1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/ftrace_irq.h> 9 #include <linux/spinlock.h> 10 #include <linux/debugfs.h> 11 #include <linux/uaccess.h> 12 #include <linux/hardirq.h> 13 #include <linux/module.h> 14 #include <linux/percpu.h> 15 #include <linux/mutex.h> 16 #include <linux/init.h> 17 #include <linux/hash.h> 18 #include <linux/list.h> 19 #include <linux/cpu.h> 20 #include <linux/fs.h> 21 22 #include "trace.h" 23 24 /* 25 * The ring buffer is made up of a list of pages. A separate list of pages is 26 * allocated for each CPU. A writer may only write to a buffer that is 27 * associated with the CPU it is currently executing on. A reader may read 28 * from any per cpu buffer. 29 * 30 * The reader is special. For each per cpu buffer, the reader has its own 31 * reader page. When a reader has read the entire reader page, this reader 32 * page is swapped with another page in the ring buffer. 33 * 34 * Now, as long as the writer is off the reader page, the reader can do what 35 * ever it wants with that page. The writer will never write to that page 36 * again (as long as it is out of the ring buffer). 37 * 38 * Here's some silly ASCII art. 39 * 40 * +------+ 41 * |reader| RING BUFFER 42 * |page | 43 * +------+ +---+ +---+ +---+ 44 * | |-->| |-->| | 45 * +---+ +---+ +---+ 46 * ^ | 47 * | | 48 * +---------------+ 49 * 50 * 51 * +------+ 52 * |reader| RING BUFFER 53 * |page |------------------v 54 * +------+ +---+ +---+ +---+ 55 * | |-->| |-->| | 56 * +---+ +---+ +---+ 57 * ^ | 58 * | | 59 * +---------------+ 60 * 61 * 62 * +------+ 63 * |reader| RING BUFFER 64 * |page |------------------v 65 * +------+ +---+ +---+ +---+ 66 * ^ | |-->| |-->| | 67 * | +---+ +---+ +---+ 68 * | | 69 * | | 70 * +------------------------------+ 71 * 72 * 73 * +------+ 74 * |buffer| RING BUFFER 75 * |page |------------------v 76 * +------+ +---+ +---+ +---+ 77 * ^ | | | |-->| | 78 * | New +---+ +---+ +---+ 79 * | Reader------^ | 80 * | page | 81 * +------------------------------+ 82 * 83 * 84 * After we make this swap, the reader can hand this page off to the splice 85 * code and be done with it. It can even allocate a new page if it needs to 86 * and swap that into the ring buffer. 87 * 88 * We will be using cmpxchg soon to make all this lockless. 89 * 90 */ 91 92 /* 93 * A fast way to enable or disable all ring buffers is to 94 * call tracing_on or tracing_off. Turning off the ring buffers 95 * prevents all ring buffers from being recorded to. 96 * Turning this switch on, makes it OK to write to the 97 * ring buffer, if the ring buffer is enabled itself. 98 * 99 * There's three layers that must be on in order to write 100 * to the ring buffer. 101 * 102 * 1) This global flag must be set. 103 * 2) The ring buffer must be enabled for recording. 104 * 3) The per cpu buffer must be enabled for recording. 105 * 106 * In case of an anomaly, this global flag has a bit set that 107 * will permantly disable all ring buffers. 108 */ 109 110 /* 111 * Global flag to disable all recording to ring buffers 112 * This has two bits: ON, DISABLED 113 * 114 * ON DISABLED 115 * ---- ---------- 116 * 0 0 : ring buffers are off 117 * 1 0 : ring buffers are on 118 * X 1 : ring buffers are permanently disabled 119 */ 120 121 enum { 122 RB_BUFFERS_ON_BIT = 0, 123 RB_BUFFERS_DISABLED_BIT = 1, 124 }; 125 126 enum { 127 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 128 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 129 }; 130 131 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 132 133 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 134 135 /** 136 * tracing_on - enable all tracing buffers 137 * 138 * This function enables all tracing buffers that may have been 139 * disabled with tracing_off. 140 */ 141 void tracing_on(void) 142 { 143 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 144 } 145 EXPORT_SYMBOL_GPL(tracing_on); 146 147 /** 148 * tracing_off - turn off all tracing buffers 149 * 150 * This function stops all tracing buffers from recording data. 151 * It does not disable any overhead the tracers themselves may 152 * be causing. This function simply causes all recording to 153 * the ring buffers to fail. 154 */ 155 void tracing_off(void) 156 { 157 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 158 } 159 EXPORT_SYMBOL_GPL(tracing_off); 160 161 /** 162 * tracing_off_permanent - permanently disable ring buffers 163 * 164 * This function, once called, will disable all ring buffers 165 * permanently. 166 */ 167 void tracing_off_permanent(void) 168 { 169 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 170 } 171 172 /** 173 * tracing_is_on - show state of ring buffers enabled 174 */ 175 int tracing_is_on(void) 176 { 177 return ring_buffer_flags == RB_BUFFERS_ON; 178 } 179 EXPORT_SYMBOL_GPL(tracing_is_on); 180 181 #include "trace.h" 182 183 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 184 #define RB_ALIGNMENT 4U 185 #define RB_MAX_SMALL_DATA 28 186 187 enum { 188 RB_LEN_TIME_EXTEND = 8, 189 RB_LEN_TIME_STAMP = 16, 190 }; 191 192 static inline int rb_null_event(struct ring_buffer_event *event) 193 { 194 return event->type == RINGBUF_TYPE_PADDING && event->time_delta == 0; 195 } 196 197 static inline int rb_discarded_event(struct ring_buffer_event *event) 198 { 199 return event->type == RINGBUF_TYPE_PADDING && event->time_delta; 200 } 201 202 static void rb_event_set_padding(struct ring_buffer_event *event) 203 { 204 event->type = RINGBUF_TYPE_PADDING; 205 event->time_delta = 0; 206 } 207 208 /** 209 * ring_buffer_event_discard - discard an event in the ring buffer 210 * @buffer: the ring buffer 211 * @event: the event to discard 212 * 213 * Sometimes a event that is in the ring buffer needs to be ignored. 214 * This function lets the user discard an event in the ring buffer 215 * and then that event will not be read later. 216 * 217 * Note, it is up to the user to be careful with this, and protect 218 * against races. If the user discards an event that has been consumed 219 * it is possible that it could corrupt the ring buffer. 220 */ 221 void ring_buffer_event_discard(struct ring_buffer_event *event) 222 { 223 event->type = RINGBUF_TYPE_PADDING; 224 /* time delta must be non zero */ 225 if (!event->time_delta) 226 event->time_delta = 1; 227 } 228 229 static unsigned 230 rb_event_data_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->len) 235 length = event->len * RB_ALIGNMENT; 236 else 237 length = event->array[0]; 238 return length + RB_EVNT_HDR_SIZE; 239 } 240 241 /* inline for ring buffer fast paths */ 242 static unsigned 243 rb_event_length(struct ring_buffer_event *event) 244 { 245 switch (event->type) { 246 case RINGBUF_TYPE_PADDING: 247 if (rb_null_event(event)) 248 /* undefined */ 249 return -1; 250 return rb_event_data_length(event); 251 252 case RINGBUF_TYPE_TIME_EXTEND: 253 return RB_LEN_TIME_EXTEND; 254 255 case RINGBUF_TYPE_TIME_STAMP: 256 return RB_LEN_TIME_STAMP; 257 258 case RINGBUF_TYPE_DATA: 259 return rb_event_data_length(event); 260 default: 261 BUG(); 262 } 263 /* not hit */ 264 return 0; 265 } 266 267 /** 268 * ring_buffer_event_length - return the length of the event 269 * @event: the event to get the length of 270 */ 271 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 272 { 273 unsigned length = rb_event_length(event); 274 if (event->type != RINGBUF_TYPE_DATA) 275 return length; 276 length -= RB_EVNT_HDR_SIZE; 277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 278 length -= sizeof(event->array[0]); 279 return length; 280 } 281 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 282 283 /* inline for ring buffer fast paths */ 284 static void * 285 rb_event_data(struct ring_buffer_event *event) 286 { 287 BUG_ON(event->type != RINGBUF_TYPE_DATA); 288 /* If length is in len field, then array[0] has the data */ 289 if (event->len) 290 return (void *)&event->array[0]; 291 /* Otherwise length is in array[0] and array[1] has the data */ 292 return (void *)&event->array[1]; 293 } 294 295 /** 296 * ring_buffer_event_data - return the data of the event 297 * @event: the event to get the data from 298 */ 299 void *ring_buffer_event_data(struct ring_buffer_event *event) 300 { 301 return rb_event_data(event); 302 } 303 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 304 305 #define for_each_buffer_cpu(buffer, cpu) \ 306 for_each_cpu(cpu, buffer->cpumask) 307 308 #define TS_SHIFT 27 309 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 310 #define TS_DELTA_TEST (~TS_MASK) 311 312 struct buffer_data_page { 313 u64 time_stamp; /* page time stamp */ 314 local_t commit; /* write committed index */ 315 unsigned char data[]; /* data of buffer page */ 316 }; 317 318 struct buffer_page { 319 local_t write; /* index for next write */ 320 unsigned read; /* index for next read */ 321 struct list_head list; /* list of free pages */ 322 struct buffer_data_page *page; /* Actual data page */ 323 }; 324 325 static void rb_init_page(struct buffer_data_page *bpage) 326 { 327 local_set(&bpage->commit, 0); 328 } 329 330 /** 331 * ring_buffer_page_len - the size of data on the page. 332 * @page: The page to read 333 * 334 * Returns the amount of data on the page, including buffer page header. 335 */ 336 size_t ring_buffer_page_len(void *page) 337 { 338 return local_read(&((struct buffer_data_page *)page)->commit) 339 + BUF_PAGE_HDR_SIZE; 340 } 341 342 /* 343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 344 * this issue out. 345 */ 346 static void free_buffer_page(struct buffer_page *bpage) 347 { 348 free_page((unsigned long)bpage->page); 349 kfree(bpage); 350 } 351 352 /* 353 * We need to fit the time_stamp delta into 27 bits. 354 */ 355 static inline int test_time_stamp(u64 delta) 356 { 357 if (delta & TS_DELTA_TEST) 358 return 1; 359 return 0; 360 } 361 362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 363 364 /* 365 * head_page == tail_page && head == tail then buffer is empty. 366 */ 367 struct ring_buffer_per_cpu { 368 int cpu; 369 struct ring_buffer *buffer; 370 spinlock_t reader_lock; /* serialize readers */ 371 raw_spinlock_t lock; 372 struct lock_class_key lock_key; 373 struct list_head pages; 374 struct buffer_page *head_page; /* read from head */ 375 struct buffer_page *tail_page; /* write to tail */ 376 struct buffer_page *commit_page; /* committed pages */ 377 struct buffer_page *reader_page; 378 unsigned long overrun; 379 unsigned long entries; 380 u64 write_stamp; 381 u64 read_stamp; 382 atomic_t record_disabled; 383 }; 384 385 struct ring_buffer { 386 unsigned pages; 387 unsigned flags; 388 int cpus; 389 atomic_t record_disabled; 390 cpumask_var_t cpumask; 391 392 struct mutex mutex; 393 394 struct ring_buffer_per_cpu **buffers; 395 396 #ifdef CONFIG_HOTPLUG_CPU 397 struct notifier_block cpu_notify; 398 #endif 399 u64 (*clock)(void); 400 }; 401 402 struct ring_buffer_iter { 403 struct ring_buffer_per_cpu *cpu_buffer; 404 unsigned long head; 405 struct buffer_page *head_page; 406 u64 read_stamp; 407 }; 408 409 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 410 #define RB_WARN_ON(buffer, cond) \ 411 ({ \ 412 int _____ret = unlikely(cond); \ 413 if (_____ret) { \ 414 atomic_inc(&buffer->record_disabled); \ 415 WARN_ON(1); \ 416 } \ 417 _____ret; \ 418 }) 419 420 /* Up this if you want to test the TIME_EXTENTS and normalization */ 421 #define DEBUG_SHIFT 0 422 423 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 424 { 425 u64 time; 426 427 preempt_disable_notrace(); 428 /* shift to debug/test normalization and TIME_EXTENTS */ 429 time = buffer->clock() << DEBUG_SHIFT; 430 preempt_enable_no_resched_notrace(); 431 432 return time; 433 } 434 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 435 436 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 437 int cpu, u64 *ts) 438 { 439 /* Just stupid testing the normalize function and deltas */ 440 *ts >>= DEBUG_SHIFT; 441 } 442 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 443 444 /** 445 * check_pages - integrity check of buffer pages 446 * @cpu_buffer: CPU buffer with pages to test 447 * 448 * As a safety measure we check to make sure the data pages have not 449 * been corrupted. 450 */ 451 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 452 { 453 struct list_head *head = &cpu_buffer->pages; 454 struct buffer_page *bpage, *tmp; 455 456 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 457 return -1; 458 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 459 return -1; 460 461 list_for_each_entry_safe(bpage, tmp, head, list) { 462 if (RB_WARN_ON(cpu_buffer, 463 bpage->list.next->prev != &bpage->list)) 464 return -1; 465 if (RB_WARN_ON(cpu_buffer, 466 bpage->list.prev->next != &bpage->list)) 467 return -1; 468 } 469 470 return 0; 471 } 472 473 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 474 unsigned nr_pages) 475 { 476 struct list_head *head = &cpu_buffer->pages; 477 struct buffer_page *bpage, *tmp; 478 unsigned long addr; 479 LIST_HEAD(pages); 480 unsigned i; 481 482 for (i = 0; i < nr_pages; i++) { 483 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 484 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); 485 if (!bpage) 486 goto free_pages; 487 list_add(&bpage->list, &pages); 488 489 addr = __get_free_page(GFP_KERNEL); 490 if (!addr) 491 goto free_pages; 492 bpage->page = (void *)addr; 493 rb_init_page(bpage->page); 494 } 495 496 list_splice(&pages, head); 497 498 rb_check_pages(cpu_buffer); 499 500 return 0; 501 502 free_pages: 503 list_for_each_entry_safe(bpage, tmp, &pages, list) { 504 list_del_init(&bpage->list); 505 free_buffer_page(bpage); 506 } 507 return -ENOMEM; 508 } 509 510 static struct ring_buffer_per_cpu * 511 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 512 { 513 struct ring_buffer_per_cpu *cpu_buffer; 514 struct buffer_page *bpage; 515 unsigned long addr; 516 int ret; 517 518 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 519 GFP_KERNEL, cpu_to_node(cpu)); 520 if (!cpu_buffer) 521 return NULL; 522 523 cpu_buffer->cpu = cpu; 524 cpu_buffer->buffer = buffer; 525 spin_lock_init(&cpu_buffer->reader_lock); 526 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; 527 INIT_LIST_HEAD(&cpu_buffer->pages); 528 529 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 530 GFP_KERNEL, cpu_to_node(cpu)); 531 if (!bpage) 532 goto fail_free_buffer; 533 534 cpu_buffer->reader_page = bpage; 535 addr = __get_free_page(GFP_KERNEL); 536 if (!addr) 537 goto fail_free_reader; 538 bpage->page = (void *)addr; 539 rb_init_page(bpage->page); 540 541 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 542 543 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 544 if (ret < 0) 545 goto fail_free_reader; 546 547 cpu_buffer->head_page 548 = list_entry(cpu_buffer->pages.next, struct buffer_page, list); 549 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 550 551 return cpu_buffer; 552 553 fail_free_reader: 554 free_buffer_page(cpu_buffer->reader_page); 555 556 fail_free_buffer: 557 kfree(cpu_buffer); 558 return NULL; 559 } 560 561 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 562 { 563 struct list_head *head = &cpu_buffer->pages; 564 struct buffer_page *bpage, *tmp; 565 566 list_del_init(&cpu_buffer->reader_page->list); 567 free_buffer_page(cpu_buffer->reader_page); 568 569 list_for_each_entry_safe(bpage, tmp, head, list) { 570 list_del_init(&bpage->list); 571 free_buffer_page(bpage); 572 } 573 kfree(cpu_buffer); 574 } 575 576 /* 577 * Causes compile errors if the struct buffer_page gets bigger 578 * than the struct page. 579 */ 580 extern int ring_buffer_page_too_big(void); 581 582 #ifdef CONFIG_HOTPLUG_CPU 583 static int __cpuinit rb_cpu_notify(struct notifier_block *self, 584 unsigned long action, void *hcpu); 585 #endif 586 587 /** 588 * ring_buffer_alloc - allocate a new ring_buffer 589 * @size: the size in bytes per cpu that is needed. 590 * @flags: attributes to set for the ring buffer. 591 * 592 * Currently the only flag that is available is the RB_FL_OVERWRITE 593 * flag. This flag means that the buffer will overwrite old data 594 * when the buffer wraps. If this flag is not set, the buffer will 595 * drop data when the tail hits the head. 596 */ 597 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags) 598 { 599 struct ring_buffer *buffer; 600 int bsize; 601 int cpu; 602 603 /* Paranoid! Optimizes out when all is well */ 604 if (sizeof(struct buffer_page) > sizeof(struct page)) 605 ring_buffer_page_too_big(); 606 607 608 /* keep it in its own cache line */ 609 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 610 GFP_KERNEL); 611 if (!buffer) 612 return NULL; 613 614 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 615 goto fail_free_buffer; 616 617 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 618 buffer->flags = flags; 619 buffer->clock = trace_clock_local; 620 621 /* need at least two pages */ 622 if (buffer->pages == 1) 623 buffer->pages++; 624 625 /* 626 * In case of non-hotplug cpu, if the ring-buffer is allocated 627 * in early initcall, it will not be notified of secondary cpus. 628 * In that off case, we need to allocate for all possible cpus. 629 */ 630 #ifdef CONFIG_HOTPLUG_CPU 631 get_online_cpus(); 632 cpumask_copy(buffer->cpumask, cpu_online_mask); 633 #else 634 cpumask_copy(buffer->cpumask, cpu_possible_mask); 635 #endif 636 buffer->cpus = nr_cpu_ids; 637 638 bsize = sizeof(void *) * nr_cpu_ids; 639 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 640 GFP_KERNEL); 641 if (!buffer->buffers) 642 goto fail_free_cpumask; 643 644 for_each_buffer_cpu(buffer, cpu) { 645 buffer->buffers[cpu] = 646 rb_allocate_cpu_buffer(buffer, cpu); 647 if (!buffer->buffers[cpu]) 648 goto fail_free_buffers; 649 } 650 651 #ifdef CONFIG_HOTPLUG_CPU 652 buffer->cpu_notify.notifier_call = rb_cpu_notify; 653 buffer->cpu_notify.priority = 0; 654 register_cpu_notifier(&buffer->cpu_notify); 655 #endif 656 657 put_online_cpus(); 658 mutex_init(&buffer->mutex); 659 660 return buffer; 661 662 fail_free_buffers: 663 for_each_buffer_cpu(buffer, cpu) { 664 if (buffer->buffers[cpu]) 665 rb_free_cpu_buffer(buffer->buffers[cpu]); 666 } 667 kfree(buffer->buffers); 668 669 fail_free_cpumask: 670 free_cpumask_var(buffer->cpumask); 671 put_online_cpus(); 672 673 fail_free_buffer: 674 kfree(buffer); 675 return NULL; 676 } 677 EXPORT_SYMBOL_GPL(ring_buffer_alloc); 678 679 /** 680 * ring_buffer_free - free a ring buffer. 681 * @buffer: the buffer to free. 682 */ 683 void 684 ring_buffer_free(struct ring_buffer *buffer) 685 { 686 int cpu; 687 688 get_online_cpus(); 689 690 #ifdef CONFIG_HOTPLUG_CPU 691 unregister_cpu_notifier(&buffer->cpu_notify); 692 #endif 693 694 for_each_buffer_cpu(buffer, cpu) 695 rb_free_cpu_buffer(buffer->buffers[cpu]); 696 697 put_online_cpus(); 698 699 free_cpumask_var(buffer->cpumask); 700 701 kfree(buffer); 702 } 703 EXPORT_SYMBOL_GPL(ring_buffer_free); 704 705 void ring_buffer_set_clock(struct ring_buffer *buffer, 706 u64 (*clock)(void)) 707 { 708 buffer->clock = clock; 709 } 710 711 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 712 713 static void 714 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 715 { 716 struct buffer_page *bpage; 717 struct list_head *p; 718 unsigned i; 719 720 atomic_inc(&cpu_buffer->record_disabled); 721 synchronize_sched(); 722 723 for (i = 0; i < nr_pages; i++) { 724 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages))) 725 return; 726 p = cpu_buffer->pages.next; 727 bpage = list_entry(p, struct buffer_page, list); 728 list_del_init(&bpage->list); 729 free_buffer_page(bpage); 730 } 731 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages))) 732 return; 733 734 rb_reset_cpu(cpu_buffer); 735 736 rb_check_pages(cpu_buffer); 737 738 atomic_dec(&cpu_buffer->record_disabled); 739 740 } 741 742 static void 743 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 744 struct list_head *pages, unsigned nr_pages) 745 { 746 struct buffer_page *bpage; 747 struct list_head *p; 748 unsigned i; 749 750 atomic_inc(&cpu_buffer->record_disabled); 751 synchronize_sched(); 752 753 for (i = 0; i < nr_pages; i++) { 754 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 755 return; 756 p = pages->next; 757 bpage = list_entry(p, struct buffer_page, list); 758 list_del_init(&bpage->list); 759 list_add_tail(&bpage->list, &cpu_buffer->pages); 760 } 761 rb_reset_cpu(cpu_buffer); 762 763 rb_check_pages(cpu_buffer); 764 765 atomic_dec(&cpu_buffer->record_disabled); 766 } 767 768 /** 769 * ring_buffer_resize - resize the ring buffer 770 * @buffer: the buffer to resize. 771 * @size: the new size. 772 * 773 * The tracer is responsible for making sure that the buffer is 774 * not being used while changing the size. 775 * Note: We may be able to change the above requirement by using 776 * RCU synchronizations. 777 * 778 * Minimum size is 2 * BUF_PAGE_SIZE. 779 * 780 * Returns -1 on failure. 781 */ 782 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 783 { 784 struct ring_buffer_per_cpu *cpu_buffer; 785 unsigned nr_pages, rm_pages, new_pages; 786 struct buffer_page *bpage, *tmp; 787 unsigned long buffer_size; 788 unsigned long addr; 789 LIST_HEAD(pages); 790 int i, cpu; 791 792 /* 793 * Always succeed at resizing a non-existent buffer: 794 */ 795 if (!buffer) 796 return size; 797 798 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 799 size *= BUF_PAGE_SIZE; 800 buffer_size = buffer->pages * BUF_PAGE_SIZE; 801 802 /* we need a minimum of two pages */ 803 if (size < BUF_PAGE_SIZE * 2) 804 size = BUF_PAGE_SIZE * 2; 805 806 if (size == buffer_size) 807 return size; 808 809 mutex_lock(&buffer->mutex); 810 get_online_cpus(); 811 812 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 813 814 if (size < buffer_size) { 815 816 /* easy case, just free pages */ 817 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 818 goto out_fail; 819 820 rm_pages = buffer->pages - nr_pages; 821 822 for_each_buffer_cpu(buffer, cpu) { 823 cpu_buffer = buffer->buffers[cpu]; 824 rb_remove_pages(cpu_buffer, rm_pages); 825 } 826 goto out; 827 } 828 829 /* 830 * This is a bit more difficult. We only want to add pages 831 * when we can allocate enough for all CPUs. We do this 832 * by allocating all the pages and storing them on a local 833 * link list. If we succeed in our allocation, then we 834 * add these pages to the cpu_buffers. Otherwise we just free 835 * them all and return -ENOMEM; 836 */ 837 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 838 goto out_fail; 839 840 new_pages = nr_pages - buffer->pages; 841 842 for_each_buffer_cpu(buffer, cpu) { 843 for (i = 0; i < new_pages; i++) { 844 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 845 cache_line_size()), 846 GFP_KERNEL, cpu_to_node(cpu)); 847 if (!bpage) 848 goto free_pages; 849 list_add(&bpage->list, &pages); 850 addr = __get_free_page(GFP_KERNEL); 851 if (!addr) 852 goto free_pages; 853 bpage->page = (void *)addr; 854 rb_init_page(bpage->page); 855 } 856 } 857 858 for_each_buffer_cpu(buffer, cpu) { 859 cpu_buffer = buffer->buffers[cpu]; 860 rb_insert_pages(cpu_buffer, &pages, new_pages); 861 } 862 863 if (RB_WARN_ON(buffer, !list_empty(&pages))) 864 goto out_fail; 865 866 out: 867 buffer->pages = nr_pages; 868 put_online_cpus(); 869 mutex_unlock(&buffer->mutex); 870 871 return size; 872 873 free_pages: 874 list_for_each_entry_safe(bpage, tmp, &pages, list) { 875 list_del_init(&bpage->list); 876 free_buffer_page(bpage); 877 } 878 put_online_cpus(); 879 mutex_unlock(&buffer->mutex); 880 return -ENOMEM; 881 882 /* 883 * Something went totally wrong, and we are too paranoid 884 * to even clean up the mess. 885 */ 886 out_fail: 887 put_online_cpus(); 888 mutex_unlock(&buffer->mutex); 889 return -1; 890 } 891 EXPORT_SYMBOL_GPL(ring_buffer_resize); 892 893 static inline void * 894 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 895 { 896 return bpage->data + index; 897 } 898 899 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 900 { 901 return bpage->page->data + index; 902 } 903 904 static inline struct ring_buffer_event * 905 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 906 { 907 return __rb_page_index(cpu_buffer->reader_page, 908 cpu_buffer->reader_page->read); 909 } 910 911 static inline struct ring_buffer_event * 912 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer) 913 { 914 return __rb_page_index(cpu_buffer->head_page, 915 cpu_buffer->head_page->read); 916 } 917 918 static inline struct ring_buffer_event * 919 rb_iter_head_event(struct ring_buffer_iter *iter) 920 { 921 return __rb_page_index(iter->head_page, iter->head); 922 } 923 924 static inline unsigned rb_page_write(struct buffer_page *bpage) 925 { 926 return local_read(&bpage->write); 927 } 928 929 static inline unsigned rb_page_commit(struct buffer_page *bpage) 930 { 931 return local_read(&bpage->page->commit); 932 } 933 934 /* Size is determined by what has been commited */ 935 static inline unsigned rb_page_size(struct buffer_page *bpage) 936 { 937 return rb_page_commit(bpage); 938 } 939 940 static inline unsigned 941 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 942 { 943 return rb_page_commit(cpu_buffer->commit_page); 944 } 945 946 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer) 947 { 948 return rb_page_commit(cpu_buffer->head_page); 949 } 950 951 /* 952 * When the tail hits the head and the buffer is in overwrite mode, 953 * the head jumps to the next page and all content on the previous 954 * page is discarded. But before doing so, we update the overrun 955 * variable of the buffer. 956 */ 957 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer) 958 { 959 struct ring_buffer_event *event; 960 unsigned long head; 961 962 for (head = 0; head < rb_head_size(cpu_buffer); 963 head += rb_event_length(event)) { 964 965 event = __rb_page_index(cpu_buffer->head_page, head); 966 if (RB_WARN_ON(cpu_buffer, rb_null_event(event))) 967 return; 968 /* Only count data entries */ 969 if (event->type != RINGBUF_TYPE_DATA) 970 continue; 971 cpu_buffer->overrun++; 972 cpu_buffer->entries--; 973 } 974 } 975 976 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 977 struct buffer_page **bpage) 978 { 979 struct list_head *p = (*bpage)->list.next; 980 981 if (p == &cpu_buffer->pages) 982 p = p->next; 983 984 *bpage = list_entry(p, struct buffer_page, list); 985 } 986 987 static inline unsigned 988 rb_event_index(struct ring_buffer_event *event) 989 { 990 unsigned long addr = (unsigned long)event; 991 992 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE); 993 } 994 995 static int 996 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 997 struct ring_buffer_event *event) 998 { 999 unsigned long addr = (unsigned long)event; 1000 unsigned long index; 1001 1002 index = rb_event_index(event); 1003 addr &= PAGE_MASK; 1004 1005 return cpu_buffer->commit_page->page == (void *)addr && 1006 rb_commit_index(cpu_buffer) == index; 1007 } 1008 1009 static void 1010 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer, 1011 struct ring_buffer_event *event) 1012 { 1013 unsigned long addr = (unsigned long)event; 1014 unsigned long index; 1015 1016 index = rb_event_index(event); 1017 addr &= PAGE_MASK; 1018 1019 while (cpu_buffer->commit_page->page != (void *)addr) { 1020 if (RB_WARN_ON(cpu_buffer, 1021 cpu_buffer->commit_page == cpu_buffer->tail_page)) 1022 return; 1023 cpu_buffer->commit_page->page->commit = 1024 cpu_buffer->commit_page->write; 1025 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1026 cpu_buffer->write_stamp = 1027 cpu_buffer->commit_page->page->time_stamp; 1028 } 1029 1030 /* Now set the commit to the event's index */ 1031 local_set(&cpu_buffer->commit_page->page->commit, index); 1032 } 1033 1034 static void 1035 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1036 { 1037 /* 1038 * We only race with interrupts and NMIs on this CPU. 1039 * If we own the commit event, then we can commit 1040 * all others that interrupted us, since the interruptions 1041 * are in stack format (they finish before they come 1042 * back to us). This allows us to do a simple loop to 1043 * assign the commit to the tail. 1044 */ 1045 again: 1046 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1047 cpu_buffer->commit_page->page->commit = 1048 cpu_buffer->commit_page->write; 1049 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1050 cpu_buffer->write_stamp = 1051 cpu_buffer->commit_page->page->time_stamp; 1052 /* add barrier to keep gcc from optimizing too much */ 1053 barrier(); 1054 } 1055 while (rb_commit_index(cpu_buffer) != 1056 rb_page_write(cpu_buffer->commit_page)) { 1057 cpu_buffer->commit_page->page->commit = 1058 cpu_buffer->commit_page->write; 1059 barrier(); 1060 } 1061 1062 /* again, keep gcc from optimizing */ 1063 barrier(); 1064 1065 /* 1066 * If an interrupt came in just after the first while loop 1067 * and pushed the tail page forward, we will be left with 1068 * a dangling commit that will never go forward. 1069 */ 1070 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1071 goto again; 1072 } 1073 1074 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1075 { 1076 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1077 cpu_buffer->reader_page->read = 0; 1078 } 1079 1080 static void rb_inc_iter(struct ring_buffer_iter *iter) 1081 { 1082 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1083 1084 /* 1085 * The iterator could be on the reader page (it starts there). 1086 * But the head could have moved, since the reader was 1087 * found. Check for this case and assign the iterator 1088 * to the head page instead of next. 1089 */ 1090 if (iter->head_page == cpu_buffer->reader_page) 1091 iter->head_page = cpu_buffer->head_page; 1092 else 1093 rb_inc_page(cpu_buffer, &iter->head_page); 1094 1095 iter->read_stamp = iter->head_page->page->time_stamp; 1096 iter->head = 0; 1097 } 1098 1099 /** 1100 * ring_buffer_update_event - update event type and data 1101 * @event: the even to update 1102 * @type: the type of event 1103 * @length: the size of the event field in the ring buffer 1104 * 1105 * Update the type and data fields of the event. The length 1106 * is the actual size that is written to the ring buffer, 1107 * and with this, we can determine what to place into the 1108 * data field. 1109 */ 1110 static void 1111 rb_update_event(struct ring_buffer_event *event, 1112 unsigned type, unsigned length) 1113 { 1114 event->type = type; 1115 1116 switch (type) { 1117 1118 case RINGBUF_TYPE_PADDING: 1119 break; 1120 1121 case RINGBUF_TYPE_TIME_EXTEND: 1122 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT); 1123 break; 1124 1125 case RINGBUF_TYPE_TIME_STAMP: 1126 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT); 1127 break; 1128 1129 case RINGBUF_TYPE_DATA: 1130 length -= RB_EVNT_HDR_SIZE; 1131 if (length > RB_MAX_SMALL_DATA) { 1132 event->len = 0; 1133 event->array[0] = length; 1134 } else 1135 event->len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1136 break; 1137 default: 1138 BUG(); 1139 } 1140 } 1141 1142 static unsigned rb_calculate_event_length(unsigned length) 1143 { 1144 struct ring_buffer_event event; /* Used only for sizeof array */ 1145 1146 /* zero length can cause confusions */ 1147 if (!length) 1148 length = 1; 1149 1150 if (length > RB_MAX_SMALL_DATA) 1151 length += sizeof(event.array[0]); 1152 1153 length += RB_EVNT_HDR_SIZE; 1154 length = ALIGN(length, RB_ALIGNMENT); 1155 1156 return length; 1157 } 1158 1159 static struct ring_buffer_event * 1160 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 1161 unsigned type, unsigned long length, u64 *ts) 1162 { 1163 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page; 1164 unsigned long tail, write; 1165 struct ring_buffer *buffer = cpu_buffer->buffer; 1166 struct ring_buffer_event *event; 1167 unsigned long flags; 1168 bool lock_taken = false; 1169 1170 commit_page = cpu_buffer->commit_page; 1171 /* we just need to protect against interrupts */ 1172 barrier(); 1173 tail_page = cpu_buffer->tail_page; 1174 write = local_add_return(length, &tail_page->write); 1175 tail = write - length; 1176 1177 /* See if we shot pass the end of this buffer page */ 1178 if (write > BUF_PAGE_SIZE) { 1179 struct buffer_page *next_page = tail_page; 1180 1181 local_irq_save(flags); 1182 /* 1183 * Since the write to the buffer is still not 1184 * fully lockless, we must be careful with NMIs. 1185 * The locks in the writers are taken when a write 1186 * crosses to a new page. The locks protect against 1187 * races with the readers (this will soon be fixed 1188 * with a lockless solution). 1189 * 1190 * Because we can not protect against NMIs, and we 1191 * want to keep traces reentrant, we need to manage 1192 * what happens when we are in an NMI. 1193 * 1194 * NMIs can happen after we take the lock. 1195 * If we are in an NMI, only take the lock 1196 * if it is not already taken. Otherwise 1197 * simply fail. 1198 */ 1199 if (unlikely(in_nmi())) { 1200 if (!__raw_spin_trylock(&cpu_buffer->lock)) 1201 goto out_reset; 1202 } else 1203 __raw_spin_lock(&cpu_buffer->lock); 1204 1205 lock_taken = true; 1206 1207 rb_inc_page(cpu_buffer, &next_page); 1208 1209 head_page = cpu_buffer->head_page; 1210 reader_page = cpu_buffer->reader_page; 1211 1212 /* we grabbed the lock before incrementing */ 1213 if (RB_WARN_ON(cpu_buffer, next_page == reader_page)) 1214 goto out_reset; 1215 1216 /* 1217 * If for some reason, we had an interrupt storm that made 1218 * it all the way around the buffer, bail, and warn 1219 * about it. 1220 */ 1221 if (unlikely(next_page == commit_page)) { 1222 WARN_ON_ONCE(1); 1223 goto out_reset; 1224 } 1225 1226 if (next_page == head_page) { 1227 if (!(buffer->flags & RB_FL_OVERWRITE)) 1228 goto out_reset; 1229 1230 /* tail_page has not moved yet? */ 1231 if (tail_page == cpu_buffer->tail_page) { 1232 /* count overflows */ 1233 rb_update_overflow(cpu_buffer); 1234 1235 rb_inc_page(cpu_buffer, &head_page); 1236 cpu_buffer->head_page = head_page; 1237 cpu_buffer->head_page->read = 0; 1238 } 1239 } 1240 1241 /* 1242 * If the tail page is still the same as what we think 1243 * it is, then it is up to us to update the tail 1244 * pointer. 1245 */ 1246 if (tail_page == cpu_buffer->tail_page) { 1247 local_set(&next_page->write, 0); 1248 local_set(&next_page->page->commit, 0); 1249 cpu_buffer->tail_page = next_page; 1250 1251 /* reread the time stamp */ 1252 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu); 1253 cpu_buffer->tail_page->page->time_stamp = *ts; 1254 } 1255 1256 /* 1257 * The actual tail page has moved forward. 1258 */ 1259 if (tail < BUF_PAGE_SIZE) { 1260 /* Mark the rest of the page with padding */ 1261 event = __rb_page_index(tail_page, tail); 1262 rb_event_set_padding(event); 1263 } 1264 1265 if (tail <= BUF_PAGE_SIZE) 1266 /* Set the write back to the previous setting */ 1267 local_set(&tail_page->write, tail); 1268 1269 /* 1270 * If this was a commit entry that failed, 1271 * increment that too 1272 */ 1273 if (tail_page == cpu_buffer->commit_page && 1274 tail == rb_commit_index(cpu_buffer)) { 1275 rb_set_commit_to_write(cpu_buffer); 1276 } 1277 1278 __raw_spin_unlock(&cpu_buffer->lock); 1279 local_irq_restore(flags); 1280 1281 /* fail and let the caller try again */ 1282 return ERR_PTR(-EAGAIN); 1283 } 1284 1285 /* We reserved something on the buffer */ 1286 1287 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE)) 1288 return NULL; 1289 1290 event = __rb_page_index(tail_page, tail); 1291 rb_update_event(event, type, length); 1292 1293 /* 1294 * If this is a commit and the tail is zero, then update 1295 * this page's time stamp. 1296 */ 1297 if (!tail && rb_is_commit(cpu_buffer, event)) 1298 cpu_buffer->commit_page->page->time_stamp = *ts; 1299 1300 return event; 1301 1302 out_reset: 1303 /* reset write */ 1304 if (tail <= BUF_PAGE_SIZE) 1305 local_set(&tail_page->write, tail); 1306 1307 if (likely(lock_taken)) 1308 __raw_spin_unlock(&cpu_buffer->lock); 1309 local_irq_restore(flags); 1310 return NULL; 1311 } 1312 1313 static int 1314 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 1315 u64 *ts, u64 *delta) 1316 { 1317 struct ring_buffer_event *event; 1318 static int once; 1319 int ret; 1320 1321 if (unlikely(*delta > (1ULL << 59) && !once++)) { 1322 printk(KERN_WARNING "Delta way too big! %llu" 1323 " ts=%llu write stamp = %llu\n", 1324 (unsigned long long)*delta, 1325 (unsigned long long)*ts, 1326 (unsigned long long)cpu_buffer->write_stamp); 1327 WARN_ON(1); 1328 } 1329 1330 /* 1331 * The delta is too big, we to add a 1332 * new timestamp. 1333 */ 1334 event = __rb_reserve_next(cpu_buffer, 1335 RINGBUF_TYPE_TIME_EXTEND, 1336 RB_LEN_TIME_EXTEND, 1337 ts); 1338 if (!event) 1339 return -EBUSY; 1340 1341 if (PTR_ERR(event) == -EAGAIN) 1342 return -EAGAIN; 1343 1344 /* Only a commited time event can update the write stamp */ 1345 if (rb_is_commit(cpu_buffer, event)) { 1346 /* 1347 * If this is the first on the page, then we need to 1348 * update the page itself, and just put in a zero. 1349 */ 1350 if (rb_event_index(event)) { 1351 event->time_delta = *delta & TS_MASK; 1352 event->array[0] = *delta >> TS_SHIFT; 1353 } else { 1354 cpu_buffer->commit_page->page->time_stamp = *ts; 1355 event->time_delta = 0; 1356 event->array[0] = 0; 1357 } 1358 cpu_buffer->write_stamp = *ts; 1359 /* let the caller know this was the commit */ 1360 ret = 1; 1361 } else { 1362 /* Darn, this is just wasted space */ 1363 event->time_delta = 0; 1364 event->array[0] = 0; 1365 ret = 0; 1366 } 1367 1368 *delta = 0; 1369 1370 return ret; 1371 } 1372 1373 static struct ring_buffer_event * 1374 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer, 1375 unsigned type, unsigned long length) 1376 { 1377 struct ring_buffer_event *event; 1378 u64 ts, delta; 1379 int commit = 0; 1380 int nr_loops = 0; 1381 1382 again: 1383 /* 1384 * We allow for interrupts to reenter here and do a trace. 1385 * If one does, it will cause this original code to loop 1386 * back here. Even with heavy interrupts happening, this 1387 * should only happen a few times in a row. If this happens 1388 * 1000 times in a row, there must be either an interrupt 1389 * storm or we have something buggy. 1390 * Bail! 1391 */ 1392 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 1393 return NULL; 1394 1395 ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu); 1396 1397 /* 1398 * Only the first commit can update the timestamp. 1399 * Yes there is a race here. If an interrupt comes in 1400 * just after the conditional and it traces too, then it 1401 * will also check the deltas. More than one timestamp may 1402 * also be made. But only the entry that did the actual 1403 * commit will be something other than zero. 1404 */ 1405 if (cpu_buffer->tail_page == cpu_buffer->commit_page && 1406 rb_page_write(cpu_buffer->tail_page) == 1407 rb_commit_index(cpu_buffer)) { 1408 1409 delta = ts - cpu_buffer->write_stamp; 1410 1411 /* make sure this delta is calculated here */ 1412 barrier(); 1413 1414 /* Did the write stamp get updated already? */ 1415 if (unlikely(ts < cpu_buffer->write_stamp)) 1416 delta = 0; 1417 1418 if (test_time_stamp(delta)) { 1419 1420 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta); 1421 1422 if (commit == -EBUSY) 1423 return NULL; 1424 1425 if (commit == -EAGAIN) 1426 goto again; 1427 1428 RB_WARN_ON(cpu_buffer, commit < 0); 1429 } 1430 } else 1431 /* Non commits have zero deltas */ 1432 delta = 0; 1433 1434 event = __rb_reserve_next(cpu_buffer, type, length, &ts); 1435 if (PTR_ERR(event) == -EAGAIN) 1436 goto again; 1437 1438 if (!event) { 1439 if (unlikely(commit)) 1440 /* 1441 * Ouch! We needed a timestamp and it was commited. But 1442 * we didn't get our event reserved. 1443 */ 1444 rb_set_commit_to_write(cpu_buffer); 1445 return NULL; 1446 } 1447 1448 /* 1449 * If the timestamp was commited, make the commit our entry 1450 * now so that we will update it when needed. 1451 */ 1452 if (commit) 1453 rb_set_commit_event(cpu_buffer, event); 1454 else if (!rb_is_commit(cpu_buffer, event)) 1455 delta = 0; 1456 1457 event->time_delta = delta; 1458 1459 return event; 1460 } 1461 1462 static DEFINE_PER_CPU(int, rb_need_resched); 1463 1464 /** 1465 * ring_buffer_lock_reserve - reserve a part of the buffer 1466 * @buffer: the ring buffer to reserve from 1467 * @length: the length of the data to reserve (excluding event header) 1468 * 1469 * Returns a reseverd event on the ring buffer to copy directly to. 1470 * The user of this interface will need to get the body to write into 1471 * and can use the ring_buffer_event_data() interface. 1472 * 1473 * The length is the length of the data needed, not the event length 1474 * which also includes the event header. 1475 * 1476 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 1477 * If NULL is returned, then nothing has been allocated or locked. 1478 */ 1479 struct ring_buffer_event * 1480 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 1481 { 1482 struct ring_buffer_per_cpu *cpu_buffer; 1483 struct ring_buffer_event *event; 1484 int cpu, resched; 1485 1486 if (ring_buffer_flags != RB_BUFFERS_ON) 1487 return NULL; 1488 1489 if (atomic_read(&buffer->record_disabled)) 1490 return NULL; 1491 1492 /* If we are tracing schedule, we don't want to recurse */ 1493 resched = ftrace_preempt_disable(); 1494 1495 cpu = raw_smp_processor_id(); 1496 1497 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1498 goto out; 1499 1500 cpu_buffer = buffer->buffers[cpu]; 1501 1502 if (atomic_read(&cpu_buffer->record_disabled)) 1503 goto out; 1504 1505 length = rb_calculate_event_length(length); 1506 if (length > BUF_PAGE_SIZE) 1507 goto out; 1508 1509 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length); 1510 if (!event) 1511 goto out; 1512 1513 /* 1514 * Need to store resched state on this cpu. 1515 * Only the first needs to. 1516 */ 1517 1518 if (preempt_count() == 1) 1519 per_cpu(rb_need_resched, cpu) = resched; 1520 1521 return event; 1522 1523 out: 1524 ftrace_preempt_enable(resched); 1525 return NULL; 1526 } 1527 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 1528 1529 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 1530 struct ring_buffer_event *event) 1531 { 1532 cpu_buffer->entries++; 1533 1534 /* Only process further if we own the commit */ 1535 if (!rb_is_commit(cpu_buffer, event)) 1536 return; 1537 1538 cpu_buffer->write_stamp += event->time_delta; 1539 1540 rb_set_commit_to_write(cpu_buffer); 1541 } 1542 1543 /** 1544 * ring_buffer_unlock_commit - commit a reserved 1545 * @buffer: The buffer to commit to 1546 * @event: The event pointer to commit. 1547 * 1548 * This commits the data to the ring buffer, and releases any locks held. 1549 * 1550 * Must be paired with ring_buffer_lock_reserve. 1551 */ 1552 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 1553 struct ring_buffer_event *event) 1554 { 1555 struct ring_buffer_per_cpu *cpu_buffer; 1556 int cpu = raw_smp_processor_id(); 1557 1558 cpu_buffer = buffer->buffers[cpu]; 1559 1560 rb_commit(cpu_buffer, event); 1561 1562 /* 1563 * Only the last preempt count needs to restore preemption. 1564 */ 1565 if (preempt_count() == 1) 1566 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 1567 else 1568 preempt_enable_no_resched_notrace(); 1569 1570 return 0; 1571 } 1572 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 1573 1574 /** 1575 * ring_buffer_write - write data to the buffer without reserving 1576 * @buffer: The ring buffer to write to. 1577 * @length: The length of the data being written (excluding the event header) 1578 * @data: The data to write to the buffer. 1579 * 1580 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 1581 * one function. If you already have the data to write to the buffer, it 1582 * may be easier to simply call this function. 1583 * 1584 * Note, like ring_buffer_lock_reserve, the length is the length of the data 1585 * and not the length of the event which would hold the header. 1586 */ 1587 int ring_buffer_write(struct ring_buffer *buffer, 1588 unsigned long length, 1589 void *data) 1590 { 1591 struct ring_buffer_per_cpu *cpu_buffer; 1592 struct ring_buffer_event *event; 1593 unsigned long event_length; 1594 void *body; 1595 int ret = -EBUSY; 1596 int cpu, resched; 1597 1598 if (ring_buffer_flags != RB_BUFFERS_ON) 1599 return -EBUSY; 1600 1601 if (atomic_read(&buffer->record_disabled)) 1602 return -EBUSY; 1603 1604 resched = ftrace_preempt_disable(); 1605 1606 cpu = raw_smp_processor_id(); 1607 1608 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1609 goto out; 1610 1611 cpu_buffer = buffer->buffers[cpu]; 1612 1613 if (atomic_read(&cpu_buffer->record_disabled)) 1614 goto out; 1615 1616 event_length = rb_calculate_event_length(length); 1617 event = rb_reserve_next_event(cpu_buffer, 1618 RINGBUF_TYPE_DATA, event_length); 1619 if (!event) 1620 goto out; 1621 1622 body = rb_event_data(event); 1623 1624 memcpy(body, data, length); 1625 1626 rb_commit(cpu_buffer, event); 1627 1628 ret = 0; 1629 out: 1630 ftrace_preempt_enable(resched); 1631 1632 return ret; 1633 } 1634 EXPORT_SYMBOL_GPL(ring_buffer_write); 1635 1636 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 1637 { 1638 struct buffer_page *reader = cpu_buffer->reader_page; 1639 struct buffer_page *head = cpu_buffer->head_page; 1640 struct buffer_page *commit = cpu_buffer->commit_page; 1641 1642 return reader->read == rb_page_commit(reader) && 1643 (commit == reader || 1644 (commit == head && 1645 head->read == rb_page_commit(commit))); 1646 } 1647 1648 /** 1649 * ring_buffer_record_disable - stop all writes into the buffer 1650 * @buffer: The ring buffer to stop writes to. 1651 * 1652 * This prevents all writes to the buffer. Any attempt to write 1653 * to the buffer after this will fail and return NULL. 1654 * 1655 * The caller should call synchronize_sched() after this. 1656 */ 1657 void ring_buffer_record_disable(struct ring_buffer *buffer) 1658 { 1659 atomic_inc(&buffer->record_disabled); 1660 } 1661 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 1662 1663 /** 1664 * ring_buffer_record_enable - enable writes to the buffer 1665 * @buffer: The ring buffer to enable writes 1666 * 1667 * Note, multiple disables will need the same number of enables 1668 * to truely enable the writing (much like preempt_disable). 1669 */ 1670 void ring_buffer_record_enable(struct ring_buffer *buffer) 1671 { 1672 atomic_dec(&buffer->record_disabled); 1673 } 1674 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 1675 1676 /** 1677 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 1678 * @buffer: The ring buffer to stop writes to. 1679 * @cpu: The CPU buffer to stop 1680 * 1681 * This prevents all writes to the buffer. Any attempt to write 1682 * to the buffer after this will fail and return NULL. 1683 * 1684 * The caller should call synchronize_sched() after this. 1685 */ 1686 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 1687 { 1688 struct ring_buffer_per_cpu *cpu_buffer; 1689 1690 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1691 return; 1692 1693 cpu_buffer = buffer->buffers[cpu]; 1694 atomic_inc(&cpu_buffer->record_disabled); 1695 } 1696 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 1697 1698 /** 1699 * ring_buffer_record_enable_cpu - enable writes to the buffer 1700 * @buffer: The ring buffer to enable writes 1701 * @cpu: The CPU to enable. 1702 * 1703 * Note, multiple disables will need the same number of enables 1704 * to truely enable the writing (much like preempt_disable). 1705 */ 1706 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 1707 { 1708 struct ring_buffer_per_cpu *cpu_buffer; 1709 1710 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1711 return; 1712 1713 cpu_buffer = buffer->buffers[cpu]; 1714 atomic_dec(&cpu_buffer->record_disabled); 1715 } 1716 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 1717 1718 /** 1719 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 1720 * @buffer: The ring buffer 1721 * @cpu: The per CPU buffer to get the entries from. 1722 */ 1723 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 1724 { 1725 struct ring_buffer_per_cpu *cpu_buffer; 1726 unsigned long ret; 1727 1728 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1729 return 0; 1730 1731 cpu_buffer = buffer->buffers[cpu]; 1732 ret = cpu_buffer->entries; 1733 1734 return ret; 1735 } 1736 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 1737 1738 /** 1739 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 1740 * @buffer: The ring buffer 1741 * @cpu: The per CPU buffer to get the number of overruns from 1742 */ 1743 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 1744 { 1745 struct ring_buffer_per_cpu *cpu_buffer; 1746 unsigned long ret; 1747 1748 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1749 return 0; 1750 1751 cpu_buffer = buffer->buffers[cpu]; 1752 ret = cpu_buffer->overrun; 1753 1754 return ret; 1755 } 1756 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 1757 1758 /** 1759 * ring_buffer_entries - get the number of entries in a buffer 1760 * @buffer: The ring buffer 1761 * 1762 * Returns the total number of entries in the ring buffer 1763 * (all CPU entries) 1764 */ 1765 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 1766 { 1767 struct ring_buffer_per_cpu *cpu_buffer; 1768 unsigned long entries = 0; 1769 int cpu; 1770 1771 /* if you care about this being correct, lock the buffer */ 1772 for_each_buffer_cpu(buffer, cpu) { 1773 cpu_buffer = buffer->buffers[cpu]; 1774 entries += cpu_buffer->entries; 1775 } 1776 1777 return entries; 1778 } 1779 EXPORT_SYMBOL_GPL(ring_buffer_entries); 1780 1781 /** 1782 * ring_buffer_overrun_cpu - get the number of overruns in buffer 1783 * @buffer: The ring buffer 1784 * 1785 * Returns the total number of overruns in the ring buffer 1786 * (all CPU entries) 1787 */ 1788 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 1789 { 1790 struct ring_buffer_per_cpu *cpu_buffer; 1791 unsigned long overruns = 0; 1792 int cpu; 1793 1794 /* if you care about this being correct, lock the buffer */ 1795 for_each_buffer_cpu(buffer, cpu) { 1796 cpu_buffer = buffer->buffers[cpu]; 1797 overruns += cpu_buffer->overrun; 1798 } 1799 1800 return overruns; 1801 } 1802 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 1803 1804 static void rb_iter_reset(struct ring_buffer_iter *iter) 1805 { 1806 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1807 1808 /* Iterator usage is expected to have record disabled */ 1809 if (list_empty(&cpu_buffer->reader_page->list)) { 1810 iter->head_page = cpu_buffer->head_page; 1811 iter->head = cpu_buffer->head_page->read; 1812 } else { 1813 iter->head_page = cpu_buffer->reader_page; 1814 iter->head = cpu_buffer->reader_page->read; 1815 } 1816 if (iter->head) 1817 iter->read_stamp = cpu_buffer->read_stamp; 1818 else 1819 iter->read_stamp = iter->head_page->page->time_stamp; 1820 } 1821 1822 /** 1823 * ring_buffer_iter_reset - reset an iterator 1824 * @iter: The iterator to reset 1825 * 1826 * Resets the iterator, so that it will start from the beginning 1827 * again. 1828 */ 1829 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 1830 { 1831 struct ring_buffer_per_cpu *cpu_buffer; 1832 unsigned long flags; 1833 1834 if (!iter) 1835 return; 1836 1837 cpu_buffer = iter->cpu_buffer; 1838 1839 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1840 rb_iter_reset(iter); 1841 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1842 } 1843 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 1844 1845 /** 1846 * ring_buffer_iter_empty - check if an iterator has no more to read 1847 * @iter: The iterator to check 1848 */ 1849 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 1850 { 1851 struct ring_buffer_per_cpu *cpu_buffer; 1852 1853 cpu_buffer = iter->cpu_buffer; 1854 1855 return iter->head_page == cpu_buffer->commit_page && 1856 iter->head == rb_commit_index(cpu_buffer); 1857 } 1858 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 1859 1860 static void 1861 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 1862 struct ring_buffer_event *event) 1863 { 1864 u64 delta; 1865 1866 switch (event->type) { 1867 case RINGBUF_TYPE_PADDING: 1868 return; 1869 1870 case RINGBUF_TYPE_TIME_EXTEND: 1871 delta = event->array[0]; 1872 delta <<= TS_SHIFT; 1873 delta += event->time_delta; 1874 cpu_buffer->read_stamp += delta; 1875 return; 1876 1877 case RINGBUF_TYPE_TIME_STAMP: 1878 /* FIXME: not implemented */ 1879 return; 1880 1881 case RINGBUF_TYPE_DATA: 1882 cpu_buffer->read_stamp += event->time_delta; 1883 return; 1884 1885 default: 1886 BUG(); 1887 } 1888 return; 1889 } 1890 1891 static void 1892 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 1893 struct ring_buffer_event *event) 1894 { 1895 u64 delta; 1896 1897 switch (event->type) { 1898 case RINGBUF_TYPE_PADDING: 1899 return; 1900 1901 case RINGBUF_TYPE_TIME_EXTEND: 1902 delta = event->array[0]; 1903 delta <<= TS_SHIFT; 1904 delta += event->time_delta; 1905 iter->read_stamp += delta; 1906 return; 1907 1908 case RINGBUF_TYPE_TIME_STAMP: 1909 /* FIXME: not implemented */ 1910 return; 1911 1912 case RINGBUF_TYPE_DATA: 1913 iter->read_stamp += event->time_delta; 1914 return; 1915 1916 default: 1917 BUG(); 1918 } 1919 return; 1920 } 1921 1922 static struct buffer_page * 1923 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1924 { 1925 struct buffer_page *reader = NULL; 1926 unsigned long flags; 1927 int nr_loops = 0; 1928 1929 local_irq_save(flags); 1930 __raw_spin_lock(&cpu_buffer->lock); 1931 1932 again: 1933 /* 1934 * This should normally only loop twice. But because the 1935 * start of the reader inserts an empty page, it causes 1936 * a case where we will loop three times. There should be no 1937 * reason to loop four times (that I know of). 1938 */ 1939 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 1940 reader = NULL; 1941 goto out; 1942 } 1943 1944 reader = cpu_buffer->reader_page; 1945 1946 /* If there's more to read, return this page */ 1947 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 1948 goto out; 1949 1950 /* Never should we have an index greater than the size */ 1951 if (RB_WARN_ON(cpu_buffer, 1952 cpu_buffer->reader_page->read > rb_page_size(reader))) 1953 goto out; 1954 1955 /* check if we caught up to the tail */ 1956 reader = NULL; 1957 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 1958 goto out; 1959 1960 /* 1961 * Splice the empty reader page into the list around the head. 1962 * Reset the reader page to size zero. 1963 */ 1964 1965 reader = cpu_buffer->head_page; 1966 cpu_buffer->reader_page->list.next = reader->list.next; 1967 cpu_buffer->reader_page->list.prev = reader->list.prev; 1968 1969 local_set(&cpu_buffer->reader_page->write, 0); 1970 local_set(&cpu_buffer->reader_page->page->commit, 0); 1971 1972 /* Make the reader page now replace the head */ 1973 reader->list.prev->next = &cpu_buffer->reader_page->list; 1974 reader->list.next->prev = &cpu_buffer->reader_page->list; 1975 1976 /* 1977 * If the tail is on the reader, then we must set the head 1978 * to the inserted page, otherwise we set it one before. 1979 */ 1980 cpu_buffer->head_page = cpu_buffer->reader_page; 1981 1982 if (cpu_buffer->commit_page != reader) 1983 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 1984 1985 /* Finally update the reader page to the new head */ 1986 cpu_buffer->reader_page = reader; 1987 rb_reset_reader_page(cpu_buffer); 1988 1989 goto again; 1990 1991 out: 1992 __raw_spin_unlock(&cpu_buffer->lock); 1993 local_irq_restore(flags); 1994 1995 return reader; 1996 } 1997 1998 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 1999 { 2000 struct ring_buffer_event *event; 2001 struct buffer_page *reader; 2002 unsigned length; 2003 2004 reader = rb_get_reader_page(cpu_buffer); 2005 2006 /* This function should not be called when buffer is empty */ 2007 if (RB_WARN_ON(cpu_buffer, !reader)) 2008 return; 2009 2010 event = rb_reader_event(cpu_buffer); 2011 2012 if (event->type == RINGBUF_TYPE_DATA || rb_discarded_event(event)) 2013 cpu_buffer->entries--; 2014 2015 rb_update_read_stamp(cpu_buffer, event); 2016 2017 length = rb_event_length(event); 2018 cpu_buffer->reader_page->read += length; 2019 } 2020 2021 static void rb_advance_iter(struct ring_buffer_iter *iter) 2022 { 2023 struct ring_buffer *buffer; 2024 struct ring_buffer_per_cpu *cpu_buffer; 2025 struct ring_buffer_event *event; 2026 unsigned length; 2027 2028 cpu_buffer = iter->cpu_buffer; 2029 buffer = cpu_buffer->buffer; 2030 2031 /* 2032 * Check if we are at the end of the buffer. 2033 */ 2034 if (iter->head >= rb_page_size(iter->head_page)) { 2035 if (RB_WARN_ON(buffer, 2036 iter->head_page == cpu_buffer->commit_page)) 2037 return; 2038 rb_inc_iter(iter); 2039 return; 2040 } 2041 2042 event = rb_iter_head_event(iter); 2043 2044 length = rb_event_length(event); 2045 2046 /* 2047 * This should not be called to advance the header if we are 2048 * at the tail of the buffer. 2049 */ 2050 if (RB_WARN_ON(cpu_buffer, 2051 (iter->head_page == cpu_buffer->commit_page) && 2052 (iter->head + length > rb_commit_index(cpu_buffer)))) 2053 return; 2054 2055 rb_update_iter_read_stamp(iter, event); 2056 2057 iter->head += length; 2058 2059 /* check for end of page padding */ 2060 if ((iter->head >= rb_page_size(iter->head_page)) && 2061 (iter->head_page != cpu_buffer->commit_page)) 2062 rb_advance_iter(iter); 2063 } 2064 2065 static struct ring_buffer_event * 2066 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) 2067 { 2068 struct ring_buffer_per_cpu *cpu_buffer; 2069 struct ring_buffer_event *event; 2070 struct buffer_page *reader; 2071 int nr_loops = 0; 2072 2073 cpu_buffer = buffer->buffers[cpu]; 2074 2075 again: 2076 /* 2077 * We repeat when a timestamp is encountered. It is possible 2078 * to get multiple timestamps from an interrupt entering just 2079 * as one timestamp is about to be written. The max times 2080 * that this can happen is the number of nested interrupts we 2081 * can have. Nesting 10 deep of interrupts is clearly 2082 * an anomaly. 2083 */ 2084 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10)) 2085 return NULL; 2086 2087 reader = rb_get_reader_page(cpu_buffer); 2088 if (!reader) 2089 return NULL; 2090 2091 event = rb_reader_event(cpu_buffer); 2092 2093 switch (event->type) { 2094 case RINGBUF_TYPE_PADDING: 2095 if (rb_null_event(event)) 2096 RB_WARN_ON(cpu_buffer, 1); 2097 /* 2098 * Because the writer could be discarding every 2099 * event it creates (which would probably be bad) 2100 * if we were to go back to "again" then we may never 2101 * catch up, and will trigger the warn on, or lock 2102 * the box. Return the padding, and we will release 2103 * the current locks, and try again. 2104 */ 2105 rb_advance_reader(cpu_buffer); 2106 return event; 2107 2108 case RINGBUF_TYPE_TIME_EXTEND: 2109 /* Internal data, OK to advance */ 2110 rb_advance_reader(cpu_buffer); 2111 goto again; 2112 2113 case RINGBUF_TYPE_TIME_STAMP: 2114 /* FIXME: not implemented */ 2115 rb_advance_reader(cpu_buffer); 2116 goto again; 2117 2118 case RINGBUF_TYPE_DATA: 2119 if (ts) { 2120 *ts = cpu_buffer->read_stamp + event->time_delta; 2121 ring_buffer_normalize_time_stamp(buffer, 2122 cpu_buffer->cpu, ts); 2123 } 2124 return event; 2125 2126 default: 2127 BUG(); 2128 } 2129 2130 return NULL; 2131 } 2132 EXPORT_SYMBOL_GPL(ring_buffer_peek); 2133 2134 static struct ring_buffer_event * 2135 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 2136 { 2137 struct ring_buffer *buffer; 2138 struct ring_buffer_per_cpu *cpu_buffer; 2139 struct ring_buffer_event *event; 2140 int nr_loops = 0; 2141 2142 if (ring_buffer_iter_empty(iter)) 2143 return NULL; 2144 2145 cpu_buffer = iter->cpu_buffer; 2146 buffer = cpu_buffer->buffer; 2147 2148 again: 2149 /* 2150 * We repeat when a timestamp is encountered. It is possible 2151 * to get multiple timestamps from an interrupt entering just 2152 * as one timestamp is about to be written. The max times 2153 * that this can happen is the number of nested interrupts we 2154 * can have. Nesting 10 deep of interrupts is clearly 2155 * an anomaly. 2156 */ 2157 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10)) 2158 return NULL; 2159 2160 if (rb_per_cpu_empty(cpu_buffer)) 2161 return NULL; 2162 2163 event = rb_iter_head_event(iter); 2164 2165 switch (event->type) { 2166 case RINGBUF_TYPE_PADDING: 2167 if (rb_null_event(event)) { 2168 rb_inc_iter(iter); 2169 goto again; 2170 } 2171 rb_advance_iter(iter); 2172 return event; 2173 2174 case RINGBUF_TYPE_TIME_EXTEND: 2175 /* Internal data, OK to advance */ 2176 rb_advance_iter(iter); 2177 goto again; 2178 2179 case RINGBUF_TYPE_TIME_STAMP: 2180 /* FIXME: not implemented */ 2181 rb_advance_iter(iter); 2182 goto again; 2183 2184 case RINGBUF_TYPE_DATA: 2185 if (ts) { 2186 *ts = iter->read_stamp + event->time_delta; 2187 ring_buffer_normalize_time_stamp(buffer, 2188 cpu_buffer->cpu, ts); 2189 } 2190 return event; 2191 2192 default: 2193 BUG(); 2194 } 2195 2196 return NULL; 2197 } 2198 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 2199 2200 /** 2201 * ring_buffer_peek - peek at the next event to be read 2202 * @buffer: The ring buffer to read 2203 * @cpu: The cpu to peak at 2204 * @ts: The timestamp counter of this event. 2205 * 2206 * This will return the event that will be read next, but does 2207 * not consume the data. 2208 */ 2209 struct ring_buffer_event * 2210 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) 2211 { 2212 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 2213 struct ring_buffer_event *event; 2214 unsigned long flags; 2215 2216 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2217 return NULL; 2218 2219 again: 2220 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2221 event = rb_buffer_peek(buffer, cpu, ts); 2222 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2223 2224 if (event && event->type == RINGBUF_TYPE_PADDING) { 2225 cpu_relax(); 2226 goto again; 2227 } 2228 2229 return event; 2230 } 2231 2232 /** 2233 * ring_buffer_iter_peek - peek at the next event to be read 2234 * @iter: The ring buffer iterator 2235 * @ts: The timestamp counter of this event. 2236 * 2237 * This will return the event that will be read next, but does 2238 * not increment the iterator. 2239 */ 2240 struct ring_buffer_event * 2241 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 2242 { 2243 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2244 struct ring_buffer_event *event; 2245 unsigned long flags; 2246 2247 again: 2248 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2249 event = rb_iter_peek(iter, ts); 2250 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2251 2252 if (event && event->type == RINGBUF_TYPE_PADDING) { 2253 cpu_relax(); 2254 goto again; 2255 } 2256 2257 return event; 2258 } 2259 2260 /** 2261 * ring_buffer_consume - return an event and consume it 2262 * @buffer: The ring buffer to get the next event from 2263 * 2264 * Returns the next event in the ring buffer, and that event is consumed. 2265 * Meaning, that sequential reads will keep returning a different event, 2266 * and eventually empty the ring buffer if the producer is slower. 2267 */ 2268 struct ring_buffer_event * 2269 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) 2270 { 2271 struct ring_buffer_per_cpu *cpu_buffer; 2272 struct ring_buffer_event *event = NULL; 2273 unsigned long flags; 2274 2275 again: 2276 /* might be called in atomic */ 2277 preempt_disable(); 2278 2279 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2280 goto out; 2281 2282 cpu_buffer = buffer->buffers[cpu]; 2283 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2284 2285 event = rb_buffer_peek(buffer, cpu, ts); 2286 if (!event) 2287 goto out_unlock; 2288 2289 rb_advance_reader(cpu_buffer); 2290 2291 out_unlock: 2292 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2293 2294 out: 2295 preempt_enable(); 2296 2297 if (event && event->type == RINGBUF_TYPE_PADDING) { 2298 cpu_relax(); 2299 goto again; 2300 } 2301 2302 return event; 2303 } 2304 EXPORT_SYMBOL_GPL(ring_buffer_consume); 2305 2306 /** 2307 * ring_buffer_read_start - start a non consuming read of the buffer 2308 * @buffer: The ring buffer to read from 2309 * @cpu: The cpu buffer to iterate over 2310 * 2311 * This starts up an iteration through the buffer. It also disables 2312 * the recording to the buffer until the reading is finished. 2313 * This prevents the reading from being corrupted. This is not 2314 * a consuming read, so a producer is not expected. 2315 * 2316 * Must be paired with ring_buffer_finish. 2317 */ 2318 struct ring_buffer_iter * 2319 ring_buffer_read_start(struct ring_buffer *buffer, int cpu) 2320 { 2321 struct ring_buffer_per_cpu *cpu_buffer; 2322 struct ring_buffer_iter *iter; 2323 unsigned long flags; 2324 2325 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2326 return NULL; 2327 2328 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 2329 if (!iter) 2330 return NULL; 2331 2332 cpu_buffer = buffer->buffers[cpu]; 2333 2334 iter->cpu_buffer = cpu_buffer; 2335 2336 atomic_inc(&cpu_buffer->record_disabled); 2337 synchronize_sched(); 2338 2339 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2340 __raw_spin_lock(&cpu_buffer->lock); 2341 rb_iter_reset(iter); 2342 __raw_spin_unlock(&cpu_buffer->lock); 2343 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2344 2345 return iter; 2346 } 2347 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 2348 2349 /** 2350 * ring_buffer_finish - finish reading the iterator of the buffer 2351 * @iter: The iterator retrieved by ring_buffer_start 2352 * 2353 * This re-enables the recording to the buffer, and frees the 2354 * iterator. 2355 */ 2356 void 2357 ring_buffer_read_finish(struct ring_buffer_iter *iter) 2358 { 2359 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2360 2361 atomic_dec(&cpu_buffer->record_disabled); 2362 kfree(iter); 2363 } 2364 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 2365 2366 /** 2367 * ring_buffer_read - read the next item in the ring buffer by the iterator 2368 * @iter: The ring buffer iterator 2369 * @ts: The time stamp of the event read. 2370 * 2371 * This reads the next event in the ring buffer and increments the iterator. 2372 */ 2373 struct ring_buffer_event * 2374 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 2375 { 2376 struct ring_buffer_event *event; 2377 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2378 unsigned long flags; 2379 2380 again: 2381 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2382 event = rb_iter_peek(iter, ts); 2383 if (!event) 2384 goto out; 2385 2386 rb_advance_iter(iter); 2387 out: 2388 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2389 2390 if (event && event->type == RINGBUF_TYPE_PADDING) { 2391 cpu_relax(); 2392 goto again; 2393 } 2394 2395 return event; 2396 } 2397 EXPORT_SYMBOL_GPL(ring_buffer_read); 2398 2399 /** 2400 * ring_buffer_size - return the size of the ring buffer (in bytes) 2401 * @buffer: The ring buffer. 2402 */ 2403 unsigned long ring_buffer_size(struct ring_buffer *buffer) 2404 { 2405 return BUF_PAGE_SIZE * buffer->pages; 2406 } 2407 EXPORT_SYMBOL_GPL(ring_buffer_size); 2408 2409 static void 2410 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 2411 { 2412 cpu_buffer->head_page 2413 = list_entry(cpu_buffer->pages.next, struct buffer_page, list); 2414 local_set(&cpu_buffer->head_page->write, 0); 2415 local_set(&cpu_buffer->head_page->page->commit, 0); 2416 2417 cpu_buffer->head_page->read = 0; 2418 2419 cpu_buffer->tail_page = cpu_buffer->head_page; 2420 cpu_buffer->commit_page = cpu_buffer->head_page; 2421 2422 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 2423 local_set(&cpu_buffer->reader_page->write, 0); 2424 local_set(&cpu_buffer->reader_page->page->commit, 0); 2425 cpu_buffer->reader_page->read = 0; 2426 2427 cpu_buffer->overrun = 0; 2428 cpu_buffer->entries = 0; 2429 2430 cpu_buffer->write_stamp = 0; 2431 cpu_buffer->read_stamp = 0; 2432 } 2433 2434 /** 2435 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 2436 * @buffer: The ring buffer to reset a per cpu buffer of 2437 * @cpu: The CPU buffer to be reset 2438 */ 2439 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 2440 { 2441 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 2442 unsigned long flags; 2443 2444 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2445 return; 2446 2447 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2448 2449 __raw_spin_lock(&cpu_buffer->lock); 2450 2451 rb_reset_cpu(cpu_buffer); 2452 2453 __raw_spin_unlock(&cpu_buffer->lock); 2454 2455 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2456 } 2457 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 2458 2459 /** 2460 * ring_buffer_reset - reset a ring buffer 2461 * @buffer: The ring buffer to reset all cpu buffers 2462 */ 2463 void ring_buffer_reset(struct ring_buffer *buffer) 2464 { 2465 int cpu; 2466 2467 for_each_buffer_cpu(buffer, cpu) 2468 ring_buffer_reset_cpu(buffer, cpu); 2469 } 2470 EXPORT_SYMBOL_GPL(ring_buffer_reset); 2471 2472 /** 2473 * rind_buffer_empty - is the ring buffer empty? 2474 * @buffer: The ring buffer to test 2475 */ 2476 int ring_buffer_empty(struct ring_buffer *buffer) 2477 { 2478 struct ring_buffer_per_cpu *cpu_buffer; 2479 int cpu; 2480 2481 /* yes this is racy, but if you don't like the race, lock the buffer */ 2482 for_each_buffer_cpu(buffer, cpu) { 2483 cpu_buffer = buffer->buffers[cpu]; 2484 if (!rb_per_cpu_empty(cpu_buffer)) 2485 return 0; 2486 } 2487 2488 return 1; 2489 } 2490 EXPORT_SYMBOL_GPL(ring_buffer_empty); 2491 2492 /** 2493 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 2494 * @buffer: The ring buffer 2495 * @cpu: The CPU buffer to test 2496 */ 2497 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 2498 { 2499 struct ring_buffer_per_cpu *cpu_buffer; 2500 int ret; 2501 2502 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2503 return 1; 2504 2505 cpu_buffer = buffer->buffers[cpu]; 2506 ret = rb_per_cpu_empty(cpu_buffer); 2507 2508 2509 return ret; 2510 } 2511 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 2512 2513 /** 2514 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 2515 * @buffer_a: One buffer to swap with 2516 * @buffer_b: The other buffer to swap with 2517 * 2518 * This function is useful for tracers that want to take a "snapshot" 2519 * of a CPU buffer and has another back up buffer lying around. 2520 * it is expected that the tracer handles the cpu buffer not being 2521 * used at the moment. 2522 */ 2523 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 2524 struct ring_buffer *buffer_b, int cpu) 2525 { 2526 struct ring_buffer_per_cpu *cpu_buffer_a; 2527 struct ring_buffer_per_cpu *cpu_buffer_b; 2528 int ret = -EINVAL; 2529 2530 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 2531 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 2532 goto out; 2533 2534 /* At least make sure the two buffers are somewhat the same */ 2535 if (buffer_a->pages != buffer_b->pages) 2536 goto out; 2537 2538 ret = -EAGAIN; 2539 2540 if (ring_buffer_flags != RB_BUFFERS_ON) 2541 goto out; 2542 2543 if (atomic_read(&buffer_a->record_disabled)) 2544 goto out; 2545 2546 if (atomic_read(&buffer_b->record_disabled)) 2547 goto out; 2548 2549 cpu_buffer_a = buffer_a->buffers[cpu]; 2550 cpu_buffer_b = buffer_b->buffers[cpu]; 2551 2552 if (atomic_read(&cpu_buffer_a->record_disabled)) 2553 goto out; 2554 2555 if (atomic_read(&cpu_buffer_b->record_disabled)) 2556 goto out; 2557 2558 /* 2559 * We can't do a synchronize_sched here because this 2560 * function can be called in atomic context. 2561 * Normally this will be called from the same CPU as cpu. 2562 * If not it's up to the caller to protect this. 2563 */ 2564 atomic_inc(&cpu_buffer_a->record_disabled); 2565 atomic_inc(&cpu_buffer_b->record_disabled); 2566 2567 buffer_a->buffers[cpu] = cpu_buffer_b; 2568 buffer_b->buffers[cpu] = cpu_buffer_a; 2569 2570 cpu_buffer_b->buffer = buffer_a; 2571 cpu_buffer_a->buffer = buffer_b; 2572 2573 atomic_dec(&cpu_buffer_a->record_disabled); 2574 atomic_dec(&cpu_buffer_b->record_disabled); 2575 2576 ret = 0; 2577 out: 2578 return ret; 2579 } 2580 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 2581 2582 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer, 2583 struct buffer_data_page *bpage, 2584 unsigned int offset) 2585 { 2586 struct ring_buffer_event *event; 2587 unsigned long head; 2588 2589 __raw_spin_lock(&cpu_buffer->lock); 2590 for (head = offset; head < local_read(&bpage->commit); 2591 head += rb_event_length(event)) { 2592 2593 event = __rb_data_page_index(bpage, head); 2594 if (RB_WARN_ON(cpu_buffer, rb_null_event(event))) 2595 return; 2596 /* Only count data entries */ 2597 if (event->type != RINGBUF_TYPE_DATA) 2598 continue; 2599 cpu_buffer->entries--; 2600 } 2601 __raw_spin_unlock(&cpu_buffer->lock); 2602 } 2603 2604 /** 2605 * ring_buffer_alloc_read_page - allocate a page to read from buffer 2606 * @buffer: the buffer to allocate for. 2607 * 2608 * This function is used in conjunction with ring_buffer_read_page. 2609 * When reading a full page from the ring buffer, these functions 2610 * can be used to speed up the process. The calling function should 2611 * allocate a few pages first with this function. Then when it 2612 * needs to get pages from the ring buffer, it passes the result 2613 * of this function into ring_buffer_read_page, which will swap 2614 * the page that was allocated, with the read page of the buffer. 2615 * 2616 * Returns: 2617 * The page allocated, or NULL on error. 2618 */ 2619 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer) 2620 { 2621 struct buffer_data_page *bpage; 2622 unsigned long addr; 2623 2624 addr = __get_free_page(GFP_KERNEL); 2625 if (!addr) 2626 return NULL; 2627 2628 bpage = (void *)addr; 2629 2630 rb_init_page(bpage); 2631 2632 return bpage; 2633 } 2634 2635 /** 2636 * ring_buffer_free_read_page - free an allocated read page 2637 * @buffer: the buffer the page was allocate for 2638 * @data: the page to free 2639 * 2640 * Free a page allocated from ring_buffer_alloc_read_page. 2641 */ 2642 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 2643 { 2644 free_page((unsigned long)data); 2645 } 2646 2647 /** 2648 * ring_buffer_read_page - extract a page from the ring buffer 2649 * @buffer: buffer to extract from 2650 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 2651 * @len: amount to extract 2652 * @cpu: the cpu of the buffer to extract 2653 * @full: should the extraction only happen when the page is full. 2654 * 2655 * This function will pull out a page from the ring buffer and consume it. 2656 * @data_page must be the address of the variable that was returned 2657 * from ring_buffer_alloc_read_page. This is because the page might be used 2658 * to swap with a page in the ring buffer. 2659 * 2660 * for example: 2661 * rpage = ring_buffer_alloc_read_page(buffer); 2662 * if (!rpage) 2663 * return error; 2664 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 2665 * if (ret >= 0) 2666 * process_page(rpage, ret); 2667 * 2668 * When @full is set, the function will not return true unless 2669 * the writer is off the reader page. 2670 * 2671 * Note: it is up to the calling functions to handle sleeps and wakeups. 2672 * The ring buffer can be used anywhere in the kernel and can not 2673 * blindly call wake_up. The layer that uses the ring buffer must be 2674 * responsible for that. 2675 * 2676 * Returns: 2677 * >=0 if data has been transferred, returns the offset of consumed data. 2678 * <0 if no data has been transferred. 2679 */ 2680 int ring_buffer_read_page(struct ring_buffer *buffer, 2681 void **data_page, size_t len, int cpu, int full) 2682 { 2683 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 2684 struct ring_buffer_event *event; 2685 struct buffer_data_page *bpage; 2686 struct buffer_page *reader; 2687 unsigned long flags; 2688 unsigned int commit; 2689 unsigned int read; 2690 u64 save_timestamp; 2691 int ret = -1; 2692 2693 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2694 goto out; 2695 2696 /* 2697 * If len is not big enough to hold the page header, then 2698 * we can not copy anything. 2699 */ 2700 if (len <= BUF_PAGE_HDR_SIZE) 2701 goto out; 2702 2703 len -= BUF_PAGE_HDR_SIZE; 2704 2705 if (!data_page) 2706 goto out; 2707 2708 bpage = *data_page; 2709 if (!bpage) 2710 goto out; 2711 2712 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2713 2714 reader = rb_get_reader_page(cpu_buffer); 2715 if (!reader) 2716 goto out_unlock; 2717 2718 event = rb_reader_event(cpu_buffer); 2719 2720 read = reader->read; 2721 commit = rb_page_commit(reader); 2722 2723 /* 2724 * If this page has been partially read or 2725 * if len is not big enough to read the rest of the page or 2726 * a writer is still on the page, then 2727 * we must copy the data from the page to the buffer. 2728 * Otherwise, we can simply swap the page with the one passed in. 2729 */ 2730 if (read || (len < (commit - read)) || 2731 cpu_buffer->reader_page == cpu_buffer->commit_page) { 2732 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 2733 unsigned int rpos = read; 2734 unsigned int pos = 0; 2735 unsigned int size; 2736 2737 if (full) 2738 goto out_unlock; 2739 2740 if (len > (commit - read)) 2741 len = (commit - read); 2742 2743 size = rb_event_length(event); 2744 2745 if (len < size) 2746 goto out_unlock; 2747 2748 /* save the current timestamp, since the user will need it */ 2749 save_timestamp = cpu_buffer->read_stamp; 2750 2751 /* Need to copy one event at a time */ 2752 do { 2753 memcpy(bpage->data + pos, rpage->data + rpos, size); 2754 2755 len -= size; 2756 2757 rb_advance_reader(cpu_buffer); 2758 rpos = reader->read; 2759 pos += size; 2760 2761 event = rb_reader_event(cpu_buffer); 2762 size = rb_event_length(event); 2763 } while (len > size); 2764 2765 /* update bpage */ 2766 local_set(&bpage->commit, pos); 2767 bpage->time_stamp = save_timestamp; 2768 2769 /* we copied everything to the beginning */ 2770 read = 0; 2771 } else { 2772 /* swap the pages */ 2773 rb_init_page(bpage); 2774 bpage = reader->page; 2775 reader->page = *data_page; 2776 local_set(&reader->write, 0); 2777 reader->read = 0; 2778 *data_page = bpage; 2779 2780 /* update the entry counter */ 2781 rb_remove_entries(cpu_buffer, bpage, read); 2782 } 2783 ret = read; 2784 2785 out_unlock: 2786 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2787 2788 out: 2789 return ret; 2790 } 2791 2792 static ssize_t 2793 rb_simple_read(struct file *filp, char __user *ubuf, 2794 size_t cnt, loff_t *ppos) 2795 { 2796 unsigned long *p = filp->private_data; 2797 char buf[64]; 2798 int r; 2799 2800 if (test_bit(RB_BUFFERS_DISABLED_BIT, p)) 2801 r = sprintf(buf, "permanently disabled\n"); 2802 else 2803 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p)); 2804 2805 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 2806 } 2807 2808 static ssize_t 2809 rb_simple_write(struct file *filp, const char __user *ubuf, 2810 size_t cnt, loff_t *ppos) 2811 { 2812 unsigned long *p = filp->private_data; 2813 char buf[64]; 2814 unsigned long val; 2815 int ret; 2816 2817 if (cnt >= sizeof(buf)) 2818 return -EINVAL; 2819 2820 if (copy_from_user(&buf, ubuf, cnt)) 2821 return -EFAULT; 2822 2823 buf[cnt] = 0; 2824 2825 ret = strict_strtoul(buf, 10, &val); 2826 if (ret < 0) 2827 return ret; 2828 2829 if (val) 2830 set_bit(RB_BUFFERS_ON_BIT, p); 2831 else 2832 clear_bit(RB_BUFFERS_ON_BIT, p); 2833 2834 (*ppos)++; 2835 2836 return cnt; 2837 } 2838 2839 static const struct file_operations rb_simple_fops = { 2840 .open = tracing_open_generic, 2841 .read = rb_simple_read, 2842 .write = rb_simple_write, 2843 }; 2844 2845 2846 static __init int rb_init_debugfs(void) 2847 { 2848 struct dentry *d_tracer; 2849 struct dentry *entry; 2850 2851 d_tracer = tracing_init_dentry(); 2852 2853 entry = debugfs_create_file("tracing_on", 0644, d_tracer, 2854 &ring_buffer_flags, &rb_simple_fops); 2855 if (!entry) 2856 pr_warning("Could not create debugfs 'tracing_on' entry\n"); 2857 2858 return 0; 2859 } 2860 2861 fs_initcall(rb_init_debugfs); 2862 2863 #ifdef CONFIG_HOTPLUG_CPU 2864 static int __cpuinit rb_cpu_notify(struct notifier_block *self, 2865 unsigned long action, void *hcpu) 2866 { 2867 struct ring_buffer *buffer = 2868 container_of(self, struct ring_buffer, cpu_notify); 2869 long cpu = (long)hcpu; 2870 2871 switch (action) { 2872 case CPU_UP_PREPARE: 2873 case CPU_UP_PREPARE_FROZEN: 2874 if (cpu_isset(cpu, *buffer->cpumask)) 2875 return NOTIFY_OK; 2876 2877 buffer->buffers[cpu] = 2878 rb_allocate_cpu_buffer(buffer, cpu); 2879 if (!buffer->buffers[cpu]) { 2880 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 2881 cpu); 2882 return NOTIFY_OK; 2883 } 2884 smp_wmb(); 2885 cpu_set(cpu, *buffer->cpumask); 2886 break; 2887 case CPU_DOWN_PREPARE: 2888 case CPU_DOWN_PREPARE_FROZEN: 2889 /* 2890 * Do nothing. 2891 * If we were to free the buffer, then the user would 2892 * lose any trace that was in the buffer. 2893 */ 2894 break; 2895 default: 2896 break; 2897 } 2898 return NOTIFY_OK; 2899 } 2900 #endif 2901