xref: /openbmc/linux/kernel/trace/ftrace.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_WARN_ON(cond)			\
49 	({					\
50 		int ___r = cond;		\
51 		if (WARN_ON(___r))		\
52 			ftrace_kill();		\
53 		___r;				\
54 	})
55 
56 #define FTRACE_WARN_ON_ONCE(cond)		\
57 	({					\
58 		int ___r = cond;		\
59 		if (WARN_ON_ONCE(___r))		\
60 			ftrace_kill();		\
61 		___r;				\
62 	})
63 
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67 
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname)	\
70 	.func_hash		= &opsname.local_hash,			\
71 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75 
76 enum {
77 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
78 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
79 };
80 
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 	.func		= ftrace_stub,
83 	.flags		= FTRACE_OPS_FL_STUB,
84 	INIT_OPS_HASH(ftrace_list_end)
85 };
86 
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90 
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95 
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 	struct trace_array *tr;
99 
100 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 		return false;
102 
103 	tr = ops->private;
104 
105 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107 
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109 
110 /*
111  * ftrace_disabled is set when an anomaly is discovered.
112  * ftrace_disabled is much stronger than ftrace_enabled.
113  */
114 static int ftrace_disabled __read_mostly;
115 
116 DEFINE_MUTEX(ftrace_lock);
117 
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121 
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 				 struct ftrace_ops *op, struct ftrace_regs *fregs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130 
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 		mutex_init(&ops->local_hash.regex_lock);
136 		ops->func_hash = &ops->local_hash;
137 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 	}
139 #endif
140 }
141 
142 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
143 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
144 {
145 	struct trace_array *tr = op->private;
146 	int pid;
147 
148 	if (tr) {
149 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
150 		if (pid == FTRACE_PID_IGNORE)
151 			return;
152 		if (pid != FTRACE_PID_TRACE &&
153 		    pid != current->pid)
154 			return;
155 	}
156 
157 	op->saved_func(ip, parent_ip, op, fregs);
158 }
159 
160 static void ftrace_sync_ipi(void *data)
161 {
162 	/* Probably not needed, but do it anyway */
163 	smp_rmb();
164 }
165 
166 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
167 {
168 	/*
169 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
170 	 * then it needs to call the list anyway.
171 	 */
172 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
173 	    FTRACE_FORCE_LIST_FUNC)
174 		return ftrace_ops_list_func;
175 
176 	return ftrace_ops_get_func(ops);
177 }
178 
179 static void update_ftrace_function(void)
180 {
181 	ftrace_func_t func;
182 
183 	/*
184 	 * Prepare the ftrace_ops that the arch callback will use.
185 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
186 	 * will point to the ops we want.
187 	 */
188 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
189 						lockdep_is_held(&ftrace_lock));
190 
191 	/* If there's no ftrace_ops registered, just call the stub function */
192 	if (set_function_trace_op == &ftrace_list_end) {
193 		func = ftrace_stub;
194 
195 	/*
196 	 * If we are at the end of the list and this ops is
197 	 * recursion safe and not dynamic and the arch supports passing ops,
198 	 * then have the mcount trampoline call the function directly.
199 	 */
200 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
201 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
202 		func = ftrace_ops_get_list_func(ftrace_ops_list);
203 
204 	} else {
205 		/* Just use the default ftrace_ops */
206 		set_function_trace_op = &ftrace_list_end;
207 		func = ftrace_ops_list_func;
208 	}
209 
210 	update_function_graph_func();
211 
212 	/* If there's no change, then do nothing more here */
213 	if (ftrace_trace_function == func)
214 		return;
215 
216 	/*
217 	 * If we are using the list function, it doesn't care
218 	 * about the function_trace_ops.
219 	 */
220 	if (func == ftrace_ops_list_func) {
221 		ftrace_trace_function = func;
222 		/*
223 		 * Don't even bother setting function_trace_ops,
224 		 * it would be racy to do so anyway.
225 		 */
226 		return;
227 	}
228 
229 #ifndef CONFIG_DYNAMIC_FTRACE
230 	/*
231 	 * For static tracing, we need to be a bit more careful.
232 	 * The function change takes affect immediately. Thus,
233 	 * we need to coordinate the setting of the function_trace_ops
234 	 * with the setting of the ftrace_trace_function.
235 	 *
236 	 * Set the function to the list ops, which will call the
237 	 * function we want, albeit indirectly, but it handles the
238 	 * ftrace_ops and doesn't depend on function_trace_op.
239 	 */
240 	ftrace_trace_function = ftrace_ops_list_func;
241 	/*
242 	 * Make sure all CPUs see this. Yes this is slow, but static
243 	 * tracing is slow and nasty to have enabled.
244 	 */
245 	synchronize_rcu_tasks_rude();
246 	/* Now all cpus are using the list ops. */
247 	function_trace_op = set_function_trace_op;
248 	/* Make sure the function_trace_op is visible on all CPUs */
249 	smp_wmb();
250 	/* Nasty way to force a rmb on all cpus */
251 	smp_call_function(ftrace_sync_ipi, NULL, 1);
252 	/* OK, we are all set to update the ftrace_trace_function now! */
253 #endif /* !CONFIG_DYNAMIC_FTRACE */
254 
255 	ftrace_trace_function = func;
256 }
257 
258 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
259 			   struct ftrace_ops *ops)
260 {
261 	rcu_assign_pointer(ops->next, *list);
262 
263 	/*
264 	 * We are entering ops into the list but another
265 	 * CPU might be walking that list. We need to make sure
266 	 * the ops->next pointer is valid before another CPU sees
267 	 * the ops pointer included into the list.
268 	 */
269 	rcu_assign_pointer(*list, ops);
270 }
271 
272 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
273 			     struct ftrace_ops *ops)
274 {
275 	struct ftrace_ops **p;
276 
277 	/*
278 	 * If we are removing the last function, then simply point
279 	 * to the ftrace_stub.
280 	 */
281 	if (rcu_dereference_protected(*list,
282 			lockdep_is_held(&ftrace_lock)) == ops &&
283 	    rcu_dereference_protected(ops->next,
284 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
285 		*list = &ftrace_list_end;
286 		return 0;
287 	}
288 
289 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
290 		if (*p == ops)
291 			break;
292 
293 	if (*p != ops)
294 		return -1;
295 
296 	*p = (*p)->next;
297 	return 0;
298 }
299 
300 static void ftrace_update_trampoline(struct ftrace_ops *ops);
301 
302 int __register_ftrace_function(struct ftrace_ops *ops)
303 {
304 	if (ops->flags & FTRACE_OPS_FL_DELETED)
305 		return -EINVAL;
306 
307 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
308 		return -EBUSY;
309 
310 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
311 	/*
312 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
313 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
314 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
315 	 */
316 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
317 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
318 		return -EINVAL;
319 
320 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
321 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
322 #endif
323 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
324 		return -EBUSY;
325 
326 	if (!core_kernel_data((unsigned long)ops))
327 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
328 
329 	add_ftrace_ops(&ftrace_ops_list, ops);
330 
331 	/* Always save the function, and reset at unregistering */
332 	ops->saved_func = ops->func;
333 
334 	if (ftrace_pids_enabled(ops))
335 		ops->func = ftrace_pid_func;
336 
337 	ftrace_update_trampoline(ops);
338 
339 	if (ftrace_enabled)
340 		update_ftrace_function();
341 
342 	return 0;
343 }
344 
345 int __unregister_ftrace_function(struct ftrace_ops *ops)
346 {
347 	int ret;
348 
349 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
350 		return -EBUSY;
351 
352 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
353 
354 	if (ret < 0)
355 		return ret;
356 
357 	if (ftrace_enabled)
358 		update_ftrace_function();
359 
360 	ops->func = ops->saved_func;
361 
362 	return 0;
363 }
364 
365 static void ftrace_update_pid_func(void)
366 {
367 	struct ftrace_ops *op;
368 
369 	/* Only do something if we are tracing something */
370 	if (ftrace_trace_function == ftrace_stub)
371 		return;
372 
373 	do_for_each_ftrace_op(op, ftrace_ops_list) {
374 		if (op->flags & FTRACE_OPS_FL_PID) {
375 			op->func = ftrace_pids_enabled(op) ?
376 				ftrace_pid_func : op->saved_func;
377 			ftrace_update_trampoline(op);
378 		}
379 	} while_for_each_ftrace_op(op);
380 
381 	update_ftrace_function();
382 }
383 
384 #ifdef CONFIG_FUNCTION_PROFILER
385 struct ftrace_profile {
386 	struct hlist_node		node;
387 	unsigned long			ip;
388 	unsigned long			counter;
389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
390 	unsigned long long		time;
391 	unsigned long long		time_squared;
392 #endif
393 };
394 
395 struct ftrace_profile_page {
396 	struct ftrace_profile_page	*next;
397 	unsigned long			index;
398 	struct ftrace_profile		records[];
399 };
400 
401 struct ftrace_profile_stat {
402 	atomic_t			disabled;
403 	struct hlist_head		*hash;
404 	struct ftrace_profile_page	*pages;
405 	struct ftrace_profile_page	*start;
406 	struct tracer_stat		stat;
407 };
408 
409 #define PROFILE_RECORDS_SIZE						\
410 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
411 
412 #define PROFILES_PER_PAGE					\
413 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
414 
415 static int ftrace_profile_enabled __read_mostly;
416 
417 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
418 static DEFINE_MUTEX(ftrace_profile_lock);
419 
420 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
421 
422 #define FTRACE_PROFILE_HASH_BITS 10
423 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
424 
425 static void *
426 function_stat_next(void *v, int idx)
427 {
428 	struct ftrace_profile *rec = v;
429 	struct ftrace_profile_page *pg;
430 
431 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
432 
433  again:
434 	if (idx != 0)
435 		rec++;
436 
437 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
438 		pg = pg->next;
439 		if (!pg)
440 			return NULL;
441 		rec = &pg->records[0];
442 		if (!rec->counter)
443 			goto again;
444 	}
445 
446 	return rec;
447 }
448 
449 static void *function_stat_start(struct tracer_stat *trace)
450 {
451 	struct ftrace_profile_stat *stat =
452 		container_of(trace, struct ftrace_profile_stat, stat);
453 
454 	if (!stat || !stat->start)
455 		return NULL;
456 
457 	return function_stat_next(&stat->start->records[0], 0);
458 }
459 
460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
461 /* function graph compares on total time */
462 static int function_stat_cmp(const void *p1, const void *p2)
463 {
464 	const struct ftrace_profile *a = p1;
465 	const struct ftrace_profile *b = p2;
466 
467 	if (a->time < b->time)
468 		return -1;
469 	if (a->time > b->time)
470 		return 1;
471 	else
472 		return 0;
473 }
474 #else
475 /* not function graph compares against hits */
476 static int function_stat_cmp(const void *p1, const void *p2)
477 {
478 	const struct ftrace_profile *a = p1;
479 	const struct ftrace_profile *b = p2;
480 
481 	if (a->counter < b->counter)
482 		return -1;
483 	if (a->counter > b->counter)
484 		return 1;
485 	else
486 		return 0;
487 }
488 #endif
489 
490 static int function_stat_headers(struct seq_file *m)
491 {
492 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
493 	seq_puts(m, "  Function                               "
494 		 "Hit    Time            Avg             s^2\n"
495 		    "  --------                               "
496 		 "---    ----            ---             ---\n");
497 #else
498 	seq_puts(m, "  Function                               Hit\n"
499 		    "  --------                               ---\n");
500 #endif
501 	return 0;
502 }
503 
504 static int function_stat_show(struct seq_file *m, void *v)
505 {
506 	struct ftrace_profile *rec = v;
507 	char str[KSYM_SYMBOL_LEN];
508 	int ret = 0;
509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
510 	static struct trace_seq s;
511 	unsigned long long avg;
512 	unsigned long long stddev;
513 #endif
514 	mutex_lock(&ftrace_profile_lock);
515 
516 	/* we raced with function_profile_reset() */
517 	if (unlikely(rec->counter == 0)) {
518 		ret = -EBUSY;
519 		goto out;
520 	}
521 
522 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
523 	avg = div64_ul(rec->time, rec->counter);
524 	if (tracing_thresh && (avg < tracing_thresh))
525 		goto out;
526 #endif
527 
528 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
529 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
530 
531 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
532 	seq_puts(m, "    ");
533 
534 	/* Sample standard deviation (s^2) */
535 	if (rec->counter <= 1)
536 		stddev = 0;
537 	else {
538 		/*
539 		 * Apply Welford's method:
540 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
541 		 */
542 		stddev = rec->counter * rec->time_squared -
543 			 rec->time * rec->time;
544 
545 		/*
546 		 * Divide only 1000 for ns^2 -> us^2 conversion.
547 		 * trace_print_graph_duration will divide 1000 again.
548 		 */
549 		stddev = div64_ul(stddev,
550 				  rec->counter * (rec->counter - 1) * 1000);
551 	}
552 
553 	trace_seq_init(&s);
554 	trace_print_graph_duration(rec->time, &s);
555 	trace_seq_puts(&s, "    ");
556 	trace_print_graph_duration(avg, &s);
557 	trace_seq_puts(&s, "    ");
558 	trace_print_graph_duration(stddev, &s);
559 	trace_print_seq(m, &s);
560 #endif
561 	seq_putc(m, '\n');
562 out:
563 	mutex_unlock(&ftrace_profile_lock);
564 
565 	return ret;
566 }
567 
568 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
569 {
570 	struct ftrace_profile_page *pg;
571 
572 	pg = stat->pages = stat->start;
573 
574 	while (pg) {
575 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
576 		pg->index = 0;
577 		pg = pg->next;
578 	}
579 
580 	memset(stat->hash, 0,
581 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
582 }
583 
584 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
585 {
586 	struct ftrace_profile_page *pg;
587 	int functions;
588 	int pages;
589 	int i;
590 
591 	/* If we already allocated, do nothing */
592 	if (stat->pages)
593 		return 0;
594 
595 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
596 	if (!stat->pages)
597 		return -ENOMEM;
598 
599 #ifdef CONFIG_DYNAMIC_FTRACE
600 	functions = ftrace_update_tot_cnt;
601 #else
602 	/*
603 	 * We do not know the number of functions that exist because
604 	 * dynamic tracing is what counts them. With past experience
605 	 * we have around 20K functions. That should be more than enough.
606 	 * It is highly unlikely we will execute every function in
607 	 * the kernel.
608 	 */
609 	functions = 20000;
610 #endif
611 
612 	pg = stat->start = stat->pages;
613 
614 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
615 
616 	for (i = 1; i < pages; i++) {
617 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
618 		if (!pg->next)
619 			goto out_free;
620 		pg = pg->next;
621 	}
622 
623 	return 0;
624 
625  out_free:
626 	pg = stat->start;
627 	while (pg) {
628 		unsigned long tmp = (unsigned long)pg;
629 
630 		pg = pg->next;
631 		free_page(tmp);
632 	}
633 
634 	stat->pages = NULL;
635 	stat->start = NULL;
636 
637 	return -ENOMEM;
638 }
639 
640 static int ftrace_profile_init_cpu(int cpu)
641 {
642 	struct ftrace_profile_stat *stat;
643 	int size;
644 
645 	stat = &per_cpu(ftrace_profile_stats, cpu);
646 
647 	if (stat->hash) {
648 		/* If the profile is already created, simply reset it */
649 		ftrace_profile_reset(stat);
650 		return 0;
651 	}
652 
653 	/*
654 	 * We are profiling all functions, but usually only a few thousand
655 	 * functions are hit. We'll make a hash of 1024 items.
656 	 */
657 	size = FTRACE_PROFILE_HASH_SIZE;
658 
659 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
660 
661 	if (!stat->hash)
662 		return -ENOMEM;
663 
664 	/* Preallocate the function profiling pages */
665 	if (ftrace_profile_pages_init(stat) < 0) {
666 		kfree(stat->hash);
667 		stat->hash = NULL;
668 		return -ENOMEM;
669 	}
670 
671 	return 0;
672 }
673 
674 static int ftrace_profile_init(void)
675 {
676 	int cpu;
677 	int ret = 0;
678 
679 	for_each_possible_cpu(cpu) {
680 		ret = ftrace_profile_init_cpu(cpu);
681 		if (ret)
682 			break;
683 	}
684 
685 	return ret;
686 }
687 
688 /* interrupts must be disabled */
689 static struct ftrace_profile *
690 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
691 {
692 	struct ftrace_profile *rec;
693 	struct hlist_head *hhd;
694 	unsigned long key;
695 
696 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
697 	hhd = &stat->hash[key];
698 
699 	if (hlist_empty(hhd))
700 		return NULL;
701 
702 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
703 		if (rec->ip == ip)
704 			return rec;
705 	}
706 
707 	return NULL;
708 }
709 
710 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
711 			       struct ftrace_profile *rec)
712 {
713 	unsigned long key;
714 
715 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
716 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
717 }
718 
719 /*
720  * The memory is already allocated, this simply finds a new record to use.
721  */
722 static struct ftrace_profile *
723 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
724 {
725 	struct ftrace_profile *rec = NULL;
726 
727 	/* prevent recursion (from NMIs) */
728 	if (atomic_inc_return(&stat->disabled) != 1)
729 		goto out;
730 
731 	/*
732 	 * Try to find the function again since an NMI
733 	 * could have added it
734 	 */
735 	rec = ftrace_find_profiled_func(stat, ip);
736 	if (rec)
737 		goto out;
738 
739 	if (stat->pages->index == PROFILES_PER_PAGE) {
740 		if (!stat->pages->next)
741 			goto out;
742 		stat->pages = stat->pages->next;
743 	}
744 
745 	rec = &stat->pages->records[stat->pages->index++];
746 	rec->ip = ip;
747 	ftrace_add_profile(stat, rec);
748 
749  out:
750 	atomic_dec(&stat->disabled);
751 
752 	return rec;
753 }
754 
755 static void
756 function_profile_call(unsigned long ip, unsigned long parent_ip,
757 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
758 {
759 	struct ftrace_profile_stat *stat;
760 	struct ftrace_profile *rec;
761 	unsigned long flags;
762 
763 	if (!ftrace_profile_enabled)
764 		return;
765 
766 	local_irq_save(flags);
767 
768 	stat = this_cpu_ptr(&ftrace_profile_stats);
769 	if (!stat->hash || !ftrace_profile_enabled)
770 		goto out;
771 
772 	rec = ftrace_find_profiled_func(stat, ip);
773 	if (!rec) {
774 		rec = ftrace_profile_alloc(stat, ip);
775 		if (!rec)
776 			goto out;
777 	}
778 
779 	rec->counter++;
780  out:
781 	local_irq_restore(flags);
782 }
783 
784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
785 static bool fgraph_graph_time = true;
786 
787 void ftrace_graph_graph_time_control(bool enable)
788 {
789 	fgraph_graph_time = enable;
790 }
791 
792 static int profile_graph_entry(struct ftrace_graph_ent *trace)
793 {
794 	struct ftrace_ret_stack *ret_stack;
795 
796 	function_profile_call(trace->func, 0, NULL, NULL);
797 
798 	/* If function graph is shutting down, ret_stack can be NULL */
799 	if (!current->ret_stack)
800 		return 0;
801 
802 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
803 	if (ret_stack)
804 		ret_stack->subtime = 0;
805 
806 	return 1;
807 }
808 
809 static void profile_graph_return(struct ftrace_graph_ret *trace)
810 {
811 	struct ftrace_ret_stack *ret_stack;
812 	struct ftrace_profile_stat *stat;
813 	unsigned long long calltime;
814 	struct ftrace_profile *rec;
815 	unsigned long flags;
816 
817 	local_irq_save(flags);
818 	stat = this_cpu_ptr(&ftrace_profile_stats);
819 	if (!stat->hash || !ftrace_profile_enabled)
820 		goto out;
821 
822 	/* If the calltime was zero'd ignore it */
823 	if (!trace->calltime)
824 		goto out;
825 
826 	calltime = trace->rettime - trace->calltime;
827 
828 	if (!fgraph_graph_time) {
829 
830 		/* Append this call time to the parent time to subtract */
831 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
832 		if (ret_stack)
833 			ret_stack->subtime += calltime;
834 
835 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
836 		if (ret_stack && ret_stack->subtime < calltime)
837 			calltime -= ret_stack->subtime;
838 		else
839 			calltime = 0;
840 	}
841 
842 	rec = ftrace_find_profiled_func(stat, trace->func);
843 	if (rec) {
844 		rec->time += calltime;
845 		rec->time_squared += calltime * calltime;
846 	}
847 
848  out:
849 	local_irq_restore(flags);
850 }
851 
852 static struct fgraph_ops fprofiler_ops = {
853 	.entryfunc = &profile_graph_entry,
854 	.retfunc = &profile_graph_return,
855 };
856 
857 static int register_ftrace_profiler(void)
858 {
859 	return register_ftrace_graph(&fprofiler_ops);
860 }
861 
862 static void unregister_ftrace_profiler(void)
863 {
864 	unregister_ftrace_graph(&fprofiler_ops);
865 }
866 #else
867 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
868 	.func		= function_profile_call,
869 	.flags		= FTRACE_OPS_FL_INITIALIZED,
870 	INIT_OPS_HASH(ftrace_profile_ops)
871 };
872 
873 static int register_ftrace_profiler(void)
874 {
875 	return register_ftrace_function(&ftrace_profile_ops);
876 }
877 
878 static void unregister_ftrace_profiler(void)
879 {
880 	unregister_ftrace_function(&ftrace_profile_ops);
881 }
882 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
883 
884 static ssize_t
885 ftrace_profile_write(struct file *filp, const char __user *ubuf,
886 		     size_t cnt, loff_t *ppos)
887 {
888 	unsigned long val;
889 	int ret;
890 
891 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
892 	if (ret)
893 		return ret;
894 
895 	val = !!val;
896 
897 	mutex_lock(&ftrace_profile_lock);
898 	if (ftrace_profile_enabled ^ val) {
899 		if (val) {
900 			ret = ftrace_profile_init();
901 			if (ret < 0) {
902 				cnt = ret;
903 				goto out;
904 			}
905 
906 			ret = register_ftrace_profiler();
907 			if (ret < 0) {
908 				cnt = ret;
909 				goto out;
910 			}
911 			ftrace_profile_enabled = 1;
912 		} else {
913 			ftrace_profile_enabled = 0;
914 			/*
915 			 * unregister_ftrace_profiler calls stop_machine
916 			 * so this acts like an synchronize_rcu.
917 			 */
918 			unregister_ftrace_profiler();
919 		}
920 	}
921  out:
922 	mutex_unlock(&ftrace_profile_lock);
923 
924 	*ppos += cnt;
925 
926 	return cnt;
927 }
928 
929 static ssize_t
930 ftrace_profile_read(struct file *filp, char __user *ubuf,
931 		     size_t cnt, loff_t *ppos)
932 {
933 	char buf[64];		/* big enough to hold a number */
934 	int r;
935 
936 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
937 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
938 }
939 
940 static const struct file_operations ftrace_profile_fops = {
941 	.open		= tracing_open_generic,
942 	.read		= ftrace_profile_read,
943 	.write		= ftrace_profile_write,
944 	.llseek		= default_llseek,
945 };
946 
947 /* used to initialize the real stat files */
948 static struct tracer_stat function_stats __initdata = {
949 	.name		= "functions",
950 	.stat_start	= function_stat_start,
951 	.stat_next	= function_stat_next,
952 	.stat_cmp	= function_stat_cmp,
953 	.stat_headers	= function_stat_headers,
954 	.stat_show	= function_stat_show
955 };
956 
957 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
958 {
959 	struct ftrace_profile_stat *stat;
960 	struct dentry *entry;
961 	char *name;
962 	int ret;
963 	int cpu;
964 
965 	for_each_possible_cpu(cpu) {
966 		stat = &per_cpu(ftrace_profile_stats, cpu);
967 
968 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
969 		if (!name) {
970 			/*
971 			 * The files created are permanent, if something happens
972 			 * we still do not free memory.
973 			 */
974 			WARN(1,
975 			     "Could not allocate stat file for cpu %d\n",
976 			     cpu);
977 			return;
978 		}
979 		stat->stat = function_stats;
980 		stat->stat.name = name;
981 		ret = register_stat_tracer(&stat->stat);
982 		if (ret) {
983 			WARN(1,
984 			     "Could not register function stat for cpu %d\n",
985 			     cpu);
986 			kfree(name);
987 			return;
988 		}
989 	}
990 
991 	entry = tracefs_create_file("function_profile_enabled", 0644,
992 				    d_tracer, NULL, &ftrace_profile_fops);
993 	if (!entry)
994 		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
995 }
996 
997 #else /* CONFIG_FUNCTION_PROFILER */
998 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
999 {
1000 }
1001 #endif /* CONFIG_FUNCTION_PROFILER */
1002 
1003 #ifdef CONFIG_DYNAMIC_FTRACE
1004 
1005 static struct ftrace_ops *removed_ops;
1006 
1007 /*
1008  * Set when doing a global update, like enabling all recs or disabling them.
1009  * It is not set when just updating a single ftrace_ops.
1010  */
1011 static bool update_all_ops;
1012 
1013 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1014 # error Dynamic ftrace depends on MCOUNT_RECORD
1015 #endif
1016 
1017 struct ftrace_func_probe {
1018 	struct ftrace_probe_ops	*probe_ops;
1019 	struct ftrace_ops	ops;
1020 	struct trace_array	*tr;
1021 	struct list_head	list;
1022 	void			*data;
1023 	int			ref;
1024 };
1025 
1026 /*
1027  * We make these constant because no one should touch them,
1028  * but they are used as the default "empty hash", to avoid allocating
1029  * it all the time. These are in a read only section such that if
1030  * anyone does try to modify it, it will cause an exception.
1031  */
1032 static const struct hlist_head empty_buckets[1];
1033 static const struct ftrace_hash empty_hash = {
1034 	.buckets = (struct hlist_head *)empty_buckets,
1035 };
1036 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1037 
1038 struct ftrace_ops global_ops = {
1039 	.func				= ftrace_stub,
1040 	.local_hash.notrace_hash	= EMPTY_HASH,
1041 	.local_hash.filter_hash		= EMPTY_HASH,
1042 	INIT_OPS_HASH(global_ops)
1043 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1044 					  FTRACE_OPS_FL_PID,
1045 };
1046 
1047 /*
1048  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1049  */
1050 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1051 {
1052 	struct ftrace_ops *op = NULL;
1053 
1054 	/*
1055 	 * Some of the ops may be dynamically allocated,
1056 	 * they are freed after a synchronize_rcu().
1057 	 */
1058 	preempt_disable_notrace();
1059 
1060 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1061 		/*
1062 		 * This is to check for dynamically allocated trampolines.
1063 		 * Trampolines that are in kernel text will have
1064 		 * core_kernel_text() return true.
1065 		 */
1066 		if (op->trampoline && op->trampoline_size)
1067 			if (addr >= op->trampoline &&
1068 			    addr < op->trampoline + op->trampoline_size) {
1069 				preempt_enable_notrace();
1070 				return op;
1071 			}
1072 	} while_for_each_ftrace_op(op);
1073 	preempt_enable_notrace();
1074 
1075 	return NULL;
1076 }
1077 
1078 /*
1079  * This is used by __kernel_text_address() to return true if the
1080  * address is on a dynamically allocated trampoline that would
1081  * not return true for either core_kernel_text() or
1082  * is_module_text_address().
1083  */
1084 bool is_ftrace_trampoline(unsigned long addr)
1085 {
1086 	return ftrace_ops_trampoline(addr) != NULL;
1087 }
1088 
1089 struct ftrace_page {
1090 	struct ftrace_page	*next;
1091 	struct dyn_ftrace	*records;
1092 	int			index;
1093 	int			order;
1094 };
1095 
1096 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1097 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1098 
1099 static struct ftrace_page	*ftrace_pages_start;
1100 static struct ftrace_page	*ftrace_pages;
1101 
1102 static __always_inline unsigned long
1103 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1104 {
1105 	if (hash->size_bits > 0)
1106 		return hash_long(ip, hash->size_bits);
1107 
1108 	return 0;
1109 }
1110 
1111 /* Only use this function if ftrace_hash_empty() has already been tested */
1112 static __always_inline struct ftrace_func_entry *
1113 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1114 {
1115 	unsigned long key;
1116 	struct ftrace_func_entry *entry;
1117 	struct hlist_head *hhd;
1118 
1119 	key = ftrace_hash_key(hash, ip);
1120 	hhd = &hash->buckets[key];
1121 
1122 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1123 		if (entry->ip == ip)
1124 			return entry;
1125 	}
1126 	return NULL;
1127 }
1128 
1129 /**
1130  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1131  * @hash: The hash to look at
1132  * @ip: The instruction pointer to test
1133  *
1134  * Search a given @hash to see if a given instruction pointer (@ip)
1135  * exists in it.
1136  *
1137  * Returns the entry that holds the @ip if found. NULL otherwise.
1138  */
1139 struct ftrace_func_entry *
1140 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1141 {
1142 	if (ftrace_hash_empty(hash))
1143 		return NULL;
1144 
1145 	return __ftrace_lookup_ip(hash, ip);
1146 }
1147 
1148 static void __add_hash_entry(struct ftrace_hash *hash,
1149 			     struct ftrace_func_entry *entry)
1150 {
1151 	struct hlist_head *hhd;
1152 	unsigned long key;
1153 
1154 	key = ftrace_hash_key(hash, entry->ip);
1155 	hhd = &hash->buckets[key];
1156 	hlist_add_head(&entry->hlist, hhd);
1157 	hash->count++;
1158 }
1159 
1160 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1161 {
1162 	struct ftrace_func_entry *entry;
1163 
1164 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1165 	if (!entry)
1166 		return -ENOMEM;
1167 
1168 	entry->ip = ip;
1169 	__add_hash_entry(hash, entry);
1170 
1171 	return 0;
1172 }
1173 
1174 static void
1175 free_hash_entry(struct ftrace_hash *hash,
1176 		  struct ftrace_func_entry *entry)
1177 {
1178 	hlist_del(&entry->hlist);
1179 	kfree(entry);
1180 	hash->count--;
1181 }
1182 
1183 static void
1184 remove_hash_entry(struct ftrace_hash *hash,
1185 		  struct ftrace_func_entry *entry)
1186 {
1187 	hlist_del_rcu(&entry->hlist);
1188 	hash->count--;
1189 }
1190 
1191 static void ftrace_hash_clear(struct ftrace_hash *hash)
1192 {
1193 	struct hlist_head *hhd;
1194 	struct hlist_node *tn;
1195 	struct ftrace_func_entry *entry;
1196 	int size = 1 << hash->size_bits;
1197 	int i;
1198 
1199 	if (!hash->count)
1200 		return;
1201 
1202 	for (i = 0; i < size; i++) {
1203 		hhd = &hash->buckets[i];
1204 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1205 			free_hash_entry(hash, entry);
1206 	}
1207 	FTRACE_WARN_ON(hash->count);
1208 }
1209 
1210 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1211 {
1212 	list_del(&ftrace_mod->list);
1213 	kfree(ftrace_mod->module);
1214 	kfree(ftrace_mod->func);
1215 	kfree(ftrace_mod);
1216 }
1217 
1218 static void clear_ftrace_mod_list(struct list_head *head)
1219 {
1220 	struct ftrace_mod_load *p, *n;
1221 
1222 	/* stack tracer isn't supported yet */
1223 	if (!head)
1224 		return;
1225 
1226 	mutex_lock(&ftrace_lock);
1227 	list_for_each_entry_safe(p, n, head, list)
1228 		free_ftrace_mod(p);
1229 	mutex_unlock(&ftrace_lock);
1230 }
1231 
1232 static void free_ftrace_hash(struct ftrace_hash *hash)
1233 {
1234 	if (!hash || hash == EMPTY_HASH)
1235 		return;
1236 	ftrace_hash_clear(hash);
1237 	kfree(hash->buckets);
1238 	kfree(hash);
1239 }
1240 
1241 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1242 {
1243 	struct ftrace_hash *hash;
1244 
1245 	hash = container_of(rcu, struct ftrace_hash, rcu);
1246 	free_ftrace_hash(hash);
1247 }
1248 
1249 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1250 {
1251 	if (!hash || hash == EMPTY_HASH)
1252 		return;
1253 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1254 }
1255 
1256 void ftrace_free_filter(struct ftrace_ops *ops)
1257 {
1258 	ftrace_ops_init(ops);
1259 	free_ftrace_hash(ops->func_hash->filter_hash);
1260 	free_ftrace_hash(ops->func_hash->notrace_hash);
1261 }
1262 
1263 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1264 {
1265 	struct ftrace_hash *hash;
1266 	int size;
1267 
1268 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1269 	if (!hash)
1270 		return NULL;
1271 
1272 	size = 1 << size_bits;
1273 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1274 
1275 	if (!hash->buckets) {
1276 		kfree(hash);
1277 		return NULL;
1278 	}
1279 
1280 	hash->size_bits = size_bits;
1281 
1282 	return hash;
1283 }
1284 
1285 
1286 static int ftrace_add_mod(struct trace_array *tr,
1287 			  const char *func, const char *module,
1288 			  int enable)
1289 {
1290 	struct ftrace_mod_load *ftrace_mod;
1291 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1292 
1293 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1294 	if (!ftrace_mod)
1295 		return -ENOMEM;
1296 
1297 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1298 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1299 	ftrace_mod->enable = enable;
1300 
1301 	if (!ftrace_mod->func || !ftrace_mod->module)
1302 		goto out_free;
1303 
1304 	list_add(&ftrace_mod->list, mod_head);
1305 
1306 	return 0;
1307 
1308  out_free:
1309 	free_ftrace_mod(ftrace_mod);
1310 
1311 	return -ENOMEM;
1312 }
1313 
1314 static struct ftrace_hash *
1315 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1316 {
1317 	struct ftrace_func_entry *entry;
1318 	struct ftrace_hash *new_hash;
1319 	int size;
1320 	int ret;
1321 	int i;
1322 
1323 	new_hash = alloc_ftrace_hash(size_bits);
1324 	if (!new_hash)
1325 		return NULL;
1326 
1327 	if (hash)
1328 		new_hash->flags = hash->flags;
1329 
1330 	/* Empty hash? */
1331 	if (ftrace_hash_empty(hash))
1332 		return new_hash;
1333 
1334 	size = 1 << hash->size_bits;
1335 	for (i = 0; i < size; i++) {
1336 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1337 			ret = add_hash_entry(new_hash, entry->ip);
1338 			if (ret < 0)
1339 				goto free_hash;
1340 		}
1341 	}
1342 
1343 	FTRACE_WARN_ON(new_hash->count != hash->count);
1344 
1345 	return new_hash;
1346 
1347  free_hash:
1348 	free_ftrace_hash(new_hash);
1349 	return NULL;
1350 }
1351 
1352 static void
1353 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1354 static void
1355 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1356 
1357 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1358 				       struct ftrace_hash *new_hash);
1359 
1360 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1361 {
1362 	struct ftrace_func_entry *entry;
1363 	struct ftrace_hash *new_hash;
1364 	struct hlist_head *hhd;
1365 	struct hlist_node *tn;
1366 	int bits = 0;
1367 	int i;
1368 
1369 	/*
1370 	 * Use around half the size (max bit of it), but
1371 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1372 	 */
1373 	bits = fls(size / 2);
1374 
1375 	/* Don't allocate too much */
1376 	if (bits > FTRACE_HASH_MAX_BITS)
1377 		bits = FTRACE_HASH_MAX_BITS;
1378 
1379 	new_hash = alloc_ftrace_hash(bits);
1380 	if (!new_hash)
1381 		return NULL;
1382 
1383 	new_hash->flags = src->flags;
1384 
1385 	size = 1 << src->size_bits;
1386 	for (i = 0; i < size; i++) {
1387 		hhd = &src->buckets[i];
1388 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1389 			remove_hash_entry(src, entry);
1390 			__add_hash_entry(new_hash, entry);
1391 		}
1392 	}
1393 	return new_hash;
1394 }
1395 
1396 static struct ftrace_hash *
1397 __ftrace_hash_move(struct ftrace_hash *src)
1398 {
1399 	int size = src->count;
1400 
1401 	/*
1402 	 * If the new source is empty, just return the empty_hash.
1403 	 */
1404 	if (ftrace_hash_empty(src))
1405 		return EMPTY_HASH;
1406 
1407 	return dup_hash(src, size);
1408 }
1409 
1410 static int
1411 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1412 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1413 {
1414 	struct ftrace_hash *new_hash;
1415 	int ret;
1416 
1417 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1418 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1419 		return -EINVAL;
1420 
1421 	new_hash = __ftrace_hash_move(src);
1422 	if (!new_hash)
1423 		return -ENOMEM;
1424 
1425 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1426 	if (enable) {
1427 		/* IPMODIFY should be updated only when filter_hash updating */
1428 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1429 		if (ret < 0) {
1430 			free_ftrace_hash(new_hash);
1431 			return ret;
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * Remove the current set, update the hash and add
1437 	 * them back.
1438 	 */
1439 	ftrace_hash_rec_disable_modify(ops, enable);
1440 
1441 	rcu_assign_pointer(*dst, new_hash);
1442 
1443 	ftrace_hash_rec_enable_modify(ops, enable);
1444 
1445 	return 0;
1446 }
1447 
1448 static bool hash_contains_ip(unsigned long ip,
1449 			     struct ftrace_ops_hash *hash)
1450 {
1451 	/*
1452 	 * The function record is a match if it exists in the filter
1453 	 * hash and not in the notrace hash. Note, an empty hash is
1454 	 * considered a match for the filter hash, but an empty
1455 	 * notrace hash is considered not in the notrace hash.
1456 	 */
1457 	return (ftrace_hash_empty(hash->filter_hash) ||
1458 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1459 		(ftrace_hash_empty(hash->notrace_hash) ||
1460 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1461 }
1462 
1463 /*
1464  * Test the hashes for this ops to see if we want to call
1465  * the ops->func or not.
1466  *
1467  * It's a match if the ip is in the ops->filter_hash or
1468  * the filter_hash does not exist or is empty,
1469  *  AND
1470  * the ip is not in the ops->notrace_hash.
1471  *
1472  * This needs to be called with preemption disabled as
1473  * the hashes are freed with call_rcu().
1474  */
1475 int
1476 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1477 {
1478 	struct ftrace_ops_hash hash;
1479 	int ret;
1480 
1481 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1482 	/*
1483 	 * There's a small race when adding ops that the ftrace handler
1484 	 * that wants regs, may be called without them. We can not
1485 	 * allow that handler to be called if regs is NULL.
1486 	 */
1487 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1488 		return 0;
1489 #endif
1490 
1491 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1492 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1493 
1494 	if (hash_contains_ip(ip, &hash))
1495 		ret = 1;
1496 	else
1497 		ret = 0;
1498 
1499 	return ret;
1500 }
1501 
1502 /*
1503  * This is a double for. Do not use 'break' to break out of the loop,
1504  * you must use a goto.
1505  */
1506 #define do_for_each_ftrace_rec(pg, rec)					\
1507 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1508 		int _____i;						\
1509 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1510 			rec = &pg->records[_____i];
1511 
1512 #define while_for_each_ftrace_rec()		\
1513 		}				\
1514 	}
1515 
1516 
1517 static int ftrace_cmp_recs(const void *a, const void *b)
1518 {
1519 	const struct dyn_ftrace *key = a;
1520 	const struct dyn_ftrace *rec = b;
1521 
1522 	if (key->flags < rec->ip)
1523 		return -1;
1524 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1525 		return 1;
1526 	return 0;
1527 }
1528 
1529 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1530 {
1531 	struct ftrace_page *pg;
1532 	struct dyn_ftrace *rec = NULL;
1533 	struct dyn_ftrace key;
1534 
1535 	key.ip = start;
1536 	key.flags = end;	/* overload flags, as it is unsigned long */
1537 
1538 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1539 		if (end < pg->records[0].ip ||
1540 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1541 			continue;
1542 		rec = bsearch(&key, pg->records, pg->index,
1543 			      sizeof(struct dyn_ftrace),
1544 			      ftrace_cmp_recs);
1545 		if (rec)
1546 			break;
1547 	}
1548 	return rec;
1549 }
1550 
1551 /**
1552  * ftrace_location_range - return the first address of a traced location
1553  *	if it touches the given ip range
1554  * @start: start of range to search.
1555  * @end: end of range to search (inclusive). @end points to the last byte
1556  *	to check.
1557  *
1558  * Returns rec->ip if the related ftrace location is a least partly within
1559  * the given address range. That is, the first address of the instruction
1560  * that is either a NOP or call to the function tracer. It checks the ftrace
1561  * internal tables to determine if the address belongs or not.
1562  */
1563 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1564 {
1565 	struct dyn_ftrace *rec;
1566 
1567 	rec = lookup_rec(start, end);
1568 	if (rec)
1569 		return rec->ip;
1570 
1571 	return 0;
1572 }
1573 
1574 /**
1575  * ftrace_location - return true if the ip giving is a traced location
1576  * @ip: the instruction pointer to check
1577  *
1578  * Returns rec->ip if @ip given is a pointer to a ftrace location.
1579  * That is, the instruction that is either a NOP or call to
1580  * the function tracer. It checks the ftrace internal tables to
1581  * determine if the address belongs or not.
1582  */
1583 unsigned long ftrace_location(unsigned long ip)
1584 {
1585 	return ftrace_location_range(ip, ip);
1586 }
1587 
1588 /**
1589  * ftrace_text_reserved - return true if range contains an ftrace location
1590  * @start: start of range to search
1591  * @end: end of range to search (inclusive). @end points to the last byte to check.
1592  *
1593  * Returns 1 if @start and @end contains a ftrace location.
1594  * That is, the instruction that is either a NOP or call to
1595  * the function tracer. It checks the ftrace internal tables to
1596  * determine if the address belongs or not.
1597  */
1598 int ftrace_text_reserved(const void *start, const void *end)
1599 {
1600 	unsigned long ret;
1601 
1602 	ret = ftrace_location_range((unsigned long)start,
1603 				    (unsigned long)end);
1604 
1605 	return (int)!!ret;
1606 }
1607 
1608 /* Test if ops registered to this rec needs regs */
1609 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1610 {
1611 	struct ftrace_ops *ops;
1612 	bool keep_regs = false;
1613 
1614 	for (ops = ftrace_ops_list;
1615 	     ops != &ftrace_list_end; ops = ops->next) {
1616 		/* pass rec in as regs to have non-NULL val */
1617 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1618 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1619 				keep_regs = true;
1620 				break;
1621 			}
1622 		}
1623 	}
1624 
1625 	return  keep_regs;
1626 }
1627 
1628 static struct ftrace_ops *
1629 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1630 static struct ftrace_ops *
1631 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1632 static struct ftrace_ops *
1633 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1634 
1635 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1636 				     int filter_hash,
1637 				     bool inc)
1638 {
1639 	struct ftrace_hash *hash;
1640 	struct ftrace_hash *other_hash;
1641 	struct ftrace_page *pg;
1642 	struct dyn_ftrace *rec;
1643 	bool update = false;
1644 	int count = 0;
1645 	int all = false;
1646 
1647 	/* Only update if the ops has been registered */
1648 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1649 		return false;
1650 
1651 	/*
1652 	 * In the filter_hash case:
1653 	 *   If the count is zero, we update all records.
1654 	 *   Otherwise we just update the items in the hash.
1655 	 *
1656 	 * In the notrace_hash case:
1657 	 *   We enable the update in the hash.
1658 	 *   As disabling notrace means enabling the tracing,
1659 	 *   and enabling notrace means disabling, the inc variable
1660 	 *   gets inversed.
1661 	 */
1662 	if (filter_hash) {
1663 		hash = ops->func_hash->filter_hash;
1664 		other_hash = ops->func_hash->notrace_hash;
1665 		if (ftrace_hash_empty(hash))
1666 			all = true;
1667 	} else {
1668 		inc = !inc;
1669 		hash = ops->func_hash->notrace_hash;
1670 		other_hash = ops->func_hash->filter_hash;
1671 		/*
1672 		 * If the notrace hash has no items,
1673 		 * then there's nothing to do.
1674 		 */
1675 		if (ftrace_hash_empty(hash))
1676 			return false;
1677 	}
1678 
1679 	do_for_each_ftrace_rec(pg, rec) {
1680 		int in_other_hash = 0;
1681 		int in_hash = 0;
1682 		int match = 0;
1683 
1684 		if (rec->flags & FTRACE_FL_DISABLED)
1685 			continue;
1686 
1687 		if (all) {
1688 			/*
1689 			 * Only the filter_hash affects all records.
1690 			 * Update if the record is not in the notrace hash.
1691 			 */
1692 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1693 				match = 1;
1694 		} else {
1695 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1696 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1697 
1698 			/*
1699 			 * If filter_hash is set, we want to match all functions
1700 			 * that are in the hash but not in the other hash.
1701 			 *
1702 			 * If filter_hash is not set, then we are decrementing.
1703 			 * That means we match anything that is in the hash
1704 			 * and also in the other_hash. That is, we need to turn
1705 			 * off functions in the other hash because they are disabled
1706 			 * by this hash.
1707 			 */
1708 			if (filter_hash && in_hash && !in_other_hash)
1709 				match = 1;
1710 			else if (!filter_hash && in_hash &&
1711 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1712 				match = 1;
1713 		}
1714 		if (!match)
1715 			continue;
1716 
1717 		if (inc) {
1718 			rec->flags++;
1719 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1720 				return false;
1721 
1722 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1723 				rec->flags |= FTRACE_FL_DIRECT;
1724 
1725 			/*
1726 			 * If there's only a single callback registered to a
1727 			 * function, and the ops has a trampoline registered
1728 			 * for it, then we can call it directly.
1729 			 */
1730 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1731 				rec->flags |= FTRACE_FL_TRAMP;
1732 			else
1733 				/*
1734 				 * If we are adding another function callback
1735 				 * to this function, and the previous had a
1736 				 * custom trampoline in use, then we need to go
1737 				 * back to the default trampoline.
1738 				 */
1739 				rec->flags &= ~FTRACE_FL_TRAMP;
1740 
1741 			/*
1742 			 * If any ops wants regs saved for this function
1743 			 * then all ops will get saved regs.
1744 			 */
1745 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1746 				rec->flags |= FTRACE_FL_REGS;
1747 		} else {
1748 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1749 				return false;
1750 			rec->flags--;
1751 
1752 			/*
1753 			 * Only the internal direct_ops should have the
1754 			 * DIRECT flag set. Thus, if it is removing a
1755 			 * function, then that function should no longer
1756 			 * be direct.
1757 			 */
1758 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1759 				rec->flags &= ~FTRACE_FL_DIRECT;
1760 
1761 			/*
1762 			 * If the rec had REGS enabled and the ops that is
1763 			 * being removed had REGS set, then see if there is
1764 			 * still any ops for this record that wants regs.
1765 			 * If not, we can stop recording them.
1766 			 */
1767 			if (ftrace_rec_count(rec) > 0 &&
1768 			    rec->flags & FTRACE_FL_REGS &&
1769 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1770 				if (!test_rec_ops_needs_regs(rec))
1771 					rec->flags &= ~FTRACE_FL_REGS;
1772 			}
1773 
1774 			/*
1775 			 * The TRAMP needs to be set only if rec count
1776 			 * is decremented to one, and the ops that is
1777 			 * left has a trampoline. As TRAMP can only be
1778 			 * enabled if there is only a single ops attached
1779 			 * to it.
1780 			 */
1781 			if (ftrace_rec_count(rec) == 1 &&
1782 			    ftrace_find_tramp_ops_any_other(rec, ops))
1783 				rec->flags |= FTRACE_FL_TRAMP;
1784 			else
1785 				rec->flags &= ~FTRACE_FL_TRAMP;
1786 
1787 			/*
1788 			 * flags will be cleared in ftrace_check_record()
1789 			 * if rec count is zero.
1790 			 */
1791 		}
1792 		count++;
1793 
1794 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1795 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1796 
1797 		/* Shortcut, if we handled all records, we are done. */
1798 		if (!all && count == hash->count)
1799 			return update;
1800 	} while_for_each_ftrace_rec();
1801 
1802 	return update;
1803 }
1804 
1805 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1806 				    int filter_hash)
1807 {
1808 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1809 }
1810 
1811 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1812 				   int filter_hash)
1813 {
1814 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1815 }
1816 
1817 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1818 					  int filter_hash, int inc)
1819 {
1820 	struct ftrace_ops *op;
1821 
1822 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1823 
1824 	if (ops->func_hash != &global_ops.local_hash)
1825 		return;
1826 
1827 	/*
1828 	 * If the ops shares the global_ops hash, then we need to update
1829 	 * all ops that are enabled and use this hash.
1830 	 */
1831 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1832 		/* Already done */
1833 		if (op == ops)
1834 			continue;
1835 		if (op->func_hash == &global_ops.local_hash)
1836 			__ftrace_hash_rec_update(op, filter_hash, inc);
1837 	} while_for_each_ftrace_op(op);
1838 }
1839 
1840 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1841 					   int filter_hash)
1842 {
1843 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1844 }
1845 
1846 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1847 					  int filter_hash)
1848 {
1849 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1850 }
1851 
1852 /*
1853  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1854  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1855  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1856  * Note that old_hash and new_hash has below meanings
1857  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1858  *  - If the hash is EMPTY_HASH, it hits nothing
1859  *  - Anything else hits the recs which match the hash entries.
1860  */
1861 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1862 					 struct ftrace_hash *old_hash,
1863 					 struct ftrace_hash *new_hash)
1864 {
1865 	struct ftrace_page *pg;
1866 	struct dyn_ftrace *rec, *end = NULL;
1867 	int in_old, in_new;
1868 
1869 	/* Only update if the ops has been registered */
1870 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1871 		return 0;
1872 
1873 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1874 		return 0;
1875 
1876 	/*
1877 	 * Since the IPMODIFY is a very address sensitive action, we do not
1878 	 * allow ftrace_ops to set all functions to new hash.
1879 	 */
1880 	if (!new_hash || !old_hash)
1881 		return -EINVAL;
1882 
1883 	/* Update rec->flags */
1884 	do_for_each_ftrace_rec(pg, rec) {
1885 
1886 		if (rec->flags & FTRACE_FL_DISABLED)
1887 			continue;
1888 
1889 		/* We need to update only differences of filter_hash */
1890 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1891 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1892 		if (in_old == in_new)
1893 			continue;
1894 
1895 		if (in_new) {
1896 			/* New entries must ensure no others are using it */
1897 			if (rec->flags & FTRACE_FL_IPMODIFY)
1898 				goto rollback;
1899 			rec->flags |= FTRACE_FL_IPMODIFY;
1900 		} else /* Removed entry */
1901 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1902 	} while_for_each_ftrace_rec();
1903 
1904 	return 0;
1905 
1906 rollback:
1907 	end = rec;
1908 
1909 	/* Roll back what we did above */
1910 	do_for_each_ftrace_rec(pg, rec) {
1911 
1912 		if (rec->flags & FTRACE_FL_DISABLED)
1913 			continue;
1914 
1915 		if (rec == end)
1916 			goto err_out;
1917 
1918 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1919 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1920 		if (in_old == in_new)
1921 			continue;
1922 
1923 		if (in_new)
1924 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1925 		else
1926 			rec->flags |= FTRACE_FL_IPMODIFY;
1927 	} while_for_each_ftrace_rec();
1928 
1929 err_out:
1930 	return -EBUSY;
1931 }
1932 
1933 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1934 {
1935 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1936 
1937 	if (ftrace_hash_empty(hash))
1938 		hash = NULL;
1939 
1940 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1941 }
1942 
1943 /* Disabling always succeeds */
1944 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1945 {
1946 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1947 
1948 	if (ftrace_hash_empty(hash))
1949 		hash = NULL;
1950 
1951 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1952 }
1953 
1954 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1955 				       struct ftrace_hash *new_hash)
1956 {
1957 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1958 
1959 	if (ftrace_hash_empty(old_hash))
1960 		old_hash = NULL;
1961 
1962 	if (ftrace_hash_empty(new_hash))
1963 		new_hash = NULL;
1964 
1965 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1966 }
1967 
1968 static void print_ip_ins(const char *fmt, const unsigned char *p)
1969 {
1970 	char ins[MCOUNT_INSN_SIZE];
1971 	int i;
1972 
1973 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
1974 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
1975 		return;
1976 	}
1977 
1978 	printk(KERN_CONT "%s", fmt);
1979 
1980 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1981 		printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]);
1982 }
1983 
1984 enum ftrace_bug_type ftrace_bug_type;
1985 const void *ftrace_expected;
1986 
1987 static void print_bug_type(void)
1988 {
1989 	switch (ftrace_bug_type) {
1990 	case FTRACE_BUG_UNKNOWN:
1991 		break;
1992 	case FTRACE_BUG_INIT:
1993 		pr_info("Initializing ftrace call sites\n");
1994 		break;
1995 	case FTRACE_BUG_NOP:
1996 		pr_info("Setting ftrace call site to NOP\n");
1997 		break;
1998 	case FTRACE_BUG_CALL:
1999 		pr_info("Setting ftrace call site to call ftrace function\n");
2000 		break;
2001 	case FTRACE_BUG_UPDATE:
2002 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2003 		break;
2004 	}
2005 }
2006 
2007 /**
2008  * ftrace_bug - report and shutdown function tracer
2009  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2010  * @rec: The record that failed
2011  *
2012  * The arch code that enables or disables the function tracing
2013  * can call ftrace_bug() when it has detected a problem in
2014  * modifying the code. @failed should be one of either:
2015  * EFAULT - if the problem happens on reading the @ip address
2016  * EINVAL - if what is read at @ip is not what was expected
2017  * EPERM - if the problem happens on writing to the @ip address
2018  */
2019 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2020 {
2021 	unsigned long ip = rec ? rec->ip : 0;
2022 
2023 	pr_info("------------[ ftrace bug ]------------\n");
2024 
2025 	switch (failed) {
2026 	case -EFAULT:
2027 		pr_info("ftrace faulted on modifying ");
2028 		print_ip_sym(KERN_INFO, ip);
2029 		break;
2030 	case -EINVAL:
2031 		pr_info("ftrace failed to modify ");
2032 		print_ip_sym(KERN_INFO, ip);
2033 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2034 		pr_cont("\n");
2035 		if (ftrace_expected) {
2036 			print_ip_ins(" expected: ", ftrace_expected);
2037 			pr_cont("\n");
2038 		}
2039 		break;
2040 	case -EPERM:
2041 		pr_info("ftrace faulted on writing ");
2042 		print_ip_sym(KERN_INFO, ip);
2043 		break;
2044 	default:
2045 		pr_info("ftrace faulted on unknown error ");
2046 		print_ip_sym(KERN_INFO, ip);
2047 	}
2048 	print_bug_type();
2049 	if (rec) {
2050 		struct ftrace_ops *ops = NULL;
2051 
2052 		pr_info("ftrace record flags: %lx\n", rec->flags);
2053 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2054 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2055 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2056 			ops = ftrace_find_tramp_ops_any(rec);
2057 			if (ops) {
2058 				do {
2059 					pr_cont("\ttramp: %pS (%pS)",
2060 						(void *)ops->trampoline,
2061 						(void *)ops->func);
2062 					ops = ftrace_find_tramp_ops_next(rec, ops);
2063 				} while (ops);
2064 			} else
2065 				pr_cont("\ttramp: ERROR!");
2066 
2067 		}
2068 		ip = ftrace_get_addr_curr(rec);
2069 		pr_cont("\n expected tramp: %lx\n", ip);
2070 	}
2071 
2072 	FTRACE_WARN_ON_ONCE(1);
2073 }
2074 
2075 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2076 {
2077 	unsigned long flag = 0UL;
2078 
2079 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2080 
2081 	if (rec->flags & FTRACE_FL_DISABLED)
2082 		return FTRACE_UPDATE_IGNORE;
2083 
2084 	/*
2085 	 * If we are updating calls:
2086 	 *
2087 	 *   If the record has a ref count, then we need to enable it
2088 	 *   because someone is using it.
2089 	 *
2090 	 *   Otherwise we make sure its disabled.
2091 	 *
2092 	 * If we are disabling calls, then disable all records that
2093 	 * are enabled.
2094 	 */
2095 	if (enable && ftrace_rec_count(rec))
2096 		flag = FTRACE_FL_ENABLED;
2097 
2098 	/*
2099 	 * If enabling and the REGS flag does not match the REGS_EN, or
2100 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2101 	 * this record. Set flags to fail the compare against ENABLED.
2102 	 * Same for direct calls.
2103 	 */
2104 	if (flag) {
2105 		if (!(rec->flags & FTRACE_FL_REGS) !=
2106 		    !(rec->flags & FTRACE_FL_REGS_EN))
2107 			flag |= FTRACE_FL_REGS;
2108 
2109 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2110 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2111 			flag |= FTRACE_FL_TRAMP;
2112 
2113 		/*
2114 		 * Direct calls are special, as count matters.
2115 		 * We must test the record for direct, if the
2116 		 * DIRECT and DIRECT_EN do not match, but only
2117 		 * if the count is 1. That's because, if the
2118 		 * count is something other than one, we do not
2119 		 * want the direct enabled (it will be done via the
2120 		 * direct helper). But if DIRECT_EN is set, and
2121 		 * the count is not one, we need to clear it.
2122 		 */
2123 		if (ftrace_rec_count(rec) == 1) {
2124 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2125 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2126 				flag |= FTRACE_FL_DIRECT;
2127 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2128 			flag |= FTRACE_FL_DIRECT;
2129 		}
2130 	}
2131 
2132 	/* If the state of this record hasn't changed, then do nothing */
2133 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2134 		return FTRACE_UPDATE_IGNORE;
2135 
2136 	if (flag) {
2137 		/* Save off if rec is being enabled (for return value) */
2138 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2139 
2140 		if (update) {
2141 			rec->flags |= FTRACE_FL_ENABLED;
2142 			if (flag & FTRACE_FL_REGS) {
2143 				if (rec->flags & FTRACE_FL_REGS)
2144 					rec->flags |= FTRACE_FL_REGS_EN;
2145 				else
2146 					rec->flags &= ~FTRACE_FL_REGS_EN;
2147 			}
2148 			if (flag & FTRACE_FL_TRAMP) {
2149 				if (rec->flags & FTRACE_FL_TRAMP)
2150 					rec->flags |= FTRACE_FL_TRAMP_EN;
2151 				else
2152 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2153 			}
2154 
2155 			if (flag & FTRACE_FL_DIRECT) {
2156 				/*
2157 				 * If there's only one user (direct_ops helper)
2158 				 * then we can call the direct function
2159 				 * directly (no ftrace trampoline).
2160 				 */
2161 				if (ftrace_rec_count(rec) == 1) {
2162 					if (rec->flags & FTRACE_FL_DIRECT)
2163 						rec->flags |= FTRACE_FL_DIRECT_EN;
2164 					else
2165 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2166 				} else {
2167 					/*
2168 					 * Can only call directly if there's
2169 					 * only one callback to the function.
2170 					 */
2171 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2172 				}
2173 			}
2174 		}
2175 
2176 		/*
2177 		 * If this record is being updated from a nop, then
2178 		 *   return UPDATE_MAKE_CALL.
2179 		 * Otherwise,
2180 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2181 		 *   from the save regs, to a non-save regs function or
2182 		 *   vice versa, or from a trampoline call.
2183 		 */
2184 		if (flag & FTRACE_FL_ENABLED) {
2185 			ftrace_bug_type = FTRACE_BUG_CALL;
2186 			return FTRACE_UPDATE_MAKE_CALL;
2187 		}
2188 
2189 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2190 		return FTRACE_UPDATE_MODIFY_CALL;
2191 	}
2192 
2193 	if (update) {
2194 		/* If there's no more users, clear all flags */
2195 		if (!ftrace_rec_count(rec))
2196 			rec->flags = 0;
2197 		else
2198 			/*
2199 			 * Just disable the record, but keep the ops TRAMP
2200 			 * and REGS states. The _EN flags must be disabled though.
2201 			 */
2202 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2203 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2204 	}
2205 
2206 	ftrace_bug_type = FTRACE_BUG_NOP;
2207 	return FTRACE_UPDATE_MAKE_NOP;
2208 }
2209 
2210 /**
2211  * ftrace_update_record, set a record that now is tracing or not
2212  * @rec: the record to update
2213  * @enable: set to true if the record is tracing, false to force disable
2214  *
2215  * The records that represent all functions that can be traced need
2216  * to be updated when tracing has been enabled.
2217  */
2218 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2219 {
2220 	return ftrace_check_record(rec, enable, true);
2221 }
2222 
2223 /**
2224  * ftrace_test_record, check if the record has been enabled or not
2225  * @rec: the record to test
2226  * @enable: set to true to check if enabled, false if it is disabled
2227  *
2228  * The arch code may need to test if a record is already set to
2229  * tracing to determine how to modify the function code that it
2230  * represents.
2231  */
2232 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2233 {
2234 	return ftrace_check_record(rec, enable, false);
2235 }
2236 
2237 static struct ftrace_ops *
2238 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2239 {
2240 	struct ftrace_ops *op;
2241 	unsigned long ip = rec->ip;
2242 
2243 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2244 
2245 		if (!op->trampoline)
2246 			continue;
2247 
2248 		if (hash_contains_ip(ip, op->func_hash))
2249 			return op;
2250 	} while_for_each_ftrace_op(op);
2251 
2252 	return NULL;
2253 }
2254 
2255 static struct ftrace_ops *
2256 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2257 {
2258 	struct ftrace_ops *op;
2259 	unsigned long ip = rec->ip;
2260 
2261 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2262 
2263 		if (op == op_exclude || !op->trampoline)
2264 			continue;
2265 
2266 		if (hash_contains_ip(ip, op->func_hash))
2267 			return op;
2268 	} while_for_each_ftrace_op(op);
2269 
2270 	return NULL;
2271 }
2272 
2273 static struct ftrace_ops *
2274 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2275 			   struct ftrace_ops *op)
2276 {
2277 	unsigned long ip = rec->ip;
2278 
2279 	while_for_each_ftrace_op(op) {
2280 
2281 		if (!op->trampoline)
2282 			continue;
2283 
2284 		if (hash_contains_ip(ip, op->func_hash))
2285 			return op;
2286 	}
2287 
2288 	return NULL;
2289 }
2290 
2291 static struct ftrace_ops *
2292 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2293 {
2294 	struct ftrace_ops *op;
2295 	unsigned long ip = rec->ip;
2296 
2297 	/*
2298 	 * Need to check removed ops first.
2299 	 * If they are being removed, and this rec has a tramp,
2300 	 * and this rec is in the ops list, then it would be the
2301 	 * one with the tramp.
2302 	 */
2303 	if (removed_ops) {
2304 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2305 			return removed_ops;
2306 	}
2307 
2308 	/*
2309 	 * Need to find the current trampoline for a rec.
2310 	 * Now, a trampoline is only attached to a rec if there
2311 	 * was a single 'ops' attached to it. But this can be called
2312 	 * when we are adding another op to the rec or removing the
2313 	 * current one. Thus, if the op is being added, we can
2314 	 * ignore it because it hasn't attached itself to the rec
2315 	 * yet.
2316 	 *
2317 	 * If an ops is being modified (hooking to different functions)
2318 	 * then we don't care about the new functions that are being
2319 	 * added, just the old ones (that are probably being removed).
2320 	 *
2321 	 * If we are adding an ops to a function that already is using
2322 	 * a trampoline, it needs to be removed (trampolines are only
2323 	 * for single ops connected), then an ops that is not being
2324 	 * modified also needs to be checked.
2325 	 */
2326 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2327 
2328 		if (!op->trampoline)
2329 			continue;
2330 
2331 		/*
2332 		 * If the ops is being added, it hasn't gotten to
2333 		 * the point to be removed from this tree yet.
2334 		 */
2335 		if (op->flags & FTRACE_OPS_FL_ADDING)
2336 			continue;
2337 
2338 
2339 		/*
2340 		 * If the ops is being modified and is in the old
2341 		 * hash, then it is probably being removed from this
2342 		 * function.
2343 		 */
2344 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2345 		    hash_contains_ip(ip, &op->old_hash))
2346 			return op;
2347 		/*
2348 		 * If the ops is not being added or modified, and it's
2349 		 * in its normal filter hash, then this must be the one
2350 		 * we want!
2351 		 */
2352 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2353 		    hash_contains_ip(ip, op->func_hash))
2354 			return op;
2355 
2356 	} while_for_each_ftrace_op(op);
2357 
2358 	return NULL;
2359 }
2360 
2361 static struct ftrace_ops *
2362 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2363 {
2364 	struct ftrace_ops *op;
2365 	unsigned long ip = rec->ip;
2366 
2367 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2368 		/* pass rec in as regs to have non-NULL val */
2369 		if (hash_contains_ip(ip, op->func_hash))
2370 			return op;
2371 	} while_for_each_ftrace_op(op);
2372 
2373 	return NULL;
2374 }
2375 
2376 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2377 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2378 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2379 static DEFINE_MUTEX(direct_mutex);
2380 int ftrace_direct_func_count;
2381 
2382 /*
2383  * Search the direct_functions hash to see if the given instruction pointer
2384  * has a direct caller attached to it.
2385  */
2386 unsigned long ftrace_find_rec_direct(unsigned long ip)
2387 {
2388 	struct ftrace_func_entry *entry;
2389 
2390 	entry = __ftrace_lookup_ip(direct_functions, ip);
2391 	if (!entry)
2392 		return 0;
2393 
2394 	return entry->direct;
2395 }
2396 
2397 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2398 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2399 {
2400 	struct pt_regs *regs = ftrace_get_regs(fregs);
2401 	unsigned long addr;
2402 
2403 	addr = ftrace_find_rec_direct(ip);
2404 	if (!addr)
2405 		return;
2406 
2407 	arch_ftrace_set_direct_caller(regs, addr);
2408 }
2409 
2410 struct ftrace_ops direct_ops = {
2411 	.func		= call_direct_funcs,
2412 	.flags		= FTRACE_OPS_FL_IPMODIFY
2413 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2414 			  | FTRACE_OPS_FL_PERMANENT,
2415 	/*
2416 	 * By declaring the main trampoline as this trampoline
2417 	 * it will never have one allocated for it. Allocated
2418 	 * trampolines should not call direct functions.
2419 	 * The direct_ops should only be called by the builtin
2420 	 * ftrace_regs_caller trampoline.
2421 	 */
2422 	.trampoline	= FTRACE_REGS_ADDR,
2423 };
2424 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2425 
2426 /**
2427  * ftrace_get_addr_new - Get the call address to set to
2428  * @rec:  The ftrace record descriptor
2429  *
2430  * If the record has the FTRACE_FL_REGS set, that means that it
2431  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2432  * is not set, then it wants to convert to the normal callback.
2433  *
2434  * Returns the address of the trampoline to set to
2435  */
2436 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2437 {
2438 	struct ftrace_ops *ops;
2439 	unsigned long addr;
2440 
2441 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2442 	    (ftrace_rec_count(rec) == 1)) {
2443 		addr = ftrace_find_rec_direct(rec->ip);
2444 		if (addr)
2445 			return addr;
2446 		WARN_ON_ONCE(1);
2447 	}
2448 
2449 	/* Trampolines take precedence over regs */
2450 	if (rec->flags & FTRACE_FL_TRAMP) {
2451 		ops = ftrace_find_tramp_ops_new(rec);
2452 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2453 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2454 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2455 			/* Ftrace is shutting down, return anything */
2456 			return (unsigned long)FTRACE_ADDR;
2457 		}
2458 		return ops->trampoline;
2459 	}
2460 
2461 	if (rec->flags & FTRACE_FL_REGS)
2462 		return (unsigned long)FTRACE_REGS_ADDR;
2463 	else
2464 		return (unsigned long)FTRACE_ADDR;
2465 }
2466 
2467 /**
2468  * ftrace_get_addr_curr - Get the call address that is already there
2469  * @rec:  The ftrace record descriptor
2470  *
2471  * The FTRACE_FL_REGS_EN is set when the record already points to
2472  * a function that saves all the regs. Basically the '_EN' version
2473  * represents the current state of the function.
2474  *
2475  * Returns the address of the trampoline that is currently being called
2476  */
2477 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2478 {
2479 	struct ftrace_ops *ops;
2480 	unsigned long addr;
2481 
2482 	/* Direct calls take precedence over trampolines */
2483 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2484 		addr = ftrace_find_rec_direct(rec->ip);
2485 		if (addr)
2486 			return addr;
2487 		WARN_ON_ONCE(1);
2488 	}
2489 
2490 	/* Trampolines take precedence over regs */
2491 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2492 		ops = ftrace_find_tramp_ops_curr(rec);
2493 		if (FTRACE_WARN_ON(!ops)) {
2494 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2495 				(void *)rec->ip, (void *)rec->ip);
2496 			/* Ftrace is shutting down, return anything */
2497 			return (unsigned long)FTRACE_ADDR;
2498 		}
2499 		return ops->trampoline;
2500 	}
2501 
2502 	if (rec->flags & FTRACE_FL_REGS_EN)
2503 		return (unsigned long)FTRACE_REGS_ADDR;
2504 	else
2505 		return (unsigned long)FTRACE_ADDR;
2506 }
2507 
2508 static int
2509 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2510 {
2511 	unsigned long ftrace_old_addr;
2512 	unsigned long ftrace_addr;
2513 	int ret;
2514 
2515 	ftrace_addr = ftrace_get_addr_new(rec);
2516 
2517 	/* This needs to be done before we call ftrace_update_record */
2518 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2519 
2520 	ret = ftrace_update_record(rec, enable);
2521 
2522 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2523 
2524 	switch (ret) {
2525 	case FTRACE_UPDATE_IGNORE:
2526 		return 0;
2527 
2528 	case FTRACE_UPDATE_MAKE_CALL:
2529 		ftrace_bug_type = FTRACE_BUG_CALL;
2530 		return ftrace_make_call(rec, ftrace_addr);
2531 
2532 	case FTRACE_UPDATE_MAKE_NOP:
2533 		ftrace_bug_type = FTRACE_BUG_NOP;
2534 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2535 
2536 	case FTRACE_UPDATE_MODIFY_CALL:
2537 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2538 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2539 	}
2540 
2541 	return -1; /* unknown ftrace bug */
2542 }
2543 
2544 void __weak ftrace_replace_code(int mod_flags)
2545 {
2546 	struct dyn_ftrace *rec;
2547 	struct ftrace_page *pg;
2548 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2549 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2550 	int failed;
2551 
2552 	if (unlikely(ftrace_disabled))
2553 		return;
2554 
2555 	do_for_each_ftrace_rec(pg, rec) {
2556 
2557 		if (rec->flags & FTRACE_FL_DISABLED)
2558 			continue;
2559 
2560 		failed = __ftrace_replace_code(rec, enable);
2561 		if (failed) {
2562 			ftrace_bug(failed, rec);
2563 			/* Stop processing */
2564 			return;
2565 		}
2566 		if (schedulable)
2567 			cond_resched();
2568 	} while_for_each_ftrace_rec();
2569 }
2570 
2571 struct ftrace_rec_iter {
2572 	struct ftrace_page	*pg;
2573 	int			index;
2574 };
2575 
2576 /**
2577  * ftrace_rec_iter_start, start up iterating over traced functions
2578  *
2579  * Returns an iterator handle that is used to iterate over all
2580  * the records that represent address locations where functions
2581  * are traced.
2582  *
2583  * May return NULL if no records are available.
2584  */
2585 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2586 {
2587 	/*
2588 	 * We only use a single iterator.
2589 	 * Protected by the ftrace_lock mutex.
2590 	 */
2591 	static struct ftrace_rec_iter ftrace_rec_iter;
2592 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2593 
2594 	iter->pg = ftrace_pages_start;
2595 	iter->index = 0;
2596 
2597 	/* Could have empty pages */
2598 	while (iter->pg && !iter->pg->index)
2599 		iter->pg = iter->pg->next;
2600 
2601 	if (!iter->pg)
2602 		return NULL;
2603 
2604 	return iter;
2605 }
2606 
2607 /**
2608  * ftrace_rec_iter_next, get the next record to process.
2609  * @iter: The handle to the iterator.
2610  *
2611  * Returns the next iterator after the given iterator @iter.
2612  */
2613 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2614 {
2615 	iter->index++;
2616 
2617 	if (iter->index >= iter->pg->index) {
2618 		iter->pg = iter->pg->next;
2619 		iter->index = 0;
2620 
2621 		/* Could have empty pages */
2622 		while (iter->pg && !iter->pg->index)
2623 			iter->pg = iter->pg->next;
2624 	}
2625 
2626 	if (!iter->pg)
2627 		return NULL;
2628 
2629 	return iter;
2630 }
2631 
2632 /**
2633  * ftrace_rec_iter_record, get the record at the iterator location
2634  * @iter: The current iterator location
2635  *
2636  * Returns the record that the current @iter is at.
2637  */
2638 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2639 {
2640 	return &iter->pg->records[iter->index];
2641 }
2642 
2643 static int
2644 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2645 {
2646 	int ret;
2647 
2648 	if (unlikely(ftrace_disabled))
2649 		return 0;
2650 
2651 	ret = ftrace_init_nop(mod, rec);
2652 	if (ret) {
2653 		ftrace_bug_type = FTRACE_BUG_INIT;
2654 		ftrace_bug(ret, rec);
2655 		return 0;
2656 	}
2657 	return 1;
2658 }
2659 
2660 /*
2661  * archs can override this function if they must do something
2662  * before the modifying code is performed.
2663  */
2664 int __weak ftrace_arch_code_modify_prepare(void)
2665 {
2666 	return 0;
2667 }
2668 
2669 /*
2670  * archs can override this function if they must do something
2671  * after the modifying code is performed.
2672  */
2673 int __weak ftrace_arch_code_modify_post_process(void)
2674 {
2675 	return 0;
2676 }
2677 
2678 void ftrace_modify_all_code(int command)
2679 {
2680 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2681 	int mod_flags = 0;
2682 	int err = 0;
2683 
2684 	if (command & FTRACE_MAY_SLEEP)
2685 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2686 
2687 	/*
2688 	 * If the ftrace_caller calls a ftrace_ops func directly,
2689 	 * we need to make sure that it only traces functions it
2690 	 * expects to trace. When doing the switch of functions,
2691 	 * we need to update to the ftrace_ops_list_func first
2692 	 * before the transition between old and new calls are set,
2693 	 * as the ftrace_ops_list_func will check the ops hashes
2694 	 * to make sure the ops are having the right functions
2695 	 * traced.
2696 	 */
2697 	if (update) {
2698 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2699 		if (FTRACE_WARN_ON(err))
2700 			return;
2701 	}
2702 
2703 	if (command & FTRACE_UPDATE_CALLS)
2704 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2705 	else if (command & FTRACE_DISABLE_CALLS)
2706 		ftrace_replace_code(mod_flags);
2707 
2708 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2709 		function_trace_op = set_function_trace_op;
2710 		smp_wmb();
2711 		/* If irqs are disabled, we are in stop machine */
2712 		if (!irqs_disabled())
2713 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2714 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2715 		if (FTRACE_WARN_ON(err))
2716 			return;
2717 	}
2718 
2719 	if (command & FTRACE_START_FUNC_RET)
2720 		err = ftrace_enable_ftrace_graph_caller();
2721 	else if (command & FTRACE_STOP_FUNC_RET)
2722 		err = ftrace_disable_ftrace_graph_caller();
2723 	FTRACE_WARN_ON(err);
2724 }
2725 
2726 static int __ftrace_modify_code(void *data)
2727 {
2728 	int *command = data;
2729 
2730 	ftrace_modify_all_code(*command);
2731 
2732 	return 0;
2733 }
2734 
2735 /**
2736  * ftrace_run_stop_machine, go back to the stop machine method
2737  * @command: The command to tell ftrace what to do
2738  *
2739  * If an arch needs to fall back to the stop machine method, the
2740  * it can call this function.
2741  */
2742 void ftrace_run_stop_machine(int command)
2743 {
2744 	stop_machine(__ftrace_modify_code, &command, NULL);
2745 }
2746 
2747 /**
2748  * arch_ftrace_update_code, modify the code to trace or not trace
2749  * @command: The command that needs to be done
2750  *
2751  * Archs can override this function if it does not need to
2752  * run stop_machine() to modify code.
2753  */
2754 void __weak arch_ftrace_update_code(int command)
2755 {
2756 	ftrace_run_stop_machine(command);
2757 }
2758 
2759 static void ftrace_run_update_code(int command)
2760 {
2761 	int ret;
2762 
2763 	ret = ftrace_arch_code_modify_prepare();
2764 	FTRACE_WARN_ON(ret);
2765 	if (ret)
2766 		return;
2767 
2768 	/*
2769 	 * By default we use stop_machine() to modify the code.
2770 	 * But archs can do what ever they want as long as it
2771 	 * is safe. The stop_machine() is the safest, but also
2772 	 * produces the most overhead.
2773 	 */
2774 	arch_ftrace_update_code(command);
2775 
2776 	ret = ftrace_arch_code_modify_post_process();
2777 	FTRACE_WARN_ON(ret);
2778 }
2779 
2780 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2781 				   struct ftrace_ops_hash *old_hash)
2782 {
2783 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2784 	ops->old_hash.filter_hash = old_hash->filter_hash;
2785 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2786 	ftrace_run_update_code(command);
2787 	ops->old_hash.filter_hash = NULL;
2788 	ops->old_hash.notrace_hash = NULL;
2789 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2790 }
2791 
2792 static ftrace_func_t saved_ftrace_func;
2793 static int ftrace_start_up;
2794 
2795 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2796 {
2797 }
2798 
2799 /* List of trace_ops that have allocated trampolines */
2800 static LIST_HEAD(ftrace_ops_trampoline_list);
2801 
2802 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2803 {
2804 	lockdep_assert_held(&ftrace_lock);
2805 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2806 }
2807 
2808 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2809 {
2810 	lockdep_assert_held(&ftrace_lock);
2811 	list_del_rcu(&ops->list);
2812 	synchronize_rcu();
2813 }
2814 
2815 /*
2816  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2817  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2818  * not a module.
2819  */
2820 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2821 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2822 
2823 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2824 {
2825 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2826 	    ops->trampoline) {
2827 		/*
2828 		 * Record the text poke event before the ksymbol unregister
2829 		 * event.
2830 		 */
2831 		perf_event_text_poke((void *)ops->trampoline,
2832 				     (void *)ops->trampoline,
2833 				     ops->trampoline_size, NULL, 0);
2834 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2835 				   ops->trampoline, ops->trampoline_size,
2836 				   true, FTRACE_TRAMPOLINE_SYM);
2837 		/* Remove from kallsyms after the perf events */
2838 		ftrace_remove_trampoline_from_kallsyms(ops);
2839 	}
2840 
2841 	arch_ftrace_trampoline_free(ops);
2842 }
2843 
2844 static void ftrace_startup_enable(int command)
2845 {
2846 	if (saved_ftrace_func != ftrace_trace_function) {
2847 		saved_ftrace_func = ftrace_trace_function;
2848 		command |= FTRACE_UPDATE_TRACE_FUNC;
2849 	}
2850 
2851 	if (!command || !ftrace_enabled)
2852 		return;
2853 
2854 	ftrace_run_update_code(command);
2855 }
2856 
2857 static void ftrace_startup_all(int command)
2858 {
2859 	update_all_ops = true;
2860 	ftrace_startup_enable(command);
2861 	update_all_ops = false;
2862 }
2863 
2864 int ftrace_startup(struct ftrace_ops *ops, int command)
2865 {
2866 	int ret;
2867 
2868 	if (unlikely(ftrace_disabled))
2869 		return -ENODEV;
2870 
2871 	ret = __register_ftrace_function(ops);
2872 	if (ret)
2873 		return ret;
2874 
2875 	ftrace_start_up++;
2876 
2877 	/*
2878 	 * Note that ftrace probes uses this to start up
2879 	 * and modify functions it will probe. But we still
2880 	 * set the ADDING flag for modification, as probes
2881 	 * do not have trampolines. If they add them in the
2882 	 * future, then the probes will need to distinguish
2883 	 * between adding and updating probes.
2884 	 */
2885 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2886 
2887 	ret = ftrace_hash_ipmodify_enable(ops);
2888 	if (ret < 0) {
2889 		/* Rollback registration process */
2890 		__unregister_ftrace_function(ops);
2891 		ftrace_start_up--;
2892 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2893 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2894 			ftrace_trampoline_free(ops);
2895 		return ret;
2896 	}
2897 
2898 	if (ftrace_hash_rec_enable(ops, 1))
2899 		command |= FTRACE_UPDATE_CALLS;
2900 
2901 	ftrace_startup_enable(command);
2902 
2903 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2904 
2905 	return 0;
2906 }
2907 
2908 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2909 {
2910 	int ret;
2911 
2912 	if (unlikely(ftrace_disabled))
2913 		return -ENODEV;
2914 
2915 	ret = __unregister_ftrace_function(ops);
2916 	if (ret)
2917 		return ret;
2918 
2919 	ftrace_start_up--;
2920 	/*
2921 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2922 	 * critical but the ftrace_call callers may be never nopped again after
2923 	 * further ftrace uses.
2924 	 */
2925 	WARN_ON_ONCE(ftrace_start_up < 0);
2926 
2927 	/* Disabling ipmodify never fails */
2928 	ftrace_hash_ipmodify_disable(ops);
2929 
2930 	if (ftrace_hash_rec_disable(ops, 1))
2931 		command |= FTRACE_UPDATE_CALLS;
2932 
2933 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2934 
2935 	if (saved_ftrace_func != ftrace_trace_function) {
2936 		saved_ftrace_func = ftrace_trace_function;
2937 		command |= FTRACE_UPDATE_TRACE_FUNC;
2938 	}
2939 
2940 	if (!command || !ftrace_enabled) {
2941 		/*
2942 		 * If these are dynamic or per_cpu ops, they still
2943 		 * need their data freed. Since, function tracing is
2944 		 * not currently active, we can just free them
2945 		 * without synchronizing all CPUs.
2946 		 */
2947 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2948 			goto free_ops;
2949 
2950 		return 0;
2951 	}
2952 
2953 	/*
2954 	 * If the ops uses a trampoline, then it needs to be
2955 	 * tested first on update.
2956 	 */
2957 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2958 	removed_ops = ops;
2959 
2960 	/* The trampoline logic checks the old hashes */
2961 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2962 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2963 
2964 	ftrace_run_update_code(command);
2965 
2966 	/*
2967 	 * If there's no more ops registered with ftrace, run a
2968 	 * sanity check to make sure all rec flags are cleared.
2969 	 */
2970 	if (rcu_dereference_protected(ftrace_ops_list,
2971 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2972 		struct ftrace_page *pg;
2973 		struct dyn_ftrace *rec;
2974 
2975 		do_for_each_ftrace_rec(pg, rec) {
2976 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2977 				pr_warn("  %pS flags:%lx\n",
2978 					(void *)rec->ip, rec->flags);
2979 		} while_for_each_ftrace_rec();
2980 	}
2981 
2982 	ops->old_hash.filter_hash = NULL;
2983 	ops->old_hash.notrace_hash = NULL;
2984 
2985 	removed_ops = NULL;
2986 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2987 
2988 	/*
2989 	 * Dynamic ops may be freed, we must make sure that all
2990 	 * callers are done before leaving this function.
2991 	 * The same goes for freeing the per_cpu data of the per_cpu
2992 	 * ops.
2993 	 */
2994 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2995 		/*
2996 		 * We need to do a hard force of sched synchronization.
2997 		 * This is because we use preempt_disable() to do RCU, but
2998 		 * the function tracers can be called where RCU is not watching
2999 		 * (like before user_exit()). We can not rely on the RCU
3000 		 * infrastructure to do the synchronization, thus we must do it
3001 		 * ourselves.
3002 		 */
3003 		synchronize_rcu_tasks_rude();
3004 
3005 		/*
3006 		 * When the kernel is preemptive, tasks can be preempted
3007 		 * while on a ftrace trampoline. Just scheduling a task on
3008 		 * a CPU is not good enough to flush them. Calling
3009 		 * synchronize_rcu_tasks() will wait for those tasks to
3010 		 * execute and either schedule voluntarily or enter user space.
3011 		 */
3012 		if (IS_ENABLED(CONFIG_PREEMPTION))
3013 			synchronize_rcu_tasks();
3014 
3015  free_ops:
3016 		ftrace_trampoline_free(ops);
3017 	}
3018 
3019 	return 0;
3020 }
3021 
3022 static void ftrace_startup_sysctl(void)
3023 {
3024 	int command;
3025 
3026 	if (unlikely(ftrace_disabled))
3027 		return;
3028 
3029 	/* Force update next time */
3030 	saved_ftrace_func = NULL;
3031 	/* ftrace_start_up is true if we want ftrace running */
3032 	if (ftrace_start_up) {
3033 		command = FTRACE_UPDATE_CALLS;
3034 		if (ftrace_graph_active)
3035 			command |= FTRACE_START_FUNC_RET;
3036 		ftrace_startup_enable(command);
3037 	}
3038 }
3039 
3040 static void ftrace_shutdown_sysctl(void)
3041 {
3042 	int command;
3043 
3044 	if (unlikely(ftrace_disabled))
3045 		return;
3046 
3047 	/* ftrace_start_up is true if ftrace is running */
3048 	if (ftrace_start_up) {
3049 		command = FTRACE_DISABLE_CALLS;
3050 		if (ftrace_graph_active)
3051 			command |= FTRACE_STOP_FUNC_RET;
3052 		ftrace_run_update_code(command);
3053 	}
3054 }
3055 
3056 static u64		ftrace_update_time;
3057 unsigned long		ftrace_update_tot_cnt;
3058 unsigned long		ftrace_number_of_pages;
3059 unsigned long		ftrace_number_of_groups;
3060 
3061 static inline int ops_traces_mod(struct ftrace_ops *ops)
3062 {
3063 	/*
3064 	 * Filter_hash being empty will default to trace module.
3065 	 * But notrace hash requires a test of individual module functions.
3066 	 */
3067 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3068 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3069 }
3070 
3071 /*
3072  * Check if the current ops references the record.
3073  *
3074  * If the ops traces all functions, then it was already accounted for.
3075  * If the ops does not trace the current record function, skip it.
3076  * If the ops ignores the function via notrace filter, skip it.
3077  */
3078 static inline bool
3079 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3080 {
3081 	/* If ops isn't enabled, ignore it */
3082 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3083 		return false;
3084 
3085 	/* If ops traces all then it includes this function */
3086 	if (ops_traces_mod(ops))
3087 		return true;
3088 
3089 	/* The function must be in the filter */
3090 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3091 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3092 		return false;
3093 
3094 	/* If in notrace hash, we ignore it too */
3095 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3096 		return false;
3097 
3098 	return true;
3099 }
3100 
3101 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3102 {
3103 	struct ftrace_page *pg;
3104 	struct dyn_ftrace *p;
3105 	u64 start, stop;
3106 	unsigned long update_cnt = 0;
3107 	unsigned long rec_flags = 0;
3108 	int i;
3109 
3110 	start = ftrace_now(raw_smp_processor_id());
3111 
3112 	/*
3113 	 * When a module is loaded, this function is called to convert
3114 	 * the calls to mcount in its text to nops, and also to create
3115 	 * an entry in the ftrace data. Now, if ftrace is activated
3116 	 * after this call, but before the module sets its text to
3117 	 * read-only, the modification of enabling ftrace can fail if
3118 	 * the read-only is done while ftrace is converting the calls.
3119 	 * To prevent this, the module's records are set as disabled
3120 	 * and will be enabled after the call to set the module's text
3121 	 * to read-only.
3122 	 */
3123 	if (mod)
3124 		rec_flags |= FTRACE_FL_DISABLED;
3125 
3126 	for (pg = new_pgs; pg; pg = pg->next) {
3127 
3128 		for (i = 0; i < pg->index; i++) {
3129 
3130 			/* If something went wrong, bail without enabling anything */
3131 			if (unlikely(ftrace_disabled))
3132 				return -1;
3133 
3134 			p = &pg->records[i];
3135 			p->flags = rec_flags;
3136 
3137 			/*
3138 			 * Do the initial record conversion from mcount jump
3139 			 * to the NOP instructions.
3140 			 */
3141 			if (!__is_defined(CC_USING_NOP_MCOUNT) &&
3142 			    !ftrace_nop_initialize(mod, p))
3143 				break;
3144 
3145 			update_cnt++;
3146 		}
3147 	}
3148 
3149 	stop = ftrace_now(raw_smp_processor_id());
3150 	ftrace_update_time = stop - start;
3151 	ftrace_update_tot_cnt += update_cnt;
3152 
3153 	return 0;
3154 }
3155 
3156 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3157 {
3158 	int order;
3159 	int pages;
3160 	int cnt;
3161 
3162 	if (WARN_ON(!count))
3163 		return -EINVAL;
3164 
3165 	/* We want to fill as much as possible, with no empty pages */
3166 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3167 	order = fls(pages) - 1;
3168 
3169  again:
3170 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3171 
3172 	if (!pg->records) {
3173 		/* if we can't allocate this size, try something smaller */
3174 		if (!order)
3175 			return -ENOMEM;
3176 		order >>= 1;
3177 		goto again;
3178 	}
3179 
3180 	ftrace_number_of_pages += 1 << order;
3181 	ftrace_number_of_groups++;
3182 
3183 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3184 	pg->order = order;
3185 
3186 	if (cnt > count)
3187 		cnt = count;
3188 
3189 	return cnt;
3190 }
3191 
3192 static struct ftrace_page *
3193 ftrace_allocate_pages(unsigned long num_to_init)
3194 {
3195 	struct ftrace_page *start_pg;
3196 	struct ftrace_page *pg;
3197 	int cnt;
3198 
3199 	if (!num_to_init)
3200 		return NULL;
3201 
3202 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3203 	if (!pg)
3204 		return NULL;
3205 
3206 	/*
3207 	 * Try to allocate as much as possible in one continues
3208 	 * location that fills in all of the space. We want to
3209 	 * waste as little space as possible.
3210 	 */
3211 	for (;;) {
3212 		cnt = ftrace_allocate_records(pg, num_to_init);
3213 		if (cnt < 0)
3214 			goto free_pages;
3215 
3216 		num_to_init -= cnt;
3217 		if (!num_to_init)
3218 			break;
3219 
3220 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3221 		if (!pg->next)
3222 			goto free_pages;
3223 
3224 		pg = pg->next;
3225 	}
3226 
3227 	return start_pg;
3228 
3229  free_pages:
3230 	pg = start_pg;
3231 	while (pg) {
3232 		if (pg->records) {
3233 			free_pages((unsigned long)pg->records, pg->order);
3234 			ftrace_number_of_pages -= 1 << pg->order;
3235 		}
3236 		start_pg = pg->next;
3237 		kfree(pg);
3238 		pg = start_pg;
3239 		ftrace_number_of_groups--;
3240 	}
3241 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3242 	return NULL;
3243 }
3244 
3245 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3246 
3247 struct ftrace_iterator {
3248 	loff_t				pos;
3249 	loff_t				func_pos;
3250 	loff_t				mod_pos;
3251 	struct ftrace_page		*pg;
3252 	struct dyn_ftrace		*func;
3253 	struct ftrace_func_probe	*probe;
3254 	struct ftrace_func_entry	*probe_entry;
3255 	struct trace_parser		parser;
3256 	struct ftrace_hash		*hash;
3257 	struct ftrace_ops		*ops;
3258 	struct trace_array		*tr;
3259 	struct list_head		*mod_list;
3260 	int				pidx;
3261 	int				idx;
3262 	unsigned			flags;
3263 };
3264 
3265 static void *
3266 t_probe_next(struct seq_file *m, loff_t *pos)
3267 {
3268 	struct ftrace_iterator *iter = m->private;
3269 	struct trace_array *tr = iter->ops->private;
3270 	struct list_head *func_probes;
3271 	struct ftrace_hash *hash;
3272 	struct list_head *next;
3273 	struct hlist_node *hnd = NULL;
3274 	struct hlist_head *hhd;
3275 	int size;
3276 
3277 	(*pos)++;
3278 	iter->pos = *pos;
3279 
3280 	if (!tr)
3281 		return NULL;
3282 
3283 	func_probes = &tr->func_probes;
3284 	if (list_empty(func_probes))
3285 		return NULL;
3286 
3287 	if (!iter->probe) {
3288 		next = func_probes->next;
3289 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3290 	}
3291 
3292 	if (iter->probe_entry)
3293 		hnd = &iter->probe_entry->hlist;
3294 
3295 	hash = iter->probe->ops.func_hash->filter_hash;
3296 
3297 	/*
3298 	 * A probe being registered may temporarily have an empty hash
3299 	 * and it's at the end of the func_probes list.
3300 	 */
3301 	if (!hash || hash == EMPTY_HASH)
3302 		return NULL;
3303 
3304 	size = 1 << hash->size_bits;
3305 
3306  retry:
3307 	if (iter->pidx >= size) {
3308 		if (iter->probe->list.next == func_probes)
3309 			return NULL;
3310 		next = iter->probe->list.next;
3311 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3312 		hash = iter->probe->ops.func_hash->filter_hash;
3313 		size = 1 << hash->size_bits;
3314 		iter->pidx = 0;
3315 	}
3316 
3317 	hhd = &hash->buckets[iter->pidx];
3318 
3319 	if (hlist_empty(hhd)) {
3320 		iter->pidx++;
3321 		hnd = NULL;
3322 		goto retry;
3323 	}
3324 
3325 	if (!hnd)
3326 		hnd = hhd->first;
3327 	else {
3328 		hnd = hnd->next;
3329 		if (!hnd) {
3330 			iter->pidx++;
3331 			goto retry;
3332 		}
3333 	}
3334 
3335 	if (WARN_ON_ONCE(!hnd))
3336 		return NULL;
3337 
3338 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3339 
3340 	return iter;
3341 }
3342 
3343 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3344 {
3345 	struct ftrace_iterator *iter = m->private;
3346 	void *p = NULL;
3347 	loff_t l;
3348 
3349 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3350 		return NULL;
3351 
3352 	if (iter->mod_pos > *pos)
3353 		return NULL;
3354 
3355 	iter->probe = NULL;
3356 	iter->probe_entry = NULL;
3357 	iter->pidx = 0;
3358 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3359 		p = t_probe_next(m, &l);
3360 		if (!p)
3361 			break;
3362 	}
3363 	if (!p)
3364 		return NULL;
3365 
3366 	/* Only set this if we have an item */
3367 	iter->flags |= FTRACE_ITER_PROBE;
3368 
3369 	return iter;
3370 }
3371 
3372 static int
3373 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3374 {
3375 	struct ftrace_func_entry *probe_entry;
3376 	struct ftrace_probe_ops *probe_ops;
3377 	struct ftrace_func_probe *probe;
3378 
3379 	probe = iter->probe;
3380 	probe_entry = iter->probe_entry;
3381 
3382 	if (WARN_ON_ONCE(!probe || !probe_entry))
3383 		return -EIO;
3384 
3385 	probe_ops = probe->probe_ops;
3386 
3387 	if (probe_ops->print)
3388 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3389 
3390 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3391 		   (void *)probe_ops->func);
3392 
3393 	return 0;
3394 }
3395 
3396 static void *
3397 t_mod_next(struct seq_file *m, loff_t *pos)
3398 {
3399 	struct ftrace_iterator *iter = m->private;
3400 	struct trace_array *tr = iter->tr;
3401 
3402 	(*pos)++;
3403 	iter->pos = *pos;
3404 
3405 	iter->mod_list = iter->mod_list->next;
3406 
3407 	if (iter->mod_list == &tr->mod_trace ||
3408 	    iter->mod_list == &tr->mod_notrace) {
3409 		iter->flags &= ~FTRACE_ITER_MOD;
3410 		return NULL;
3411 	}
3412 
3413 	iter->mod_pos = *pos;
3414 
3415 	return iter;
3416 }
3417 
3418 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3419 {
3420 	struct ftrace_iterator *iter = m->private;
3421 	void *p = NULL;
3422 	loff_t l;
3423 
3424 	if (iter->func_pos > *pos)
3425 		return NULL;
3426 
3427 	iter->mod_pos = iter->func_pos;
3428 
3429 	/* probes are only available if tr is set */
3430 	if (!iter->tr)
3431 		return NULL;
3432 
3433 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3434 		p = t_mod_next(m, &l);
3435 		if (!p)
3436 			break;
3437 	}
3438 	if (!p) {
3439 		iter->flags &= ~FTRACE_ITER_MOD;
3440 		return t_probe_start(m, pos);
3441 	}
3442 
3443 	/* Only set this if we have an item */
3444 	iter->flags |= FTRACE_ITER_MOD;
3445 
3446 	return iter;
3447 }
3448 
3449 static int
3450 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3451 {
3452 	struct ftrace_mod_load *ftrace_mod;
3453 	struct trace_array *tr = iter->tr;
3454 
3455 	if (WARN_ON_ONCE(!iter->mod_list) ||
3456 			 iter->mod_list == &tr->mod_trace ||
3457 			 iter->mod_list == &tr->mod_notrace)
3458 		return -EIO;
3459 
3460 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3461 
3462 	if (ftrace_mod->func)
3463 		seq_printf(m, "%s", ftrace_mod->func);
3464 	else
3465 		seq_putc(m, '*');
3466 
3467 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3468 
3469 	return 0;
3470 }
3471 
3472 static void *
3473 t_func_next(struct seq_file *m, loff_t *pos)
3474 {
3475 	struct ftrace_iterator *iter = m->private;
3476 	struct dyn_ftrace *rec = NULL;
3477 
3478 	(*pos)++;
3479 
3480  retry:
3481 	if (iter->idx >= iter->pg->index) {
3482 		if (iter->pg->next) {
3483 			iter->pg = iter->pg->next;
3484 			iter->idx = 0;
3485 			goto retry;
3486 		}
3487 	} else {
3488 		rec = &iter->pg->records[iter->idx++];
3489 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3490 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3491 
3492 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3493 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3494 
3495 			rec = NULL;
3496 			goto retry;
3497 		}
3498 	}
3499 
3500 	if (!rec)
3501 		return NULL;
3502 
3503 	iter->pos = iter->func_pos = *pos;
3504 	iter->func = rec;
3505 
3506 	return iter;
3507 }
3508 
3509 static void *
3510 t_next(struct seq_file *m, void *v, loff_t *pos)
3511 {
3512 	struct ftrace_iterator *iter = m->private;
3513 	loff_t l = *pos; /* t_probe_start() must use original pos */
3514 	void *ret;
3515 
3516 	if (unlikely(ftrace_disabled))
3517 		return NULL;
3518 
3519 	if (iter->flags & FTRACE_ITER_PROBE)
3520 		return t_probe_next(m, pos);
3521 
3522 	if (iter->flags & FTRACE_ITER_MOD)
3523 		return t_mod_next(m, pos);
3524 
3525 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3526 		/* next must increment pos, and t_probe_start does not */
3527 		(*pos)++;
3528 		return t_mod_start(m, &l);
3529 	}
3530 
3531 	ret = t_func_next(m, pos);
3532 
3533 	if (!ret)
3534 		return t_mod_start(m, &l);
3535 
3536 	return ret;
3537 }
3538 
3539 static void reset_iter_read(struct ftrace_iterator *iter)
3540 {
3541 	iter->pos = 0;
3542 	iter->func_pos = 0;
3543 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3544 }
3545 
3546 static void *t_start(struct seq_file *m, loff_t *pos)
3547 {
3548 	struct ftrace_iterator *iter = m->private;
3549 	void *p = NULL;
3550 	loff_t l;
3551 
3552 	mutex_lock(&ftrace_lock);
3553 
3554 	if (unlikely(ftrace_disabled))
3555 		return NULL;
3556 
3557 	/*
3558 	 * If an lseek was done, then reset and start from beginning.
3559 	 */
3560 	if (*pos < iter->pos)
3561 		reset_iter_read(iter);
3562 
3563 	/*
3564 	 * For set_ftrace_filter reading, if we have the filter
3565 	 * off, we can short cut and just print out that all
3566 	 * functions are enabled.
3567 	 */
3568 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3569 	    ftrace_hash_empty(iter->hash)) {
3570 		iter->func_pos = 1; /* Account for the message */
3571 		if (*pos > 0)
3572 			return t_mod_start(m, pos);
3573 		iter->flags |= FTRACE_ITER_PRINTALL;
3574 		/* reset in case of seek/pread */
3575 		iter->flags &= ~FTRACE_ITER_PROBE;
3576 		return iter;
3577 	}
3578 
3579 	if (iter->flags & FTRACE_ITER_MOD)
3580 		return t_mod_start(m, pos);
3581 
3582 	/*
3583 	 * Unfortunately, we need to restart at ftrace_pages_start
3584 	 * every time we let go of the ftrace_mutex. This is because
3585 	 * those pointers can change without the lock.
3586 	 */
3587 	iter->pg = ftrace_pages_start;
3588 	iter->idx = 0;
3589 	for (l = 0; l <= *pos; ) {
3590 		p = t_func_next(m, &l);
3591 		if (!p)
3592 			break;
3593 	}
3594 
3595 	if (!p)
3596 		return t_mod_start(m, pos);
3597 
3598 	return iter;
3599 }
3600 
3601 static void t_stop(struct seq_file *m, void *p)
3602 {
3603 	mutex_unlock(&ftrace_lock);
3604 }
3605 
3606 void * __weak
3607 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3608 {
3609 	return NULL;
3610 }
3611 
3612 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3613 				struct dyn_ftrace *rec)
3614 {
3615 	void *ptr;
3616 
3617 	ptr = arch_ftrace_trampoline_func(ops, rec);
3618 	if (ptr)
3619 		seq_printf(m, " ->%pS", ptr);
3620 }
3621 
3622 static int t_show(struct seq_file *m, void *v)
3623 {
3624 	struct ftrace_iterator *iter = m->private;
3625 	struct dyn_ftrace *rec;
3626 
3627 	if (iter->flags & FTRACE_ITER_PROBE)
3628 		return t_probe_show(m, iter);
3629 
3630 	if (iter->flags & FTRACE_ITER_MOD)
3631 		return t_mod_show(m, iter);
3632 
3633 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3634 		if (iter->flags & FTRACE_ITER_NOTRACE)
3635 			seq_puts(m, "#### no functions disabled ####\n");
3636 		else
3637 			seq_puts(m, "#### all functions enabled ####\n");
3638 		return 0;
3639 	}
3640 
3641 	rec = iter->func;
3642 
3643 	if (!rec)
3644 		return 0;
3645 
3646 	seq_printf(m, "%ps", (void *)rec->ip);
3647 	if (iter->flags & FTRACE_ITER_ENABLED) {
3648 		struct ftrace_ops *ops;
3649 
3650 		seq_printf(m, " (%ld)%s%s%s",
3651 			   ftrace_rec_count(rec),
3652 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3653 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3654 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3655 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3656 			ops = ftrace_find_tramp_ops_any(rec);
3657 			if (ops) {
3658 				do {
3659 					seq_printf(m, "\ttramp: %pS (%pS)",
3660 						   (void *)ops->trampoline,
3661 						   (void *)ops->func);
3662 					add_trampoline_func(m, ops, rec);
3663 					ops = ftrace_find_tramp_ops_next(rec, ops);
3664 				} while (ops);
3665 			} else
3666 				seq_puts(m, "\ttramp: ERROR!");
3667 		} else {
3668 			add_trampoline_func(m, NULL, rec);
3669 		}
3670 		if (rec->flags & FTRACE_FL_DIRECT) {
3671 			unsigned long direct;
3672 
3673 			direct = ftrace_find_rec_direct(rec->ip);
3674 			if (direct)
3675 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3676 		}
3677 	}
3678 
3679 	seq_putc(m, '\n');
3680 
3681 	return 0;
3682 }
3683 
3684 static const struct seq_operations show_ftrace_seq_ops = {
3685 	.start = t_start,
3686 	.next = t_next,
3687 	.stop = t_stop,
3688 	.show = t_show,
3689 };
3690 
3691 static int
3692 ftrace_avail_open(struct inode *inode, struct file *file)
3693 {
3694 	struct ftrace_iterator *iter;
3695 	int ret;
3696 
3697 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3698 	if (ret)
3699 		return ret;
3700 
3701 	if (unlikely(ftrace_disabled))
3702 		return -ENODEV;
3703 
3704 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3705 	if (!iter)
3706 		return -ENOMEM;
3707 
3708 	iter->pg = ftrace_pages_start;
3709 	iter->ops = &global_ops;
3710 
3711 	return 0;
3712 }
3713 
3714 static int
3715 ftrace_enabled_open(struct inode *inode, struct file *file)
3716 {
3717 	struct ftrace_iterator *iter;
3718 
3719 	/*
3720 	 * This shows us what functions are currently being
3721 	 * traced and by what. Not sure if we want lockdown
3722 	 * to hide such critical information for an admin.
3723 	 * Although, perhaps it can show information we don't
3724 	 * want people to see, but if something is tracing
3725 	 * something, we probably want to know about it.
3726 	 */
3727 
3728 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3729 	if (!iter)
3730 		return -ENOMEM;
3731 
3732 	iter->pg = ftrace_pages_start;
3733 	iter->flags = FTRACE_ITER_ENABLED;
3734 	iter->ops = &global_ops;
3735 
3736 	return 0;
3737 }
3738 
3739 /**
3740  * ftrace_regex_open - initialize function tracer filter files
3741  * @ops: The ftrace_ops that hold the hash filters
3742  * @flag: The type of filter to process
3743  * @inode: The inode, usually passed in to your open routine
3744  * @file: The file, usually passed in to your open routine
3745  *
3746  * ftrace_regex_open() initializes the filter files for the
3747  * @ops. Depending on @flag it may process the filter hash or
3748  * the notrace hash of @ops. With this called from the open
3749  * routine, you can use ftrace_filter_write() for the write
3750  * routine if @flag has FTRACE_ITER_FILTER set, or
3751  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3752  * tracing_lseek() should be used as the lseek routine, and
3753  * release must call ftrace_regex_release().
3754  */
3755 int
3756 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3757 		  struct inode *inode, struct file *file)
3758 {
3759 	struct ftrace_iterator *iter;
3760 	struct ftrace_hash *hash;
3761 	struct list_head *mod_head;
3762 	struct trace_array *tr = ops->private;
3763 	int ret = -ENOMEM;
3764 
3765 	ftrace_ops_init(ops);
3766 
3767 	if (unlikely(ftrace_disabled))
3768 		return -ENODEV;
3769 
3770 	if (tracing_check_open_get_tr(tr))
3771 		return -ENODEV;
3772 
3773 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3774 	if (!iter)
3775 		goto out;
3776 
3777 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3778 		goto out;
3779 
3780 	iter->ops = ops;
3781 	iter->flags = flag;
3782 	iter->tr = tr;
3783 
3784 	mutex_lock(&ops->func_hash->regex_lock);
3785 
3786 	if (flag & FTRACE_ITER_NOTRACE) {
3787 		hash = ops->func_hash->notrace_hash;
3788 		mod_head = tr ? &tr->mod_notrace : NULL;
3789 	} else {
3790 		hash = ops->func_hash->filter_hash;
3791 		mod_head = tr ? &tr->mod_trace : NULL;
3792 	}
3793 
3794 	iter->mod_list = mod_head;
3795 
3796 	if (file->f_mode & FMODE_WRITE) {
3797 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3798 
3799 		if (file->f_flags & O_TRUNC) {
3800 			iter->hash = alloc_ftrace_hash(size_bits);
3801 			clear_ftrace_mod_list(mod_head);
3802 	        } else {
3803 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3804 		}
3805 
3806 		if (!iter->hash) {
3807 			trace_parser_put(&iter->parser);
3808 			goto out_unlock;
3809 		}
3810 	} else
3811 		iter->hash = hash;
3812 
3813 	ret = 0;
3814 
3815 	if (file->f_mode & FMODE_READ) {
3816 		iter->pg = ftrace_pages_start;
3817 
3818 		ret = seq_open(file, &show_ftrace_seq_ops);
3819 		if (!ret) {
3820 			struct seq_file *m = file->private_data;
3821 			m->private = iter;
3822 		} else {
3823 			/* Failed */
3824 			free_ftrace_hash(iter->hash);
3825 			trace_parser_put(&iter->parser);
3826 		}
3827 	} else
3828 		file->private_data = iter;
3829 
3830  out_unlock:
3831 	mutex_unlock(&ops->func_hash->regex_lock);
3832 
3833  out:
3834 	if (ret) {
3835 		kfree(iter);
3836 		if (tr)
3837 			trace_array_put(tr);
3838 	}
3839 
3840 	return ret;
3841 }
3842 
3843 static int
3844 ftrace_filter_open(struct inode *inode, struct file *file)
3845 {
3846 	struct ftrace_ops *ops = inode->i_private;
3847 
3848 	/* Checks for tracefs lockdown */
3849 	return ftrace_regex_open(ops,
3850 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3851 			inode, file);
3852 }
3853 
3854 static int
3855 ftrace_notrace_open(struct inode *inode, struct file *file)
3856 {
3857 	struct ftrace_ops *ops = inode->i_private;
3858 
3859 	/* Checks for tracefs lockdown */
3860 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3861 				 inode, file);
3862 }
3863 
3864 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3865 struct ftrace_glob {
3866 	char *search;
3867 	unsigned len;
3868 	int type;
3869 };
3870 
3871 /*
3872  * If symbols in an architecture don't correspond exactly to the user-visible
3873  * name of what they represent, it is possible to define this function to
3874  * perform the necessary adjustments.
3875 */
3876 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3877 {
3878 	return str;
3879 }
3880 
3881 static int ftrace_match(char *str, struct ftrace_glob *g)
3882 {
3883 	int matched = 0;
3884 	int slen;
3885 
3886 	str = arch_ftrace_match_adjust(str, g->search);
3887 
3888 	switch (g->type) {
3889 	case MATCH_FULL:
3890 		if (strcmp(str, g->search) == 0)
3891 			matched = 1;
3892 		break;
3893 	case MATCH_FRONT_ONLY:
3894 		if (strncmp(str, g->search, g->len) == 0)
3895 			matched = 1;
3896 		break;
3897 	case MATCH_MIDDLE_ONLY:
3898 		if (strstr(str, g->search))
3899 			matched = 1;
3900 		break;
3901 	case MATCH_END_ONLY:
3902 		slen = strlen(str);
3903 		if (slen >= g->len &&
3904 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
3905 			matched = 1;
3906 		break;
3907 	case MATCH_GLOB:
3908 		if (glob_match(g->search, str))
3909 			matched = 1;
3910 		break;
3911 	}
3912 
3913 	return matched;
3914 }
3915 
3916 static int
3917 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3918 {
3919 	struct ftrace_func_entry *entry;
3920 	int ret = 0;
3921 
3922 	entry = ftrace_lookup_ip(hash, rec->ip);
3923 	if (clear_filter) {
3924 		/* Do nothing if it doesn't exist */
3925 		if (!entry)
3926 			return 0;
3927 
3928 		free_hash_entry(hash, entry);
3929 	} else {
3930 		/* Do nothing if it exists */
3931 		if (entry)
3932 			return 0;
3933 
3934 		ret = add_hash_entry(hash, rec->ip);
3935 	}
3936 	return ret;
3937 }
3938 
3939 static int
3940 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3941 		 int clear_filter)
3942 {
3943 	long index = simple_strtoul(func_g->search, NULL, 0);
3944 	struct ftrace_page *pg;
3945 	struct dyn_ftrace *rec;
3946 
3947 	/* The index starts at 1 */
3948 	if (--index < 0)
3949 		return 0;
3950 
3951 	do_for_each_ftrace_rec(pg, rec) {
3952 		if (pg->index <= index) {
3953 			index -= pg->index;
3954 			/* this is a double loop, break goes to the next page */
3955 			break;
3956 		}
3957 		rec = &pg->records[index];
3958 		enter_record(hash, rec, clear_filter);
3959 		return 1;
3960 	} while_for_each_ftrace_rec();
3961 	return 0;
3962 }
3963 
3964 static int
3965 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3966 		struct ftrace_glob *mod_g, int exclude_mod)
3967 {
3968 	char str[KSYM_SYMBOL_LEN];
3969 	char *modname;
3970 
3971 	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3972 
3973 	if (mod_g) {
3974 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3975 
3976 		/* blank module name to match all modules */
3977 		if (!mod_g->len) {
3978 			/* blank module globbing: modname xor exclude_mod */
3979 			if (!exclude_mod != !modname)
3980 				goto func_match;
3981 			return 0;
3982 		}
3983 
3984 		/*
3985 		 * exclude_mod is set to trace everything but the given
3986 		 * module. If it is set and the module matches, then
3987 		 * return 0. If it is not set, and the module doesn't match
3988 		 * also return 0. Otherwise, check the function to see if
3989 		 * that matches.
3990 		 */
3991 		if (!mod_matches == !exclude_mod)
3992 			return 0;
3993 func_match:
3994 		/* blank search means to match all funcs in the mod */
3995 		if (!func_g->len)
3996 			return 1;
3997 	}
3998 
3999 	return ftrace_match(str, func_g);
4000 }
4001 
4002 static int
4003 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4004 {
4005 	struct ftrace_page *pg;
4006 	struct dyn_ftrace *rec;
4007 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4008 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4009 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4010 	int exclude_mod = 0;
4011 	int found = 0;
4012 	int ret;
4013 	int clear_filter = 0;
4014 
4015 	if (func) {
4016 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4017 						 &clear_filter);
4018 		func_g.len = strlen(func_g.search);
4019 	}
4020 
4021 	if (mod) {
4022 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4023 				&mod_g.search, &exclude_mod);
4024 		mod_g.len = strlen(mod_g.search);
4025 	}
4026 
4027 	mutex_lock(&ftrace_lock);
4028 
4029 	if (unlikely(ftrace_disabled))
4030 		goto out_unlock;
4031 
4032 	if (func_g.type == MATCH_INDEX) {
4033 		found = add_rec_by_index(hash, &func_g, clear_filter);
4034 		goto out_unlock;
4035 	}
4036 
4037 	do_for_each_ftrace_rec(pg, rec) {
4038 
4039 		if (rec->flags & FTRACE_FL_DISABLED)
4040 			continue;
4041 
4042 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4043 			ret = enter_record(hash, rec, clear_filter);
4044 			if (ret < 0) {
4045 				found = ret;
4046 				goto out_unlock;
4047 			}
4048 			found = 1;
4049 		}
4050 	} while_for_each_ftrace_rec();
4051  out_unlock:
4052 	mutex_unlock(&ftrace_lock);
4053 
4054 	return found;
4055 }
4056 
4057 static int
4058 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4059 {
4060 	return match_records(hash, buff, len, NULL);
4061 }
4062 
4063 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4064 				   struct ftrace_ops_hash *old_hash)
4065 {
4066 	struct ftrace_ops *op;
4067 
4068 	if (!ftrace_enabled)
4069 		return;
4070 
4071 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4072 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4073 		return;
4074 	}
4075 
4076 	/*
4077 	 * If this is the shared global_ops filter, then we need to
4078 	 * check if there is another ops that shares it, is enabled.
4079 	 * If so, we still need to run the modify code.
4080 	 */
4081 	if (ops->func_hash != &global_ops.local_hash)
4082 		return;
4083 
4084 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4085 		if (op->func_hash == &global_ops.local_hash &&
4086 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4087 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4088 			/* Only need to do this once */
4089 			return;
4090 		}
4091 	} while_for_each_ftrace_op(op);
4092 }
4093 
4094 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4095 					   struct ftrace_hash **orig_hash,
4096 					   struct ftrace_hash *hash,
4097 					   int enable)
4098 {
4099 	struct ftrace_ops_hash old_hash_ops;
4100 	struct ftrace_hash *old_hash;
4101 	int ret;
4102 
4103 	old_hash = *orig_hash;
4104 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4105 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4106 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4107 	if (!ret) {
4108 		ftrace_ops_update_code(ops, &old_hash_ops);
4109 		free_ftrace_hash_rcu(old_hash);
4110 	}
4111 	return ret;
4112 }
4113 
4114 static bool module_exists(const char *module)
4115 {
4116 	/* All modules have the symbol __this_module */
4117 	static const char this_mod[] = "__this_module";
4118 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4119 	unsigned long val;
4120 	int n;
4121 
4122 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4123 
4124 	if (n > sizeof(modname) - 1)
4125 		return false;
4126 
4127 	val = module_kallsyms_lookup_name(modname);
4128 	return val != 0;
4129 }
4130 
4131 static int cache_mod(struct trace_array *tr,
4132 		     const char *func, char *module, int enable)
4133 {
4134 	struct ftrace_mod_load *ftrace_mod, *n;
4135 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4136 	int ret;
4137 
4138 	mutex_lock(&ftrace_lock);
4139 
4140 	/* We do not cache inverse filters */
4141 	if (func[0] == '!') {
4142 		func++;
4143 		ret = -EINVAL;
4144 
4145 		/* Look to remove this hash */
4146 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4147 			if (strcmp(ftrace_mod->module, module) != 0)
4148 				continue;
4149 
4150 			/* no func matches all */
4151 			if (strcmp(func, "*") == 0 ||
4152 			    (ftrace_mod->func &&
4153 			     strcmp(ftrace_mod->func, func) == 0)) {
4154 				ret = 0;
4155 				free_ftrace_mod(ftrace_mod);
4156 				continue;
4157 			}
4158 		}
4159 		goto out;
4160 	}
4161 
4162 	ret = -EINVAL;
4163 	/* We only care about modules that have not been loaded yet */
4164 	if (module_exists(module))
4165 		goto out;
4166 
4167 	/* Save this string off, and execute it when the module is loaded */
4168 	ret = ftrace_add_mod(tr, func, module, enable);
4169  out:
4170 	mutex_unlock(&ftrace_lock);
4171 
4172 	return ret;
4173 }
4174 
4175 static int
4176 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4177 		 int reset, int enable);
4178 
4179 #ifdef CONFIG_MODULES
4180 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4181 			     char *mod, bool enable)
4182 {
4183 	struct ftrace_mod_load *ftrace_mod, *n;
4184 	struct ftrace_hash **orig_hash, *new_hash;
4185 	LIST_HEAD(process_mods);
4186 	char *func;
4187 
4188 	mutex_lock(&ops->func_hash->regex_lock);
4189 
4190 	if (enable)
4191 		orig_hash = &ops->func_hash->filter_hash;
4192 	else
4193 		orig_hash = &ops->func_hash->notrace_hash;
4194 
4195 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4196 					      *orig_hash);
4197 	if (!new_hash)
4198 		goto out; /* warn? */
4199 
4200 	mutex_lock(&ftrace_lock);
4201 
4202 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4203 
4204 		if (strcmp(ftrace_mod->module, mod) != 0)
4205 			continue;
4206 
4207 		if (ftrace_mod->func)
4208 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4209 		else
4210 			func = kstrdup("*", GFP_KERNEL);
4211 
4212 		if (!func) /* warn? */
4213 			continue;
4214 
4215 		list_move(&ftrace_mod->list, &process_mods);
4216 
4217 		/* Use the newly allocated func, as it may be "*" */
4218 		kfree(ftrace_mod->func);
4219 		ftrace_mod->func = func;
4220 	}
4221 
4222 	mutex_unlock(&ftrace_lock);
4223 
4224 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4225 
4226 		func = ftrace_mod->func;
4227 
4228 		/* Grabs ftrace_lock, which is why we have this extra step */
4229 		match_records(new_hash, func, strlen(func), mod);
4230 		free_ftrace_mod(ftrace_mod);
4231 	}
4232 
4233 	if (enable && list_empty(head))
4234 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4235 
4236 	mutex_lock(&ftrace_lock);
4237 
4238 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4239 					      new_hash, enable);
4240 	mutex_unlock(&ftrace_lock);
4241 
4242  out:
4243 	mutex_unlock(&ops->func_hash->regex_lock);
4244 
4245 	free_ftrace_hash(new_hash);
4246 }
4247 
4248 static void process_cached_mods(const char *mod_name)
4249 {
4250 	struct trace_array *tr;
4251 	char *mod;
4252 
4253 	mod = kstrdup(mod_name, GFP_KERNEL);
4254 	if (!mod)
4255 		return;
4256 
4257 	mutex_lock(&trace_types_lock);
4258 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4259 		if (!list_empty(&tr->mod_trace))
4260 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4261 		if (!list_empty(&tr->mod_notrace))
4262 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4263 	}
4264 	mutex_unlock(&trace_types_lock);
4265 
4266 	kfree(mod);
4267 }
4268 #endif
4269 
4270 /*
4271  * We register the module command as a template to show others how
4272  * to register the a command as well.
4273  */
4274 
4275 static int
4276 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4277 		    char *func_orig, char *cmd, char *module, int enable)
4278 {
4279 	char *func;
4280 	int ret;
4281 
4282 	/* match_records() modifies func, and we need the original */
4283 	func = kstrdup(func_orig, GFP_KERNEL);
4284 	if (!func)
4285 		return -ENOMEM;
4286 
4287 	/*
4288 	 * cmd == 'mod' because we only registered this func
4289 	 * for the 'mod' ftrace_func_command.
4290 	 * But if you register one func with multiple commands,
4291 	 * you can tell which command was used by the cmd
4292 	 * parameter.
4293 	 */
4294 	ret = match_records(hash, func, strlen(func), module);
4295 	kfree(func);
4296 
4297 	if (!ret)
4298 		return cache_mod(tr, func_orig, module, enable);
4299 	if (ret < 0)
4300 		return ret;
4301 	return 0;
4302 }
4303 
4304 static struct ftrace_func_command ftrace_mod_cmd = {
4305 	.name			= "mod",
4306 	.func			= ftrace_mod_callback,
4307 };
4308 
4309 static int __init ftrace_mod_cmd_init(void)
4310 {
4311 	return register_ftrace_command(&ftrace_mod_cmd);
4312 }
4313 core_initcall(ftrace_mod_cmd_init);
4314 
4315 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4316 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4317 {
4318 	struct ftrace_probe_ops *probe_ops;
4319 	struct ftrace_func_probe *probe;
4320 
4321 	probe = container_of(op, struct ftrace_func_probe, ops);
4322 	probe_ops = probe->probe_ops;
4323 
4324 	/*
4325 	 * Disable preemption for these calls to prevent a RCU grace
4326 	 * period. This syncs the hash iteration and freeing of items
4327 	 * on the hash. rcu_read_lock is too dangerous here.
4328 	 */
4329 	preempt_disable_notrace();
4330 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4331 	preempt_enable_notrace();
4332 }
4333 
4334 struct ftrace_func_map {
4335 	struct ftrace_func_entry	entry;
4336 	void				*data;
4337 };
4338 
4339 struct ftrace_func_mapper {
4340 	struct ftrace_hash		hash;
4341 };
4342 
4343 /**
4344  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4345  *
4346  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4347  */
4348 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4349 {
4350 	struct ftrace_hash *hash;
4351 
4352 	/*
4353 	 * The mapper is simply a ftrace_hash, but since the entries
4354 	 * in the hash are not ftrace_func_entry type, we define it
4355 	 * as a separate structure.
4356 	 */
4357 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4358 	return (struct ftrace_func_mapper *)hash;
4359 }
4360 
4361 /**
4362  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4363  * @mapper: The mapper that has the ip maps
4364  * @ip: the instruction pointer to find the data for
4365  *
4366  * Returns the data mapped to @ip if found otherwise NULL. The return
4367  * is actually the address of the mapper data pointer. The address is
4368  * returned for use cases where the data is no bigger than a long, and
4369  * the user can use the data pointer as its data instead of having to
4370  * allocate more memory for the reference.
4371  */
4372 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4373 				  unsigned long ip)
4374 {
4375 	struct ftrace_func_entry *entry;
4376 	struct ftrace_func_map *map;
4377 
4378 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4379 	if (!entry)
4380 		return NULL;
4381 
4382 	map = (struct ftrace_func_map *)entry;
4383 	return &map->data;
4384 }
4385 
4386 /**
4387  * ftrace_func_mapper_add_ip - Map some data to an ip
4388  * @mapper: The mapper that has the ip maps
4389  * @ip: The instruction pointer address to map @data to
4390  * @data: The data to map to @ip
4391  *
4392  * Returns 0 on success otherwise an error.
4393  */
4394 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4395 			      unsigned long ip, void *data)
4396 {
4397 	struct ftrace_func_entry *entry;
4398 	struct ftrace_func_map *map;
4399 
4400 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4401 	if (entry)
4402 		return -EBUSY;
4403 
4404 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4405 	if (!map)
4406 		return -ENOMEM;
4407 
4408 	map->entry.ip = ip;
4409 	map->data = data;
4410 
4411 	__add_hash_entry(&mapper->hash, &map->entry);
4412 
4413 	return 0;
4414 }
4415 
4416 /**
4417  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4418  * @mapper: The mapper that has the ip maps
4419  * @ip: The instruction pointer address to remove the data from
4420  *
4421  * Returns the data if it is found, otherwise NULL.
4422  * Note, if the data pointer is used as the data itself, (see
4423  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4424  * if the data pointer was set to zero.
4425  */
4426 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4427 				   unsigned long ip)
4428 {
4429 	struct ftrace_func_entry *entry;
4430 	struct ftrace_func_map *map;
4431 	void *data;
4432 
4433 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4434 	if (!entry)
4435 		return NULL;
4436 
4437 	map = (struct ftrace_func_map *)entry;
4438 	data = map->data;
4439 
4440 	remove_hash_entry(&mapper->hash, entry);
4441 	kfree(entry);
4442 
4443 	return data;
4444 }
4445 
4446 /**
4447  * free_ftrace_func_mapper - free a mapping of ips and data
4448  * @mapper: The mapper that has the ip maps
4449  * @free_func: A function to be called on each data item.
4450  *
4451  * This is used to free the function mapper. The @free_func is optional
4452  * and can be used if the data needs to be freed as well.
4453  */
4454 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4455 			     ftrace_mapper_func free_func)
4456 {
4457 	struct ftrace_func_entry *entry;
4458 	struct ftrace_func_map *map;
4459 	struct hlist_head *hhd;
4460 	int size, i;
4461 
4462 	if (!mapper)
4463 		return;
4464 
4465 	if (free_func && mapper->hash.count) {
4466 		size = 1 << mapper->hash.size_bits;
4467 		for (i = 0; i < size; i++) {
4468 			hhd = &mapper->hash.buckets[i];
4469 			hlist_for_each_entry(entry, hhd, hlist) {
4470 				map = (struct ftrace_func_map *)entry;
4471 				free_func(map);
4472 			}
4473 		}
4474 	}
4475 	free_ftrace_hash(&mapper->hash);
4476 }
4477 
4478 static void release_probe(struct ftrace_func_probe *probe)
4479 {
4480 	struct ftrace_probe_ops *probe_ops;
4481 
4482 	mutex_lock(&ftrace_lock);
4483 
4484 	WARN_ON(probe->ref <= 0);
4485 
4486 	/* Subtract the ref that was used to protect this instance */
4487 	probe->ref--;
4488 
4489 	if (!probe->ref) {
4490 		probe_ops = probe->probe_ops;
4491 		/*
4492 		 * Sending zero as ip tells probe_ops to free
4493 		 * the probe->data itself
4494 		 */
4495 		if (probe_ops->free)
4496 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4497 		list_del(&probe->list);
4498 		kfree(probe);
4499 	}
4500 	mutex_unlock(&ftrace_lock);
4501 }
4502 
4503 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4504 {
4505 	/*
4506 	 * Add one ref to keep it from being freed when releasing the
4507 	 * ftrace_lock mutex.
4508 	 */
4509 	probe->ref++;
4510 }
4511 
4512 int
4513 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4514 			       struct ftrace_probe_ops *probe_ops,
4515 			       void *data)
4516 {
4517 	struct ftrace_func_entry *entry;
4518 	struct ftrace_func_probe *probe;
4519 	struct ftrace_hash **orig_hash;
4520 	struct ftrace_hash *old_hash;
4521 	struct ftrace_hash *hash;
4522 	int count = 0;
4523 	int size;
4524 	int ret;
4525 	int i;
4526 
4527 	if (WARN_ON(!tr))
4528 		return -EINVAL;
4529 
4530 	/* We do not support '!' for function probes */
4531 	if (WARN_ON(glob[0] == '!'))
4532 		return -EINVAL;
4533 
4534 
4535 	mutex_lock(&ftrace_lock);
4536 	/* Check if the probe_ops is already registered */
4537 	list_for_each_entry(probe, &tr->func_probes, list) {
4538 		if (probe->probe_ops == probe_ops)
4539 			break;
4540 	}
4541 	if (&probe->list == &tr->func_probes) {
4542 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4543 		if (!probe) {
4544 			mutex_unlock(&ftrace_lock);
4545 			return -ENOMEM;
4546 		}
4547 		probe->probe_ops = probe_ops;
4548 		probe->ops.func = function_trace_probe_call;
4549 		probe->tr = tr;
4550 		ftrace_ops_init(&probe->ops);
4551 		list_add(&probe->list, &tr->func_probes);
4552 	}
4553 
4554 	acquire_probe_locked(probe);
4555 
4556 	mutex_unlock(&ftrace_lock);
4557 
4558 	/*
4559 	 * Note, there's a small window here that the func_hash->filter_hash
4560 	 * may be NULL or empty. Need to be careful when reading the loop.
4561 	 */
4562 	mutex_lock(&probe->ops.func_hash->regex_lock);
4563 
4564 	orig_hash = &probe->ops.func_hash->filter_hash;
4565 	old_hash = *orig_hash;
4566 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4567 
4568 	if (!hash) {
4569 		ret = -ENOMEM;
4570 		goto out;
4571 	}
4572 
4573 	ret = ftrace_match_records(hash, glob, strlen(glob));
4574 
4575 	/* Nothing found? */
4576 	if (!ret)
4577 		ret = -EINVAL;
4578 
4579 	if (ret < 0)
4580 		goto out;
4581 
4582 	size = 1 << hash->size_bits;
4583 	for (i = 0; i < size; i++) {
4584 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4585 			if (ftrace_lookup_ip(old_hash, entry->ip))
4586 				continue;
4587 			/*
4588 			 * The caller might want to do something special
4589 			 * for each function we find. We call the callback
4590 			 * to give the caller an opportunity to do so.
4591 			 */
4592 			if (probe_ops->init) {
4593 				ret = probe_ops->init(probe_ops, tr,
4594 						      entry->ip, data,
4595 						      &probe->data);
4596 				if (ret < 0) {
4597 					if (probe_ops->free && count)
4598 						probe_ops->free(probe_ops, tr,
4599 								0, probe->data);
4600 					probe->data = NULL;
4601 					goto out;
4602 				}
4603 			}
4604 			count++;
4605 		}
4606 	}
4607 
4608 	mutex_lock(&ftrace_lock);
4609 
4610 	if (!count) {
4611 		/* Nothing was added? */
4612 		ret = -EINVAL;
4613 		goto out_unlock;
4614 	}
4615 
4616 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4617 					      hash, 1);
4618 	if (ret < 0)
4619 		goto err_unlock;
4620 
4621 	/* One ref for each new function traced */
4622 	probe->ref += count;
4623 
4624 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4625 		ret = ftrace_startup(&probe->ops, 0);
4626 
4627  out_unlock:
4628 	mutex_unlock(&ftrace_lock);
4629 
4630 	if (!ret)
4631 		ret = count;
4632  out:
4633 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4634 	free_ftrace_hash(hash);
4635 
4636 	release_probe(probe);
4637 
4638 	return ret;
4639 
4640  err_unlock:
4641 	if (!probe_ops->free || !count)
4642 		goto out_unlock;
4643 
4644 	/* Failed to do the move, need to call the free functions */
4645 	for (i = 0; i < size; i++) {
4646 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4647 			if (ftrace_lookup_ip(old_hash, entry->ip))
4648 				continue;
4649 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4650 		}
4651 	}
4652 	goto out_unlock;
4653 }
4654 
4655 int
4656 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4657 				      struct ftrace_probe_ops *probe_ops)
4658 {
4659 	struct ftrace_ops_hash old_hash_ops;
4660 	struct ftrace_func_entry *entry;
4661 	struct ftrace_func_probe *probe;
4662 	struct ftrace_glob func_g;
4663 	struct ftrace_hash **orig_hash;
4664 	struct ftrace_hash *old_hash;
4665 	struct ftrace_hash *hash = NULL;
4666 	struct hlist_node *tmp;
4667 	struct hlist_head hhd;
4668 	char str[KSYM_SYMBOL_LEN];
4669 	int count = 0;
4670 	int i, ret = -ENODEV;
4671 	int size;
4672 
4673 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4674 		func_g.search = NULL;
4675 	else {
4676 		int not;
4677 
4678 		func_g.type = filter_parse_regex(glob, strlen(glob),
4679 						 &func_g.search, &not);
4680 		func_g.len = strlen(func_g.search);
4681 
4682 		/* we do not support '!' for function probes */
4683 		if (WARN_ON(not))
4684 			return -EINVAL;
4685 	}
4686 
4687 	mutex_lock(&ftrace_lock);
4688 	/* Check if the probe_ops is already registered */
4689 	list_for_each_entry(probe, &tr->func_probes, list) {
4690 		if (probe->probe_ops == probe_ops)
4691 			break;
4692 	}
4693 	if (&probe->list == &tr->func_probes)
4694 		goto err_unlock_ftrace;
4695 
4696 	ret = -EINVAL;
4697 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4698 		goto err_unlock_ftrace;
4699 
4700 	acquire_probe_locked(probe);
4701 
4702 	mutex_unlock(&ftrace_lock);
4703 
4704 	mutex_lock(&probe->ops.func_hash->regex_lock);
4705 
4706 	orig_hash = &probe->ops.func_hash->filter_hash;
4707 	old_hash = *orig_hash;
4708 
4709 	if (ftrace_hash_empty(old_hash))
4710 		goto out_unlock;
4711 
4712 	old_hash_ops.filter_hash = old_hash;
4713 	/* Probes only have filters */
4714 	old_hash_ops.notrace_hash = NULL;
4715 
4716 	ret = -ENOMEM;
4717 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4718 	if (!hash)
4719 		goto out_unlock;
4720 
4721 	INIT_HLIST_HEAD(&hhd);
4722 
4723 	size = 1 << hash->size_bits;
4724 	for (i = 0; i < size; i++) {
4725 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4726 
4727 			if (func_g.search) {
4728 				kallsyms_lookup(entry->ip, NULL, NULL,
4729 						NULL, str);
4730 				if (!ftrace_match(str, &func_g))
4731 					continue;
4732 			}
4733 			count++;
4734 			remove_hash_entry(hash, entry);
4735 			hlist_add_head(&entry->hlist, &hhd);
4736 		}
4737 	}
4738 
4739 	/* Nothing found? */
4740 	if (!count) {
4741 		ret = -EINVAL;
4742 		goto out_unlock;
4743 	}
4744 
4745 	mutex_lock(&ftrace_lock);
4746 
4747 	WARN_ON(probe->ref < count);
4748 
4749 	probe->ref -= count;
4750 
4751 	if (ftrace_hash_empty(hash))
4752 		ftrace_shutdown(&probe->ops, 0);
4753 
4754 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4755 					      hash, 1);
4756 
4757 	/* still need to update the function call sites */
4758 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4759 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4760 				       &old_hash_ops);
4761 	synchronize_rcu();
4762 
4763 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4764 		hlist_del(&entry->hlist);
4765 		if (probe_ops->free)
4766 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4767 		kfree(entry);
4768 	}
4769 	mutex_unlock(&ftrace_lock);
4770 
4771  out_unlock:
4772 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4773 	free_ftrace_hash(hash);
4774 
4775 	release_probe(probe);
4776 
4777 	return ret;
4778 
4779  err_unlock_ftrace:
4780 	mutex_unlock(&ftrace_lock);
4781 	return ret;
4782 }
4783 
4784 void clear_ftrace_function_probes(struct trace_array *tr)
4785 {
4786 	struct ftrace_func_probe *probe, *n;
4787 
4788 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4789 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4790 }
4791 
4792 static LIST_HEAD(ftrace_commands);
4793 static DEFINE_MUTEX(ftrace_cmd_mutex);
4794 
4795 /*
4796  * Currently we only register ftrace commands from __init, so mark this
4797  * __init too.
4798  */
4799 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4800 {
4801 	struct ftrace_func_command *p;
4802 	int ret = 0;
4803 
4804 	mutex_lock(&ftrace_cmd_mutex);
4805 	list_for_each_entry(p, &ftrace_commands, list) {
4806 		if (strcmp(cmd->name, p->name) == 0) {
4807 			ret = -EBUSY;
4808 			goto out_unlock;
4809 		}
4810 	}
4811 	list_add(&cmd->list, &ftrace_commands);
4812  out_unlock:
4813 	mutex_unlock(&ftrace_cmd_mutex);
4814 
4815 	return ret;
4816 }
4817 
4818 /*
4819  * Currently we only unregister ftrace commands from __init, so mark
4820  * this __init too.
4821  */
4822 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4823 {
4824 	struct ftrace_func_command *p, *n;
4825 	int ret = -ENODEV;
4826 
4827 	mutex_lock(&ftrace_cmd_mutex);
4828 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4829 		if (strcmp(cmd->name, p->name) == 0) {
4830 			ret = 0;
4831 			list_del_init(&p->list);
4832 			goto out_unlock;
4833 		}
4834 	}
4835  out_unlock:
4836 	mutex_unlock(&ftrace_cmd_mutex);
4837 
4838 	return ret;
4839 }
4840 
4841 static int ftrace_process_regex(struct ftrace_iterator *iter,
4842 				char *buff, int len, int enable)
4843 {
4844 	struct ftrace_hash *hash = iter->hash;
4845 	struct trace_array *tr = iter->ops->private;
4846 	char *func, *command, *next = buff;
4847 	struct ftrace_func_command *p;
4848 	int ret = -EINVAL;
4849 
4850 	func = strsep(&next, ":");
4851 
4852 	if (!next) {
4853 		ret = ftrace_match_records(hash, func, len);
4854 		if (!ret)
4855 			ret = -EINVAL;
4856 		if (ret < 0)
4857 			return ret;
4858 		return 0;
4859 	}
4860 
4861 	/* command found */
4862 
4863 	command = strsep(&next, ":");
4864 
4865 	mutex_lock(&ftrace_cmd_mutex);
4866 	list_for_each_entry(p, &ftrace_commands, list) {
4867 		if (strcmp(p->name, command) == 0) {
4868 			ret = p->func(tr, hash, func, command, next, enable);
4869 			goto out_unlock;
4870 		}
4871 	}
4872  out_unlock:
4873 	mutex_unlock(&ftrace_cmd_mutex);
4874 
4875 	return ret;
4876 }
4877 
4878 static ssize_t
4879 ftrace_regex_write(struct file *file, const char __user *ubuf,
4880 		   size_t cnt, loff_t *ppos, int enable)
4881 {
4882 	struct ftrace_iterator *iter;
4883 	struct trace_parser *parser;
4884 	ssize_t ret, read;
4885 
4886 	if (!cnt)
4887 		return 0;
4888 
4889 	if (file->f_mode & FMODE_READ) {
4890 		struct seq_file *m = file->private_data;
4891 		iter = m->private;
4892 	} else
4893 		iter = file->private_data;
4894 
4895 	if (unlikely(ftrace_disabled))
4896 		return -ENODEV;
4897 
4898 	/* iter->hash is a local copy, so we don't need regex_lock */
4899 
4900 	parser = &iter->parser;
4901 	read = trace_get_user(parser, ubuf, cnt, ppos);
4902 
4903 	if (read >= 0 && trace_parser_loaded(parser) &&
4904 	    !trace_parser_cont(parser)) {
4905 		ret = ftrace_process_regex(iter, parser->buffer,
4906 					   parser->idx, enable);
4907 		trace_parser_clear(parser);
4908 		if (ret < 0)
4909 			goto out;
4910 	}
4911 
4912 	ret = read;
4913  out:
4914 	return ret;
4915 }
4916 
4917 ssize_t
4918 ftrace_filter_write(struct file *file, const char __user *ubuf,
4919 		    size_t cnt, loff_t *ppos)
4920 {
4921 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4922 }
4923 
4924 ssize_t
4925 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4926 		     size_t cnt, loff_t *ppos)
4927 {
4928 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4929 }
4930 
4931 static int
4932 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4933 {
4934 	struct ftrace_func_entry *entry;
4935 
4936 	if (!ftrace_location(ip))
4937 		return -EINVAL;
4938 
4939 	if (remove) {
4940 		entry = ftrace_lookup_ip(hash, ip);
4941 		if (!entry)
4942 			return -ENOENT;
4943 		free_hash_entry(hash, entry);
4944 		return 0;
4945 	}
4946 
4947 	return add_hash_entry(hash, ip);
4948 }
4949 
4950 static int
4951 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4952 		unsigned long ip, int remove, int reset, int enable)
4953 {
4954 	struct ftrace_hash **orig_hash;
4955 	struct ftrace_hash *hash;
4956 	int ret;
4957 
4958 	if (unlikely(ftrace_disabled))
4959 		return -ENODEV;
4960 
4961 	mutex_lock(&ops->func_hash->regex_lock);
4962 
4963 	if (enable)
4964 		orig_hash = &ops->func_hash->filter_hash;
4965 	else
4966 		orig_hash = &ops->func_hash->notrace_hash;
4967 
4968 	if (reset)
4969 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4970 	else
4971 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4972 
4973 	if (!hash) {
4974 		ret = -ENOMEM;
4975 		goto out_regex_unlock;
4976 	}
4977 
4978 	if (buf && !ftrace_match_records(hash, buf, len)) {
4979 		ret = -EINVAL;
4980 		goto out_regex_unlock;
4981 	}
4982 	if (ip) {
4983 		ret = ftrace_match_addr(hash, ip, remove);
4984 		if (ret < 0)
4985 			goto out_regex_unlock;
4986 	}
4987 
4988 	mutex_lock(&ftrace_lock);
4989 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4990 	mutex_unlock(&ftrace_lock);
4991 
4992  out_regex_unlock:
4993 	mutex_unlock(&ops->func_hash->regex_lock);
4994 
4995 	free_ftrace_hash(hash);
4996 	return ret;
4997 }
4998 
4999 static int
5000 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
5001 		int reset, int enable)
5002 {
5003 	return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
5004 }
5005 
5006 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5007 
5008 struct ftrace_direct_func {
5009 	struct list_head	next;
5010 	unsigned long		addr;
5011 	int			count;
5012 };
5013 
5014 static LIST_HEAD(ftrace_direct_funcs);
5015 
5016 /**
5017  * ftrace_find_direct_func - test an address if it is a registered direct caller
5018  * @addr: The address of a registered direct caller
5019  *
5020  * This searches to see if a ftrace direct caller has been registered
5021  * at a specific address, and if so, it returns a descriptor for it.
5022  *
5023  * This can be used by architecture code to see if an address is
5024  * a direct caller (trampoline) attached to a fentry/mcount location.
5025  * This is useful for the function_graph tracer, as it may need to
5026  * do adjustments if it traced a location that also has a direct
5027  * trampoline attached to it.
5028  */
5029 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5030 {
5031 	struct ftrace_direct_func *entry;
5032 	bool found = false;
5033 
5034 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5035 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5036 		if (entry->addr == addr) {
5037 			found = true;
5038 			break;
5039 		}
5040 	}
5041 	if (found)
5042 		return entry;
5043 
5044 	return NULL;
5045 }
5046 
5047 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5048 {
5049 	struct ftrace_direct_func *direct;
5050 
5051 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5052 	if (!direct)
5053 		return NULL;
5054 	direct->addr = addr;
5055 	direct->count = 0;
5056 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5057 	ftrace_direct_func_count++;
5058 	return direct;
5059 }
5060 
5061 /**
5062  * register_ftrace_direct - Call a custom trampoline directly
5063  * @ip: The address of the nop at the beginning of a function
5064  * @addr: The address of the trampoline to call at @ip
5065  *
5066  * This is used to connect a direct call from the nop location (@ip)
5067  * at the start of ftrace traced functions. The location that it calls
5068  * (@addr) must be able to handle a direct call, and save the parameters
5069  * of the function being traced, and restore them (or inject new ones
5070  * if needed), before returning.
5071  *
5072  * Returns:
5073  *  0 on success
5074  *  -EBUSY - Another direct function is already attached (there can be only one)
5075  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5076  *  -ENOMEM - There was an allocation failure.
5077  */
5078 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5079 {
5080 	struct ftrace_direct_func *direct;
5081 	struct ftrace_func_entry *entry;
5082 	struct ftrace_hash *free_hash = NULL;
5083 	struct dyn_ftrace *rec;
5084 	int ret = -EBUSY;
5085 
5086 	mutex_lock(&direct_mutex);
5087 
5088 	/* See if there's a direct function at @ip already */
5089 	if (ftrace_find_rec_direct(ip))
5090 		goto out_unlock;
5091 
5092 	ret = -ENODEV;
5093 	rec = lookup_rec(ip, ip);
5094 	if (!rec)
5095 		goto out_unlock;
5096 
5097 	/*
5098 	 * Check if the rec says it has a direct call but we didn't
5099 	 * find one earlier?
5100 	 */
5101 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5102 		goto out_unlock;
5103 
5104 	/* Make sure the ip points to the exact record */
5105 	if (ip != rec->ip) {
5106 		ip = rec->ip;
5107 		/* Need to check this ip for a direct. */
5108 		if (ftrace_find_rec_direct(ip))
5109 			goto out_unlock;
5110 	}
5111 
5112 	ret = -ENOMEM;
5113 	if (ftrace_hash_empty(direct_functions) ||
5114 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5115 		struct ftrace_hash *new_hash;
5116 		int size = ftrace_hash_empty(direct_functions) ? 0 :
5117 			direct_functions->count + 1;
5118 
5119 		if (size < 32)
5120 			size = 32;
5121 
5122 		new_hash = dup_hash(direct_functions, size);
5123 		if (!new_hash)
5124 			goto out_unlock;
5125 
5126 		free_hash = direct_functions;
5127 		direct_functions = new_hash;
5128 	}
5129 
5130 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5131 	if (!entry)
5132 		goto out_unlock;
5133 
5134 	direct = ftrace_find_direct_func(addr);
5135 	if (!direct) {
5136 		direct = ftrace_alloc_direct_func(addr);
5137 		if (!direct) {
5138 			kfree(entry);
5139 			goto out_unlock;
5140 		}
5141 	}
5142 
5143 	entry->ip = ip;
5144 	entry->direct = addr;
5145 	__add_hash_entry(direct_functions, entry);
5146 
5147 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5148 	if (ret)
5149 		remove_hash_entry(direct_functions, entry);
5150 
5151 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5152 		ret = register_ftrace_function(&direct_ops);
5153 		if (ret)
5154 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5155 	}
5156 
5157 	if (ret) {
5158 		kfree(entry);
5159 		if (!direct->count) {
5160 			list_del_rcu(&direct->next);
5161 			synchronize_rcu_tasks();
5162 			kfree(direct);
5163 			if (free_hash)
5164 				free_ftrace_hash(free_hash);
5165 			free_hash = NULL;
5166 			ftrace_direct_func_count--;
5167 		}
5168 	} else {
5169 		direct->count++;
5170 	}
5171  out_unlock:
5172 	mutex_unlock(&direct_mutex);
5173 
5174 	if (free_hash) {
5175 		synchronize_rcu_tasks();
5176 		free_ftrace_hash(free_hash);
5177 	}
5178 
5179 	return ret;
5180 }
5181 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5182 
5183 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5184 						   struct dyn_ftrace **recp)
5185 {
5186 	struct ftrace_func_entry *entry;
5187 	struct dyn_ftrace *rec;
5188 
5189 	rec = lookup_rec(*ip, *ip);
5190 	if (!rec)
5191 		return NULL;
5192 
5193 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5194 	if (!entry) {
5195 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5196 		return NULL;
5197 	}
5198 
5199 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5200 
5201 	/* Passed in ip just needs to be on the call site */
5202 	*ip = rec->ip;
5203 
5204 	if (recp)
5205 		*recp = rec;
5206 
5207 	return entry;
5208 }
5209 
5210 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5211 {
5212 	struct ftrace_direct_func *direct;
5213 	struct ftrace_func_entry *entry;
5214 	int ret = -ENODEV;
5215 
5216 	mutex_lock(&direct_mutex);
5217 
5218 	entry = find_direct_entry(&ip, NULL);
5219 	if (!entry)
5220 		goto out_unlock;
5221 
5222 	if (direct_functions->count == 1)
5223 		unregister_ftrace_function(&direct_ops);
5224 
5225 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5226 
5227 	WARN_ON(ret);
5228 
5229 	remove_hash_entry(direct_functions, entry);
5230 
5231 	direct = ftrace_find_direct_func(addr);
5232 	if (!WARN_ON(!direct)) {
5233 		/* This is the good path (see the ! before WARN) */
5234 		direct->count--;
5235 		WARN_ON(direct->count < 0);
5236 		if (!direct->count) {
5237 			list_del_rcu(&direct->next);
5238 			synchronize_rcu_tasks();
5239 			kfree(direct);
5240 			kfree(entry);
5241 			ftrace_direct_func_count--;
5242 		}
5243 	}
5244  out_unlock:
5245 	mutex_unlock(&direct_mutex);
5246 
5247 	return ret;
5248 }
5249 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5250 
5251 static struct ftrace_ops stub_ops = {
5252 	.func		= ftrace_stub,
5253 };
5254 
5255 /**
5256  * ftrace_modify_direct_caller - modify ftrace nop directly
5257  * @entry: The ftrace hash entry of the direct helper for @rec
5258  * @rec: The record representing the function site to patch
5259  * @old_addr: The location that the site at @rec->ip currently calls
5260  * @new_addr: The location that the site at @rec->ip should call
5261  *
5262  * An architecture may overwrite this function to optimize the
5263  * changing of the direct callback on an ftrace nop location.
5264  * This is called with the ftrace_lock mutex held, and no other
5265  * ftrace callbacks are on the associated record (@rec). Thus,
5266  * it is safe to modify the ftrace record, where it should be
5267  * currently calling @old_addr directly, to call @new_addr.
5268  *
5269  * Safety checks should be made to make sure that the code at
5270  * @rec->ip is currently calling @old_addr. And this must
5271  * also update entry->direct to @new_addr.
5272  */
5273 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5274 				       struct dyn_ftrace *rec,
5275 				       unsigned long old_addr,
5276 				       unsigned long new_addr)
5277 {
5278 	unsigned long ip = rec->ip;
5279 	int ret;
5280 
5281 	/*
5282 	 * The ftrace_lock was used to determine if the record
5283 	 * had more than one registered user to it. If it did,
5284 	 * we needed to prevent that from changing to do the quick
5285 	 * switch. But if it did not (only a direct caller was attached)
5286 	 * then this function is called. But this function can deal
5287 	 * with attached callers to the rec that we care about, and
5288 	 * since this function uses standard ftrace calls that take
5289 	 * the ftrace_lock mutex, we need to release it.
5290 	 */
5291 	mutex_unlock(&ftrace_lock);
5292 
5293 	/*
5294 	 * By setting a stub function at the same address, we force
5295 	 * the code to call the iterator and the direct_ops helper.
5296 	 * This means that @ip does not call the direct call, and
5297 	 * we can simply modify it.
5298 	 */
5299 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5300 	if (ret)
5301 		goto out_lock;
5302 
5303 	ret = register_ftrace_function(&stub_ops);
5304 	if (ret) {
5305 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5306 		goto out_lock;
5307 	}
5308 
5309 	entry->direct = new_addr;
5310 
5311 	/*
5312 	 * By removing the stub, we put back the direct call, calling
5313 	 * the @new_addr.
5314 	 */
5315 	unregister_ftrace_function(&stub_ops);
5316 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5317 
5318  out_lock:
5319 	mutex_lock(&ftrace_lock);
5320 
5321 	return ret;
5322 }
5323 
5324 /**
5325  * modify_ftrace_direct - Modify an existing direct call to call something else
5326  * @ip: The instruction pointer to modify
5327  * @old_addr: The address that the current @ip calls directly
5328  * @new_addr: The address that the @ip should call
5329  *
5330  * This modifies a ftrace direct caller at an instruction pointer without
5331  * having to disable it first. The direct call will switch over to the
5332  * @new_addr without missing anything.
5333  *
5334  * Returns: zero on success. Non zero on error, which includes:
5335  *  -ENODEV : the @ip given has no direct caller attached
5336  *  -EINVAL : the @old_addr does not match the current direct caller
5337  */
5338 int modify_ftrace_direct(unsigned long ip,
5339 			 unsigned long old_addr, unsigned long new_addr)
5340 {
5341 	struct ftrace_direct_func *direct, *new_direct = NULL;
5342 	struct ftrace_func_entry *entry;
5343 	struct dyn_ftrace *rec;
5344 	int ret = -ENODEV;
5345 
5346 	mutex_lock(&direct_mutex);
5347 
5348 	mutex_lock(&ftrace_lock);
5349 	entry = find_direct_entry(&ip, &rec);
5350 	if (!entry)
5351 		goto out_unlock;
5352 
5353 	ret = -EINVAL;
5354 	if (entry->direct != old_addr)
5355 		goto out_unlock;
5356 
5357 	direct = ftrace_find_direct_func(old_addr);
5358 	if (WARN_ON(!direct))
5359 		goto out_unlock;
5360 	if (direct->count > 1) {
5361 		ret = -ENOMEM;
5362 		new_direct = ftrace_alloc_direct_func(new_addr);
5363 		if (!new_direct)
5364 			goto out_unlock;
5365 		direct->count--;
5366 		new_direct->count++;
5367 	} else {
5368 		direct->addr = new_addr;
5369 	}
5370 
5371 	/*
5372 	 * If there's no other ftrace callback on the rec->ip location,
5373 	 * then it can be changed directly by the architecture.
5374 	 * If there is another caller, then we just need to change the
5375 	 * direct caller helper to point to @new_addr.
5376 	 */
5377 	if (ftrace_rec_count(rec) == 1) {
5378 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5379 	} else {
5380 		entry->direct = new_addr;
5381 		ret = 0;
5382 	}
5383 
5384 	if (unlikely(ret && new_direct)) {
5385 		direct->count++;
5386 		list_del_rcu(&new_direct->next);
5387 		synchronize_rcu_tasks();
5388 		kfree(new_direct);
5389 		ftrace_direct_func_count--;
5390 	}
5391 
5392  out_unlock:
5393 	mutex_unlock(&ftrace_lock);
5394 	mutex_unlock(&direct_mutex);
5395 	return ret;
5396 }
5397 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5398 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5399 
5400 /**
5401  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5402  * @ops - the ops to set the filter with
5403  * @ip - the address to add to or remove from the filter.
5404  * @remove - non zero to remove the ip from the filter
5405  * @reset - non zero to reset all filters before applying this filter.
5406  *
5407  * Filters denote which functions should be enabled when tracing is enabled
5408  * If @ip is NULL, it fails to update filter.
5409  */
5410 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5411 			 int remove, int reset)
5412 {
5413 	ftrace_ops_init(ops);
5414 	return ftrace_set_addr(ops, ip, remove, reset, 1);
5415 }
5416 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5417 
5418 /**
5419  * ftrace_ops_set_global_filter - setup ops to use global filters
5420  * @ops - the ops which will use the global filters
5421  *
5422  * ftrace users who need global function trace filtering should call this.
5423  * It can set the global filter only if ops were not initialized before.
5424  */
5425 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5426 {
5427 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5428 		return;
5429 
5430 	ftrace_ops_init(ops);
5431 	ops->func_hash = &global_ops.local_hash;
5432 }
5433 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5434 
5435 static int
5436 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5437 		 int reset, int enable)
5438 {
5439 	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5440 }
5441 
5442 /**
5443  * ftrace_set_filter - set a function to filter on in ftrace
5444  * @ops - the ops to set the filter with
5445  * @buf - the string that holds the function filter text.
5446  * @len - the length of the string.
5447  * @reset - non zero to reset all filters before applying this filter.
5448  *
5449  * Filters denote which functions should be enabled when tracing is enabled.
5450  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5451  */
5452 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5453 		       int len, int reset)
5454 {
5455 	ftrace_ops_init(ops);
5456 	return ftrace_set_regex(ops, buf, len, reset, 1);
5457 }
5458 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5459 
5460 /**
5461  * ftrace_set_notrace - set a function to not trace in ftrace
5462  * @ops - the ops to set the notrace filter with
5463  * @buf - the string that holds the function notrace text.
5464  * @len - the length of the string.
5465  * @reset - non zero to reset all filters before applying this filter.
5466  *
5467  * Notrace Filters denote which functions should not be enabled when tracing
5468  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5469  * for tracing.
5470  */
5471 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5472 			int len, int reset)
5473 {
5474 	ftrace_ops_init(ops);
5475 	return ftrace_set_regex(ops, buf, len, reset, 0);
5476 }
5477 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5478 /**
5479  * ftrace_set_global_filter - set a function to filter on with global tracers
5480  * @buf - the string that holds the function filter text.
5481  * @len - the length of the string.
5482  * @reset - non zero to reset all filters before applying this filter.
5483  *
5484  * Filters denote which functions should be enabled when tracing is enabled.
5485  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5486  */
5487 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5488 {
5489 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5490 }
5491 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5492 
5493 /**
5494  * ftrace_set_global_notrace - set a function to not trace with global tracers
5495  * @buf - the string that holds the function notrace text.
5496  * @len - the length of the string.
5497  * @reset - non zero to reset all filters before applying this filter.
5498  *
5499  * Notrace Filters denote which functions should not be enabled when tracing
5500  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5501  * for tracing.
5502  */
5503 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5504 {
5505 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5506 }
5507 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5508 
5509 /*
5510  * command line interface to allow users to set filters on boot up.
5511  */
5512 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5513 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5514 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5515 
5516 /* Used by function selftest to not test if filter is set */
5517 bool ftrace_filter_param __initdata;
5518 
5519 static int __init set_ftrace_notrace(char *str)
5520 {
5521 	ftrace_filter_param = true;
5522 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5523 	return 1;
5524 }
5525 __setup("ftrace_notrace=", set_ftrace_notrace);
5526 
5527 static int __init set_ftrace_filter(char *str)
5528 {
5529 	ftrace_filter_param = true;
5530 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5531 	return 1;
5532 }
5533 __setup("ftrace_filter=", set_ftrace_filter);
5534 
5535 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5536 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5537 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5538 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5539 
5540 static int __init set_graph_function(char *str)
5541 {
5542 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5543 	return 1;
5544 }
5545 __setup("ftrace_graph_filter=", set_graph_function);
5546 
5547 static int __init set_graph_notrace_function(char *str)
5548 {
5549 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5550 	return 1;
5551 }
5552 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5553 
5554 static int __init set_graph_max_depth_function(char *str)
5555 {
5556 	if (!str)
5557 		return 0;
5558 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5559 	return 1;
5560 }
5561 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5562 
5563 static void __init set_ftrace_early_graph(char *buf, int enable)
5564 {
5565 	int ret;
5566 	char *func;
5567 	struct ftrace_hash *hash;
5568 
5569 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5570 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5571 		return;
5572 
5573 	while (buf) {
5574 		func = strsep(&buf, ",");
5575 		/* we allow only one expression at a time */
5576 		ret = ftrace_graph_set_hash(hash, func);
5577 		if (ret)
5578 			printk(KERN_DEBUG "ftrace: function %s not "
5579 					  "traceable\n", func);
5580 	}
5581 
5582 	if (enable)
5583 		ftrace_graph_hash = hash;
5584 	else
5585 		ftrace_graph_notrace_hash = hash;
5586 }
5587 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5588 
5589 void __init
5590 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5591 {
5592 	char *func;
5593 
5594 	ftrace_ops_init(ops);
5595 
5596 	while (buf) {
5597 		func = strsep(&buf, ",");
5598 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5599 	}
5600 }
5601 
5602 static void __init set_ftrace_early_filters(void)
5603 {
5604 	if (ftrace_filter_buf[0])
5605 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5606 	if (ftrace_notrace_buf[0])
5607 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5608 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5609 	if (ftrace_graph_buf[0])
5610 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5611 	if (ftrace_graph_notrace_buf[0])
5612 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5613 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5614 }
5615 
5616 int ftrace_regex_release(struct inode *inode, struct file *file)
5617 {
5618 	struct seq_file *m = (struct seq_file *)file->private_data;
5619 	struct ftrace_iterator *iter;
5620 	struct ftrace_hash **orig_hash;
5621 	struct trace_parser *parser;
5622 	int filter_hash;
5623 
5624 	if (file->f_mode & FMODE_READ) {
5625 		iter = m->private;
5626 		seq_release(inode, file);
5627 	} else
5628 		iter = file->private_data;
5629 
5630 	parser = &iter->parser;
5631 	if (trace_parser_loaded(parser)) {
5632 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
5633 
5634 		ftrace_process_regex(iter, parser->buffer,
5635 				     parser->idx, enable);
5636 	}
5637 
5638 	trace_parser_put(parser);
5639 
5640 	mutex_lock(&iter->ops->func_hash->regex_lock);
5641 
5642 	if (file->f_mode & FMODE_WRITE) {
5643 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5644 
5645 		if (filter_hash) {
5646 			orig_hash = &iter->ops->func_hash->filter_hash;
5647 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
5648 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
5649 		} else
5650 			orig_hash = &iter->ops->func_hash->notrace_hash;
5651 
5652 		mutex_lock(&ftrace_lock);
5653 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5654 						      iter->hash, filter_hash);
5655 		mutex_unlock(&ftrace_lock);
5656 	} else {
5657 		/* For read only, the hash is the ops hash */
5658 		iter->hash = NULL;
5659 	}
5660 
5661 	mutex_unlock(&iter->ops->func_hash->regex_lock);
5662 	free_ftrace_hash(iter->hash);
5663 	if (iter->tr)
5664 		trace_array_put(iter->tr);
5665 	kfree(iter);
5666 
5667 	return 0;
5668 }
5669 
5670 static const struct file_operations ftrace_avail_fops = {
5671 	.open = ftrace_avail_open,
5672 	.read = seq_read,
5673 	.llseek = seq_lseek,
5674 	.release = seq_release_private,
5675 };
5676 
5677 static const struct file_operations ftrace_enabled_fops = {
5678 	.open = ftrace_enabled_open,
5679 	.read = seq_read,
5680 	.llseek = seq_lseek,
5681 	.release = seq_release_private,
5682 };
5683 
5684 static const struct file_operations ftrace_filter_fops = {
5685 	.open = ftrace_filter_open,
5686 	.read = seq_read,
5687 	.write = ftrace_filter_write,
5688 	.llseek = tracing_lseek,
5689 	.release = ftrace_regex_release,
5690 };
5691 
5692 static const struct file_operations ftrace_notrace_fops = {
5693 	.open = ftrace_notrace_open,
5694 	.read = seq_read,
5695 	.write = ftrace_notrace_write,
5696 	.llseek = tracing_lseek,
5697 	.release = ftrace_regex_release,
5698 };
5699 
5700 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5701 
5702 static DEFINE_MUTEX(graph_lock);
5703 
5704 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5705 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5706 
5707 enum graph_filter_type {
5708 	GRAPH_FILTER_NOTRACE	= 0,
5709 	GRAPH_FILTER_FUNCTION,
5710 };
5711 
5712 #define FTRACE_GRAPH_EMPTY	((void *)1)
5713 
5714 struct ftrace_graph_data {
5715 	struct ftrace_hash		*hash;
5716 	struct ftrace_func_entry	*entry;
5717 	int				idx;   /* for hash table iteration */
5718 	enum graph_filter_type		type;
5719 	struct ftrace_hash		*new_hash;
5720 	const struct seq_operations	*seq_ops;
5721 	struct trace_parser		parser;
5722 };
5723 
5724 static void *
5725 __g_next(struct seq_file *m, loff_t *pos)
5726 {
5727 	struct ftrace_graph_data *fgd = m->private;
5728 	struct ftrace_func_entry *entry = fgd->entry;
5729 	struct hlist_head *head;
5730 	int i, idx = fgd->idx;
5731 
5732 	if (*pos >= fgd->hash->count)
5733 		return NULL;
5734 
5735 	if (entry) {
5736 		hlist_for_each_entry_continue(entry, hlist) {
5737 			fgd->entry = entry;
5738 			return entry;
5739 		}
5740 
5741 		idx++;
5742 	}
5743 
5744 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5745 		head = &fgd->hash->buckets[i];
5746 		hlist_for_each_entry(entry, head, hlist) {
5747 			fgd->entry = entry;
5748 			fgd->idx = i;
5749 			return entry;
5750 		}
5751 	}
5752 	return NULL;
5753 }
5754 
5755 static void *
5756 g_next(struct seq_file *m, void *v, loff_t *pos)
5757 {
5758 	(*pos)++;
5759 	return __g_next(m, pos);
5760 }
5761 
5762 static void *g_start(struct seq_file *m, loff_t *pos)
5763 {
5764 	struct ftrace_graph_data *fgd = m->private;
5765 
5766 	mutex_lock(&graph_lock);
5767 
5768 	if (fgd->type == GRAPH_FILTER_FUNCTION)
5769 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5770 					lockdep_is_held(&graph_lock));
5771 	else
5772 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5773 					lockdep_is_held(&graph_lock));
5774 
5775 	/* Nothing, tell g_show to print all functions are enabled */
5776 	if (ftrace_hash_empty(fgd->hash) && !*pos)
5777 		return FTRACE_GRAPH_EMPTY;
5778 
5779 	fgd->idx = 0;
5780 	fgd->entry = NULL;
5781 	return __g_next(m, pos);
5782 }
5783 
5784 static void g_stop(struct seq_file *m, void *p)
5785 {
5786 	mutex_unlock(&graph_lock);
5787 }
5788 
5789 static int g_show(struct seq_file *m, void *v)
5790 {
5791 	struct ftrace_func_entry *entry = v;
5792 
5793 	if (!entry)
5794 		return 0;
5795 
5796 	if (entry == FTRACE_GRAPH_EMPTY) {
5797 		struct ftrace_graph_data *fgd = m->private;
5798 
5799 		if (fgd->type == GRAPH_FILTER_FUNCTION)
5800 			seq_puts(m, "#### all functions enabled ####\n");
5801 		else
5802 			seq_puts(m, "#### no functions disabled ####\n");
5803 		return 0;
5804 	}
5805 
5806 	seq_printf(m, "%ps\n", (void *)entry->ip);
5807 
5808 	return 0;
5809 }
5810 
5811 static const struct seq_operations ftrace_graph_seq_ops = {
5812 	.start = g_start,
5813 	.next = g_next,
5814 	.stop = g_stop,
5815 	.show = g_show,
5816 };
5817 
5818 static int
5819 __ftrace_graph_open(struct inode *inode, struct file *file,
5820 		    struct ftrace_graph_data *fgd)
5821 {
5822 	int ret;
5823 	struct ftrace_hash *new_hash = NULL;
5824 
5825 	ret = security_locked_down(LOCKDOWN_TRACEFS);
5826 	if (ret)
5827 		return ret;
5828 
5829 	if (file->f_mode & FMODE_WRITE) {
5830 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5831 
5832 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5833 			return -ENOMEM;
5834 
5835 		if (file->f_flags & O_TRUNC)
5836 			new_hash = alloc_ftrace_hash(size_bits);
5837 		else
5838 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
5839 							      fgd->hash);
5840 		if (!new_hash) {
5841 			ret = -ENOMEM;
5842 			goto out;
5843 		}
5844 	}
5845 
5846 	if (file->f_mode & FMODE_READ) {
5847 		ret = seq_open(file, &ftrace_graph_seq_ops);
5848 		if (!ret) {
5849 			struct seq_file *m = file->private_data;
5850 			m->private = fgd;
5851 		} else {
5852 			/* Failed */
5853 			free_ftrace_hash(new_hash);
5854 			new_hash = NULL;
5855 		}
5856 	} else
5857 		file->private_data = fgd;
5858 
5859 out:
5860 	if (ret < 0 && file->f_mode & FMODE_WRITE)
5861 		trace_parser_put(&fgd->parser);
5862 
5863 	fgd->new_hash = new_hash;
5864 
5865 	/*
5866 	 * All uses of fgd->hash must be taken with the graph_lock
5867 	 * held. The graph_lock is going to be released, so force
5868 	 * fgd->hash to be reinitialized when it is taken again.
5869 	 */
5870 	fgd->hash = NULL;
5871 
5872 	return ret;
5873 }
5874 
5875 static int
5876 ftrace_graph_open(struct inode *inode, struct file *file)
5877 {
5878 	struct ftrace_graph_data *fgd;
5879 	int ret;
5880 
5881 	if (unlikely(ftrace_disabled))
5882 		return -ENODEV;
5883 
5884 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5885 	if (fgd == NULL)
5886 		return -ENOMEM;
5887 
5888 	mutex_lock(&graph_lock);
5889 
5890 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5891 					lockdep_is_held(&graph_lock));
5892 	fgd->type = GRAPH_FILTER_FUNCTION;
5893 	fgd->seq_ops = &ftrace_graph_seq_ops;
5894 
5895 	ret = __ftrace_graph_open(inode, file, fgd);
5896 	if (ret < 0)
5897 		kfree(fgd);
5898 
5899 	mutex_unlock(&graph_lock);
5900 	return ret;
5901 }
5902 
5903 static int
5904 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5905 {
5906 	struct ftrace_graph_data *fgd;
5907 	int ret;
5908 
5909 	if (unlikely(ftrace_disabled))
5910 		return -ENODEV;
5911 
5912 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5913 	if (fgd == NULL)
5914 		return -ENOMEM;
5915 
5916 	mutex_lock(&graph_lock);
5917 
5918 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5919 					lockdep_is_held(&graph_lock));
5920 	fgd->type = GRAPH_FILTER_NOTRACE;
5921 	fgd->seq_ops = &ftrace_graph_seq_ops;
5922 
5923 	ret = __ftrace_graph_open(inode, file, fgd);
5924 	if (ret < 0)
5925 		kfree(fgd);
5926 
5927 	mutex_unlock(&graph_lock);
5928 	return ret;
5929 }
5930 
5931 static int
5932 ftrace_graph_release(struct inode *inode, struct file *file)
5933 {
5934 	struct ftrace_graph_data *fgd;
5935 	struct ftrace_hash *old_hash, *new_hash;
5936 	struct trace_parser *parser;
5937 	int ret = 0;
5938 
5939 	if (file->f_mode & FMODE_READ) {
5940 		struct seq_file *m = file->private_data;
5941 
5942 		fgd = m->private;
5943 		seq_release(inode, file);
5944 	} else {
5945 		fgd = file->private_data;
5946 	}
5947 
5948 
5949 	if (file->f_mode & FMODE_WRITE) {
5950 
5951 		parser = &fgd->parser;
5952 
5953 		if (trace_parser_loaded((parser))) {
5954 			ret = ftrace_graph_set_hash(fgd->new_hash,
5955 						    parser->buffer);
5956 		}
5957 
5958 		trace_parser_put(parser);
5959 
5960 		new_hash = __ftrace_hash_move(fgd->new_hash);
5961 		if (!new_hash) {
5962 			ret = -ENOMEM;
5963 			goto out;
5964 		}
5965 
5966 		mutex_lock(&graph_lock);
5967 
5968 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
5969 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
5970 					lockdep_is_held(&graph_lock));
5971 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
5972 		} else {
5973 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5974 					lockdep_is_held(&graph_lock));
5975 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5976 		}
5977 
5978 		mutex_unlock(&graph_lock);
5979 
5980 		/*
5981 		 * We need to do a hard force of sched synchronization.
5982 		 * This is because we use preempt_disable() to do RCU, but
5983 		 * the function tracers can be called where RCU is not watching
5984 		 * (like before user_exit()). We can not rely on the RCU
5985 		 * infrastructure to do the synchronization, thus we must do it
5986 		 * ourselves.
5987 		 */
5988 		synchronize_rcu_tasks_rude();
5989 
5990 		free_ftrace_hash(old_hash);
5991 	}
5992 
5993  out:
5994 	free_ftrace_hash(fgd->new_hash);
5995 	kfree(fgd);
5996 
5997 	return ret;
5998 }
5999 
6000 static int
6001 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6002 {
6003 	struct ftrace_glob func_g;
6004 	struct dyn_ftrace *rec;
6005 	struct ftrace_page *pg;
6006 	struct ftrace_func_entry *entry;
6007 	int fail = 1;
6008 	int not;
6009 
6010 	/* decode regex */
6011 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6012 					 &func_g.search, &not);
6013 
6014 	func_g.len = strlen(func_g.search);
6015 
6016 	mutex_lock(&ftrace_lock);
6017 
6018 	if (unlikely(ftrace_disabled)) {
6019 		mutex_unlock(&ftrace_lock);
6020 		return -ENODEV;
6021 	}
6022 
6023 	do_for_each_ftrace_rec(pg, rec) {
6024 
6025 		if (rec->flags & FTRACE_FL_DISABLED)
6026 			continue;
6027 
6028 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6029 			entry = ftrace_lookup_ip(hash, rec->ip);
6030 
6031 			if (!not) {
6032 				fail = 0;
6033 
6034 				if (entry)
6035 					continue;
6036 				if (add_hash_entry(hash, rec->ip) < 0)
6037 					goto out;
6038 			} else {
6039 				if (entry) {
6040 					free_hash_entry(hash, entry);
6041 					fail = 0;
6042 				}
6043 			}
6044 		}
6045 	} while_for_each_ftrace_rec();
6046 out:
6047 	mutex_unlock(&ftrace_lock);
6048 
6049 	if (fail)
6050 		return -EINVAL;
6051 
6052 	return 0;
6053 }
6054 
6055 static ssize_t
6056 ftrace_graph_write(struct file *file, const char __user *ubuf,
6057 		   size_t cnt, loff_t *ppos)
6058 {
6059 	ssize_t read, ret = 0;
6060 	struct ftrace_graph_data *fgd = file->private_data;
6061 	struct trace_parser *parser;
6062 
6063 	if (!cnt)
6064 		return 0;
6065 
6066 	/* Read mode uses seq functions */
6067 	if (file->f_mode & FMODE_READ) {
6068 		struct seq_file *m = file->private_data;
6069 		fgd = m->private;
6070 	}
6071 
6072 	parser = &fgd->parser;
6073 
6074 	read = trace_get_user(parser, ubuf, cnt, ppos);
6075 
6076 	if (read >= 0 && trace_parser_loaded(parser) &&
6077 	    !trace_parser_cont(parser)) {
6078 
6079 		ret = ftrace_graph_set_hash(fgd->new_hash,
6080 					    parser->buffer);
6081 		trace_parser_clear(parser);
6082 	}
6083 
6084 	if (!ret)
6085 		ret = read;
6086 
6087 	return ret;
6088 }
6089 
6090 static const struct file_operations ftrace_graph_fops = {
6091 	.open		= ftrace_graph_open,
6092 	.read		= seq_read,
6093 	.write		= ftrace_graph_write,
6094 	.llseek		= tracing_lseek,
6095 	.release	= ftrace_graph_release,
6096 };
6097 
6098 static const struct file_operations ftrace_graph_notrace_fops = {
6099 	.open		= ftrace_graph_notrace_open,
6100 	.read		= seq_read,
6101 	.write		= ftrace_graph_write,
6102 	.llseek		= tracing_lseek,
6103 	.release	= ftrace_graph_release,
6104 };
6105 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6106 
6107 void ftrace_create_filter_files(struct ftrace_ops *ops,
6108 				struct dentry *parent)
6109 {
6110 
6111 	trace_create_file("set_ftrace_filter", 0644, parent,
6112 			  ops, &ftrace_filter_fops);
6113 
6114 	trace_create_file("set_ftrace_notrace", 0644, parent,
6115 			  ops, &ftrace_notrace_fops);
6116 }
6117 
6118 /*
6119  * The name "destroy_filter_files" is really a misnomer. Although
6120  * in the future, it may actually delete the files, but this is
6121  * really intended to make sure the ops passed in are disabled
6122  * and that when this function returns, the caller is free to
6123  * free the ops.
6124  *
6125  * The "destroy" name is only to match the "create" name that this
6126  * should be paired with.
6127  */
6128 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6129 {
6130 	mutex_lock(&ftrace_lock);
6131 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6132 		ftrace_shutdown(ops, 0);
6133 	ops->flags |= FTRACE_OPS_FL_DELETED;
6134 	ftrace_free_filter(ops);
6135 	mutex_unlock(&ftrace_lock);
6136 }
6137 
6138 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6139 {
6140 
6141 	trace_create_file("available_filter_functions", 0444,
6142 			d_tracer, NULL, &ftrace_avail_fops);
6143 
6144 	trace_create_file("enabled_functions", 0444,
6145 			d_tracer, NULL, &ftrace_enabled_fops);
6146 
6147 	ftrace_create_filter_files(&global_ops, d_tracer);
6148 
6149 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6150 	trace_create_file("set_graph_function", 0644, d_tracer,
6151 				    NULL,
6152 				    &ftrace_graph_fops);
6153 	trace_create_file("set_graph_notrace", 0644, d_tracer,
6154 				    NULL,
6155 				    &ftrace_graph_notrace_fops);
6156 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6157 
6158 	return 0;
6159 }
6160 
6161 static int ftrace_cmp_ips(const void *a, const void *b)
6162 {
6163 	const unsigned long *ipa = a;
6164 	const unsigned long *ipb = b;
6165 
6166 	if (*ipa > *ipb)
6167 		return 1;
6168 	if (*ipa < *ipb)
6169 		return -1;
6170 	return 0;
6171 }
6172 
6173 static int ftrace_process_locs(struct module *mod,
6174 			       unsigned long *start,
6175 			       unsigned long *end)
6176 {
6177 	struct ftrace_page *start_pg;
6178 	struct ftrace_page *pg;
6179 	struct dyn_ftrace *rec;
6180 	unsigned long count;
6181 	unsigned long *p;
6182 	unsigned long addr;
6183 	unsigned long flags = 0; /* Shut up gcc */
6184 	int ret = -ENOMEM;
6185 
6186 	count = end - start;
6187 
6188 	if (!count)
6189 		return 0;
6190 
6191 	sort(start, count, sizeof(*start),
6192 	     ftrace_cmp_ips, NULL);
6193 
6194 	start_pg = ftrace_allocate_pages(count);
6195 	if (!start_pg)
6196 		return -ENOMEM;
6197 
6198 	mutex_lock(&ftrace_lock);
6199 
6200 	/*
6201 	 * Core and each module needs their own pages, as
6202 	 * modules will free them when they are removed.
6203 	 * Force a new page to be allocated for modules.
6204 	 */
6205 	if (!mod) {
6206 		WARN_ON(ftrace_pages || ftrace_pages_start);
6207 		/* First initialization */
6208 		ftrace_pages = ftrace_pages_start = start_pg;
6209 	} else {
6210 		if (!ftrace_pages)
6211 			goto out;
6212 
6213 		if (WARN_ON(ftrace_pages->next)) {
6214 			/* Hmm, we have free pages? */
6215 			while (ftrace_pages->next)
6216 				ftrace_pages = ftrace_pages->next;
6217 		}
6218 
6219 		ftrace_pages->next = start_pg;
6220 	}
6221 
6222 	p = start;
6223 	pg = start_pg;
6224 	while (p < end) {
6225 		unsigned long end_offset;
6226 		addr = ftrace_call_adjust(*p++);
6227 		/*
6228 		 * Some architecture linkers will pad between
6229 		 * the different mcount_loc sections of different
6230 		 * object files to satisfy alignments.
6231 		 * Skip any NULL pointers.
6232 		 */
6233 		if (!addr)
6234 			continue;
6235 
6236 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6237 		if (end_offset > PAGE_SIZE << pg->order) {
6238 			/* We should have allocated enough */
6239 			if (WARN_ON(!pg->next))
6240 				break;
6241 			pg = pg->next;
6242 		}
6243 
6244 		rec = &pg->records[pg->index++];
6245 		rec->ip = addr;
6246 	}
6247 
6248 	/* We should have used all pages */
6249 	WARN_ON(pg->next);
6250 
6251 	/* Assign the last page to ftrace_pages */
6252 	ftrace_pages = pg;
6253 
6254 	/*
6255 	 * We only need to disable interrupts on start up
6256 	 * because we are modifying code that an interrupt
6257 	 * may execute, and the modification is not atomic.
6258 	 * But for modules, nothing runs the code we modify
6259 	 * until we are finished with it, and there's no
6260 	 * reason to cause large interrupt latencies while we do it.
6261 	 */
6262 	if (!mod)
6263 		local_irq_save(flags);
6264 	ftrace_update_code(mod, start_pg);
6265 	if (!mod)
6266 		local_irq_restore(flags);
6267 	ret = 0;
6268  out:
6269 	mutex_unlock(&ftrace_lock);
6270 
6271 	return ret;
6272 }
6273 
6274 struct ftrace_mod_func {
6275 	struct list_head	list;
6276 	char			*name;
6277 	unsigned long		ip;
6278 	unsigned int		size;
6279 };
6280 
6281 struct ftrace_mod_map {
6282 	struct rcu_head		rcu;
6283 	struct list_head	list;
6284 	struct module		*mod;
6285 	unsigned long		start_addr;
6286 	unsigned long		end_addr;
6287 	struct list_head	funcs;
6288 	unsigned int		num_funcs;
6289 };
6290 
6291 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6292 					 unsigned long *value, char *type,
6293 					 char *name, char *module_name,
6294 					 int *exported)
6295 {
6296 	struct ftrace_ops *op;
6297 
6298 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6299 		if (!op->trampoline || symnum--)
6300 			continue;
6301 		*value = op->trampoline;
6302 		*type = 't';
6303 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6304 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6305 		*exported = 0;
6306 		return 0;
6307 	}
6308 
6309 	return -ERANGE;
6310 }
6311 
6312 #ifdef CONFIG_MODULES
6313 
6314 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6315 
6316 static LIST_HEAD(ftrace_mod_maps);
6317 
6318 static int referenced_filters(struct dyn_ftrace *rec)
6319 {
6320 	struct ftrace_ops *ops;
6321 	int cnt = 0;
6322 
6323 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6324 		if (ops_references_rec(ops, rec)) {
6325 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6326 				continue;
6327 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6328 				continue;
6329 			cnt++;
6330 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6331 				rec->flags |= FTRACE_FL_REGS;
6332 			if (cnt == 1 && ops->trampoline)
6333 				rec->flags |= FTRACE_FL_TRAMP;
6334 			else
6335 				rec->flags &= ~FTRACE_FL_TRAMP;
6336 		}
6337 	}
6338 
6339 	return cnt;
6340 }
6341 
6342 static void
6343 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6344 {
6345 	struct ftrace_func_entry *entry;
6346 	struct dyn_ftrace *rec;
6347 	int i;
6348 
6349 	if (ftrace_hash_empty(hash))
6350 		return;
6351 
6352 	for (i = 0; i < pg->index; i++) {
6353 		rec = &pg->records[i];
6354 		entry = __ftrace_lookup_ip(hash, rec->ip);
6355 		/*
6356 		 * Do not allow this rec to match again.
6357 		 * Yeah, it may waste some memory, but will be removed
6358 		 * if/when the hash is modified again.
6359 		 */
6360 		if (entry)
6361 			entry->ip = 0;
6362 	}
6363 }
6364 
6365 /* Clear any records from hashes */
6366 static void clear_mod_from_hashes(struct ftrace_page *pg)
6367 {
6368 	struct trace_array *tr;
6369 
6370 	mutex_lock(&trace_types_lock);
6371 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6372 		if (!tr->ops || !tr->ops->func_hash)
6373 			continue;
6374 		mutex_lock(&tr->ops->func_hash->regex_lock);
6375 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6376 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6377 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6378 	}
6379 	mutex_unlock(&trace_types_lock);
6380 }
6381 
6382 static void ftrace_free_mod_map(struct rcu_head *rcu)
6383 {
6384 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6385 	struct ftrace_mod_func *mod_func;
6386 	struct ftrace_mod_func *n;
6387 
6388 	/* All the contents of mod_map are now not visible to readers */
6389 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6390 		kfree(mod_func->name);
6391 		list_del(&mod_func->list);
6392 		kfree(mod_func);
6393 	}
6394 
6395 	kfree(mod_map);
6396 }
6397 
6398 void ftrace_release_mod(struct module *mod)
6399 {
6400 	struct ftrace_mod_map *mod_map;
6401 	struct ftrace_mod_map *n;
6402 	struct dyn_ftrace *rec;
6403 	struct ftrace_page **last_pg;
6404 	struct ftrace_page *tmp_page = NULL;
6405 	struct ftrace_page *pg;
6406 
6407 	mutex_lock(&ftrace_lock);
6408 
6409 	if (ftrace_disabled)
6410 		goto out_unlock;
6411 
6412 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6413 		if (mod_map->mod == mod) {
6414 			list_del_rcu(&mod_map->list);
6415 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6416 			break;
6417 		}
6418 	}
6419 
6420 	/*
6421 	 * Each module has its own ftrace_pages, remove
6422 	 * them from the list.
6423 	 */
6424 	last_pg = &ftrace_pages_start;
6425 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6426 		rec = &pg->records[0];
6427 		if (within_module_core(rec->ip, mod) ||
6428 		    within_module_init(rec->ip, mod)) {
6429 			/*
6430 			 * As core pages are first, the first
6431 			 * page should never be a module page.
6432 			 */
6433 			if (WARN_ON(pg == ftrace_pages_start))
6434 				goto out_unlock;
6435 
6436 			/* Check if we are deleting the last page */
6437 			if (pg == ftrace_pages)
6438 				ftrace_pages = next_to_ftrace_page(last_pg);
6439 
6440 			ftrace_update_tot_cnt -= pg->index;
6441 			*last_pg = pg->next;
6442 
6443 			pg->next = tmp_page;
6444 			tmp_page = pg;
6445 		} else
6446 			last_pg = &pg->next;
6447 	}
6448  out_unlock:
6449 	mutex_unlock(&ftrace_lock);
6450 
6451 	for (pg = tmp_page; pg; pg = tmp_page) {
6452 
6453 		/* Needs to be called outside of ftrace_lock */
6454 		clear_mod_from_hashes(pg);
6455 
6456 		if (pg->records) {
6457 			free_pages((unsigned long)pg->records, pg->order);
6458 			ftrace_number_of_pages -= 1 << pg->order;
6459 		}
6460 		tmp_page = pg->next;
6461 		kfree(pg);
6462 		ftrace_number_of_groups--;
6463 	}
6464 }
6465 
6466 void ftrace_module_enable(struct module *mod)
6467 {
6468 	struct dyn_ftrace *rec;
6469 	struct ftrace_page *pg;
6470 
6471 	mutex_lock(&ftrace_lock);
6472 
6473 	if (ftrace_disabled)
6474 		goto out_unlock;
6475 
6476 	/*
6477 	 * If the tracing is enabled, go ahead and enable the record.
6478 	 *
6479 	 * The reason not to enable the record immediately is the
6480 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6481 	 * correct previous instructions.  Making first the NOP
6482 	 * conversion puts the module to the correct state, thus
6483 	 * passing the ftrace_make_call check.
6484 	 *
6485 	 * We also delay this to after the module code already set the
6486 	 * text to read-only, as we now need to set it back to read-write
6487 	 * so that we can modify the text.
6488 	 */
6489 	if (ftrace_start_up)
6490 		ftrace_arch_code_modify_prepare();
6491 
6492 	do_for_each_ftrace_rec(pg, rec) {
6493 		int cnt;
6494 		/*
6495 		 * do_for_each_ftrace_rec() is a double loop.
6496 		 * module text shares the pg. If a record is
6497 		 * not part of this module, then skip this pg,
6498 		 * which the "break" will do.
6499 		 */
6500 		if (!within_module_core(rec->ip, mod) &&
6501 		    !within_module_init(rec->ip, mod))
6502 			break;
6503 
6504 		cnt = 0;
6505 
6506 		/*
6507 		 * When adding a module, we need to check if tracers are
6508 		 * currently enabled and if they are, and can trace this record,
6509 		 * we need to enable the module functions as well as update the
6510 		 * reference counts for those function records.
6511 		 */
6512 		if (ftrace_start_up)
6513 			cnt += referenced_filters(rec);
6514 
6515 		rec->flags &= ~FTRACE_FL_DISABLED;
6516 		rec->flags += cnt;
6517 
6518 		if (ftrace_start_up && cnt) {
6519 			int failed = __ftrace_replace_code(rec, 1);
6520 			if (failed) {
6521 				ftrace_bug(failed, rec);
6522 				goto out_loop;
6523 			}
6524 		}
6525 
6526 	} while_for_each_ftrace_rec();
6527 
6528  out_loop:
6529 	if (ftrace_start_up)
6530 		ftrace_arch_code_modify_post_process();
6531 
6532  out_unlock:
6533 	mutex_unlock(&ftrace_lock);
6534 
6535 	process_cached_mods(mod->name);
6536 }
6537 
6538 void ftrace_module_init(struct module *mod)
6539 {
6540 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6541 		return;
6542 
6543 	ftrace_process_locs(mod, mod->ftrace_callsites,
6544 			    mod->ftrace_callsites + mod->num_ftrace_callsites);
6545 }
6546 
6547 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6548 				struct dyn_ftrace *rec)
6549 {
6550 	struct ftrace_mod_func *mod_func;
6551 	unsigned long symsize;
6552 	unsigned long offset;
6553 	char str[KSYM_SYMBOL_LEN];
6554 	char *modname;
6555 	const char *ret;
6556 
6557 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6558 	if (!ret)
6559 		return;
6560 
6561 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6562 	if (!mod_func)
6563 		return;
6564 
6565 	mod_func->name = kstrdup(str, GFP_KERNEL);
6566 	if (!mod_func->name) {
6567 		kfree(mod_func);
6568 		return;
6569 	}
6570 
6571 	mod_func->ip = rec->ip - offset;
6572 	mod_func->size = symsize;
6573 
6574 	mod_map->num_funcs++;
6575 
6576 	list_add_rcu(&mod_func->list, &mod_map->funcs);
6577 }
6578 
6579 static struct ftrace_mod_map *
6580 allocate_ftrace_mod_map(struct module *mod,
6581 			unsigned long start, unsigned long end)
6582 {
6583 	struct ftrace_mod_map *mod_map;
6584 
6585 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6586 	if (!mod_map)
6587 		return NULL;
6588 
6589 	mod_map->mod = mod;
6590 	mod_map->start_addr = start;
6591 	mod_map->end_addr = end;
6592 	mod_map->num_funcs = 0;
6593 
6594 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
6595 
6596 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6597 
6598 	return mod_map;
6599 }
6600 
6601 static const char *
6602 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6603 			   unsigned long addr, unsigned long *size,
6604 			   unsigned long *off, char *sym)
6605 {
6606 	struct ftrace_mod_func *found_func =  NULL;
6607 	struct ftrace_mod_func *mod_func;
6608 
6609 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6610 		if (addr >= mod_func->ip &&
6611 		    addr < mod_func->ip + mod_func->size) {
6612 			found_func = mod_func;
6613 			break;
6614 		}
6615 	}
6616 
6617 	if (found_func) {
6618 		if (size)
6619 			*size = found_func->size;
6620 		if (off)
6621 			*off = addr - found_func->ip;
6622 		if (sym)
6623 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6624 
6625 		return found_func->name;
6626 	}
6627 
6628 	return NULL;
6629 }
6630 
6631 const char *
6632 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6633 		   unsigned long *off, char **modname, char *sym)
6634 {
6635 	struct ftrace_mod_map *mod_map;
6636 	const char *ret = NULL;
6637 
6638 	/* mod_map is freed via call_rcu() */
6639 	preempt_disable();
6640 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6641 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6642 		if (ret) {
6643 			if (modname)
6644 				*modname = mod_map->mod->name;
6645 			break;
6646 		}
6647 	}
6648 	preempt_enable();
6649 
6650 	return ret;
6651 }
6652 
6653 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6654 			   char *type, char *name,
6655 			   char *module_name, int *exported)
6656 {
6657 	struct ftrace_mod_map *mod_map;
6658 	struct ftrace_mod_func *mod_func;
6659 	int ret;
6660 
6661 	preempt_disable();
6662 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6663 
6664 		if (symnum >= mod_map->num_funcs) {
6665 			symnum -= mod_map->num_funcs;
6666 			continue;
6667 		}
6668 
6669 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6670 			if (symnum > 1) {
6671 				symnum--;
6672 				continue;
6673 			}
6674 
6675 			*value = mod_func->ip;
6676 			*type = 'T';
6677 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6678 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6679 			*exported = 1;
6680 			preempt_enable();
6681 			return 0;
6682 		}
6683 		WARN_ON(1);
6684 		break;
6685 	}
6686 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6687 					    module_name, exported);
6688 	preempt_enable();
6689 	return ret;
6690 }
6691 
6692 #else
6693 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6694 				struct dyn_ftrace *rec) { }
6695 static inline struct ftrace_mod_map *
6696 allocate_ftrace_mod_map(struct module *mod,
6697 			unsigned long start, unsigned long end)
6698 {
6699 	return NULL;
6700 }
6701 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6702 			   char *type, char *name, char *module_name,
6703 			   int *exported)
6704 {
6705 	int ret;
6706 
6707 	preempt_disable();
6708 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
6709 					    module_name, exported);
6710 	preempt_enable();
6711 	return ret;
6712 }
6713 #endif /* CONFIG_MODULES */
6714 
6715 struct ftrace_init_func {
6716 	struct list_head list;
6717 	unsigned long ip;
6718 };
6719 
6720 /* Clear any init ips from hashes */
6721 static void
6722 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6723 {
6724 	struct ftrace_func_entry *entry;
6725 
6726 	entry = ftrace_lookup_ip(hash, func->ip);
6727 	/*
6728 	 * Do not allow this rec to match again.
6729 	 * Yeah, it may waste some memory, but will be removed
6730 	 * if/when the hash is modified again.
6731 	 */
6732 	if (entry)
6733 		entry->ip = 0;
6734 }
6735 
6736 static void
6737 clear_func_from_hashes(struct ftrace_init_func *func)
6738 {
6739 	struct trace_array *tr;
6740 
6741 	mutex_lock(&trace_types_lock);
6742 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6743 		if (!tr->ops || !tr->ops->func_hash)
6744 			continue;
6745 		mutex_lock(&tr->ops->func_hash->regex_lock);
6746 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6747 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6748 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6749 	}
6750 	mutex_unlock(&trace_types_lock);
6751 }
6752 
6753 static void add_to_clear_hash_list(struct list_head *clear_list,
6754 				   struct dyn_ftrace *rec)
6755 {
6756 	struct ftrace_init_func *func;
6757 
6758 	func = kmalloc(sizeof(*func), GFP_KERNEL);
6759 	if (!func) {
6760 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6761 		return;
6762 	}
6763 
6764 	func->ip = rec->ip;
6765 	list_add(&func->list, clear_list);
6766 }
6767 
6768 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6769 {
6770 	unsigned long start = (unsigned long)(start_ptr);
6771 	unsigned long end = (unsigned long)(end_ptr);
6772 	struct ftrace_page **last_pg = &ftrace_pages_start;
6773 	struct ftrace_page *pg;
6774 	struct dyn_ftrace *rec;
6775 	struct dyn_ftrace key;
6776 	struct ftrace_mod_map *mod_map = NULL;
6777 	struct ftrace_init_func *func, *func_next;
6778 	struct list_head clear_hash;
6779 
6780 	INIT_LIST_HEAD(&clear_hash);
6781 
6782 	key.ip = start;
6783 	key.flags = end;	/* overload flags, as it is unsigned long */
6784 
6785 	mutex_lock(&ftrace_lock);
6786 
6787 	/*
6788 	 * If we are freeing module init memory, then check if
6789 	 * any tracer is active. If so, we need to save a mapping of
6790 	 * the module functions being freed with the address.
6791 	 */
6792 	if (mod && ftrace_ops_list != &ftrace_list_end)
6793 		mod_map = allocate_ftrace_mod_map(mod, start, end);
6794 
6795 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6796 		if (end < pg->records[0].ip ||
6797 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6798 			continue;
6799  again:
6800 		rec = bsearch(&key, pg->records, pg->index,
6801 			      sizeof(struct dyn_ftrace),
6802 			      ftrace_cmp_recs);
6803 		if (!rec)
6804 			continue;
6805 
6806 		/* rec will be cleared from hashes after ftrace_lock unlock */
6807 		add_to_clear_hash_list(&clear_hash, rec);
6808 
6809 		if (mod_map)
6810 			save_ftrace_mod_rec(mod_map, rec);
6811 
6812 		pg->index--;
6813 		ftrace_update_tot_cnt--;
6814 		if (!pg->index) {
6815 			*last_pg = pg->next;
6816 			if (pg->records) {
6817 				free_pages((unsigned long)pg->records, pg->order);
6818 				ftrace_number_of_pages -= 1 << pg->order;
6819 			}
6820 			ftrace_number_of_groups--;
6821 			kfree(pg);
6822 			pg = container_of(last_pg, struct ftrace_page, next);
6823 			if (!(*last_pg))
6824 				ftrace_pages = pg;
6825 			continue;
6826 		}
6827 		memmove(rec, rec + 1,
6828 			(pg->index - (rec - pg->records)) * sizeof(*rec));
6829 		/* More than one function may be in this block */
6830 		goto again;
6831 	}
6832 	mutex_unlock(&ftrace_lock);
6833 
6834 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6835 		clear_func_from_hashes(func);
6836 		kfree(func);
6837 	}
6838 }
6839 
6840 void __init ftrace_free_init_mem(void)
6841 {
6842 	void *start = (void *)(&__init_begin);
6843 	void *end = (void *)(&__init_end);
6844 
6845 	ftrace_free_mem(NULL, start, end);
6846 }
6847 
6848 void __init ftrace_init(void)
6849 {
6850 	extern unsigned long __start_mcount_loc[];
6851 	extern unsigned long __stop_mcount_loc[];
6852 	unsigned long count, flags;
6853 	int ret;
6854 
6855 	local_irq_save(flags);
6856 	ret = ftrace_dyn_arch_init();
6857 	local_irq_restore(flags);
6858 	if (ret)
6859 		goto failed;
6860 
6861 	count = __stop_mcount_loc - __start_mcount_loc;
6862 	if (!count) {
6863 		pr_info("ftrace: No functions to be traced?\n");
6864 		goto failed;
6865 	}
6866 
6867 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
6868 		count, count / ENTRIES_PER_PAGE + 1);
6869 
6870 	last_ftrace_enabled = ftrace_enabled = 1;
6871 
6872 	ret = ftrace_process_locs(NULL,
6873 				  __start_mcount_loc,
6874 				  __stop_mcount_loc);
6875 
6876 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
6877 		ftrace_number_of_pages, ftrace_number_of_groups);
6878 
6879 	set_ftrace_early_filters();
6880 
6881 	return;
6882  failed:
6883 	ftrace_disabled = 1;
6884 }
6885 
6886 /* Do nothing if arch does not support this */
6887 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6888 {
6889 }
6890 
6891 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6892 {
6893 	unsigned long trampoline = ops->trampoline;
6894 
6895 	arch_ftrace_update_trampoline(ops);
6896 	if (ops->trampoline && ops->trampoline != trampoline &&
6897 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
6898 		/* Add to kallsyms before the perf events */
6899 		ftrace_add_trampoline_to_kallsyms(ops);
6900 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
6901 				   ops->trampoline, ops->trampoline_size, false,
6902 				   FTRACE_TRAMPOLINE_SYM);
6903 		/*
6904 		 * Record the perf text poke event after the ksymbol register
6905 		 * event.
6906 		 */
6907 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
6908 				     (void *)ops->trampoline,
6909 				     ops->trampoline_size);
6910 	}
6911 }
6912 
6913 void ftrace_init_trace_array(struct trace_array *tr)
6914 {
6915 	INIT_LIST_HEAD(&tr->func_probes);
6916 	INIT_LIST_HEAD(&tr->mod_trace);
6917 	INIT_LIST_HEAD(&tr->mod_notrace);
6918 }
6919 #else
6920 
6921 struct ftrace_ops global_ops = {
6922 	.func			= ftrace_stub,
6923 	.flags			= FTRACE_OPS_FL_INITIALIZED |
6924 				  FTRACE_OPS_FL_PID,
6925 };
6926 
6927 static int __init ftrace_nodyn_init(void)
6928 {
6929 	ftrace_enabled = 1;
6930 	return 0;
6931 }
6932 core_initcall(ftrace_nodyn_init);
6933 
6934 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6935 static inline void ftrace_startup_enable(int command) { }
6936 static inline void ftrace_startup_all(int command) { }
6937 
6938 # define ftrace_startup_sysctl()	do { } while (0)
6939 # define ftrace_shutdown_sysctl()	do { } while (0)
6940 
6941 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6942 {
6943 }
6944 
6945 #endif /* CONFIG_DYNAMIC_FTRACE */
6946 
6947 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6948 {
6949 	tr->ops = &global_ops;
6950 	tr->ops->private = tr;
6951 	ftrace_init_trace_array(tr);
6952 }
6953 
6954 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6955 {
6956 	/* If we filter on pids, update to use the pid function */
6957 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6958 		if (WARN_ON(tr->ops->func != ftrace_stub))
6959 			printk("ftrace ops had %pS for function\n",
6960 			       tr->ops->func);
6961 	}
6962 	tr->ops->func = func;
6963 	tr->ops->private = tr;
6964 }
6965 
6966 void ftrace_reset_array_ops(struct trace_array *tr)
6967 {
6968 	tr->ops->func = ftrace_stub;
6969 }
6970 
6971 static nokprobe_inline void
6972 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6973 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
6974 {
6975 	struct pt_regs *regs = ftrace_get_regs(fregs);
6976 	struct ftrace_ops *op;
6977 	int bit;
6978 
6979 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
6980 	if (bit < 0)
6981 		return;
6982 
6983 	/*
6984 	 * Some of the ops may be dynamically allocated,
6985 	 * they must be freed after a synchronize_rcu().
6986 	 */
6987 	preempt_disable_notrace();
6988 
6989 	do_for_each_ftrace_op(op, ftrace_ops_list) {
6990 		/* Stub functions don't need to be called nor tested */
6991 		if (op->flags & FTRACE_OPS_FL_STUB)
6992 			continue;
6993 		/*
6994 		 * Check the following for each ops before calling their func:
6995 		 *  if RCU flag is set, then rcu_is_watching() must be true
6996 		 *  if PER_CPU is set, then ftrace_function_local_disable()
6997 		 *                          must be false
6998 		 *  Otherwise test if the ip matches the ops filter
6999 		 *
7000 		 * If any of the above fails then the op->func() is not executed.
7001 		 */
7002 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7003 		    ftrace_ops_test(op, ip, regs)) {
7004 			if (FTRACE_WARN_ON(!op->func)) {
7005 				pr_warn("op=%p %pS\n", op, op);
7006 				goto out;
7007 			}
7008 			op->func(ip, parent_ip, op, fregs);
7009 		}
7010 	} while_for_each_ftrace_op(op);
7011 out:
7012 	preempt_enable_notrace();
7013 	trace_clear_recursion(bit);
7014 }
7015 
7016 /*
7017  * Some archs only support passing ip and parent_ip. Even though
7018  * the list function ignores the op parameter, we do not want any
7019  * C side effects, where a function is called without the caller
7020  * sending a third parameter.
7021  * Archs are to support both the regs and ftrace_ops at the same time.
7022  * If they support ftrace_ops, it is assumed they support regs.
7023  * If call backs want to use regs, they must either check for regs
7024  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7025  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7026  * An architecture can pass partial regs with ftrace_ops and still
7027  * set the ARCH_SUPPORTS_FTRACE_OPS.
7028  */
7029 #if ARCH_SUPPORTS_FTRACE_OPS
7030 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7031 				 struct ftrace_ops *op, struct ftrace_regs *fregs)
7032 {
7033 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7034 }
7035 NOKPROBE_SYMBOL(ftrace_ops_list_func);
7036 #else
7037 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
7038 {
7039 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7040 }
7041 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
7042 #endif
7043 
7044 /*
7045  * If there's only one function registered but it does not support
7046  * recursion, needs RCU protection and/or requires per cpu handling, then
7047  * this function will be called by the mcount trampoline.
7048  */
7049 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7050 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7051 {
7052 	int bit;
7053 
7054 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START, TRACE_LIST_MAX);
7055 	if (bit < 0)
7056 		return;
7057 
7058 	preempt_disable_notrace();
7059 
7060 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7061 		op->func(ip, parent_ip, op, fregs);
7062 
7063 	preempt_enable_notrace();
7064 	trace_clear_recursion(bit);
7065 }
7066 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7067 
7068 /**
7069  * ftrace_ops_get_func - get the function a trampoline should call
7070  * @ops: the ops to get the function for
7071  *
7072  * Normally the mcount trampoline will call the ops->func, but there
7073  * are times that it should not. For example, if the ops does not
7074  * have its own recursion protection, then it should call the
7075  * ftrace_ops_assist_func() instead.
7076  *
7077  * Returns the function that the trampoline should call for @ops.
7078  */
7079 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7080 {
7081 	/*
7082 	 * If the function does not handle recursion or needs to be RCU safe,
7083 	 * then we need to call the assist handler.
7084 	 */
7085 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7086 			  FTRACE_OPS_FL_RCU))
7087 		return ftrace_ops_assist_func;
7088 
7089 	return ops->func;
7090 }
7091 
7092 static void
7093 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7094 		    struct task_struct *prev, struct task_struct *next)
7095 {
7096 	struct trace_array *tr = data;
7097 	struct trace_pid_list *pid_list;
7098 	struct trace_pid_list *no_pid_list;
7099 
7100 	pid_list = rcu_dereference_sched(tr->function_pids);
7101 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7102 
7103 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7104 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7105 			       FTRACE_PID_IGNORE);
7106 	else
7107 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7108 			       next->pid);
7109 }
7110 
7111 static void
7112 ftrace_pid_follow_sched_process_fork(void *data,
7113 				     struct task_struct *self,
7114 				     struct task_struct *task)
7115 {
7116 	struct trace_pid_list *pid_list;
7117 	struct trace_array *tr = data;
7118 
7119 	pid_list = rcu_dereference_sched(tr->function_pids);
7120 	trace_filter_add_remove_task(pid_list, self, task);
7121 
7122 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7123 	trace_filter_add_remove_task(pid_list, self, task);
7124 }
7125 
7126 static void
7127 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7128 {
7129 	struct trace_pid_list *pid_list;
7130 	struct trace_array *tr = data;
7131 
7132 	pid_list = rcu_dereference_sched(tr->function_pids);
7133 	trace_filter_add_remove_task(pid_list, NULL, task);
7134 
7135 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7136 	trace_filter_add_remove_task(pid_list, NULL, task);
7137 }
7138 
7139 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7140 {
7141 	if (enable) {
7142 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7143 						  tr);
7144 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7145 						  tr);
7146 	} else {
7147 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7148 						    tr);
7149 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7150 						    tr);
7151 	}
7152 }
7153 
7154 static void clear_ftrace_pids(struct trace_array *tr, int type)
7155 {
7156 	struct trace_pid_list *pid_list;
7157 	struct trace_pid_list *no_pid_list;
7158 	int cpu;
7159 
7160 	pid_list = rcu_dereference_protected(tr->function_pids,
7161 					     lockdep_is_held(&ftrace_lock));
7162 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7163 						lockdep_is_held(&ftrace_lock));
7164 
7165 	/* Make sure there's something to do */
7166 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7167 		return;
7168 
7169 	/* See if the pids still need to be checked after this */
7170 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7171 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7172 		for_each_possible_cpu(cpu)
7173 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7174 	}
7175 
7176 	if (type & TRACE_PIDS)
7177 		rcu_assign_pointer(tr->function_pids, NULL);
7178 
7179 	if (type & TRACE_NO_PIDS)
7180 		rcu_assign_pointer(tr->function_no_pids, NULL);
7181 
7182 	/* Wait till all users are no longer using pid filtering */
7183 	synchronize_rcu();
7184 
7185 	if ((type & TRACE_PIDS) && pid_list)
7186 		trace_free_pid_list(pid_list);
7187 
7188 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7189 		trace_free_pid_list(no_pid_list);
7190 }
7191 
7192 void ftrace_clear_pids(struct trace_array *tr)
7193 {
7194 	mutex_lock(&ftrace_lock);
7195 
7196 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7197 
7198 	mutex_unlock(&ftrace_lock);
7199 }
7200 
7201 static void ftrace_pid_reset(struct trace_array *tr, int type)
7202 {
7203 	mutex_lock(&ftrace_lock);
7204 	clear_ftrace_pids(tr, type);
7205 
7206 	ftrace_update_pid_func();
7207 	ftrace_startup_all(0);
7208 
7209 	mutex_unlock(&ftrace_lock);
7210 }
7211 
7212 /* Greater than any max PID */
7213 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7214 
7215 static void *fpid_start(struct seq_file *m, loff_t *pos)
7216 	__acquires(RCU)
7217 {
7218 	struct trace_pid_list *pid_list;
7219 	struct trace_array *tr = m->private;
7220 
7221 	mutex_lock(&ftrace_lock);
7222 	rcu_read_lock_sched();
7223 
7224 	pid_list = rcu_dereference_sched(tr->function_pids);
7225 
7226 	if (!pid_list)
7227 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7228 
7229 	return trace_pid_start(pid_list, pos);
7230 }
7231 
7232 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7233 {
7234 	struct trace_array *tr = m->private;
7235 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7236 
7237 	if (v == FTRACE_NO_PIDS) {
7238 		(*pos)++;
7239 		return NULL;
7240 	}
7241 	return trace_pid_next(pid_list, v, pos);
7242 }
7243 
7244 static void fpid_stop(struct seq_file *m, void *p)
7245 	__releases(RCU)
7246 {
7247 	rcu_read_unlock_sched();
7248 	mutex_unlock(&ftrace_lock);
7249 }
7250 
7251 static int fpid_show(struct seq_file *m, void *v)
7252 {
7253 	if (v == FTRACE_NO_PIDS) {
7254 		seq_puts(m, "no pid\n");
7255 		return 0;
7256 	}
7257 
7258 	return trace_pid_show(m, v);
7259 }
7260 
7261 static const struct seq_operations ftrace_pid_sops = {
7262 	.start = fpid_start,
7263 	.next = fpid_next,
7264 	.stop = fpid_stop,
7265 	.show = fpid_show,
7266 };
7267 
7268 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7269 	__acquires(RCU)
7270 {
7271 	struct trace_pid_list *pid_list;
7272 	struct trace_array *tr = m->private;
7273 
7274 	mutex_lock(&ftrace_lock);
7275 	rcu_read_lock_sched();
7276 
7277 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7278 
7279 	if (!pid_list)
7280 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7281 
7282 	return trace_pid_start(pid_list, pos);
7283 }
7284 
7285 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7286 {
7287 	struct trace_array *tr = m->private;
7288 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7289 
7290 	if (v == FTRACE_NO_PIDS) {
7291 		(*pos)++;
7292 		return NULL;
7293 	}
7294 	return trace_pid_next(pid_list, v, pos);
7295 }
7296 
7297 static const struct seq_operations ftrace_no_pid_sops = {
7298 	.start = fnpid_start,
7299 	.next = fnpid_next,
7300 	.stop = fpid_stop,
7301 	.show = fpid_show,
7302 };
7303 
7304 static int pid_open(struct inode *inode, struct file *file, int type)
7305 {
7306 	const struct seq_operations *seq_ops;
7307 	struct trace_array *tr = inode->i_private;
7308 	struct seq_file *m;
7309 	int ret = 0;
7310 
7311 	ret = tracing_check_open_get_tr(tr);
7312 	if (ret)
7313 		return ret;
7314 
7315 	if ((file->f_mode & FMODE_WRITE) &&
7316 	    (file->f_flags & O_TRUNC))
7317 		ftrace_pid_reset(tr, type);
7318 
7319 	switch (type) {
7320 	case TRACE_PIDS:
7321 		seq_ops = &ftrace_pid_sops;
7322 		break;
7323 	case TRACE_NO_PIDS:
7324 		seq_ops = &ftrace_no_pid_sops;
7325 		break;
7326 	default:
7327 		trace_array_put(tr);
7328 		WARN_ON_ONCE(1);
7329 		return -EINVAL;
7330 	}
7331 
7332 	ret = seq_open(file, seq_ops);
7333 	if (ret < 0) {
7334 		trace_array_put(tr);
7335 	} else {
7336 		m = file->private_data;
7337 		/* copy tr over to seq ops */
7338 		m->private = tr;
7339 	}
7340 
7341 	return ret;
7342 }
7343 
7344 static int
7345 ftrace_pid_open(struct inode *inode, struct file *file)
7346 {
7347 	return pid_open(inode, file, TRACE_PIDS);
7348 }
7349 
7350 static int
7351 ftrace_no_pid_open(struct inode *inode, struct file *file)
7352 {
7353 	return pid_open(inode, file, TRACE_NO_PIDS);
7354 }
7355 
7356 static void ignore_task_cpu(void *data)
7357 {
7358 	struct trace_array *tr = data;
7359 	struct trace_pid_list *pid_list;
7360 	struct trace_pid_list *no_pid_list;
7361 
7362 	/*
7363 	 * This function is called by on_each_cpu() while the
7364 	 * event_mutex is held.
7365 	 */
7366 	pid_list = rcu_dereference_protected(tr->function_pids,
7367 					     mutex_is_locked(&ftrace_lock));
7368 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7369 						mutex_is_locked(&ftrace_lock));
7370 
7371 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7372 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7373 			       FTRACE_PID_IGNORE);
7374 	else
7375 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7376 			       current->pid);
7377 }
7378 
7379 static ssize_t
7380 pid_write(struct file *filp, const char __user *ubuf,
7381 	  size_t cnt, loff_t *ppos, int type)
7382 {
7383 	struct seq_file *m = filp->private_data;
7384 	struct trace_array *tr = m->private;
7385 	struct trace_pid_list *filtered_pids;
7386 	struct trace_pid_list *other_pids;
7387 	struct trace_pid_list *pid_list;
7388 	ssize_t ret;
7389 
7390 	if (!cnt)
7391 		return 0;
7392 
7393 	mutex_lock(&ftrace_lock);
7394 
7395 	switch (type) {
7396 	case TRACE_PIDS:
7397 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7398 					     lockdep_is_held(&ftrace_lock));
7399 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7400 					     lockdep_is_held(&ftrace_lock));
7401 		break;
7402 	case TRACE_NO_PIDS:
7403 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7404 					     lockdep_is_held(&ftrace_lock));
7405 		other_pids = rcu_dereference_protected(tr->function_pids,
7406 					     lockdep_is_held(&ftrace_lock));
7407 		break;
7408 	default:
7409 		ret = -EINVAL;
7410 		WARN_ON_ONCE(1);
7411 		goto out;
7412 	}
7413 
7414 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7415 	if (ret < 0)
7416 		goto out;
7417 
7418 	switch (type) {
7419 	case TRACE_PIDS:
7420 		rcu_assign_pointer(tr->function_pids, pid_list);
7421 		break;
7422 	case TRACE_NO_PIDS:
7423 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7424 		break;
7425 	}
7426 
7427 
7428 	if (filtered_pids) {
7429 		synchronize_rcu();
7430 		trace_free_pid_list(filtered_pids);
7431 	} else if (pid_list && !other_pids) {
7432 		/* Register a probe to set whether to ignore the tracing of a task */
7433 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7434 	}
7435 
7436 	/*
7437 	 * Ignoring of pids is done at task switch. But we have to
7438 	 * check for those tasks that are currently running.
7439 	 * Always do this in case a pid was appended or removed.
7440 	 */
7441 	on_each_cpu(ignore_task_cpu, tr, 1);
7442 
7443 	ftrace_update_pid_func();
7444 	ftrace_startup_all(0);
7445  out:
7446 	mutex_unlock(&ftrace_lock);
7447 
7448 	if (ret > 0)
7449 		*ppos += ret;
7450 
7451 	return ret;
7452 }
7453 
7454 static ssize_t
7455 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7456 		 size_t cnt, loff_t *ppos)
7457 {
7458 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7459 }
7460 
7461 static ssize_t
7462 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7463 		    size_t cnt, loff_t *ppos)
7464 {
7465 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7466 }
7467 
7468 static int
7469 ftrace_pid_release(struct inode *inode, struct file *file)
7470 {
7471 	struct trace_array *tr = inode->i_private;
7472 
7473 	trace_array_put(tr);
7474 
7475 	return seq_release(inode, file);
7476 }
7477 
7478 static const struct file_operations ftrace_pid_fops = {
7479 	.open		= ftrace_pid_open,
7480 	.write		= ftrace_pid_write,
7481 	.read		= seq_read,
7482 	.llseek		= tracing_lseek,
7483 	.release	= ftrace_pid_release,
7484 };
7485 
7486 static const struct file_operations ftrace_no_pid_fops = {
7487 	.open		= ftrace_no_pid_open,
7488 	.write		= ftrace_no_pid_write,
7489 	.read		= seq_read,
7490 	.llseek		= tracing_lseek,
7491 	.release	= ftrace_pid_release,
7492 };
7493 
7494 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7495 {
7496 	trace_create_file("set_ftrace_pid", 0644, d_tracer,
7497 			    tr, &ftrace_pid_fops);
7498 	trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer,
7499 			    tr, &ftrace_no_pid_fops);
7500 }
7501 
7502 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7503 					 struct dentry *d_tracer)
7504 {
7505 	/* Only the top level directory has the dyn_tracefs and profile */
7506 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7507 
7508 	ftrace_init_dyn_tracefs(d_tracer);
7509 	ftrace_profile_tracefs(d_tracer);
7510 }
7511 
7512 /**
7513  * ftrace_kill - kill ftrace
7514  *
7515  * This function should be used by panic code. It stops ftrace
7516  * but in a not so nice way. If you need to simply kill ftrace
7517  * from a non-atomic section, use ftrace_kill.
7518  */
7519 void ftrace_kill(void)
7520 {
7521 	ftrace_disabled = 1;
7522 	ftrace_enabled = 0;
7523 	ftrace_trace_function = ftrace_stub;
7524 }
7525 
7526 /**
7527  * Test if ftrace is dead or not.
7528  */
7529 int ftrace_is_dead(void)
7530 {
7531 	return ftrace_disabled;
7532 }
7533 
7534 /**
7535  * register_ftrace_function - register a function for profiling
7536  * @ops - ops structure that holds the function for profiling.
7537  *
7538  * Register a function to be called by all functions in the
7539  * kernel.
7540  *
7541  * Note: @ops->func and all the functions it calls must be labeled
7542  *       with "notrace", otherwise it will go into a
7543  *       recursive loop.
7544  */
7545 int register_ftrace_function(struct ftrace_ops *ops)
7546 {
7547 	int ret = -1;
7548 
7549 	ftrace_ops_init(ops);
7550 
7551 	mutex_lock(&ftrace_lock);
7552 
7553 	ret = ftrace_startup(ops, 0);
7554 
7555 	mutex_unlock(&ftrace_lock);
7556 
7557 	return ret;
7558 }
7559 EXPORT_SYMBOL_GPL(register_ftrace_function);
7560 
7561 /**
7562  * unregister_ftrace_function - unregister a function for profiling.
7563  * @ops - ops structure that holds the function to unregister
7564  *
7565  * Unregister a function that was added to be called by ftrace profiling.
7566  */
7567 int unregister_ftrace_function(struct ftrace_ops *ops)
7568 {
7569 	int ret;
7570 
7571 	mutex_lock(&ftrace_lock);
7572 	ret = ftrace_shutdown(ops, 0);
7573 	mutex_unlock(&ftrace_lock);
7574 
7575 	return ret;
7576 }
7577 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7578 
7579 static bool is_permanent_ops_registered(void)
7580 {
7581 	struct ftrace_ops *op;
7582 
7583 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7584 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
7585 			return true;
7586 	} while_for_each_ftrace_op(op);
7587 
7588 	return false;
7589 }
7590 
7591 int
7592 ftrace_enable_sysctl(struct ctl_table *table, int write,
7593 		     void *buffer, size_t *lenp, loff_t *ppos)
7594 {
7595 	int ret = -ENODEV;
7596 
7597 	mutex_lock(&ftrace_lock);
7598 
7599 	if (unlikely(ftrace_disabled))
7600 		goto out;
7601 
7602 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7603 
7604 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7605 		goto out;
7606 
7607 	if (ftrace_enabled) {
7608 
7609 		/* we are starting ftrace again */
7610 		if (rcu_dereference_protected(ftrace_ops_list,
7611 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7612 			update_ftrace_function();
7613 
7614 		ftrace_startup_sysctl();
7615 
7616 	} else {
7617 		if (is_permanent_ops_registered()) {
7618 			ftrace_enabled = true;
7619 			ret = -EBUSY;
7620 			goto out;
7621 		}
7622 
7623 		/* stopping ftrace calls (just send to ftrace_stub) */
7624 		ftrace_trace_function = ftrace_stub;
7625 
7626 		ftrace_shutdown_sysctl();
7627 	}
7628 
7629 	last_ftrace_enabled = !!ftrace_enabled;
7630  out:
7631 	mutex_unlock(&ftrace_lock);
7632 	return ret;
7633 }
7634