xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision 2d622719f1572ef31e0616444a515eba3094d050)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21 
22 #include "trace.h"
23 
24 /*
25  * The ring buffer is made up of a list of pages. A separate list of pages is
26  * allocated for each CPU. A writer may only write to a buffer that is
27  * associated with the CPU it is currently executing on.  A reader may read
28  * from any per cpu buffer.
29  *
30  * The reader is special. For each per cpu buffer, the reader has its own
31  * reader page. When a reader has read the entire reader page, this reader
32  * page is swapped with another page in the ring buffer.
33  *
34  * Now, as long as the writer is off the reader page, the reader can do what
35  * ever it wants with that page. The writer will never write to that page
36  * again (as long as it is out of the ring buffer).
37  *
38  * Here's some silly ASCII art.
39  *
40  *   +------+
41  *   |reader|          RING BUFFER
42  *   |page  |
43  *   +------+        +---+   +---+   +---+
44  *                   |   |-->|   |-->|   |
45  *                   +---+   +---+   +---+
46  *                     ^               |
47  *                     |               |
48  *                     +---------------+
49  *
50  *
51  *   +------+
52  *   |reader|          RING BUFFER
53  *   |page  |------------------v
54  *   +------+        +---+   +---+   +---+
55  *                   |   |-->|   |-->|   |
56  *                   +---+   +---+   +---+
57  *                     ^               |
58  *                     |               |
59  *                     +---------------+
60  *
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |------------------v
65  *   +------+        +---+   +---+   +---+
66  *      ^            |   |-->|   |-->|   |
67  *      |            +---+   +---+   +---+
68  *      |                              |
69  *      |                              |
70  *      +------------------------------+
71  *
72  *
73  *   +------+
74  *   |buffer|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *      ^            |   |   |   |-->|   |
78  *      |   New      +---+   +---+   +---+
79  *      |  Reader------^               |
80  *      |   page                       |
81  *      +------------------------------+
82  *
83  *
84  * After we make this swap, the reader can hand this page off to the splice
85  * code and be done with it. It can even allocate a new page if it needs to
86  * and swap that into the ring buffer.
87  *
88  * We will be using cmpxchg soon to make all this lockless.
89  *
90  */
91 
92 /*
93  * A fast way to enable or disable all ring buffers is to
94  * call tracing_on or tracing_off. Turning off the ring buffers
95  * prevents all ring buffers from being recorded to.
96  * Turning this switch on, makes it OK to write to the
97  * ring buffer, if the ring buffer is enabled itself.
98  *
99  * There's three layers that must be on in order to write
100  * to the ring buffer.
101  *
102  * 1) This global flag must be set.
103  * 2) The ring buffer must be enabled for recording.
104  * 3) The per cpu buffer must be enabled for recording.
105  *
106  * In case of an anomaly, this global flag has a bit set that
107  * will permantly disable all ring buffers.
108  */
109 
110 /*
111  * Global flag to disable all recording to ring buffers
112  *  This has two bits: ON, DISABLED
113  *
114  *  ON   DISABLED
115  * ---- ----------
116  *   0      0        : ring buffers are off
117  *   1      0        : ring buffers are on
118  *   X      1        : ring buffers are permanently disabled
119  */
120 
121 enum {
122 	RB_BUFFERS_ON_BIT	= 0,
123 	RB_BUFFERS_DISABLED_BIT	= 1,
124 };
125 
126 enum {
127 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
128 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
129 };
130 
131 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
132 
133 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
134 
135 /**
136  * tracing_on - enable all tracing buffers
137  *
138  * This function enables all tracing buffers that may have been
139  * disabled with tracing_off.
140  */
141 void tracing_on(void)
142 {
143 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
144 }
145 EXPORT_SYMBOL_GPL(tracing_on);
146 
147 /**
148  * tracing_off - turn off all tracing buffers
149  *
150  * This function stops all tracing buffers from recording data.
151  * It does not disable any overhead the tracers themselves may
152  * be causing. This function simply causes all recording to
153  * the ring buffers to fail.
154  */
155 void tracing_off(void)
156 {
157 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
158 }
159 EXPORT_SYMBOL_GPL(tracing_off);
160 
161 /**
162  * tracing_off_permanent - permanently disable ring buffers
163  *
164  * This function, once called, will disable all ring buffers
165  * permanently.
166  */
167 void tracing_off_permanent(void)
168 {
169 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
170 }
171 
172 /**
173  * tracing_is_on - show state of ring buffers enabled
174  */
175 int tracing_is_on(void)
176 {
177 	return ring_buffer_flags == RB_BUFFERS_ON;
178 }
179 EXPORT_SYMBOL_GPL(tracing_is_on);
180 
181 #include "trace.h"
182 
183 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
184 #define RB_ALIGNMENT		4U
185 #define RB_MAX_SMALL_DATA	28
186 
187 enum {
188 	RB_LEN_TIME_EXTEND = 8,
189 	RB_LEN_TIME_STAMP = 16,
190 };
191 
192 static inline int rb_null_event(struct ring_buffer_event *event)
193 {
194 	return event->type == RINGBUF_TYPE_PADDING && event->time_delta == 0;
195 }
196 
197 static inline int rb_discarded_event(struct ring_buffer_event *event)
198 {
199 	return event->type == RINGBUF_TYPE_PADDING && event->time_delta;
200 }
201 
202 static void rb_event_set_padding(struct ring_buffer_event *event)
203 {
204 	event->type = RINGBUF_TYPE_PADDING;
205 	event->time_delta = 0;
206 }
207 
208 /**
209  * ring_buffer_event_discard - discard an event in the ring buffer
210  * @buffer: the ring buffer
211  * @event: the event to discard
212  *
213  * Sometimes a event that is in the ring buffer needs to be ignored.
214  * This function lets the user discard an event in the ring buffer
215  * and then that event will not be read later.
216  *
217  * Note, it is up to the user to be careful with this, and protect
218  * against races. If the user discards an event that has been consumed
219  * it is possible that it could corrupt the ring buffer.
220  */
221 void ring_buffer_event_discard(struct ring_buffer_event *event)
222 {
223 	event->type = RINGBUF_TYPE_PADDING;
224 	/* time delta must be non zero */
225 	if (!event->time_delta)
226 		event->time_delta = 1;
227 }
228 
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->len)
235 		length = event->len * RB_ALIGNMENT;
236 	else
237 		length = event->array[0];
238 	return length + RB_EVNT_HDR_SIZE;
239 }
240 
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245 	switch (event->type) {
246 	case RINGBUF_TYPE_PADDING:
247 		if (rb_null_event(event))
248 			/* undefined */
249 			return -1;
250 		return rb_event_data_length(event);
251 
252 	case RINGBUF_TYPE_TIME_EXTEND:
253 		return RB_LEN_TIME_EXTEND;
254 
255 	case RINGBUF_TYPE_TIME_STAMP:
256 		return RB_LEN_TIME_STAMP;
257 
258 	case RINGBUF_TYPE_DATA:
259 		return rb_event_data_length(event);
260 	default:
261 		BUG();
262 	}
263 	/* not hit */
264 	return 0;
265 }
266 
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length = rb_event_length(event);
274 	if (event->type != RINGBUF_TYPE_DATA)
275 		return length;
276 	length -= RB_EVNT_HDR_SIZE;
277 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279 	return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282 
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287 	BUG_ON(event->type != RINGBUF_TYPE_DATA);
288 	/* If length is in len field, then array[0] has the data */
289 	if (event->len)
290 		return (void *)&event->array[0];
291 	/* Otherwise length is in array[0] and array[1] has the data */
292 	return (void *)&event->array[1];
293 }
294 
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301 	return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304 
305 #define for_each_buffer_cpu(buffer, cpu)		\
306 	for_each_cpu(cpu, buffer->cpumask)
307 
308 #define TS_SHIFT	27
309 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST	(~TS_MASK)
311 
312 struct buffer_data_page {
313 	u64		 time_stamp;	/* page time stamp */
314 	local_t		 commit;	/* write committed index */
315 	unsigned char	 data[];	/* data of buffer page */
316 };
317 
318 struct buffer_page {
319 	local_t		 write;		/* index for next write */
320 	unsigned	 read;		/* index for next read */
321 	struct list_head list;		/* list of free pages */
322 	struct buffer_data_page *page;	/* Actual data page */
323 };
324 
325 static void rb_init_page(struct buffer_data_page *bpage)
326 {
327 	local_set(&bpage->commit, 0);
328 }
329 
330 /**
331  * ring_buffer_page_len - the size of data on the page.
332  * @page: The page to read
333  *
334  * Returns the amount of data on the page, including buffer page header.
335  */
336 size_t ring_buffer_page_len(void *page)
337 {
338 	return local_read(&((struct buffer_data_page *)page)->commit)
339 		+ BUF_PAGE_HDR_SIZE;
340 }
341 
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348 	free_page((unsigned long)bpage->page);
349 	kfree(bpage);
350 }
351 
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357 	if (delta & TS_DELTA_TEST)
358 		return 1;
359 	return 0;
360 }
361 
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363 
364 /*
365  * head_page == tail_page && head == tail then buffer is empty.
366  */
367 struct ring_buffer_per_cpu {
368 	int				cpu;
369 	struct ring_buffer		*buffer;
370 	spinlock_t			reader_lock; /* serialize readers */
371 	raw_spinlock_t			lock;
372 	struct lock_class_key		lock_key;
373 	struct list_head		pages;
374 	struct buffer_page		*head_page;	/* read from head */
375 	struct buffer_page		*tail_page;	/* write to tail */
376 	struct buffer_page		*commit_page;	/* committed pages */
377 	struct buffer_page		*reader_page;
378 	unsigned long			overrun;
379 	unsigned long			entries;
380 	u64				write_stamp;
381 	u64				read_stamp;
382 	atomic_t			record_disabled;
383 };
384 
385 struct ring_buffer {
386 	unsigned			pages;
387 	unsigned			flags;
388 	int				cpus;
389 	atomic_t			record_disabled;
390 	cpumask_var_t			cpumask;
391 
392 	struct mutex			mutex;
393 
394 	struct ring_buffer_per_cpu	**buffers;
395 
396 #ifdef CONFIG_HOTPLUG_CPU
397 	struct notifier_block		cpu_notify;
398 #endif
399 	u64				(*clock)(void);
400 };
401 
402 struct ring_buffer_iter {
403 	struct ring_buffer_per_cpu	*cpu_buffer;
404 	unsigned long			head;
405 	struct buffer_page		*head_page;
406 	u64				read_stamp;
407 };
408 
409 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
410 #define RB_WARN_ON(buffer, cond)				\
411 	({							\
412 		int _____ret = unlikely(cond);			\
413 		if (_____ret) {					\
414 			atomic_inc(&buffer->record_disabled);	\
415 			WARN_ON(1);				\
416 		}						\
417 		_____ret;					\
418 	})
419 
420 /* Up this if you want to test the TIME_EXTENTS and normalization */
421 #define DEBUG_SHIFT 0
422 
423 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
424 {
425 	u64 time;
426 
427 	preempt_disable_notrace();
428 	/* shift to debug/test normalization and TIME_EXTENTS */
429 	time = buffer->clock() << DEBUG_SHIFT;
430 	preempt_enable_no_resched_notrace();
431 
432 	return time;
433 }
434 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
435 
436 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
437 				      int cpu, u64 *ts)
438 {
439 	/* Just stupid testing the normalize function and deltas */
440 	*ts >>= DEBUG_SHIFT;
441 }
442 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
443 
444 /**
445  * check_pages - integrity check of buffer pages
446  * @cpu_buffer: CPU buffer with pages to test
447  *
448  * As a safety measure we check to make sure the data pages have not
449  * been corrupted.
450  */
451 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
452 {
453 	struct list_head *head = &cpu_buffer->pages;
454 	struct buffer_page *bpage, *tmp;
455 
456 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
457 		return -1;
458 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
459 		return -1;
460 
461 	list_for_each_entry_safe(bpage, tmp, head, list) {
462 		if (RB_WARN_ON(cpu_buffer,
463 			       bpage->list.next->prev != &bpage->list))
464 			return -1;
465 		if (RB_WARN_ON(cpu_buffer,
466 			       bpage->list.prev->next != &bpage->list))
467 			return -1;
468 	}
469 
470 	return 0;
471 }
472 
473 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
474 			     unsigned nr_pages)
475 {
476 	struct list_head *head = &cpu_buffer->pages;
477 	struct buffer_page *bpage, *tmp;
478 	unsigned long addr;
479 	LIST_HEAD(pages);
480 	unsigned i;
481 
482 	for (i = 0; i < nr_pages; i++) {
483 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
484 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
485 		if (!bpage)
486 			goto free_pages;
487 		list_add(&bpage->list, &pages);
488 
489 		addr = __get_free_page(GFP_KERNEL);
490 		if (!addr)
491 			goto free_pages;
492 		bpage->page = (void *)addr;
493 		rb_init_page(bpage->page);
494 	}
495 
496 	list_splice(&pages, head);
497 
498 	rb_check_pages(cpu_buffer);
499 
500 	return 0;
501 
502  free_pages:
503 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
504 		list_del_init(&bpage->list);
505 		free_buffer_page(bpage);
506 	}
507 	return -ENOMEM;
508 }
509 
510 static struct ring_buffer_per_cpu *
511 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
512 {
513 	struct ring_buffer_per_cpu *cpu_buffer;
514 	struct buffer_page *bpage;
515 	unsigned long addr;
516 	int ret;
517 
518 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
519 				  GFP_KERNEL, cpu_to_node(cpu));
520 	if (!cpu_buffer)
521 		return NULL;
522 
523 	cpu_buffer->cpu = cpu;
524 	cpu_buffer->buffer = buffer;
525 	spin_lock_init(&cpu_buffer->reader_lock);
526 	cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
527 	INIT_LIST_HEAD(&cpu_buffer->pages);
528 
529 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
530 			    GFP_KERNEL, cpu_to_node(cpu));
531 	if (!bpage)
532 		goto fail_free_buffer;
533 
534 	cpu_buffer->reader_page = bpage;
535 	addr = __get_free_page(GFP_KERNEL);
536 	if (!addr)
537 		goto fail_free_reader;
538 	bpage->page = (void *)addr;
539 	rb_init_page(bpage->page);
540 
541 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
542 
543 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
544 	if (ret < 0)
545 		goto fail_free_reader;
546 
547 	cpu_buffer->head_page
548 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
549 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
550 
551 	return cpu_buffer;
552 
553  fail_free_reader:
554 	free_buffer_page(cpu_buffer->reader_page);
555 
556  fail_free_buffer:
557 	kfree(cpu_buffer);
558 	return NULL;
559 }
560 
561 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
562 {
563 	struct list_head *head = &cpu_buffer->pages;
564 	struct buffer_page *bpage, *tmp;
565 
566 	list_del_init(&cpu_buffer->reader_page->list);
567 	free_buffer_page(cpu_buffer->reader_page);
568 
569 	list_for_each_entry_safe(bpage, tmp, head, list) {
570 		list_del_init(&bpage->list);
571 		free_buffer_page(bpage);
572 	}
573 	kfree(cpu_buffer);
574 }
575 
576 /*
577  * Causes compile errors if the struct buffer_page gets bigger
578  * than the struct page.
579  */
580 extern int ring_buffer_page_too_big(void);
581 
582 #ifdef CONFIG_HOTPLUG_CPU
583 static int __cpuinit rb_cpu_notify(struct notifier_block *self,
584 				   unsigned long action, void *hcpu);
585 #endif
586 
587 /**
588  * ring_buffer_alloc - allocate a new ring_buffer
589  * @size: the size in bytes per cpu that is needed.
590  * @flags: attributes to set for the ring buffer.
591  *
592  * Currently the only flag that is available is the RB_FL_OVERWRITE
593  * flag. This flag means that the buffer will overwrite old data
594  * when the buffer wraps. If this flag is not set, the buffer will
595  * drop data when the tail hits the head.
596  */
597 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
598 {
599 	struct ring_buffer *buffer;
600 	int bsize;
601 	int cpu;
602 
603 	/* Paranoid! Optimizes out when all is well */
604 	if (sizeof(struct buffer_page) > sizeof(struct page))
605 		ring_buffer_page_too_big();
606 
607 
608 	/* keep it in its own cache line */
609 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
610 			 GFP_KERNEL);
611 	if (!buffer)
612 		return NULL;
613 
614 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
615 		goto fail_free_buffer;
616 
617 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
618 	buffer->flags = flags;
619 	buffer->clock = trace_clock_local;
620 
621 	/* need at least two pages */
622 	if (buffer->pages == 1)
623 		buffer->pages++;
624 
625 	/*
626 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
627 	 * in early initcall, it will not be notified of secondary cpus.
628 	 * In that off case, we need to allocate for all possible cpus.
629 	 */
630 #ifdef CONFIG_HOTPLUG_CPU
631 	get_online_cpus();
632 	cpumask_copy(buffer->cpumask, cpu_online_mask);
633 #else
634 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
635 #endif
636 	buffer->cpus = nr_cpu_ids;
637 
638 	bsize = sizeof(void *) * nr_cpu_ids;
639 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
640 				  GFP_KERNEL);
641 	if (!buffer->buffers)
642 		goto fail_free_cpumask;
643 
644 	for_each_buffer_cpu(buffer, cpu) {
645 		buffer->buffers[cpu] =
646 			rb_allocate_cpu_buffer(buffer, cpu);
647 		if (!buffer->buffers[cpu])
648 			goto fail_free_buffers;
649 	}
650 
651 #ifdef CONFIG_HOTPLUG_CPU
652 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
653 	buffer->cpu_notify.priority = 0;
654 	register_cpu_notifier(&buffer->cpu_notify);
655 #endif
656 
657 	put_online_cpus();
658 	mutex_init(&buffer->mutex);
659 
660 	return buffer;
661 
662  fail_free_buffers:
663 	for_each_buffer_cpu(buffer, cpu) {
664 		if (buffer->buffers[cpu])
665 			rb_free_cpu_buffer(buffer->buffers[cpu]);
666 	}
667 	kfree(buffer->buffers);
668 
669  fail_free_cpumask:
670 	free_cpumask_var(buffer->cpumask);
671 	put_online_cpus();
672 
673  fail_free_buffer:
674 	kfree(buffer);
675 	return NULL;
676 }
677 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
678 
679 /**
680  * ring_buffer_free - free a ring buffer.
681  * @buffer: the buffer to free.
682  */
683 void
684 ring_buffer_free(struct ring_buffer *buffer)
685 {
686 	int cpu;
687 
688 	get_online_cpus();
689 
690 #ifdef CONFIG_HOTPLUG_CPU
691 	unregister_cpu_notifier(&buffer->cpu_notify);
692 #endif
693 
694 	for_each_buffer_cpu(buffer, cpu)
695 		rb_free_cpu_buffer(buffer->buffers[cpu]);
696 
697 	put_online_cpus();
698 
699 	free_cpumask_var(buffer->cpumask);
700 
701 	kfree(buffer);
702 }
703 EXPORT_SYMBOL_GPL(ring_buffer_free);
704 
705 void ring_buffer_set_clock(struct ring_buffer *buffer,
706 			   u64 (*clock)(void))
707 {
708 	buffer->clock = clock;
709 }
710 
711 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
712 
713 static void
714 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
715 {
716 	struct buffer_page *bpage;
717 	struct list_head *p;
718 	unsigned i;
719 
720 	atomic_inc(&cpu_buffer->record_disabled);
721 	synchronize_sched();
722 
723 	for (i = 0; i < nr_pages; i++) {
724 		if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
725 			return;
726 		p = cpu_buffer->pages.next;
727 		bpage = list_entry(p, struct buffer_page, list);
728 		list_del_init(&bpage->list);
729 		free_buffer_page(bpage);
730 	}
731 	if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
732 		return;
733 
734 	rb_reset_cpu(cpu_buffer);
735 
736 	rb_check_pages(cpu_buffer);
737 
738 	atomic_dec(&cpu_buffer->record_disabled);
739 
740 }
741 
742 static void
743 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
744 		struct list_head *pages, unsigned nr_pages)
745 {
746 	struct buffer_page *bpage;
747 	struct list_head *p;
748 	unsigned i;
749 
750 	atomic_inc(&cpu_buffer->record_disabled);
751 	synchronize_sched();
752 
753 	for (i = 0; i < nr_pages; i++) {
754 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
755 			return;
756 		p = pages->next;
757 		bpage = list_entry(p, struct buffer_page, list);
758 		list_del_init(&bpage->list);
759 		list_add_tail(&bpage->list, &cpu_buffer->pages);
760 	}
761 	rb_reset_cpu(cpu_buffer);
762 
763 	rb_check_pages(cpu_buffer);
764 
765 	atomic_dec(&cpu_buffer->record_disabled);
766 }
767 
768 /**
769  * ring_buffer_resize - resize the ring buffer
770  * @buffer: the buffer to resize.
771  * @size: the new size.
772  *
773  * The tracer is responsible for making sure that the buffer is
774  * not being used while changing the size.
775  * Note: We may be able to change the above requirement by using
776  *  RCU synchronizations.
777  *
778  * Minimum size is 2 * BUF_PAGE_SIZE.
779  *
780  * Returns -1 on failure.
781  */
782 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
783 {
784 	struct ring_buffer_per_cpu *cpu_buffer;
785 	unsigned nr_pages, rm_pages, new_pages;
786 	struct buffer_page *bpage, *tmp;
787 	unsigned long buffer_size;
788 	unsigned long addr;
789 	LIST_HEAD(pages);
790 	int i, cpu;
791 
792 	/*
793 	 * Always succeed at resizing a non-existent buffer:
794 	 */
795 	if (!buffer)
796 		return size;
797 
798 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
799 	size *= BUF_PAGE_SIZE;
800 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
801 
802 	/* we need a minimum of two pages */
803 	if (size < BUF_PAGE_SIZE * 2)
804 		size = BUF_PAGE_SIZE * 2;
805 
806 	if (size == buffer_size)
807 		return size;
808 
809 	mutex_lock(&buffer->mutex);
810 	get_online_cpus();
811 
812 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
813 
814 	if (size < buffer_size) {
815 
816 		/* easy case, just free pages */
817 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
818 			goto out_fail;
819 
820 		rm_pages = buffer->pages - nr_pages;
821 
822 		for_each_buffer_cpu(buffer, cpu) {
823 			cpu_buffer = buffer->buffers[cpu];
824 			rb_remove_pages(cpu_buffer, rm_pages);
825 		}
826 		goto out;
827 	}
828 
829 	/*
830 	 * This is a bit more difficult. We only want to add pages
831 	 * when we can allocate enough for all CPUs. We do this
832 	 * by allocating all the pages and storing them on a local
833 	 * link list. If we succeed in our allocation, then we
834 	 * add these pages to the cpu_buffers. Otherwise we just free
835 	 * them all and return -ENOMEM;
836 	 */
837 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
838 		goto out_fail;
839 
840 	new_pages = nr_pages - buffer->pages;
841 
842 	for_each_buffer_cpu(buffer, cpu) {
843 		for (i = 0; i < new_pages; i++) {
844 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
845 						  cache_line_size()),
846 					    GFP_KERNEL, cpu_to_node(cpu));
847 			if (!bpage)
848 				goto free_pages;
849 			list_add(&bpage->list, &pages);
850 			addr = __get_free_page(GFP_KERNEL);
851 			if (!addr)
852 				goto free_pages;
853 			bpage->page = (void *)addr;
854 			rb_init_page(bpage->page);
855 		}
856 	}
857 
858 	for_each_buffer_cpu(buffer, cpu) {
859 		cpu_buffer = buffer->buffers[cpu];
860 		rb_insert_pages(cpu_buffer, &pages, new_pages);
861 	}
862 
863 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
864 		goto out_fail;
865 
866  out:
867 	buffer->pages = nr_pages;
868 	put_online_cpus();
869 	mutex_unlock(&buffer->mutex);
870 
871 	return size;
872 
873  free_pages:
874 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
875 		list_del_init(&bpage->list);
876 		free_buffer_page(bpage);
877 	}
878 	put_online_cpus();
879 	mutex_unlock(&buffer->mutex);
880 	return -ENOMEM;
881 
882 	/*
883 	 * Something went totally wrong, and we are too paranoid
884 	 * to even clean up the mess.
885 	 */
886  out_fail:
887 	put_online_cpus();
888 	mutex_unlock(&buffer->mutex);
889 	return -1;
890 }
891 EXPORT_SYMBOL_GPL(ring_buffer_resize);
892 
893 static inline void *
894 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
895 {
896 	return bpage->data + index;
897 }
898 
899 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
900 {
901 	return bpage->page->data + index;
902 }
903 
904 static inline struct ring_buffer_event *
905 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
906 {
907 	return __rb_page_index(cpu_buffer->reader_page,
908 			       cpu_buffer->reader_page->read);
909 }
910 
911 static inline struct ring_buffer_event *
912 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
913 {
914 	return __rb_page_index(cpu_buffer->head_page,
915 			       cpu_buffer->head_page->read);
916 }
917 
918 static inline struct ring_buffer_event *
919 rb_iter_head_event(struct ring_buffer_iter *iter)
920 {
921 	return __rb_page_index(iter->head_page, iter->head);
922 }
923 
924 static inline unsigned rb_page_write(struct buffer_page *bpage)
925 {
926 	return local_read(&bpage->write);
927 }
928 
929 static inline unsigned rb_page_commit(struct buffer_page *bpage)
930 {
931 	return local_read(&bpage->page->commit);
932 }
933 
934 /* Size is determined by what has been commited */
935 static inline unsigned rb_page_size(struct buffer_page *bpage)
936 {
937 	return rb_page_commit(bpage);
938 }
939 
940 static inline unsigned
941 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
942 {
943 	return rb_page_commit(cpu_buffer->commit_page);
944 }
945 
946 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
947 {
948 	return rb_page_commit(cpu_buffer->head_page);
949 }
950 
951 /*
952  * When the tail hits the head and the buffer is in overwrite mode,
953  * the head jumps to the next page and all content on the previous
954  * page is discarded. But before doing so, we update the overrun
955  * variable of the buffer.
956  */
957 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
958 {
959 	struct ring_buffer_event *event;
960 	unsigned long head;
961 
962 	for (head = 0; head < rb_head_size(cpu_buffer);
963 	     head += rb_event_length(event)) {
964 
965 		event = __rb_page_index(cpu_buffer->head_page, head);
966 		if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
967 			return;
968 		/* Only count data entries */
969 		if (event->type != RINGBUF_TYPE_DATA)
970 			continue;
971 		cpu_buffer->overrun++;
972 		cpu_buffer->entries--;
973 	}
974 }
975 
976 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
977 			       struct buffer_page **bpage)
978 {
979 	struct list_head *p = (*bpage)->list.next;
980 
981 	if (p == &cpu_buffer->pages)
982 		p = p->next;
983 
984 	*bpage = list_entry(p, struct buffer_page, list);
985 }
986 
987 static inline unsigned
988 rb_event_index(struct ring_buffer_event *event)
989 {
990 	unsigned long addr = (unsigned long)event;
991 
992 	return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
993 }
994 
995 static int
996 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
997 	     struct ring_buffer_event *event)
998 {
999 	unsigned long addr = (unsigned long)event;
1000 	unsigned long index;
1001 
1002 	index = rb_event_index(event);
1003 	addr &= PAGE_MASK;
1004 
1005 	return cpu_buffer->commit_page->page == (void *)addr &&
1006 		rb_commit_index(cpu_buffer) == index;
1007 }
1008 
1009 static void
1010 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1011 		    struct ring_buffer_event *event)
1012 {
1013 	unsigned long addr = (unsigned long)event;
1014 	unsigned long index;
1015 
1016 	index = rb_event_index(event);
1017 	addr &= PAGE_MASK;
1018 
1019 	while (cpu_buffer->commit_page->page != (void *)addr) {
1020 		if (RB_WARN_ON(cpu_buffer,
1021 			  cpu_buffer->commit_page == cpu_buffer->tail_page))
1022 			return;
1023 		cpu_buffer->commit_page->page->commit =
1024 			cpu_buffer->commit_page->write;
1025 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1026 		cpu_buffer->write_stamp =
1027 			cpu_buffer->commit_page->page->time_stamp;
1028 	}
1029 
1030 	/* Now set the commit to the event's index */
1031 	local_set(&cpu_buffer->commit_page->page->commit, index);
1032 }
1033 
1034 static void
1035 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1036 {
1037 	/*
1038 	 * We only race with interrupts and NMIs on this CPU.
1039 	 * If we own the commit event, then we can commit
1040 	 * all others that interrupted us, since the interruptions
1041 	 * are in stack format (they finish before they come
1042 	 * back to us). This allows us to do a simple loop to
1043 	 * assign the commit to the tail.
1044 	 */
1045  again:
1046 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1047 		cpu_buffer->commit_page->page->commit =
1048 			cpu_buffer->commit_page->write;
1049 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1050 		cpu_buffer->write_stamp =
1051 			cpu_buffer->commit_page->page->time_stamp;
1052 		/* add barrier to keep gcc from optimizing too much */
1053 		barrier();
1054 	}
1055 	while (rb_commit_index(cpu_buffer) !=
1056 	       rb_page_write(cpu_buffer->commit_page)) {
1057 		cpu_buffer->commit_page->page->commit =
1058 			cpu_buffer->commit_page->write;
1059 		barrier();
1060 	}
1061 
1062 	/* again, keep gcc from optimizing */
1063 	barrier();
1064 
1065 	/*
1066 	 * If an interrupt came in just after the first while loop
1067 	 * and pushed the tail page forward, we will be left with
1068 	 * a dangling commit that will never go forward.
1069 	 */
1070 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1071 		goto again;
1072 }
1073 
1074 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1075 {
1076 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1077 	cpu_buffer->reader_page->read = 0;
1078 }
1079 
1080 static void rb_inc_iter(struct ring_buffer_iter *iter)
1081 {
1082 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1083 
1084 	/*
1085 	 * The iterator could be on the reader page (it starts there).
1086 	 * But the head could have moved, since the reader was
1087 	 * found. Check for this case and assign the iterator
1088 	 * to the head page instead of next.
1089 	 */
1090 	if (iter->head_page == cpu_buffer->reader_page)
1091 		iter->head_page = cpu_buffer->head_page;
1092 	else
1093 		rb_inc_page(cpu_buffer, &iter->head_page);
1094 
1095 	iter->read_stamp = iter->head_page->page->time_stamp;
1096 	iter->head = 0;
1097 }
1098 
1099 /**
1100  * ring_buffer_update_event - update event type and data
1101  * @event: the even to update
1102  * @type: the type of event
1103  * @length: the size of the event field in the ring buffer
1104  *
1105  * Update the type and data fields of the event. The length
1106  * is the actual size that is written to the ring buffer,
1107  * and with this, we can determine what to place into the
1108  * data field.
1109  */
1110 static void
1111 rb_update_event(struct ring_buffer_event *event,
1112 			 unsigned type, unsigned length)
1113 {
1114 	event->type = type;
1115 
1116 	switch (type) {
1117 
1118 	case RINGBUF_TYPE_PADDING:
1119 		break;
1120 
1121 	case RINGBUF_TYPE_TIME_EXTEND:
1122 		event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
1123 		break;
1124 
1125 	case RINGBUF_TYPE_TIME_STAMP:
1126 		event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
1127 		break;
1128 
1129 	case RINGBUF_TYPE_DATA:
1130 		length -= RB_EVNT_HDR_SIZE;
1131 		if (length > RB_MAX_SMALL_DATA) {
1132 			event->len = 0;
1133 			event->array[0] = length;
1134 		} else
1135 			event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1136 		break;
1137 	default:
1138 		BUG();
1139 	}
1140 }
1141 
1142 static unsigned rb_calculate_event_length(unsigned length)
1143 {
1144 	struct ring_buffer_event event; /* Used only for sizeof array */
1145 
1146 	/* zero length can cause confusions */
1147 	if (!length)
1148 		length = 1;
1149 
1150 	if (length > RB_MAX_SMALL_DATA)
1151 		length += sizeof(event.array[0]);
1152 
1153 	length += RB_EVNT_HDR_SIZE;
1154 	length = ALIGN(length, RB_ALIGNMENT);
1155 
1156 	return length;
1157 }
1158 
1159 static struct ring_buffer_event *
1160 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1161 		  unsigned type, unsigned long length, u64 *ts)
1162 {
1163 	struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1164 	unsigned long tail, write;
1165 	struct ring_buffer *buffer = cpu_buffer->buffer;
1166 	struct ring_buffer_event *event;
1167 	unsigned long flags;
1168 	bool lock_taken = false;
1169 
1170 	commit_page = cpu_buffer->commit_page;
1171 	/* we just need to protect against interrupts */
1172 	barrier();
1173 	tail_page = cpu_buffer->tail_page;
1174 	write = local_add_return(length, &tail_page->write);
1175 	tail = write - length;
1176 
1177 	/* See if we shot pass the end of this buffer page */
1178 	if (write > BUF_PAGE_SIZE) {
1179 		struct buffer_page *next_page = tail_page;
1180 
1181 		local_irq_save(flags);
1182 		/*
1183 		 * Since the write to the buffer is still not
1184 		 * fully lockless, we must be careful with NMIs.
1185 		 * The locks in the writers are taken when a write
1186 		 * crosses to a new page. The locks protect against
1187 		 * races with the readers (this will soon be fixed
1188 		 * with a lockless solution).
1189 		 *
1190 		 * Because we can not protect against NMIs, and we
1191 		 * want to keep traces reentrant, we need to manage
1192 		 * what happens when we are in an NMI.
1193 		 *
1194 		 * NMIs can happen after we take the lock.
1195 		 * If we are in an NMI, only take the lock
1196 		 * if it is not already taken. Otherwise
1197 		 * simply fail.
1198 		 */
1199 		if (unlikely(in_nmi())) {
1200 			if (!__raw_spin_trylock(&cpu_buffer->lock))
1201 				goto out_reset;
1202 		} else
1203 			__raw_spin_lock(&cpu_buffer->lock);
1204 
1205 		lock_taken = true;
1206 
1207 		rb_inc_page(cpu_buffer, &next_page);
1208 
1209 		head_page = cpu_buffer->head_page;
1210 		reader_page = cpu_buffer->reader_page;
1211 
1212 		/* we grabbed the lock before incrementing */
1213 		if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1214 			goto out_reset;
1215 
1216 		/*
1217 		 * If for some reason, we had an interrupt storm that made
1218 		 * it all the way around the buffer, bail, and warn
1219 		 * about it.
1220 		 */
1221 		if (unlikely(next_page == commit_page)) {
1222 			WARN_ON_ONCE(1);
1223 			goto out_reset;
1224 		}
1225 
1226 		if (next_page == head_page) {
1227 			if (!(buffer->flags & RB_FL_OVERWRITE))
1228 				goto out_reset;
1229 
1230 			/* tail_page has not moved yet? */
1231 			if (tail_page == cpu_buffer->tail_page) {
1232 				/* count overflows */
1233 				rb_update_overflow(cpu_buffer);
1234 
1235 				rb_inc_page(cpu_buffer, &head_page);
1236 				cpu_buffer->head_page = head_page;
1237 				cpu_buffer->head_page->read = 0;
1238 			}
1239 		}
1240 
1241 		/*
1242 		 * If the tail page is still the same as what we think
1243 		 * it is, then it is up to us to update the tail
1244 		 * pointer.
1245 		 */
1246 		if (tail_page == cpu_buffer->tail_page) {
1247 			local_set(&next_page->write, 0);
1248 			local_set(&next_page->page->commit, 0);
1249 			cpu_buffer->tail_page = next_page;
1250 
1251 			/* reread the time stamp */
1252 			*ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1253 			cpu_buffer->tail_page->page->time_stamp = *ts;
1254 		}
1255 
1256 		/*
1257 		 * The actual tail page has moved forward.
1258 		 */
1259 		if (tail < BUF_PAGE_SIZE) {
1260 			/* Mark the rest of the page with padding */
1261 			event = __rb_page_index(tail_page, tail);
1262 			rb_event_set_padding(event);
1263 		}
1264 
1265 		if (tail <= BUF_PAGE_SIZE)
1266 			/* Set the write back to the previous setting */
1267 			local_set(&tail_page->write, tail);
1268 
1269 		/*
1270 		 * If this was a commit entry that failed,
1271 		 * increment that too
1272 		 */
1273 		if (tail_page == cpu_buffer->commit_page &&
1274 		    tail == rb_commit_index(cpu_buffer)) {
1275 			rb_set_commit_to_write(cpu_buffer);
1276 		}
1277 
1278 		__raw_spin_unlock(&cpu_buffer->lock);
1279 		local_irq_restore(flags);
1280 
1281 		/* fail and let the caller try again */
1282 		return ERR_PTR(-EAGAIN);
1283 	}
1284 
1285 	/* We reserved something on the buffer */
1286 
1287 	if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1288 		return NULL;
1289 
1290 	event = __rb_page_index(tail_page, tail);
1291 	rb_update_event(event, type, length);
1292 
1293 	/*
1294 	 * If this is a commit and the tail is zero, then update
1295 	 * this page's time stamp.
1296 	 */
1297 	if (!tail && rb_is_commit(cpu_buffer, event))
1298 		cpu_buffer->commit_page->page->time_stamp = *ts;
1299 
1300 	return event;
1301 
1302  out_reset:
1303 	/* reset write */
1304 	if (tail <= BUF_PAGE_SIZE)
1305 		local_set(&tail_page->write, tail);
1306 
1307 	if (likely(lock_taken))
1308 		__raw_spin_unlock(&cpu_buffer->lock);
1309 	local_irq_restore(flags);
1310 	return NULL;
1311 }
1312 
1313 static int
1314 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1315 		  u64 *ts, u64 *delta)
1316 {
1317 	struct ring_buffer_event *event;
1318 	static int once;
1319 	int ret;
1320 
1321 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1322 		printk(KERN_WARNING "Delta way too big! %llu"
1323 		       " ts=%llu write stamp = %llu\n",
1324 		       (unsigned long long)*delta,
1325 		       (unsigned long long)*ts,
1326 		       (unsigned long long)cpu_buffer->write_stamp);
1327 		WARN_ON(1);
1328 	}
1329 
1330 	/*
1331 	 * The delta is too big, we to add a
1332 	 * new timestamp.
1333 	 */
1334 	event = __rb_reserve_next(cpu_buffer,
1335 				  RINGBUF_TYPE_TIME_EXTEND,
1336 				  RB_LEN_TIME_EXTEND,
1337 				  ts);
1338 	if (!event)
1339 		return -EBUSY;
1340 
1341 	if (PTR_ERR(event) == -EAGAIN)
1342 		return -EAGAIN;
1343 
1344 	/* Only a commited time event can update the write stamp */
1345 	if (rb_is_commit(cpu_buffer, event)) {
1346 		/*
1347 		 * If this is the first on the page, then we need to
1348 		 * update the page itself, and just put in a zero.
1349 		 */
1350 		if (rb_event_index(event)) {
1351 			event->time_delta = *delta & TS_MASK;
1352 			event->array[0] = *delta >> TS_SHIFT;
1353 		} else {
1354 			cpu_buffer->commit_page->page->time_stamp = *ts;
1355 			event->time_delta = 0;
1356 			event->array[0] = 0;
1357 		}
1358 		cpu_buffer->write_stamp = *ts;
1359 		/* let the caller know this was the commit */
1360 		ret = 1;
1361 	} else {
1362 		/* Darn, this is just wasted space */
1363 		event->time_delta = 0;
1364 		event->array[0] = 0;
1365 		ret = 0;
1366 	}
1367 
1368 	*delta = 0;
1369 
1370 	return ret;
1371 }
1372 
1373 static struct ring_buffer_event *
1374 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1375 		      unsigned type, unsigned long length)
1376 {
1377 	struct ring_buffer_event *event;
1378 	u64 ts, delta;
1379 	int commit = 0;
1380 	int nr_loops = 0;
1381 
1382  again:
1383 	/*
1384 	 * We allow for interrupts to reenter here and do a trace.
1385 	 * If one does, it will cause this original code to loop
1386 	 * back here. Even with heavy interrupts happening, this
1387 	 * should only happen a few times in a row. If this happens
1388 	 * 1000 times in a row, there must be either an interrupt
1389 	 * storm or we have something buggy.
1390 	 * Bail!
1391 	 */
1392 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1393 		return NULL;
1394 
1395 	ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1396 
1397 	/*
1398 	 * Only the first commit can update the timestamp.
1399 	 * Yes there is a race here. If an interrupt comes in
1400 	 * just after the conditional and it traces too, then it
1401 	 * will also check the deltas. More than one timestamp may
1402 	 * also be made. But only the entry that did the actual
1403 	 * commit will be something other than zero.
1404 	 */
1405 	if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1406 	    rb_page_write(cpu_buffer->tail_page) ==
1407 	    rb_commit_index(cpu_buffer)) {
1408 
1409 		delta = ts - cpu_buffer->write_stamp;
1410 
1411 		/* make sure this delta is calculated here */
1412 		barrier();
1413 
1414 		/* Did the write stamp get updated already? */
1415 		if (unlikely(ts < cpu_buffer->write_stamp))
1416 			delta = 0;
1417 
1418 		if (test_time_stamp(delta)) {
1419 
1420 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1421 
1422 			if (commit == -EBUSY)
1423 				return NULL;
1424 
1425 			if (commit == -EAGAIN)
1426 				goto again;
1427 
1428 			RB_WARN_ON(cpu_buffer, commit < 0);
1429 		}
1430 	} else
1431 		/* Non commits have zero deltas */
1432 		delta = 0;
1433 
1434 	event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1435 	if (PTR_ERR(event) == -EAGAIN)
1436 		goto again;
1437 
1438 	if (!event) {
1439 		if (unlikely(commit))
1440 			/*
1441 			 * Ouch! We needed a timestamp and it was commited. But
1442 			 * we didn't get our event reserved.
1443 			 */
1444 			rb_set_commit_to_write(cpu_buffer);
1445 		return NULL;
1446 	}
1447 
1448 	/*
1449 	 * If the timestamp was commited, make the commit our entry
1450 	 * now so that we will update it when needed.
1451 	 */
1452 	if (commit)
1453 		rb_set_commit_event(cpu_buffer, event);
1454 	else if (!rb_is_commit(cpu_buffer, event))
1455 		delta = 0;
1456 
1457 	event->time_delta = delta;
1458 
1459 	return event;
1460 }
1461 
1462 static DEFINE_PER_CPU(int, rb_need_resched);
1463 
1464 /**
1465  * ring_buffer_lock_reserve - reserve a part of the buffer
1466  * @buffer: the ring buffer to reserve from
1467  * @length: the length of the data to reserve (excluding event header)
1468  *
1469  * Returns a reseverd event on the ring buffer to copy directly to.
1470  * The user of this interface will need to get the body to write into
1471  * and can use the ring_buffer_event_data() interface.
1472  *
1473  * The length is the length of the data needed, not the event length
1474  * which also includes the event header.
1475  *
1476  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1477  * If NULL is returned, then nothing has been allocated or locked.
1478  */
1479 struct ring_buffer_event *
1480 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1481 {
1482 	struct ring_buffer_per_cpu *cpu_buffer;
1483 	struct ring_buffer_event *event;
1484 	int cpu, resched;
1485 
1486 	if (ring_buffer_flags != RB_BUFFERS_ON)
1487 		return NULL;
1488 
1489 	if (atomic_read(&buffer->record_disabled))
1490 		return NULL;
1491 
1492 	/* If we are tracing schedule, we don't want to recurse */
1493 	resched = ftrace_preempt_disable();
1494 
1495 	cpu = raw_smp_processor_id();
1496 
1497 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1498 		goto out;
1499 
1500 	cpu_buffer = buffer->buffers[cpu];
1501 
1502 	if (atomic_read(&cpu_buffer->record_disabled))
1503 		goto out;
1504 
1505 	length = rb_calculate_event_length(length);
1506 	if (length > BUF_PAGE_SIZE)
1507 		goto out;
1508 
1509 	event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1510 	if (!event)
1511 		goto out;
1512 
1513 	/*
1514 	 * Need to store resched state on this cpu.
1515 	 * Only the first needs to.
1516 	 */
1517 
1518 	if (preempt_count() == 1)
1519 		per_cpu(rb_need_resched, cpu) = resched;
1520 
1521 	return event;
1522 
1523  out:
1524 	ftrace_preempt_enable(resched);
1525 	return NULL;
1526 }
1527 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1528 
1529 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1530 		      struct ring_buffer_event *event)
1531 {
1532 	cpu_buffer->entries++;
1533 
1534 	/* Only process further if we own the commit */
1535 	if (!rb_is_commit(cpu_buffer, event))
1536 		return;
1537 
1538 	cpu_buffer->write_stamp += event->time_delta;
1539 
1540 	rb_set_commit_to_write(cpu_buffer);
1541 }
1542 
1543 /**
1544  * ring_buffer_unlock_commit - commit a reserved
1545  * @buffer: The buffer to commit to
1546  * @event: The event pointer to commit.
1547  *
1548  * This commits the data to the ring buffer, and releases any locks held.
1549  *
1550  * Must be paired with ring_buffer_lock_reserve.
1551  */
1552 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1553 			      struct ring_buffer_event *event)
1554 {
1555 	struct ring_buffer_per_cpu *cpu_buffer;
1556 	int cpu = raw_smp_processor_id();
1557 
1558 	cpu_buffer = buffer->buffers[cpu];
1559 
1560 	rb_commit(cpu_buffer, event);
1561 
1562 	/*
1563 	 * Only the last preempt count needs to restore preemption.
1564 	 */
1565 	if (preempt_count() == 1)
1566 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1567 	else
1568 		preempt_enable_no_resched_notrace();
1569 
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1573 
1574 /**
1575  * ring_buffer_write - write data to the buffer without reserving
1576  * @buffer: The ring buffer to write to.
1577  * @length: The length of the data being written (excluding the event header)
1578  * @data: The data to write to the buffer.
1579  *
1580  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1581  * one function. If you already have the data to write to the buffer, it
1582  * may be easier to simply call this function.
1583  *
1584  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1585  * and not the length of the event which would hold the header.
1586  */
1587 int ring_buffer_write(struct ring_buffer *buffer,
1588 			unsigned long length,
1589 			void *data)
1590 {
1591 	struct ring_buffer_per_cpu *cpu_buffer;
1592 	struct ring_buffer_event *event;
1593 	unsigned long event_length;
1594 	void *body;
1595 	int ret = -EBUSY;
1596 	int cpu, resched;
1597 
1598 	if (ring_buffer_flags != RB_BUFFERS_ON)
1599 		return -EBUSY;
1600 
1601 	if (atomic_read(&buffer->record_disabled))
1602 		return -EBUSY;
1603 
1604 	resched = ftrace_preempt_disable();
1605 
1606 	cpu = raw_smp_processor_id();
1607 
1608 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1609 		goto out;
1610 
1611 	cpu_buffer = buffer->buffers[cpu];
1612 
1613 	if (atomic_read(&cpu_buffer->record_disabled))
1614 		goto out;
1615 
1616 	event_length = rb_calculate_event_length(length);
1617 	event = rb_reserve_next_event(cpu_buffer,
1618 				      RINGBUF_TYPE_DATA, event_length);
1619 	if (!event)
1620 		goto out;
1621 
1622 	body = rb_event_data(event);
1623 
1624 	memcpy(body, data, length);
1625 
1626 	rb_commit(cpu_buffer, event);
1627 
1628 	ret = 0;
1629  out:
1630 	ftrace_preempt_enable(resched);
1631 
1632 	return ret;
1633 }
1634 EXPORT_SYMBOL_GPL(ring_buffer_write);
1635 
1636 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1637 {
1638 	struct buffer_page *reader = cpu_buffer->reader_page;
1639 	struct buffer_page *head = cpu_buffer->head_page;
1640 	struct buffer_page *commit = cpu_buffer->commit_page;
1641 
1642 	return reader->read == rb_page_commit(reader) &&
1643 		(commit == reader ||
1644 		 (commit == head &&
1645 		  head->read == rb_page_commit(commit)));
1646 }
1647 
1648 /**
1649  * ring_buffer_record_disable - stop all writes into the buffer
1650  * @buffer: The ring buffer to stop writes to.
1651  *
1652  * This prevents all writes to the buffer. Any attempt to write
1653  * to the buffer after this will fail and return NULL.
1654  *
1655  * The caller should call synchronize_sched() after this.
1656  */
1657 void ring_buffer_record_disable(struct ring_buffer *buffer)
1658 {
1659 	atomic_inc(&buffer->record_disabled);
1660 }
1661 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1662 
1663 /**
1664  * ring_buffer_record_enable - enable writes to the buffer
1665  * @buffer: The ring buffer to enable writes
1666  *
1667  * Note, multiple disables will need the same number of enables
1668  * to truely enable the writing (much like preempt_disable).
1669  */
1670 void ring_buffer_record_enable(struct ring_buffer *buffer)
1671 {
1672 	atomic_dec(&buffer->record_disabled);
1673 }
1674 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1675 
1676 /**
1677  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1678  * @buffer: The ring buffer to stop writes to.
1679  * @cpu: The CPU buffer to stop
1680  *
1681  * This prevents all writes to the buffer. Any attempt to write
1682  * to the buffer after this will fail and return NULL.
1683  *
1684  * The caller should call synchronize_sched() after this.
1685  */
1686 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1687 {
1688 	struct ring_buffer_per_cpu *cpu_buffer;
1689 
1690 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1691 		return;
1692 
1693 	cpu_buffer = buffer->buffers[cpu];
1694 	atomic_inc(&cpu_buffer->record_disabled);
1695 }
1696 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1697 
1698 /**
1699  * ring_buffer_record_enable_cpu - enable writes to the buffer
1700  * @buffer: The ring buffer to enable writes
1701  * @cpu: The CPU to enable.
1702  *
1703  * Note, multiple disables will need the same number of enables
1704  * to truely enable the writing (much like preempt_disable).
1705  */
1706 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1707 {
1708 	struct ring_buffer_per_cpu *cpu_buffer;
1709 
1710 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1711 		return;
1712 
1713 	cpu_buffer = buffer->buffers[cpu];
1714 	atomic_dec(&cpu_buffer->record_disabled);
1715 }
1716 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1717 
1718 /**
1719  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1720  * @buffer: The ring buffer
1721  * @cpu: The per CPU buffer to get the entries from.
1722  */
1723 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1724 {
1725 	struct ring_buffer_per_cpu *cpu_buffer;
1726 	unsigned long ret;
1727 
1728 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1729 		return 0;
1730 
1731 	cpu_buffer = buffer->buffers[cpu];
1732 	ret = cpu_buffer->entries;
1733 
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1737 
1738 /**
1739  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1740  * @buffer: The ring buffer
1741  * @cpu: The per CPU buffer to get the number of overruns from
1742  */
1743 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1744 {
1745 	struct ring_buffer_per_cpu *cpu_buffer;
1746 	unsigned long ret;
1747 
1748 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1749 		return 0;
1750 
1751 	cpu_buffer = buffer->buffers[cpu];
1752 	ret = cpu_buffer->overrun;
1753 
1754 	return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1757 
1758 /**
1759  * ring_buffer_entries - get the number of entries in a buffer
1760  * @buffer: The ring buffer
1761  *
1762  * Returns the total number of entries in the ring buffer
1763  * (all CPU entries)
1764  */
1765 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1766 {
1767 	struct ring_buffer_per_cpu *cpu_buffer;
1768 	unsigned long entries = 0;
1769 	int cpu;
1770 
1771 	/* if you care about this being correct, lock the buffer */
1772 	for_each_buffer_cpu(buffer, cpu) {
1773 		cpu_buffer = buffer->buffers[cpu];
1774 		entries += cpu_buffer->entries;
1775 	}
1776 
1777 	return entries;
1778 }
1779 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1780 
1781 /**
1782  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1783  * @buffer: The ring buffer
1784  *
1785  * Returns the total number of overruns in the ring buffer
1786  * (all CPU entries)
1787  */
1788 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1789 {
1790 	struct ring_buffer_per_cpu *cpu_buffer;
1791 	unsigned long overruns = 0;
1792 	int cpu;
1793 
1794 	/* if you care about this being correct, lock the buffer */
1795 	for_each_buffer_cpu(buffer, cpu) {
1796 		cpu_buffer = buffer->buffers[cpu];
1797 		overruns += cpu_buffer->overrun;
1798 	}
1799 
1800 	return overruns;
1801 }
1802 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1803 
1804 static void rb_iter_reset(struct ring_buffer_iter *iter)
1805 {
1806 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1807 
1808 	/* Iterator usage is expected to have record disabled */
1809 	if (list_empty(&cpu_buffer->reader_page->list)) {
1810 		iter->head_page = cpu_buffer->head_page;
1811 		iter->head = cpu_buffer->head_page->read;
1812 	} else {
1813 		iter->head_page = cpu_buffer->reader_page;
1814 		iter->head = cpu_buffer->reader_page->read;
1815 	}
1816 	if (iter->head)
1817 		iter->read_stamp = cpu_buffer->read_stamp;
1818 	else
1819 		iter->read_stamp = iter->head_page->page->time_stamp;
1820 }
1821 
1822 /**
1823  * ring_buffer_iter_reset - reset an iterator
1824  * @iter: The iterator to reset
1825  *
1826  * Resets the iterator, so that it will start from the beginning
1827  * again.
1828  */
1829 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1830 {
1831 	struct ring_buffer_per_cpu *cpu_buffer;
1832 	unsigned long flags;
1833 
1834 	if (!iter)
1835 		return;
1836 
1837 	cpu_buffer = iter->cpu_buffer;
1838 
1839 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1840 	rb_iter_reset(iter);
1841 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1842 }
1843 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1844 
1845 /**
1846  * ring_buffer_iter_empty - check if an iterator has no more to read
1847  * @iter: The iterator to check
1848  */
1849 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1850 {
1851 	struct ring_buffer_per_cpu *cpu_buffer;
1852 
1853 	cpu_buffer = iter->cpu_buffer;
1854 
1855 	return iter->head_page == cpu_buffer->commit_page &&
1856 		iter->head == rb_commit_index(cpu_buffer);
1857 }
1858 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1859 
1860 static void
1861 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1862 		     struct ring_buffer_event *event)
1863 {
1864 	u64 delta;
1865 
1866 	switch (event->type) {
1867 	case RINGBUF_TYPE_PADDING:
1868 		return;
1869 
1870 	case RINGBUF_TYPE_TIME_EXTEND:
1871 		delta = event->array[0];
1872 		delta <<= TS_SHIFT;
1873 		delta += event->time_delta;
1874 		cpu_buffer->read_stamp += delta;
1875 		return;
1876 
1877 	case RINGBUF_TYPE_TIME_STAMP:
1878 		/* FIXME: not implemented */
1879 		return;
1880 
1881 	case RINGBUF_TYPE_DATA:
1882 		cpu_buffer->read_stamp += event->time_delta;
1883 		return;
1884 
1885 	default:
1886 		BUG();
1887 	}
1888 	return;
1889 }
1890 
1891 static void
1892 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1893 			  struct ring_buffer_event *event)
1894 {
1895 	u64 delta;
1896 
1897 	switch (event->type) {
1898 	case RINGBUF_TYPE_PADDING:
1899 		return;
1900 
1901 	case RINGBUF_TYPE_TIME_EXTEND:
1902 		delta = event->array[0];
1903 		delta <<= TS_SHIFT;
1904 		delta += event->time_delta;
1905 		iter->read_stamp += delta;
1906 		return;
1907 
1908 	case RINGBUF_TYPE_TIME_STAMP:
1909 		/* FIXME: not implemented */
1910 		return;
1911 
1912 	case RINGBUF_TYPE_DATA:
1913 		iter->read_stamp += event->time_delta;
1914 		return;
1915 
1916 	default:
1917 		BUG();
1918 	}
1919 	return;
1920 }
1921 
1922 static struct buffer_page *
1923 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1924 {
1925 	struct buffer_page *reader = NULL;
1926 	unsigned long flags;
1927 	int nr_loops = 0;
1928 
1929 	local_irq_save(flags);
1930 	__raw_spin_lock(&cpu_buffer->lock);
1931 
1932  again:
1933 	/*
1934 	 * This should normally only loop twice. But because the
1935 	 * start of the reader inserts an empty page, it causes
1936 	 * a case where we will loop three times. There should be no
1937 	 * reason to loop four times (that I know of).
1938 	 */
1939 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1940 		reader = NULL;
1941 		goto out;
1942 	}
1943 
1944 	reader = cpu_buffer->reader_page;
1945 
1946 	/* If there's more to read, return this page */
1947 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
1948 		goto out;
1949 
1950 	/* Never should we have an index greater than the size */
1951 	if (RB_WARN_ON(cpu_buffer,
1952 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
1953 		goto out;
1954 
1955 	/* check if we caught up to the tail */
1956 	reader = NULL;
1957 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1958 		goto out;
1959 
1960 	/*
1961 	 * Splice the empty reader page into the list around the head.
1962 	 * Reset the reader page to size zero.
1963 	 */
1964 
1965 	reader = cpu_buffer->head_page;
1966 	cpu_buffer->reader_page->list.next = reader->list.next;
1967 	cpu_buffer->reader_page->list.prev = reader->list.prev;
1968 
1969 	local_set(&cpu_buffer->reader_page->write, 0);
1970 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1971 
1972 	/* Make the reader page now replace the head */
1973 	reader->list.prev->next = &cpu_buffer->reader_page->list;
1974 	reader->list.next->prev = &cpu_buffer->reader_page->list;
1975 
1976 	/*
1977 	 * If the tail is on the reader, then we must set the head
1978 	 * to the inserted page, otherwise we set it one before.
1979 	 */
1980 	cpu_buffer->head_page = cpu_buffer->reader_page;
1981 
1982 	if (cpu_buffer->commit_page != reader)
1983 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1984 
1985 	/* Finally update the reader page to the new head */
1986 	cpu_buffer->reader_page = reader;
1987 	rb_reset_reader_page(cpu_buffer);
1988 
1989 	goto again;
1990 
1991  out:
1992 	__raw_spin_unlock(&cpu_buffer->lock);
1993 	local_irq_restore(flags);
1994 
1995 	return reader;
1996 }
1997 
1998 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1999 {
2000 	struct ring_buffer_event *event;
2001 	struct buffer_page *reader;
2002 	unsigned length;
2003 
2004 	reader = rb_get_reader_page(cpu_buffer);
2005 
2006 	/* This function should not be called when buffer is empty */
2007 	if (RB_WARN_ON(cpu_buffer, !reader))
2008 		return;
2009 
2010 	event = rb_reader_event(cpu_buffer);
2011 
2012 	if (event->type == RINGBUF_TYPE_DATA || rb_discarded_event(event))
2013 		cpu_buffer->entries--;
2014 
2015 	rb_update_read_stamp(cpu_buffer, event);
2016 
2017 	length = rb_event_length(event);
2018 	cpu_buffer->reader_page->read += length;
2019 }
2020 
2021 static void rb_advance_iter(struct ring_buffer_iter *iter)
2022 {
2023 	struct ring_buffer *buffer;
2024 	struct ring_buffer_per_cpu *cpu_buffer;
2025 	struct ring_buffer_event *event;
2026 	unsigned length;
2027 
2028 	cpu_buffer = iter->cpu_buffer;
2029 	buffer = cpu_buffer->buffer;
2030 
2031 	/*
2032 	 * Check if we are at the end of the buffer.
2033 	 */
2034 	if (iter->head >= rb_page_size(iter->head_page)) {
2035 		if (RB_WARN_ON(buffer,
2036 			       iter->head_page == cpu_buffer->commit_page))
2037 			return;
2038 		rb_inc_iter(iter);
2039 		return;
2040 	}
2041 
2042 	event = rb_iter_head_event(iter);
2043 
2044 	length = rb_event_length(event);
2045 
2046 	/*
2047 	 * This should not be called to advance the header if we are
2048 	 * at the tail of the buffer.
2049 	 */
2050 	if (RB_WARN_ON(cpu_buffer,
2051 		       (iter->head_page == cpu_buffer->commit_page) &&
2052 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2053 		return;
2054 
2055 	rb_update_iter_read_stamp(iter, event);
2056 
2057 	iter->head += length;
2058 
2059 	/* check for end of page padding */
2060 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2061 	    (iter->head_page != cpu_buffer->commit_page))
2062 		rb_advance_iter(iter);
2063 }
2064 
2065 static struct ring_buffer_event *
2066 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2067 {
2068 	struct ring_buffer_per_cpu *cpu_buffer;
2069 	struct ring_buffer_event *event;
2070 	struct buffer_page *reader;
2071 	int nr_loops = 0;
2072 
2073 	cpu_buffer = buffer->buffers[cpu];
2074 
2075  again:
2076 	/*
2077 	 * We repeat when a timestamp is encountered. It is possible
2078 	 * to get multiple timestamps from an interrupt entering just
2079 	 * as one timestamp is about to be written. The max times
2080 	 * that this can happen is the number of nested interrupts we
2081 	 * can have.  Nesting 10 deep of interrupts is clearly
2082 	 * an anomaly.
2083 	 */
2084 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2085 		return NULL;
2086 
2087 	reader = rb_get_reader_page(cpu_buffer);
2088 	if (!reader)
2089 		return NULL;
2090 
2091 	event = rb_reader_event(cpu_buffer);
2092 
2093 	switch (event->type) {
2094 	case RINGBUF_TYPE_PADDING:
2095 		if (rb_null_event(event))
2096 			RB_WARN_ON(cpu_buffer, 1);
2097 		/*
2098 		 * Because the writer could be discarding every
2099 		 * event it creates (which would probably be bad)
2100 		 * if we were to go back to "again" then we may never
2101 		 * catch up, and will trigger the warn on, or lock
2102 		 * the box. Return the padding, and we will release
2103 		 * the current locks, and try again.
2104 		 */
2105 		rb_advance_reader(cpu_buffer);
2106 		return event;
2107 
2108 	case RINGBUF_TYPE_TIME_EXTEND:
2109 		/* Internal data, OK to advance */
2110 		rb_advance_reader(cpu_buffer);
2111 		goto again;
2112 
2113 	case RINGBUF_TYPE_TIME_STAMP:
2114 		/* FIXME: not implemented */
2115 		rb_advance_reader(cpu_buffer);
2116 		goto again;
2117 
2118 	case RINGBUF_TYPE_DATA:
2119 		if (ts) {
2120 			*ts = cpu_buffer->read_stamp + event->time_delta;
2121 			ring_buffer_normalize_time_stamp(buffer,
2122 							 cpu_buffer->cpu, ts);
2123 		}
2124 		return event;
2125 
2126 	default:
2127 		BUG();
2128 	}
2129 
2130 	return NULL;
2131 }
2132 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2133 
2134 static struct ring_buffer_event *
2135 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2136 {
2137 	struct ring_buffer *buffer;
2138 	struct ring_buffer_per_cpu *cpu_buffer;
2139 	struct ring_buffer_event *event;
2140 	int nr_loops = 0;
2141 
2142 	if (ring_buffer_iter_empty(iter))
2143 		return NULL;
2144 
2145 	cpu_buffer = iter->cpu_buffer;
2146 	buffer = cpu_buffer->buffer;
2147 
2148  again:
2149 	/*
2150 	 * We repeat when a timestamp is encountered. It is possible
2151 	 * to get multiple timestamps from an interrupt entering just
2152 	 * as one timestamp is about to be written. The max times
2153 	 * that this can happen is the number of nested interrupts we
2154 	 * can have. Nesting 10 deep of interrupts is clearly
2155 	 * an anomaly.
2156 	 */
2157 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2158 		return NULL;
2159 
2160 	if (rb_per_cpu_empty(cpu_buffer))
2161 		return NULL;
2162 
2163 	event = rb_iter_head_event(iter);
2164 
2165 	switch (event->type) {
2166 	case RINGBUF_TYPE_PADDING:
2167 		if (rb_null_event(event)) {
2168 			rb_inc_iter(iter);
2169 			goto again;
2170 		}
2171 		rb_advance_iter(iter);
2172 		return event;
2173 
2174 	case RINGBUF_TYPE_TIME_EXTEND:
2175 		/* Internal data, OK to advance */
2176 		rb_advance_iter(iter);
2177 		goto again;
2178 
2179 	case RINGBUF_TYPE_TIME_STAMP:
2180 		/* FIXME: not implemented */
2181 		rb_advance_iter(iter);
2182 		goto again;
2183 
2184 	case RINGBUF_TYPE_DATA:
2185 		if (ts) {
2186 			*ts = iter->read_stamp + event->time_delta;
2187 			ring_buffer_normalize_time_stamp(buffer,
2188 							 cpu_buffer->cpu, ts);
2189 		}
2190 		return event;
2191 
2192 	default:
2193 		BUG();
2194 	}
2195 
2196 	return NULL;
2197 }
2198 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2199 
2200 /**
2201  * ring_buffer_peek - peek at the next event to be read
2202  * @buffer: The ring buffer to read
2203  * @cpu: The cpu to peak at
2204  * @ts: The timestamp counter of this event.
2205  *
2206  * This will return the event that will be read next, but does
2207  * not consume the data.
2208  */
2209 struct ring_buffer_event *
2210 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2211 {
2212 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2213 	struct ring_buffer_event *event;
2214 	unsigned long flags;
2215 
2216 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2217 		return NULL;
2218 
2219  again:
2220 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2221 	event = rb_buffer_peek(buffer, cpu, ts);
2222 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2223 
2224 	if (event && event->type == RINGBUF_TYPE_PADDING) {
2225 		cpu_relax();
2226 		goto again;
2227 	}
2228 
2229 	return event;
2230 }
2231 
2232 /**
2233  * ring_buffer_iter_peek - peek at the next event to be read
2234  * @iter: The ring buffer iterator
2235  * @ts: The timestamp counter of this event.
2236  *
2237  * This will return the event that will be read next, but does
2238  * not increment the iterator.
2239  */
2240 struct ring_buffer_event *
2241 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2242 {
2243 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2244 	struct ring_buffer_event *event;
2245 	unsigned long flags;
2246 
2247  again:
2248 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2249 	event = rb_iter_peek(iter, ts);
2250 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2251 
2252 	if (event && event->type == RINGBUF_TYPE_PADDING) {
2253 		cpu_relax();
2254 		goto again;
2255 	}
2256 
2257 	return event;
2258 }
2259 
2260 /**
2261  * ring_buffer_consume - return an event and consume it
2262  * @buffer: The ring buffer to get the next event from
2263  *
2264  * Returns the next event in the ring buffer, and that event is consumed.
2265  * Meaning, that sequential reads will keep returning a different event,
2266  * and eventually empty the ring buffer if the producer is slower.
2267  */
2268 struct ring_buffer_event *
2269 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2270 {
2271 	struct ring_buffer_per_cpu *cpu_buffer;
2272 	struct ring_buffer_event *event = NULL;
2273 	unsigned long flags;
2274 
2275  again:
2276 	/* might be called in atomic */
2277 	preempt_disable();
2278 
2279 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2280 		goto out;
2281 
2282 	cpu_buffer = buffer->buffers[cpu];
2283 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2284 
2285 	event = rb_buffer_peek(buffer, cpu, ts);
2286 	if (!event)
2287 		goto out_unlock;
2288 
2289 	rb_advance_reader(cpu_buffer);
2290 
2291  out_unlock:
2292 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2293 
2294  out:
2295 	preempt_enable();
2296 
2297 	if (event && event->type == RINGBUF_TYPE_PADDING) {
2298 		cpu_relax();
2299 		goto again;
2300 	}
2301 
2302 	return event;
2303 }
2304 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2305 
2306 /**
2307  * ring_buffer_read_start - start a non consuming read of the buffer
2308  * @buffer: The ring buffer to read from
2309  * @cpu: The cpu buffer to iterate over
2310  *
2311  * This starts up an iteration through the buffer. It also disables
2312  * the recording to the buffer until the reading is finished.
2313  * This prevents the reading from being corrupted. This is not
2314  * a consuming read, so a producer is not expected.
2315  *
2316  * Must be paired with ring_buffer_finish.
2317  */
2318 struct ring_buffer_iter *
2319 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2320 {
2321 	struct ring_buffer_per_cpu *cpu_buffer;
2322 	struct ring_buffer_iter *iter;
2323 	unsigned long flags;
2324 
2325 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2326 		return NULL;
2327 
2328 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2329 	if (!iter)
2330 		return NULL;
2331 
2332 	cpu_buffer = buffer->buffers[cpu];
2333 
2334 	iter->cpu_buffer = cpu_buffer;
2335 
2336 	atomic_inc(&cpu_buffer->record_disabled);
2337 	synchronize_sched();
2338 
2339 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2340 	__raw_spin_lock(&cpu_buffer->lock);
2341 	rb_iter_reset(iter);
2342 	__raw_spin_unlock(&cpu_buffer->lock);
2343 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2344 
2345 	return iter;
2346 }
2347 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2348 
2349 /**
2350  * ring_buffer_finish - finish reading the iterator of the buffer
2351  * @iter: The iterator retrieved by ring_buffer_start
2352  *
2353  * This re-enables the recording to the buffer, and frees the
2354  * iterator.
2355  */
2356 void
2357 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2358 {
2359 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2360 
2361 	atomic_dec(&cpu_buffer->record_disabled);
2362 	kfree(iter);
2363 }
2364 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2365 
2366 /**
2367  * ring_buffer_read - read the next item in the ring buffer by the iterator
2368  * @iter: The ring buffer iterator
2369  * @ts: The time stamp of the event read.
2370  *
2371  * This reads the next event in the ring buffer and increments the iterator.
2372  */
2373 struct ring_buffer_event *
2374 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2375 {
2376 	struct ring_buffer_event *event;
2377 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2378 	unsigned long flags;
2379 
2380  again:
2381 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2382 	event = rb_iter_peek(iter, ts);
2383 	if (!event)
2384 		goto out;
2385 
2386 	rb_advance_iter(iter);
2387  out:
2388 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2389 
2390 	if (event && event->type == RINGBUF_TYPE_PADDING) {
2391 		cpu_relax();
2392 		goto again;
2393 	}
2394 
2395 	return event;
2396 }
2397 EXPORT_SYMBOL_GPL(ring_buffer_read);
2398 
2399 /**
2400  * ring_buffer_size - return the size of the ring buffer (in bytes)
2401  * @buffer: The ring buffer.
2402  */
2403 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2404 {
2405 	return BUF_PAGE_SIZE * buffer->pages;
2406 }
2407 EXPORT_SYMBOL_GPL(ring_buffer_size);
2408 
2409 static void
2410 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2411 {
2412 	cpu_buffer->head_page
2413 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2414 	local_set(&cpu_buffer->head_page->write, 0);
2415 	local_set(&cpu_buffer->head_page->page->commit, 0);
2416 
2417 	cpu_buffer->head_page->read = 0;
2418 
2419 	cpu_buffer->tail_page = cpu_buffer->head_page;
2420 	cpu_buffer->commit_page = cpu_buffer->head_page;
2421 
2422 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2423 	local_set(&cpu_buffer->reader_page->write, 0);
2424 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2425 	cpu_buffer->reader_page->read = 0;
2426 
2427 	cpu_buffer->overrun = 0;
2428 	cpu_buffer->entries = 0;
2429 
2430 	cpu_buffer->write_stamp = 0;
2431 	cpu_buffer->read_stamp = 0;
2432 }
2433 
2434 /**
2435  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2436  * @buffer: The ring buffer to reset a per cpu buffer of
2437  * @cpu: The CPU buffer to be reset
2438  */
2439 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2440 {
2441 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2442 	unsigned long flags;
2443 
2444 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2445 		return;
2446 
2447 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2448 
2449 	__raw_spin_lock(&cpu_buffer->lock);
2450 
2451 	rb_reset_cpu(cpu_buffer);
2452 
2453 	__raw_spin_unlock(&cpu_buffer->lock);
2454 
2455 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2456 }
2457 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2458 
2459 /**
2460  * ring_buffer_reset - reset a ring buffer
2461  * @buffer: The ring buffer to reset all cpu buffers
2462  */
2463 void ring_buffer_reset(struct ring_buffer *buffer)
2464 {
2465 	int cpu;
2466 
2467 	for_each_buffer_cpu(buffer, cpu)
2468 		ring_buffer_reset_cpu(buffer, cpu);
2469 }
2470 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2471 
2472 /**
2473  * rind_buffer_empty - is the ring buffer empty?
2474  * @buffer: The ring buffer to test
2475  */
2476 int ring_buffer_empty(struct ring_buffer *buffer)
2477 {
2478 	struct ring_buffer_per_cpu *cpu_buffer;
2479 	int cpu;
2480 
2481 	/* yes this is racy, but if you don't like the race, lock the buffer */
2482 	for_each_buffer_cpu(buffer, cpu) {
2483 		cpu_buffer = buffer->buffers[cpu];
2484 		if (!rb_per_cpu_empty(cpu_buffer))
2485 			return 0;
2486 	}
2487 
2488 	return 1;
2489 }
2490 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2491 
2492 /**
2493  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2494  * @buffer: The ring buffer
2495  * @cpu: The CPU buffer to test
2496  */
2497 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2498 {
2499 	struct ring_buffer_per_cpu *cpu_buffer;
2500 	int ret;
2501 
2502 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2503 		return 1;
2504 
2505 	cpu_buffer = buffer->buffers[cpu];
2506 	ret = rb_per_cpu_empty(cpu_buffer);
2507 
2508 
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2512 
2513 /**
2514  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2515  * @buffer_a: One buffer to swap with
2516  * @buffer_b: The other buffer to swap with
2517  *
2518  * This function is useful for tracers that want to take a "snapshot"
2519  * of a CPU buffer and has another back up buffer lying around.
2520  * it is expected that the tracer handles the cpu buffer not being
2521  * used at the moment.
2522  */
2523 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2524 			 struct ring_buffer *buffer_b, int cpu)
2525 {
2526 	struct ring_buffer_per_cpu *cpu_buffer_a;
2527 	struct ring_buffer_per_cpu *cpu_buffer_b;
2528 	int ret = -EINVAL;
2529 
2530 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2531 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
2532 		goto out;
2533 
2534 	/* At least make sure the two buffers are somewhat the same */
2535 	if (buffer_a->pages != buffer_b->pages)
2536 		goto out;
2537 
2538 	ret = -EAGAIN;
2539 
2540 	if (ring_buffer_flags != RB_BUFFERS_ON)
2541 		goto out;
2542 
2543 	if (atomic_read(&buffer_a->record_disabled))
2544 		goto out;
2545 
2546 	if (atomic_read(&buffer_b->record_disabled))
2547 		goto out;
2548 
2549 	cpu_buffer_a = buffer_a->buffers[cpu];
2550 	cpu_buffer_b = buffer_b->buffers[cpu];
2551 
2552 	if (atomic_read(&cpu_buffer_a->record_disabled))
2553 		goto out;
2554 
2555 	if (atomic_read(&cpu_buffer_b->record_disabled))
2556 		goto out;
2557 
2558 	/*
2559 	 * We can't do a synchronize_sched here because this
2560 	 * function can be called in atomic context.
2561 	 * Normally this will be called from the same CPU as cpu.
2562 	 * If not it's up to the caller to protect this.
2563 	 */
2564 	atomic_inc(&cpu_buffer_a->record_disabled);
2565 	atomic_inc(&cpu_buffer_b->record_disabled);
2566 
2567 	buffer_a->buffers[cpu] = cpu_buffer_b;
2568 	buffer_b->buffers[cpu] = cpu_buffer_a;
2569 
2570 	cpu_buffer_b->buffer = buffer_a;
2571 	cpu_buffer_a->buffer = buffer_b;
2572 
2573 	atomic_dec(&cpu_buffer_a->record_disabled);
2574 	atomic_dec(&cpu_buffer_b->record_disabled);
2575 
2576 	ret = 0;
2577 out:
2578 	return ret;
2579 }
2580 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2581 
2582 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2583 			      struct buffer_data_page *bpage,
2584 			      unsigned int offset)
2585 {
2586 	struct ring_buffer_event *event;
2587 	unsigned long head;
2588 
2589 	__raw_spin_lock(&cpu_buffer->lock);
2590 	for (head = offset; head < local_read(&bpage->commit);
2591 	     head += rb_event_length(event)) {
2592 
2593 		event = __rb_data_page_index(bpage, head);
2594 		if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2595 			return;
2596 		/* Only count data entries */
2597 		if (event->type != RINGBUF_TYPE_DATA)
2598 			continue;
2599 		cpu_buffer->entries--;
2600 	}
2601 	__raw_spin_unlock(&cpu_buffer->lock);
2602 }
2603 
2604 /**
2605  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2606  * @buffer: the buffer to allocate for.
2607  *
2608  * This function is used in conjunction with ring_buffer_read_page.
2609  * When reading a full page from the ring buffer, these functions
2610  * can be used to speed up the process. The calling function should
2611  * allocate a few pages first with this function. Then when it
2612  * needs to get pages from the ring buffer, it passes the result
2613  * of this function into ring_buffer_read_page, which will swap
2614  * the page that was allocated, with the read page of the buffer.
2615  *
2616  * Returns:
2617  *  The page allocated, or NULL on error.
2618  */
2619 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2620 {
2621 	struct buffer_data_page *bpage;
2622 	unsigned long addr;
2623 
2624 	addr = __get_free_page(GFP_KERNEL);
2625 	if (!addr)
2626 		return NULL;
2627 
2628 	bpage = (void *)addr;
2629 
2630 	rb_init_page(bpage);
2631 
2632 	return bpage;
2633 }
2634 
2635 /**
2636  * ring_buffer_free_read_page - free an allocated read page
2637  * @buffer: the buffer the page was allocate for
2638  * @data: the page to free
2639  *
2640  * Free a page allocated from ring_buffer_alloc_read_page.
2641  */
2642 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2643 {
2644 	free_page((unsigned long)data);
2645 }
2646 
2647 /**
2648  * ring_buffer_read_page - extract a page from the ring buffer
2649  * @buffer: buffer to extract from
2650  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2651  * @len: amount to extract
2652  * @cpu: the cpu of the buffer to extract
2653  * @full: should the extraction only happen when the page is full.
2654  *
2655  * This function will pull out a page from the ring buffer and consume it.
2656  * @data_page must be the address of the variable that was returned
2657  * from ring_buffer_alloc_read_page. This is because the page might be used
2658  * to swap with a page in the ring buffer.
2659  *
2660  * for example:
2661  *	rpage = ring_buffer_alloc_read_page(buffer);
2662  *	if (!rpage)
2663  *		return error;
2664  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2665  *	if (ret >= 0)
2666  *		process_page(rpage, ret);
2667  *
2668  * When @full is set, the function will not return true unless
2669  * the writer is off the reader page.
2670  *
2671  * Note: it is up to the calling functions to handle sleeps and wakeups.
2672  *  The ring buffer can be used anywhere in the kernel and can not
2673  *  blindly call wake_up. The layer that uses the ring buffer must be
2674  *  responsible for that.
2675  *
2676  * Returns:
2677  *  >=0 if data has been transferred, returns the offset of consumed data.
2678  *  <0 if no data has been transferred.
2679  */
2680 int ring_buffer_read_page(struct ring_buffer *buffer,
2681 			  void **data_page, size_t len, int cpu, int full)
2682 {
2683 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2684 	struct ring_buffer_event *event;
2685 	struct buffer_data_page *bpage;
2686 	struct buffer_page *reader;
2687 	unsigned long flags;
2688 	unsigned int commit;
2689 	unsigned int read;
2690 	u64 save_timestamp;
2691 	int ret = -1;
2692 
2693 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2694 		goto out;
2695 
2696 	/*
2697 	 * If len is not big enough to hold the page header, then
2698 	 * we can not copy anything.
2699 	 */
2700 	if (len <= BUF_PAGE_HDR_SIZE)
2701 		goto out;
2702 
2703 	len -= BUF_PAGE_HDR_SIZE;
2704 
2705 	if (!data_page)
2706 		goto out;
2707 
2708 	bpage = *data_page;
2709 	if (!bpage)
2710 		goto out;
2711 
2712 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2713 
2714 	reader = rb_get_reader_page(cpu_buffer);
2715 	if (!reader)
2716 		goto out_unlock;
2717 
2718 	event = rb_reader_event(cpu_buffer);
2719 
2720 	read = reader->read;
2721 	commit = rb_page_commit(reader);
2722 
2723 	/*
2724 	 * If this page has been partially read or
2725 	 * if len is not big enough to read the rest of the page or
2726 	 * a writer is still on the page, then
2727 	 * we must copy the data from the page to the buffer.
2728 	 * Otherwise, we can simply swap the page with the one passed in.
2729 	 */
2730 	if (read || (len < (commit - read)) ||
2731 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
2732 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2733 		unsigned int rpos = read;
2734 		unsigned int pos = 0;
2735 		unsigned int size;
2736 
2737 		if (full)
2738 			goto out_unlock;
2739 
2740 		if (len > (commit - read))
2741 			len = (commit - read);
2742 
2743 		size = rb_event_length(event);
2744 
2745 		if (len < size)
2746 			goto out_unlock;
2747 
2748 		/* save the current timestamp, since the user will need it */
2749 		save_timestamp = cpu_buffer->read_stamp;
2750 
2751 		/* Need to copy one event at a time */
2752 		do {
2753 			memcpy(bpage->data + pos, rpage->data + rpos, size);
2754 
2755 			len -= size;
2756 
2757 			rb_advance_reader(cpu_buffer);
2758 			rpos = reader->read;
2759 			pos += size;
2760 
2761 			event = rb_reader_event(cpu_buffer);
2762 			size = rb_event_length(event);
2763 		} while (len > size);
2764 
2765 		/* update bpage */
2766 		local_set(&bpage->commit, pos);
2767 		bpage->time_stamp = save_timestamp;
2768 
2769 		/* we copied everything to the beginning */
2770 		read = 0;
2771 	} else {
2772 		/* swap the pages */
2773 		rb_init_page(bpage);
2774 		bpage = reader->page;
2775 		reader->page = *data_page;
2776 		local_set(&reader->write, 0);
2777 		reader->read = 0;
2778 		*data_page = bpage;
2779 
2780 		/* update the entry counter */
2781 		rb_remove_entries(cpu_buffer, bpage, read);
2782 	}
2783 	ret = read;
2784 
2785  out_unlock:
2786 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2787 
2788  out:
2789 	return ret;
2790 }
2791 
2792 static ssize_t
2793 rb_simple_read(struct file *filp, char __user *ubuf,
2794 	       size_t cnt, loff_t *ppos)
2795 {
2796 	unsigned long *p = filp->private_data;
2797 	char buf[64];
2798 	int r;
2799 
2800 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2801 		r = sprintf(buf, "permanently disabled\n");
2802 	else
2803 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2804 
2805 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2806 }
2807 
2808 static ssize_t
2809 rb_simple_write(struct file *filp, const char __user *ubuf,
2810 		size_t cnt, loff_t *ppos)
2811 {
2812 	unsigned long *p = filp->private_data;
2813 	char buf[64];
2814 	unsigned long val;
2815 	int ret;
2816 
2817 	if (cnt >= sizeof(buf))
2818 		return -EINVAL;
2819 
2820 	if (copy_from_user(&buf, ubuf, cnt))
2821 		return -EFAULT;
2822 
2823 	buf[cnt] = 0;
2824 
2825 	ret = strict_strtoul(buf, 10, &val);
2826 	if (ret < 0)
2827 		return ret;
2828 
2829 	if (val)
2830 		set_bit(RB_BUFFERS_ON_BIT, p);
2831 	else
2832 		clear_bit(RB_BUFFERS_ON_BIT, p);
2833 
2834 	(*ppos)++;
2835 
2836 	return cnt;
2837 }
2838 
2839 static const struct file_operations rb_simple_fops = {
2840 	.open		= tracing_open_generic,
2841 	.read		= rb_simple_read,
2842 	.write		= rb_simple_write,
2843 };
2844 
2845 
2846 static __init int rb_init_debugfs(void)
2847 {
2848 	struct dentry *d_tracer;
2849 	struct dentry *entry;
2850 
2851 	d_tracer = tracing_init_dentry();
2852 
2853 	entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2854 				    &ring_buffer_flags, &rb_simple_fops);
2855 	if (!entry)
2856 		pr_warning("Could not create debugfs 'tracing_on' entry\n");
2857 
2858 	return 0;
2859 }
2860 
2861 fs_initcall(rb_init_debugfs);
2862 
2863 #ifdef CONFIG_HOTPLUG_CPU
2864 static int __cpuinit rb_cpu_notify(struct notifier_block *self,
2865 				   unsigned long action, void *hcpu)
2866 {
2867 	struct ring_buffer *buffer =
2868 		container_of(self, struct ring_buffer, cpu_notify);
2869 	long cpu = (long)hcpu;
2870 
2871 	switch (action) {
2872 	case CPU_UP_PREPARE:
2873 	case CPU_UP_PREPARE_FROZEN:
2874 		if (cpu_isset(cpu, *buffer->cpumask))
2875 			return NOTIFY_OK;
2876 
2877 		buffer->buffers[cpu] =
2878 			rb_allocate_cpu_buffer(buffer, cpu);
2879 		if (!buffer->buffers[cpu]) {
2880 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
2881 			     cpu);
2882 			return NOTIFY_OK;
2883 		}
2884 		smp_wmb();
2885 		cpu_set(cpu, *buffer->cpumask);
2886 		break;
2887 	case CPU_DOWN_PREPARE:
2888 	case CPU_DOWN_PREPARE_FROZEN:
2889 		/*
2890 		 * Do nothing.
2891 		 *  If we were to free the buffer, then the user would
2892 		 *  lose any trace that was in the buffer.
2893 		 */
2894 		break;
2895 	default:
2896 		break;
2897 	}
2898 	return NOTIFY_OK;
2899 }
2900 #endif
2901