1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> 6 */ 7 #include <linux/trace_events.h> 8 #include <linux/ring_buffer.h> 9 #include <linux/trace_clock.h> 10 #include <linux/sched/clock.h> 11 #include <linux/trace_seq.h> 12 #include <linux/spinlock.h> 13 #include <linux/irq_work.h> 14 #include <linux/security.h> 15 #include <linux/uaccess.h> 16 #include <linux/hardirq.h> 17 #include <linux/kthread.h> /* for self test */ 18 #include <linux/module.h> 19 #include <linux/percpu.h> 20 #include <linux/mutex.h> 21 #include <linux/delay.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/list.h> 26 #include <linux/cpu.h> 27 #include <linux/oom.h> 28 29 #include <asm/local.h> 30 31 static void update_pages_handler(struct work_struct *work); 32 33 /* 34 * The ring buffer header is special. We must manually up keep it. 35 */ 36 int ring_buffer_print_entry_header(struct trace_seq *s) 37 { 38 trace_seq_puts(s, "# compressed entry header\n"); 39 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 40 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 41 trace_seq_puts(s, "\tarray : 32 bits\n"); 42 trace_seq_putc(s, '\n'); 43 trace_seq_printf(s, "\tpadding : type == %d\n", 44 RINGBUF_TYPE_PADDING); 45 trace_seq_printf(s, "\ttime_extend : type == %d\n", 46 RINGBUF_TYPE_TIME_EXTEND); 47 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 48 RINGBUF_TYPE_TIME_STAMP); 49 trace_seq_printf(s, "\tdata max type_len == %d\n", 50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 51 52 return !trace_seq_has_overflowed(s); 53 } 54 55 /* 56 * The ring buffer is made up of a list of pages. A separate list of pages is 57 * allocated for each CPU. A writer may only write to a buffer that is 58 * associated with the CPU it is currently executing on. A reader may read 59 * from any per cpu buffer. 60 * 61 * The reader is special. For each per cpu buffer, the reader has its own 62 * reader page. When a reader has read the entire reader page, this reader 63 * page is swapped with another page in the ring buffer. 64 * 65 * Now, as long as the writer is off the reader page, the reader can do what 66 * ever it wants with that page. The writer will never write to that page 67 * again (as long as it is out of the ring buffer). 68 * 69 * Here's some silly ASCII art. 70 * 71 * +------+ 72 * |reader| RING BUFFER 73 * |page | 74 * +------+ +---+ +---+ +---+ 75 * | |-->| |-->| | 76 * +---+ +---+ +---+ 77 * ^ | 78 * | | 79 * +---------------+ 80 * 81 * 82 * +------+ 83 * |reader| RING BUFFER 84 * |page |------------------v 85 * +------+ +---+ +---+ +---+ 86 * | |-->| |-->| | 87 * +---+ +---+ +---+ 88 * ^ | 89 * | | 90 * +---------------+ 91 * 92 * 93 * +------+ 94 * |reader| RING BUFFER 95 * |page |------------------v 96 * +------+ +---+ +---+ +---+ 97 * ^ | |-->| |-->| | 98 * | +---+ +---+ +---+ 99 * | | 100 * | | 101 * +------------------------------+ 102 * 103 * 104 * +------+ 105 * |buffer| RING BUFFER 106 * |page |------------------v 107 * +------+ +---+ +---+ +---+ 108 * ^ | | | |-->| | 109 * | New +---+ +---+ +---+ 110 * | Reader------^ | 111 * | page | 112 * +------------------------------+ 113 * 114 * 115 * After we make this swap, the reader can hand this page off to the splice 116 * code and be done with it. It can even allocate a new page if it needs to 117 * and swap that into the ring buffer. 118 * 119 * We will be using cmpxchg soon to make all this lockless. 120 * 121 */ 122 123 /* Used for individual buffers (after the counter) */ 124 #define RB_BUFFER_OFF (1 << 20) 125 126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 127 128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 129 #define RB_ALIGNMENT 4U 130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 132 #define RB_ALIGN_DATA __aligned(RB_ALIGNMENT) 133 134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 136 137 enum { 138 RB_LEN_TIME_EXTEND = 8, 139 RB_LEN_TIME_STAMP = 8, 140 }; 141 142 #define skip_time_extend(event) \ 143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 144 145 #define extended_time(event) \ 146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 147 148 static inline int rb_null_event(struct ring_buffer_event *event) 149 { 150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 151 } 152 153 static void rb_event_set_padding(struct ring_buffer_event *event) 154 { 155 /* padding has a NULL time_delta */ 156 event->type_len = RINGBUF_TYPE_PADDING; 157 event->time_delta = 0; 158 } 159 160 static unsigned 161 rb_event_data_length(struct ring_buffer_event *event) 162 { 163 unsigned length; 164 165 if (event->type_len) 166 length = event->type_len * RB_ALIGNMENT; 167 else 168 length = event->array[0]; 169 return length + RB_EVNT_HDR_SIZE; 170 } 171 172 /* 173 * Return the length of the given event. Will return 174 * the length of the time extend if the event is a 175 * time extend. 176 */ 177 static inline unsigned 178 rb_event_length(struct ring_buffer_event *event) 179 { 180 switch (event->type_len) { 181 case RINGBUF_TYPE_PADDING: 182 if (rb_null_event(event)) 183 /* undefined */ 184 return -1; 185 return event->array[0] + RB_EVNT_HDR_SIZE; 186 187 case RINGBUF_TYPE_TIME_EXTEND: 188 return RB_LEN_TIME_EXTEND; 189 190 case RINGBUF_TYPE_TIME_STAMP: 191 return RB_LEN_TIME_STAMP; 192 193 case RINGBUF_TYPE_DATA: 194 return rb_event_data_length(event); 195 default: 196 WARN_ON_ONCE(1); 197 } 198 /* not hit */ 199 return 0; 200 } 201 202 /* 203 * Return total length of time extend and data, 204 * or just the event length for all other events. 205 */ 206 static inline unsigned 207 rb_event_ts_length(struct ring_buffer_event *event) 208 { 209 unsigned len = 0; 210 211 if (extended_time(event)) { 212 /* time extends include the data event after it */ 213 len = RB_LEN_TIME_EXTEND; 214 event = skip_time_extend(event); 215 } 216 return len + rb_event_length(event); 217 } 218 219 /** 220 * ring_buffer_event_length - return the length of the event 221 * @event: the event to get the length of 222 * 223 * Returns the size of the data load of a data event. 224 * If the event is something other than a data event, it 225 * returns the size of the event itself. With the exception 226 * of a TIME EXTEND, where it still returns the size of the 227 * data load of the data event after it. 228 */ 229 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 230 { 231 unsigned length; 232 233 if (extended_time(event)) 234 event = skip_time_extend(event); 235 236 length = rb_event_length(event); 237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 238 return length; 239 length -= RB_EVNT_HDR_SIZE; 240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 241 length -= sizeof(event->array[0]); 242 return length; 243 } 244 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 245 246 /* inline for ring buffer fast paths */ 247 static __always_inline void * 248 rb_event_data(struct ring_buffer_event *event) 249 { 250 if (extended_time(event)) 251 event = skip_time_extend(event); 252 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 253 /* If length is in len field, then array[0] has the data */ 254 if (event->type_len) 255 return (void *)&event->array[0]; 256 /* Otherwise length is in array[0] and array[1] has the data */ 257 return (void *)&event->array[1]; 258 } 259 260 /** 261 * ring_buffer_event_data - return the data of the event 262 * @event: the event to get the data from 263 */ 264 void *ring_buffer_event_data(struct ring_buffer_event *event) 265 { 266 return rb_event_data(event); 267 } 268 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 269 270 #define for_each_buffer_cpu(buffer, cpu) \ 271 for_each_cpu(cpu, buffer->cpumask) 272 273 #define TS_SHIFT 27 274 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 275 #define TS_DELTA_TEST (~TS_MASK) 276 277 /** 278 * ring_buffer_event_time_stamp - return the event's extended timestamp 279 * @event: the event to get the timestamp of 280 * 281 * Returns the extended timestamp associated with a data event. 282 * An extended time_stamp is a 64-bit timestamp represented 283 * internally in a special way that makes the best use of space 284 * contained within a ring buffer event. This function decodes 285 * it and maps it to a straight u64 value. 286 */ 287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event) 288 { 289 u64 ts; 290 291 ts = event->array[0]; 292 ts <<= TS_SHIFT; 293 ts += event->time_delta; 294 295 return ts; 296 } 297 298 /* Flag when events were overwritten */ 299 #define RB_MISSED_EVENTS (1 << 31) 300 /* Missed count stored at end */ 301 #define RB_MISSED_STORED (1 << 30) 302 303 struct buffer_data_page { 304 u64 time_stamp; /* page time stamp */ 305 local_t commit; /* write committed index */ 306 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 307 }; 308 309 /* 310 * Note, the buffer_page list must be first. The buffer pages 311 * are allocated in cache lines, which means that each buffer 312 * page will be at the beginning of a cache line, and thus 313 * the least significant bits will be zero. We use this to 314 * add flags in the list struct pointers, to make the ring buffer 315 * lockless. 316 */ 317 struct buffer_page { 318 struct list_head list; /* list of buffer pages */ 319 local_t write; /* index for next write */ 320 unsigned read; /* index for next read */ 321 local_t entries; /* entries on this page */ 322 unsigned long real_end; /* real end of data */ 323 struct buffer_data_page *page; /* Actual data page */ 324 }; 325 326 /* 327 * The buffer page counters, write and entries, must be reset 328 * atomically when crossing page boundaries. To synchronize this 329 * update, two counters are inserted into the number. One is 330 * the actual counter for the write position or count on the page. 331 * 332 * The other is a counter of updaters. Before an update happens 333 * the update partition of the counter is incremented. This will 334 * allow the updater to update the counter atomically. 335 * 336 * The counter is 20 bits, and the state data is 12. 337 */ 338 #define RB_WRITE_MASK 0xfffff 339 #define RB_WRITE_INTCNT (1 << 20) 340 341 static void rb_init_page(struct buffer_data_page *bpage) 342 { 343 local_set(&bpage->commit, 0); 344 } 345 346 /* 347 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 348 * this issue out. 349 */ 350 static void free_buffer_page(struct buffer_page *bpage) 351 { 352 free_page((unsigned long)bpage->page); 353 kfree(bpage); 354 } 355 356 /* 357 * We need to fit the time_stamp delta into 27 bits. 358 */ 359 static inline int test_time_stamp(u64 delta) 360 { 361 if (delta & TS_DELTA_TEST) 362 return 1; 363 return 0; 364 } 365 366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 367 368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 370 371 int ring_buffer_print_page_header(struct trace_seq *s) 372 { 373 struct buffer_data_page field; 374 375 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 376 "offset:0;\tsize:%u;\tsigned:%u;\n", 377 (unsigned int)sizeof(field.time_stamp), 378 (unsigned int)is_signed_type(u64)); 379 380 trace_seq_printf(s, "\tfield: local_t commit;\t" 381 "offset:%u;\tsize:%u;\tsigned:%u;\n", 382 (unsigned int)offsetof(typeof(field), commit), 383 (unsigned int)sizeof(field.commit), 384 (unsigned int)is_signed_type(long)); 385 386 trace_seq_printf(s, "\tfield: int overwrite;\t" 387 "offset:%u;\tsize:%u;\tsigned:%u;\n", 388 (unsigned int)offsetof(typeof(field), commit), 389 1, 390 (unsigned int)is_signed_type(long)); 391 392 trace_seq_printf(s, "\tfield: char data;\t" 393 "offset:%u;\tsize:%u;\tsigned:%u;\n", 394 (unsigned int)offsetof(typeof(field), data), 395 (unsigned int)BUF_PAGE_SIZE, 396 (unsigned int)is_signed_type(char)); 397 398 return !trace_seq_has_overflowed(s); 399 } 400 401 struct rb_irq_work { 402 struct irq_work work; 403 wait_queue_head_t waiters; 404 wait_queue_head_t full_waiters; 405 bool waiters_pending; 406 bool full_waiters_pending; 407 bool wakeup_full; 408 }; 409 410 /* 411 * Structure to hold event state and handle nested events. 412 */ 413 struct rb_event_info { 414 u64 ts; 415 u64 delta; 416 unsigned long length; 417 struct buffer_page *tail_page; 418 int add_timestamp; 419 }; 420 421 /* 422 * Used for the add_timestamp 423 * NONE 424 * EXTEND - wants a time extend 425 * ABSOLUTE - the buffer requests all events to have absolute time stamps 426 * FORCE - force a full time stamp. 427 */ 428 enum { 429 RB_ADD_STAMP_NONE = 0, 430 RB_ADD_STAMP_EXTEND = BIT(1), 431 RB_ADD_STAMP_ABSOLUTE = BIT(2), 432 RB_ADD_STAMP_FORCE = BIT(3) 433 }; 434 /* 435 * Used for which event context the event is in. 436 * NMI = 0 437 * IRQ = 1 438 * SOFTIRQ = 2 439 * NORMAL = 3 440 * 441 * See trace_recursive_lock() comment below for more details. 442 */ 443 enum { 444 RB_CTX_NMI, 445 RB_CTX_IRQ, 446 RB_CTX_SOFTIRQ, 447 RB_CTX_NORMAL, 448 RB_CTX_MAX 449 }; 450 451 #if BITS_PER_LONG == 32 452 #define RB_TIME_32 453 #endif 454 455 /* To test on 64 bit machines */ 456 //#define RB_TIME_32 457 458 #ifdef RB_TIME_32 459 460 struct rb_time_struct { 461 local_t cnt; 462 local_t top; 463 local_t bottom; 464 }; 465 #else 466 #include <asm/local64.h> 467 struct rb_time_struct { 468 local64_t time; 469 }; 470 #endif 471 typedef struct rb_time_struct rb_time_t; 472 473 /* 474 * head_page == tail_page && head == tail then buffer is empty. 475 */ 476 struct ring_buffer_per_cpu { 477 int cpu; 478 atomic_t record_disabled; 479 atomic_t resize_disabled; 480 struct trace_buffer *buffer; 481 raw_spinlock_t reader_lock; /* serialize readers */ 482 arch_spinlock_t lock; 483 struct lock_class_key lock_key; 484 struct buffer_data_page *free_page; 485 unsigned long nr_pages; 486 unsigned int current_context; 487 struct list_head *pages; 488 struct buffer_page *head_page; /* read from head */ 489 struct buffer_page *tail_page; /* write to tail */ 490 struct buffer_page *commit_page; /* committed pages */ 491 struct buffer_page *reader_page; 492 unsigned long lost_events; 493 unsigned long last_overrun; 494 unsigned long nest; 495 local_t entries_bytes; 496 local_t entries; 497 local_t overrun; 498 local_t commit_overrun; 499 local_t dropped_events; 500 local_t committing; 501 local_t commits; 502 local_t pages_touched; 503 local_t pages_read; 504 long last_pages_touch; 505 size_t shortest_full; 506 unsigned long read; 507 unsigned long read_bytes; 508 rb_time_t write_stamp; 509 rb_time_t before_stamp; 510 u64 read_stamp; 511 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 512 long nr_pages_to_update; 513 struct list_head new_pages; /* new pages to add */ 514 struct work_struct update_pages_work; 515 struct completion update_done; 516 517 struct rb_irq_work irq_work; 518 }; 519 520 struct trace_buffer { 521 unsigned flags; 522 int cpus; 523 atomic_t record_disabled; 524 cpumask_var_t cpumask; 525 526 struct lock_class_key *reader_lock_key; 527 528 struct mutex mutex; 529 530 struct ring_buffer_per_cpu **buffers; 531 532 struct hlist_node node; 533 u64 (*clock)(void); 534 535 struct rb_irq_work irq_work; 536 bool time_stamp_abs; 537 }; 538 539 struct ring_buffer_iter { 540 struct ring_buffer_per_cpu *cpu_buffer; 541 unsigned long head; 542 unsigned long next_event; 543 struct buffer_page *head_page; 544 struct buffer_page *cache_reader_page; 545 unsigned long cache_read; 546 u64 read_stamp; 547 u64 page_stamp; 548 struct ring_buffer_event *event; 549 int missed_events; 550 }; 551 552 #ifdef RB_TIME_32 553 554 /* 555 * On 32 bit machines, local64_t is very expensive. As the ring 556 * buffer doesn't need all the features of a true 64 bit atomic, 557 * on 32 bit, it uses these functions (64 still uses local64_t). 558 * 559 * For the ring buffer, 64 bit required operations for the time is 560 * the following: 561 * 562 * - Only need 59 bits (uses 60 to make it even). 563 * - Reads may fail if it interrupted a modification of the time stamp. 564 * It will succeed if it did not interrupt another write even if 565 * the read itself is interrupted by a write. 566 * It returns whether it was successful or not. 567 * 568 * - Writes always succeed and will overwrite other writes and writes 569 * that were done by events interrupting the current write. 570 * 571 * - A write followed by a read of the same time stamp will always succeed, 572 * but may not contain the same value. 573 * 574 * - A cmpxchg will fail if it interrupted another write or cmpxchg. 575 * Other than that, it acts like a normal cmpxchg. 576 * 577 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half 578 * (bottom being the least significant 30 bits of the 60 bit time stamp). 579 * 580 * The two most significant bits of each half holds a 2 bit counter (0-3). 581 * Each update will increment this counter by one. 582 * When reading the top and bottom, if the two counter bits match then the 583 * top and bottom together make a valid 60 bit number. 584 */ 585 #define RB_TIME_SHIFT 30 586 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) 587 588 static inline int rb_time_cnt(unsigned long val) 589 { 590 return (val >> RB_TIME_SHIFT) & 3; 591 } 592 593 static inline u64 rb_time_val(unsigned long top, unsigned long bottom) 594 { 595 u64 val; 596 597 val = top & RB_TIME_VAL_MASK; 598 val <<= RB_TIME_SHIFT; 599 val |= bottom & RB_TIME_VAL_MASK; 600 601 return val; 602 } 603 604 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) 605 { 606 unsigned long top, bottom; 607 unsigned long c; 608 609 /* 610 * If the read is interrupted by a write, then the cnt will 611 * be different. Loop until both top and bottom have been read 612 * without interruption. 613 */ 614 do { 615 c = local_read(&t->cnt); 616 top = local_read(&t->top); 617 bottom = local_read(&t->bottom); 618 } while (c != local_read(&t->cnt)); 619 620 *cnt = rb_time_cnt(top); 621 622 /* If top and bottom counts don't match, this interrupted a write */ 623 if (*cnt != rb_time_cnt(bottom)) 624 return false; 625 626 *ret = rb_time_val(top, bottom); 627 return true; 628 } 629 630 static bool rb_time_read(rb_time_t *t, u64 *ret) 631 { 632 unsigned long cnt; 633 634 return __rb_time_read(t, ret, &cnt); 635 } 636 637 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) 638 { 639 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); 640 } 641 642 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom) 643 { 644 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); 645 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); 646 } 647 648 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) 649 { 650 val = rb_time_val_cnt(val, cnt); 651 local_set(t, val); 652 } 653 654 static void rb_time_set(rb_time_t *t, u64 val) 655 { 656 unsigned long cnt, top, bottom; 657 658 rb_time_split(val, &top, &bottom); 659 660 /* Writes always succeed with a valid number even if it gets interrupted. */ 661 do { 662 cnt = local_inc_return(&t->cnt); 663 rb_time_val_set(&t->top, top, cnt); 664 rb_time_val_set(&t->bottom, bottom, cnt); 665 } while (cnt != local_read(&t->cnt)); 666 } 667 668 static inline bool 669 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) 670 { 671 unsigned long ret; 672 673 ret = local_cmpxchg(l, expect, set); 674 return ret == expect; 675 } 676 677 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 678 { 679 unsigned long cnt, top, bottom; 680 unsigned long cnt2, top2, bottom2; 681 u64 val; 682 683 /* The cmpxchg always fails if it interrupted an update */ 684 if (!__rb_time_read(t, &val, &cnt2)) 685 return false; 686 687 if (val != expect) 688 return false; 689 690 cnt = local_read(&t->cnt); 691 if ((cnt & 3) != cnt2) 692 return false; 693 694 cnt2 = cnt + 1; 695 696 rb_time_split(val, &top, &bottom); 697 top = rb_time_val_cnt(top, cnt); 698 bottom = rb_time_val_cnt(bottom, cnt); 699 700 rb_time_split(set, &top2, &bottom2); 701 top2 = rb_time_val_cnt(top2, cnt2); 702 bottom2 = rb_time_val_cnt(bottom2, cnt2); 703 704 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2)) 705 return false; 706 if (!rb_time_read_cmpxchg(&t->top, top, top2)) 707 return false; 708 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2)) 709 return false; 710 return true; 711 } 712 713 #else /* 64 bits */ 714 715 /* local64_t always succeeds */ 716 717 static inline bool rb_time_read(rb_time_t *t, u64 *ret) 718 { 719 *ret = local64_read(&t->time); 720 return true; 721 } 722 static void rb_time_set(rb_time_t *t, u64 val) 723 { 724 local64_set(&t->time, val); 725 } 726 727 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) 728 { 729 u64 val; 730 val = local64_cmpxchg(&t->time, expect, set); 731 return val == expect; 732 } 733 #endif 734 735 /** 736 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer 737 * @buffer: The ring_buffer to get the number of pages from 738 * @cpu: The cpu of the ring_buffer to get the number of pages from 739 * 740 * Returns the number of pages used by a per_cpu buffer of the ring buffer. 741 */ 742 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) 743 { 744 return buffer->buffers[cpu]->nr_pages; 745 } 746 747 /** 748 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer 749 * @buffer: The ring_buffer to get the number of pages from 750 * @cpu: The cpu of the ring_buffer to get the number of pages from 751 * 752 * Returns the number of pages that have content in the ring buffer. 753 */ 754 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 755 { 756 size_t read; 757 size_t cnt; 758 759 read = local_read(&buffer->buffers[cpu]->pages_read); 760 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 761 /* The reader can read an empty page, but not more than that */ 762 if (cnt < read) { 763 WARN_ON_ONCE(read > cnt + 1); 764 return 0; 765 } 766 767 return cnt - read; 768 } 769 770 /* 771 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 772 * 773 * Schedules a delayed work to wake up any task that is blocked on the 774 * ring buffer waiters queue. 775 */ 776 static void rb_wake_up_waiters(struct irq_work *work) 777 { 778 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 779 780 wake_up_all(&rbwork->waiters); 781 if (rbwork->wakeup_full) { 782 rbwork->wakeup_full = false; 783 wake_up_all(&rbwork->full_waiters); 784 } 785 } 786 787 /** 788 * ring_buffer_wait - wait for input to the ring buffer 789 * @buffer: buffer to wait on 790 * @cpu: the cpu buffer to wait on 791 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS 792 * 793 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 794 * as data is added to any of the @buffer's cpu buffers. Otherwise 795 * it will wait for data to be added to a specific cpu buffer. 796 */ 797 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) 798 { 799 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer); 800 DEFINE_WAIT(wait); 801 struct rb_irq_work *work; 802 int ret = 0; 803 804 /* 805 * Depending on what the caller is waiting for, either any 806 * data in any cpu buffer, or a specific buffer, put the 807 * caller on the appropriate wait queue. 808 */ 809 if (cpu == RING_BUFFER_ALL_CPUS) { 810 work = &buffer->irq_work; 811 /* Full only makes sense on per cpu reads */ 812 full = 0; 813 } else { 814 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 815 return -ENODEV; 816 cpu_buffer = buffer->buffers[cpu]; 817 work = &cpu_buffer->irq_work; 818 } 819 820 821 while (true) { 822 if (full) 823 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE); 824 else 825 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE); 826 827 /* 828 * The events can happen in critical sections where 829 * checking a work queue can cause deadlocks. 830 * After adding a task to the queue, this flag is set 831 * only to notify events to try to wake up the queue 832 * using irq_work. 833 * 834 * We don't clear it even if the buffer is no longer 835 * empty. The flag only causes the next event to run 836 * irq_work to do the work queue wake up. The worse 837 * that can happen if we race with !trace_empty() is that 838 * an event will cause an irq_work to try to wake up 839 * an empty queue. 840 * 841 * There's no reason to protect this flag either, as 842 * the work queue and irq_work logic will do the necessary 843 * synchronization for the wake ups. The only thing 844 * that is necessary is that the wake up happens after 845 * a task has been queued. It's OK for spurious wake ups. 846 */ 847 if (full) 848 work->full_waiters_pending = true; 849 else 850 work->waiters_pending = true; 851 852 if (signal_pending(current)) { 853 ret = -EINTR; 854 break; 855 } 856 857 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) 858 break; 859 860 if (cpu != RING_BUFFER_ALL_CPUS && 861 !ring_buffer_empty_cpu(buffer, cpu)) { 862 unsigned long flags; 863 bool pagebusy; 864 size_t nr_pages; 865 size_t dirty; 866 867 if (!full) 868 break; 869 870 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 871 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 872 nr_pages = cpu_buffer->nr_pages; 873 dirty = ring_buffer_nr_dirty_pages(buffer, cpu); 874 if (!cpu_buffer->shortest_full || 875 cpu_buffer->shortest_full < full) 876 cpu_buffer->shortest_full = full; 877 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 878 if (!pagebusy && 879 (!nr_pages || (dirty * 100) > full * nr_pages)) 880 break; 881 } 882 883 schedule(); 884 } 885 886 if (full) 887 finish_wait(&work->full_waiters, &wait); 888 else 889 finish_wait(&work->waiters, &wait); 890 891 return ret; 892 } 893 894 /** 895 * ring_buffer_poll_wait - poll on buffer input 896 * @buffer: buffer to wait on 897 * @cpu: the cpu buffer to wait on 898 * @filp: the file descriptor 899 * @poll_table: The poll descriptor 900 * 901 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 902 * as data is added to any of the @buffer's cpu buffers. Otherwise 903 * it will wait for data to be added to a specific cpu buffer. 904 * 905 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 906 * zero otherwise. 907 */ 908 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 909 struct file *filp, poll_table *poll_table) 910 { 911 struct ring_buffer_per_cpu *cpu_buffer; 912 struct rb_irq_work *work; 913 914 if (cpu == RING_BUFFER_ALL_CPUS) 915 work = &buffer->irq_work; 916 else { 917 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 918 return -EINVAL; 919 920 cpu_buffer = buffer->buffers[cpu]; 921 work = &cpu_buffer->irq_work; 922 } 923 924 poll_wait(filp, &work->waiters, poll_table); 925 work->waiters_pending = true; 926 /* 927 * There's a tight race between setting the waiters_pending and 928 * checking if the ring buffer is empty. Once the waiters_pending bit 929 * is set, the next event will wake the task up, but we can get stuck 930 * if there's only a single event in. 931 * 932 * FIXME: Ideally, we need a memory barrier on the writer side as well, 933 * but adding a memory barrier to all events will cause too much of a 934 * performance hit in the fast path. We only need a memory barrier when 935 * the buffer goes from empty to having content. But as this race is 936 * extremely small, and it's not a problem if another event comes in, we 937 * will fix it later. 938 */ 939 smp_mb(); 940 941 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 942 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 943 return EPOLLIN | EPOLLRDNORM; 944 return 0; 945 } 946 947 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 948 #define RB_WARN_ON(b, cond) \ 949 ({ \ 950 int _____ret = unlikely(cond); \ 951 if (_____ret) { \ 952 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 953 struct ring_buffer_per_cpu *__b = \ 954 (void *)b; \ 955 atomic_inc(&__b->buffer->record_disabled); \ 956 } else \ 957 atomic_inc(&b->record_disabled); \ 958 WARN_ON(1); \ 959 } \ 960 _____ret; \ 961 }) 962 963 /* Up this if you want to test the TIME_EXTENTS and normalization */ 964 #define DEBUG_SHIFT 0 965 966 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 967 { 968 /* shift to debug/test normalization and TIME_EXTENTS */ 969 return buffer->clock() << DEBUG_SHIFT; 970 } 971 972 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu) 973 { 974 u64 time; 975 976 preempt_disable_notrace(); 977 time = rb_time_stamp(buffer); 978 preempt_enable_notrace(); 979 980 return time; 981 } 982 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 983 984 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 985 int cpu, u64 *ts) 986 { 987 /* Just stupid testing the normalize function and deltas */ 988 *ts >>= DEBUG_SHIFT; 989 } 990 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 991 992 /* 993 * Making the ring buffer lockless makes things tricky. 994 * Although writes only happen on the CPU that they are on, 995 * and they only need to worry about interrupts. Reads can 996 * happen on any CPU. 997 * 998 * The reader page is always off the ring buffer, but when the 999 * reader finishes with a page, it needs to swap its page with 1000 * a new one from the buffer. The reader needs to take from 1001 * the head (writes go to the tail). But if a writer is in overwrite 1002 * mode and wraps, it must push the head page forward. 1003 * 1004 * Here lies the problem. 1005 * 1006 * The reader must be careful to replace only the head page, and 1007 * not another one. As described at the top of the file in the 1008 * ASCII art, the reader sets its old page to point to the next 1009 * page after head. It then sets the page after head to point to 1010 * the old reader page. But if the writer moves the head page 1011 * during this operation, the reader could end up with the tail. 1012 * 1013 * We use cmpxchg to help prevent this race. We also do something 1014 * special with the page before head. We set the LSB to 1. 1015 * 1016 * When the writer must push the page forward, it will clear the 1017 * bit that points to the head page, move the head, and then set 1018 * the bit that points to the new head page. 1019 * 1020 * We also don't want an interrupt coming in and moving the head 1021 * page on another writer. Thus we use the second LSB to catch 1022 * that too. Thus: 1023 * 1024 * head->list->prev->next bit 1 bit 0 1025 * ------- ------- 1026 * Normal page 0 0 1027 * Points to head page 0 1 1028 * New head page 1 0 1029 * 1030 * Note we can not trust the prev pointer of the head page, because: 1031 * 1032 * +----+ +-----+ +-----+ 1033 * | |------>| T |---X--->| N | 1034 * | |<------| | | | 1035 * +----+ +-----+ +-----+ 1036 * ^ ^ | 1037 * | +-----+ | | 1038 * +----------| R |----------+ | 1039 * | |<-----------+ 1040 * +-----+ 1041 * 1042 * Key: ---X--> HEAD flag set in pointer 1043 * T Tail page 1044 * R Reader page 1045 * N Next page 1046 * 1047 * (see __rb_reserve_next() to see where this happens) 1048 * 1049 * What the above shows is that the reader just swapped out 1050 * the reader page with a page in the buffer, but before it 1051 * could make the new header point back to the new page added 1052 * it was preempted by a writer. The writer moved forward onto 1053 * the new page added by the reader and is about to move forward 1054 * again. 1055 * 1056 * You can see, it is legitimate for the previous pointer of 1057 * the head (or any page) not to point back to itself. But only 1058 * temporarily. 1059 */ 1060 1061 #define RB_PAGE_NORMAL 0UL 1062 #define RB_PAGE_HEAD 1UL 1063 #define RB_PAGE_UPDATE 2UL 1064 1065 1066 #define RB_FLAG_MASK 3UL 1067 1068 /* PAGE_MOVED is not part of the mask */ 1069 #define RB_PAGE_MOVED 4UL 1070 1071 /* 1072 * rb_list_head - remove any bit 1073 */ 1074 static struct list_head *rb_list_head(struct list_head *list) 1075 { 1076 unsigned long val = (unsigned long)list; 1077 1078 return (struct list_head *)(val & ~RB_FLAG_MASK); 1079 } 1080 1081 /* 1082 * rb_is_head_page - test if the given page is the head page 1083 * 1084 * Because the reader may move the head_page pointer, we can 1085 * not trust what the head page is (it may be pointing to 1086 * the reader page). But if the next page is a header page, 1087 * its flags will be non zero. 1088 */ 1089 static inline int 1090 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1091 struct buffer_page *page, struct list_head *list) 1092 { 1093 unsigned long val; 1094 1095 val = (unsigned long)list->next; 1096 1097 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1098 return RB_PAGE_MOVED; 1099 1100 return val & RB_FLAG_MASK; 1101 } 1102 1103 /* 1104 * rb_is_reader_page 1105 * 1106 * The unique thing about the reader page, is that, if the 1107 * writer is ever on it, the previous pointer never points 1108 * back to the reader page. 1109 */ 1110 static bool rb_is_reader_page(struct buffer_page *page) 1111 { 1112 struct list_head *list = page->list.prev; 1113 1114 return rb_list_head(list->next) != &page->list; 1115 } 1116 1117 /* 1118 * rb_set_list_to_head - set a list_head to be pointing to head. 1119 */ 1120 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 1121 struct list_head *list) 1122 { 1123 unsigned long *ptr; 1124 1125 ptr = (unsigned long *)&list->next; 1126 *ptr |= RB_PAGE_HEAD; 1127 *ptr &= ~RB_PAGE_UPDATE; 1128 } 1129 1130 /* 1131 * rb_head_page_activate - sets up head page 1132 */ 1133 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1134 { 1135 struct buffer_page *head; 1136 1137 head = cpu_buffer->head_page; 1138 if (!head) 1139 return; 1140 1141 /* 1142 * Set the previous list pointer to have the HEAD flag. 1143 */ 1144 rb_set_list_to_head(cpu_buffer, head->list.prev); 1145 } 1146 1147 static void rb_list_head_clear(struct list_head *list) 1148 { 1149 unsigned long *ptr = (unsigned long *)&list->next; 1150 1151 *ptr &= ~RB_FLAG_MASK; 1152 } 1153 1154 /* 1155 * rb_head_page_deactivate - clears head page ptr (for free list) 1156 */ 1157 static void 1158 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1159 { 1160 struct list_head *hd; 1161 1162 /* Go through the whole list and clear any pointers found. */ 1163 rb_list_head_clear(cpu_buffer->pages); 1164 1165 list_for_each(hd, cpu_buffer->pages) 1166 rb_list_head_clear(hd); 1167 } 1168 1169 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1170 struct buffer_page *head, 1171 struct buffer_page *prev, 1172 int old_flag, int new_flag) 1173 { 1174 struct list_head *list; 1175 unsigned long val = (unsigned long)&head->list; 1176 unsigned long ret; 1177 1178 list = &prev->list; 1179 1180 val &= ~RB_FLAG_MASK; 1181 1182 ret = cmpxchg((unsigned long *)&list->next, 1183 val | old_flag, val | new_flag); 1184 1185 /* check if the reader took the page */ 1186 if ((ret & ~RB_FLAG_MASK) != val) 1187 return RB_PAGE_MOVED; 1188 1189 return ret & RB_FLAG_MASK; 1190 } 1191 1192 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1193 struct buffer_page *head, 1194 struct buffer_page *prev, 1195 int old_flag) 1196 { 1197 return rb_head_page_set(cpu_buffer, head, prev, 1198 old_flag, RB_PAGE_UPDATE); 1199 } 1200 1201 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1202 struct buffer_page *head, 1203 struct buffer_page *prev, 1204 int old_flag) 1205 { 1206 return rb_head_page_set(cpu_buffer, head, prev, 1207 old_flag, RB_PAGE_HEAD); 1208 } 1209 1210 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1211 struct buffer_page *head, 1212 struct buffer_page *prev, 1213 int old_flag) 1214 { 1215 return rb_head_page_set(cpu_buffer, head, prev, 1216 old_flag, RB_PAGE_NORMAL); 1217 } 1218 1219 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 1220 struct buffer_page **bpage) 1221 { 1222 struct list_head *p = rb_list_head((*bpage)->list.next); 1223 1224 *bpage = list_entry(p, struct buffer_page, list); 1225 } 1226 1227 static struct buffer_page * 1228 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1229 { 1230 struct buffer_page *head; 1231 struct buffer_page *page; 1232 struct list_head *list; 1233 int i; 1234 1235 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1236 return NULL; 1237 1238 /* sanity check */ 1239 list = cpu_buffer->pages; 1240 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1241 return NULL; 1242 1243 page = head = cpu_buffer->head_page; 1244 /* 1245 * It is possible that the writer moves the header behind 1246 * where we started, and we miss in one loop. 1247 * A second loop should grab the header, but we'll do 1248 * three loops just because I'm paranoid. 1249 */ 1250 for (i = 0; i < 3; i++) { 1251 do { 1252 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 1253 cpu_buffer->head_page = page; 1254 return page; 1255 } 1256 rb_inc_page(cpu_buffer, &page); 1257 } while (page != head); 1258 } 1259 1260 RB_WARN_ON(cpu_buffer, 1); 1261 1262 return NULL; 1263 } 1264 1265 static int rb_head_page_replace(struct buffer_page *old, 1266 struct buffer_page *new) 1267 { 1268 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1269 unsigned long val; 1270 unsigned long ret; 1271 1272 val = *ptr & ~RB_FLAG_MASK; 1273 val |= RB_PAGE_HEAD; 1274 1275 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 1276 1277 return ret == val; 1278 } 1279 1280 /* 1281 * rb_tail_page_update - move the tail page forward 1282 */ 1283 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1284 struct buffer_page *tail_page, 1285 struct buffer_page *next_page) 1286 { 1287 unsigned long old_entries; 1288 unsigned long old_write; 1289 1290 /* 1291 * The tail page now needs to be moved forward. 1292 * 1293 * We need to reset the tail page, but without messing 1294 * with possible erasing of data brought in by interrupts 1295 * that have moved the tail page and are currently on it. 1296 * 1297 * We add a counter to the write field to denote this. 1298 */ 1299 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1300 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1301 1302 local_inc(&cpu_buffer->pages_touched); 1303 /* 1304 * Just make sure we have seen our old_write and synchronize 1305 * with any interrupts that come in. 1306 */ 1307 barrier(); 1308 1309 /* 1310 * If the tail page is still the same as what we think 1311 * it is, then it is up to us to update the tail 1312 * pointer. 1313 */ 1314 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1315 /* Zero the write counter */ 1316 unsigned long val = old_write & ~RB_WRITE_MASK; 1317 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1318 1319 /* 1320 * This will only succeed if an interrupt did 1321 * not come in and change it. In which case, we 1322 * do not want to modify it. 1323 * 1324 * We add (void) to let the compiler know that we do not care 1325 * about the return value of these functions. We use the 1326 * cmpxchg to only update if an interrupt did not already 1327 * do it for us. If the cmpxchg fails, we don't care. 1328 */ 1329 (void)local_cmpxchg(&next_page->write, old_write, val); 1330 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1331 1332 /* 1333 * No need to worry about races with clearing out the commit. 1334 * it only can increment when a commit takes place. But that 1335 * only happens in the outer most nested commit. 1336 */ 1337 local_set(&next_page->page->commit, 0); 1338 1339 /* Again, either we update tail_page or an interrupt does */ 1340 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page); 1341 } 1342 } 1343 1344 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1345 struct buffer_page *bpage) 1346 { 1347 unsigned long val = (unsigned long)bpage; 1348 1349 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 1350 return 1; 1351 1352 return 0; 1353 } 1354 1355 /** 1356 * rb_check_list - make sure a pointer to a list has the last bits zero 1357 */ 1358 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 1359 struct list_head *list) 1360 { 1361 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 1362 return 1; 1363 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 1364 return 1; 1365 return 0; 1366 } 1367 1368 /** 1369 * rb_check_pages - integrity check of buffer pages 1370 * @cpu_buffer: CPU buffer with pages to test 1371 * 1372 * As a safety measure we check to make sure the data pages have not 1373 * been corrupted. 1374 */ 1375 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1376 { 1377 struct list_head *head = cpu_buffer->pages; 1378 struct buffer_page *bpage, *tmp; 1379 1380 /* Reset the head page if it exists */ 1381 if (cpu_buffer->head_page) 1382 rb_set_head_page(cpu_buffer); 1383 1384 rb_head_page_deactivate(cpu_buffer); 1385 1386 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 1387 return -1; 1388 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 1389 return -1; 1390 1391 if (rb_check_list(cpu_buffer, head)) 1392 return -1; 1393 1394 list_for_each_entry_safe(bpage, tmp, head, list) { 1395 if (RB_WARN_ON(cpu_buffer, 1396 bpage->list.next->prev != &bpage->list)) 1397 return -1; 1398 if (RB_WARN_ON(cpu_buffer, 1399 bpage->list.prev->next != &bpage->list)) 1400 return -1; 1401 if (rb_check_list(cpu_buffer, &bpage->list)) 1402 return -1; 1403 } 1404 1405 rb_head_page_activate(cpu_buffer); 1406 1407 return 0; 1408 } 1409 1410 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu) 1411 { 1412 struct buffer_page *bpage, *tmp; 1413 bool user_thread = current->mm != NULL; 1414 gfp_t mflags; 1415 long i; 1416 1417 /* 1418 * Check if the available memory is there first. 1419 * Note, si_mem_available() only gives us a rough estimate of available 1420 * memory. It may not be accurate. But we don't care, we just want 1421 * to prevent doing any allocation when it is obvious that it is 1422 * not going to succeed. 1423 */ 1424 i = si_mem_available(); 1425 if (i < nr_pages) 1426 return -ENOMEM; 1427 1428 /* 1429 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 1430 * gracefully without invoking oom-killer and the system is not 1431 * destabilized. 1432 */ 1433 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 1434 1435 /* 1436 * If a user thread allocates too much, and si_mem_available() 1437 * reports there's enough memory, even though there is not. 1438 * Make sure the OOM killer kills this thread. This can happen 1439 * even with RETRY_MAYFAIL because another task may be doing 1440 * an allocation after this task has taken all memory. 1441 * This is the task the OOM killer needs to take out during this 1442 * loop, even if it was triggered by an allocation somewhere else. 1443 */ 1444 if (user_thread) 1445 set_current_oom_origin(); 1446 for (i = 0; i < nr_pages; i++) { 1447 struct page *page; 1448 1449 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1450 mflags, cpu_to_node(cpu)); 1451 if (!bpage) 1452 goto free_pages; 1453 1454 list_add(&bpage->list, pages); 1455 1456 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0); 1457 if (!page) 1458 goto free_pages; 1459 bpage->page = page_address(page); 1460 rb_init_page(bpage->page); 1461 1462 if (user_thread && fatal_signal_pending(current)) 1463 goto free_pages; 1464 } 1465 if (user_thread) 1466 clear_current_oom_origin(); 1467 1468 return 0; 1469 1470 free_pages: 1471 list_for_each_entry_safe(bpage, tmp, pages, list) { 1472 list_del_init(&bpage->list); 1473 free_buffer_page(bpage); 1474 } 1475 if (user_thread) 1476 clear_current_oom_origin(); 1477 1478 return -ENOMEM; 1479 } 1480 1481 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1482 unsigned long nr_pages) 1483 { 1484 LIST_HEAD(pages); 1485 1486 WARN_ON(!nr_pages); 1487 1488 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1489 return -ENOMEM; 1490 1491 /* 1492 * The ring buffer page list is a circular list that does not 1493 * start and end with a list head. All page list items point to 1494 * other pages. 1495 */ 1496 cpu_buffer->pages = pages.next; 1497 list_del(&pages); 1498 1499 cpu_buffer->nr_pages = nr_pages; 1500 1501 rb_check_pages(cpu_buffer); 1502 1503 return 0; 1504 } 1505 1506 static struct ring_buffer_per_cpu * 1507 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 1508 { 1509 struct ring_buffer_per_cpu *cpu_buffer; 1510 struct buffer_page *bpage; 1511 struct page *page; 1512 int ret; 1513 1514 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1515 GFP_KERNEL, cpu_to_node(cpu)); 1516 if (!cpu_buffer) 1517 return NULL; 1518 1519 cpu_buffer->cpu = cpu; 1520 cpu_buffer->buffer = buffer; 1521 raw_spin_lock_init(&cpu_buffer->reader_lock); 1522 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1523 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1524 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1525 init_completion(&cpu_buffer->update_done); 1526 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 1527 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 1528 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 1529 1530 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1531 GFP_KERNEL, cpu_to_node(cpu)); 1532 if (!bpage) 1533 goto fail_free_buffer; 1534 1535 rb_check_bpage(cpu_buffer, bpage); 1536 1537 cpu_buffer->reader_page = bpage; 1538 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1539 if (!page) 1540 goto fail_free_reader; 1541 bpage->page = page_address(page); 1542 rb_init_page(bpage->page); 1543 1544 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1545 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1546 1547 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1548 if (ret < 0) 1549 goto fail_free_reader; 1550 1551 cpu_buffer->head_page 1552 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1553 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1554 1555 rb_head_page_activate(cpu_buffer); 1556 1557 return cpu_buffer; 1558 1559 fail_free_reader: 1560 free_buffer_page(cpu_buffer->reader_page); 1561 1562 fail_free_buffer: 1563 kfree(cpu_buffer); 1564 return NULL; 1565 } 1566 1567 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1568 { 1569 struct list_head *head = cpu_buffer->pages; 1570 struct buffer_page *bpage, *tmp; 1571 1572 free_buffer_page(cpu_buffer->reader_page); 1573 1574 rb_head_page_deactivate(cpu_buffer); 1575 1576 if (head) { 1577 list_for_each_entry_safe(bpage, tmp, head, list) { 1578 list_del_init(&bpage->list); 1579 free_buffer_page(bpage); 1580 } 1581 bpage = list_entry(head, struct buffer_page, list); 1582 free_buffer_page(bpage); 1583 } 1584 1585 kfree(cpu_buffer); 1586 } 1587 1588 /** 1589 * __ring_buffer_alloc - allocate a new ring_buffer 1590 * @size: the size in bytes per cpu that is needed. 1591 * @flags: attributes to set for the ring buffer. 1592 * @key: ring buffer reader_lock_key. 1593 * 1594 * Currently the only flag that is available is the RB_FL_OVERWRITE 1595 * flag. This flag means that the buffer will overwrite old data 1596 * when the buffer wraps. If this flag is not set, the buffer will 1597 * drop data when the tail hits the head. 1598 */ 1599 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1600 struct lock_class_key *key) 1601 { 1602 struct trace_buffer *buffer; 1603 long nr_pages; 1604 int bsize; 1605 int cpu; 1606 int ret; 1607 1608 /* keep it in its own cache line */ 1609 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1610 GFP_KERNEL); 1611 if (!buffer) 1612 return NULL; 1613 1614 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1615 goto fail_free_buffer; 1616 1617 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1618 buffer->flags = flags; 1619 buffer->clock = trace_clock_local; 1620 buffer->reader_lock_key = key; 1621 1622 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 1623 init_waitqueue_head(&buffer->irq_work.waiters); 1624 1625 /* need at least two pages */ 1626 if (nr_pages < 2) 1627 nr_pages = 2; 1628 1629 buffer->cpus = nr_cpu_ids; 1630 1631 bsize = sizeof(void *) * nr_cpu_ids; 1632 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1633 GFP_KERNEL); 1634 if (!buffer->buffers) 1635 goto fail_free_cpumask; 1636 1637 cpu = raw_smp_processor_id(); 1638 cpumask_set_cpu(cpu, buffer->cpumask); 1639 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1640 if (!buffer->buffers[cpu]) 1641 goto fail_free_buffers; 1642 1643 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1644 if (ret < 0) 1645 goto fail_free_buffers; 1646 1647 mutex_init(&buffer->mutex); 1648 1649 return buffer; 1650 1651 fail_free_buffers: 1652 for_each_buffer_cpu(buffer, cpu) { 1653 if (buffer->buffers[cpu]) 1654 rb_free_cpu_buffer(buffer->buffers[cpu]); 1655 } 1656 kfree(buffer->buffers); 1657 1658 fail_free_cpumask: 1659 free_cpumask_var(buffer->cpumask); 1660 1661 fail_free_buffer: 1662 kfree(buffer); 1663 return NULL; 1664 } 1665 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1666 1667 /** 1668 * ring_buffer_free - free a ring buffer. 1669 * @buffer: the buffer to free. 1670 */ 1671 void 1672 ring_buffer_free(struct trace_buffer *buffer) 1673 { 1674 int cpu; 1675 1676 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 1677 1678 for_each_buffer_cpu(buffer, cpu) 1679 rb_free_cpu_buffer(buffer->buffers[cpu]); 1680 1681 kfree(buffer->buffers); 1682 free_cpumask_var(buffer->cpumask); 1683 1684 kfree(buffer); 1685 } 1686 EXPORT_SYMBOL_GPL(ring_buffer_free); 1687 1688 void ring_buffer_set_clock(struct trace_buffer *buffer, 1689 u64 (*clock)(void)) 1690 { 1691 buffer->clock = clock; 1692 } 1693 1694 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 1695 { 1696 buffer->time_stamp_abs = abs; 1697 } 1698 1699 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 1700 { 1701 return buffer->time_stamp_abs; 1702 } 1703 1704 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1705 1706 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1707 { 1708 return local_read(&bpage->entries) & RB_WRITE_MASK; 1709 } 1710 1711 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1712 { 1713 return local_read(&bpage->write) & RB_WRITE_MASK; 1714 } 1715 1716 static int 1717 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 1718 { 1719 struct list_head *tail_page, *to_remove, *next_page; 1720 struct buffer_page *to_remove_page, *tmp_iter_page; 1721 struct buffer_page *last_page, *first_page; 1722 unsigned long nr_removed; 1723 unsigned long head_bit; 1724 int page_entries; 1725 1726 head_bit = 0; 1727 1728 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1729 atomic_inc(&cpu_buffer->record_disabled); 1730 /* 1731 * We don't race with the readers since we have acquired the reader 1732 * lock. We also don't race with writers after disabling recording. 1733 * This makes it easy to figure out the first and the last page to be 1734 * removed from the list. We unlink all the pages in between including 1735 * the first and last pages. This is done in a busy loop so that we 1736 * lose the least number of traces. 1737 * The pages are freed after we restart recording and unlock readers. 1738 */ 1739 tail_page = &cpu_buffer->tail_page->list; 1740 1741 /* 1742 * tail page might be on reader page, we remove the next page 1743 * from the ring buffer 1744 */ 1745 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1746 tail_page = rb_list_head(tail_page->next); 1747 to_remove = tail_page; 1748 1749 /* start of pages to remove */ 1750 first_page = list_entry(rb_list_head(to_remove->next), 1751 struct buffer_page, list); 1752 1753 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1754 to_remove = rb_list_head(to_remove)->next; 1755 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1756 } 1757 1758 next_page = rb_list_head(to_remove)->next; 1759 1760 /* 1761 * Now we remove all pages between tail_page and next_page. 1762 * Make sure that we have head_bit value preserved for the 1763 * next page 1764 */ 1765 tail_page->next = (struct list_head *)((unsigned long)next_page | 1766 head_bit); 1767 next_page = rb_list_head(next_page); 1768 next_page->prev = tail_page; 1769 1770 /* make sure pages points to a valid page in the ring buffer */ 1771 cpu_buffer->pages = next_page; 1772 1773 /* update head page */ 1774 if (head_bit) 1775 cpu_buffer->head_page = list_entry(next_page, 1776 struct buffer_page, list); 1777 1778 /* 1779 * change read pointer to make sure any read iterators reset 1780 * themselves 1781 */ 1782 cpu_buffer->read = 0; 1783 1784 /* pages are removed, resume tracing and then free the pages */ 1785 atomic_dec(&cpu_buffer->record_disabled); 1786 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1787 1788 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1789 1790 /* last buffer page to remove */ 1791 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1792 list); 1793 tmp_iter_page = first_page; 1794 1795 do { 1796 cond_resched(); 1797 1798 to_remove_page = tmp_iter_page; 1799 rb_inc_page(cpu_buffer, &tmp_iter_page); 1800 1801 /* update the counters */ 1802 page_entries = rb_page_entries(to_remove_page); 1803 if (page_entries) { 1804 /* 1805 * If something was added to this page, it was full 1806 * since it is not the tail page. So we deduct the 1807 * bytes consumed in ring buffer from here. 1808 * Increment overrun to account for the lost events. 1809 */ 1810 local_add(page_entries, &cpu_buffer->overrun); 1811 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1812 } 1813 1814 /* 1815 * We have already removed references to this list item, just 1816 * free up the buffer_page and its page 1817 */ 1818 free_buffer_page(to_remove_page); 1819 nr_removed--; 1820 1821 } while (to_remove_page != last_page); 1822 1823 RB_WARN_ON(cpu_buffer, nr_removed); 1824 1825 return nr_removed == 0; 1826 } 1827 1828 static int 1829 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1830 { 1831 struct list_head *pages = &cpu_buffer->new_pages; 1832 int retries, success; 1833 1834 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1835 /* 1836 * We are holding the reader lock, so the reader page won't be swapped 1837 * in the ring buffer. Now we are racing with the writer trying to 1838 * move head page and the tail page. 1839 * We are going to adapt the reader page update process where: 1840 * 1. We first splice the start and end of list of new pages between 1841 * the head page and its previous page. 1842 * 2. We cmpxchg the prev_page->next to point from head page to the 1843 * start of new pages list. 1844 * 3. Finally, we update the head->prev to the end of new list. 1845 * 1846 * We will try this process 10 times, to make sure that we don't keep 1847 * spinning. 1848 */ 1849 retries = 10; 1850 success = 0; 1851 while (retries--) { 1852 struct list_head *head_page, *prev_page, *r; 1853 struct list_head *last_page, *first_page; 1854 struct list_head *head_page_with_bit; 1855 1856 head_page = &rb_set_head_page(cpu_buffer)->list; 1857 if (!head_page) 1858 break; 1859 prev_page = head_page->prev; 1860 1861 first_page = pages->next; 1862 last_page = pages->prev; 1863 1864 head_page_with_bit = (struct list_head *) 1865 ((unsigned long)head_page | RB_PAGE_HEAD); 1866 1867 last_page->next = head_page_with_bit; 1868 first_page->prev = prev_page; 1869 1870 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1871 1872 if (r == head_page_with_bit) { 1873 /* 1874 * yay, we replaced the page pointer to our new list, 1875 * now, we just have to update to head page's prev 1876 * pointer to point to end of list 1877 */ 1878 head_page->prev = last_page; 1879 success = 1; 1880 break; 1881 } 1882 } 1883 1884 if (success) 1885 INIT_LIST_HEAD(pages); 1886 /* 1887 * If we weren't successful in adding in new pages, warn and stop 1888 * tracing 1889 */ 1890 RB_WARN_ON(cpu_buffer, !success); 1891 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1892 1893 /* free pages if they weren't inserted */ 1894 if (!success) { 1895 struct buffer_page *bpage, *tmp; 1896 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1897 list) { 1898 list_del_init(&bpage->list); 1899 free_buffer_page(bpage); 1900 } 1901 } 1902 return success; 1903 } 1904 1905 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1906 { 1907 int success; 1908 1909 if (cpu_buffer->nr_pages_to_update > 0) 1910 success = rb_insert_pages(cpu_buffer); 1911 else 1912 success = rb_remove_pages(cpu_buffer, 1913 -cpu_buffer->nr_pages_to_update); 1914 1915 if (success) 1916 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1917 } 1918 1919 static void update_pages_handler(struct work_struct *work) 1920 { 1921 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1922 struct ring_buffer_per_cpu, update_pages_work); 1923 rb_update_pages(cpu_buffer); 1924 complete(&cpu_buffer->update_done); 1925 } 1926 1927 /** 1928 * ring_buffer_resize - resize the ring buffer 1929 * @buffer: the buffer to resize. 1930 * @size: the new size. 1931 * @cpu_id: the cpu buffer to resize 1932 * 1933 * Minimum size is 2 * BUF_PAGE_SIZE. 1934 * 1935 * Returns 0 on success and < 0 on failure. 1936 */ 1937 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 1938 int cpu_id) 1939 { 1940 struct ring_buffer_per_cpu *cpu_buffer; 1941 unsigned long nr_pages; 1942 int cpu, err = 0; 1943 1944 /* 1945 * Always succeed at resizing a non-existent buffer: 1946 */ 1947 if (!buffer) 1948 return size; 1949 1950 /* Make sure the requested buffer exists */ 1951 if (cpu_id != RING_BUFFER_ALL_CPUS && 1952 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 1953 return size; 1954 1955 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1956 1957 /* we need a minimum of two pages */ 1958 if (nr_pages < 2) 1959 nr_pages = 2; 1960 1961 size = nr_pages * BUF_PAGE_SIZE; 1962 1963 /* prevent another thread from changing buffer sizes */ 1964 mutex_lock(&buffer->mutex); 1965 1966 1967 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1968 /* 1969 * Don't succeed if resizing is disabled, as a reader might be 1970 * manipulating the ring buffer and is expecting a sane state while 1971 * this is true. 1972 */ 1973 for_each_buffer_cpu(buffer, cpu) { 1974 cpu_buffer = buffer->buffers[cpu]; 1975 if (atomic_read(&cpu_buffer->resize_disabled)) { 1976 err = -EBUSY; 1977 goto out_err_unlock; 1978 } 1979 } 1980 1981 /* calculate the pages to update */ 1982 for_each_buffer_cpu(buffer, cpu) { 1983 cpu_buffer = buffer->buffers[cpu]; 1984 1985 cpu_buffer->nr_pages_to_update = nr_pages - 1986 cpu_buffer->nr_pages; 1987 /* 1988 * nothing more to do for removing pages or no update 1989 */ 1990 if (cpu_buffer->nr_pages_to_update <= 0) 1991 continue; 1992 /* 1993 * to add pages, make sure all new pages can be 1994 * allocated without receiving ENOMEM 1995 */ 1996 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1997 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1998 &cpu_buffer->new_pages, cpu)) { 1999 /* not enough memory for new pages */ 2000 err = -ENOMEM; 2001 goto out_err; 2002 } 2003 } 2004 2005 get_online_cpus(); 2006 /* 2007 * Fire off all the required work handlers 2008 * We can't schedule on offline CPUs, but it's not necessary 2009 * since we can change their buffer sizes without any race. 2010 */ 2011 for_each_buffer_cpu(buffer, cpu) { 2012 cpu_buffer = buffer->buffers[cpu]; 2013 if (!cpu_buffer->nr_pages_to_update) 2014 continue; 2015 2016 /* Can't run something on an offline CPU. */ 2017 if (!cpu_online(cpu)) { 2018 rb_update_pages(cpu_buffer); 2019 cpu_buffer->nr_pages_to_update = 0; 2020 } else { 2021 schedule_work_on(cpu, 2022 &cpu_buffer->update_pages_work); 2023 } 2024 } 2025 2026 /* wait for all the updates to complete */ 2027 for_each_buffer_cpu(buffer, cpu) { 2028 cpu_buffer = buffer->buffers[cpu]; 2029 if (!cpu_buffer->nr_pages_to_update) 2030 continue; 2031 2032 if (cpu_online(cpu)) 2033 wait_for_completion(&cpu_buffer->update_done); 2034 cpu_buffer->nr_pages_to_update = 0; 2035 } 2036 2037 put_online_cpus(); 2038 } else { 2039 /* Make sure this CPU has been initialized */ 2040 if (!cpumask_test_cpu(cpu_id, buffer->cpumask)) 2041 goto out; 2042 2043 cpu_buffer = buffer->buffers[cpu_id]; 2044 2045 if (nr_pages == cpu_buffer->nr_pages) 2046 goto out; 2047 2048 /* 2049 * Don't succeed if resizing is disabled, as a reader might be 2050 * manipulating the ring buffer and is expecting a sane state while 2051 * this is true. 2052 */ 2053 if (atomic_read(&cpu_buffer->resize_disabled)) { 2054 err = -EBUSY; 2055 goto out_err_unlock; 2056 } 2057 2058 cpu_buffer->nr_pages_to_update = nr_pages - 2059 cpu_buffer->nr_pages; 2060 2061 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2062 if (cpu_buffer->nr_pages_to_update > 0 && 2063 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 2064 &cpu_buffer->new_pages, cpu_id)) { 2065 err = -ENOMEM; 2066 goto out_err; 2067 } 2068 2069 get_online_cpus(); 2070 2071 /* Can't run something on an offline CPU. */ 2072 if (!cpu_online(cpu_id)) 2073 rb_update_pages(cpu_buffer); 2074 else { 2075 schedule_work_on(cpu_id, 2076 &cpu_buffer->update_pages_work); 2077 wait_for_completion(&cpu_buffer->update_done); 2078 } 2079 2080 cpu_buffer->nr_pages_to_update = 0; 2081 put_online_cpus(); 2082 } 2083 2084 out: 2085 /* 2086 * The ring buffer resize can happen with the ring buffer 2087 * enabled, so that the update disturbs the tracing as little 2088 * as possible. But if the buffer is disabled, we do not need 2089 * to worry about that, and we can take the time to verify 2090 * that the buffer is not corrupt. 2091 */ 2092 if (atomic_read(&buffer->record_disabled)) { 2093 atomic_inc(&buffer->record_disabled); 2094 /* 2095 * Even though the buffer was disabled, we must make sure 2096 * that it is truly disabled before calling rb_check_pages. 2097 * There could have been a race between checking 2098 * record_disable and incrementing it. 2099 */ 2100 synchronize_rcu(); 2101 for_each_buffer_cpu(buffer, cpu) { 2102 cpu_buffer = buffer->buffers[cpu]; 2103 rb_check_pages(cpu_buffer); 2104 } 2105 atomic_dec(&buffer->record_disabled); 2106 } 2107 2108 mutex_unlock(&buffer->mutex); 2109 return size; 2110 2111 out_err: 2112 for_each_buffer_cpu(buffer, cpu) { 2113 struct buffer_page *bpage, *tmp; 2114 2115 cpu_buffer = buffer->buffers[cpu]; 2116 cpu_buffer->nr_pages_to_update = 0; 2117 2118 if (list_empty(&cpu_buffer->new_pages)) 2119 continue; 2120 2121 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2122 list) { 2123 list_del_init(&bpage->list); 2124 free_buffer_page(bpage); 2125 } 2126 } 2127 out_err_unlock: 2128 mutex_unlock(&buffer->mutex); 2129 return err; 2130 } 2131 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2132 2133 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2134 { 2135 mutex_lock(&buffer->mutex); 2136 if (val) 2137 buffer->flags |= RB_FL_OVERWRITE; 2138 else 2139 buffer->flags &= ~RB_FL_OVERWRITE; 2140 mutex_unlock(&buffer->mutex); 2141 } 2142 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2143 2144 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2145 { 2146 return bpage->page->data + index; 2147 } 2148 2149 static __always_inline struct ring_buffer_event * 2150 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2151 { 2152 return __rb_page_index(cpu_buffer->reader_page, 2153 cpu_buffer->reader_page->read); 2154 } 2155 2156 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage) 2157 { 2158 return local_read(&bpage->page->commit); 2159 } 2160 2161 static struct ring_buffer_event * 2162 rb_iter_head_event(struct ring_buffer_iter *iter) 2163 { 2164 struct ring_buffer_event *event; 2165 struct buffer_page *iter_head_page = iter->head_page; 2166 unsigned long commit; 2167 unsigned length; 2168 2169 if (iter->head != iter->next_event) 2170 return iter->event; 2171 2172 /* 2173 * When the writer goes across pages, it issues a cmpxchg which 2174 * is a mb(), which will synchronize with the rmb here. 2175 * (see rb_tail_page_update() and __rb_reserve_next()) 2176 */ 2177 commit = rb_page_commit(iter_head_page); 2178 smp_rmb(); 2179 event = __rb_page_index(iter_head_page, iter->head); 2180 length = rb_event_length(event); 2181 2182 /* 2183 * READ_ONCE() doesn't work on functions and we don't want the 2184 * compiler doing any crazy optimizations with length. 2185 */ 2186 barrier(); 2187 2188 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE) 2189 /* Writer corrupted the read? */ 2190 goto reset; 2191 2192 memcpy(iter->event, event, length); 2193 /* 2194 * If the page stamp is still the same after this rmb() then the 2195 * event was safely copied without the writer entering the page. 2196 */ 2197 smp_rmb(); 2198 2199 /* Make sure the page didn't change since we read this */ 2200 if (iter->page_stamp != iter_head_page->page->time_stamp || 2201 commit > rb_page_commit(iter_head_page)) 2202 goto reset; 2203 2204 iter->next_event = iter->head + length; 2205 return iter->event; 2206 reset: 2207 /* Reset to the beginning */ 2208 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2209 iter->head = 0; 2210 iter->next_event = 0; 2211 iter->missed_events = 1; 2212 return NULL; 2213 } 2214 2215 /* Size is determined by what has been committed */ 2216 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 2217 { 2218 return rb_page_commit(bpage); 2219 } 2220 2221 static __always_inline unsigned 2222 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 2223 { 2224 return rb_page_commit(cpu_buffer->commit_page); 2225 } 2226 2227 static __always_inline unsigned 2228 rb_event_index(struct ring_buffer_event *event) 2229 { 2230 unsigned long addr = (unsigned long)event; 2231 2232 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 2233 } 2234 2235 static void rb_inc_iter(struct ring_buffer_iter *iter) 2236 { 2237 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2238 2239 /* 2240 * The iterator could be on the reader page (it starts there). 2241 * But the head could have moved, since the reader was 2242 * found. Check for this case and assign the iterator 2243 * to the head page instead of next. 2244 */ 2245 if (iter->head_page == cpu_buffer->reader_page) 2246 iter->head_page = rb_set_head_page(cpu_buffer); 2247 else 2248 rb_inc_page(cpu_buffer, &iter->head_page); 2249 2250 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 2251 iter->head = 0; 2252 iter->next_event = 0; 2253 } 2254 2255 /* 2256 * rb_handle_head_page - writer hit the head page 2257 * 2258 * Returns: +1 to retry page 2259 * 0 to continue 2260 * -1 on error 2261 */ 2262 static int 2263 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 2264 struct buffer_page *tail_page, 2265 struct buffer_page *next_page) 2266 { 2267 struct buffer_page *new_head; 2268 int entries; 2269 int type; 2270 int ret; 2271 2272 entries = rb_page_entries(next_page); 2273 2274 /* 2275 * The hard part is here. We need to move the head 2276 * forward, and protect against both readers on 2277 * other CPUs and writers coming in via interrupts. 2278 */ 2279 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 2280 RB_PAGE_HEAD); 2281 2282 /* 2283 * type can be one of four: 2284 * NORMAL - an interrupt already moved it for us 2285 * HEAD - we are the first to get here. 2286 * UPDATE - we are the interrupt interrupting 2287 * a current move. 2288 * MOVED - a reader on another CPU moved the next 2289 * pointer to its reader page. Give up 2290 * and try again. 2291 */ 2292 2293 switch (type) { 2294 case RB_PAGE_HEAD: 2295 /* 2296 * We changed the head to UPDATE, thus 2297 * it is our responsibility to update 2298 * the counters. 2299 */ 2300 local_add(entries, &cpu_buffer->overrun); 2301 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 2302 2303 /* 2304 * The entries will be zeroed out when we move the 2305 * tail page. 2306 */ 2307 2308 /* still more to do */ 2309 break; 2310 2311 case RB_PAGE_UPDATE: 2312 /* 2313 * This is an interrupt that interrupt the 2314 * previous update. Still more to do. 2315 */ 2316 break; 2317 case RB_PAGE_NORMAL: 2318 /* 2319 * An interrupt came in before the update 2320 * and processed this for us. 2321 * Nothing left to do. 2322 */ 2323 return 1; 2324 case RB_PAGE_MOVED: 2325 /* 2326 * The reader is on another CPU and just did 2327 * a swap with our next_page. 2328 * Try again. 2329 */ 2330 return 1; 2331 default: 2332 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 2333 return -1; 2334 } 2335 2336 /* 2337 * Now that we are here, the old head pointer is 2338 * set to UPDATE. This will keep the reader from 2339 * swapping the head page with the reader page. 2340 * The reader (on another CPU) will spin till 2341 * we are finished. 2342 * 2343 * We just need to protect against interrupts 2344 * doing the job. We will set the next pointer 2345 * to HEAD. After that, we set the old pointer 2346 * to NORMAL, but only if it was HEAD before. 2347 * otherwise we are an interrupt, and only 2348 * want the outer most commit to reset it. 2349 */ 2350 new_head = next_page; 2351 rb_inc_page(cpu_buffer, &new_head); 2352 2353 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 2354 RB_PAGE_NORMAL); 2355 2356 /* 2357 * Valid returns are: 2358 * HEAD - an interrupt came in and already set it. 2359 * NORMAL - One of two things: 2360 * 1) We really set it. 2361 * 2) A bunch of interrupts came in and moved 2362 * the page forward again. 2363 */ 2364 switch (ret) { 2365 case RB_PAGE_HEAD: 2366 case RB_PAGE_NORMAL: 2367 /* OK */ 2368 break; 2369 default: 2370 RB_WARN_ON(cpu_buffer, 1); 2371 return -1; 2372 } 2373 2374 /* 2375 * It is possible that an interrupt came in, 2376 * set the head up, then more interrupts came in 2377 * and moved it again. When we get back here, 2378 * the page would have been set to NORMAL but we 2379 * just set it back to HEAD. 2380 * 2381 * How do you detect this? Well, if that happened 2382 * the tail page would have moved. 2383 */ 2384 if (ret == RB_PAGE_NORMAL) { 2385 struct buffer_page *buffer_tail_page; 2386 2387 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 2388 /* 2389 * If the tail had moved passed next, then we need 2390 * to reset the pointer. 2391 */ 2392 if (buffer_tail_page != tail_page && 2393 buffer_tail_page != next_page) 2394 rb_head_page_set_normal(cpu_buffer, new_head, 2395 next_page, 2396 RB_PAGE_HEAD); 2397 } 2398 2399 /* 2400 * If this was the outer most commit (the one that 2401 * changed the original pointer from HEAD to UPDATE), 2402 * then it is up to us to reset it to NORMAL. 2403 */ 2404 if (type == RB_PAGE_HEAD) { 2405 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2406 tail_page, 2407 RB_PAGE_UPDATE); 2408 if (RB_WARN_ON(cpu_buffer, 2409 ret != RB_PAGE_UPDATE)) 2410 return -1; 2411 } 2412 2413 return 0; 2414 } 2415 2416 static inline void 2417 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2418 unsigned long tail, struct rb_event_info *info) 2419 { 2420 struct buffer_page *tail_page = info->tail_page; 2421 struct ring_buffer_event *event; 2422 unsigned long length = info->length; 2423 2424 /* 2425 * Only the event that crossed the page boundary 2426 * must fill the old tail_page with padding. 2427 */ 2428 if (tail >= BUF_PAGE_SIZE) { 2429 /* 2430 * If the page was filled, then we still need 2431 * to update the real_end. Reset it to zero 2432 * and the reader will ignore it. 2433 */ 2434 if (tail == BUF_PAGE_SIZE) 2435 tail_page->real_end = 0; 2436 2437 local_sub(length, &tail_page->write); 2438 return; 2439 } 2440 2441 event = __rb_page_index(tail_page, tail); 2442 2443 /* account for padding bytes */ 2444 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2445 2446 /* 2447 * Save the original length to the meta data. 2448 * This will be used by the reader to add lost event 2449 * counter. 2450 */ 2451 tail_page->real_end = tail; 2452 2453 /* 2454 * If this event is bigger than the minimum size, then 2455 * we need to be careful that we don't subtract the 2456 * write counter enough to allow another writer to slip 2457 * in on this page. 2458 * We put in a discarded commit instead, to make sure 2459 * that this space is not used again. 2460 * 2461 * If we are less than the minimum size, we don't need to 2462 * worry about it. 2463 */ 2464 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2465 /* No room for any events */ 2466 2467 /* Mark the rest of the page with padding */ 2468 rb_event_set_padding(event); 2469 2470 /* Set the write back to the previous setting */ 2471 local_sub(length, &tail_page->write); 2472 return; 2473 } 2474 2475 /* Put in a discarded event */ 2476 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2477 event->type_len = RINGBUF_TYPE_PADDING; 2478 /* time delta must be non zero */ 2479 event->time_delta = 1; 2480 2481 /* Set write to end of buffer */ 2482 length = (tail + length) - BUF_PAGE_SIZE; 2483 local_sub(length, &tail_page->write); 2484 } 2485 2486 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 2487 2488 /* 2489 * This is the slow path, force gcc not to inline it. 2490 */ 2491 static noinline struct ring_buffer_event * 2492 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2493 unsigned long tail, struct rb_event_info *info) 2494 { 2495 struct buffer_page *tail_page = info->tail_page; 2496 struct buffer_page *commit_page = cpu_buffer->commit_page; 2497 struct trace_buffer *buffer = cpu_buffer->buffer; 2498 struct buffer_page *next_page; 2499 int ret; 2500 2501 next_page = tail_page; 2502 2503 rb_inc_page(cpu_buffer, &next_page); 2504 2505 /* 2506 * If for some reason, we had an interrupt storm that made 2507 * it all the way around the buffer, bail, and warn 2508 * about it. 2509 */ 2510 if (unlikely(next_page == commit_page)) { 2511 local_inc(&cpu_buffer->commit_overrun); 2512 goto out_reset; 2513 } 2514 2515 /* 2516 * This is where the fun begins! 2517 * 2518 * We are fighting against races between a reader that 2519 * could be on another CPU trying to swap its reader 2520 * page with the buffer head. 2521 * 2522 * We are also fighting against interrupts coming in and 2523 * moving the head or tail on us as well. 2524 * 2525 * If the next page is the head page then we have filled 2526 * the buffer, unless the commit page is still on the 2527 * reader page. 2528 */ 2529 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2530 2531 /* 2532 * If the commit is not on the reader page, then 2533 * move the header page. 2534 */ 2535 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2536 /* 2537 * If we are not in overwrite mode, 2538 * this is easy, just stop here. 2539 */ 2540 if (!(buffer->flags & RB_FL_OVERWRITE)) { 2541 local_inc(&cpu_buffer->dropped_events); 2542 goto out_reset; 2543 } 2544 2545 ret = rb_handle_head_page(cpu_buffer, 2546 tail_page, 2547 next_page); 2548 if (ret < 0) 2549 goto out_reset; 2550 if (ret) 2551 goto out_again; 2552 } else { 2553 /* 2554 * We need to be careful here too. The 2555 * commit page could still be on the reader 2556 * page. We could have a small buffer, and 2557 * have filled up the buffer with events 2558 * from interrupts and such, and wrapped. 2559 * 2560 * Note, if the tail page is also the on the 2561 * reader_page, we let it move out. 2562 */ 2563 if (unlikely((cpu_buffer->commit_page != 2564 cpu_buffer->tail_page) && 2565 (cpu_buffer->commit_page == 2566 cpu_buffer->reader_page))) { 2567 local_inc(&cpu_buffer->commit_overrun); 2568 goto out_reset; 2569 } 2570 } 2571 } 2572 2573 rb_tail_page_update(cpu_buffer, tail_page, next_page); 2574 2575 out_again: 2576 2577 rb_reset_tail(cpu_buffer, tail, info); 2578 2579 /* Commit what we have for now. */ 2580 rb_end_commit(cpu_buffer); 2581 /* rb_end_commit() decs committing */ 2582 local_inc(&cpu_buffer->committing); 2583 2584 /* fail and let the caller try again */ 2585 return ERR_PTR(-EAGAIN); 2586 2587 out_reset: 2588 /* reset write */ 2589 rb_reset_tail(cpu_buffer, tail, info); 2590 2591 return NULL; 2592 } 2593 2594 /* Slow path, do not inline */ 2595 static noinline struct ring_buffer_event * 2596 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) 2597 { 2598 if (abs) 2599 event->type_len = RINGBUF_TYPE_TIME_STAMP; 2600 else 2601 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 2602 2603 /* Not the first event on the page, or not delta? */ 2604 if (abs || rb_event_index(event)) { 2605 event->time_delta = delta & TS_MASK; 2606 event->array[0] = delta >> TS_SHIFT; 2607 } else { 2608 /* nope, just zero it */ 2609 event->time_delta = 0; 2610 event->array[0] = 0; 2611 } 2612 2613 return skip_time_extend(event); 2614 } 2615 2616 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2617 struct ring_buffer_event *event); 2618 2619 /** 2620 * rb_update_event - update event type and data 2621 * @cpu_buffer: The per cpu buffer of the @event 2622 * @event: the event to update 2623 * @info: The info to update the @event with (contains length and delta) 2624 * 2625 * Update the type and data fields of the @event. The length 2626 * is the actual size that is written to the ring buffer, 2627 * and with this, we can determine what to place into the 2628 * data field. 2629 */ 2630 static void 2631 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 2632 struct ring_buffer_event *event, 2633 struct rb_event_info *info) 2634 { 2635 unsigned length = info->length; 2636 u64 delta = info->delta; 2637 2638 /* 2639 * If we need to add a timestamp, then we 2640 * add it to the start of the reserved space. 2641 */ 2642 if (unlikely(info->add_timestamp)) { 2643 bool abs = info->add_timestamp & 2644 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 2645 2646 event = rb_add_time_stamp(event, abs ? info->delta : delta, abs); 2647 length -= RB_LEN_TIME_EXTEND; 2648 delta = 0; 2649 } 2650 2651 event->time_delta = delta; 2652 length -= RB_EVNT_HDR_SIZE; 2653 if (length > RB_MAX_SMALL_DATA) { 2654 event->type_len = 0; 2655 event->array[0] = length; 2656 } else 2657 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 2658 } 2659 2660 static unsigned rb_calculate_event_length(unsigned length) 2661 { 2662 struct ring_buffer_event event; /* Used only for sizeof array */ 2663 2664 /* zero length can cause confusions */ 2665 if (!length) 2666 length++; 2667 2668 if (length > RB_MAX_SMALL_DATA) 2669 length += sizeof(event.array[0]); 2670 2671 length += RB_EVNT_HDR_SIZE; 2672 length = ALIGN(length, RB_ALIGNMENT); 2673 2674 /* 2675 * In case the time delta is larger than the 27 bits for it 2676 * in the header, we need to add a timestamp. If another 2677 * event comes in when trying to discard this one to increase 2678 * the length, then the timestamp will be added in the allocated 2679 * space of this event. If length is bigger than the size needed 2680 * for the TIME_EXTEND, then padding has to be used. The events 2681 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 2682 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 2683 * As length is a multiple of 4, we only need to worry if it 2684 * is 12 (RB_LEN_TIME_EXTEND + 4). 2685 */ 2686 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 2687 length += RB_ALIGNMENT; 2688 2689 return length; 2690 } 2691 2692 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2693 static inline bool sched_clock_stable(void) 2694 { 2695 return true; 2696 } 2697 #endif 2698 2699 static __always_inline bool 2700 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 2701 struct ring_buffer_event *event) 2702 { 2703 unsigned long addr = (unsigned long)event; 2704 unsigned long index; 2705 2706 index = rb_event_index(event); 2707 addr &= PAGE_MASK; 2708 2709 return cpu_buffer->commit_page->page == (void *)addr && 2710 rb_commit_index(cpu_buffer) == index; 2711 } 2712 2713 static u64 rb_time_delta(struct ring_buffer_event *event) 2714 { 2715 switch (event->type_len) { 2716 case RINGBUF_TYPE_PADDING: 2717 return 0; 2718 2719 case RINGBUF_TYPE_TIME_EXTEND: 2720 return ring_buffer_event_time_stamp(event); 2721 2722 case RINGBUF_TYPE_TIME_STAMP: 2723 return 0; 2724 2725 case RINGBUF_TYPE_DATA: 2726 return event->time_delta; 2727 default: 2728 return 0; 2729 } 2730 } 2731 2732 static inline int 2733 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2734 struct ring_buffer_event *event) 2735 { 2736 unsigned long new_index, old_index; 2737 struct buffer_page *bpage; 2738 unsigned long index; 2739 unsigned long addr; 2740 u64 write_stamp; 2741 u64 delta; 2742 2743 new_index = rb_event_index(event); 2744 old_index = new_index + rb_event_ts_length(event); 2745 addr = (unsigned long)event; 2746 addr &= PAGE_MASK; 2747 2748 bpage = READ_ONCE(cpu_buffer->tail_page); 2749 2750 delta = rb_time_delta(event); 2751 2752 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp)) 2753 return 0; 2754 2755 /* Make sure the write stamp is read before testing the location */ 2756 barrier(); 2757 2758 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2759 unsigned long write_mask = 2760 local_read(&bpage->write) & ~RB_WRITE_MASK; 2761 unsigned long event_length = rb_event_length(event); 2762 2763 /* Something came in, can't discard */ 2764 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp, 2765 write_stamp, write_stamp - delta)) 2766 return 0; 2767 2768 /* 2769 * If an event were to come in now, it would see that the 2770 * write_stamp and the before_stamp are different, and assume 2771 * that this event just added itself before updating 2772 * the write stamp. The interrupting event will fix the 2773 * write stamp for us, and use the before stamp as its delta. 2774 */ 2775 2776 /* 2777 * This is on the tail page. It is possible that 2778 * a write could come in and move the tail page 2779 * and write to the next page. That is fine 2780 * because we just shorten what is on this page. 2781 */ 2782 old_index += write_mask; 2783 new_index += write_mask; 2784 index = local_cmpxchg(&bpage->write, old_index, new_index); 2785 if (index == old_index) { 2786 /* update counters */ 2787 local_sub(event_length, &cpu_buffer->entries_bytes); 2788 return 1; 2789 } 2790 } 2791 2792 /* could not discard */ 2793 return 0; 2794 } 2795 2796 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2797 { 2798 local_inc(&cpu_buffer->committing); 2799 local_inc(&cpu_buffer->commits); 2800 } 2801 2802 static __always_inline void 2803 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 2804 { 2805 unsigned long max_count; 2806 2807 /* 2808 * We only race with interrupts and NMIs on this CPU. 2809 * If we own the commit event, then we can commit 2810 * all others that interrupted us, since the interruptions 2811 * are in stack format (they finish before they come 2812 * back to us). This allows us to do a simple loop to 2813 * assign the commit to the tail. 2814 */ 2815 again: 2816 max_count = cpu_buffer->nr_pages * 100; 2817 2818 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 2819 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 2820 return; 2821 if (RB_WARN_ON(cpu_buffer, 2822 rb_is_reader_page(cpu_buffer->tail_page))) 2823 return; 2824 local_set(&cpu_buffer->commit_page->page->commit, 2825 rb_page_write(cpu_buffer->commit_page)); 2826 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 2827 /* add barrier to keep gcc from optimizing too much */ 2828 barrier(); 2829 } 2830 while (rb_commit_index(cpu_buffer) != 2831 rb_page_write(cpu_buffer->commit_page)) { 2832 2833 local_set(&cpu_buffer->commit_page->page->commit, 2834 rb_page_write(cpu_buffer->commit_page)); 2835 RB_WARN_ON(cpu_buffer, 2836 local_read(&cpu_buffer->commit_page->page->commit) & 2837 ~RB_WRITE_MASK); 2838 barrier(); 2839 } 2840 2841 /* again, keep gcc from optimizing */ 2842 barrier(); 2843 2844 /* 2845 * If an interrupt came in just after the first while loop 2846 * and pushed the tail page forward, we will be left with 2847 * a dangling commit that will never go forward. 2848 */ 2849 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 2850 goto again; 2851 } 2852 2853 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2854 { 2855 unsigned long commits; 2856 2857 if (RB_WARN_ON(cpu_buffer, 2858 !local_read(&cpu_buffer->committing))) 2859 return; 2860 2861 again: 2862 commits = local_read(&cpu_buffer->commits); 2863 /* synchronize with interrupts */ 2864 barrier(); 2865 if (local_read(&cpu_buffer->committing) == 1) 2866 rb_set_commit_to_write(cpu_buffer); 2867 2868 local_dec(&cpu_buffer->committing); 2869 2870 /* synchronize with interrupts */ 2871 barrier(); 2872 2873 /* 2874 * Need to account for interrupts coming in between the 2875 * updating of the commit page and the clearing of the 2876 * committing counter. 2877 */ 2878 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2879 !local_read(&cpu_buffer->committing)) { 2880 local_inc(&cpu_buffer->committing); 2881 goto again; 2882 } 2883 } 2884 2885 static inline void rb_event_discard(struct ring_buffer_event *event) 2886 { 2887 if (extended_time(event)) 2888 event = skip_time_extend(event); 2889 2890 /* array[0] holds the actual length for the discarded event */ 2891 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2892 event->type_len = RINGBUF_TYPE_PADDING; 2893 /* time delta must be non zero */ 2894 if (!event->time_delta) 2895 event->time_delta = 1; 2896 } 2897 2898 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2899 struct ring_buffer_event *event) 2900 { 2901 local_inc(&cpu_buffer->entries); 2902 rb_end_commit(cpu_buffer); 2903 } 2904 2905 static __always_inline void 2906 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 2907 { 2908 size_t nr_pages; 2909 size_t dirty; 2910 size_t full; 2911 2912 if (buffer->irq_work.waiters_pending) { 2913 buffer->irq_work.waiters_pending = false; 2914 /* irq_work_queue() supplies it's own memory barriers */ 2915 irq_work_queue(&buffer->irq_work.work); 2916 } 2917 2918 if (cpu_buffer->irq_work.waiters_pending) { 2919 cpu_buffer->irq_work.waiters_pending = false; 2920 /* irq_work_queue() supplies it's own memory barriers */ 2921 irq_work_queue(&cpu_buffer->irq_work.work); 2922 } 2923 2924 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 2925 return; 2926 2927 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 2928 return; 2929 2930 if (!cpu_buffer->irq_work.full_waiters_pending) 2931 return; 2932 2933 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 2934 2935 full = cpu_buffer->shortest_full; 2936 nr_pages = cpu_buffer->nr_pages; 2937 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu); 2938 if (full && nr_pages && (dirty * 100) <= full * nr_pages) 2939 return; 2940 2941 cpu_buffer->irq_work.wakeup_full = true; 2942 cpu_buffer->irq_work.full_waiters_pending = false; 2943 /* irq_work_queue() supplies it's own memory barriers */ 2944 irq_work_queue(&cpu_buffer->irq_work.work); 2945 } 2946 2947 /* 2948 * The lock and unlock are done within a preempt disable section. 2949 * The current_context per_cpu variable can only be modified 2950 * by the current task between lock and unlock. But it can 2951 * be modified more than once via an interrupt. To pass this 2952 * information from the lock to the unlock without having to 2953 * access the 'in_interrupt()' functions again (which do show 2954 * a bit of overhead in something as critical as function tracing, 2955 * we use a bitmask trick. 2956 * 2957 * bit 0 = NMI context 2958 * bit 1 = IRQ context 2959 * bit 2 = SoftIRQ context 2960 * bit 3 = normal context. 2961 * 2962 * This works because this is the order of contexts that can 2963 * preempt other contexts. A SoftIRQ never preempts an IRQ 2964 * context. 2965 * 2966 * When the context is determined, the corresponding bit is 2967 * checked and set (if it was set, then a recursion of that context 2968 * happened). 2969 * 2970 * On unlock, we need to clear this bit. To do so, just subtract 2971 * 1 from the current_context and AND it to itself. 2972 * 2973 * (binary) 2974 * 101 - 1 = 100 2975 * 101 & 100 = 100 (clearing bit zero) 2976 * 2977 * 1010 - 1 = 1001 2978 * 1010 & 1001 = 1000 (clearing bit 1) 2979 * 2980 * The least significant bit can be cleared this way, and it 2981 * just so happens that it is the same bit corresponding to 2982 * the current context. 2983 */ 2984 2985 static __always_inline int 2986 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 2987 { 2988 unsigned int val = cpu_buffer->current_context; 2989 unsigned long pc = preempt_count(); 2990 int bit; 2991 2992 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) 2993 bit = RB_CTX_NORMAL; 2994 else 2995 bit = pc & NMI_MASK ? RB_CTX_NMI : 2996 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ; 2997 2998 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) 2999 return 1; 3000 3001 val |= (1 << (bit + cpu_buffer->nest)); 3002 cpu_buffer->current_context = val; 3003 3004 return 0; 3005 } 3006 3007 static __always_inline void 3008 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3009 { 3010 cpu_buffer->current_context &= 3011 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3012 } 3013 3014 /* The recursive locking above uses 4 bits */ 3015 #define NESTED_BITS 4 3016 3017 /** 3018 * ring_buffer_nest_start - Allow to trace while nested 3019 * @buffer: The ring buffer to modify 3020 * 3021 * The ring buffer has a safety mechanism to prevent recursion. 3022 * But there may be a case where a trace needs to be done while 3023 * tracing something else. In this case, calling this function 3024 * will allow this function to nest within a currently active 3025 * ring_buffer_lock_reserve(). 3026 * 3027 * Call this function before calling another ring_buffer_lock_reserve() and 3028 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3029 */ 3030 void ring_buffer_nest_start(struct trace_buffer *buffer) 3031 { 3032 struct ring_buffer_per_cpu *cpu_buffer; 3033 int cpu; 3034 3035 /* Enabled by ring_buffer_nest_end() */ 3036 preempt_disable_notrace(); 3037 cpu = raw_smp_processor_id(); 3038 cpu_buffer = buffer->buffers[cpu]; 3039 /* This is the shift value for the above recursive locking */ 3040 cpu_buffer->nest += NESTED_BITS; 3041 } 3042 3043 /** 3044 * ring_buffer_nest_end - Allow to trace while nested 3045 * @buffer: The ring buffer to modify 3046 * 3047 * Must be called after ring_buffer_nest_start() and after the 3048 * ring_buffer_unlock_commit(). 3049 */ 3050 void ring_buffer_nest_end(struct trace_buffer *buffer) 3051 { 3052 struct ring_buffer_per_cpu *cpu_buffer; 3053 int cpu; 3054 3055 /* disabled by ring_buffer_nest_start() */ 3056 cpu = raw_smp_processor_id(); 3057 cpu_buffer = buffer->buffers[cpu]; 3058 /* This is the shift value for the above recursive locking */ 3059 cpu_buffer->nest -= NESTED_BITS; 3060 preempt_enable_notrace(); 3061 } 3062 3063 /** 3064 * ring_buffer_unlock_commit - commit a reserved 3065 * @buffer: The buffer to commit to 3066 * @event: The event pointer to commit. 3067 * 3068 * This commits the data to the ring buffer, and releases any locks held. 3069 * 3070 * Must be paired with ring_buffer_lock_reserve. 3071 */ 3072 int ring_buffer_unlock_commit(struct trace_buffer *buffer, 3073 struct ring_buffer_event *event) 3074 { 3075 struct ring_buffer_per_cpu *cpu_buffer; 3076 int cpu = raw_smp_processor_id(); 3077 3078 cpu_buffer = buffer->buffers[cpu]; 3079 3080 rb_commit(cpu_buffer, event); 3081 3082 rb_wakeups(buffer, cpu_buffer); 3083 3084 trace_recursive_unlock(cpu_buffer); 3085 3086 preempt_enable_notrace(); 3087 3088 return 0; 3089 } 3090 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 3091 3092 static noinline void 3093 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3094 struct rb_event_info *info) 3095 { 3096 u64 write_stamp; 3097 3098 WARN_ONCE(info->delta > (1ULL << 59), 3099 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 3100 (unsigned long long)info->delta, 3101 (unsigned long long)info->ts, 3102 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), 3103 sched_clock_stable() ? "" : 3104 "If you just came from a suspend/resume,\n" 3105 "please switch to the trace global clock:\n" 3106 " echo global > /sys/kernel/debug/tracing/trace_clock\n" 3107 "or add trace_clock=global to the kernel command line\n"); 3108 } 3109 3110 static struct ring_buffer_event * 3111 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 3112 struct rb_event_info *info) 3113 { 3114 struct ring_buffer_event *event; 3115 struct buffer_page *tail_page; 3116 unsigned long tail, write, w; 3117 u64 before, after; 3118 bool a_ok; 3119 bool b_ok; 3120 3121 /* Don't let the compiler play games with cpu_buffer->tail_page */ 3122 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 3123 3124 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 3125 barrier(); 3126 b_ok = rb_time_read(&cpu_buffer->before_stamp, &before); 3127 a_ok = rb_time_read(&cpu_buffer->write_stamp, &after); 3128 barrier(); 3129 info->ts = rb_time_stamp(cpu_buffer->buffer); 3130 3131 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 3132 info->delta = info->ts; 3133 info->add_timestamp = RB_ADD_STAMP_ABSOLUTE; 3134 } else { 3135 info->delta = info->ts - after; 3136 } 3137 3138 if (likely(a_ok && b_ok)) { 3139 if (unlikely(test_time_stamp(info->delta))) { 3140 rb_check_timestamp(cpu_buffer, info); 3141 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 3142 } 3143 } 3144 3145 /* 3146 * If interrupting an event time update, we may need an absolute timestamp. 3147 * Don't bother if this is the start of a new page (w == 0). 3148 */ 3149 if (unlikely(!a_ok || !b_ok || (before != after && w))) 3150 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 3151 3152 /* 3153 * If the time delta since the last event is too big to 3154 * hold in the time field of the event, then we append a 3155 * TIME EXTEND event ahead of the data event. 3156 */ 3157 if (unlikely(info->add_timestamp)) 3158 info->length += RB_LEN_TIME_EXTEND; 3159 3160 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 3161 3162 /*C*/ write = local_add_return(info->length, &tail_page->write); 3163 3164 /* set write to only the index of the write */ 3165 write &= RB_WRITE_MASK; 3166 3167 tail = write - info->length; 3168 3169 /* See if we shot pass the end of this buffer page */ 3170 if (unlikely(write > BUF_PAGE_SIZE)) { 3171 if (tail != w) { 3172 /* before and after may now different, fix it up*/ 3173 b_ok = rb_time_read(&cpu_buffer->before_stamp, &before); 3174 a_ok = rb_time_read(&cpu_buffer->write_stamp, &after); 3175 if (a_ok && b_ok && before != after) 3176 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, before, after); 3177 } 3178 return rb_move_tail(cpu_buffer, tail, info); 3179 } 3180 3181 if (likely(tail == w)) { 3182 u64 save_before; 3183 bool s_ok; 3184 3185 /* Nothing interrupted us between A and C */ 3186 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 3187 barrier(); 3188 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before); 3189 RB_WARN_ON(cpu_buffer, !s_ok); 3190 if (likely(!(info->add_timestamp & 3191 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3192 /* This did not interrupt any time update */ 3193 info->delta = info->ts - after; 3194 else 3195 /* Just use full timestamp for inerrupting event */ 3196 info->delta = info->ts; 3197 barrier(); 3198 if (unlikely(info->ts != save_before)) { 3199 /* SLOW PATH - Interrupted between C and E */ 3200 3201 a_ok = rb_time_read(&cpu_buffer->write_stamp, &after); 3202 RB_WARN_ON(cpu_buffer, !a_ok); 3203 3204 /* Write stamp must only go forward */ 3205 if (save_before > after) { 3206 /* 3207 * We do not care about the result, only that 3208 * it gets updated atomically. 3209 */ 3210 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, after, save_before); 3211 } 3212 } 3213 } else { 3214 u64 ts; 3215 /* SLOW PATH - Interrupted between A and C */ 3216 a_ok = rb_time_read(&cpu_buffer->write_stamp, &after); 3217 /* Was interrupted before here, write_stamp must be valid */ 3218 RB_WARN_ON(cpu_buffer, !a_ok); 3219 ts = rb_time_stamp(cpu_buffer->buffer); 3220 barrier(); 3221 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 3222 after < ts) { 3223 /* Nothing came after this event between C and E */ 3224 info->delta = ts - after; 3225 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, after, info->ts); 3226 info->ts = ts; 3227 } else { 3228 /* 3229 * Interrupted beween C and E: 3230 * Lost the previous events time stamp. Just set the 3231 * delta to zero, and this will be the same time as 3232 * the event this event interrupted. And the events that 3233 * came after this will still be correct (as they would 3234 * have built their delta on the previous event. 3235 */ 3236 info->delta = 0; 3237 } 3238 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 3239 } 3240 3241 /* 3242 * If this is the first commit on the page, then it has the same 3243 * timestamp as the page itself. 3244 */ 3245 if (unlikely(!tail && !(info->add_timestamp & 3246 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 3247 info->delta = 0; 3248 3249 /* We reserved something on the buffer */ 3250 3251 event = __rb_page_index(tail_page, tail); 3252 rb_update_event(cpu_buffer, event, info); 3253 3254 local_inc(&tail_page->entries); 3255 3256 /* 3257 * If this is the first commit on the page, then update 3258 * its timestamp. 3259 */ 3260 if (!tail) 3261 tail_page->page->time_stamp = info->ts; 3262 3263 /* account for these added bytes */ 3264 local_add(info->length, &cpu_buffer->entries_bytes); 3265 3266 return event; 3267 } 3268 3269 static __always_inline struct ring_buffer_event * 3270 rb_reserve_next_event(struct trace_buffer *buffer, 3271 struct ring_buffer_per_cpu *cpu_buffer, 3272 unsigned long length) 3273 { 3274 struct ring_buffer_event *event; 3275 struct rb_event_info info; 3276 int nr_loops = 0; 3277 3278 rb_start_commit(cpu_buffer); 3279 /* The commit page can not change after this */ 3280 3281 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3282 /* 3283 * Due to the ability to swap a cpu buffer from a buffer 3284 * it is possible it was swapped before we committed. 3285 * (committing stops a swap). We check for it here and 3286 * if it happened, we have to fail the write. 3287 */ 3288 barrier(); 3289 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 3290 local_dec(&cpu_buffer->committing); 3291 local_dec(&cpu_buffer->commits); 3292 return NULL; 3293 } 3294 #endif 3295 3296 info.length = rb_calculate_event_length(length); 3297 again: 3298 info.add_timestamp = RB_ADD_STAMP_NONE; 3299 info.delta = 0; 3300 3301 /* 3302 * We allow for interrupts to reenter here and do a trace. 3303 * If one does, it will cause this original code to loop 3304 * back here. Even with heavy interrupts happening, this 3305 * should only happen a few times in a row. If this happens 3306 * 1000 times in a row, there must be either an interrupt 3307 * storm or we have something buggy. 3308 * Bail! 3309 */ 3310 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 3311 goto out_fail; 3312 3313 event = __rb_reserve_next(cpu_buffer, &info); 3314 3315 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 3316 if (info.add_timestamp) 3317 info.length -= RB_LEN_TIME_EXTEND; 3318 goto again; 3319 } 3320 3321 if (likely(event)) 3322 return event; 3323 out_fail: 3324 rb_end_commit(cpu_buffer); 3325 return NULL; 3326 } 3327 3328 /** 3329 * ring_buffer_lock_reserve - reserve a part of the buffer 3330 * @buffer: the ring buffer to reserve from 3331 * @length: the length of the data to reserve (excluding event header) 3332 * 3333 * Returns a reserved event on the ring buffer to copy directly to. 3334 * The user of this interface will need to get the body to write into 3335 * and can use the ring_buffer_event_data() interface. 3336 * 3337 * The length is the length of the data needed, not the event length 3338 * which also includes the event header. 3339 * 3340 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 3341 * If NULL is returned, then nothing has been allocated or locked. 3342 */ 3343 struct ring_buffer_event * 3344 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 3345 { 3346 struct ring_buffer_per_cpu *cpu_buffer; 3347 struct ring_buffer_event *event; 3348 int cpu; 3349 3350 /* If we are tracing schedule, we don't want to recurse */ 3351 preempt_disable_notrace(); 3352 3353 if (unlikely(atomic_read(&buffer->record_disabled))) 3354 goto out; 3355 3356 cpu = raw_smp_processor_id(); 3357 3358 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 3359 goto out; 3360 3361 cpu_buffer = buffer->buffers[cpu]; 3362 3363 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 3364 goto out; 3365 3366 if (unlikely(length > BUF_MAX_DATA_SIZE)) 3367 goto out; 3368 3369 if (unlikely(trace_recursive_lock(cpu_buffer))) 3370 goto out; 3371 3372 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3373 if (!event) 3374 goto out_unlock; 3375 3376 return event; 3377 3378 out_unlock: 3379 trace_recursive_unlock(cpu_buffer); 3380 out: 3381 preempt_enable_notrace(); 3382 return NULL; 3383 } 3384 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 3385 3386 /* 3387 * Decrement the entries to the page that an event is on. 3388 * The event does not even need to exist, only the pointer 3389 * to the page it is on. This may only be called before the commit 3390 * takes place. 3391 */ 3392 static inline void 3393 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 3394 struct ring_buffer_event *event) 3395 { 3396 unsigned long addr = (unsigned long)event; 3397 struct buffer_page *bpage = cpu_buffer->commit_page; 3398 struct buffer_page *start; 3399 3400 addr &= PAGE_MASK; 3401 3402 /* Do the likely case first */ 3403 if (likely(bpage->page == (void *)addr)) { 3404 local_dec(&bpage->entries); 3405 return; 3406 } 3407 3408 /* 3409 * Because the commit page may be on the reader page we 3410 * start with the next page and check the end loop there. 3411 */ 3412 rb_inc_page(cpu_buffer, &bpage); 3413 start = bpage; 3414 do { 3415 if (bpage->page == (void *)addr) { 3416 local_dec(&bpage->entries); 3417 return; 3418 } 3419 rb_inc_page(cpu_buffer, &bpage); 3420 } while (bpage != start); 3421 3422 /* commit not part of this buffer?? */ 3423 RB_WARN_ON(cpu_buffer, 1); 3424 } 3425 3426 /** 3427 * ring_buffer_commit_discard - discard an event that has not been committed 3428 * @buffer: the ring buffer 3429 * @event: non committed event to discard 3430 * 3431 * Sometimes an event that is in the ring buffer needs to be ignored. 3432 * This function lets the user discard an event in the ring buffer 3433 * and then that event will not be read later. 3434 * 3435 * This function only works if it is called before the item has been 3436 * committed. It will try to free the event from the ring buffer 3437 * if another event has not been added behind it. 3438 * 3439 * If another event has been added behind it, it will set the event 3440 * up as discarded, and perform the commit. 3441 * 3442 * If this function is called, do not call ring_buffer_unlock_commit on 3443 * the event. 3444 */ 3445 void ring_buffer_discard_commit(struct trace_buffer *buffer, 3446 struct ring_buffer_event *event) 3447 { 3448 struct ring_buffer_per_cpu *cpu_buffer; 3449 int cpu; 3450 3451 /* The event is discarded regardless */ 3452 rb_event_discard(event); 3453 3454 cpu = smp_processor_id(); 3455 cpu_buffer = buffer->buffers[cpu]; 3456 3457 /* 3458 * This must only be called if the event has not been 3459 * committed yet. Thus we can assume that preemption 3460 * is still disabled. 3461 */ 3462 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 3463 3464 rb_decrement_entry(cpu_buffer, event); 3465 if (rb_try_to_discard(cpu_buffer, event)) 3466 goto out; 3467 3468 out: 3469 rb_end_commit(cpu_buffer); 3470 3471 trace_recursive_unlock(cpu_buffer); 3472 3473 preempt_enable_notrace(); 3474 3475 } 3476 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 3477 3478 /** 3479 * ring_buffer_write - write data to the buffer without reserving 3480 * @buffer: The ring buffer to write to. 3481 * @length: The length of the data being written (excluding the event header) 3482 * @data: The data to write to the buffer. 3483 * 3484 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 3485 * one function. If you already have the data to write to the buffer, it 3486 * may be easier to simply call this function. 3487 * 3488 * Note, like ring_buffer_lock_reserve, the length is the length of the data 3489 * and not the length of the event which would hold the header. 3490 */ 3491 int ring_buffer_write(struct trace_buffer *buffer, 3492 unsigned long length, 3493 void *data) 3494 { 3495 struct ring_buffer_per_cpu *cpu_buffer; 3496 struct ring_buffer_event *event; 3497 void *body; 3498 int ret = -EBUSY; 3499 int cpu; 3500 3501 preempt_disable_notrace(); 3502 3503 if (atomic_read(&buffer->record_disabled)) 3504 goto out; 3505 3506 cpu = raw_smp_processor_id(); 3507 3508 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3509 goto out; 3510 3511 cpu_buffer = buffer->buffers[cpu]; 3512 3513 if (atomic_read(&cpu_buffer->record_disabled)) 3514 goto out; 3515 3516 if (length > BUF_MAX_DATA_SIZE) 3517 goto out; 3518 3519 if (unlikely(trace_recursive_lock(cpu_buffer))) 3520 goto out; 3521 3522 event = rb_reserve_next_event(buffer, cpu_buffer, length); 3523 if (!event) 3524 goto out_unlock; 3525 3526 body = rb_event_data(event); 3527 3528 memcpy(body, data, length); 3529 3530 rb_commit(cpu_buffer, event); 3531 3532 rb_wakeups(buffer, cpu_buffer); 3533 3534 ret = 0; 3535 3536 out_unlock: 3537 trace_recursive_unlock(cpu_buffer); 3538 3539 out: 3540 preempt_enable_notrace(); 3541 3542 return ret; 3543 } 3544 EXPORT_SYMBOL_GPL(ring_buffer_write); 3545 3546 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 3547 { 3548 struct buffer_page *reader = cpu_buffer->reader_page; 3549 struct buffer_page *head = rb_set_head_page(cpu_buffer); 3550 struct buffer_page *commit = cpu_buffer->commit_page; 3551 3552 /* In case of error, head will be NULL */ 3553 if (unlikely(!head)) 3554 return true; 3555 3556 return reader->read == rb_page_commit(reader) && 3557 (commit == reader || 3558 (commit == head && 3559 head->read == rb_page_commit(commit))); 3560 } 3561 3562 /** 3563 * ring_buffer_record_disable - stop all writes into the buffer 3564 * @buffer: The ring buffer to stop writes to. 3565 * 3566 * This prevents all writes to the buffer. Any attempt to write 3567 * to the buffer after this will fail and return NULL. 3568 * 3569 * The caller should call synchronize_rcu() after this. 3570 */ 3571 void ring_buffer_record_disable(struct trace_buffer *buffer) 3572 { 3573 atomic_inc(&buffer->record_disabled); 3574 } 3575 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 3576 3577 /** 3578 * ring_buffer_record_enable - enable writes to the buffer 3579 * @buffer: The ring buffer to enable writes 3580 * 3581 * Note, multiple disables will need the same number of enables 3582 * to truly enable the writing (much like preempt_disable). 3583 */ 3584 void ring_buffer_record_enable(struct trace_buffer *buffer) 3585 { 3586 atomic_dec(&buffer->record_disabled); 3587 } 3588 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 3589 3590 /** 3591 * ring_buffer_record_off - stop all writes into the buffer 3592 * @buffer: The ring buffer to stop writes to. 3593 * 3594 * This prevents all writes to the buffer. Any attempt to write 3595 * to the buffer after this will fail and return NULL. 3596 * 3597 * This is different than ring_buffer_record_disable() as 3598 * it works like an on/off switch, where as the disable() version 3599 * must be paired with a enable(). 3600 */ 3601 void ring_buffer_record_off(struct trace_buffer *buffer) 3602 { 3603 unsigned int rd; 3604 unsigned int new_rd; 3605 3606 do { 3607 rd = atomic_read(&buffer->record_disabled); 3608 new_rd = rd | RB_BUFFER_OFF; 3609 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3610 } 3611 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 3612 3613 /** 3614 * ring_buffer_record_on - restart writes into the buffer 3615 * @buffer: The ring buffer to start writes to. 3616 * 3617 * This enables all writes to the buffer that was disabled by 3618 * ring_buffer_record_off(). 3619 * 3620 * This is different than ring_buffer_record_enable() as 3621 * it works like an on/off switch, where as the enable() version 3622 * must be paired with a disable(). 3623 */ 3624 void ring_buffer_record_on(struct trace_buffer *buffer) 3625 { 3626 unsigned int rd; 3627 unsigned int new_rd; 3628 3629 do { 3630 rd = atomic_read(&buffer->record_disabled); 3631 new_rd = rd & ~RB_BUFFER_OFF; 3632 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 3633 } 3634 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 3635 3636 /** 3637 * ring_buffer_record_is_on - return true if the ring buffer can write 3638 * @buffer: The ring buffer to see if write is enabled 3639 * 3640 * Returns true if the ring buffer is in a state that it accepts writes. 3641 */ 3642 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 3643 { 3644 return !atomic_read(&buffer->record_disabled); 3645 } 3646 3647 /** 3648 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 3649 * @buffer: The ring buffer to see if write is set enabled 3650 * 3651 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 3652 * Note that this does NOT mean it is in a writable state. 3653 * 3654 * It may return true when the ring buffer has been disabled by 3655 * ring_buffer_record_disable(), as that is a temporary disabling of 3656 * the ring buffer. 3657 */ 3658 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 3659 { 3660 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 3661 } 3662 3663 /** 3664 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 3665 * @buffer: The ring buffer to stop writes to. 3666 * @cpu: The CPU buffer to stop 3667 * 3668 * This prevents all writes to the buffer. Any attempt to write 3669 * to the buffer after this will fail and return NULL. 3670 * 3671 * The caller should call synchronize_rcu() after this. 3672 */ 3673 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 3674 { 3675 struct ring_buffer_per_cpu *cpu_buffer; 3676 3677 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3678 return; 3679 3680 cpu_buffer = buffer->buffers[cpu]; 3681 atomic_inc(&cpu_buffer->record_disabled); 3682 } 3683 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 3684 3685 /** 3686 * ring_buffer_record_enable_cpu - enable writes to the buffer 3687 * @buffer: The ring buffer to enable writes 3688 * @cpu: The CPU to enable. 3689 * 3690 * Note, multiple disables will need the same number of enables 3691 * to truly enable the writing (much like preempt_disable). 3692 */ 3693 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 3694 { 3695 struct ring_buffer_per_cpu *cpu_buffer; 3696 3697 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3698 return; 3699 3700 cpu_buffer = buffer->buffers[cpu]; 3701 atomic_dec(&cpu_buffer->record_disabled); 3702 } 3703 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 3704 3705 /* 3706 * The total entries in the ring buffer is the running counter 3707 * of entries entered into the ring buffer, minus the sum of 3708 * the entries read from the ring buffer and the number of 3709 * entries that were overwritten. 3710 */ 3711 static inline unsigned long 3712 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 3713 { 3714 return local_read(&cpu_buffer->entries) - 3715 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 3716 } 3717 3718 /** 3719 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 3720 * @buffer: The ring buffer 3721 * @cpu: The per CPU buffer to read from. 3722 */ 3723 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 3724 { 3725 unsigned long flags; 3726 struct ring_buffer_per_cpu *cpu_buffer; 3727 struct buffer_page *bpage; 3728 u64 ret = 0; 3729 3730 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3731 return 0; 3732 3733 cpu_buffer = buffer->buffers[cpu]; 3734 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3735 /* 3736 * if the tail is on reader_page, oldest time stamp is on the reader 3737 * page 3738 */ 3739 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 3740 bpage = cpu_buffer->reader_page; 3741 else 3742 bpage = rb_set_head_page(cpu_buffer); 3743 if (bpage) 3744 ret = bpage->page->time_stamp; 3745 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3746 3747 return ret; 3748 } 3749 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 3750 3751 /** 3752 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 3753 * @buffer: The ring buffer 3754 * @cpu: The per CPU buffer to read from. 3755 */ 3756 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 3757 { 3758 struct ring_buffer_per_cpu *cpu_buffer; 3759 unsigned long ret; 3760 3761 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3762 return 0; 3763 3764 cpu_buffer = buffer->buffers[cpu]; 3765 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 3766 3767 return ret; 3768 } 3769 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 3770 3771 /** 3772 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 3773 * @buffer: The ring buffer 3774 * @cpu: The per CPU buffer to get the entries from. 3775 */ 3776 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 3777 { 3778 struct ring_buffer_per_cpu *cpu_buffer; 3779 3780 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3781 return 0; 3782 3783 cpu_buffer = buffer->buffers[cpu]; 3784 3785 return rb_num_of_entries(cpu_buffer); 3786 } 3787 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 3788 3789 /** 3790 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 3791 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 3792 * @buffer: The ring buffer 3793 * @cpu: The per CPU buffer to get the number of overruns from 3794 */ 3795 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 3796 { 3797 struct ring_buffer_per_cpu *cpu_buffer; 3798 unsigned long ret; 3799 3800 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3801 return 0; 3802 3803 cpu_buffer = buffer->buffers[cpu]; 3804 ret = local_read(&cpu_buffer->overrun); 3805 3806 return ret; 3807 } 3808 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3809 3810 /** 3811 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 3812 * commits failing due to the buffer wrapping around while there are uncommitted 3813 * events, such as during an interrupt storm. 3814 * @buffer: The ring buffer 3815 * @cpu: The per CPU buffer to get the number of overruns from 3816 */ 3817 unsigned long 3818 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 3819 { 3820 struct ring_buffer_per_cpu *cpu_buffer; 3821 unsigned long ret; 3822 3823 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3824 return 0; 3825 3826 cpu_buffer = buffer->buffers[cpu]; 3827 ret = local_read(&cpu_buffer->commit_overrun); 3828 3829 return ret; 3830 } 3831 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3832 3833 /** 3834 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 3835 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 3836 * @buffer: The ring buffer 3837 * @cpu: The per CPU buffer to get the number of overruns from 3838 */ 3839 unsigned long 3840 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 3841 { 3842 struct ring_buffer_per_cpu *cpu_buffer; 3843 unsigned long ret; 3844 3845 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3846 return 0; 3847 3848 cpu_buffer = buffer->buffers[cpu]; 3849 ret = local_read(&cpu_buffer->dropped_events); 3850 3851 return ret; 3852 } 3853 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 3854 3855 /** 3856 * ring_buffer_read_events_cpu - get the number of events successfully read 3857 * @buffer: The ring buffer 3858 * @cpu: The per CPU buffer to get the number of events read 3859 */ 3860 unsigned long 3861 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 3862 { 3863 struct ring_buffer_per_cpu *cpu_buffer; 3864 3865 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3866 return 0; 3867 3868 cpu_buffer = buffer->buffers[cpu]; 3869 return cpu_buffer->read; 3870 } 3871 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 3872 3873 /** 3874 * ring_buffer_entries - get the number of entries in a buffer 3875 * @buffer: The ring buffer 3876 * 3877 * Returns the total number of entries in the ring buffer 3878 * (all CPU entries) 3879 */ 3880 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 3881 { 3882 struct ring_buffer_per_cpu *cpu_buffer; 3883 unsigned long entries = 0; 3884 int cpu; 3885 3886 /* if you care about this being correct, lock the buffer */ 3887 for_each_buffer_cpu(buffer, cpu) { 3888 cpu_buffer = buffer->buffers[cpu]; 3889 entries += rb_num_of_entries(cpu_buffer); 3890 } 3891 3892 return entries; 3893 } 3894 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3895 3896 /** 3897 * ring_buffer_overruns - get the number of overruns in buffer 3898 * @buffer: The ring buffer 3899 * 3900 * Returns the total number of overruns in the ring buffer 3901 * (all CPU entries) 3902 */ 3903 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 3904 { 3905 struct ring_buffer_per_cpu *cpu_buffer; 3906 unsigned long overruns = 0; 3907 int cpu; 3908 3909 /* if you care about this being correct, lock the buffer */ 3910 for_each_buffer_cpu(buffer, cpu) { 3911 cpu_buffer = buffer->buffers[cpu]; 3912 overruns += local_read(&cpu_buffer->overrun); 3913 } 3914 3915 return overruns; 3916 } 3917 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3918 3919 static void rb_iter_reset(struct ring_buffer_iter *iter) 3920 { 3921 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3922 3923 /* Iterator usage is expected to have record disabled */ 3924 iter->head_page = cpu_buffer->reader_page; 3925 iter->head = cpu_buffer->reader_page->read; 3926 iter->next_event = iter->head; 3927 3928 iter->cache_reader_page = iter->head_page; 3929 iter->cache_read = cpu_buffer->read; 3930 3931 if (iter->head) { 3932 iter->read_stamp = cpu_buffer->read_stamp; 3933 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 3934 } else { 3935 iter->read_stamp = iter->head_page->page->time_stamp; 3936 iter->page_stamp = iter->read_stamp; 3937 } 3938 } 3939 3940 /** 3941 * ring_buffer_iter_reset - reset an iterator 3942 * @iter: The iterator to reset 3943 * 3944 * Resets the iterator, so that it will start from the beginning 3945 * again. 3946 */ 3947 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3948 { 3949 struct ring_buffer_per_cpu *cpu_buffer; 3950 unsigned long flags; 3951 3952 if (!iter) 3953 return; 3954 3955 cpu_buffer = iter->cpu_buffer; 3956 3957 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3958 rb_iter_reset(iter); 3959 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3960 } 3961 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3962 3963 /** 3964 * ring_buffer_iter_empty - check if an iterator has no more to read 3965 * @iter: The iterator to check 3966 */ 3967 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3968 { 3969 struct ring_buffer_per_cpu *cpu_buffer; 3970 struct buffer_page *reader; 3971 struct buffer_page *head_page; 3972 struct buffer_page *commit_page; 3973 struct buffer_page *curr_commit_page; 3974 unsigned commit; 3975 u64 curr_commit_ts; 3976 u64 commit_ts; 3977 3978 cpu_buffer = iter->cpu_buffer; 3979 reader = cpu_buffer->reader_page; 3980 head_page = cpu_buffer->head_page; 3981 commit_page = cpu_buffer->commit_page; 3982 commit_ts = commit_page->page->time_stamp; 3983 3984 /* 3985 * When the writer goes across pages, it issues a cmpxchg which 3986 * is a mb(), which will synchronize with the rmb here. 3987 * (see rb_tail_page_update()) 3988 */ 3989 smp_rmb(); 3990 commit = rb_page_commit(commit_page); 3991 /* We want to make sure that the commit page doesn't change */ 3992 smp_rmb(); 3993 3994 /* Make sure commit page didn't change */ 3995 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 3996 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 3997 3998 /* If the commit page changed, then there's more data */ 3999 if (curr_commit_page != commit_page || 4000 curr_commit_ts != commit_ts) 4001 return 0; 4002 4003 /* Still racy, as it may return a false positive, but that's OK */ 4004 return ((iter->head_page == commit_page && iter->head >= commit) || 4005 (iter->head_page == reader && commit_page == head_page && 4006 head_page->read == commit && 4007 iter->head == rb_page_commit(cpu_buffer->reader_page))); 4008 } 4009 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 4010 4011 static void 4012 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 4013 struct ring_buffer_event *event) 4014 { 4015 u64 delta; 4016 4017 switch (event->type_len) { 4018 case RINGBUF_TYPE_PADDING: 4019 return; 4020 4021 case RINGBUF_TYPE_TIME_EXTEND: 4022 delta = ring_buffer_event_time_stamp(event); 4023 cpu_buffer->read_stamp += delta; 4024 return; 4025 4026 case RINGBUF_TYPE_TIME_STAMP: 4027 delta = ring_buffer_event_time_stamp(event); 4028 cpu_buffer->read_stamp = delta; 4029 return; 4030 4031 case RINGBUF_TYPE_DATA: 4032 cpu_buffer->read_stamp += event->time_delta; 4033 return; 4034 4035 default: 4036 RB_WARN_ON(cpu_buffer, 1); 4037 } 4038 return; 4039 } 4040 4041 static void 4042 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 4043 struct ring_buffer_event *event) 4044 { 4045 u64 delta; 4046 4047 switch (event->type_len) { 4048 case RINGBUF_TYPE_PADDING: 4049 return; 4050 4051 case RINGBUF_TYPE_TIME_EXTEND: 4052 delta = ring_buffer_event_time_stamp(event); 4053 iter->read_stamp += delta; 4054 return; 4055 4056 case RINGBUF_TYPE_TIME_STAMP: 4057 delta = ring_buffer_event_time_stamp(event); 4058 iter->read_stamp = delta; 4059 return; 4060 4061 case RINGBUF_TYPE_DATA: 4062 iter->read_stamp += event->time_delta; 4063 return; 4064 4065 default: 4066 RB_WARN_ON(iter->cpu_buffer, 1); 4067 } 4068 return; 4069 } 4070 4071 static struct buffer_page * 4072 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 4073 { 4074 struct buffer_page *reader = NULL; 4075 unsigned long overwrite; 4076 unsigned long flags; 4077 int nr_loops = 0; 4078 int ret; 4079 4080 local_irq_save(flags); 4081 arch_spin_lock(&cpu_buffer->lock); 4082 4083 again: 4084 /* 4085 * This should normally only loop twice. But because the 4086 * start of the reader inserts an empty page, it causes 4087 * a case where we will loop three times. There should be no 4088 * reason to loop four times (that I know of). 4089 */ 4090 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 4091 reader = NULL; 4092 goto out; 4093 } 4094 4095 reader = cpu_buffer->reader_page; 4096 4097 /* If there's more to read, return this page */ 4098 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 4099 goto out; 4100 4101 /* Never should we have an index greater than the size */ 4102 if (RB_WARN_ON(cpu_buffer, 4103 cpu_buffer->reader_page->read > rb_page_size(reader))) 4104 goto out; 4105 4106 /* check if we caught up to the tail */ 4107 reader = NULL; 4108 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 4109 goto out; 4110 4111 /* Don't bother swapping if the ring buffer is empty */ 4112 if (rb_num_of_entries(cpu_buffer) == 0) 4113 goto out; 4114 4115 /* 4116 * Reset the reader page to size zero. 4117 */ 4118 local_set(&cpu_buffer->reader_page->write, 0); 4119 local_set(&cpu_buffer->reader_page->entries, 0); 4120 local_set(&cpu_buffer->reader_page->page->commit, 0); 4121 cpu_buffer->reader_page->real_end = 0; 4122 4123 spin: 4124 /* 4125 * Splice the empty reader page into the list around the head. 4126 */ 4127 reader = rb_set_head_page(cpu_buffer); 4128 if (!reader) 4129 goto out; 4130 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 4131 cpu_buffer->reader_page->list.prev = reader->list.prev; 4132 4133 /* 4134 * cpu_buffer->pages just needs to point to the buffer, it 4135 * has no specific buffer page to point to. Lets move it out 4136 * of our way so we don't accidentally swap it. 4137 */ 4138 cpu_buffer->pages = reader->list.prev; 4139 4140 /* The reader page will be pointing to the new head */ 4141 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 4142 4143 /* 4144 * We want to make sure we read the overruns after we set up our 4145 * pointers to the next object. The writer side does a 4146 * cmpxchg to cross pages which acts as the mb on the writer 4147 * side. Note, the reader will constantly fail the swap 4148 * while the writer is updating the pointers, so this 4149 * guarantees that the overwrite recorded here is the one we 4150 * want to compare with the last_overrun. 4151 */ 4152 smp_mb(); 4153 overwrite = local_read(&(cpu_buffer->overrun)); 4154 4155 /* 4156 * Here's the tricky part. 4157 * 4158 * We need to move the pointer past the header page. 4159 * But we can only do that if a writer is not currently 4160 * moving it. The page before the header page has the 4161 * flag bit '1' set if it is pointing to the page we want. 4162 * but if the writer is in the process of moving it 4163 * than it will be '2' or already moved '0'. 4164 */ 4165 4166 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 4167 4168 /* 4169 * If we did not convert it, then we must try again. 4170 */ 4171 if (!ret) 4172 goto spin; 4173 4174 /* 4175 * Yay! We succeeded in replacing the page. 4176 * 4177 * Now make the new head point back to the reader page. 4178 */ 4179 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 4180 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 4181 4182 local_inc(&cpu_buffer->pages_read); 4183 4184 /* Finally update the reader page to the new head */ 4185 cpu_buffer->reader_page = reader; 4186 cpu_buffer->reader_page->read = 0; 4187 4188 if (overwrite != cpu_buffer->last_overrun) { 4189 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 4190 cpu_buffer->last_overrun = overwrite; 4191 } 4192 4193 goto again; 4194 4195 out: 4196 /* Update the read_stamp on the first event */ 4197 if (reader && reader->read == 0) 4198 cpu_buffer->read_stamp = reader->page->time_stamp; 4199 4200 arch_spin_unlock(&cpu_buffer->lock); 4201 local_irq_restore(flags); 4202 4203 return reader; 4204 } 4205 4206 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 4207 { 4208 struct ring_buffer_event *event; 4209 struct buffer_page *reader; 4210 unsigned length; 4211 4212 reader = rb_get_reader_page(cpu_buffer); 4213 4214 /* This function should not be called when buffer is empty */ 4215 if (RB_WARN_ON(cpu_buffer, !reader)) 4216 return; 4217 4218 event = rb_reader_event(cpu_buffer); 4219 4220 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 4221 cpu_buffer->read++; 4222 4223 rb_update_read_stamp(cpu_buffer, event); 4224 4225 length = rb_event_length(event); 4226 cpu_buffer->reader_page->read += length; 4227 } 4228 4229 static void rb_advance_iter(struct ring_buffer_iter *iter) 4230 { 4231 struct ring_buffer_per_cpu *cpu_buffer; 4232 4233 cpu_buffer = iter->cpu_buffer; 4234 4235 /* If head == next_event then we need to jump to the next event */ 4236 if (iter->head == iter->next_event) { 4237 /* If the event gets overwritten again, there's nothing to do */ 4238 if (rb_iter_head_event(iter) == NULL) 4239 return; 4240 } 4241 4242 iter->head = iter->next_event; 4243 4244 /* 4245 * Check if we are at the end of the buffer. 4246 */ 4247 if (iter->next_event >= rb_page_size(iter->head_page)) { 4248 /* discarded commits can make the page empty */ 4249 if (iter->head_page == cpu_buffer->commit_page) 4250 return; 4251 rb_inc_iter(iter); 4252 return; 4253 } 4254 4255 rb_update_iter_read_stamp(iter, iter->event); 4256 } 4257 4258 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 4259 { 4260 return cpu_buffer->lost_events; 4261 } 4262 4263 static struct ring_buffer_event * 4264 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 4265 unsigned long *lost_events) 4266 { 4267 struct ring_buffer_event *event; 4268 struct buffer_page *reader; 4269 int nr_loops = 0; 4270 4271 if (ts) 4272 *ts = 0; 4273 again: 4274 /* 4275 * We repeat when a time extend is encountered. 4276 * Since the time extend is always attached to a data event, 4277 * we should never loop more than once. 4278 * (We never hit the following condition more than twice). 4279 */ 4280 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 4281 return NULL; 4282 4283 reader = rb_get_reader_page(cpu_buffer); 4284 if (!reader) 4285 return NULL; 4286 4287 event = rb_reader_event(cpu_buffer); 4288 4289 switch (event->type_len) { 4290 case RINGBUF_TYPE_PADDING: 4291 if (rb_null_event(event)) 4292 RB_WARN_ON(cpu_buffer, 1); 4293 /* 4294 * Because the writer could be discarding every 4295 * event it creates (which would probably be bad) 4296 * if we were to go back to "again" then we may never 4297 * catch up, and will trigger the warn on, or lock 4298 * the box. Return the padding, and we will release 4299 * the current locks, and try again. 4300 */ 4301 return event; 4302 4303 case RINGBUF_TYPE_TIME_EXTEND: 4304 /* Internal data, OK to advance */ 4305 rb_advance_reader(cpu_buffer); 4306 goto again; 4307 4308 case RINGBUF_TYPE_TIME_STAMP: 4309 if (ts) { 4310 *ts = ring_buffer_event_time_stamp(event); 4311 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4312 cpu_buffer->cpu, ts); 4313 } 4314 /* Internal data, OK to advance */ 4315 rb_advance_reader(cpu_buffer); 4316 goto again; 4317 4318 case RINGBUF_TYPE_DATA: 4319 if (ts && !(*ts)) { 4320 *ts = cpu_buffer->read_stamp + event->time_delta; 4321 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4322 cpu_buffer->cpu, ts); 4323 } 4324 if (lost_events) 4325 *lost_events = rb_lost_events(cpu_buffer); 4326 return event; 4327 4328 default: 4329 RB_WARN_ON(cpu_buffer, 1); 4330 } 4331 4332 return NULL; 4333 } 4334 EXPORT_SYMBOL_GPL(ring_buffer_peek); 4335 4336 static struct ring_buffer_event * 4337 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4338 { 4339 struct trace_buffer *buffer; 4340 struct ring_buffer_per_cpu *cpu_buffer; 4341 struct ring_buffer_event *event; 4342 int nr_loops = 0; 4343 4344 if (ts) 4345 *ts = 0; 4346 4347 cpu_buffer = iter->cpu_buffer; 4348 buffer = cpu_buffer->buffer; 4349 4350 /* 4351 * Check if someone performed a consuming read to 4352 * the buffer. A consuming read invalidates the iterator 4353 * and we need to reset the iterator in this case. 4354 */ 4355 if (unlikely(iter->cache_read != cpu_buffer->read || 4356 iter->cache_reader_page != cpu_buffer->reader_page)) 4357 rb_iter_reset(iter); 4358 4359 again: 4360 if (ring_buffer_iter_empty(iter)) 4361 return NULL; 4362 4363 /* 4364 * As the writer can mess with what the iterator is trying 4365 * to read, just give up if we fail to get an event after 4366 * three tries. The iterator is not as reliable when reading 4367 * the ring buffer with an active write as the consumer is. 4368 * Do not warn if the three failures is reached. 4369 */ 4370 if (++nr_loops > 3) 4371 return NULL; 4372 4373 if (rb_per_cpu_empty(cpu_buffer)) 4374 return NULL; 4375 4376 if (iter->head >= rb_page_size(iter->head_page)) { 4377 rb_inc_iter(iter); 4378 goto again; 4379 } 4380 4381 event = rb_iter_head_event(iter); 4382 if (!event) 4383 goto again; 4384 4385 switch (event->type_len) { 4386 case RINGBUF_TYPE_PADDING: 4387 if (rb_null_event(event)) { 4388 rb_inc_iter(iter); 4389 goto again; 4390 } 4391 rb_advance_iter(iter); 4392 return event; 4393 4394 case RINGBUF_TYPE_TIME_EXTEND: 4395 /* Internal data, OK to advance */ 4396 rb_advance_iter(iter); 4397 goto again; 4398 4399 case RINGBUF_TYPE_TIME_STAMP: 4400 if (ts) { 4401 *ts = ring_buffer_event_time_stamp(event); 4402 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 4403 cpu_buffer->cpu, ts); 4404 } 4405 /* Internal data, OK to advance */ 4406 rb_advance_iter(iter); 4407 goto again; 4408 4409 case RINGBUF_TYPE_DATA: 4410 if (ts && !(*ts)) { 4411 *ts = iter->read_stamp + event->time_delta; 4412 ring_buffer_normalize_time_stamp(buffer, 4413 cpu_buffer->cpu, ts); 4414 } 4415 return event; 4416 4417 default: 4418 RB_WARN_ON(cpu_buffer, 1); 4419 } 4420 4421 return NULL; 4422 } 4423 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 4424 4425 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 4426 { 4427 if (likely(!in_nmi())) { 4428 raw_spin_lock(&cpu_buffer->reader_lock); 4429 return true; 4430 } 4431 4432 /* 4433 * If an NMI die dumps out the content of the ring buffer 4434 * trylock must be used to prevent a deadlock if the NMI 4435 * preempted a task that holds the ring buffer locks. If 4436 * we get the lock then all is fine, if not, then continue 4437 * to do the read, but this can corrupt the ring buffer, 4438 * so it must be permanently disabled from future writes. 4439 * Reading from NMI is a oneshot deal. 4440 */ 4441 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 4442 return true; 4443 4444 /* Continue without locking, but disable the ring buffer */ 4445 atomic_inc(&cpu_buffer->record_disabled); 4446 return false; 4447 } 4448 4449 static inline void 4450 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 4451 { 4452 if (likely(locked)) 4453 raw_spin_unlock(&cpu_buffer->reader_lock); 4454 return; 4455 } 4456 4457 /** 4458 * ring_buffer_peek - peek at the next event to be read 4459 * @buffer: The ring buffer to read 4460 * @cpu: The cpu to peak at 4461 * @ts: The timestamp counter of this event. 4462 * @lost_events: a variable to store if events were lost (may be NULL) 4463 * 4464 * This will return the event that will be read next, but does 4465 * not consume the data. 4466 */ 4467 struct ring_buffer_event * 4468 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 4469 unsigned long *lost_events) 4470 { 4471 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4472 struct ring_buffer_event *event; 4473 unsigned long flags; 4474 bool dolock; 4475 4476 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4477 return NULL; 4478 4479 again: 4480 local_irq_save(flags); 4481 dolock = rb_reader_lock(cpu_buffer); 4482 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4483 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4484 rb_advance_reader(cpu_buffer); 4485 rb_reader_unlock(cpu_buffer, dolock); 4486 local_irq_restore(flags); 4487 4488 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4489 goto again; 4490 4491 return event; 4492 } 4493 4494 /** ring_buffer_iter_dropped - report if there are dropped events 4495 * @iter: The ring buffer iterator 4496 * 4497 * Returns true if there was dropped events since the last peek. 4498 */ 4499 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 4500 { 4501 bool ret = iter->missed_events != 0; 4502 4503 iter->missed_events = 0; 4504 return ret; 4505 } 4506 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 4507 4508 /** 4509 * ring_buffer_iter_peek - peek at the next event to be read 4510 * @iter: The ring buffer iterator 4511 * @ts: The timestamp counter of this event. 4512 * 4513 * This will return the event that will be read next, but does 4514 * not increment the iterator. 4515 */ 4516 struct ring_buffer_event * 4517 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 4518 { 4519 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4520 struct ring_buffer_event *event; 4521 unsigned long flags; 4522 4523 again: 4524 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4525 event = rb_iter_peek(iter, ts); 4526 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4527 4528 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4529 goto again; 4530 4531 return event; 4532 } 4533 4534 /** 4535 * ring_buffer_consume - return an event and consume it 4536 * @buffer: The ring buffer to get the next event from 4537 * @cpu: the cpu to read the buffer from 4538 * @ts: a variable to store the timestamp (may be NULL) 4539 * @lost_events: a variable to store if events were lost (may be NULL) 4540 * 4541 * Returns the next event in the ring buffer, and that event is consumed. 4542 * Meaning, that sequential reads will keep returning a different event, 4543 * and eventually empty the ring buffer if the producer is slower. 4544 */ 4545 struct ring_buffer_event * 4546 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 4547 unsigned long *lost_events) 4548 { 4549 struct ring_buffer_per_cpu *cpu_buffer; 4550 struct ring_buffer_event *event = NULL; 4551 unsigned long flags; 4552 bool dolock; 4553 4554 again: 4555 /* might be called in atomic */ 4556 preempt_disable(); 4557 4558 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4559 goto out; 4560 4561 cpu_buffer = buffer->buffers[cpu]; 4562 local_irq_save(flags); 4563 dolock = rb_reader_lock(cpu_buffer); 4564 4565 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 4566 if (event) { 4567 cpu_buffer->lost_events = 0; 4568 rb_advance_reader(cpu_buffer); 4569 } 4570 4571 rb_reader_unlock(cpu_buffer, dolock); 4572 local_irq_restore(flags); 4573 4574 out: 4575 preempt_enable(); 4576 4577 if (event && event->type_len == RINGBUF_TYPE_PADDING) 4578 goto again; 4579 4580 return event; 4581 } 4582 EXPORT_SYMBOL_GPL(ring_buffer_consume); 4583 4584 /** 4585 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 4586 * @buffer: The ring buffer to read from 4587 * @cpu: The cpu buffer to iterate over 4588 * @flags: gfp flags to use for memory allocation 4589 * 4590 * This performs the initial preparations necessary to iterate 4591 * through the buffer. Memory is allocated, buffer recording 4592 * is disabled, and the iterator pointer is returned to the caller. 4593 * 4594 * Disabling buffer recording prevents the reading from being 4595 * corrupted. This is not a consuming read, so a producer is not 4596 * expected. 4597 * 4598 * After a sequence of ring_buffer_read_prepare calls, the user is 4599 * expected to make at least one call to ring_buffer_read_prepare_sync. 4600 * Afterwards, ring_buffer_read_start is invoked to get things going 4601 * for real. 4602 * 4603 * This overall must be paired with ring_buffer_read_finish. 4604 */ 4605 struct ring_buffer_iter * 4606 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 4607 { 4608 struct ring_buffer_per_cpu *cpu_buffer; 4609 struct ring_buffer_iter *iter; 4610 4611 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4612 return NULL; 4613 4614 iter = kzalloc(sizeof(*iter), flags); 4615 if (!iter) 4616 return NULL; 4617 4618 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags); 4619 if (!iter->event) { 4620 kfree(iter); 4621 return NULL; 4622 } 4623 4624 cpu_buffer = buffer->buffers[cpu]; 4625 4626 iter->cpu_buffer = cpu_buffer; 4627 4628 atomic_inc(&cpu_buffer->resize_disabled); 4629 4630 return iter; 4631 } 4632 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 4633 4634 /** 4635 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 4636 * 4637 * All previously invoked ring_buffer_read_prepare calls to prepare 4638 * iterators will be synchronized. Afterwards, read_buffer_read_start 4639 * calls on those iterators are allowed. 4640 */ 4641 void 4642 ring_buffer_read_prepare_sync(void) 4643 { 4644 synchronize_rcu(); 4645 } 4646 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 4647 4648 /** 4649 * ring_buffer_read_start - start a non consuming read of the buffer 4650 * @iter: The iterator returned by ring_buffer_read_prepare 4651 * 4652 * This finalizes the startup of an iteration through the buffer. 4653 * The iterator comes from a call to ring_buffer_read_prepare and 4654 * an intervening ring_buffer_read_prepare_sync must have been 4655 * performed. 4656 * 4657 * Must be paired with ring_buffer_read_finish. 4658 */ 4659 void 4660 ring_buffer_read_start(struct ring_buffer_iter *iter) 4661 { 4662 struct ring_buffer_per_cpu *cpu_buffer; 4663 unsigned long flags; 4664 4665 if (!iter) 4666 return; 4667 4668 cpu_buffer = iter->cpu_buffer; 4669 4670 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4671 arch_spin_lock(&cpu_buffer->lock); 4672 rb_iter_reset(iter); 4673 arch_spin_unlock(&cpu_buffer->lock); 4674 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4675 } 4676 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 4677 4678 /** 4679 * ring_buffer_read_finish - finish reading the iterator of the buffer 4680 * @iter: The iterator retrieved by ring_buffer_start 4681 * 4682 * This re-enables the recording to the buffer, and frees the 4683 * iterator. 4684 */ 4685 void 4686 ring_buffer_read_finish(struct ring_buffer_iter *iter) 4687 { 4688 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4689 unsigned long flags; 4690 4691 /* 4692 * Ring buffer is disabled from recording, here's a good place 4693 * to check the integrity of the ring buffer. 4694 * Must prevent readers from trying to read, as the check 4695 * clears the HEAD page and readers require it. 4696 */ 4697 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4698 rb_check_pages(cpu_buffer); 4699 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4700 4701 atomic_dec(&cpu_buffer->resize_disabled); 4702 kfree(iter->event); 4703 kfree(iter); 4704 } 4705 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 4706 4707 /** 4708 * ring_buffer_iter_advance - advance the iterator to the next location 4709 * @iter: The ring buffer iterator 4710 * 4711 * Move the location of the iterator such that the next read will 4712 * be the next location of the iterator. 4713 */ 4714 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 4715 { 4716 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 4717 unsigned long flags; 4718 4719 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4720 4721 rb_advance_iter(iter); 4722 4723 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4724 } 4725 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 4726 4727 /** 4728 * ring_buffer_size - return the size of the ring buffer (in bytes) 4729 * @buffer: The ring buffer. 4730 * @cpu: The CPU to get ring buffer size from. 4731 */ 4732 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 4733 { 4734 /* 4735 * Earlier, this method returned 4736 * BUF_PAGE_SIZE * buffer->nr_pages 4737 * Since the nr_pages field is now removed, we have converted this to 4738 * return the per cpu buffer value. 4739 */ 4740 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4741 return 0; 4742 4743 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 4744 } 4745 EXPORT_SYMBOL_GPL(ring_buffer_size); 4746 4747 static void 4748 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 4749 { 4750 rb_head_page_deactivate(cpu_buffer); 4751 4752 cpu_buffer->head_page 4753 = list_entry(cpu_buffer->pages, struct buffer_page, list); 4754 local_set(&cpu_buffer->head_page->write, 0); 4755 local_set(&cpu_buffer->head_page->entries, 0); 4756 local_set(&cpu_buffer->head_page->page->commit, 0); 4757 4758 cpu_buffer->head_page->read = 0; 4759 4760 cpu_buffer->tail_page = cpu_buffer->head_page; 4761 cpu_buffer->commit_page = cpu_buffer->head_page; 4762 4763 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 4764 INIT_LIST_HEAD(&cpu_buffer->new_pages); 4765 local_set(&cpu_buffer->reader_page->write, 0); 4766 local_set(&cpu_buffer->reader_page->entries, 0); 4767 local_set(&cpu_buffer->reader_page->page->commit, 0); 4768 cpu_buffer->reader_page->read = 0; 4769 4770 local_set(&cpu_buffer->entries_bytes, 0); 4771 local_set(&cpu_buffer->overrun, 0); 4772 local_set(&cpu_buffer->commit_overrun, 0); 4773 local_set(&cpu_buffer->dropped_events, 0); 4774 local_set(&cpu_buffer->entries, 0); 4775 local_set(&cpu_buffer->committing, 0); 4776 local_set(&cpu_buffer->commits, 0); 4777 local_set(&cpu_buffer->pages_touched, 0); 4778 local_set(&cpu_buffer->pages_read, 0); 4779 cpu_buffer->last_pages_touch = 0; 4780 cpu_buffer->shortest_full = 0; 4781 cpu_buffer->read = 0; 4782 cpu_buffer->read_bytes = 0; 4783 4784 rb_time_set(&cpu_buffer->write_stamp, 0); 4785 rb_time_set(&cpu_buffer->before_stamp, 0); 4786 4787 cpu_buffer->lost_events = 0; 4788 cpu_buffer->last_overrun = 0; 4789 4790 rb_head_page_activate(cpu_buffer); 4791 } 4792 4793 /** 4794 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 4795 * @buffer: The ring buffer to reset a per cpu buffer of 4796 * @cpu: The CPU buffer to be reset 4797 */ 4798 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 4799 { 4800 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4801 unsigned long flags; 4802 4803 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4804 return; 4805 4806 atomic_inc(&cpu_buffer->resize_disabled); 4807 atomic_inc(&cpu_buffer->record_disabled); 4808 4809 /* Make sure all commits have finished */ 4810 synchronize_rcu(); 4811 4812 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4813 4814 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 4815 goto out; 4816 4817 arch_spin_lock(&cpu_buffer->lock); 4818 4819 rb_reset_cpu(cpu_buffer); 4820 4821 arch_spin_unlock(&cpu_buffer->lock); 4822 4823 out: 4824 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4825 4826 atomic_dec(&cpu_buffer->record_disabled); 4827 atomic_dec(&cpu_buffer->resize_disabled); 4828 } 4829 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 4830 4831 /** 4832 * ring_buffer_reset - reset a ring buffer 4833 * @buffer: The ring buffer to reset all cpu buffers 4834 */ 4835 void ring_buffer_reset(struct trace_buffer *buffer) 4836 { 4837 int cpu; 4838 4839 for_each_buffer_cpu(buffer, cpu) 4840 ring_buffer_reset_cpu(buffer, cpu); 4841 } 4842 EXPORT_SYMBOL_GPL(ring_buffer_reset); 4843 4844 /** 4845 * rind_buffer_empty - is the ring buffer empty? 4846 * @buffer: The ring buffer to test 4847 */ 4848 bool ring_buffer_empty(struct trace_buffer *buffer) 4849 { 4850 struct ring_buffer_per_cpu *cpu_buffer; 4851 unsigned long flags; 4852 bool dolock; 4853 int cpu; 4854 int ret; 4855 4856 /* yes this is racy, but if you don't like the race, lock the buffer */ 4857 for_each_buffer_cpu(buffer, cpu) { 4858 cpu_buffer = buffer->buffers[cpu]; 4859 local_irq_save(flags); 4860 dolock = rb_reader_lock(cpu_buffer); 4861 ret = rb_per_cpu_empty(cpu_buffer); 4862 rb_reader_unlock(cpu_buffer, dolock); 4863 local_irq_restore(flags); 4864 4865 if (!ret) 4866 return false; 4867 } 4868 4869 return true; 4870 } 4871 EXPORT_SYMBOL_GPL(ring_buffer_empty); 4872 4873 /** 4874 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 4875 * @buffer: The ring buffer 4876 * @cpu: The CPU buffer to test 4877 */ 4878 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 4879 { 4880 struct ring_buffer_per_cpu *cpu_buffer; 4881 unsigned long flags; 4882 bool dolock; 4883 int ret; 4884 4885 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4886 return true; 4887 4888 cpu_buffer = buffer->buffers[cpu]; 4889 local_irq_save(flags); 4890 dolock = rb_reader_lock(cpu_buffer); 4891 ret = rb_per_cpu_empty(cpu_buffer); 4892 rb_reader_unlock(cpu_buffer, dolock); 4893 local_irq_restore(flags); 4894 4895 return ret; 4896 } 4897 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 4898 4899 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4900 /** 4901 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 4902 * @buffer_a: One buffer to swap with 4903 * @buffer_b: The other buffer to swap with 4904 * @cpu: the CPU of the buffers to swap 4905 * 4906 * This function is useful for tracers that want to take a "snapshot" 4907 * of a CPU buffer and has another back up buffer lying around. 4908 * it is expected that the tracer handles the cpu buffer not being 4909 * used at the moment. 4910 */ 4911 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 4912 struct trace_buffer *buffer_b, int cpu) 4913 { 4914 struct ring_buffer_per_cpu *cpu_buffer_a; 4915 struct ring_buffer_per_cpu *cpu_buffer_b; 4916 int ret = -EINVAL; 4917 4918 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4919 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4920 goto out; 4921 4922 cpu_buffer_a = buffer_a->buffers[cpu]; 4923 cpu_buffer_b = buffer_b->buffers[cpu]; 4924 4925 /* At least make sure the two buffers are somewhat the same */ 4926 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4927 goto out; 4928 4929 ret = -EAGAIN; 4930 4931 if (atomic_read(&buffer_a->record_disabled)) 4932 goto out; 4933 4934 if (atomic_read(&buffer_b->record_disabled)) 4935 goto out; 4936 4937 if (atomic_read(&cpu_buffer_a->record_disabled)) 4938 goto out; 4939 4940 if (atomic_read(&cpu_buffer_b->record_disabled)) 4941 goto out; 4942 4943 /* 4944 * We can't do a synchronize_rcu here because this 4945 * function can be called in atomic context. 4946 * Normally this will be called from the same CPU as cpu. 4947 * If not it's up to the caller to protect this. 4948 */ 4949 atomic_inc(&cpu_buffer_a->record_disabled); 4950 atomic_inc(&cpu_buffer_b->record_disabled); 4951 4952 ret = -EBUSY; 4953 if (local_read(&cpu_buffer_a->committing)) 4954 goto out_dec; 4955 if (local_read(&cpu_buffer_b->committing)) 4956 goto out_dec; 4957 4958 buffer_a->buffers[cpu] = cpu_buffer_b; 4959 buffer_b->buffers[cpu] = cpu_buffer_a; 4960 4961 cpu_buffer_b->buffer = buffer_a; 4962 cpu_buffer_a->buffer = buffer_b; 4963 4964 ret = 0; 4965 4966 out_dec: 4967 atomic_dec(&cpu_buffer_a->record_disabled); 4968 atomic_dec(&cpu_buffer_b->record_disabled); 4969 out: 4970 return ret; 4971 } 4972 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4973 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4974 4975 /** 4976 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4977 * @buffer: the buffer to allocate for. 4978 * @cpu: the cpu buffer to allocate. 4979 * 4980 * This function is used in conjunction with ring_buffer_read_page. 4981 * When reading a full page from the ring buffer, these functions 4982 * can be used to speed up the process. The calling function should 4983 * allocate a few pages first with this function. Then when it 4984 * needs to get pages from the ring buffer, it passes the result 4985 * of this function into ring_buffer_read_page, which will swap 4986 * the page that was allocated, with the read page of the buffer. 4987 * 4988 * Returns: 4989 * The page allocated, or ERR_PTR 4990 */ 4991 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 4992 { 4993 struct ring_buffer_per_cpu *cpu_buffer; 4994 struct buffer_data_page *bpage = NULL; 4995 unsigned long flags; 4996 struct page *page; 4997 4998 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4999 return ERR_PTR(-ENODEV); 5000 5001 cpu_buffer = buffer->buffers[cpu]; 5002 local_irq_save(flags); 5003 arch_spin_lock(&cpu_buffer->lock); 5004 5005 if (cpu_buffer->free_page) { 5006 bpage = cpu_buffer->free_page; 5007 cpu_buffer->free_page = NULL; 5008 } 5009 5010 arch_spin_unlock(&cpu_buffer->lock); 5011 local_irq_restore(flags); 5012 5013 if (bpage) 5014 goto out; 5015 5016 page = alloc_pages_node(cpu_to_node(cpu), 5017 GFP_KERNEL | __GFP_NORETRY, 0); 5018 if (!page) 5019 return ERR_PTR(-ENOMEM); 5020 5021 bpage = page_address(page); 5022 5023 out: 5024 rb_init_page(bpage); 5025 5026 return bpage; 5027 } 5028 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 5029 5030 /** 5031 * ring_buffer_free_read_page - free an allocated read page 5032 * @buffer: the buffer the page was allocate for 5033 * @cpu: the cpu buffer the page came from 5034 * @data: the page to free 5035 * 5036 * Free a page allocated from ring_buffer_alloc_read_page. 5037 */ 5038 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) 5039 { 5040 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5041 struct buffer_data_page *bpage = data; 5042 struct page *page = virt_to_page(bpage); 5043 unsigned long flags; 5044 5045 /* If the page is still in use someplace else, we can't reuse it */ 5046 if (page_ref_count(page) > 1) 5047 goto out; 5048 5049 local_irq_save(flags); 5050 arch_spin_lock(&cpu_buffer->lock); 5051 5052 if (!cpu_buffer->free_page) { 5053 cpu_buffer->free_page = bpage; 5054 bpage = NULL; 5055 } 5056 5057 arch_spin_unlock(&cpu_buffer->lock); 5058 local_irq_restore(flags); 5059 5060 out: 5061 free_page((unsigned long)bpage); 5062 } 5063 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 5064 5065 /** 5066 * ring_buffer_read_page - extract a page from the ring buffer 5067 * @buffer: buffer to extract from 5068 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 5069 * @len: amount to extract 5070 * @cpu: the cpu of the buffer to extract 5071 * @full: should the extraction only happen when the page is full. 5072 * 5073 * This function will pull out a page from the ring buffer and consume it. 5074 * @data_page must be the address of the variable that was returned 5075 * from ring_buffer_alloc_read_page. This is because the page might be used 5076 * to swap with a page in the ring buffer. 5077 * 5078 * for example: 5079 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 5080 * if (IS_ERR(rpage)) 5081 * return PTR_ERR(rpage); 5082 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 5083 * if (ret >= 0) 5084 * process_page(rpage, ret); 5085 * 5086 * When @full is set, the function will not return true unless 5087 * the writer is off the reader page. 5088 * 5089 * Note: it is up to the calling functions to handle sleeps and wakeups. 5090 * The ring buffer can be used anywhere in the kernel and can not 5091 * blindly call wake_up. The layer that uses the ring buffer must be 5092 * responsible for that. 5093 * 5094 * Returns: 5095 * >=0 if data has been transferred, returns the offset of consumed data. 5096 * <0 if no data has been transferred. 5097 */ 5098 int ring_buffer_read_page(struct trace_buffer *buffer, 5099 void **data_page, size_t len, int cpu, int full) 5100 { 5101 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5102 struct ring_buffer_event *event; 5103 struct buffer_data_page *bpage; 5104 struct buffer_page *reader; 5105 unsigned long missed_events; 5106 unsigned long flags; 5107 unsigned int commit; 5108 unsigned int read; 5109 u64 save_timestamp; 5110 int ret = -1; 5111 5112 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5113 goto out; 5114 5115 /* 5116 * If len is not big enough to hold the page header, then 5117 * we can not copy anything. 5118 */ 5119 if (len <= BUF_PAGE_HDR_SIZE) 5120 goto out; 5121 5122 len -= BUF_PAGE_HDR_SIZE; 5123 5124 if (!data_page) 5125 goto out; 5126 5127 bpage = *data_page; 5128 if (!bpage) 5129 goto out; 5130 5131 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5132 5133 reader = rb_get_reader_page(cpu_buffer); 5134 if (!reader) 5135 goto out_unlock; 5136 5137 event = rb_reader_event(cpu_buffer); 5138 5139 read = reader->read; 5140 commit = rb_page_commit(reader); 5141 5142 /* Check if any events were dropped */ 5143 missed_events = cpu_buffer->lost_events; 5144 5145 /* 5146 * If this page has been partially read or 5147 * if len is not big enough to read the rest of the page or 5148 * a writer is still on the page, then 5149 * we must copy the data from the page to the buffer. 5150 * Otherwise, we can simply swap the page with the one passed in. 5151 */ 5152 if (read || (len < (commit - read)) || 5153 cpu_buffer->reader_page == cpu_buffer->commit_page) { 5154 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 5155 unsigned int rpos = read; 5156 unsigned int pos = 0; 5157 unsigned int size; 5158 5159 if (full) 5160 goto out_unlock; 5161 5162 if (len > (commit - read)) 5163 len = (commit - read); 5164 5165 /* Always keep the time extend and data together */ 5166 size = rb_event_ts_length(event); 5167 5168 if (len < size) 5169 goto out_unlock; 5170 5171 /* save the current timestamp, since the user will need it */ 5172 save_timestamp = cpu_buffer->read_stamp; 5173 5174 /* Need to copy one event at a time */ 5175 do { 5176 /* We need the size of one event, because 5177 * rb_advance_reader only advances by one event, 5178 * whereas rb_event_ts_length may include the size of 5179 * one or two events. 5180 * We have already ensured there's enough space if this 5181 * is a time extend. */ 5182 size = rb_event_length(event); 5183 memcpy(bpage->data + pos, rpage->data + rpos, size); 5184 5185 len -= size; 5186 5187 rb_advance_reader(cpu_buffer); 5188 rpos = reader->read; 5189 pos += size; 5190 5191 if (rpos >= commit) 5192 break; 5193 5194 event = rb_reader_event(cpu_buffer); 5195 /* Always keep the time extend and data together */ 5196 size = rb_event_ts_length(event); 5197 } while (len >= size); 5198 5199 /* update bpage */ 5200 local_set(&bpage->commit, pos); 5201 bpage->time_stamp = save_timestamp; 5202 5203 /* we copied everything to the beginning */ 5204 read = 0; 5205 } else { 5206 /* update the entry counter */ 5207 cpu_buffer->read += rb_page_entries(reader); 5208 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 5209 5210 /* swap the pages */ 5211 rb_init_page(bpage); 5212 bpage = reader->page; 5213 reader->page = *data_page; 5214 local_set(&reader->write, 0); 5215 local_set(&reader->entries, 0); 5216 reader->read = 0; 5217 *data_page = bpage; 5218 5219 /* 5220 * Use the real_end for the data size, 5221 * This gives us a chance to store the lost events 5222 * on the page. 5223 */ 5224 if (reader->real_end) 5225 local_set(&bpage->commit, reader->real_end); 5226 } 5227 ret = read; 5228 5229 cpu_buffer->lost_events = 0; 5230 5231 commit = local_read(&bpage->commit); 5232 /* 5233 * Set a flag in the commit field if we lost events 5234 */ 5235 if (missed_events) { 5236 /* If there is room at the end of the page to save the 5237 * missed events, then record it there. 5238 */ 5239 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 5240 memcpy(&bpage->data[commit], &missed_events, 5241 sizeof(missed_events)); 5242 local_add(RB_MISSED_STORED, &bpage->commit); 5243 commit += sizeof(missed_events); 5244 } 5245 local_add(RB_MISSED_EVENTS, &bpage->commit); 5246 } 5247 5248 /* 5249 * This page may be off to user land. Zero it out here. 5250 */ 5251 if (commit < BUF_PAGE_SIZE) 5252 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 5253 5254 out_unlock: 5255 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5256 5257 out: 5258 return ret; 5259 } 5260 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 5261 5262 /* 5263 * We only allocate new buffers, never free them if the CPU goes down. 5264 * If we were to free the buffer, then the user would lose any trace that was in 5265 * the buffer. 5266 */ 5267 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 5268 { 5269 struct trace_buffer *buffer; 5270 long nr_pages_same; 5271 int cpu_i; 5272 unsigned long nr_pages; 5273 5274 buffer = container_of(node, struct trace_buffer, node); 5275 if (cpumask_test_cpu(cpu, buffer->cpumask)) 5276 return 0; 5277 5278 nr_pages = 0; 5279 nr_pages_same = 1; 5280 /* check if all cpu sizes are same */ 5281 for_each_buffer_cpu(buffer, cpu_i) { 5282 /* fill in the size from first enabled cpu */ 5283 if (nr_pages == 0) 5284 nr_pages = buffer->buffers[cpu_i]->nr_pages; 5285 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 5286 nr_pages_same = 0; 5287 break; 5288 } 5289 } 5290 /* allocate minimum pages, user can later expand it */ 5291 if (!nr_pages_same) 5292 nr_pages = 2; 5293 buffer->buffers[cpu] = 5294 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 5295 if (!buffer->buffers[cpu]) { 5296 WARN(1, "failed to allocate ring buffer on CPU %u\n", 5297 cpu); 5298 return -ENOMEM; 5299 } 5300 smp_wmb(); 5301 cpumask_set_cpu(cpu, buffer->cpumask); 5302 return 0; 5303 } 5304 5305 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 5306 /* 5307 * This is a basic integrity check of the ring buffer. 5308 * Late in the boot cycle this test will run when configured in. 5309 * It will kick off a thread per CPU that will go into a loop 5310 * writing to the per cpu ring buffer various sizes of data. 5311 * Some of the data will be large items, some small. 5312 * 5313 * Another thread is created that goes into a spin, sending out 5314 * IPIs to the other CPUs to also write into the ring buffer. 5315 * this is to test the nesting ability of the buffer. 5316 * 5317 * Basic stats are recorded and reported. If something in the 5318 * ring buffer should happen that's not expected, a big warning 5319 * is displayed and all ring buffers are disabled. 5320 */ 5321 static struct task_struct *rb_threads[NR_CPUS] __initdata; 5322 5323 struct rb_test_data { 5324 struct trace_buffer *buffer; 5325 unsigned long events; 5326 unsigned long bytes_written; 5327 unsigned long bytes_alloc; 5328 unsigned long bytes_dropped; 5329 unsigned long events_nested; 5330 unsigned long bytes_written_nested; 5331 unsigned long bytes_alloc_nested; 5332 unsigned long bytes_dropped_nested; 5333 int min_size_nested; 5334 int max_size_nested; 5335 int max_size; 5336 int min_size; 5337 int cpu; 5338 int cnt; 5339 }; 5340 5341 static struct rb_test_data rb_data[NR_CPUS] __initdata; 5342 5343 /* 1 meg per cpu */ 5344 #define RB_TEST_BUFFER_SIZE 1048576 5345 5346 static char rb_string[] __initdata = 5347 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 5348 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 5349 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 5350 5351 static bool rb_test_started __initdata; 5352 5353 struct rb_item { 5354 int size; 5355 char str[]; 5356 }; 5357 5358 static __init int rb_write_something(struct rb_test_data *data, bool nested) 5359 { 5360 struct ring_buffer_event *event; 5361 struct rb_item *item; 5362 bool started; 5363 int event_len; 5364 int size; 5365 int len; 5366 int cnt; 5367 5368 /* Have nested writes different that what is written */ 5369 cnt = data->cnt + (nested ? 27 : 0); 5370 5371 /* Multiply cnt by ~e, to make some unique increment */ 5372 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 5373 5374 len = size + sizeof(struct rb_item); 5375 5376 started = rb_test_started; 5377 /* read rb_test_started before checking buffer enabled */ 5378 smp_rmb(); 5379 5380 event = ring_buffer_lock_reserve(data->buffer, len); 5381 if (!event) { 5382 /* Ignore dropped events before test starts. */ 5383 if (started) { 5384 if (nested) 5385 data->bytes_dropped += len; 5386 else 5387 data->bytes_dropped_nested += len; 5388 } 5389 return len; 5390 } 5391 5392 event_len = ring_buffer_event_length(event); 5393 5394 if (RB_WARN_ON(data->buffer, event_len < len)) 5395 goto out; 5396 5397 item = ring_buffer_event_data(event); 5398 item->size = size; 5399 memcpy(item->str, rb_string, size); 5400 5401 if (nested) { 5402 data->bytes_alloc_nested += event_len; 5403 data->bytes_written_nested += len; 5404 data->events_nested++; 5405 if (!data->min_size_nested || len < data->min_size_nested) 5406 data->min_size_nested = len; 5407 if (len > data->max_size_nested) 5408 data->max_size_nested = len; 5409 } else { 5410 data->bytes_alloc += event_len; 5411 data->bytes_written += len; 5412 data->events++; 5413 if (!data->min_size || len < data->min_size) 5414 data->max_size = len; 5415 if (len > data->max_size) 5416 data->max_size = len; 5417 } 5418 5419 out: 5420 ring_buffer_unlock_commit(data->buffer, event); 5421 5422 return 0; 5423 } 5424 5425 static __init int rb_test(void *arg) 5426 { 5427 struct rb_test_data *data = arg; 5428 5429 while (!kthread_should_stop()) { 5430 rb_write_something(data, false); 5431 data->cnt++; 5432 5433 set_current_state(TASK_INTERRUPTIBLE); 5434 /* Now sleep between a min of 100-300us and a max of 1ms */ 5435 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 5436 } 5437 5438 return 0; 5439 } 5440 5441 static __init void rb_ipi(void *ignore) 5442 { 5443 struct rb_test_data *data; 5444 int cpu = smp_processor_id(); 5445 5446 data = &rb_data[cpu]; 5447 rb_write_something(data, true); 5448 } 5449 5450 static __init int rb_hammer_test(void *arg) 5451 { 5452 while (!kthread_should_stop()) { 5453 5454 /* Send an IPI to all cpus to write data! */ 5455 smp_call_function(rb_ipi, NULL, 1); 5456 /* No sleep, but for non preempt, let others run */ 5457 schedule(); 5458 } 5459 5460 return 0; 5461 } 5462 5463 static __init int test_ringbuffer(void) 5464 { 5465 struct task_struct *rb_hammer; 5466 struct trace_buffer *buffer; 5467 int cpu; 5468 int ret = 0; 5469 5470 if (security_locked_down(LOCKDOWN_TRACEFS)) { 5471 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 5472 return 0; 5473 } 5474 5475 pr_info("Running ring buffer tests...\n"); 5476 5477 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 5478 if (WARN_ON(!buffer)) 5479 return 0; 5480 5481 /* Disable buffer so that threads can't write to it yet */ 5482 ring_buffer_record_off(buffer); 5483 5484 for_each_online_cpu(cpu) { 5485 rb_data[cpu].buffer = buffer; 5486 rb_data[cpu].cpu = cpu; 5487 rb_data[cpu].cnt = cpu; 5488 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], 5489 "rbtester/%d", cpu); 5490 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 5491 pr_cont("FAILED\n"); 5492 ret = PTR_ERR(rb_threads[cpu]); 5493 goto out_free; 5494 } 5495 5496 kthread_bind(rb_threads[cpu], cpu); 5497 wake_up_process(rb_threads[cpu]); 5498 } 5499 5500 /* Now create the rb hammer! */ 5501 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 5502 if (WARN_ON(IS_ERR(rb_hammer))) { 5503 pr_cont("FAILED\n"); 5504 ret = PTR_ERR(rb_hammer); 5505 goto out_free; 5506 } 5507 5508 ring_buffer_record_on(buffer); 5509 /* 5510 * Show buffer is enabled before setting rb_test_started. 5511 * Yes there's a small race window where events could be 5512 * dropped and the thread wont catch it. But when a ring 5513 * buffer gets enabled, there will always be some kind of 5514 * delay before other CPUs see it. Thus, we don't care about 5515 * those dropped events. We care about events dropped after 5516 * the threads see that the buffer is active. 5517 */ 5518 smp_wmb(); 5519 rb_test_started = true; 5520 5521 set_current_state(TASK_INTERRUPTIBLE); 5522 /* Just run for 10 seconds */; 5523 schedule_timeout(10 * HZ); 5524 5525 kthread_stop(rb_hammer); 5526 5527 out_free: 5528 for_each_online_cpu(cpu) { 5529 if (!rb_threads[cpu]) 5530 break; 5531 kthread_stop(rb_threads[cpu]); 5532 } 5533 if (ret) { 5534 ring_buffer_free(buffer); 5535 return ret; 5536 } 5537 5538 /* Report! */ 5539 pr_info("finished\n"); 5540 for_each_online_cpu(cpu) { 5541 struct ring_buffer_event *event; 5542 struct rb_test_data *data = &rb_data[cpu]; 5543 struct rb_item *item; 5544 unsigned long total_events; 5545 unsigned long total_dropped; 5546 unsigned long total_written; 5547 unsigned long total_alloc; 5548 unsigned long total_read = 0; 5549 unsigned long total_size = 0; 5550 unsigned long total_len = 0; 5551 unsigned long total_lost = 0; 5552 unsigned long lost; 5553 int big_event_size; 5554 int small_event_size; 5555 5556 ret = -1; 5557 5558 total_events = data->events + data->events_nested; 5559 total_written = data->bytes_written + data->bytes_written_nested; 5560 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 5561 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 5562 5563 big_event_size = data->max_size + data->max_size_nested; 5564 small_event_size = data->min_size + data->min_size_nested; 5565 5566 pr_info("CPU %d:\n", cpu); 5567 pr_info(" events: %ld\n", total_events); 5568 pr_info(" dropped bytes: %ld\n", total_dropped); 5569 pr_info(" alloced bytes: %ld\n", total_alloc); 5570 pr_info(" written bytes: %ld\n", total_written); 5571 pr_info(" biggest event: %d\n", big_event_size); 5572 pr_info(" smallest event: %d\n", small_event_size); 5573 5574 if (RB_WARN_ON(buffer, total_dropped)) 5575 break; 5576 5577 ret = 0; 5578 5579 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 5580 total_lost += lost; 5581 item = ring_buffer_event_data(event); 5582 total_len += ring_buffer_event_length(event); 5583 total_size += item->size + sizeof(struct rb_item); 5584 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 5585 pr_info("FAILED!\n"); 5586 pr_info("buffer had: %.*s\n", item->size, item->str); 5587 pr_info("expected: %.*s\n", item->size, rb_string); 5588 RB_WARN_ON(buffer, 1); 5589 ret = -1; 5590 break; 5591 } 5592 total_read++; 5593 } 5594 if (ret) 5595 break; 5596 5597 ret = -1; 5598 5599 pr_info(" read events: %ld\n", total_read); 5600 pr_info(" lost events: %ld\n", total_lost); 5601 pr_info(" total events: %ld\n", total_lost + total_read); 5602 pr_info(" recorded len bytes: %ld\n", total_len); 5603 pr_info(" recorded size bytes: %ld\n", total_size); 5604 if (total_lost) 5605 pr_info(" With dropped events, record len and size may not match\n" 5606 " alloced and written from above\n"); 5607 if (!total_lost) { 5608 if (RB_WARN_ON(buffer, total_len != total_alloc || 5609 total_size != total_written)) 5610 break; 5611 } 5612 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 5613 break; 5614 5615 ret = 0; 5616 } 5617 if (!ret) 5618 pr_info("Ring buffer PASSED!\n"); 5619 5620 ring_buffer_free(buffer); 5621 return 0; 5622 } 5623 5624 late_initcall(test_ringbuffer); 5625 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 5626