr_pages_same; 4603 unsigned int nr_pages; 4604 4605 switch (action) { 4606 case CPU_UP_PREPARE: 4607 case CPU_UP_PREPARE_FROZEN: 4608 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4609 return NOTIFY_OK; 4610 4611 nr_pages = 0; 4612 nr_pages_same = 1; 4613 /* check if all cpu sizes are same */ 4614 for_each_buffer_cpu(buffer, cpu_i) { 4615 /* fill in the size from first enabled cpu */ 4616 if (nr_pages == 0) 4617 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4618 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4619 nr_pages_same = 0; 4620 break; 4621 } 4622 } 4623 /* allocate minimum pages, user can later expand it */ 4624 if (!nr_pages_same) 4625 nr_pages = 2; 4626 buffer->buffers[cpu] = 4627 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4628 if (!buffer->buffers[cpu]) { 4629 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4630 cpu); 4631 return NOTIFY_OK; 4632 } 4633 smp_wmb(); 4634 cpumask_set_cpu(cpu, buffer->cpumask); 4635 break; 4636 case CPU_DOWN_PREPARE: 4637 case CPU_DOWN_PREPARE_FROZEN: 4638 /* 4639 * Do nothing. 4640 * If we were to free the buffer, then the user would 4641 * lose any trace that was in the buffer. 4642 */ 4643 break; 4644 default: 4645 break; 4646 } 4647 return NOTIFY_OK; 4648 } 4649 #endif 4650 4651 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 4652 /* 4653 * This is a basic integrity check of the ring buffer. 4654 * Late in the boot cycle this test will run when configured in. 4655 * It will kick off a thread per CPU that will go into a loop 4656 * writing to the per cpu ring buffer various sizes of data. 4657 * Some of the data will be large items, some small. 4658 * 4659 * Another thread is created that goes into a spin, sending out 4660 * IPIs to the other CPUs to also write into the ring buffer. 4661 * this is to test the nesting ability of the buffer. 4662 * 4663 * Basic stats are recorded and reported. If something in the 4664 * ring buffer should happen that's not expected, a big warning 4665 * is displayed and all ring buffers are disabled. 4666 */ 4667 static struct task_struct *rb_threads[NR_CPUS] __initdata; 4668 4669 struct rb_test_data { 4670 struct ring_buffer *buffer; 4671 unsigned long events; 4672 unsigned long bytes_written; 4673 unsigned long bytes_alloc; 4674 unsigned long bytes_dropped; 4675 unsigned long events_nested; 4676 unsigned long bytes_written_nested; 4677 unsigned long bytes_alloc_nested; 4678 unsigned long bytes_dropped_nested; 4679 int min_size_nested; 4680 int max_size_nested; 4681 int max_size; 4682 int min_size; 4683 int cpu; 4684 int cnt; 4685 }; 4686 4687 static struct rb_test_data rb_data[NR_CPUS] __initdata; 4688 4689 /* 1 meg per cpu */ 4690 #define RB_TEST_BUFFER_SIZE 1048576 4691 4692 static char rb_string[] __initdata = 4693 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 4694 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 4695 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 4696 4697 static bool rb_test_started __initdata; 4698 4699 struct rb_item { 4700 int size; 4701 char str[]; 4702 }; 4703 4704 static __init int rb_write_something(struct rb_test_data *data, bool nested) 4705 { 4706 struct ring_buffer_event *event; 4707 struct rb_item *item; 4708 bool started; 4709 int event_len; 4710 int size; 4711 int len; 4712 int cnt; 4713 4714 /* Have nested writes different that what is written */ 4715 cnt = data->cnt + (nested ? 27 : 0); 4716 4717 /* Multiply cnt by ~e, to make some unique increment */ 4718 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1); 4719 4720 len = size + sizeof(struct rb_item); 4721 4722 started = rb_test_started; 4723 /* read rb_test_started before checking buffer enabled */ 4724 smp_rmb(); 4725 4726 event = ring_buffer_lock_reserve(data->buffer, len); 4727 if (!event) { 4728 /* Ignore dropped events before test starts. */ 4729 if (started) { 4730 if (nested) 4731 data->bytes_dropped += len; 4732 else 4733 data->bytes_dropped_nested += len; 4734 } 4735 return len; 4736 } 4737 4738 event_len = ring_buffer_event_length(event); 4739 4740 if (RB_WARN_ON(data->buffer, event_len < len)) 4741 goto out; 4742 4743 item = ring_buffer_event_data(event); 4744 item->size = size; 4745 memcpy(item->str, rb_string, size); 4746 4747 if (nested) { 4748 data->bytes_alloc_nested += event_len; 4749 data->bytes_written_nested += len; 4750 data->events_nested++; 4751 if (!data->min_size_nested || len < data->min_size_nested) 4752 data->min_size_nested = len; 4753 if (len > data->max_size_nested) 4754 data->max_size_nested = len; 4755 } else { 4756 data->bytes_alloc += event_len; 4757 data->bytes_written += len; 4758 data->events++; 4759 if (!data->min_size || len < data->min_size) 4760 data->max_size = len; 4761 if (len > data->max_size) 4762 data->max_size = len; 4763 } 4764 4765 out: 4766 ring_buffer_unlock_commit(data->buffer, event); 4767 4768 return 0; 4769 } 4770 4771 static __init int rb_test(void *arg) 4772 { 4773 struct rb_test_data *data = arg; 4774 4775 while (!kthread_should_stop()) { 4776 rb_write_something(data, false); 4777 data->cnt++; 4778 4779 set_current_state(TASK_INTERRUPTIBLE); 4780 /* Now sleep between a min of 100-300us and a max of 1ms */ 4781 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 4782 } 4783 4784 return 0; 4785 } 4786 4787 static __init void rb_ipi(void *ignore) 4788 { 4789 struct rb_test_data *data; 4790 int cpu = smp_processor_id(); 4791 4792 data = &rb_data[cpu]; 4793 rb_write_something(data, true); 4794 } 4795 4796 static __init int rb_hammer_test(void *arg) 4797 { 4798 while (!kthread_should_stop()) { 4799 4800 /* Send an IPI to all cpus to write data! */ 4801 smp_call_function(rb_ipi, NULL, 1); 4802 /* No sleep, but for non preempt, let others run */ 4803 schedule(); 4804 } 4805 4806 return 0; 4807 } 4808 4809 static __init int test_ringbuffer(void) 4810 { 4811 struct task_struct *rb_hammer; 4812 struct ring_buffer *buffer; 4813 int cpu; 4814 int ret = 0; 4815 4816 pr_info("Running ring buffer tests...\n"); 4817 4818 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 4819 if (WARN_ON(!buffer)) 4820 return 0; 4821 4822 /* Disable buffer so that threads can't write to it yet */ 4823 ring_buffer_record_off(buffer); 4824 4825 for_each_online_cpu(cpu) { 4826 rb_data[cpu].buffer = buffer; 4827 rb_data[cpu].cpu = cpu; 4828 rb_data[cpu].cnt = cpu; 4829 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 4830 "rbtester/%d", cpu); 4831 if (WARN_ON(!rb_threads[cpu])) { 4832 pr_cont("FAILED\n"); 4833 ret = -1; 4834 goto out_free; 4835 } 4836 4837 kthread_bind(rb_threads[cpu], cpu); 4838 wake_up_process(rb_threads[cpu]); 4839 } 4840 4841 /* Now create the rb hammer! */ 4842 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 4843 if (WARN_ON(!rb_hammer)) { 4844 pr_cont("FAILED\n"); 4845 ret = -1; 4846 goto out_free; 4847 } 4848 4849 ring_buffer_record_on(buffer); 4850 /* 4851 * Show buffer is enabled before setting rb_test_started. 4852 * Yes there's a small race window where events could be 4853 * dropped and the thread wont catch it. But when a ring 4854 * buffer gets enabled, there will always be some kind of 4855 * delay before other CPUs see it. Thus, we don't care about 4856 * those dropped events. We care about events dropped after 4857 * the threads see that the buffer is active. 4858 */ 4859 smp_wmb(); 4860 rb_test_started = true; 4861 4862 set_current_state(TASK_INTERRUPTIBLE); 4863 /* Just run for 10 seconds */; 4864 schedule_timeout(10 * HZ); 4865 4866 kthread_stop(rb_hammer); 4867 4868 out_free: 4869 for_each_online_cpu(cpu) { 4870 if (!rb_threads[cpu]) 4871 break; 4872 kthread_stop(rb_threads[cpu]); 4873 } 4874 if (ret) { 4875 ring_buffer_free(buffer); 4876 return ret; 4877 } 4878 4879 /* Report! */ 4880 pr_info("finished\n"); 4881 for_each_online_cpu(cpu) { 4882 struct ring_buffer_event *event; 4883 struct rb_test_data *data = &rb_data[cpu]; 4884 struct rb_item *item; 4885 unsigned long total_events; 4886 unsigned long total_dropped; 4887 unsigned long total_written; 4888 unsigned long total_alloc; 4889 unsigned long total_read = 0; 4890 unsigned long total_size = 0; 4891 unsigned long total_len = 0; 4892 unsigned long total_lost = 0; 4893 unsigned long lost; 4894 int big_event_size; 4895 int small_event_size; 4896 4897 ret = -1; 4898 4899 total_events = data->events + data->events_nested; 4900 total_written = data->bytes_written + data->bytes_written_nested; 4901 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 4902 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 4903 4904 big_event_size = data->max_size + data->max_size_nested; 4905 small_event_size = data->min_size + data->min_size_nested; 4906 4907 pr_info("CPU %d:\n", cpu); 4908 pr_info(" events: %ld\n", total_events); 4909 pr_info(" dropped bytes: %ld\n", total_dropped); 4910 pr_info(" alloced bytes: %ld\n", total_alloc); 4911 pr_info(" written bytes: %ld\n", total_written); 4912 pr_info(" biggest event: %d\n", big_event_size); 4913 pr_info(" smallest event: %d\n", small_event_size); 4914 4915 if (RB_WARN_ON(buffer, total_dropped)) 4916 break; 4917 4918 ret = 0; 4919 4920 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 4921 total_lost += lost; 4922 item = ring_buffer_event_data(event); 4923 total_len += ring_buffer_event_length(event); 4924 total_size += item->size + sizeof(struct rb_item); 4925 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 4926 pr_info("FAILED!\n"); 4927 pr_info("buffer had: %.*s\n", item->size, item->str); 4928 pr_info("expected: %.*s\n", item->size, rb_string); 4929 RB_WARN_ON(buffer, 1); 4930 ret = -1; 4931 break; 4932 } 4933 total_read++; 4934 } 4935 if (ret) 4936 break; 4937 4938 ret = -1; 4939 4940 pr_info(" read events: %ld\n", total_read); 4941 pr_info(" lost events: %ld\n", total_lost); 4942 pr_info(" total events: %ld\n", total_lost + total_read); 4943 pr_info(" recorded len bytes: %ld\n", total_len); 4944 pr_info(" recorded size bytes: %ld\n", total_size); 4945 if (total_lost) 4946 pr_info(" With dropped events, record len and size may not match\n" 4947 " alloced and written from above\n"); 4948 if (!total_lost) { 4949 if (RB_WARN_ON(buffer, total_len != total_alloc || 4950 total_size != total_written)) 4951 break; 4952 } 4953 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 4954 break; 4955 4956 ret = 0; 4957 } 4958 if (!ret) 4959 pr_info("Ring buffer PASSED!\n"); 4960 4961 ring_buffer_free(buffer); 4962 return 0; 4963 } 4964 4965 late_initcall(test_ringbuffer); 4966 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 4967