xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	int ret;
38 
39 	ret = trace_seq_puts(s, "# compressed entry header\n");
40 	ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41 	ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42 	ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43 	ret = trace_seq_putc(s, '\n');
44 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			       RINGBUF_TYPE_PADDING);
46 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			       RINGBUF_TYPE_TIME_EXTEND);
48 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return ret;
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139 
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150 
151 enum {
152 	RB_BUFFERS_ON_BIT	= 0,
153 	RB_BUFFERS_DISABLED_BIT	= 1,
154 };
155 
156 enum {
157 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
158 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160 
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162 
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF		(1 << 20)
165 
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178 
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT		4U
181 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
183 
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT	0
186 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT	1
189 # define RB_ARCH_ALIGNMENT		8U
190 #endif
191 
192 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
193 
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196 
197 enum {
198 	RB_LEN_TIME_EXTEND = 8,
199 	RB_LEN_TIME_STAMP = 16,
200 };
201 
202 #define skip_time_extend(event) \
203 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204 
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209 
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 	/* padding has a NULL time_delta */
213 	event->type_len = RINGBUF_TYPE_PADDING;
214 	event->time_delta = 0;
215 }
216 
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 	unsigned length;
221 
222 	if (event->type_len)
223 		length = event->type_len * RB_ALIGNMENT;
224 	else
225 		length = event->array[0];
226 	return length + RB_EVNT_HDR_SIZE;
227 }
228 
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 	switch (event->type_len) {
238 	case RINGBUF_TYPE_PADDING:
239 		if (rb_null_event(event))
240 			/* undefined */
241 			return -1;
242 		return  event->array[0] + RB_EVNT_HDR_SIZE;
243 
244 	case RINGBUF_TYPE_TIME_EXTEND:
245 		return RB_LEN_TIME_EXTEND;
246 
247 	case RINGBUF_TYPE_TIME_STAMP:
248 		return RB_LEN_TIME_STAMP;
249 
250 	case RINGBUF_TYPE_DATA:
251 		return rb_event_data_length(event);
252 	default:
253 		BUG();
254 	}
255 	/* not hit */
256 	return 0;
257 }
258 
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 	unsigned len = 0;
267 
268 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 		/* time extends include the data event after it */
270 		len = RB_LEN_TIME_EXTEND;
271 		event = skip_time_extend(event);
272 	}
273 	return len + rb_event_length(event);
274 }
275 
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 	unsigned length;
289 
290 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 		event = skip_time_extend(event);
292 
293 	length = rb_event_length(event);
294 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 		return length;
296 	length -= RB_EVNT_HDR_SIZE;
297 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299 	return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302 
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 		event = skip_time_extend(event);
309 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 	/* If length is in len field, then array[0] has the data */
311 	if (event->type_len)
312 		return (void *)&event->array[0];
313 	/* Otherwise length is in array[0] and array[1] has the data */
314 	return (void *)&event->array[1];
315 }
316 
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 	return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326 
327 #define for_each_buffer_cpu(buffer, cpu)		\
328 	for_each_cpu(cpu, buffer->cpumask)
329 
330 #define TS_SHIFT	27
331 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST	(~TS_MASK)
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 struct buffer_data_page {
340 	u64		 time_stamp;	/* page time stamp */
341 	local_t		 commit;	/* write committed index */
342 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
343 };
344 
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354 	struct list_head list;		/* list of buffer pages */
355 	local_t		 write;		/* index for next write */
356 	unsigned	 read;		/* index for next read */
357 	local_t		 entries;	/* entries on this page */
358 	unsigned long	 real_end;	/* real end of data */
359 	struct buffer_data_page *page;	/* Actual data page */
360 };
361 
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK		0xfffff
375 #define RB_WRITE_INTCNT		(1 << 20)
376 
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 	local_set(&bpage->commit, 0);
380 }
381 
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390 	return local_read(&((struct buffer_data_page *)page)->commit)
391 		+ BUF_PAGE_HDR_SIZE;
392 }
393 
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 	free_page((unsigned long)bpage->page);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409 	if (delta & TS_DELTA_TEST)
410 		return 1;
411 	return 0;
412 }
413 
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415 
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418 
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 	struct buffer_data_page field;
422 	int ret;
423 
424 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)sizeof(field.time_stamp),
427 			       (unsigned int)is_signed_type(u64));
428 
429 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       (unsigned int)sizeof(field.commit),
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), commit),
438 			       1,
439 			       (unsigned int)is_signed_type(long));
440 
441 	ret = trace_seq_printf(s, "\tfield: char data;\t"
442 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 			       (unsigned int)offsetof(typeof(field), data),
444 			       (unsigned int)BUF_PAGE_SIZE,
445 			       (unsigned int)is_signed_type(char));
446 
447 	return ret;
448 }
449 
450 struct rb_irq_work {
451 	struct irq_work			work;
452 	wait_queue_head_t		waiters;
453 	bool				waiters_pending;
454 };
455 
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460 	int				cpu;
461 	atomic_t			record_disabled;
462 	struct ring_buffer		*buffer;
463 	raw_spinlock_t			reader_lock;	/* serialize readers */
464 	arch_spinlock_t			lock;
465 	struct lock_class_key		lock_key;
466 	unsigned int			nr_pages;
467 	struct list_head		*pages;
468 	struct buffer_page		*head_page;	/* read from head */
469 	struct buffer_page		*tail_page;	/* write to tail */
470 	struct buffer_page		*commit_page;	/* committed pages */
471 	struct buffer_page		*reader_page;
472 	unsigned long			lost_events;
473 	unsigned long			last_overrun;
474 	local_t				entries_bytes;
475 	local_t				entries;
476 	local_t				overrun;
477 	local_t				commit_overrun;
478 	local_t				dropped_events;
479 	local_t				committing;
480 	local_t				commits;
481 	unsigned long			read;
482 	unsigned long			read_bytes;
483 	u64				write_stamp;
484 	u64				read_stamp;
485 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
486 	int				nr_pages_to_update;
487 	struct list_head		new_pages; /* new pages to add */
488 	struct work_struct		update_pages_work;
489 	struct completion		update_done;
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer {
495 	unsigned			flags;
496 	int				cpus;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	cpumask_var_t			cpumask;
500 
501 	struct lock_class_key		*reader_lock_key;
502 
503 	struct mutex			mutex;
504 
505 	struct ring_buffer_per_cpu	**buffers;
506 
507 #ifdef CONFIG_HOTPLUG_CPU
508 	struct notifier_block		cpu_notify;
509 #endif
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 };
514 
515 struct ring_buffer_iter {
516 	struct ring_buffer_per_cpu	*cpu_buffer;
517 	unsigned long			head;
518 	struct buffer_page		*head_page;
519 	struct buffer_page		*cache_reader_page;
520 	unsigned long			cache_read;
521 	u64				read_stamp;
522 };
523 
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533 
534 	wake_up_all(&rbwork->waiters);
535 }
536 
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 	struct ring_buffer_per_cpu *cpu_buffer;
549 	DEFINE_WAIT(wait);
550 	struct rb_irq_work *work;
551 
552 	/*
553 	 * Depending on what the caller is waiting for, either any
554 	 * data in any cpu buffer, or a specific buffer, put the
555 	 * caller on the appropriate wait queue.
556 	 */
557 	if (cpu == RING_BUFFER_ALL_CPUS)
558 		work = &buffer->irq_work;
559 	else {
560 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 			return -ENODEV;
562 		cpu_buffer = buffer->buffers[cpu];
563 		work = &cpu_buffer->irq_work;
564 	}
565 
566 
567 	prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568 
569 	/*
570 	 * The events can happen in critical sections where
571 	 * checking a work queue can cause deadlocks.
572 	 * After adding a task to the queue, this flag is set
573 	 * only to notify events to try to wake up the queue
574 	 * using irq_work.
575 	 *
576 	 * We don't clear it even if the buffer is no longer
577 	 * empty. The flag only causes the next event to run
578 	 * irq_work to do the work queue wake up. The worse
579 	 * that can happen if we race with !trace_empty() is that
580 	 * an event will cause an irq_work to try to wake up
581 	 * an empty queue.
582 	 *
583 	 * There's no reason to protect this flag either, as
584 	 * the work queue and irq_work logic will do the necessary
585 	 * synchronization for the wake ups. The only thing
586 	 * that is necessary is that the wake up happens after
587 	 * a task has been queued. It's OK for spurious wake ups.
588 	 */
589 	work->waiters_pending = true;
590 
591 	if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 	    (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 		schedule();
594 
595 	finish_wait(&work->waiters, &wait);
596 	return 0;
597 }
598 
599 /**
600  * ring_buffer_poll_wait - poll on buffer input
601  * @buffer: buffer to wait on
602  * @cpu: the cpu buffer to wait on
603  * @filp: the file descriptor
604  * @poll_table: The poll descriptor
605  *
606  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607  * as data is added to any of the @buffer's cpu buffers. Otherwise
608  * it will wait for data to be added to a specific cpu buffer.
609  *
610  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611  * zero otherwise.
612  */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 			  struct file *filp, poll_table *poll_table)
615 {
616 	struct ring_buffer_per_cpu *cpu_buffer;
617 	struct rb_irq_work *work;
618 
619 	if (cpu == RING_BUFFER_ALL_CPUS)
620 		work = &buffer->irq_work;
621 	else {
622 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 			return -EINVAL;
624 
625 		cpu_buffer = buffer->buffers[cpu];
626 		work = &cpu_buffer->irq_work;
627 	}
628 
629 	poll_wait(filp, &work->waiters, poll_table);
630 	work->waiters_pending = true;
631 	/*
632 	 * There's a tight race between setting the waiters_pending and
633 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
634 	 * is set, the next event will wake the task up, but we can get stuck
635 	 * if there's only a single event in.
636 	 *
637 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
638 	 * but adding a memory barrier to all events will cause too much of a
639 	 * performance hit in the fast path.  We only need a memory barrier when
640 	 * the buffer goes from empty to having content.  But as this race is
641 	 * extremely small, and it's not a problem if another event comes in, we
642 	 * will fix it later.
643 	 */
644 	smp_mb();
645 
646 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
647 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
648 		return POLLIN | POLLRDNORM;
649 	return 0;
650 }
651 
652 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
653 #define RB_WARN_ON(b, cond)						\
654 	({								\
655 		int _____ret = unlikely(cond);				\
656 		if (_____ret) {						\
657 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
658 				struct ring_buffer_per_cpu *__b =	\
659 					(void *)b;			\
660 				atomic_inc(&__b->buffer->record_disabled); \
661 			} else						\
662 				atomic_inc(&b->record_disabled);	\
663 			WARN_ON(1);					\
664 		}							\
665 		_____ret;						\
666 	})
667 
668 /* Up this if you want to test the TIME_EXTENTS and normalization */
669 #define DEBUG_SHIFT 0
670 
671 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
672 {
673 	/* shift to debug/test normalization and TIME_EXTENTS */
674 	return buffer->clock() << DEBUG_SHIFT;
675 }
676 
677 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
678 {
679 	u64 time;
680 
681 	preempt_disable_notrace();
682 	time = rb_time_stamp(buffer);
683 	preempt_enable_no_resched_notrace();
684 
685 	return time;
686 }
687 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
688 
689 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
690 				      int cpu, u64 *ts)
691 {
692 	/* Just stupid testing the normalize function and deltas */
693 	*ts >>= DEBUG_SHIFT;
694 }
695 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
696 
697 /*
698  * Making the ring buffer lockless makes things tricky.
699  * Although writes only happen on the CPU that they are on,
700  * and they only need to worry about interrupts. Reads can
701  * happen on any CPU.
702  *
703  * The reader page is always off the ring buffer, but when the
704  * reader finishes with a page, it needs to swap its page with
705  * a new one from the buffer. The reader needs to take from
706  * the head (writes go to the tail). But if a writer is in overwrite
707  * mode and wraps, it must push the head page forward.
708  *
709  * Here lies the problem.
710  *
711  * The reader must be careful to replace only the head page, and
712  * not another one. As described at the top of the file in the
713  * ASCII art, the reader sets its old page to point to the next
714  * page after head. It then sets the page after head to point to
715  * the old reader page. But if the writer moves the head page
716  * during this operation, the reader could end up with the tail.
717  *
718  * We use cmpxchg to help prevent this race. We also do something
719  * special with the page before head. We set the LSB to 1.
720  *
721  * When the writer must push the page forward, it will clear the
722  * bit that points to the head page, move the head, and then set
723  * the bit that points to the new head page.
724  *
725  * We also don't want an interrupt coming in and moving the head
726  * page on another writer. Thus we use the second LSB to catch
727  * that too. Thus:
728  *
729  * head->list->prev->next        bit 1          bit 0
730  *                              -------        -------
731  * Normal page                     0              0
732  * Points to head page             0              1
733  * New head page                   1              0
734  *
735  * Note we can not trust the prev pointer of the head page, because:
736  *
737  * +----+       +-----+        +-----+
738  * |    |------>|  T  |---X--->|  N  |
739  * |    |<------|     |        |     |
740  * +----+       +-----+        +-----+
741  *   ^                           ^ |
742  *   |          +-----+          | |
743  *   +----------|  R  |----------+ |
744  *              |     |<-----------+
745  *              +-----+
746  *
747  * Key:  ---X-->  HEAD flag set in pointer
748  *         T      Tail page
749  *         R      Reader page
750  *         N      Next page
751  *
752  * (see __rb_reserve_next() to see where this happens)
753  *
754  *  What the above shows is that the reader just swapped out
755  *  the reader page with a page in the buffer, but before it
756  *  could make the new header point back to the new page added
757  *  it was preempted by a writer. The writer moved forward onto
758  *  the new page added by the reader and is about to move forward
759  *  again.
760  *
761  *  You can see, it is legitimate for the previous pointer of
762  *  the head (or any page) not to point back to itself. But only
763  *  temporarially.
764  */
765 
766 #define RB_PAGE_NORMAL		0UL
767 #define RB_PAGE_HEAD		1UL
768 #define RB_PAGE_UPDATE		2UL
769 
770 
771 #define RB_FLAG_MASK		3UL
772 
773 /* PAGE_MOVED is not part of the mask */
774 #define RB_PAGE_MOVED		4UL
775 
776 /*
777  * rb_list_head - remove any bit
778  */
779 static struct list_head *rb_list_head(struct list_head *list)
780 {
781 	unsigned long val = (unsigned long)list;
782 
783 	return (struct list_head *)(val & ~RB_FLAG_MASK);
784 }
785 
786 /*
787  * rb_is_head_page - test if the given page is the head page
788  *
789  * Because the reader may move the head_page pointer, we can
790  * not trust what the head page is (it may be pointing to
791  * the reader page). But if the next page is a header page,
792  * its flags will be non zero.
793  */
794 static inline int
795 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
796 		struct buffer_page *page, struct list_head *list)
797 {
798 	unsigned long val;
799 
800 	val = (unsigned long)list->next;
801 
802 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
803 		return RB_PAGE_MOVED;
804 
805 	return val & RB_FLAG_MASK;
806 }
807 
808 /*
809  * rb_is_reader_page
810  *
811  * The unique thing about the reader page, is that, if the
812  * writer is ever on it, the previous pointer never points
813  * back to the reader page.
814  */
815 static int rb_is_reader_page(struct buffer_page *page)
816 {
817 	struct list_head *list = page->list.prev;
818 
819 	return rb_list_head(list->next) != &page->list;
820 }
821 
822 /*
823  * rb_set_list_to_head - set a list_head to be pointing to head.
824  */
825 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
826 				struct list_head *list)
827 {
828 	unsigned long *ptr;
829 
830 	ptr = (unsigned long *)&list->next;
831 	*ptr |= RB_PAGE_HEAD;
832 	*ptr &= ~RB_PAGE_UPDATE;
833 }
834 
835 /*
836  * rb_head_page_activate - sets up head page
837  */
838 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
839 {
840 	struct buffer_page *head;
841 
842 	head = cpu_buffer->head_page;
843 	if (!head)
844 		return;
845 
846 	/*
847 	 * Set the previous list pointer to have the HEAD flag.
848 	 */
849 	rb_set_list_to_head(cpu_buffer, head->list.prev);
850 }
851 
852 static void rb_list_head_clear(struct list_head *list)
853 {
854 	unsigned long *ptr = (unsigned long *)&list->next;
855 
856 	*ptr &= ~RB_FLAG_MASK;
857 }
858 
859 /*
860  * rb_head_page_dactivate - clears head page ptr (for free list)
861  */
862 static void
863 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
864 {
865 	struct list_head *hd;
866 
867 	/* Go through the whole list and clear any pointers found. */
868 	rb_list_head_clear(cpu_buffer->pages);
869 
870 	list_for_each(hd, cpu_buffer->pages)
871 		rb_list_head_clear(hd);
872 }
873 
874 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
875 			    struct buffer_page *head,
876 			    struct buffer_page *prev,
877 			    int old_flag, int new_flag)
878 {
879 	struct list_head *list;
880 	unsigned long val = (unsigned long)&head->list;
881 	unsigned long ret;
882 
883 	list = &prev->list;
884 
885 	val &= ~RB_FLAG_MASK;
886 
887 	ret = cmpxchg((unsigned long *)&list->next,
888 		      val | old_flag, val | new_flag);
889 
890 	/* check if the reader took the page */
891 	if ((ret & ~RB_FLAG_MASK) != val)
892 		return RB_PAGE_MOVED;
893 
894 	return ret & RB_FLAG_MASK;
895 }
896 
897 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
898 				   struct buffer_page *head,
899 				   struct buffer_page *prev,
900 				   int old_flag)
901 {
902 	return rb_head_page_set(cpu_buffer, head, prev,
903 				old_flag, RB_PAGE_UPDATE);
904 }
905 
906 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
907 				 struct buffer_page *head,
908 				 struct buffer_page *prev,
909 				 int old_flag)
910 {
911 	return rb_head_page_set(cpu_buffer, head, prev,
912 				old_flag, RB_PAGE_HEAD);
913 }
914 
915 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
916 				   struct buffer_page *head,
917 				   struct buffer_page *prev,
918 				   int old_flag)
919 {
920 	return rb_head_page_set(cpu_buffer, head, prev,
921 				old_flag, RB_PAGE_NORMAL);
922 }
923 
924 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
925 			       struct buffer_page **bpage)
926 {
927 	struct list_head *p = rb_list_head((*bpage)->list.next);
928 
929 	*bpage = list_entry(p, struct buffer_page, list);
930 }
931 
932 static struct buffer_page *
933 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
934 {
935 	struct buffer_page *head;
936 	struct buffer_page *page;
937 	struct list_head *list;
938 	int i;
939 
940 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
941 		return NULL;
942 
943 	/* sanity check */
944 	list = cpu_buffer->pages;
945 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
946 		return NULL;
947 
948 	page = head = cpu_buffer->head_page;
949 	/*
950 	 * It is possible that the writer moves the header behind
951 	 * where we started, and we miss in one loop.
952 	 * A second loop should grab the header, but we'll do
953 	 * three loops just because I'm paranoid.
954 	 */
955 	for (i = 0; i < 3; i++) {
956 		do {
957 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
958 				cpu_buffer->head_page = page;
959 				return page;
960 			}
961 			rb_inc_page(cpu_buffer, &page);
962 		} while (page != head);
963 	}
964 
965 	RB_WARN_ON(cpu_buffer, 1);
966 
967 	return NULL;
968 }
969 
970 static int rb_head_page_replace(struct buffer_page *old,
971 				struct buffer_page *new)
972 {
973 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
974 	unsigned long val;
975 	unsigned long ret;
976 
977 	val = *ptr & ~RB_FLAG_MASK;
978 	val |= RB_PAGE_HEAD;
979 
980 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
981 
982 	return ret == val;
983 }
984 
985 /*
986  * rb_tail_page_update - move the tail page forward
987  *
988  * Returns 1 if moved tail page, 0 if someone else did.
989  */
990 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
991 			       struct buffer_page *tail_page,
992 			       struct buffer_page *next_page)
993 {
994 	struct buffer_page *old_tail;
995 	unsigned long old_entries;
996 	unsigned long old_write;
997 	int ret = 0;
998 
999 	/*
1000 	 * The tail page now needs to be moved forward.
1001 	 *
1002 	 * We need to reset the tail page, but without messing
1003 	 * with possible erasing of data brought in by interrupts
1004 	 * that have moved the tail page and are currently on it.
1005 	 *
1006 	 * We add a counter to the write field to denote this.
1007 	 */
1008 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1009 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1010 
1011 	/*
1012 	 * Just make sure we have seen our old_write and synchronize
1013 	 * with any interrupts that come in.
1014 	 */
1015 	barrier();
1016 
1017 	/*
1018 	 * If the tail page is still the same as what we think
1019 	 * it is, then it is up to us to update the tail
1020 	 * pointer.
1021 	 */
1022 	if (tail_page == cpu_buffer->tail_page) {
1023 		/* Zero the write counter */
1024 		unsigned long val = old_write & ~RB_WRITE_MASK;
1025 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1026 
1027 		/*
1028 		 * This will only succeed if an interrupt did
1029 		 * not come in and change it. In which case, we
1030 		 * do not want to modify it.
1031 		 *
1032 		 * We add (void) to let the compiler know that we do not care
1033 		 * about the return value of these functions. We use the
1034 		 * cmpxchg to only update if an interrupt did not already
1035 		 * do it for us. If the cmpxchg fails, we don't care.
1036 		 */
1037 		(void)local_cmpxchg(&next_page->write, old_write, val);
1038 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1039 
1040 		/*
1041 		 * No need to worry about races with clearing out the commit.
1042 		 * it only can increment when a commit takes place. But that
1043 		 * only happens in the outer most nested commit.
1044 		 */
1045 		local_set(&next_page->page->commit, 0);
1046 
1047 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1048 				   tail_page, next_page);
1049 
1050 		if (old_tail == tail_page)
1051 			ret = 1;
1052 	}
1053 
1054 	return ret;
1055 }
1056 
1057 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1058 			  struct buffer_page *bpage)
1059 {
1060 	unsigned long val = (unsigned long)bpage;
1061 
1062 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1063 		return 1;
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  * rb_check_list - make sure a pointer to a list has the last bits zero
1070  */
1071 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1072 			 struct list_head *list)
1073 {
1074 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1075 		return 1;
1076 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1077 		return 1;
1078 	return 0;
1079 }
1080 
1081 /**
1082  * rb_check_pages - integrity check of buffer pages
1083  * @cpu_buffer: CPU buffer with pages to test
1084  *
1085  * As a safety measure we check to make sure the data pages have not
1086  * been corrupted.
1087  */
1088 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1089 {
1090 	struct list_head *head = cpu_buffer->pages;
1091 	struct buffer_page *bpage, *tmp;
1092 
1093 	/* Reset the head page if it exists */
1094 	if (cpu_buffer->head_page)
1095 		rb_set_head_page(cpu_buffer);
1096 
1097 	rb_head_page_deactivate(cpu_buffer);
1098 
1099 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1100 		return -1;
1101 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1102 		return -1;
1103 
1104 	if (rb_check_list(cpu_buffer, head))
1105 		return -1;
1106 
1107 	list_for_each_entry_safe(bpage, tmp, head, list) {
1108 		if (RB_WARN_ON(cpu_buffer,
1109 			       bpage->list.next->prev != &bpage->list))
1110 			return -1;
1111 		if (RB_WARN_ON(cpu_buffer,
1112 			       bpage->list.prev->next != &bpage->list))
1113 			return -1;
1114 		if (rb_check_list(cpu_buffer, &bpage->list))
1115 			return -1;
1116 	}
1117 
1118 	rb_head_page_activate(cpu_buffer);
1119 
1120 	return 0;
1121 }
1122 
1123 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1124 {
1125 	int i;
1126 	struct buffer_page *bpage, *tmp;
1127 
1128 	for (i = 0; i < nr_pages; i++) {
1129 		struct page *page;
1130 		/*
1131 		 * __GFP_NORETRY flag makes sure that the allocation fails
1132 		 * gracefully without invoking oom-killer and the system is
1133 		 * not destabilized.
1134 		 */
1135 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1136 				    GFP_KERNEL | __GFP_NORETRY,
1137 				    cpu_to_node(cpu));
1138 		if (!bpage)
1139 			goto free_pages;
1140 
1141 		list_add(&bpage->list, pages);
1142 
1143 		page = alloc_pages_node(cpu_to_node(cpu),
1144 					GFP_KERNEL | __GFP_NORETRY, 0);
1145 		if (!page)
1146 			goto free_pages;
1147 		bpage->page = page_address(page);
1148 		rb_init_page(bpage->page);
1149 	}
1150 
1151 	return 0;
1152 
1153 free_pages:
1154 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1155 		list_del_init(&bpage->list);
1156 		free_buffer_page(bpage);
1157 	}
1158 
1159 	return -ENOMEM;
1160 }
1161 
1162 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1163 			     unsigned nr_pages)
1164 {
1165 	LIST_HEAD(pages);
1166 
1167 	WARN_ON(!nr_pages);
1168 
1169 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1170 		return -ENOMEM;
1171 
1172 	/*
1173 	 * The ring buffer page list is a circular list that does not
1174 	 * start and end with a list head. All page list items point to
1175 	 * other pages.
1176 	 */
1177 	cpu_buffer->pages = pages.next;
1178 	list_del(&pages);
1179 
1180 	cpu_buffer->nr_pages = nr_pages;
1181 
1182 	rb_check_pages(cpu_buffer);
1183 
1184 	return 0;
1185 }
1186 
1187 static struct ring_buffer_per_cpu *
1188 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1189 {
1190 	struct ring_buffer_per_cpu *cpu_buffer;
1191 	struct buffer_page *bpage;
1192 	struct page *page;
1193 	int ret;
1194 
1195 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1196 				  GFP_KERNEL, cpu_to_node(cpu));
1197 	if (!cpu_buffer)
1198 		return NULL;
1199 
1200 	cpu_buffer->cpu = cpu;
1201 	cpu_buffer->buffer = buffer;
1202 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1203 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1204 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1205 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1206 	init_completion(&cpu_buffer->update_done);
1207 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1208 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1209 
1210 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1211 			    GFP_KERNEL, cpu_to_node(cpu));
1212 	if (!bpage)
1213 		goto fail_free_buffer;
1214 
1215 	rb_check_bpage(cpu_buffer, bpage);
1216 
1217 	cpu_buffer->reader_page = bpage;
1218 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1219 	if (!page)
1220 		goto fail_free_reader;
1221 	bpage->page = page_address(page);
1222 	rb_init_page(bpage->page);
1223 
1224 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1225 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1226 
1227 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1228 	if (ret < 0)
1229 		goto fail_free_reader;
1230 
1231 	cpu_buffer->head_page
1232 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1233 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1234 
1235 	rb_head_page_activate(cpu_buffer);
1236 
1237 	return cpu_buffer;
1238 
1239  fail_free_reader:
1240 	free_buffer_page(cpu_buffer->reader_page);
1241 
1242  fail_free_buffer:
1243 	kfree(cpu_buffer);
1244 	return NULL;
1245 }
1246 
1247 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1248 {
1249 	struct list_head *head = cpu_buffer->pages;
1250 	struct buffer_page *bpage, *tmp;
1251 
1252 	free_buffer_page(cpu_buffer->reader_page);
1253 
1254 	rb_head_page_deactivate(cpu_buffer);
1255 
1256 	if (head) {
1257 		list_for_each_entry_safe(bpage, tmp, head, list) {
1258 			list_del_init(&bpage->list);
1259 			free_buffer_page(bpage);
1260 		}
1261 		bpage = list_entry(head, struct buffer_page, list);
1262 		free_buffer_page(bpage);
1263 	}
1264 
1265 	kfree(cpu_buffer);
1266 }
1267 
1268 #ifdef CONFIG_HOTPLUG_CPU
1269 static int rb_cpu_notify(struct notifier_block *self,
1270 			 unsigned long action, void *hcpu);
1271 #endif
1272 
1273 /**
1274  * __ring_buffer_alloc - allocate a new ring_buffer
1275  * @size: the size in bytes per cpu that is needed.
1276  * @flags: attributes to set for the ring buffer.
1277  *
1278  * Currently the only flag that is available is the RB_FL_OVERWRITE
1279  * flag. This flag means that the buffer will overwrite old data
1280  * when the buffer wraps. If this flag is not set, the buffer will
1281  * drop data when the tail hits the head.
1282  */
1283 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1284 					struct lock_class_key *key)
1285 {
1286 	struct ring_buffer *buffer;
1287 	int bsize;
1288 	int cpu, nr_pages;
1289 
1290 	/* keep it in its own cache line */
1291 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1292 			 GFP_KERNEL);
1293 	if (!buffer)
1294 		return NULL;
1295 
1296 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1297 		goto fail_free_buffer;
1298 
1299 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1300 	buffer->flags = flags;
1301 	buffer->clock = trace_clock_local;
1302 	buffer->reader_lock_key = key;
1303 
1304 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1305 	init_waitqueue_head(&buffer->irq_work.waiters);
1306 
1307 	/* need at least two pages */
1308 	if (nr_pages < 2)
1309 		nr_pages = 2;
1310 
1311 	/*
1312 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1313 	 * in early initcall, it will not be notified of secondary cpus.
1314 	 * In that off case, we need to allocate for all possible cpus.
1315 	 */
1316 #ifdef CONFIG_HOTPLUG_CPU
1317 	cpu_notifier_register_begin();
1318 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1319 #else
1320 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1321 #endif
1322 	buffer->cpus = nr_cpu_ids;
1323 
1324 	bsize = sizeof(void *) * nr_cpu_ids;
1325 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1326 				  GFP_KERNEL);
1327 	if (!buffer->buffers)
1328 		goto fail_free_cpumask;
1329 
1330 	for_each_buffer_cpu(buffer, cpu) {
1331 		buffer->buffers[cpu] =
1332 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1333 		if (!buffer->buffers[cpu])
1334 			goto fail_free_buffers;
1335 	}
1336 
1337 #ifdef CONFIG_HOTPLUG_CPU
1338 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1339 	buffer->cpu_notify.priority = 0;
1340 	__register_cpu_notifier(&buffer->cpu_notify);
1341 	cpu_notifier_register_done();
1342 #endif
1343 
1344 	mutex_init(&buffer->mutex);
1345 
1346 	return buffer;
1347 
1348  fail_free_buffers:
1349 	for_each_buffer_cpu(buffer, cpu) {
1350 		if (buffer->buffers[cpu])
1351 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1352 	}
1353 	kfree(buffer->buffers);
1354 
1355  fail_free_cpumask:
1356 	free_cpumask_var(buffer->cpumask);
1357 #ifdef CONFIG_HOTPLUG_CPU
1358 	cpu_notifier_register_done();
1359 #endif
1360 
1361  fail_free_buffer:
1362 	kfree(buffer);
1363 	return NULL;
1364 }
1365 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1366 
1367 /**
1368  * ring_buffer_free - free a ring buffer.
1369  * @buffer: the buffer to free.
1370  */
1371 void
1372 ring_buffer_free(struct ring_buffer *buffer)
1373 {
1374 	int cpu;
1375 
1376 #ifdef CONFIG_HOTPLUG_CPU
1377 	cpu_notifier_register_begin();
1378 	__unregister_cpu_notifier(&buffer->cpu_notify);
1379 #endif
1380 
1381 	for_each_buffer_cpu(buffer, cpu)
1382 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1383 
1384 #ifdef CONFIG_HOTPLUG_CPU
1385 	cpu_notifier_register_done();
1386 #endif
1387 
1388 	kfree(buffer->buffers);
1389 	free_cpumask_var(buffer->cpumask);
1390 
1391 	kfree(buffer);
1392 }
1393 EXPORT_SYMBOL_GPL(ring_buffer_free);
1394 
1395 void ring_buffer_set_clock(struct ring_buffer *buffer,
1396 			   u64 (*clock)(void))
1397 {
1398 	buffer->clock = clock;
1399 }
1400 
1401 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1402 
1403 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1404 {
1405 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1406 }
1407 
1408 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1409 {
1410 	return local_read(&bpage->write) & RB_WRITE_MASK;
1411 }
1412 
1413 static int
1414 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1415 {
1416 	struct list_head *tail_page, *to_remove, *next_page;
1417 	struct buffer_page *to_remove_page, *tmp_iter_page;
1418 	struct buffer_page *last_page, *first_page;
1419 	unsigned int nr_removed;
1420 	unsigned long head_bit;
1421 	int page_entries;
1422 
1423 	head_bit = 0;
1424 
1425 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1426 	atomic_inc(&cpu_buffer->record_disabled);
1427 	/*
1428 	 * We don't race with the readers since we have acquired the reader
1429 	 * lock. We also don't race with writers after disabling recording.
1430 	 * This makes it easy to figure out the first and the last page to be
1431 	 * removed from the list. We unlink all the pages in between including
1432 	 * the first and last pages. This is done in a busy loop so that we
1433 	 * lose the least number of traces.
1434 	 * The pages are freed after we restart recording and unlock readers.
1435 	 */
1436 	tail_page = &cpu_buffer->tail_page->list;
1437 
1438 	/*
1439 	 * tail page might be on reader page, we remove the next page
1440 	 * from the ring buffer
1441 	 */
1442 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1443 		tail_page = rb_list_head(tail_page->next);
1444 	to_remove = tail_page;
1445 
1446 	/* start of pages to remove */
1447 	first_page = list_entry(rb_list_head(to_remove->next),
1448 				struct buffer_page, list);
1449 
1450 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1451 		to_remove = rb_list_head(to_remove)->next;
1452 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1453 	}
1454 
1455 	next_page = rb_list_head(to_remove)->next;
1456 
1457 	/*
1458 	 * Now we remove all pages between tail_page and next_page.
1459 	 * Make sure that we have head_bit value preserved for the
1460 	 * next page
1461 	 */
1462 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1463 						head_bit);
1464 	next_page = rb_list_head(next_page);
1465 	next_page->prev = tail_page;
1466 
1467 	/* make sure pages points to a valid page in the ring buffer */
1468 	cpu_buffer->pages = next_page;
1469 
1470 	/* update head page */
1471 	if (head_bit)
1472 		cpu_buffer->head_page = list_entry(next_page,
1473 						struct buffer_page, list);
1474 
1475 	/*
1476 	 * change read pointer to make sure any read iterators reset
1477 	 * themselves
1478 	 */
1479 	cpu_buffer->read = 0;
1480 
1481 	/* pages are removed, resume tracing and then free the pages */
1482 	atomic_dec(&cpu_buffer->record_disabled);
1483 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1484 
1485 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1486 
1487 	/* last buffer page to remove */
1488 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1489 				list);
1490 	tmp_iter_page = first_page;
1491 
1492 	do {
1493 		to_remove_page = tmp_iter_page;
1494 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1495 
1496 		/* update the counters */
1497 		page_entries = rb_page_entries(to_remove_page);
1498 		if (page_entries) {
1499 			/*
1500 			 * If something was added to this page, it was full
1501 			 * since it is not the tail page. So we deduct the
1502 			 * bytes consumed in ring buffer from here.
1503 			 * Increment overrun to account for the lost events.
1504 			 */
1505 			local_add(page_entries, &cpu_buffer->overrun);
1506 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1507 		}
1508 
1509 		/*
1510 		 * We have already removed references to this list item, just
1511 		 * free up the buffer_page and its page
1512 		 */
1513 		free_buffer_page(to_remove_page);
1514 		nr_removed--;
1515 
1516 	} while (to_remove_page != last_page);
1517 
1518 	RB_WARN_ON(cpu_buffer, nr_removed);
1519 
1520 	return nr_removed == 0;
1521 }
1522 
1523 static int
1524 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1525 {
1526 	struct list_head *pages = &cpu_buffer->new_pages;
1527 	int retries, success;
1528 
1529 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1530 	/*
1531 	 * We are holding the reader lock, so the reader page won't be swapped
1532 	 * in the ring buffer. Now we are racing with the writer trying to
1533 	 * move head page and the tail page.
1534 	 * We are going to adapt the reader page update process where:
1535 	 * 1. We first splice the start and end of list of new pages between
1536 	 *    the head page and its previous page.
1537 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1538 	 *    start of new pages list.
1539 	 * 3. Finally, we update the head->prev to the end of new list.
1540 	 *
1541 	 * We will try this process 10 times, to make sure that we don't keep
1542 	 * spinning.
1543 	 */
1544 	retries = 10;
1545 	success = 0;
1546 	while (retries--) {
1547 		struct list_head *head_page, *prev_page, *r;
1548 		struct list_head *last_page, *first_page;
1549 		struct list_head *head_page_with_bit;
1550 
1551 		head_page = &rb_set_head_page(cpu_buffer)->list;
1552 		if (!head_page)
1553 			break;
1554 		prev_page = head_page->prev;
1555 
1556 		first_page = pages->next;
1557 		last_page  = pages->prev;
1558 
1559 		head_page_with_bit = (struct list_head *)
1560 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1561 
1562 		last_page->next = head_page_with_bit;
1563 		first_page->prev = prev_page;
1564 
1565 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1566 
1567 		if (r == head_page_with_bit) {
1568 			/*
1569 			 * yay, we replaced the page pointer to our new list,
1570 			 * now, we just have to update to head page's prev
1571 			 * pointer to point to end of list
1572 			 */
1573 			head_page->prev = last_page;
1574 			success = 1;
1575 			break;
1576 		}
1577 	}
1578 
1579 	if (success)
1580 		INIT_LIST_HEAD(pages);
1581 	/*
1582 	 * If we weren't successful in adding in new pages, warn and stop
1583 	 * tracing
1584 	 */
1585 	RB_WARN_ON(cpu_buffer, !success);
1586 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1587 
1588 	/* free pages if they weren't inserted */
1589 	if (!success) {
1590 		struct buffer_page *bpage, *tmp;
1591 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1592 					 list) {
1593 			list_del_init(&bpage->list);
1594 			free_buffer_page(bpage);
1595 		}
1596 	}
1597 	return success;
1598 }
1599 
1600 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1601 {
1602 	int success;
1603 
1604 	if (cpu_buffer->nr_pages_to_update > 0)
1605 		success = rb_insert_pages(cpu_buffer);
1606 	else
1607 		success = rb_remove_pages(cpu_buffer,
1608 					-cpu_buffer->nr_pages_to_update);
1609 
1610 	if (success)
1611 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1612 }
1613 
1614 static void update_pages_handler(struct work_struct *work)
1615 {
1616 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1617 			struct ring_buffer_per_cpu, update_pages_work);
1618 	rb_update_pages(cpu_buffer);
1619 	complete(&cpu_buffer->update_done);
1620 }
1621 
1622 /**
1623  * ring_buffer_resize - resize the ring buffer
1624  * @buffer: the buffer to resize.
1625  * @size: the new size.
1626  * @cpu_id: the cpu buffer to resize
1627  *
1628  * Minimum size is 2 * BUF_PAGE_SIZE.
1629  *
1630  * Returns 0 on success and < 0 on failure.
1631  */
1632 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1633 			int cpu_id)
1634 {
1635 	struct ring_buffer_per_cpu *cpu_buffer;
1636 	unsigned nr_pages;
1637 	int cpu, err = 0;
1638 
1639 	/*
1640 	 * Always succeed at resizing a non-existent buffer:
1641 	 */
1642 	if (!buffer)
1643 		return size;
1644 
1645 	/* Make sure the requested buffer exists */
1646 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1647 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1648 		return size;
1649 
1650 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1651 	size *= BUF_PAGE_SIZE;
1652 
1653 	/* we need a minimum of two pages */
1654 	if (size < BUF_PAGE_SIZE * 2)
1655 		size = BUF_PAGE_SIZE * 2;
1656 
1657 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1658 
1659 	/*
1660 	 * Don't succeed if resizing is disabled, as a reader might be
1661 	 * manipulating the ring buffer and is expecting a sane state while
1662 	 * this is true.
1663 	 */
1664 	if (atomic_read(&buffer->resize_disabled))
1665 		return -EBUSY;
1666 
1667 	/* prevent another thread from changing buffer sizes */
1668 	mutex_lock(&buffer->mutex);
1669 
1670 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1671 		/* calculate the pages to update */
1672 		for_each_buffer_cpu(buffer, cpu) {
1673 			cpu_buffer = buffer->buffers[cpu];
1674 
1675 			cpu_buffer->nr_pages_to_update = nr_pages -
1676 							cpu_buffer->nr_pages;
1677 			/*
1678 			 * nothing more to do for removing pages or no update
1679 			 */
1680 			if (cpu_buffer->nr_pages_to_update <= 0)
1681 				continue;
1682 			/*
1683 			 * to add pages, make sure all new pages can be
1684 			 * allocated without receiving ENOMEM
1685 			 */
1686 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1687 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1688 						&cpu_buffer->new_pages, cpu)) {
1689 				/* not enough memory for new pages */
1690 				err = -ENOMEM;
1691 				goto out_err;
1692 			}
1693 		}
1694 
1695 		get_online_cpus();
1696 		/*
1697 		 * Fire off all the required work handlers
1698 		 * We can't schedule on offline CPUs, but it's not necessary
1699 		 * since we can change their buffer sizes without any race.
1700 		 */
1701 		for_each_buffer_cpu(buffer, cpu) {
1702 			cpu_buffer = buffer->buffers[cpu];
1703 			if (!cpu_buffer->nr_pages_to_update)
1704 				continue;
1705 
1706 			/* Can't run something on an offline CPU. */
1707 			if (!cpu_online(cpu)) {
1708 				rb_update_pages(cpu_buffer);
1709 				cpu_buffer->nr_pages_to_update = 0;
1710 			} else {
1711 				schedule_work_on(cpu,
1712 						&cpu_buffer->update_pages_work);
1713 			}
1714 		}
1715 
1716 		/* wait for all the updates to complete */
1717 		for_each_buffer_cpu(buffer, cpu) {
1718 			cpu_buffer = buffer->buffers[cpu];
1719 			if (!cpu_buffer->nr_pages_to_update)
1720 				continue;
1721 
1722 			if (cpu_online(cpu))
1723 				wait_for_completion(&cpu_buffer->update_done);
1724 			cpu_buffer->nr_pages_to_update = 0;
1725 		}
1726 
1727 		put_online_cpus();
1728 	} else {
1729 		/* Make sure this CPU has been intitialized */
1730 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1731 			goto out;
1732 
1733 		cpu_buffer = buffer->buffers[cpu_id];
1734 
1735 		if (nr_pages == cpu_buffer->nr_pages)
1736 			goto out;
1737 
1738 		cpu_buffer->nr_pages_to_update = nr_pages -
1739 						cpu_buffer->nr_pages;
1740 
1741 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1742 		if (cpu_buffer->nr_pages_to_update > 0 &&
1743 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1744 					    &cpu_buffer->new_pages, cpu_id)) {
1745 			err = -ENOMEM;
1746 			goto out_err;
1747 		}
1748 
1749 		get_online_cpus();
1750 
1751 		/* Can't run something on an offline CPU. */
1752 		if (!cpu_online(cpu_id))
1753 			rb_update_pages(cpu_buffer);
1754 		else {
1755 			schedule_work_on(cpu_id,
1756 					 &cpu_buffer->update_pages_work);
1757 			wait_for_completion(&cpu_buffer->update_done);
1758 		}
1759 
1760 		cpu_buffer->nr_pages_to_update = 0;
1761 		put_online_cpus();
1762 	}
1763 
1764  out:
1765 	/*
1766 	 * The ring buffer resize can happen with the ring buffer
1767 	 * enabled, so that the update disturbs the tracing as little
1768 	 * as possible. But if the buffer is disabled, we do not need
1769 	 * to worry about that, and we can take the time to verify
1770 	 * that the buffer is not corrupt.
1771 	 */
1772 	if (atomic_read(&buffer->record_disabled)) {
1773 		atomic_inc(&buffer->record_disabled);
1774 		/*
1775 		 * Even though the buffer was disabled, we must make sure
1776 		 * that it is truly disabled before calling rb_check_pages.
1777 		 * There could have been a race between checking
1778 		 * record_disable and incrementing it.
1779 		 */
1780 		synchronize_sched();
1781 		for_each_buffer_cpu(buffer, cpu) {
1782 			cpu_buffer = buffer->buffers[cpu];
1783 			rb_check_pages(cpu_buffer);
1784 		}
1785 		atomic_dec(&buffer->record_disabled);
1786 	}
1787 
1788 	mutex_unlock(&buffer->mutex);
1789 	return size;
1790 
1791  out_err:
1792 	for_each_buffer_cpu(buffer, cpu) {
1793 		struct buffer_page *bpage, *tmp;
1794 
1795 		cpu_buffer = buffer->buffers[cpu];
1796 		cpu_buffer->nr_pages_to_update = 0;
1797 
1798 		if (list_empty(&cpu_buffer->new_pages))
1799 			continue;
1800 
1801 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1802 					list) {
1803 			list_del_init(&bpage->list);
1804 			free_buffer_page(bpage);
1805 		}
1806 	}
1807 	mutex_unlock(&buffer->mutex);
1808 	return err;
1809 }
1810 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1811 
1812 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1813 {
1814 	mutex_lock(&buffer->mutex);
1815 	if (val)
1816 		buffer->flags |= RB_FL_OVERWRITE;
1817 	else
1818 		buffer->flags &= ~RB_FL_OVERWRITE;
1819 	mutex_unlock(&buffer->mutex);
1820 }
1821 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1822 
1823 static inline void *
1824 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1825 {
1826 	return bpage->data + index;
1827 }
1828 
1829 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1830 {
1831 	return bpage->page->data + index;
1832 }
1833 
1834 static inline struct ring_buffer_event *
1835 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1836 {
1837 	return __rb_page_index(cpu_buffer->reader_page,
1838 			       cpu_buffer->reader_page->read);
1839 }
1840 
1841 static inline struct ring_buffer_event *
1842 rb_iter_head_event(struct ring_buffer_iter *iter)
1843 {
1844 	return __rb_page_index(iter->head_page, iter->head);
1845 }
1846 
1847 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1848 {
1849 	return local_read(&bpage->page->commit);
1850 }
1851 
1852 /* Size is determined by what has been committed */
1853 static inline unsigned rb_page_size(struct buffer_page *bpage)
1854 {
1855 	return rb_page_commit(bpage);
1856 }
1857 
1858 static inline unsigned
1859 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1860 {
1861 	return rb_page_commit(cpu_buffer->commit_page);
1862 }
1863 
1864 static inline unsigned
1865 rb_event_index(struct ring_buffer_event *event)
1866 {
1867 	unsigned long addr = (unsigned long)event;
1868 
1869 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1870 }
1871 
1872 static inline int
1873 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1874 		   struct ring_buffer_event *event)
1875 {
1876 	unsigned long addr = (unsigned long)event;
1877 	unsigned long index;
1878 
1879 	index = rb_event_index(event);
1880 	addr &= PAGE_MASK;
1881 
1882 	return cpu_buffer->commit_page->page == (void *)addr &&
1883 		rb_commit_index(cpu_buffer) == index;
1884 }
1885 
1886 static void
1887 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1888 {
1889 	unsigned long max_count;
1890 
1891 	/*
1892 	 * We only race with interrupts and NMIs on this CPU.
1893 	 * If we own the commit event, then we can commit
1894 	 * all others that interrupted us, since the interruptions
1895 	 * are in stack format (they finish before they come
1896 	 * back to us). This allows us to do a simple loop to
1897 	 * assign the commit to the tail.
1898 	 */
1899  again:
1900 	max_count = cpu_buffer->nr_pages * 100;
1901 
1902 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1903 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1904 			return;
1905 		if (RB_WARN_ON(cpu_buffer,
1906 			       rb_is_reader_page(cpu_buffer->tail_page)))
1907 			return;
1908 		local_set(&cpu_buffer->commit_page->page->commit,
1909 			  rb_page_write(cpu_buffer->commit_page));
1910 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1911 		cpu_buffer->write_stamp =
1912 			cpu_buffer->commit_page->page->time_stamp;
1913 		/* add barrier to keep gcc from optimizing too much */
1914 		barrier();
1915 	}
1916 	while (rb_commit_index(cpu_buffer) !=
1917 	       rb_page_write(cpu_buffer->commit_page)) {
1918 
1919 		local_set(&cpu_buffer->commit_page->page->commit,
1920 			  rb_page_write(cpu_buffer->commit_page));
1921 		RB_WARN_ON(cpu_buffer,
1922 			   local_read(&cpu_buffer->commit_page->page->commit) &
1923 			   ~RB_WRITE_MASK);
1924 		barrier();
1925 	}
1926 
1927 	/* again, keep gcc from optimizing */
1928 	barrier();
1929 
1930 	/*
1931 	 * If an interrupt came in just after the first while loop
1932 	 * and pushed the tail page forward, we will be left with
1933 	 * a dangling commit that will never go forward.
1934 	 */
1935 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1936 		goto again;
1937 }
1938 
1939 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1940 {
1941 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1942 	cpu_buffer->reader_page->read = 0;
1943 }
1944 
1945 static void rb_inc_iter(struct ring_buffer_iter *iter)
1946 {
1947 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1948 
1949 	/*
1950 	 * The iterator could be on the reader page (it starts there).
1951 	 * But the head could have moved, since the reader was
1952 	 * found. Check for this case and assign the iterator
1953 	 * to the head page instead of next.
1954 	 */
1955 	if (iter->head_page == cpu_buffer->reader_page)
1956 		iter->head_page = rb_set_head_page(cpu_buffer);
1957 	else
1958 		rb_inc_page(cpu_buffer, &iter->head_page);
1959 
1960 	iter->read_stamp = iter->head_page->page->time_stamp;
1961 	iter->head = 0;
1962 }
1963 
1964 /* Slow path, do not inline */
1965 static noinline struct ring_buffer_event *
1966 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1967 {
1968 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1969 
1970 	/* Not the first event on the page? */
1971 	if (rb_event_index(event)) {
1972 		event->time_delta = delta & TS_MASK;
1973 		event->array[0] = delta >> TS_SHIFT;
1974 	} else {
1975 		/* nope, just zero it */
1976 		event->time_delta = 0;
1977 		event->array[0] = 0;
1978 	}
1979 
1980 	return skip_time_extend(event);
1981 }
1982 
1983 /**
1984  * rb_update_event - update event type and data
1985  * @event: the event to update
1986  * @type: the type of event
1987  * @length: the size of the event field in the ring buffer
1988  *
1989  * Update the type and data fields of the event. The length
1990  * is the actual size that is written to the ring buffer,
1991  * and with this, we can determine what to place into the
1992  * data field.
1993  */
1994 static void
1995 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1996 		struct ring_buffer_event *event, unsigned length,
1997 		int add_timestamp, u64 delta)
1998 {
1999 	/* Only a commit updates the timestamp */
2000 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2001 		delta = 0;
2002 
2003 	/*
2004 	 * If we need to add a timestamp, then we
2005 	 * add it to the start of the resevered space.
2006 	 */
2007 	if (unlikely(add_timestamp)) {
2008 		event = rb_add_time_stamp(event, delta);
2009 		length -= RB_LEN_TIME_EXTEND;
2010 		delta = 0;
2011 	}
2012 
2013 	event->time_delta = delta;
2014 	length -= RB_EVNT_HDR_SIZE;
2015 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2016 		event->type_len = 0;
2017 		event->array[0] = length;
2018 	} else
2019 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2020 }
2021 
2022 /*
2023  * rb_handle_head_page - writer hit the head page
2024  *
2025  * Returns: +1 to retry page
2026  *           0 to continue
2027  *          -1 on error
2028  */
2029 static int
2030 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2031 		    struct buffer_page *tail_page,
2032 		    struct buffer_page *next_page)
2033 {
2034 	struct buffer_page *new_head;
2035 	int entries;
2036 	int type;
2037 	int ret;
2038 
2039 	entries = rb_page_entries(next_page);
2040 
2041 	/*
2042 	 * The hard part is here. We need to move the head
2043 	 * forward, and protect against both readers on
2044 	 * other CPUs and writers coming in via interrupts.
2045 	 */
2046 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2047 				       RB_PAGE_HEAD);
2048 
2049 	/*
2050 	 * type can be one of four:
2051 	 *  NORMAL - an interrupt already moved it for us
2052 	 *  HEAD   - we are the first to get here.
2053 	 *  UPDATE - we are the interrupt interrupting
2054 	 *           a current move.
2055 	 *  MOVED  - a reader on another CPU moved the next
2056 	 *           pointer to its reader page. Give up
2057 	 *           and try again.
2058 	 */
2059 
2060 	switch (type) {
2061 	case RB_PAGE_HEAD:
2062 		/*
2063 		 * We changed the head to UPDATE, thus
2064 		 * it is our responsibility to update
2065 		 * the counters.
2066 		 */
2067 		local_add(entries, &cpu_buffer->overrun);
2068 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2069 
2070 		/*
2071 		 * The entries will be zeroed out when we move the
2072 		 * tail page.
2073 		 */
2074 
2075 		/* still more to do */
2076 		break;
2077 
2078 	case RB_PAGE_UPDATE:
2079 		/*
2080 		 * This is an interrupt that interrupt the
2081 		 * previous update. Still more to do.
2082 		 */
2083 		break;
2084 	case RB_PAGE_NORMAL:
2085 		/*
2086 		 * An interrupt came in before the update
2087 		 * and processed this for us.
2088 		 * Nothing left to do.
2089 		 */
2090 		return 1;
2091 	case RB_PAGE_MOVED:
2092 		/*
2093 		 * The reader is on another CPU and just did
2094 		 * a swap with our next_page.
2095 		 * Try again.
2096 		 */
2097 		return 1;
2098 	default:
2099 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2100 		return -1;
2101 	}
2102 
2103 	/*
2104 	 * Now that we are here, the old head pointer is
2105 	 * set to UPDATE. This will keep the reader from
2106 	 * swapping the head page with the reader page.
2107 	 * The reader (on another CPU) will spin till
2108 	 * we are finished.
2109 	 *
2110 	 * We just need to protect against interrupts
2111 	 * doing the job. We will set the next pointer
2112 	 * to HEAD. After that, we set the old pointer
2113 	 * to NORMAL, but only if it was HEAD before.
2114 	 * otherwise we are an interrupt, and only
2115 	 * want the outer most commit to reset it.
2116 	 */
2117 	new_head = next_page;
2118 	rb_inc_page(cpu_buffer, &new_head);
2119 
2120 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2121 				    RB_PAGE_NORMAL);
2122 
2123 	/*
2124 	 * Valid returns are:
2125 	 *  HEAD   - an interrupt came in and already set it.
2126 	 *  NORMAL - One of two things:
2127 	 *            1) We really set it.
2128 	 *            2) A bunch of interrupts came in and moved
2129 	 *               the page forward again.
2130 	 */
2131 	switch (ret) {
2132 	case RB_PAGE_HEAD:
2133 	case RB_PAGE_NORMAL:
2134 		/* OK */
2135 		break;
2136 	default:
2137 		RB_WARN_ON(cpu_buffer, 1);
2138 		return -1;
2139 	}
2140 
2141 	/*
2142 	 * It is possible that an interrupt came in,
2143 	 * set the head up, then more interrupts came in
2144 	 * and moved it again. When we get back here,
2145 	 * the page would have been set to NORMAL but we
2146 	 * just set it back to HEAD.
2147 	 *
2148 	 * How do you detect this? Well, if that happened
2149 	 * the tail page would have moved.
2150 	 */
2151 	if (ret == RB_PAGE_NORMAL) {
2152 		/*
2153 		 * If the tail had moved passed next, then we need
2154 		 * to reset the pointer.
2155 		 */
2156 		if (cpu_buffer->tail_page != tail_page &&
2157 		    cpu_buffer->tail_page != next_page)
2158 			rb_head_page_set_normal(cpu_buffer, new_head,
2159 						next_page,
2160 						RB_PAGE_HEAD);
2161 	}
2162 
2163 	/*
2164 	 * If this was the outer most commit (the one that
2165 	 * changed the original pointer from HEAD to UPDATE),
2166 	 * then it is up to us to reset it to NORMAL.
2167 	 */
2168 	if (type == RB_PAGE_HEAD) {
2169 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2170 					      tail_page,
2171 					      RB_PAGE_UPDATE);
2172 		if (RB_WARN_ON(cpu_buffer,
2173 			       ret != RB_PAGE_UPDATE))
2174 			return -1;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static unsigned rb_calculate_event_length(unsigned length)
2181 {
2182 	struct ring_buffer_event event; /* Used only for sizeof array */
2183 
2184 	/* zero length can cause confusions */
2185 	if (!length)
2186 		length = 1;
2187 
2188 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2189 		length += sizeof(event.array[0]);
2190 
2191 	length += RB_EVNT_HDR_SIZE;
2192 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2193 
2194 	return length;
2195 }
2196 
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199 	      struct buffer_page *tail_page,
2200 	      unsigned long tail, unsigned long length)
2201 {
2202 	struct ring_buffer_event *event;
2203 
2204 	/*
2205 	 * Only the event that crossed the page boundary
2206 	 * must fill the old tail_page with padding.
2207 	 */
2208 	if (tail >= BUF_PAGE_SIZE) {
2209 		/*
2210 		 * If the page was filled, then we still need
2211 		 * to update the real_end. Reset it to zero
2212 		 * and the reader will ignore it.
2213 		 */
2214 		if (tail == BUF_PAGE_SIZE)
2215 			tail_page->real_end = 0;
2216 
2217 		local_sub(length, &tail_page->write);
2218 		return;
2219 	}
2220 
2221 	event = __rb_page_index(tail_page, tail);
2222 	kmemcheck_annotate_bitfield(event, bitfield);
2223 
2224 	/* account for padding bytes */
2225 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226 
2227 	/*
2228 	 * Save the original length to the meta data.
2229 	 * This will be used by the reader to add lost event
2230 	 * counter.
2231 	 */
2232 	tail_page->real_end = tail;
2233 
2234 	/*
2235 	 * If this event is bigger than the minimum size, then
2236 	 * we need to be careful that we don't subtract the
2237 	 * write counter enough to allow another writer to slip
2238 	 * in on this page.
2239 	 * We put in a discarded commit instead, to make sure
2240 	 * that this space is not used again.
2241 	 *
2242 	 * If we are less than the minimum size, we don't need to
2243 	 * worry about it.
2244 	 */
2245 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246 		/* No room for any events */
2247 
2248 		/* Mark the rest of the page with padding */
2249 		rb_event_set_padding(event);
2250 
2251 		/* Set the write back to the previous setting */
2252 		local_sub(length, &tail_page->write);
2253 		return;
2254 	}
2255 
2256 	/* Put in a discarded event */
2257 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258 	event->type_len = RINGBUF_TYPE_PADDING;
2259 	/* time delta must be non zero */
2260 	event->time_delta = 1;
2261 
2262 	/* Set write to end of buffer */
2263 	length = (tail + length) - BUF_PAGE_SIZE;
2264 	local_sub(length, &tail_page->write);
2265 }
2266 
2267 /*
2268  * This is the slow path, force gcc not to inline it.
2269  */
2270 static noinline struct ring_buffer_event *
2271 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2272 	     unsigned long length, unsigned long tail,
2273 	     struct buffer_page *tail_page, u64 ts)
2274 {
2275 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2276 	struct ring_buffer *buffer = cpu_buffer->buffer;
2277 	struct buffer_page *next_page;
2278 	int ret;
2279 
2280 	next_page = tail_page;
2281 
2282 	rb_inc_page(cpu_buffer, &next_page);
2283 
2284 	/*
2285 	 * If for some reason, we had an interrupt storm that made
2286 	 * it all the way around the buffer, bail, and warn
2287 	 * about it.
2288 	 */
2289 	if (unlikely(next_page == commit_page)) {
2290 		local_inc(&cpu_buffer->commit_overrun);
2291 		goto out_reset;
2292 	}
2293 
2294 	/*
2295 	 * This is where the fun begins!
2296 	 *
2297 	 * We are fighting against races between a reader that
2298 	 * could be on another CPU trying to swap its reader
2299 	 * page with the buffer head.
2300 	 *
2301 	 * We are also fighting against interrupts coming in and
2302 	 * moving the head or tail on us as well.
2303 	 *
2304 	 * If the next page is the head page then we have filled
2305 	 * the buffer, unless the commit page is still on the
2306 	 * reader page.
2307 	 */
2308 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2309 
2310 		/*
2311 		 * If the commit is not on the reader page, then
2312 		 * move the header page.
2313 		 */
2314 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2315 			/*
2316 			 * If we are not in overwrite mode,
2317 			 * this is easy, just stop here.
2318 			 */
2319 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2320 				local_inc(&cpu_buffer->dropped_events);
2321 				goto out_reset;
2322 			}
2323 
2324 			ret = rb_handle_head_page(cpu_buffer,
2325 						  tail_page,
2326 						  next_page);
2327 			if (ret < 0)
2328 				goto out_reset;
2329 			if (ret)
2330 				goto out_again;
2331 		} else {
2332 			/*
2333 			 * We need to be careful here too. The
2334 			 * commit page could still be on the reader
2335 			 * page. We could have a small buffer, and
2336 			 * have filled up the buffer with events
2337 			 * from interrupts and such, and wrapped.
2338 			 *
2339 			 * Note, if the tail page is also the on the
2340 			 * reader_page, we let it move out.
2341 			 */
2342 			if (unlikely((cpu_buffer->commit_page !=
2343 				      cpu_buffer->tail_page) &&
2344 				     (cpu_buffer->commit_page ==
2345 				      cpu_buffer->reader_page))) {
2346 				local_inc(&cpu_buffer->commit_overrun);
2347 				goto out_reset;
2348 			}
2349 		}
2350 	}
2351 
2352 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2353 	if (ret) {
2354 		/*
2355 		 * Nested commits always have zero deltas, so
2356 		 * just reread the time stamp
2357 		 */
2358 		ts = rb_time_stamp(buffer);
2359 		next_page->page->time_stamp = ts;
2360 	}
2361 
2362  out_again:
2363 
2364 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2365 
2366 	/* fail and let the caller try again */
2367 	return ERR_PTR(-EAGAIN);
2368 
2369  out_reset:
2370 	/* reset write */
2371 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2372 
2373 	return NULL;
2374 }
2375 
2376 static struct ring_buffer_event *
2377 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2378 		  unsigned long length, u64 ts,
2379 		  u64 delta, int add_timestamp)
2380 {
2381 	struct buffer_page *tail_page;
2382 	struct ring_buffer_event *event;
2383 	unsigned long tail, write;
2384 
2385 	/*
2386 	 * If the time delta since the last event is too big to
2387 	 * hold in the time field of the event, then we append a
2388 	 * TIME EXTEND event ahead of the data event.
2389 	 */
2390 	if (unlikely(add_timestamp))
2391 		length += RB_LEN_TIME_EXTEND;
2392 
2393 	tail_page = cpu_buffer->tail_page;
2394 	write = local_add_return(length, &tail_page->write);
2395 
2396 	/* set write to only the index of the write */
2397 	write &= RB_WRITE_MASK;
2398 	tail = write - length;
2399 
2400 	/*
2401 	 * If this is the first commit on the page, then it has the same
2402 	 * timestamp as the page itself.
2403 	 */
2404 	if (!tail)
2405 		delta = 0;
2406 
2407 	/* See if we shot pass the end of this buffer page */
2408 	if (unlikely(write > BUF_PAGE_SIZE))
2409 		return rb_move_tail(cpu_buffer, length, tail,
2410 				    tail_page, ts);
2411 
2412 	/* We reserved something on the buffer */
2413 
2414 	event = __rb_page_index(tail_page, tail);
2415 	kmemcheck_annotate_bitfield(event, bitfield);
2416 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2417 
2418 	local_inc(&tail_page->entries);
2419 
2420 	/*
2421 	 * If this is the first commit on the page, then update
2422 	 * its timestamp.
2423 	 */
2424 	if (!tail)
2425 		tail_page->page->time_stamp = ts;
2426 
2427 	/* account for these added bytes */
2428 	local_add(length, &cpu_buffer->entries_bytes);
2429 
2430 	return event;
2431 }
2432 
2433 static inline int
2434 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2435 		  struct ring_buffer_event *event)
2436 {
2437 	unsigned long new_index, old_index;
2438 	struct buffer_page *bpage;
2439 	unsigned long index;
2440 	unsigned long addr;
2441 
2442 	new_index = rb_event_index(event);
2443 	old_index = new_index + rb_event_ts_length(event);
2444 	addr = (unsigned long)event;
2445 	addr &= PAGE_MASK;
2446 
2447 	bpage = cpu_buffer->tail_page;
2448 
2449 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2450 		unsigned long write_mask =
2451 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2452 		unsigned long event_length = rb_event_length(event);
2453 		/*
2454 		 * This is on the tail page. It is possible that
2455 		 * a write could come in and move the tail page
2456 		 * and write to the next page. That is fine
2457 		 * because we just shorten what is on this page.
2458 		 */
2459 		old_index += write_mask;
2460 		new_index += write_mask;
2461 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2462 		if (index == old_index) {
2463 			/* update counters */
2464 			local_sub(event_length, &cpu_buffer->entries_bytes);
2465 			return 1;
2466 		}
2467 	}
2468 
2469 	/* could not discard */
2470 	return 0;
2471 }
2472 
2473 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2474 {
2475 	local_inc(&cpu_buffer->committing);
2476 	local_inc(&cpu_buffer->commits);
2477 }
2478 
2479 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2480 {
2481 	unsigned long commits;
2482 
2483 	if (RB_WARN_ON(cpu_buffer,
2484 		       !local_read(&cpu_buffer->committing)))
2485 		return;
2486 
2487  again:
2488 	commits = local_read(&cpu_buffer->commits);
2489 	/* synchronize with interrupts */
2490 	barrier();
2491 	if (local_read(&cpu_buffer->committing) == 1)
2492 		rb_set_commit_to_write(cpu_buffer);
2493 
2494 	local_dec(&cpu_buffer->committing);
2495 
2496 	/* synchronize with interrupts */
2497 	barrier();
2498 
2499 	/*
2500 	 * Need to account for interrupts coming in between the
2501 	 * updating of the commit page and the clearing of the
2502 	 * committing counter.
2503 	 */
2504 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2505 	    !local_read(&cpu_buffer->committing)) {
2506 		local_inc(&cpu_buffer->committing);
2507 		goto again;
2508 	}
2509 }
2510 
2511 static struct ring_buffer_event *
2512 rb_reserve_next_event(struct ring_buffer *buffer,
2513 		      struct ring_buffer_per_cpu *cpu_buffer,
2514 		      unsigned long length)
2515 {
2516 	struct ring_buffer_event *event;
2517 	u64 ts, delta;
2518 	int nr_loops = 0;
2519 	int add_timestamp;
2520 	u64 diff;
2521 
2522 	rb_start_commit(cpu_buffer);
2523 
2524 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2525 	/*
2526 	 * Due to the ability to swap a cpu buffer from a buffer
2527 	 * it is possible it was swapped before we committed.
2528 	 * (committing stops a swap). We check for it here and
2529 	 * if it happened, we have to fail the write.
2530 	 */
2531 	barrier();
2532 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2533 		local_dec(&cpu_buffer->committing);
2534 		local_dec(&cpu_buffer->commits);
2535 		return NULL;
2536 	}
2537 #endif
2538 
2539 	length = rb_calculate_event_length(length);
2540  again:
2541 	add_timestamp = 0;
2542 	delta = 0;
2543 
2544 	/*
2545 	 * We allow for interrupts to reenter here and do a trace.
2546 	 * If one does, it will cause this original code to loop
2547 	 * back here. Even with heavy interrupts happening, this
2548 	 * should only happen a few times in a row. If this happens
2549 	 * 1000 times in a row, there must be either an interrupt
2550 	 * storm or we have something buggy.
2551 	 * Bail!
2552 	 */
2553 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2554 		goto out_fail;
2555 
2556 	ts = rb_time_stamp(cpu_buffer->buffer);
2557 	diff = ts - cpu_buffer->write_stamp;
2558 
2559 	/* make sure this diff is calculated here */
2560 	barrier();
2561 
2562 	/* Did the write stamp get updated already? */
2563 	if (likely(ts >= cpu_buffer->write_stamp)) {
2564 		delta = diff;
2565 		if (unlikely(test_time_stamp(delta))) {
2566 			int local_clock_stable = 1;
2567 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2568 			local_clock_stable = sched_clock_stable();
2569 #endif
2570 			WARN_ONCE(delta > (1ULL << 59),
2571 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2572 				  (unsigned long long)delta,
2573 				  (unsigned long long)ts,
2574 				  (unsigned long long)cpu_buffer->write_stamp,
2575 				  local_clock_stable ? "" :
2576 				  "If you just came from a suspend/resume,\n"
2577 				  "please switch to the trace global clock:\n"
2578 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2579 			add_timestamp = 1;
2580 		}
2581 	}
2582 
2583 	event = __rb_reserve_next(cpu_buffer, length, ts,
2584 				  delta, add_timestamp);
2585 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2586 		goto again;
2587 
2588 	if (!event)
2589 		goto out_fail;
2590 
2591 	return event;
2592 
2593  out_fail:
2594 	rb_end_commit(cpu_buffer);
2595 	return NULL;
2596 }
2597 
2598 #ifdef CONFIG_TRACING
2599 
2600 /*
2601  * The lock and unlock are done within a preempt disable section.
2602  * The current_context per_cpu variable can only be modified
2603  * by the current task between lock and unlock. But it can
2604  * be modified more than once via an interrupt. To pass this
2605  * information from the lock to the unlock without having to
2606  * access the 'in_interrupt()' functions again (which do show
2607  * a bit of overhead in something as critical as function tracing,
2608  * we use a bitmask trick.
2609  *
2610  *  bit 0 =  NMI context
2611  *  bit 1 =  IRQ context
2612  *  bit 2 =  SoftIRQ context
2613  *  bit 3 =  normal context.
2614  *
2615  * This works because this is the order of contexts that can
2616  * preempt other contexts. A SoftIRQ never preempts an IRQ
2617  * context.
2618  *
2619  * When the context is determined, the corresponding bit is
2620  * checked and set (if it was set, then a recursion of that context
2621  * happened).
2622  *
2623  * On unlock, we need to clear this bit. To do so, just subtract
2624  * 1 from the current_context and AND it to itself.
2625  *
2626  * (binary)
2627  *  101 - 1 = 100
2628  *  101 & 100 = 100 (clearing bit zero)
2629  *
2630  *  1010 - 1 = 1001
2631  *  1010 & 1001 = 1000 (clearing bit 1)
2632  *
2633  * The least significant bit can be cleared this way, and it
2634  * just so happens that it is the same bit corresponding to
2635  * the current context.
2636  */
2637 static DEFINE_PER_CPU(unsigned int, current_context);
2638 
2639 static __always_inline int trace_recursive_lock(void)
2640 {
2641 	unsigned int val = this_cpu_read(current_context);
2642 	int bit;
2643 
2644 	if (in_interrupt()) {
2645 		if (in_nmi())
2646 			bit = 0;
2647 		else if (in_irq())
2648 			bit = 1;
2649 		else
2650 			bit = 2;
2651 	} else
2652 		bit = 3;
2653 
2654 	if (unlikely(val & (1 << bit)))
2655 		return 1;
2656 
2657 	val |= (1 << bit);
2658 	this_cpu_write(current_context, val);
2659 
2660 	return 0;
2661 }
2662 
2663 static __always_inline void trace_recursive_unlock(void)
2664 {
2665 	unsigned int val = this_cpu_read(current_context);
2666 
2667 	val--;
2668 	val &= this_cpu_read(current_context);
2669 	this_cpu_write(current_context, val);
2670 }
2671 
2672 #else
2673 
2674 #define trace_recursive_lock()		(0)
2675 #define trace_recursive_unlock()	do { } while (0)
2676 
2677 #endif
2678 
2679 /**
2680  * ring_buffer_lock_reserve - reserve a part of the buffer
2681  * @buffer: the ring buffer to reserve from
2682  * @length: the length of the data to reserve (excluding event header)
2683  *
2684  * Returns a reseverd event on the ring buffer to copy directly to.
2685  * The user of this interface will need to get the body to write into
2686  * and can use the ring_buffer_event_data() interface.
2687  *
2688  * The length is the length of the data needed, not the event length
2689  * which also includes the event header.
2690  *
2691  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2692  * If NULL is returned, then nothing has been allocated or locked.
2693  */
2694 struct ring_buffer_event *
2695 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2696 {
2697 	struct ring_buffer_per_cpu *cpu_buffer;
2698 	struct ring_buffer_event *event;
2699 	int cpu;
2700 
2701 	if (ring_buffer_flags != RB_BUFFERS_ON)
2702 		return NULL;
2703 
2704 	/* If we are tracing schedule, we don't want to recurse */
2705 	preempt_disable_notrace();
2706 
2707 	if (atomic_read(&buffer->record_disabled))
2708 		goto out_nocheck;
2709 
2710 	if (trace_recursive_lock())
2711 		goto out_nocheck;
2712 
2713 	cpu = raw_smp_processor_id();
2714 
2715 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2716 		goto out;
2717 
2718 	cpu_buffer = buffer->buffers[cpu];
2719 
2720 	if (atomic_read(&cpu_buffer->record_disabled))
2721 		goto out;
2722 
2723 	if (length > BUF_MAX_DATA_SIZE)
2724 		goto out;
2725 
2726 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2727 	if (!event)
2728 		goto out;
2729 
2730 	return event;
2731 
2732  out:
2733 	trace_recursive_unlock();
2734 
2735  out_nocheck:
2736 	preempt_enable_notrace();
2737 	return NULL;
2738 }
2739 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2740 
2741 static void
2742 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2743 		      struct ring_buffer_event *event)
2744 {
2745 	u64 delta;
2746 
2747 	/*
2748 	 * The event first in the commit queue updates the
2749 	 * time stamp.
2750 	 */
2751 	if (rb_event_is_commit(cpu_buffer, event)) {
2752 		/*
2753 		 * A commit event that is first on a page
2754 		 * updates the write timestamp with the page stamp
2755 		 */
2756 		if (!rb_event_index(event))
2757 			cpu_buffer->write_stamp =
2758 				cpu_buffer->commit_page->page->time_stamp;
2759 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2760 			delta = event->array[0];
2761 			delta <<= TS_SHIFT;
2762 			delta += event->time_delta;
2763 			cpu_buffer->write_stamp += delta;
2764 		} else
2765 			cpu_buffer->write_stamp += event->time_delta;
2766 	}
2767 }
2768 
2769 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2770 		      struct ring_buffer_event *event)
2771 {
2772 	local_inc(&cpu_buffer->entries);
2773 	rb_update_write_stamp(cpu_buffer, event);
2774 	rb_end_commit(cpu_buffer);
2775 }
2776 
2777 static __always_inline void
2778 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2779 {
2780 	if (buffer->irq_work.waiters_pending) {
2781 		buffer->irq_work.waiters_pending = false;
2782 		/* irq_work_queue() supplies it's own memory barriers */
2783 		irq_work_queue(&buffer->irq_work.work);
2784 	}
2785 
2786 	if (cpu_buffer->irq_work.waiters_pending) {
2787 		cpu_buffer->irq_work.waiters_pending = false;
2788 		/* irq_work_queue() supplies it's own memory barriers */
2789 		irq_work_queue(&cpu_buffer->irq_work.work);
2790 	}
2791 }
2792 
2793 /**
2794  * ring_buffer_unlock_commit - commit a reserved
2795  * @buffer: The buffer to commit to
2796  * @event: The event pointer to commit.
2797  *
2798  * This commits the data to the ring buffer, and releases any locks held.
2799  *
2800  * Must be paired with ring_buffer_lock_reserve.
2801  */
2802 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2803 			      struct ring_buffer_event *event)
2804 {
2805 	struct ring_buffer_per_cpu *cpu_buffer;
2806 	int cpu = raw_smp_processor_id();
2807 
2808 	cpu_buffer = buffer->buffers[cpu];
2809 
2810 	rb_commit(cpu_buffer, event);
2811 
2812 	rb_wakeups(buffer, cpu_buffer);
2813 
2814 	trace_recursive_unlock();
2815 
2816 	preempt_enable_notrace();
2817 
2818 	return 0;
2819 }
2820 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2821 
2822 static inline void rb_event_discard(struct ring_buffer_event *event)
2823 {
2824 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2825 		event = skip_time_extend(event);
2826 
2827 	/* array[0] holds the actual length for the discarded event */
2828 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2829 	event->type_len = RINGBUF_TYPE_PADDING;
2830 	/* time delta must be non zero */
2831 	if (!event->time_delta)
2832 		event->time_delta = 1;
2833 }
2834 
2835 /*
2836  * Decrement the entries to the page that an event is on.
2837  * The event does not even need to exist, only the pointer
2838  * to the page it is on. This may only be called before the commit
2839  * takes place.
2840  */
2841 static inline void
2842 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2843 		   struct ring_buffer_event *event)
2844 {
2845 	unsigned long addr = (unsigned long)event;
2846 	struct buffer_page *bpage = cpu_buffer->commit_page;
2847 	struct buffer_page *start;
2848 
2849 	addr &= PAGE_MASK;
2850 
2851 	/* Do the likely case first */
2852 	if (likely(bpage->page == (void *)addr)) {
2853 		local_dec(&bpage->entries);
2854 		return;
2855 	}
2856 
2857 	/*
2858 	 * Because the commit page may be on the reader page we
2859 	 * start with the next page and check the end loop there.
2860 	 */
2861 	rb_inc_page(cpu_buffer, &bpage);
2862 	start = bpage;
2863 	do {
2864 		if (bpage->page == (void *)addr) {
2865 			local_dec(&bpage->entries);
2866 			return;
2867 		}
2868 		rb_inc_page(cpu_buffer, &bpage);
2869 	} while (bpage != start);
2870 
2871 	/* commit not part of this buffer?? */
2872 	RB_WARN_ON(cpu_buffer, 1);
2873 }
2874 
2875 /**
2876  * ring_buffer_commit_discard - discard an event that has not been committed
2877  * @buffer: the ring buffer
2878  * @event: non committed event to discard
2879  *
2880  * Sometimes an event that is in the ring buffer needs to be ignored.
2881  * This function lets the user discard an event in the ring buffer
2882  * and then that event will not be read later.
2883  *
2884  * This function only works if it is called before the the item has been
2885  * committed. It will try to free the event from the ring buffer
2886  * if another event has not been added behind it.
2887  *
2888  * If another event has been added behind it, it will set the event
2889  * up as discarded, and perform the commit.
2890  *
2891  * If this function is called, do not call ring_buffer_unlock_commit on
2892  * the event.
2893  */
2894 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2895 				struct ring_buffer_event *event)
2896 {
2897 	struct ring_buffer_per_cpu *cpu_buffer;
2898 	int cpu;
2899 
2900 	/* The event is discarded regardless */
2901 	rb_event_discard(event);
2902 
2903 	cpu = smp_processor_id();
2904 	cpu_buffer = buffer->buffers[cpu];
2905 
2906 	/*
2907 	 * This must only be called if the event has not been
2908 	 * committed yet. Thus we can assume that preemption
2909 	 * is still disabled.
2910 	 */
2911 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2912 
2913 	rb_decrement_entry(cpu_buffer, event);
2914 	if (rb_try_to_discard(cpu_buffer, event))
2915 		goto out;
2916 
2917 	/*
2918 	 * The commit is still visible by the reader, so we
2919 	 * must still update the timestamp.
2920 	 */
2921 	rb_update_write_stamp(cpu_buffer, event);
2922  out:
2923 	rb_end_commit(cpu_buffer);
2924 
2925 	trace_recursive_unlock();
2926 
2927 	preempt_enable_notrace();
2928 
2929 }
2930 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2931 
2932 /**
2933  * ring_buffer_write - write data to the buffer without reserving
2934  * @buffer: The ring buffer to write to.
2935  * @length: The length of the data being written (excluding the event header)
2936  * @data: The data to write to the buffer.
2937  *
2938  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2939  * one function. If you already have the data to write to the buffer, it
2940  * may be easier to simply call this function.
2941  *
2942  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2943  * and not the length of the event which would hold the header.
2944  */
2945 int ring_buffer_write(struct ring_buffer *buffer,
2946 		      unsigned long length,
2947 		      void *data)
2948 {
2949 	struct ring_buffer_per_cpu *cpu_buffer;
2950 	struct ring_buffer_event *event;
2951 	void *body;
2952 	int ret = -EBUSY;
2953 	int cpu;
2954 
2955 	if (ring_buffer_flags != RB_BUFFERS_ON)
2956 		return -EBUSY;
2957 
2958 	preempt_disable_notrace();
2959 
2960 	if (atomic_read(&buffer->record_disabled))
2961 		goto out;
2962 
2963 	cpu = raw_smp_processor_id();
2964 
2965 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2966 		goto out;
2967 
2968 	cpu_buffer = buffer->buffers[cpu];
2969 
2970 	if (atomic_read(&cpu_buffer->record_disabled))
2971 		goto out;
2972 
2973 	if (length > BUF_MAX_DATA_SIZE)
2974 		goto out;
2975 
2976 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2977 	if (!event)
2978 		goto out;
2979 
2980 	body = rb_event_data(event);
2981 
2982 	memcpy(body, data, length);
2983 
2984 	rb_commit(cpu_buffer, event);
2985 
2986 	rb_wakeups(buffer, cpu_buffer);
2987 
2988 	ret = 0;
2989  out:
2990 	preempt_enable_notrace();
2991 
2992 	return ret;
2993 }
2994 EXPORT_SYMBOL_GPL(ring_buffer_write);
2995 
2996 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2997 {
2998 	struct buffer_page *reader = cpu_buffer->reader_page;
2999 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3000 	struct buffer_page *commit = cpu_buffer->commit_page;
3001 
3002 	/* In case of error, head will be NULL */
3003 	if (unlikely(!head))
3004 		return 1;
3005 
3006 	return reader->read == rb_page_commit(reader) &&
3007 		(commit == reader ||
3008 		 (commit == head &&
3009 		  head->read == rb_page_commit(commit)));
3010 }
3011 
3012 /**
3013  * ring_buffer_record_disable - stop all writes into the buffer
3014  * @buffer: The ring buffer to stop writes to.
3015  *
3016  * This prevents all writes to the buffer. Any attempt to write
3017  * to the buffer after this will fail and return NULL.
3018  *
3019  * The caller should call synchronize_sched() after this.
3020  */
3021 void ring_buffer_record_disable(struct ring_buffer *buffer)
3022 {
3023 	atomic_inc(&buffer->record_disabled);
3024 }
3025 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3026 
3027 /**
3028  * ring_buffer_record_enable - enable writes to the buffer
3029  * @buffer: The ring buffer to enable writes
3030  *
3031  * Note, multiple disables will need the same number of enables
3032  * to truly enable the writing (much like preempt_disable).
3033  */
3034 void ring_buffer_record_enable(struct ring_buffer *buffer)
3035 {
3036 	atomic_dec(&buffer->record_disabled);
3037 }
3038 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3039 
3040 /**
3041  * ring_buffer_record_off - stop all writes into the buffer
3042  * @buffer: The ring buffer to stop writes to.
3043  *
3044  * This prevents all writes to the buffer. Any attempt to write
3045  * to the buffer after this will fail and return NULL.
3046  *
3047  * This is different than ring_buffer_record_disable() as
3048  * it works like an on/off switch, where as the disable() version
3049  * must be paired with a enable().
3050  */
3051 void ring_buffer_record_off(struct ring_buffer *buffer)
3052 {
3053 	unsigned int rd;
3054 	unsigned int new_rd;
3055 
3056 	do {
3057 		rd = atomic_read(&buffer->record_disabled);
3058 		new_rd = rd | RB_BUFFER_OFF;
3059 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3060 }
3061 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3062 
3063 /**
3064  * ring_buffer_record_on - restart writes into the buffer
3065  * @buffer: The ring buffer to start writes to.
3066  *
3067  * This enables all writes to the buffer that was disabled by
3068  * ring_buffer_record_off().
3069  *
3070  * This is different than ring_buffer_record_enable() as
3071  * it works like an on/off switch, where as the enable() version
3072  * must be paired with a disable().
3073  */
3074 void ring_buffer_record_on(struct ring_buffer *buffer)
3075 {
3076 	unsigned int rd;
3077 	unsigned int new_rd;
3078 
3079 	do {
3080 		rd = atomic_read(&buffer->record_disabled);
3081 		new_rd = rd & ~RB_BUFFER_OFF;
3082 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3083 }
3084 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3085 
3086 /**
3087  * ring_buffer_record_is_on - return true if the ring buffer can write
3088  * @buffer: The ring buffer to see if write is enabled
3089  *
3090  * Returns true if the ring buffer is in a state that it accepts writes.
3091  */
3092 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3093 {
3094 	return !atomic_read(&buffer->record_disabled);
3095 }
3096 
3097 /**
3098  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3099  * @buffer: The ring buffer to stop writes to.
3100  * @cpu: The CPU buffer to stop
3101  *
3102  * This prevents all writes to the buffer. Any attempt to write
3103  * to the buffer after this will fail and return NULL.
3104  *
3105  * The caller should call synchronize_sched() after this.
3106  */
3107 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3108 {
3109 	struct ring_buffer_per_cpu *cpu_buffer;
3110 
3111 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3112 		return;
3113 
3114 	cpu_buffer = buffer->buffers[cpu];
3115 	atomic_inc(&cpu_buffer->record_disabled);
3116 }
3117 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3118 
3119 /**
3120  * ring_buffer_record_enable_cpu - enable writes to the buffer
3121  * @buffer: The ring buffer to enable writes
3122  * @cpu: The CPU to enable.
3123  *
3124  * Note, multiple disables will need the same number of enables
3125  * to truly enable the writing (much like preempt_disable).
3126  */
3127 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3128 {
3129 	struct ring_buffer_per_cpu *cpu_buffer;
3130 
3131 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3132 		return;
3133 
3134 	cpu_buffer = buffer->buffers[cpu];
3135 	atomic_dec(&cpu_buffer->record_disabled);
3136 }
3137 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3138 
3139 /*
3140  * The total entries in the ring buffer is the running counter
3141  * of entries entered into the ring buffer, minus the sum of
3142  * the entries read from the ring buffer and the number of
3143  * entries that were overwritten.
3144  */
3145 static inline unsigned long
3146 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3147 {
3148 	return local_read(&cpu_buffer->entries) -
3149 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3150 }
3151 
3152 /**
3153  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3154  * @buffer: The ring buffer
3155  * @cpu: The per CPU buffer to read from.
3156  */
3157 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3158 {
3159 	unsigned long flags;
3160 	struct ring_buffer_per_cpu *cpu_buffer;
3161 	struct buffer_page *bpage;
3162 	u64 ret = 0;
3163 
3164 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3165 		return 0;
3166 
3167 	cpu_buffer = buffer->buffers[cpu];
3168 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3169 	/*
3170 	 * if the tail is on reader_page, oldest time stamp is on the reader
3171 	 * page
3172 	 */
3173 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3174 		bpage = cpu_buffer->reader_page;
3175 	else
3176 		bpage = rb_set_head_page(cpu_buffer);
3177 	if (bpage)
3178 		ret = bpage->page->time_stamp;
3179 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3180 
3181 	return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3184 
3185 /**
3186  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3187  * @buffer: The ring buffer
3188  * @cpu: The per CPU buffer to read from.
3189  */
3190 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3191 {
3192 	struct ring_buffer_per_cpu *cpu_buffer;
3193 	unsigned long ret;
3194 
3195 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3196 		return 0;
3197 
3198 	cpu_buffer = buffer->buffers[cpu];
3199 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3200 
3201 	return ret;
3202 }
3203 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3204 
3205 /**
3206  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3207  * @buffer: The ring buffer
3208  * @cpu: The per CPU buffer to get the entries from.
3209  */
3210 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3211 {
3212 	struct ring_buffer_per_cpu *cpu_buffer;
3213 
3214 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3215 		return 0;
3216 
3217 	cpu_buffer = buffer->buffers[cpu];
3218 
3219 	return rb_num_of_entries(cpu_buffer);
3220 }
3221 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3222 
3223 /**
3224  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3225  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3226  * @buffer: The ring buffer
3227  * @cpu: The per CPU buffer to get the number of overruns from
3228  */
3229 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3230 {
3231 	struct ring_buffer_per_cpu *cpu_buffer;
3232 	unsigned long ret;
3233 
3234 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3235 		return 0;
3236 
3237 	cpu_buffer = buffer->buffers[cpu];
3238 	ret = local_read(&cpu_buffer->overrun);
3239 
3240 	return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3243 
3244 /**
3245  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3246  * commits failing due to the buffer wrapping around while there are uncommitted
3247  * events, such as during an interrupt storm.
3248  * @buffer: The ring buffer
3249  * @cpu: The per CPU buffer to get the number of overruns from
3250  */
3251 unsigned long
3252 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3253 {
3254 	struct ring_buffer_per_cpu *cpu_buffer;
3255 	unsigned long ret;
3256 
3257 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3258 		return 0;
3259 
3260 	cpu_buffer = buffer->buffers[cpu];
3261 	ret = local_read(&cpu_buffer->commit_overrun);
3262 
3263 	return ret;
3264 }
3265 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3266 
3267 /**
3268  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3269  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3270  * @buffer: The ring buffer
3271  * @cpu: The per CPU buffer to get the number of overruns from
3272  */
3273 unsigned long
3274 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3275 {
3276 	struct ring_buffer_per_cpu *cpu_buffer;
3277 	unsigned long ret;
3278 
3279 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3280 		return 0;
3281 
3282 	cpu_buffer = buffer->buffers[cpu];
3283 	ret = local_read(&cpu_buffer->dropped_events);
3284 
3285 	return ret;
3286 }
3287 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3288 
3289 /**
3290  * ring_buffer_read_events_cpu - get the number of events successfully read
3291  * @buffer: The ring buffer
3292  * @cpu: The per CPU buffer to get the number of events read
3293  */
3294 unsigned long
3295 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3296 {
3297 	struct ring_buffer_per_cpu *cpu_buffer;
3298 
3299 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3300 		return 0;
3301 
3302 	cpu_buffer = buffer->buffers[cpu];
3303 	return cpu_buffer->read;
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3306 
3307 /**
3308  * ring_buffer_entries - get the number of entries in a buffer
3309  * @buffer: The ring buffer
3310  *
3311  * Returns the total number of entries in the ring buffer
3312  * (all CPU entries)
3313  */
3314 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3315 {
3316 	struct ring_buffer_per_cpu *cpu_buffer;
3317 	unsigned long entries = 0;
3318 	int cpu;
3319 
3320 	/* if you care about this being correct, lock the buffer */
3321 	for_each_buffer_cpu(buffer, cpu) {
3322 		cpu_buffer = buffer->buffers[cpu];
3323 		entries += rb_num_of_entries(cpu_buffer);
3324 	}
3325 
3326 	return entries;
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3329 
3330 /**
3331  * ring_buffer_overruns - get the number of overruns in buffer
3332  * @buffer: The ring buffer
3333  *
3334  * Returns the total number of overruns in the ring buffer
3335  * (all CPU entries)
3336  */
3337 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3338 {
3339 	struct ring_buffer_per_cpu *cpu_buffer;
3340 	unsigned long overruns = 0;
3341 	int cpu;
3342 
3343 	/* if you care about this being correct, lock the buffer */
3344 	for_each_buffer_cpu(buffer, cpu) {
3345 		cpu_buffer = buffer->buffers[cpu];
3346 		overruns += local_read(&cpu_buffer->overrun);
3347 	}
3348 
3349 	return overruns;
3350 }
3351 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3352 
3353 static void rb_iter_reset(struct ring_buffer_iter *iter)
3354 {
3355 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3356 
3357 	/* Iterator usage is expected to have record disabled */
3358 	iter->head_page = cpu_buffer->reader_page;
3359 	iter->head = cpu_buffer->reader_page->read;
3360 
3361 	iter->cache_reader_page = iter->head_page;
3362 	iter->cache_read = iter->head;
3363 
3364 	if (iter->head)
3365 		iter->read_stamp = cpu_buffer->read_stamp;
3366 	else
3367 		iter->read_stamp = iter->head_page->page->time_stamp;
3368 }
3369 
3370 /**
3371  * ring_buffer_iter_reset - reset an iterator
3372  * @iter: The iterator to reset
3373  *
3374  * Resets the iterator, so that it will start from the beginning
3375  * again.
3376  */
3377 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3378 {
3379 	struct ring_buffer_per_cpu *cpu_buffer;
3380 	unsigned long flags;
3381 
3382 	if (!iter)
3383 		return;
3384 
3385 	cpu_buffer = iter->cpu_buffer;
3386 
3387 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3388 	rb_iter_reset(iter);
3389 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3390 }
3391 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3392 
3393 /**
3394  * ring_buffer_iter_empty - check if an iterator has no more to read
3395  * @iter: The iterator to check
3396  */
3397 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3398 {
3399 	struct ring_buffer_per_cpu *cpu_buffer;
3400 
3401 	cpu_buffer = iter->cpu_buffer;
3402 
3403 	return iter->head_page == cpu_buffer->commit_page &&
3404 		iter->head == rb_commit_index(cpu_buffer);
3405 }
3406 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3407 
3408 static void
3409 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3410 		     struct ring_buffer_event *event)
3411 {
3412 	u64 delta;
3413 
3414 	switch (event->type_len) {
3415 	case RINGBUF_TYPE_PADDING:
3416 		return;
3417 
3418 	case RINGBUF_TYPE_TIME_EXTEND:
3419 		delta = event->array[0];
3420 		delta <<= TS_SHIFT;
3421 		delta += event->time_delta;
3422 		cpu_buffer->read_stamp += delta;
3423 		return;
3424 
3425 	case RINGBUF_TYPE_TIME_STAMP:
3426 		/* FIXME: not implemented */
3427 		return;
3428 
3429 	case RINGBUF_TYPE_DATA:
3430 		cpu_buffer->read_stamp += event->time_delta;
3431 		return;
3432 
3433 	default:
3434 		BUG();
3435 	}
3436 	return;
3437 }
3438 
3439 static void
3440 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3441 			  struct ring_buffer_event *event)
3442 {
3443 	u64 delta;
3444 
3445 	switch (event->type_len) {
3446 	case RINGBUF_TYPE_PADDING:
3447 		return;
3448 
3449 	case RINGBUF_TYPE_TIME_EXTEND:
3450 		delta = event->array[0];
3451 		delta <<= TS_SHIFT;
3452 		delta += event->time_delta;
3453 		iter->read_stamp += delta;
3454 		return;
3455 
3456 	case RINGBUF_TYPE_TIME_STAMP:
3457 		/* FIXME: not implemented */
3458 		return;
3459 
3460 	case RINGBUF_TYPE_DATA:
3461 		iter->read_stamp += event->time_delta;
3462 		return;
3463 
3464 	default:
3465 		BUG();
3466 	}
3467 	return;
3468 }
3469 
3470 static struct buffer_page *
3471 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3472 {
3473 	struct buffer_page *reader = NULL;
3474 	unsigned long overwrite;
3475 	unsigned long flags;
3476 	int nr_loops = 0;
3477 	int ret;
3478 
3479 	local_irq_save(flags);
3480 	arch_spin_lock(&cpu_buffer->lock);
3481 
3482  again:
3483 	/*
3484 	 * This should normally only loop twice. But because the
3485 	 * start of the reader inserts an empty page, it causes
3486 	 * a case where we will loop three times. There should be no
3487 	 * reason to loop four times (that I know of).
3488 	 */
3489 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3490 		reader = NULL;
3491 		goto out;
3492 	}
3493 
3494 	reader = cpu_buffer->reader_page;
3495 
3496 	/* If there's more to read, return this page */
3497 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3498 		goto out;
3499 
3500 	/* Never should we have an index greater than the size */
3501 	if (RB_WARN_ON(cpu_buffer,
3502 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3503 		goto out;
3504 
3505 	/* check if we caught up to the tail */
3506 	reader = NULL;
3507 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3508 		goto out;
3509 
3510 	/* Don't bother swapping if the ring buffer is empty */
3511 	if (rb_num_of_entries(cpu_buffer) == 0)
3512 		goto out;
3513 
3514 	/*
3515 	 * Reset the reader page to size zero.
3516 	 */
3517 	local_set(&cpu_buffer->reader_page->write, 0);
3518 	local_set(&cpu_buffer->reader_page->entries, 0);
3519 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3520 	cpu_buffer->reader_page->real_end = 0;
3521 
3522  spin:
3523 	/*
3524 	 * Splice the empty reader page into the list around the head.
3525 	 */
3526 	reader = rb_set_head_page(cpu_buffer);
3527 	if (!reader)
3528 		goto out;
3529 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3530 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3531 
3532 	/*
3533 	 * cpu_buffer->pages just needs to point to the buffer, it
3534 	 *  has no specific buffer page to point to. Lets move it out
3535 	 *  of our way so we don't accidentally swap it.
3536 	 */
3537 	cpu_buffer->pages = reader->list.prev;
3538 
3539 	/* The reader page will be pointing to the new head */
3540 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3541 
3542 	/*
3543 	 * We want to make sure we read the overruns after we set up our
3544 	 * pointers to the next object. The writer side does a
3545 	 * cmpxchg to cross pages which acts as the mb on the writer
3546 	 * side. Note, the reader will constantly fail the swap
3547 	 * while the writer is updating the pointers, so this
3548 	 * guarantees that the overwrite recorded here is the one we
3549 	 * want to compare with the last_overrun.
3550 	 */
3551 	smp_mb();
3552 	overwrite = local_read(&(cpu_buffer->overrun));
3553 
3554 	/*
3555 	 * Here's the tricky part.
3556 	 *
3557 	 * We need to move the pointer past the header page.
3558 	 * But we can only do that if a writer is not currently
3559 	 * moving it. The page before the header page has the
3560 	 * flag bit '1' set if it is pointing to the page we want.
3561 	 * but if the writer is in the process of moving it
3562 	 * than it will be '2' or already moved '0'.
3563 	 */
3564 
3565 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3566 
3567 	/*
3568 	 * If we did not convert it, then we must try again.
3569 	 */
3570 	if (!ret)
3571 		goto spin;
3572 
3573 	/*
3574 	 * Yeah! We succeeded in replacing the page.
3575 	 *
3576 	 * Now make the new head point back to the reader page.
3577 	 */
3578 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3579 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3580 
3581 	/* Finally update the reader page to the new head */
3582 	cpu_buffer->reader_page = reader;
3583 	rb_reset_reader_page(cpu_buffer);
3584 
3585 	if (overwrite != cpu_buffer->last_overrun) {
3586 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3587 		cpu_buffer->last_overrun = overwrite;
3588 	}
3589 
3590 	goto again;
3591 
3592  out:
3593 	arch_spin_unlock(&cpu_buffer->lock);
3594 	local_irq_restore(flags);
3595 
3596 	return reader;
3597 }
3598 
3599 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3600 {
3601 	struct ring_buffer_event *event;
3602 	struct buffer_page *reader;
3603 	unsigned length;
3604 
3605 	reader = rb_get_reader_page(cpu_buffer);
3606 
3607 	/* This function should not be called when buffer is empty */
3608 	if (RB_WARN_ON(cpu_buffer, !reader))
3609 		return;
3610 
3611 	event = rb_reader_event(cpu_buffer);
3612 
3613 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3614 		cpu_buffer->read++;
3615 
3616 	rb_update_read_stamp(cpu_buffer, event);
3617 
3618 	length = rb_event_length(event);
3619 	cpu_buffer->reader_page->read += length;
3620 }
3621 
3622 static void rb_advance_iter(struct ring_buffer_iter *iter)
3623 {
3624 	struct ring_buffer_per_cpu *cpu_buffer;
3625 	struct ring_buffer_event *event;
3626 	unsigned length;
3627 
3628 	cpu_buffer = iter->cpu_buffer;
3629 
3630 	/*
3631 	 * Check if we are at the end of the buffer.
3632 	 */
3633 	if (iter->head >= rb_page_size(iter->head_page)) {
3634 		/* discarded commits can make the page empty */
3635 		if (iter->head_page == cpu_buffer->commit_page)
3636 			return;
3637 		rb_inc_iter(iter);
3638 		return;
3639 	}
3640 
3641 	event = rb_iter_head_event(iter);
3642 
3643 	length = rb_event_length(event);
3644 
3645 	/*
3646 	 * This should not be called to advance the header if we are
3647 	 * at the tail of the buffer.
3648 	 */
3649 	if (RB_WARN_ON(cpu_buffer,
3650 		       (iter->head_page == cpu_buffer->commit_page) &&
3651 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3652 		return;
3653 
3654 	rb_update_iter_read_stamp(iter, event);
3655 
3656 	iter->head += length;
3657 
3658 	/* check for end of page padding */
3659 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3660 	    (iter->head_page != cpu_buffer->commit_page))
3661 		rb_inc_iter(iter);
3662 }
3663 
3664 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3665 {
3666 	return cpu_buffer->lost_events;
3667 }
3668 
3669 static struct ring_buffer_event *
3670 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3671 	       unsigned long *lost_events)
3672 {
3673 	struct ring_buffer_event *event;
3674 	struct buffer_page *reader;
3675 	int nr_loops = 0;
3676 
3677  again:
3678 	/*
3679 	 * We repeat when a time extend is encountered.
3680 	 * Since the time extend is always attached to a data event,
3681 	 * we should never loop more than once.
3682 	 * (We never hit the following condition more than twice).
3683 	 */
3684 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3685 		return NULL;
3686 
3687 	reader = rb_get_reader_page(cpu_buffer);
3688 	if (!reader)
3689 		return NULL;
3690 
3691 	event = rb_reader_event(cpu_buffer);
3692 
3693 	switch (event->type_len) {
3694 	case RINGBUF_TYPE_PADDING:
3695 		if (rb_null_event(event))
3696 			RB_WARN_ON(cpu_buffer, 1);
3697 		/*
3698 		 * Because the writer could be discarding every
3699 		 * event it creates (which would probably be bad)
3700 		 * if we were to go back to "again" then we may never
3701 		 * catch up, and will trigger the warn on, or lock
3702 		 * the box. Return the padding, and we will release
3703 		 * the current locks, and try again.
3704 		 */
3705 		return event;
3706 
3707 	case RINGBUF_TYPE_TIME_EXTEND:
3708 		/* Internal data, OK to advance */
3709 		rb_advance_reader(cpu_buffer);
3710 		goto again;
3711 
3712 	case RINGBUF_TYPE_TIME_STAMP:
3713 		/* FIXME: not implemented */
3714 		rb_advance_reader(cpu_buffer);
3715 		goto again;
3716 
3717 	case RINGBUF_TYPE_DATA:
3718 		if (ts) {
3719 			*ts = cpu_buffer->read_stamp + event->time_delta;
3720 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3721 							 cpu_buffer->cpu, ts);
3722 		}
3723 		if (lost_events)
3724 			*lost_events = rb_lost_events(cpu_buffer);
3725 		return event;
3726 
3727 	default:
3728 		BUG();
3729 	}
3730 
3731 	return NULL;
3732 }
3733 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3734 
3735 static struct ring_buffer_event *
3736 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3737 {
3738 	struct ring_buffer *buffer;
3739 	struct ring_buffer_per_cpu *cpu_buffer;
3740 	struct ring_buffer_event *event;
3741 	int nr_loops = 0;
3742 
3743 	cpu_buffer = iter->cpu_buffer;
3744 	buffer = cpu_buffer->buffer;
3745 
3746 	/*
3747 	 * Check if someone performed a consuming read to
3748 	 * the buffer. A consuming read invalidates the iterator
3749 	 * and we need to reset the iterator in this case.
3750 	 */
3751 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3752 		     iter->cache_reader_page != cpu_buffer->reader_page))
3753 		rb_iter_reset(iter);
3754 
3755  again:
3756 	if (ring_buffer_iter_empty(iter))
3757 		return NULL;
3758 
3759 	/*
3760 	 * We repeat when a time extend is encountered or we hit
3761 	 * the end of the page. Since the time extend is always attached
3762 	 * to a data event, we should never loop more than three times.
3763 	 * Once for going to next page, once on time extend, and
3764 	 * finally once to get the event.
3765 	 * (We never hit the following condition more than thrice).
3766 	 */
3767 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3768 		return NULL;
3769 
3770 	if (rb_per_cpu_empty(cpu_buffer))
3771 		return NULL;
3772 
3773 	if (iter->head >= rb_page_size(iter->head_page)) {
3774 		rb_inc_iter(iter);
3775 		goto again;
3776 	}
3777 
3778 	event = rb_iter_head_event(iter);
3779 
3780 	switch (event->type_len) {
3781 	case RINGBUF_TYPE_PADDING:
3782 		if (rb_null_event(event)) {
3783 			rb_inc_iter(iter);
3784 			goto again;
3785 		}
3786 		rb_advance_iter(iter);
3787 		return event;
3788 
3789 	case RINGBUF_TYPE_TIME_EXTEND:
3790 		/* Internal data, OK to advance */
3791 		rb_advance_iter(iter);
3792 		goto again;
3793 
3794 	case RINGBUF_TYPE_TIME_STAMP:
3795 		/* FIXME: not implemented */
3796 		rb_advance_iter(iter);
3797 		goto again;
3798 
3799 	case RINGBUF_TYPE_DATA:
3800 		if (ts) {
3801 			*ts = iter->read_stamp + event->time_delta;
3802 			ring_buffer_normalize_time_stamp(buffer,
3803 							 cpu_buffer->cpu, ts);
3804 		}
3805 		return event;
3806 
3807 	default:
3808 		BUG();
3809 	}
3810 
3811 	return NULL;
3812 }
3813 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3814 
3815 static inline int rb_ok_to_lock(void)
3816 {
3817 	/*
3818 	 * If an NMI die dumps out the content of the ring buffer
3819 	 * do not grab locks. We also permanently disable the ring
3820 	 * buffer too. A one time deal is all you get from reading
3821 	 * the ring buffer from an NMI.
3822 	 */
3823 	if (likely(!in_nmi()))
3824 		return 1;
3825 
3826 	tracing_off_permanent();
3827 	return 0;
3828 }
3829 
3830 /**
3831  * ring_buffer_peek - peek at the next event to be read
3832  * @buffer: The ring buffer to read
3833  * @cpu: The cpu to peak at
3834  * @ts: The timestamp counter of this event.
3835  * @lost_events: a variable to store if events were lost (may be NULL)
3836  *
3837  * This will return the event that will be read next, but does
3838  * not consume the data.
3839  */
3840 struct ring_buffer_event *
3841 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3842 		 unsigned long *lost_events)
3843 {
3844 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3845 	struct ring_buffer_event *event;
3846 	unsigned long flags;
3847 	int dolock;
3848 
3849 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3850 		return NULL;
3851 
3852 	dolock = rb_ok_to_lock();
3853  again:
3854 	local_irq_save(flags);
3855 	if (dolock)
3856 		raw_spin_lock(&cpu_buffer->reader_lock);
3857 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3858 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3859 		rb_advance_reader(cpu_buffer);
3860 	if (dolock)
3861 		raw_spin_unlock(&cpu_buffer->reader_lock);
3862 	local_irq_restore(flags);
3863 
3864 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865 		goto again;
3866 
3867 	return event;
3868 }
3869 
3870 /**
3871  * ring_buffer_iter_peek - peek at the next event to be read
3872  * @iter: The ring buffer iterator
3873  * @ts: The timestamp counter of this event.
3874  *
3875  * This will return the event that will be read next, but does
3876  * not increment the iterator.
3877  */
3878 struct ring_buffer_event *
3879 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3880 {
3881 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3882 	struct ring_buffer_event *event;
3883 	unsigned long flags;
3884 
3885  again:
3886 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3887 	event = rb_iter_peek(iter, ts);
3888 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3889 
3890 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891 		goto again;
3892 
3893 	return event;
3894 }
3895 
3896 /**
3897  * ring_buffer_consume - return an event and consume it
3898  * @buffer: The ring buffer to get the next event from
3899  * @cpu: the cpu to read the buffer from
3900  * @ts: a variable to store the timestamp (may be NULL)
3901  * @lost_events: a variable to store if events were lost (may be NULL)
3902  *
3903  * Returns the next event in the ring buffer, and that event is consumed.
3904  * Meaning, that sequential reads will keep returning a different event,
3905  * and eventually empty the ring buffer if the producer is slower.
3906  */
3907 struct ring_buffer_event *
3908 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3909 		    unsigned long *lost_events)
3910 {
3911 	struct ring_buffer_per_cpu *cpu_buffer;
3912 	struct ring_buffer_event *event = NULL;
3913 	unsigned long flags;
3914 	int dolock;
3915 
3916 	dolock = rb_ok_to_lock();
3917 
3918  again:
3919 	/* might be called in atomic */
3920 	preempt_disable();
3921 
3922 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3923 		goto out;
3924 
3925 	cpu_buffer = buffer->buffers[cpu];
3926 	local_irq_save(flags);
3927 	if (dolock)
3928 		raw_spin_lock(&cpu_buffer->reader_lock);
3929 
3930 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3931 	if (event) {
3932 		cpu_buffer->lost_events = 0;
3933 		rb_advance_reader(cpu_buffer);
3934 	}
3935 
3936 	if (dolock)
3937 		raw_spin_unlock(&cpu_buffer->reader_lock);
3938 	local_irq_restore(flags);
3939 
3940  out:
3941 	preempt_enable();
3942 
3943 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3944 		goto again;
3945 
3946 	return event;
3947 }
3948 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3949 
3950 /**
3951  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3952  * @buffer: The ring buffer to read from
3953  * @cpu: The cpu buffer to iterate over
3954  *
3955  * This performs the initial preparations necessary to iterate
3956  * through the buffer.  Memory is allocated, buffer recording
3957  * is disabled, and the iterator pointer is returned to the caller.
3958  *
3959  * Disabling buffer recordng prevents the reading from being
3960  * corrupted. This is not a consuming read, so a producer is not
3961  * expected.
3962  *
3963  * After a sequence of ring_buffer_read_prepare calls, the user is
3964  * expected to make at least one call to ring_buffer_read_prepare_sync.
3965  * Afterwards, ring_buffer_read_start is invoked to get things going
3966  * for real.
3967  *
3968  * This overall must be paired with ring_buffer_read_finish.
3969  */
3970 struct ring_buffer_iter *
3971 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3972 {
3973 	struct ring_buffer_per_cpu *cpu_buffer;
3974 	struct ring_buffer_iter *iter;
3975 
3976 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3977 		return NULL;
3978 
3979 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3980 	if (!iter)
3981 		return NULL;
3982 
3983 	cpu_buffer = buffer->buffers[cpu];
3984 
3985 	iter->cpu_buffer = cpu_buffer;
3986 
3987 	atomic_inc(&buffer->resize_disabled);
3988 	atomic_inc(&cpu_buffer->record_disabled);
3989 
3990 	return iter;
3991 }
3992 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3993 
3994 /**
3995  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3996  *
3997  * All previously invoked ring_buffer_read_prepare calls to prepare
3998  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3999  * calls on those iterators are allowed.
4000  */
4001 void
4002 ring_buffer_read_prepare_sync(void)
4003 {
4004 	synchronize_sched();
4005 }
4006 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4007 
4008 /**
4009  * ring_buffer_read_start - start a non consuming read of the buffer
4010  * @iter: The iterator returned by ring_buffer_read_prepare
4011  *
4012  * This finalizes the startup of an iteration through the buffer.
4013  * The iterator comes from a call to ring_buffer_read_prepare and
4014  * an intervening ring_buffer_read_prepare_sync must have been
4015  * performed.
4016  *
4017  * Must be paired with ring_buffer_read_finish.
4018  */
4019 void
4020 ring_buffer_read_start(struct ring_buffer_iter *iter)
4021 {
4022 	struct ring_buffer_per_cpu *cpu_buffer;
4023 	unsigned long flags;
4024 
4025 	if (!iter)
4026 		return;
4027 
4028 	cpu_buffer = iter->cpu_buffer;
4029 
4030 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4031 	arch_spin_lock(&cpu_buffer->lock);
4032 	rb_iter_reset(iter);
4033 	arch_spin_unlock(&cpu_buffer->lock);
4034 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4035 }
4036 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4037 
4038 /**
4039  * ring_buffer_read_finish - finish reading the iterator of the buffer
4040  * @iter: The iterator retrieved by ring_buffer_start
4041  *
4042  * This re-enables the recording to the buffer, and frees the
4043  * iterator.
4044  */
4045 void
4046 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4047 {
4048 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4049 	unsigned long flags;
4050 
4051 	/*
4052 	 * Ring buffer is disabled from recording, here's a good place
4053 	 * to check the integrity of the ring buffer.
4054 	 * Must prevent readers from trying to read, as the check
4055 	 * clears the HEAD page and readers require it.
4056 	 */
4057 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058 	rb_check_pages(cpu_buffer);
4059 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4060 
4061 	atomic_dec(&cpu_buffer->record_disabled);
4062 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4063 	kfree(iter);
4064 }
4065 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4066 
4067 /**
4068  * ring_buffer_read - read the next item in the ring buffer by the iterator
4069  * @iter: The ring buffer iterator
4070  * @ts: The time stamp of the event read.
4071  *
4072  * This reads the next event in the ring buffer and increments the iterator.
4073  */
4074 struct ring_buffer_event *
4075 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4076 {
4077 	struct ring_buffer_event *event;
4078 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4079 	unsigned long flags;
4080 
4081 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4082  again:
4083 	event = rb_iter_peek(iter, ts);
4084 	if (!event)
4085 		goto out;
4086 
4087 	if (event->type_len == RINGBUF_TYPE_PADDING)
4088 		goto again;
4089 
4090 	rb_advance_iter(iter);
4091  out:
4092 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4093 
4094 	return event;
4095 }
4096 EXPORT_SYMBOL_GPL(ring_buffer_read);
4097 
4098 /**
4099  * ring_buffer_size - return the size of the ring buffer (in bytes)
4100  * @buffer: The ring buffer.
4101  */
4102 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4103 {
4104 	/*
4105 	 * Earlier, this method returned
4106 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4107 	 * Since the nr_pages field is now removed, we have converted this to
4108 	 * return the per cpu buffer value.
4109 	 */
4110 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4111 		return 0;
4112 
4113 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4114 }
4115 EXPORT_SYMBOL_GPL(ring_buffer_size);
4116 
4117 static void
4118 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4119 {
4120 	rb_head_page_deactivate(cpu_buffer);
4121 
4122 	cpu_buffer->head_page
4123 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4124 	local_set(&cpu_buffer->head_page->write, 0);
4125 	local_set(&cpu_buffer->head_page->entries, 0);
4126 	local_set(&cpu_buffer->head_page->page->commit, 0);
4127 
4128 	cpu_buffer->head_page->read = 0;
4129 
4130 	cpu_buffer->tail_page = cpu_buffer->head_page;
4131 	cpu_buffer->commit_page = cpu_buffer->head_page;
4132 
4133 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4134 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4135 	local_set(&cpu_buffer->reader_page->write, 0);
4136 	local_set(&cpu_buffer->reader_page->entries, 0);
4137 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4138 	cpu_buffer->reader_page->read = 0;
4139 
4140 	local_set(&cpu_buffer->entries_bytes, 0);
4141 	local_set(&cpu_buffer->overrun, 0);
4142 	local_set(&cpu_buffer->commit_overrun, 0);
4143 	local_set(&cpu_buffer->dropped_events, 0);
4144 	local_set(&cpu_buffer->entries, 0);
4145 	local_set(&cpu_buffer->committing, 0);
4146 	local_set(&cpu_buffer->commits, 0);
4147 	cpu_buffer->read = 0;
4148 	cpu_buffer->read_bytes = 0;
4149 
4150 	cpu_buffer->write_stamp = 0;
4151 	cpu_buffer->read_stamp = 0;
4152 
4153 	cpu_buffer->lost_events = 0;
4154 	cpu_buffer->last_overrun = 0;
4155 
4156 	rb_head_page_activate(cpu_buffer);
4157 }
4158 
4159 /**
4160  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4161  * @buffer: The ring buffer to reset a per cpu buffer of
4162  * @cpu: The CPU buffer to be reset
4163  */
4164 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4165 {
4166 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4167 	unsigned long flags;
4168 
4169 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4170 		return;
4171 
4172 	atomic_inc(&buffer->resize_disabled);
4173 	atomic_inc(&cpu_buffer->record_disabled);
4174 
4175 	/* Make sure all commits have finished */
4176 	synchronize_sched();
4177 
4178 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4179 
4180 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4181 		goto out;
4182 
4183 	arch_spin_lock(&cpu_buffer->lock);
4184 
4185 	rb_reset_cpu(cpu_buffer);
4186 
4187 	arch_spin_unlock(&cpu_buffer->lock);
4188 
4189  out:
4190 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4191 
4192 	atomic_dec(&cpu_buffer->record_disabled);
4193 	atomic_dec(&buffer->resize_disabled);
4194 }
4195 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4196 
4197 /**
4198  * ring_buffer_reset - reset a ring buffer
4199  * @buffer: The ring buffer to reset all cpu buffers
4200  */
4201 void ring_buffer_reset(struct ring_buffer *buffer)
4202 {
4203 	int cpu;
4204 
4205 	for_each_buffer_cpu(buffer, cpu)
4206 		ring_buffer_reset_cpu(buffer, cpu);
4207 }
4208 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4209 
4210 /**
4211  * rind_buffer_empty - is the ring buffer empty?
4212  * @buffer: The ring buffer to test
4213  */
4214 int ring_buffer_empty(struct ring_buffer *buffer)
4215 {
4216 	struct ring_buffer_per_cpu *cpu_buffer;
4217 	unsigned long flags;
4218 	int dolock;
4219 	int cpu;
4220 	int ret;
4221 
4222 	dolock = rb_ok_to_lock();
4223 
4224 	/* yes this is racy, but if you don't like the race, lock the buffer */
4225 	for_each_buffer_cpu(buffer, cpu) {
4226 		cpu_buffer = buffer->buffers[cpu];
4227 		local_irq_save(flags);
4228 		if (dolock)
4229 			raw_spin_lock(&cpu_buffer->reader_lock);
4230 		ret = rb_per_cpu_empty(cpu_buffer);
4231 		if (dolock)
4232 			raw_spin_unlock(&cpu_buffer->reader_lock);
4233 		local_irq_restore(flags);
4234 
4235 		if (!ret)
4236 			return 0;
4237 	}
4238 
4239 	return 1;
4240 }
4241 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4242 
4243 /**
4244  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4245  * @buffer: The ring buffer
4246  * @cpu: The CPU buffer to test
4247  */
4248 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4249 {
4250 	struct ring_buffer_per_cpu *cpu_buffer;
4251 	unsigned long flags;
4252 	int dolock;
4253 	int ret;
4254 
4255 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4256 		return 1;
4257 
4258 	dolock = rb_ok_to_lock();
4259 
4260 	cpu_buffer = buffer->buffers[cpu];
4261 	local_irq_save(flags);
4262 	if (dolock)
4263 		raw_spin_lock(&cpu_buffer->reader_lock);
4264 	ret = rb_per_cpu_empty(cpu_buffer);
4265 	if (dolock)
4266 		raw_spin_unlock(&cpu_buffer->reader_lock);
4267 	local_irq_restore(flags);
4268 
4269 	return ret;
4270 }
4271 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4272 
4273 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4274 /**
4275  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4276  * @buffer_a: One buffer to swap with
4277  * @buffer_b: The other buffer to swap with
4278  *
4279  * This function is useful for tracers that want to take a "snapshot"
4280  * of a CPU buffer and has another back up buffer lying around.
4281  * it is expected that the tracer handles the cpu buffer not being
4282  * used at the moment.
4283  */
4284 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4285 			 struct ring_buffer *buffer_b, int cpu)
4286 {
4287 	struct ring_buffer_per_cpu *cpu_buffer_a;
4288 	struct ring_buffer_per_cpu *cpu_buffer_b;
4289 	int ret = -EINVAL;
4290 
4291 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4292 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4293 		goto out;
4294 
4295 	cpu_buffer_a = buffer_a->buffers[cpu];
4296 	cpu_buffer_b = buffer_b->buffers[cpu];
4297 
4298 	/* At least make sure the two buffers are somewhat the same */
4299 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4300 		goto out;
4301 
4302 	ret = -EAGAIN;
4303 
4304 	if (ring_buffer_flags != RB_BUFFERS_ON)
4305 		goto out;
4306 
4307 	if (atomic_read(&buffer_a->record_disabled))
4308 		goto out;
4309 
4310 	if (atomic_read(&buffer_b->record_disabled))
4311 		goto out;
4312 
4313 	if (atomic_read(&cpu_buffer_a->record_disabled))
4314 		goto out;
4315 
4316 	if (atomic_read(&cpu_buffer_b->record_disabled))
4317 		goto out;
4318 
4319 	/*
4320 	 * We can't do a synchronize_sched here because this
4321 	 * function can be called in atomic context.
4322 	 * Normally this will be called from the same CPU as cpu.
4323 	 * If not it's up to the caller to protect this.
4324 	 */
4325 	atomic_inc(&cpu_buffer_a->record_disabled);
4326 	atomic_inc(&cpu_buffer_b->record_disabled);
4327 
4328 	ret = -EBUSY;
4329 	if (local_read(&cpu_buffer_a->committing))
4330 		goto out_dec;
4331 	if (local_read(&cpu_buffer_b->committing))
4332 		goto out_dec;
4333 
4334 	buffer_a->buffers[cpu] = cpu_buffer_b;
4335 	buffer_b->buffers[cpu] = cpu_buffer_a;
4336 
4337 	cpu_buffer_b->buffer = buffer_a;
4338 	cpu_buffer_a->buffer = buffer_b;
4339 
4340 	ret = 0;
4341 
4342 out_dec:
4343 	atomic_dec(&cpu_buffer_a->record_disabled);
4344 	atomic_dec(&cpu_buffer_b->record_disabled);
4345 out:
4346 	return ret;
4347 }
4348 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4349 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4350 
4351 /**
4352  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4353  * @buffer: the buffer to allocate for.
4354  * @cpu: the cpu buffer to allocate.
4355  *
4356  * This function is used in conjunction with ring_buffer_read_page.
4357  * When reading a full page from the ring buffer, these functions
4358  * can be used to speed up the process. The calling function should
4359  * allocate a few pages first with this function. Then when it
4360  * needs to get pages from the ring buffer, it passes the result
4361  * of this function into ring_buffer_read_page, which will swap
4362  * the page that was allocated, with the read page of the buffer.
4363  *
4364  * Returns:
4365  *  The page allocated, or NULL on error.
4366  */
4367 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4368 {
4369 	struct buffer_data_page *bpage;
4370 	struct page *page;
4371 
4372 	page = alloc_pages_node(cpu_to_node(cpu),
4373 				GFP_KERNEL | __GFP_NORETRY, 0);
4374 	if (!page)
4375 		return NULL;
4376 
4377 	bpage = page_address(page);
4378 
4379 	rb_init_page(bpage);
4380 
4381 	return bpage;
4382 }
4383 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4384 
4385 /**
4386  * ring_buffer_free_read_page - free an allocated read page
4387  * @buffer: the buffer the page was allocate for
4388  * @data: the page to free
4389  *
4390  * Free a page allocated from ring_buffer_alloc_read_page.
4391  */
4392 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4393 {
4394 	free_page((unsigned long)data);
4395 }
4396 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4397 
4398 /**
4399  * ring_buffer_read_page - extract a page from the ring buffer
4400  * @buffer: buffer to extract from
4401  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4402  * @len: amount to extract
4403  * @cpu: the cpu of the buffer to extract
4404  * @full: should the extraction only happen when the page is full.
4405  *
4406  * This function will pull out a page from the ring buffer and consume it.
4407  * @data_page must be the address of the variable that was returned
4408  * from ring_buffer_alloc_read_page. This is because the page might be used
4409  * to swap with a page in the ring buffer.
4410  *
4411  * for example:
4412  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4413  *	if (!rpage)
4414  *		return error;
4415  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4416  *	if (ret >= 0)
4417  *		process_page(rpage, ret);
4418  *
4419  * When @full is set, the function will not return true unless
4420  * the writer is off the reader page.
4421  *
4422  * Note: it is up to the calling functions to handle sleeps and wakeups.
4423  *  The ring buffer can be used anywhere in the kernel and can not
4424  *  blindly call wake_up. The layer that uses the ring buffer must be
4425  *  responsible for that.
4426  *
4427  * Returns:
4428  *  >=0 if data has been transferred, returns the offset of consumed data.
4429  *  <0 if no data has been transferred.
4430  */
4431 int ring_buffer_read_page(struct ring_buffer *buffer,
4432 			  void **data_page, size_t len, int cpu, int full)
4433 {
4434 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4435 	struct ring_buffer_event *event;
4436 	struct buffer_data_page *bpage;
4437 	struct buffer_page *reader;
4438 	unsigned long missed_events;
4439 	unsigned long flags;
4440 	unsigned int commit;
4441 	unsigned int read;
4442 	u64 save_timestamp;
4443 	int ret = -1;
4444 
4445 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4446 		goto out;
4447 
4448 	/*
4449 	 * If len is not big enough to hold the page header, then
4450 	 * we can not copy anything.
4451 	 */
4452 	if (len <= BUF_PAGE_HDR_SIZE)
4453 		goto out;
4454 
4455 	len -= BUF_PAGE_HDR_SIZE;
4456 
4457 	if (!data_page)
4458 		goto out;
4459 
4460 	bpage = *data_page;
4461 	if (!bpage)
4462 		goto out;
4463 
4464 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4465 
4466 	reader = rb_get_reader_page(cpu_buffer);
4467 	if (!reader)
4468 		goto out_unlock;
4469 
4470 	event = rb_reader_event(cpu_buffer);
4471 
4472 	read = reader->read;
4473 	commit = rb_page_commit(reader);
4474 
4475 	/* Check if any events were dropped */
4476 	missed_events = cpu_buffer->lost_events;
4477 
4478 	/*
4479 	 * If this page has been partially read or
4480 	 * if len is not big enough to read the rest of the page or
4481 	 * a writer is still on the page, then
4482 	 * we must copy the data from the page to the buffer.
4483 	 * Otherwise, we can simply swap the page with the one passed in.
4484 	 */
4485 	if (read || (len < (commit - read)) ||
4486 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4487 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4488 		unsigned int rpos = read;
4489 		unsigned int pos = 0;
4490 		unsigned int size;
4491 
4492 		if (full)
4493 			goto out_unlock;
4494 
4495 		if (len > (commit - read))
4496 			len = (commit - read);
4497 
4498 		/* Always keep the time extend and data together */
4499 		size = rb_event_ts_length(event);
4500 
4501 		if (len < size)
4502 			goto out_unlock;
4503 
4504 		/* save the current timestamp, since the user will need it */
4505 		save_timestamp = cpu_buffer->read_stamp;
4506 
4507 		/* Need to copy one event at a time */
4508 		do {
4509 			/* We need the size of one event, because
4510 			 * rb_advance_reader only advances by one event,
4511 			 * whereas rb_event_ts_length may include the size of
4512 			 * one or two events.
4513 			 * We have already ensured there's enough space if this
4514 			 * is a time extend. */
4515 			size = rb_event_length(event);
4516 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4517 
4518 			len -= size;
4519 
4520 			rb_advance_reader(cpu_buffer);
4521 			rpos = reader->read;
4522 			pos += size;
4523 
4524 			if (rpos >= commit)
4525 				break;
4526 
4527 			event = rb_reader_event(cpu_buffer);
4528 			/* Always keep the time extend and data together */
4529 			size = rb_event_ts_length(event);
4530 		} while (len >= size);
4531 
4532 		/* update bpage */
4533 		local_set(&bpage->commit, pos);
4534 		bpage->time_stamp = save_timestamp;
4535 
4536 		/* we copied everything to the beginning */
4537 		read = 0;
4538 	} else {
4539 		/* update the entry counter */
4540 		cpu_buffer->read += rb_page_entries(reader);
4541 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4542 
4543 		/* swap the pages */
4544 		rb_init_page(bpage);
4545 		bpage = reader->page;
4546 		reader->page = *data_page;
4547 		local_set(&reader->write, 0);
4548 		local_set(&reader->entries, 0);
4549 		reader->read = 0;
4550 		*data_page = bpage;
4551 
4552 		/*
4553 		 * Use the real_end for the data size,
4554 		 * This gives us a chance to store the lost events
4555 		 * on the page.
4556 		 */
4557 		if (reader->real_end)
4558 			local_set(&bpage->commit, reader->real_end);
4559 	}
4560 	ret = read;
4561 
4562 	cpu_buffer->lost_events = 0;
4563 
4564 	commit = local_read(&bpage->commit);
4565 	/*
4566 	 * Set a flag in the commit field if we lost events
4567 	 */
4568 	if (missed_events) {
4569 		/* If there is room at the end of the page to save the
4570 		 * missed events, then record it there.
4571 		 */
4572 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4573 			memcpy(&bpage->data[commit], &missed_events,
4574 			       sizeof(missed_events));
4575 			local_add(RB_MISSED_STORED, &bpage->commit);
4576 			commit += sizeof(missed_events);
4577 		}
4578 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4579 	}
4580 
4581 	/*
4582 	 * This page may be off to user land. Zero it out here.
4583 	 */
4584 	if (commit < BUF_PAGE_SIZE)
4585 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4586 
4587  out_unlock:
4588 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4589 
4590  out:
4591 	return ret;
4592 }
4593 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4594 
4595 #ifdef CONFIG_HOTPLUG_CPU
4596 static int rb_cpu_notify(struct notifier_block *self,
4597 			 unsigned long action, void *hcpu)
4598 {
4599 	struct ring_buffer *buffer =
4600 		container_of(self, struct ring_buffer, cpu_notify);
4601 	long cpu = (long)hcpu;
4602 	int cpu_i, nr_pages_same;
4603 	unsigned int nr_pages;
4604 
4605 	switch (action) {
4606 	case CPU_UP_PREPARE:
4607 	case CPU_UP_PREPARE_FROZEN:
4608 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4609 			return NOTIFY_OK;
4610 
4611 		nr_pages = 0;
4612 		nr_pages_same = 1;
4613 		/* check if all cpu sizes are same */
4614 		for_each_buffer_cpu(buffer, cpu_i) {
4615 			/* fill in the size from first enabled cpu */
4616 			if (nr_pages == 0)
4617 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4618 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4619 				nr_pages_same = 0;
4620 				break;
4621 			}
4622 		}
4623 		/* allocate minimum pages, user can later expand it */
4624 		if (!nr_pages_same)
4625 			nr_pages = 2;
4626 		buffer->buffers[cpu] =
4627 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4628 		if (!buffer->buffers[cpu]) {
4629 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4630 			     cpu);
4631 			return NOTIFY_OK;
4632 		}
4633 		smp_wmb();
4634 		cpumask_set_cpu(cpu, buffer->cpumask);
4635 		break;
4636 	case CPU_DOWN_PREPARE:
4637 	case CPU_DOWN_PREPARE_FROZEN:
4638 		/*
4639 		 * Do nothing.
4640 		 *  If we were to free the buffer, then the user would
4641 		 *  lose any trace that was in the buffer.
4642 		 */
4643 		break;
4644 	default:
4645 		break;
4646 	}
4647 	return NOTIFY_OK;
4648 }
4649 #endif
4650 
4651 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4652 /*
4653  * This is a basic integrity check of the ring buffer.
4654  * Late in the boot cycle this test will run when configured in.
4655  * It will kick off a thread per CPU that will go into a loop
4656  * writing to the per cpu ring buffer various sizes of data.
4657  * Some of the data will be large items, some small.
4658  *
4659  * Another thread is created that goes into a spin, sending out
4660  * IPIs to the other CPUs to also write into the ring buffer.
4661  * this is to test the nesting ability of the buffer.
4662  *
4663  * Basic stats are recorded and reported. If something in the
4664  * ring buffer should happen that's not expected, a big warning
4665  * is displayed and all ring buffers are disabled.
4666  */
4667 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4668 
4669 struct rb_test_data {
4670 	struct ring_buffer	*buffer;
4671 	unsigned long		events;
4672 	unsigned long		bytes_written;
4673 	unsigned long		bytes_alloc;
4674 	unsigned long		bytes_dropped;
4675 	unsigned long		events_nested;
4676 	unsigned long		bytes_written_nested;
4677 	unsigned long		bytes_alloc_nested;
4678 	unsigned long		bytes_dropped_nested;
4679 	int			min_size_nested;
4680 	int			max_size_nested;
4681 	int			max_size;
4682 	int			min_size;
4683 	int			cpu;
4684 	int			cnt;
4685 };
4686 
4687 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4688 
4689 /* 1 meg per cpu */
4690 #define RB_TEST_BUFFER_SIZE	1048576
4691 
4692 static char rb_string[] __initdata =
4693 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4694 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4695 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4696 
4697 static bool rb_test_started __initdata;
4698 
4699 struct rb_item {
4700 	int size;
4701 	char str[];
4702 };
4703 
4704 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4705 {
4706 	struct ring_buffer_event *event;
4707 	struct rb_item *item;
4708 	bool started;
4709 	int event_len;
4710 	int size;
4711 	int len;
4712 	int cnt;
4713 
4714 	/* Have nested writes different that what is written */
4715 	cnt = data->cnt + (nested ? 27 : 0);
4716 
4717 	/* Multiply cnt by ~e, to make some unique increment */
4718 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4719 
4720 	len = size + sizeof(struct rb_item);
4721 
4722 	started = rb_test_started;
4723 	/* read rb_test_started before checking buffer enabled */
4724 	smp_rmb();
4725 
4726 	event = ring_buffer_lock_reserve(data->buffer, len);
4727 	if (!event) {
4728 		/* Ignore dropped events before test starts. */
4729 		if (started) {
4730 			if (nested)
4731 				data->bytes_dropped += len;
4732 			else
4733 				data->bytes_dropped_nested += len;
4734 		}
4735 		return len;
4736 	}
4737 
4738 	event_len = ring_buffer_event_length(event);
4739 
4740 	if (RB_WARN_ON(data->buffer, event_len < len))
4741 		goto out;
4742 
4743 	item = ring_buffer_event_data(event);
4744 	item->size = size;
4745 	memcpy(item->str, rb_string, size);
4746 
4747 	if (nested) {
4748 		data->bytes_alloc_nested += event_len;
4749 		data->bytes_written_nested += len;
4750 		data->events_nested++;
4751 		if (!data->min_size_nested || len < data->min_size_nested)
4752 			data->min_size_nested = len;
4753 		if (len > data->max_size_nested)
4754 			data->max_size_nested = len;
4755 	} else {
4756 		data->bytes_alloc += event_len;
4757 		data->bytes_written += len;
4758 		data->events++;
4759 		if (!data->min_size || len < data->min_size)
4760 			data->max_size = len;
4761 		if (len > data->max_size)
4762 			data->max_size = len;
4763 	}
4764 
4765  out:
4766 	ring_buffer_unlock_commit(data->buffer, event);
4767 
4768 	return 0;
4769 }
4770 
4771 static __init int rb_test(void *arg)
4772 {
4773 	struct rb_test_data *data = arg;
4774 
4775 	while (!kthread_should_stop()) {
4776 		rb_write_something(data, false);
4777 		data->cnt++;
4778 
4779 		set_current_state(TASK_INTERRUPTIBLE);
4780 		/* Now sleep between a min of 100-300us and a max of 1ms */
4781 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4782 	}
4783 
4784 	return 0;
4785 }
4786 
4787 static __init void rb_ipi(void *ignore)
4788 {
4789 	struct rb_test_data *data;
4790 	int cpu = smp_processor_id();
4791 
4792 	data = &rb_data[cpu];
4793 	rb_write_something(data, true);
4794 }
4795 
4796 static __init int rb_hammer_test(void *arg)
4797 {
4798 	while (!kthread_should_stop()) {
4799 
4800 		/* Send an IPI to all cpus to write data! */
4801 		smp_call_function(rb_ipi, NULL, 1);
4802 		/* No sleep, but for non preempt, let others run */
4803 		schedule();
4804 	}
4805 
4806 	return 0;
4807 }
4808 
4809 static __init int test_ringbuffer(void)
4810 {
4811 	struct task_struct *rb_hammer;
4812 	struct ring_buffer *buffer;
4813 	int cpu;
4814 	int ret = 0;
4815 
4816 	pr_info("Running ring buffer tests...\n");
4817 
4818 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4819 	if (WARN_ON(!buffer))
4820 		return 0;
4821 
4822 	/* Disable buffer so that threads can't write to it yet */
4823 	ring_buffer_record_off(buffer);
4824 
4825 	for_each_online_cpu(cpu) {
4826 		rb_data[cpu].buffer = buffer;
4827 		rb_data[cpu].cpu = cpu;
4828 		rb_data[cpu].cnt = cpu;
4829 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4830 						 "rbtester/%d", cpu);
4831 		if (WARN_ON(!rb_threads[cpu])) {
4832 			pr_cont("FAILED\n");
4833 			ret = -1;
4834 			goto out_free;
4835 		}
4836 
4837 		kthread_bind(rb_threads[cpu], cpu);
4838  		wake_up_process(rb_threads[cpu]);
4839 	}
4840 
4841 	/* Now create the rb hammer! */
4842 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4843 	if (WARN_ON(!rb_hammer)) {
4844 		pr_cont("FAILED\n");
4845 		ret = -1;
4846 		goto out_free;
4847 	}
4848 
4849 	ring_buffer_record_on(buffer);
4850 	/*
4851 	 * Show buffer is enabled before setting rb_test_started.
4852 	 * Yes there's a small race window where events could be
4853 	 * dropped and the thread wont catch it. But when a ring
4854 	 * buffer gets enabled, there will always be some kind of
4855 	 * delay before other CPUs see it. Thus, we don't care about
4856 	 * those dropped events. We care about events dropped after
4857 	 * the threads see that the buffer is active.
4858 	 */
4859 	smp_wmb();
4860 	rb_test_started = true;
4861 
4862 	set_current_state(TASK_INTERRUPTIBLE);
4863 	/* Just run for 10 seconds */;
4864 	schedule_timeout(10 * HZ);
4865 
4866 	kthread_stop(rb_hammer);
4867 
4868  out_free:
4869 	for_each_online_cpu(cpu) {
4870 		if (!rb_threads[cpu])
4871 			break;
4872 		kthread_stop(rb_threads[cpu]);
4873 	}
4874 	if (ret) {
4875 		ring_buffer_free(buffer);
4876 		return ret;
4877 	}
4878 
4879 	/* Report! */
4880 	pr_info("finished\n");
4881 	for_each_online_cpu(cpu) {
4882 		struct ring_buffer_event *event;
4883 		struct rb_test_data *data = &rb_data[cpu];
4884 		struct rb_item *item;
4885 		unsigned long total_events;
4886 		unsigned long total_dropped;
4887 		unsigned long total_written;
4888 		unsigned long total_alloc;
4889 		unsigned long total_read = 0;
4890 		unsigned long total_size = 0;
4891 		unsigned long total_len = 0;
4892 		unsigned long total_lost = 0;
4893 		unsigned long lost;
4894 		int big_event_size;
4895 		int small_event_size;
4896 
4897 		ret = -1;
4898 
4899 		total_events = data->events + data->events_nested;
4900 		total_written = data->bytes_written + data->bytes_written_nested;
4901 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4902 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4903 
4904 		big_event_size = data->max_size + data->max_size_nested;
4905 		small_event_size = data->min_size + data->min_size_nested;
4906 
4907 		pr_info("CPU %d:\n", cpu);
4908 		pr_info("              events:    %ld\n", total_events);
4909 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4910 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4911 		pr_info("       written bytes:    %ld\n", total_written);
4912 		pr_info("       biggest event:    %d\n", big_event_size);
4913 		pr_info("      smallest event:    %d\n", small_event_size);
4914 
4915 		if (RB_WARN_ON(buffer, total_dropped))
4916 			break;
4917 
4918 		ret = 0;
4919 
4920 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4921 			total_lost += lost;
4922 			item = ring_buffer_event_data(event);
4923 			total_len += ring_buffer_event_length(event);
4924 			total_size += item->size + sizeof(struct rb_item);
4925 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4926 				pr_info("FAILED!\n");
4927 				pr_info("buffer had: %.*s\n", item->size, item->str);
4928 				pr_info("expected:   %.*s\n", item->size, rb_string);
4929 				RB_WARN_ON(buffer, 1);
4930 				ret = -1;
4931 				break;
4932 			}
4933 			total_read++;
4934 		}
4935 		if (ret)
4936 			break;
4937 
4938 		ret = -1;
4939 
4940 		pr_info("         read events:   %ld\n", total_read);
4941 		pr_info("         lost events:   %ld\n", total_lost);
4942 		pr_info("        total events:   %ld\n", total_lost + total_read);
4943 		pr_info("  recorded len bytes:   %ld\n", total_len);
4944 		pr_info(" recorded size bytes:   %ld\n", total_size);
4945 		if (total_lost)
4946 			pr_info(" With dropped events, record len and size may not match\n"
4947 				" alloced and written from above\n");
4948 		if (!total_lost) {
4949 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4950 				       total_size != total_written))
4951 				break;
4952 		}
4953 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4954 			break;
4955 
4956 		ret = 0;
4957 	}
4958 	if (!ret)
4959 		pr_info("Ring buffer PASSED!\n");
4960 
4961 	ring_buffer_free(buffer);
4962 	return 0;
4963 }
4964 
4965 late_initcall(test_ringbuffer);
4966 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4967