1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27
28 #include <net/bpf_sk_storage.h>
29
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32
33 #include <asm/tlb.h>
34
35 #include "trace_probe.h"
36 #include "trace.h"
37
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40
41 #define bpf_event_rcu_dereference(p) \
42 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49 struct module *module;
50 struct list_head list;
51 };
52
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55
bpf_get_raw_tracepoint_module(const char * name)56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 struct bpf_raw_event_map *btp, *ret = NULL;
59 struct bpf_trace_module *btm;
60 unsigned int i;
61
62 mutex_lock(&bpf_module_mutex);
63 list_for_each_entry(btm, &bpf_trace_modules, list) {
64 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65 btp = &btm->module->bpf_raw_events[i];
66 if (!strcmp(btp->tp->name, name)) {
67 if (try_module_get(btm->module))
68 ret = btp;
69 goto out;
70 }
71 }
72 }
73 out:
74 mutex_unlock(&bpf_module_mutex);
75 return ret;
76 }
77 #else
bpf_get_raw_tracepoint_module(const char * name)78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80 return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88 u64 flags, const struct btf **btf,
89 s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95
96 /**
97 * trace_call_bpf - invoke BPF program
98 * @call: tracepoint event
99 * @ctx: opaque context pointer
100 *
101 * kprobe handlers execute BPF programs via this helper.
102 * Can be used from static tracepoints in the future.
103 *
104 * Return: BPF programs always return an integer which is interpreted by
105 * kprobe handler as:
106 * 0 - return from kprobe (event is filtered out)
107 * 1 - store kprobe event into ring buffer
108 * Other values are reserved and currently alias to 1
109 */
trace_call_bpf(struct trace_event_call * call,void * ctx)110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112 unsigned int ret;
113
114 cant_sleep();
115
116 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117 /*
118 * since some bpf program is already running on this cpu,
119 * don't call into another bpf program (same or different)
120 * and don't send kprobe event into ring-buffer,
121 * so return zero here
122 */
123 ret = 0;
124 goto out;
125 }
126
127 /*
128 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
129 * to all call sites, we did a bpf_prog_array_valid() there to check
130 * whether call->prog_array is empty or not, which is
131 * a heuristic to speed up execution.
132 *
133 * If bpf_prog_array_valid() fetched prog_array was
134 * non-NULL, we go into trace_call_bpf() and do the actual
135 * proper rcu_dereference() under RCU lock.
136 * If it turns out that prog_array is NULL then, we bail out.
137 * For the opposite, if the bpf_prog_array_valid() fetched pointer
138 * was NULL, you'll skip the prog_array with the risk of missing
139 * out of events when it was updated in between this and the
140 * rcu_dereference() which is accepted risk.
141 */
142 rcu_read_lock();
143 ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
144 ctx, bpf_prog_run);
145 rcu_read_unlock();
146
147 out:
148 __this_cpu_dec(bpf_prog_active);
149
150 return ret;
151 }
152
153 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)154 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
155 {
156 regs_set_return_value(regs, rc);
157 override_function_with_return(regs);
158 return 0;
159 }
160
161 static const struct bpf_func_proto bpf_override_return_proto = {
162 .func = bpf_override_return,
163 .gpl_only = true,
164 .ret_type = RET_INTEGER,
165 .arg1_type = ARG_PTR_TO_CTX,
166 .arg2_type = ARG_ANYTHING,
167 };
168 #endif
169
170 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)171 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
172 {
173 int ret;
174
175 ret = copy_from_user_nofault(dst, unsafe_ptr, size);
176 if (unlikely(ret < 0))
177 memset(dst, 0, size);
178 return ret;
179 }
180
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)181 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
182 const void __user *, unsafe_ptr)
183 {
184 return bpf_probe_read_user_common(dst, size, unsafe_ptr);
185 }
186
187 const struct bpf_func_proto bpf_probe_read_user_proto = {
188 .func = bpf_probe_read_user,
189 .gpl_only = true,
190 .ret_type = RET_INTEGER,
191 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
192 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
193 .arg3_type = ARG_ANYTHING,
194 };
195
196 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)197 bpf_probe_read_user_str_common(void *dst, u32 size,
198 const void __user *unsafe_ptr)
199 {
200 int ret;
201
202 /*
203 * NB: We rely on strncpy_from_user() not copying junk past the NUL
204 * terminator into `dst`.
205 *
206 * strncpy_from_user() does long-sized strides in the fast path. If the
207 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
208 * then there could be junk after the NUL in `dst`. If user takes `dst`
209 * and keys a hash map with it, then semantically identical strings can
210 * occupy multiple entries in the map.
211 */
212 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
213 if (unlikely(ret < 0))
214 memset(dst, 0, size);
215 return ret;
216 }
217
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)218 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
219 const void __user *, unsafe_ptr)
220 {
221 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
222 }
223
224 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
225 .func = bpf_probe_read_user_str,
226 .gpl_only = true,
227 .ret_type = RET_INTEGER,
228 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
229 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
230 .arg3_type = ARG_ANYTHING,
231 };
232
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)233 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
234 const void *, unsafe_ptr)
235 {
236 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
237 }
238
239 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
240 .func = bpf_probe_read_kernel,
241 .gpl_only = true,
242 .ret_type = RET_INTEGER,
243 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
244 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
245 .arg3_type = ARG_ANYTHING,
246 };
247
248 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)249 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
250 {
251 int ret;
252
253 /*
254 * The strncpy_from_kernel_nofault() call will likely not fill the
255 * entire buffer, but that's okay in this circumstance as we're probing
256 * arbitrary memory anyway similar to bpf_probe_read_*() and might
257 * as well probe the stack. Thus, memory is explicitly cleared
258 * only in error case, so that improper users ignoring return
259 * code altogether don't copy garbage; otherwise length of string
260 * is returned that can be used for bpf_perf_event_output() et al.
261 */
262 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
263 if (unlikely(ret < 0))
264 memset(dst, 0, size);
265 return ret;
266 }
267
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)268 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
269 const void *, unsafe_ptr)
270 {
271 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
272 }
273
274 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
275 .func = bpf_probe_read_kernel_str,
276 .gpl_only = true,
277 .ret_type = RET_INTEGER,
278 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
279 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
280 .arg3_type = ARG_ANYTHING,
281 };
282
283 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)284 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
285 const void *, unsafe_ptr)
286 {
287 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
288 return bpf_probe_read_user_common(dst, size,
289 (__force void __user *)unsafe_ptr);
290 }
291 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
292 }
293
294 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
295 .func = bpf_probe_read_compat,
296 .gpl_only = true,
297 .ret_type = RET_INTEGER,
298 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
299 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
300 .arg3_type = ARG_ANYTHING,
301 };
302
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)303 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
304 const void *, unsafe_ptr)
305 {
306 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
307 return bpf_probe_read_user_str_common(dst, size,
308 (__force void __user *)unsafe_ptr);
309 }
310 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
311 }
312
313 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
314 .func = bpf_probe_read_compat_str,
315 .gpl_only = true,
316 .ret_type = RET_INTEGER,
317 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
318 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
319 .arg3_type = ARG_ANYTHING,
320 };
321 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
322
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)323 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
324 u32, size)
325 {
326 /*
327 * Ensure we're in user context which is safe for the helper to
328 * run. This helper has no business in a kthread.
329 *
330 * access_ok() should prevent writing to non-user memory, but in
331 * some situations (nommu, temporary switch, etc) access_ok() does
332 * not provide enough validation, hence the check on KERNEL_DS.
333 *
334 * nmi_uaccess_okay() ensures the probe is not run in an interim
335 * state, when the task or mm are switched. This is specifically
336 * required to prevent the use of temporary mm.
337 */
338
339 if (unlikely(in_interrupt() ||
340 current->flags & (PF_KTHREAD | PF_EXITING)))
341 return -EPERM;
342 if (unlikely(!nmi_uaccess_okay()))
343 return -EPERM;
344
345 return copy_to_user_nofault(unsafe_ptr, src, size);
346 }
347
348 static const struct bpf_func_proto bpf_probe_write_user_proto = {
349 .func = bpf_probe_write_user,
350 .gpl_only = true,
351 .ret_type = RET_INTEGER,
352 .arg1_type = ARG_ANYTHING,
353 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
354 .arg3_type = ARG_CONST_SIZE,
355 };
356
bpf_get_probe_write_proto(void)357 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
358 {
359 if (!capable(CAP_SYS_ADMIN))
360 return NULL;
361
362 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
363 current->comm, task_pid_nr(current));
364
365 return &bpf_probe_write_user_proto;
366 }
367
368 #define MAX_TRACE_PRINTK_VARARGS 3
369 #define BPF_TRACE_PRINTK_SIZE 1024
370
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)371 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
372 u64, arg2, u64, arg3)
373 {
374 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
375 struct bpf_bprintf_data data = {
376 .get_bin_args = true,
377 .get_buf = true,
378 };
379 int ret;
380
381 ret = bpf_bprintf_prepare(fmt, fmt_size, args,
382 MAX_TRACE_PRINTK_VARARGS, &data);
383 if (ret < 0)
384 return ret;
385
386 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
387
388 trace_bpf_trace_printk(data.buf);
389
390 bpf_bprintf_cleanup(&data);
391
392 return ret;
393 }
394
395 static const struct bpf_func_proto bpf_trace_printk_proto = {
396 .func = bpf_trace_printk,
397 .gpl_only = true,
398 .ret_type = RET_INTEGER,
399 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
400 .arg2_type = ARG_CONST_SIZE,
401 };
402
__set_printk_clr_event(void)403 static void __set_printk_clr_event(void)
404 {
405 /*
406 * This program might be calling bpf_trace_printk,
407 * so enable the associated bpf_trace/bpf_trace_printk event.
408 * Repeat this each time as it is possible a user has
409 * disabled bpf_trace_printk events. By loading a program
410 * calling bpf_trace_printk() however the user has expressed
411 * the intent to see such events.
412 */
413 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
414 pr_warn_ratelimited("could not enable bpf_trace_printk events");
415 }
416
bpf_get_trace_printk_proto(void)417 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
418 {
419 __set_printk_clr_event();
420 return &bpf_trace_printk_proto;
421 }
422
BPF_CALL_4(bpf_trace_vprintk,char *,fmt,u32,fmt_size,const void *,args,u32,data_len)423 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
424 u32, data_len)
425 {
426 struct bpf_bprintf_data data = {
427 .get_bin_args = true,
428 .get_buf = true,
429 };
430 int ret, num_args;
431
432 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
433 (data_len && !args))
434 return -EINVAL;
435 num_args = data_len / 8;
436
437 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
438 if (ret < 0)
439 return ret;
440
441 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
442
443 trace_bpf_trace_printk(data.buf);
444
445 bpf_bprintf_cleanup(&data);
446
447 return ret;
448 }
449
450 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
451 .func = bpf_trace_vprintk,
452 .gpl_only = true,
453 .ret_type = RET_INTEGER,
454 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
455 .arg2_type = ARG_CONST_SIZE,
456 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
457 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
458 };
459
bpf_get_trace_vprintk_proto(void)460 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
461 {
462 __set_printk_clr_event();
463 return &bpf_trace_vprintk_proto;
464 }
465
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,args,u32,data_len)466 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
467 const void *, args, u32, data_len)
468 {
469 struct bpf_bprintf_data data = {
470 .get_bin_args = true,
471 };
472 int err, num_args;
473
474 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
475 (data_len && !args))
476 return -EINVAL;
477 num_args = data_len / 8;
478
479 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
480 if (err < 0)
481 return err;
482
483 seq_bprintf(m, fmt, data.bin_args);
484
485 bpf_bprintf_cleanup(&data);
486
487 return seq_has_overflowed(m) ? -EOVERFLOW : 0;
488 }
489
490 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
491
492 static const struct bpf_func_proto bpf_seq_printf_proto = {
493 .func = bpf_seq_printf,
494 .gpl_only = true,
495 .ret_type = RET_INTEGER,
496 .arg1_type = ARG_PTR_TO_BTF_ID,
497 .arg1_btf_id = &btf_seq_file_ids[0],
498 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
499 .arg3_type = ARG_CONST_SIZE,
500 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
501 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
502 };
503
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)504 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
505 {
506 return seq_write(m, data, len) ? -EOVERFLOW : 0;
507 }
508
509 static const struct bpf_func_proto bpf_seq_write_proto = {
510 .func = bpf_seq_write,
511 .gpl_only = true,
512 .ret_type = RET_INTEGER,
513 .arg1_type = ARG_PTR_TO_BTF_ID,
514 .arg1_btf_id = &btf_seq_file_ids[0],
515 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
516 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
517 };
518
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)519 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
520 u32, btf_ptr_size, u64, flags)
521 {
522 const struct btf *btf;
523 s32 btf_id;
524 int ret;
525
526 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
527 if (ret)
528 return ret;
529
530 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
531 }
532
533 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
534 .func = bpf_seq_printf_btf,
535 .gpl_only = true,
536 .ret_type = RET_INTEGER,
537 .arg1_type = ARG_PTR_TO_BTF_ID,
538 .arg1_btf_id = &btf_seq_file_ids[0],
539 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
540 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
541 .arg4_type = ARG_ANYTHING,
542 };
543
544 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)545 get_map_perf_counter(struct bpf_map *map, u64 flags,
546 u64 *value, u64 *enabled, u64 *running)
547 {
548 struct bpf_array *array = container_of(map, struct bpf_array, map);
549 unsigned int cpu = smp_processor_id();
550 u64 index = flags & BPF_F_INDEX_MASK;
551 struct bpf_event_entry *ee;
552
553 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
554 return -EINVAL;
555 if (index == BPF_F_CURRENT_CPU)
556 index = cpu;
557 if (unlikely(index >= array->map.max_entries))
558 return -E2BIG;
559
560 ee = READ_ONCE(array->ptrs[index]);
561 if (!ee)
562 return -ENOENT;
563
564 return perf_event_read_local(ee->event, value, enabled, running);
565 }
566
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)567 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
568 {
569 u64 value = 0;
570 int err;
571
572 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
573 /*
574 * this api is ugly since we miss [-22..-2] range of valid
575 * counter values, but that's uapi
576 */
577 if (err)
578 return err;
579 return value;
580 }
581
582 static const struct bpf_func_proto bpf_perf_event_read_proto = {
583 .func = bpf_perf_event_read,
584 .gpl_only = true,
585 .ret_type = RET_INTEGER,
586 .arg1_type = ARG_CONST_MAP_PTR,
587 .arg2_type = ARG_ANYTHING,
588 };
589
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)590 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
591 struct bpf_perf_event_value *, buf, u32, size)
592 {
593 int err = -EINVAL;
594
595 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
596 goto clear;
597 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
598 &buf->running);
599 if (unlikely(err))
600 goto clear;
601 return 0;
602 clear:
603 memset(buf, 0, size);
604 return err;
605 }
606
607 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
608 .func = bpf_perf_event_read_value,
609 .gpl_only = true,
610 .ret_type = RET_INTEGER,
611 .arg1_type = ARG_CONST_MAP_PTR,
612 .arg2_type = ARG_ANYTHING,
613 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
614 .arg4_type = ARG_CONST_SIZE,
615 };
616
617 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)618 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
619 u64 flags, struct perf_sample_data *sd)
620 {
621 struct bpf_array *array = container_of(map, struct bpf_array, map);
622 unsigned int cpu = smp_processor_id();
623 u64 index = flags & BPF_F_INDEX_MASK;
624 struct bpf_event_entry *ee;
625 struct perf_event *event;
626
627 if (index == BPF_F_CURRENT_CPU)
628 index = cpu;
629 if (unlikely(index >= array->map.max_entries))
630 return -E2BIG;
631
632 ee = READ_ONCE(array->ptrs[index]);
633 if (!ee)
634 return -ENOENT;
635
636 event = ee->event;
637 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
638 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
639 return -EINVAL;
640
641 if (unlikely(event->oncpu != cpu))
642 return -EOPNOTSUPP;
643
644 return perf_event_output(event, sd, regs);
645 }
646
647 /*
648 * Support executing tracepoints in normal, irq, and nmi context that each call
649 * bpf_perf_event_output
650 */
651 struct bpf_trace_sample_data {
652 struct perf_sample_data sds[3];
653 };
654
655 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
656 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)657 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
658 u64, flags, void *, data, u64, size)
659 {
660 struct bpf_trace_sample_data *sds;
661 struct perf_raw_record raw = {
662 .frag = {
663 .size = size,
664 .data = data,
665 },
666 };
667 struct perf_sample_data *sd;
668 int nest_level, err;
669
670 preempt_disable();
671 sds = this_cpu_ptr(&bpf_trace_sds);
672 nest_level = this_cpu_inc_return(bpf_trace_nest_level);
673
674 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
675 err = -EBUSY;
676 goto out;
677 }
678
679 sd = &sds->sds[nest_level - 1];
680
681 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
682 err = -EINVAL;
683 goto out;
684 }
685
686 perf_sample_data_init(sd, 0, 0);
687 perf_sample_save_raw_data(sd, &raw);
688
689 err = __bpf_perf_event_output(regs, map, flags, sd);
690 out:
691 this_cpu_dec(bpf_trace_nest_level);
692 preempt_enable();
693 return err;
694 }
695
696 static const struct bpf_func_proto bpf_perf_event_output_proto = {
697 .func = bpf_perf_event_output,
698 .gpl_only = true,
699 .ret_type = RET_INTEGER,
700 .arg1_type = ARG_PTR_TO_CTX,
701 .arg2_type = ARG_CONST_MAP_PTR,
702 .arg3_type = ARG_ANYTHING,
703 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
704 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
705 };
706
707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
708 struct bpf_nested_pt_regs {
709 struct pt_regs regs[3];
710 };
711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
713
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
715 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
716 {
717 struct perf_raw_frag frag = {
718 .copy = ctx_copy,
719 .size = ctx_size,
720 .data = ctx,
721 };
722 struct perf_raw_record raw = {
723 .frag = {
724 {
725 .next = ctx_size ? &frag : NULL,
726 },
727 .size = meta_size,
728 .data = meta,
729 },
730 };
731 struct perf_sample_data *sd;
732 struct pt_regs *regs;
733 int nest_level;
734 u64 ret;
735
736 preempt_disable();
737 nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
738
739 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
740 ret = -EBUSY;
741 goto out;
742 }
743 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
744 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
745
746 perf_fetch_caller_regs(regs);
747 perf_sample_data_init(sd, 0, 0);
748 perf_sample_save_raw_data(sd, &raw);
749
750 ret = __bpf_perf_event_output(regs, map, flags, sd);
751 out:
752 this_cpu_dec(bpf_event_output_nest_level);
753 preempt_enable();
754 return ret;
755 }
756
BPF_CALL_0(bpf_get_current_task)757 BPF_CALL_0(bpf_get_current_task)
758 {
759 return (long) current;
760 }
761
762 const struct bpf_func_proto bpf_get_current_task_proto = {
763 .func = bpf_get_current_task,
764 .gpl_only = true,
765 .ret_type = RET_INTEGER,
766 };
767
BPF_CALL_0(bpf_get_current_task_btf)768 BPF_CALL_0(bpf_get_current_task_btf)
769 {
770 return (unsigned long) current;
771 }
772
773 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
774 .func = bpf_get_current_task_btf,
775 .gpl_only = true,
776 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED,
777 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
778 };
779
BPF_CALL_1(bpf_task_pt_regs,struct task_struct *,task)780 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
781 {
782 return (unsigned long) task_pt_regs(task);
783 }
784
785 BTF_ID_LIST(bpf_task_pt_regs_ids)
786 BTF_ID(struct, pt_regs)
787
788 const struct bpf_func_proto bpf_task_pt_regs_proto = {
789 .func = bpf_task_pt_regs,
790 .gpl_only = true,
791 .arg1_type = ARG_PTR_TO_BTF_ID,
792 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
793 .ret_type = RET_PTR_TO_BTF_ID,
794 .ret_btf_id = &bpf_task_pt_regs_ids[0],
795 };
796
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)797 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
798 {
799 struct bpf_array *array = container_of(map, struct bpf_array, map);
800 struct cgroup *cgrp;
801
802 if (unlikely(idx >= array->map.max_entries))
803 return -E2BIG;
804
805 cgrp = READ_ONCE(array->ptrs[idx]);
806 if (unlikely(!cgrp))
807 return -EAGAIN;
808
809 return task_under_cgroup_hierarchy(current, cgrp);
810 }
811
812 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
813 .func = bpf_current_task_under_cgroup,
814 .gpl_only = false,
815 .ret_type = RET_INTEGER,
816 .arg1_type = ARG_CONST_MAP_PTR,
817 .arg2_type = ARG_ANYTHING,
818 };
819
820 struct send_signal_irq_work {
821 struct irq_work irq_work;
822 struct task_struct *task;
823 u32 sig;
824 enum pid_type type;
825 };
826
827 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
828
do_bpf_send_signal(struct irq_work * entry)829 static void do_bpf_send_signal(struct irq_work *entry)
830 {
831 struct send_signal_irq_work *work;
832
833 work = container_of(entry, struct send_signal_irq_work, irq_work);
834 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
835 put_task_struct(work->task);
836 }
837
bpf_send_signal_common(u32 sig,enum pid_type type)838 static int bpf_send_signal_common(u32 sig, enum pid_type type)
839 {
840 struct send_signal_irq_work *work = NULL;
841
842 /* Similar to bpf_probe_write_user, task needs to be
843 * in a sound condition and kernel memory access be
844 * permitted in order to send signal to the current
845 * task.
846 */
847 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
848 return -EPERM;
849 if (unlikely(!nmi_uaccess_okay()))
850 return -EPERM;
851 /* Task should not be pid=1 to avoid kernel panic. */
852 if (unlikely(is_global_init(current)))
853 return -EPERM;
854
855 if (irqs_disabled()) {
856 /* Do an early check on signal validity. Otherwise,
857 * the error is lost in deferred irq_work.
858 */
859 if (unlikely(!valid_signal(sig)))
860 return -EINVAL;
861
862 work = this_cpu_ptr(&send_signal_work);
863 if (irq_work_is_busy(&work->irq_work))
864 return -EBUSY;
865
866 /* Add the current task, which is the target of sending signal,
867 * to the irq_work. The current task may change when queued
868 * irq works get executed.
869 */
870 work->task = get_task_struct(current);
871 work->sig = sig;
872 work->type = type;
873 irq_work_queue(&work->irq_work);
874 return 0;
875 }
876
877 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
878 }
879
BPF_CALL_1(bpf_send_signal,u32,sig)880 BPF_CALL_1(bpf_send_signal, u32, sig)
881 {
882 return bpf_send_signal_common(sig, PIDTYPE_TGID);
883 }
884
885 static const struct bpf_func_proto bpf_send_signal_proto = {
886 .func = bpf_send_signal,
887 .gpl_only = false,
888 .ret_type = RET_INTEGER,
889 .arg1_type = ARG_ANYTHING,
890 };
891
BPF_CALL_1(bpf_send_signal_thread,u32,sig)892 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
893 {
894 return bpf_send_signal_common(sig, PIDTYPE_PID);
895 }
896
897 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
898 .func = bpf_send_signal_thread,
899 .gpl_only = false,
900 .ret_type = RET_INTEGER,
901 .arg1_type = ARG_ANYTHING,
902 };
903
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)904 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
905 {
906 struct path copy;
907 long len;
908 char *p;
909
910 if (!sz)
911 return 0;
912
913 /*
914 * The path pointer is verified as trusted and safe to use,
915 * but let's double check it's valid anyway to workaround
916 * potentially broken verifier.
917 */
918 len = copy_from_kernel_nofault(©, path, sizeof(*path));
919 if (len < 0)
920 return len;
921
922 p = d_path(©, buf, sz);
923 if (IS_ERR(p)) {
924 len = PTR_ERR(p);
925 } else {
926 len = buf + sz - p;
927 memmove(buf, p, len);
928 }
929
930 return len;
931 }
932
933 BTF_SET_START(btf_allowlist_d_path)
934 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)935 BTF_ID(func, security_file_permission)
936 BTF_ID(func, security_inode_getattr)
937 BTF_ID(func, security_file_open)
938 #endif
939 #ifdef CONFIG_SECURITY_PATH
940 BTF_ID(func, security_path_truncate)
941 #endif
942 BTF_ID(func, vfs_truncate)
943 BTF_ID(func, vfs_fallocate)
944 BTF_ID(func, dentry_open)
945 BTF_ID(func, vfs_getattr)
946 BTF_ID(func, filp_close)
947 BTF_SET_END(btf_allowlist_d_path)
948
949 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
950 {
951 if (prog->type == BPF_PROG_TYPE_TRACING &&
952 prog->expected_attach_type == BPF_TRACE_ITER)
953 return true;
954
955 if (prog->type == BPF_PROG_TYPE_LSM)
956 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
957
958 return btf_id_set_contains(&btf_allowlist_d_path,
959 prog->aux->attach_btf_id);
960 }
961
962 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
963
964 static const struct bpf_func_proto bpf_d_path_proto = {
965 .func = bpf_d_path,
966 .gpl_only = false,
967 .ret_type = RET_INTEGER,
968 .arg1_type = ARG_PTR_TO_BTF_ID,
969 .arg1_btf_id = &bpf_d_path_btf_ids[0],
970 .arg2_type = ARG_PTR_TO_MEM,
971 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
972 .allowed = bpf_d_path_allowed,
973 };
974
975 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
976 BTF_F_PTR_RAW | BTF_F_ZERO)
977
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)978 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
979 u64 flags, const struct btf **btf,
980 s32 *btf_id)
981 {
982 const struct btf_type *t;
983
984 if (unlikely(flags & ~(BTF_F_ALL)))
985 return -EINVAL;
986
987 if (btf_ptr_size != sizeof(struct btf_ptr))
988 return -EINVAL;
989
990 *btf = bpf_get_btf_vmlinux();
991
992 if (IS_ERR_OR_NULL(*btf))
993 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
994
995 if (ptr->type_id > 0)
996 *btf_id = ptr->type_id;
997 else
998 return -EINVAL;
999
1000 if (*btf_id > 0)
1001 t = btf_type_by_id(*btf, *btf_id);
1002 if (*btf_id <= 0 || !t)
1003 return -ENOENT;
1004
1005 return 0;
1006 }
1007
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)1008 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1009 u32, btf_ptr_size, u64, flags)
1010 {
1011 const struct btf *btf;
1012 s32 btf_id;
1013 int ret;
1014
1015 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1016 if (ret)
1017 return ret;
1018
1019 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1020 flags);
1021 }
1022
1023 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1024 .func = bpf_snprintf_btf,
1025 .gpl_only = false,
1026 .ret_type = RET_INTEGER,
1027 .arg1_type = ARG_PTR_TO_MEM,
1028 .arg2_type = ARG_CONST_SIZE,
1029 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1030 .arg4_type = ARG_CONST_SIZE,
1031 .arg5_type = ARG_ANYTHING,
1032 };
1033
BPF_CALL_1(bpf_get_func_ip_tracing,void *,ctx)1034 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1035 {
1036 /* This helper call is inlined by verifier. */
1037 return ((u64 *)ctx)[-2];
1038 }
1039
1040 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1041 .func = bpf_get_func_ip_tracing,
1042 .gpl_only = true,
1043 .ret_type = RET_INTEGER,
1044 .arg1_type = ARG_PTR_TO_CTX,
1045 };
1046
1047 #ifdef CONFIG_X86_KERNEL_IBT
get_entry_ip(unsigned long fentry_ip)1048 static unsigned long get_entry_ip(unsigned long fentry_ip)
1049 {
1050 u32 instr;
1051
1052 /* Being extra safe in here in case entry ip is on the page-edge. */
1053 if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
1054 return fentry_ip;
1055 if (is_endbr(instr))
1056 fentry_ip -= ENDBR_INSN_SIZE;
1057 return fentry_ip;
1058 }
1059 #else
1060 #define get_entry_ip(fentry_ip) fentry_ip
1061 #endif
1062
BPF_CALL_1(bpf_get_func_ip_kprobe,struct pt_regs *,regs)1063 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1064 {
1065 struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1066 struct kprobe *kp;
1067
1068 #ifdef CONFIG_UPROBES
1069 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1070 if (run_ctx->is_uprobe)
1071 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1072 #endif
1073
1074 kp = kprobe_running();
1075
1076 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1077 return 0;
1078
1079 return get_entry_ip((uintptr_t)kp->addr);
1080 }
1081
1082 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1083 .func = bpf_get_func_ip_kprobe,
1084 .gpl_only = true,
1085 .ret_type = RET_INTEGER,
1086 .arg1_type = ARG_PTR_TO_CTX,
1087 };
1088
BPF_CALL_1(bpf_get_func_ip_kprobe_multi,struct pt_regs *,regs)1089 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1090 {
1091 return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1092 }
1093
1094 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1095 .func = bpf_get_func_ip_kprobe_multi,
1096 .gpl_only = false,
1097 .ret_type = RET_INTEGER,
1098 .arg1_type = ARG_PTR_TO_CTX,
1099 };
1100
BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi,struct pt_regs *,regs)1101 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1102 {
1103 return bpf_kprobe_multi_cookie(current->bpf_ctx);
1104 }
1105
1106 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1107 .func = bpf_get_attach_cookie_kprobe_multi,
1108 .gpl_only = false,
1109 .ret_type = RET_INTEGER,
1110 .arg1_type = ARG_PTR_TO_CTX,
1111 };
1112
BPF_CALL_1(bpf_get_func_ip_uprobe_multi,struct pt_regs *,regs)1113 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1114 {
1115 return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1116 }
1117
1118 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1119 .func = bpf_get_func_ip_uprobe_multi,
1120 .gpl_only = false,
1121 .ret_type = RET_INTEGER,
1122 .arg1_type = ARG_PTR_TO_CTX,
1123 };
1124
BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi,struct pt_regs *,regs)1125 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1126 {
1127 return bpf_uprobe_multi_cookie(current->bpf_ctx);
1128 }
1129
1130 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1131 .func = bpf_get_attach_cookie_uprobe_multi,
1132 .gpl_only = false,
1133 .ret_type = RET_INTEGER,
1134 .arg1_type = ARG_PTR_TO_CTX,
1135 };
1136
BPF_CALL_1(bpf_get_attach_cookie_trace,void *,ctx)1137 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1138 {
1139 struct bpf_trace_run_ctx *run_ctx;
1140
1141 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1142 return run_ctx->bpf_cookie;
1143 }
1144
1145 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1146 .func = bpf_get_attach_cookie_trace,
1147 .gpl_only = false,
1148 .ret_type = RET_INTEGER,
1149 .arg1_type = ARG_PTR_TO_CTX,
1150 };
1151
BPF_CALL_1(bpf_get_attach_cookie_pe,struct bpf_perf_event_data_kern *,ctx)1152 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1153 {
1154 return ctx->event->bpf_cookie;
1155 }
1156
1157 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1158 .func = bpf_get_attach_cookie_pe,
1159 .gpl_only = false,
1160 .ret_type = RET_INTEGER,
1161 .arg1_type = ARG_PTR_TO_CTX,
1162 };
1163
BPF_CALL_1(bpf_get_attach_cookie_tracing,void *,ctx)1164 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1165 {
1166 struct bpf_trace_run_ctx *run_ctx;
1167
1168 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1169 return run_ctx->bpf_cookie;
1170 }
1171
1172 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1173 .func = bpf_get_attach_cookie_tracing,
1174 .gpl_only = false,
1175 .ret_type = RET_INTEGER,
1176 .arg1_type = ARG_PTR_TO_CTX,
1177 };
1178
BPF_CALL_3(bpf_get_branch_snapshot,void *,buf,u32,size,u64,flags)1179 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1180 {
1181 #ifndef CONFIG_X86
1182 return -ENOENT;
1183 #else
1184 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1185 u32 entry_cnt = size / br_entry_size;
1186
1187 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1188
1189 if (unlikely(flags))
1190 return -EINVAL;
1191
1192 if (!entry_cnt)
1193 return -ENOENT;
1194
1195 return entry_cnt * br_entry_size;
1196 #endif
1197 }
1198
1199 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1200 .func = bpf_get_branch_snapshot,
1201 .gpl_only = true,
1202 .ret_type = RET_INTEGER,
1203 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1204 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1205 };
1206
BPF_CALL_3(get_func_arg,void *,ctx,u32,n,u64 *,value)1207 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1208 {
1209 /* This helper call is inlined by verifier. */
1210 u64 nr_args = ((u64 *)ctx)[-1];
1211
1212 if ((u64) n >= nr_args)
1213 return -EINVAL;
1214 *value = ((u64 *)ctx)[n];
1215 return 0;
1216 }
1217
1218 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1219 .func = get_func_arg,
1220 .ret_type = RET_INTEGER,
1221 .arg1_type = ARG_PTR_TO_CTX,
1222 .arg2_type = ARG_ANYTHING,
1223 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1224 .arg3_size = sizeof(u64),
1225 };
1226
BPF_CALL_2(get_func_ret,void *,ctx,u64 *,value)1227 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1228 {
1229 /* This helper call is inlined by verifier. */
1230 u64 nr_args = ((u64 *)ctx)[-1];
1231
1232 *value = ((u64 *)ctx)[nr_args];
1233 return 0;
1234 }
1235
1236 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1237 .func = get_func_ret,
1238 .ret_type = RET_INTEGER,
1239 .arg1_type = ARG_PTR_TO_CTX,
1240 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1241 .arg2_size = sizeof(u64),
1242 };
1243
BPF_CALL_1(get_func_arg_cnt,void *,ctx)1244 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1245 {
1246 /* This helper call is inlined by verifier. */
1247 return ((u64 *)ctx)[-1];
1248 }
1249
1250 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1251 .func = get_func_arg_cnt,
1252 .ret_type = RET_INTEGER,
1253 .arg1_type = ARG_PTR_TO_CTX,
1254 };
1255
1256 #ifdef CONFIG_KEYS
1257 __diag_push();
1258 __diag_ignore_all("-Wmissing-prototypes",
1259 "kfuncs which will be used in BPF programs");
1260
1261 /**
1262 * bpf_lookup_user_key - lookup a key by its serial
1263 * @serial: key handle serial number
1264 * @flags: lookup-specific flags
1265 *
1266 * Search a key with a given *serial* and the provided *flags*.
1267 * If found, increment the reference count of the key by one, and
1268 * return it in the bpf_key structure.
1269 *
1270 * The bpf_key structure must be passed to bpf_key_put() when done
1271 * with it, so that the key reference count is decremented and the
1272 * bpf_key structure is freed.
1273 *
1274 * Permission checks are deferred to the time the key is used by
1275 * one of the available key-specific kfuncs.
1276 *
1277 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1278 * special keyring (e.g. session keyring), if it doesn't yet exist.
1279 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1280 * for the key construction, and to retrieve uninstantiated keys (keys
1281 * without data attached to them).
1282 *
1283 * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1284 * NULL pointer otherwise.
1285 */
bpf_lookup_user_key(u32 serial,u64 flags)1286 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1287 {
1288 key_ref_t key_ref;
1289 struct bpf_key *bkey;
1290
1291 if (flags & ~KEY_LOOKUP_ALL)
1292 return NULL;
1293
1294 /*
1295 * Permission check is deferred until the key is used, as the
1296 * intent of the caller is unknown here.
1297 */
1298 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1299 if (IS_ERR(key_ref))
1300 return NULL;
1301
1302 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1303 if (!bkey) {
1304 key_put(key_ref_to_ptr(key_ref));
1305 return NULL;
1306 }
1307
1308 bkey->key = key_ref_to_ptr(key_ref);
1309 bkey->has_ref = true;
1310
1311 return bkey;
1312 }
1313
1314 /**
1315 * bpf_lookup_system_key - lookup a key by a system-defined ID
1316 * @id: key ID
1317 *
1318 * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1319 * The key pointer is marked as invalid, to prevent bpf_key_put() from
1320 * attempting to decrement the key reference count on that pointer. The key
1321 * pointer set in such way is currently understood only by
1322 * verify_pkcs7_signature().
1323 *
1324 * Set *id* to one of the values defined in include/linux/verification.h:
1325 * 0 for the primary keyring (immutable keyring of system keys);
1326 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1327 * (where keys can be added only if they are vouched for by existing keys
1328 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1329 * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1330 * kerned image and, possibly, the initramfs signature).
1331 *
1332 * Return: a bpf_key pointer with an invalid key pointer set from the
1333 * pre-determined ID on success, a NULL pointer otherwise
1334 */
bpf_lookup_system_key(u64 id)1335 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1336 {
1337 struct bpf_key *bkey;
1338
1339 if (system_keyring_id_check(id) < 0)
1340 return NULL;
1341
1342 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1343 if (!bkey)
1344 return NULL;
1345
1346 bkey->key = (struct key *)(unsigned long)id;
1347 bkey->has_ref = false;
1348
1349 return bkey;
1350 }
1351
1352 /**
1353 * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1354 * @bkey: bpf_key structure
1355 *
1356 * Decrement the reference count of the key inside *bkey*, if the pointer
1357 * is valid, and free *bkey*.
1358 */
bpf_key_put(struct bpf_key * bkey)1359 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1360 {
1361 if (bkey->has_ref)
1362 key_put(bkey->key);
1363
1364 kfree(bkey);
1365 }
1366
1367 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1368 /**
1369 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1370 * @data_ptr: data to verify
1371 * @sig_ptr: signature of the data
1372 * @trusted_keyring: keyring with keys trusted for signature verification
1373 *
1374 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1375 * with keys in a keyring referenced by *trusted_keyring*.
1376 *
1377 * Return: 0 on success, a negative value on error.
1378 */
bpf_verify_pkcs7_signature(struct bpf_dynptr_kern * data_ptr,struct bpf_dynptr_kern * sig_ptr,struct bpf_key * trusted_keyring)1379 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr_kern *data_ptr,
1380 struct bpf_dynptr_kern *sig_ptr,
1381 struct bpf_key *trusted_keyring)
1382 {
1383 int ret;
1384
1385 if (trusted_keyring->has_ref) {
1386 /*
1387 * Do the permission check deferred in bpf_lookup_user_key().
1388 * See bpf_lookup_user_key() for more details.
1389 *
1390 * A call to key_task_permission() here would be redundant, as
1391 * it is already done by keyring_search() called by
1392 * find_asymmetric_key().
1393 */
1394 ret = key_validate(trusted_keyring->key);
1395 if (ret < 0)
1396 return ret;
1397 }
1398
1399 return verify_pkcs7_signature(data_ptr->data,
1400 __bpf_dynptr_size(data_ptr),
1401 sig_ptr->data,
1402 __bpf_dynptr_size(sig_ptr),
1403 trusted_keyring->key,
1404 VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1405 NULL);
1406 }
1407 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1408
1409 __diag_pop();
1410
1411 BTF_SET8_START(key_sig_kfunc_set)
1412 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1413 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1414 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1415 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1416 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1417 #endif
1418 BTF_SET8_END(key_sig_kfunc_set)
1419
1420 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1421 .owner = THIS_MODULE,
1422 .set = &key_sig_kfunc_set,
1423 };
1424
bpf_key_sig_kfuncs_init(void)1425 static int __init bpf_key_sig_kfuncs_init(void)
1426 {
1427 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1428 &bpf_key_sig_kfunc_set);
1429 }
1430
1431 late_initcall(bpf_key_sig_kfuncs_init);
1432 #endif /* CONFIG_KEYS */
1433
1434 static const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1435 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1436 {
1437 switch (func_id) {
1438 case BPF_FUNC_map_lookup_elem:
1439 return &bpf_map_lookup_elem_proto;
1440 case BPF_FUNC_map_update_elem:
1441 return &bpf_map_update_elem_proto;
1442 case BPF_FUNC_map_delete_elem:
1443 return &bpf_map_delete_elem_proto;
1444 case BPF_FUNC_map_push_elem:
1445 return &bpf_map_push_elem_proto;
1446 case BPF_FUNC_map_pop_elem:
1447 return &bpf_map_pop_elem_proto;
1448 case BPF_FUNC_map_peek_elem:
1449 return &bpf_map_peek_elem_proto;
1450 case BPF_FUNC_map_lookup_percpu_elem:
1451 return &bpf_map_lookup_percpu_elem_proto;
1452 case BPF_FUNC_ktime_get_ns:
1453 return &bpf_ktime_get_ns_proto;
1454 case BPF_FUNC_ktime_get_boot_ns:
1455 return &bpf_ktime_get_boot_ns_proto;
1456 case BPF_FUNC_tail_call:
1457 return &bpf_tail_call_proto;
1458 case BPF_FUNC_get_current_pid_tgid:
1459 return &bpf_get_current_pid_tgid_proto;
1460 case BPF_FUNC_get_current_task:
1461 return &bpf_get_current_task_proto;
1462 case BPF_FUNC_get_current_task_btf:
1463 return &bpf_get_current_task_btf_proto;
1464 case BPF_FUNC_task_pt_regs:
1465 return &bpf_task_pt_regs_proto;
1466 case BPF_FUNC_get_current_uid_gid:
1467 return &bpf_get_current_uid_gid_proto;
1468 case BPF_FUNC_get_current_comm:
1469 return &bpf_get_current_comm_proto;
1470 case BPF_FUNC_trace_printk:
1471 return bpf_get_trace_printk_proto();
1472 case BPF_FUNC_get_smp_processor_id:
1473 return &bpf_get_smp_processor_id_proto;
1474 case BPF_FUNC_get_numa_node_id:
1475 return &bpf_get_numa_node_id_proto;
1476 case BPF_FUNC_perf_event_read:
1477 return &bpf_perf_event_read_proto;
1478 case BPF_FUNC_current_task_under_cgroup:
1479 return &bpf_current_task_under_cgroup_proto;
1480 case BPF_FUNC_get_prandom_u32:
1481 return &bpf_get_prandom_u32_proto;
1482 case BPF_FUNC_probe_write_user:
1483 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1484 NULL : bpf_get_probe_write_proto();
1485 case BPF_FUNC_probe_read_user:
1486 return &bpf_probe_read_user_proto;
1487 case BPF_FUNC_probe_read_kernel:
1488 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1489 NULL : &bpf_probe_read_kernel_proto;
1490 case BPF_FUNC_probe_read_user_str:
1491 return &bpf_probe_read_user_str_proto;
1492 case BPF_FUNC_probe_read_kernel_str:
1493 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1494 NULL : &bpf_probe_read_kernel_str_proto;
1495 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1496 case BPF_FUNC_probe_read:
1497 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1498 NULL : &bpf_probe_read_compat_proto;
1499 case BPF_FUNC_probe_read_str:
1500 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1501 NULL : &bpf_probe_read_compat_str_proto;
1502 #endif
1503 #ifdef CONFIG_CGROUPS
1504 case BPF_FUNC_cgrp_storage_get:
1505 return &bpf_cgrp_storage_get_proto;
1506 case BPF_FUNC_cgrp_storage_delete:
1507 return &bpf_cgrp_storage_delete_proto;
1508 #endif
1509 case BPF_FUNC_send_signal:
1510 return &bpf_send_signal_proto;
1511 case BPF_FUNC_send_signal_thread:
1512 return &bpf_send_signal_thread_proto;
1513 case BPF_FUNC_perf_event_read_value:
1514 return &bpf_perf_event_read_value_proto;
1515 case BPF_FUNC_get_ns_current_pid_tgid:
1516 return &bpf_get_ns_current_pid_tgid_proto;
1517 case BPF_FUNC_ringbuf_output:
1518 return &bpf_ringbuf_output_proto;
1519 case BPF_FUNC_ringbuf_reserve:
1520 return &bpf_ringbuf_reserve_proto;
1521 case BPF_FUNC_ringbuf_submit:
1522 return &bpf_ringbuf_submit_proto;
1523 case BPF_FUNC_ringbuf_discard:
1524 return &bpf_ringbuf_discard_proto;
1525 case BPF_FUNC_ringbuf_query:
1526 return &bpf_ringbuf_query_proto;
1527 case BPF_FUNC_jiffies64:
1528 return &bpf_jiffies64_proto;
1529 case BPF_FUNC_get_task_stack:
1530 return &bpf_get_task_stack_proto;
1531 case BPF_FUNC_copy_from_user:
1532 return &bpf_copy_from_user_proto;
1533 case BPF_FUNC_copy_from_user_task:
1534 return &bpf_copy_from_user_task_proto;
1535 case BPF_FUNC_snprintf_btf:
1536 return &bpf_snprintf_btf_proto;
1537 case BPF_FUNC_per_cpu_ptr:
1538 return &bpf_per_cpu_ptr_proto;
1539 case BPF_FUNC_this_cpu_ptr:
1540 return &bpf_this_cpu_ptr_proto;
1541 case BPF_FUNC_task_storage_get:
1542 if (bpf_prog_check_recur(prog))
1543 return &bpf_task_storage_get_recur_proto;
1544 return &bpf_task_storage_get_proto;
1545 case BPF_FUNC_task_storage_delete:
1546 if (bpf_prog_check_recur(prog))
1547 return &bpf_task_storage_delete_recur_proto;
1548 return &bpf_task_storage_delete_proto;
1549 case BPF_FUNC_for_each_map_elem:
1550 return &bpf_for_each_map_elem_proto;
1551 case BPF_FUNC_snprintf:
1552 return &bpf_snprintf_proto;
1553 case BPF_FUNC_get_func_ip:
1554 return &bpf_get_func_ip_proto_tracing;
1555 case BPF_FUNC_get_branch_snapshot:
1556 return &bpf_get_branch_snapshot_proto;
1557 case BPF_FUNC_find_vma:
1558 return &bpf_find_vma_proto;
1559 case BPF_FUNC_trace_vprintk:
1560 return bpf_get_trace_vprintk_proto();
1561 default:
1562 return bpf_base_func_proto(func_id);
1563 }
1564 }
1565
1566 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1567 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1568 {
1569 switch (func_id) {
1570 case BPF_FUNC_perf_event_output:
1571 return &bpf_perf_event_output_proto;
1572 case BPF_FUNC_get_stackid:
1573 return &bpf_get_stackid_proto;
1574 case BPF_FUNC_get_stack:
1575 return &bpf_get_stack_proto;
1576 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1577 case BPF_FUNC_override_return:
1578 return &bpf_override_return_proto;
1579 #endif
1580 case BPF_FUNC_get_func_ip:
1581 if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
1582 return &bpf_get_func_ip_proto_kprobe_multi;
1583 if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1584 return &bpf_get_func_ip_proto_uprobe_multi;
1585 return &bpf_get_func_ip_proto_kprobe;
1586 case BPF_FUNC_get_attach_cookie:
1587 if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
1588 return &bpf_get_attach_cookie_proto_kmulti;
1589 if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1590 return &bpf_get_attach_cookie_proto_umulti;
1591 return &bpf_get_attach_cookie_proto_trace;
1592 default:
1593 return bpf_tracing_func_proto(func_id, prog);
1594 }
1595 }
1596
1597 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1598 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1599 const struct bpf_prog *prog,
1600 struct bpf_insn_access_aux *info)
1601 {
1602 if (off < 0 || off >= sizeof(struct pt_regs))
1603 return false;
1604 if (type != BPF_READ)
1605 return false;
1606 if (off % size != 0)
1607 return false;
1608 /*
1609 * Assertion for 32 bit to make sure last 8 byte access
1610 * (BPF_DW) to the last 4 byte member is disallowed.
1611 */
1612 if (off + size > sizeof(struct pt_regs))
1613 return false;
1614
1615 return true;
1616 }
1617
1618 const struct bpf_verifier_ops kprobe_verifier_ops = {
1619 .get_func_proto = kprobe_prog_func_proto,
1620 .is_valid_access = kprobe_prog_is_valid_access,
1621 };
1622
1623 const struct bpf_prog_ops kprobe_prog_ops = {
1624 };
1625
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1626 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1627 u64, flags, void *, data, u64, size)
1628 {
1629 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1630
1631 /*
1632 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1633 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1634 * from there and call the same bpf_perf_event_output() helper inline.
1635 */
1636 return ____bpf_perf_event_output(regs, map, flags, data, size);
1637 }
1638
1639 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1640 .func = bpf_perf_event_output_tp,
1641 .gpl_only = true,
1642 .ret_type = RET_INTEGER,
1643 .arg1_type = ARG_PTR_TO_CTX,
1644 .arg2_type = ARG_CONST_MAP_PTR,
1645 .arg3_type = ARG_ANYTHING,
1646 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1647 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1648 };
1649
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1650 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1651 u64, flags)
1652 {
1653 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1654
1655 /*
1656 * Same comment as in bpf_perf_event_output_tp(), only that this time
1657 * the other helper's function body cannot be inlined due to being
1658 * external, thus we need to call raw helper function.
1659 */
1660 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1661 flags, 0, 0);
1662 }
1663
1664 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1665 .func = bpf_get_stackid_tp,
1666 .gpl_only = true,
1667 .ret_type = RET_INTEGER,
1668 .arg1_type = ARG_PTR_TO_CTX,
1669 .arg2_type = ARG_CONST_MAP_PTR,
1670 .arg3_type = ARG_ANYTHING,
1671 };
1672
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1673 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1674 u64, flags)
1675 {
1676 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1677
1678 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1679 (unsigned long) size, flags, 0);
1680 }
1681
1682 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1683 .func = bpf_get_stack_tp,
1684 .gpl_only = true,
1685 .ret_type = RET_INTEGER,
1686 .arg1_type = ARG_PTR_TO_CTX,
1687 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1688 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1689 .arg4_type = ARG_ANYTHING,
1690 };
1691
1692 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1693 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1694 {
1695 switch (func_id) {
1696 case BPF_FUNC_perf_event_output:
1697 return &bpf_perf_event_output_proto_tp;
1698 case BPF_FUNC_get_stackid:
1699 return &bpf_get_stackid_proto_tp;
1700 case BPF_FUNC_get_stack:
1701 return &bpf_get_stack_proto_tp;
1702 case BPF_FUNC_get_attach_cookie:
1703 return &bpf_get_attach_cookie_proto_trace;
1704 default:
1705 return bpf_tracing_func_proto(func_id, prog);
1706 }
1707 }
1708
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1709 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1710 const struct bpf_prog *prog,
1711 struct bpf_insn_access_aux *info)
1712 {
1713 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1714 return false;
1715 if (type != BPF_READ)
1716 return false;
1717 if (off % size != 0)
1718 return false;
1719
1720 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1721 return true;
1722 }
1723
1724 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1725 .get_func_proto = tp_prog_func_proto,
1726 .is_valid_access = tp_prog_is_valid_access,
1727 };
1728
1729 const struct bpf_prog_ops tracepoint_prog_ops = {
1730 };
1731
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1732 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1733 struct bpf_perf_event_value *, buf, u32, size)
1734 {
1735 int err = -EINVAL;
1736
1737 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1738 goto clear;
1739 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1740 &buf->running);
1741 if (unlikely(err))
1742 goto clear;
1743 return 0;
1744 clear:
1745 memset(buf, 0, size);
1746 return err;
1747 }
1748
1749 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1750 .func = bpf_perf_prog_read_value,
1751 .gpl_only = true,
1752 .ret_type = RET_INTEGER,
1753 .arg1_type = ARG_PTR_TO_CTX,
1754 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1755 .arg3_type = ARG_CONST_SIZE,
1756 };
1757
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1758 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1759 void *, buf, u32, size, u64, flags)
1760 {
1761 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1762 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1763 u32 to_copy;
1764
1765 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1766 return -EINVAL;
1767
1768 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1769 return -ENOENT;
1770
1771 if (unlikely(!br_stack))
1772 return -ENOENT;
1773
1774 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1775 return br_stack->nr * br_entry_size;
1776
1777 if (!buf || (size % br_entry_size != 0))
1778 return -EINVAL;
1779
1780 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1781 memcpy(buf, br_stack->entries, to_copy);
1782
1783 return to_copy;
1784 }
1785
1786 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1787 .func = bpf_read_branch_records,
1788 .gpl_only = true,
1789 .ret_type = RET_INTEGER,
1790 .arg1_type = ARG_PTR_TO_CTX,
1791 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1792 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1793 .arg4_type = ARG_ANYTHING,
1794 };
1795
1796 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1797 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1798 {
1799 switch (func_id) {
1800 case BPF_FUNC_perf_event_output:
1801 return &bpf_perf_event_output_proto_tp;
1802 case BPF_FUNC_get_stackid:
1803 return &bpf_get_stackid_proto_pe;
1804 case BPF_FUNC_get_stack:
1805 return &bpf_get_stack_proto_pe;
1806 case BPF_FUNC_perf_prog_read_value:
1807 return &bpf_perf_prog_read_value_proto;
1808 case BPF_FUNC_read_branch_records:
1809 return &bpf_read_branch_records_proto;
1810 case BPF_FUNC_get_attach_cookie:
1811 return &bpf_get_attach_cookie_proto_pe;
1812 default:
1813 return bpf_tracing_func_proto(func_id, prog);
1814 }
1815 }
1816
1817 /*
1818 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1819 * to avoid potential recursive reuse issue when/if tracepoints are added
1820 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1821 *
1822 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1823 * in normal, irq, and nmi context.
1824 */
1825 struct bpf_raw_tp_regs {
1826 struct pt_regs regs[3];
1827 };
1828 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1829 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1830 static struct pt_regs *get_bpf_raw_tp_regs(void)
1831 {
1832 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1833 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1834
1835 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1836 this_cpu_dec(bpf_raw_tp_nest_level);
1837 return ERR_PTR(-EBUSY);
1838 }
1839
1840 return &tp_regs->regs[nest_level - 1];
1841 }
1842
put_bpf_raw_tp_regs(void)1843 static void put_bpf_raw_tp_regs(void)
1844 {
1845 this_cpu_dec(bpf_raw_tp_nest_level);
1846 }
1847
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1848 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1849 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1850 {
1851 struct pt_regs *regs = get_bpf_raw_tp_regs();
1852 int ret;
1853
1854 if (IS_ERR(regs))
1855 return PTR_ERR(regs);
1856
1857 perf_fetch_caller_regs(regs);
1858 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1859
1860 put_bpf_raw_tp_regs();
1861 return ret;
1862 }
1863
1864 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1865 .func = bpf_perf_event_output_raw_tp,
1866 .gpl_only = true,
1867 .ret_type = RET_INTEGER,
1868 .arg1_type = ARG_PTR_TO_CTX,
1869 .arg2_type = ARG_CONST_MAP_PTR,
1870 .arg3_type = ARG_ANYTHING,
1871 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1872 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1873 };
1874
1875 extern const struct bpf_func_proto bpf_skb_output_proto;
1876 extern const struct bpf_func_proto bpf_xdp_output_proto;
1877 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1878
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1879 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1880 struct bpf_map *, map, u64, flags)
1881 {
1882 struct pt_regs *regs = get_bpf_raw_tp_regs();
1883 int ret;
1884
1885 if (IS_ERR(regs))
1886 return PTR_ERR(regs);
1887
1888 perf_fetch_caller_regs(regs);
1889 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1890 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1891 flags, 0, 0);
1892 put_bpf_raw_tp_regs();
1893 return ret;
1894 }
1895
1896 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1897 .func = bpf_get_stackid_raw_tp,
1898 .gpl_only = true,
1899 .ret_type = RET_INTEGER,
1900 .arg1_type = ARG_PTR_TO_CTX,
1901 .arg2_type = ARG_CONST_MAP_PTR,
1902 .arg3_type = ARG_ANYTHING,
1903 };
1904
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1905 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1906 void *, buf, u32, size, u64, flags)
1907 {
1908 struct pt_regs *regs = get_bpf_raw_tp_regs();
1909 int ret;
1910
1911 if (IS_ERR(regs))
1912 return PTR_ERR(regs);
1913
1914 perf_fetch_caller_regs(regs);
1915 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1916 (unsigned long) size, flags, 0);
1917 put_bpf_raw_tp_regs();
1918 return ret;
1919 }
1920
1921 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1922 .func = bpf_get_stack_raw_tp,
1923 .gpl_only = true,
1924 .ret_type = RET_INTEGER,
1925 .arg1_type = ARG_PTR_TO_CTX,
1926 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1927 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1928 .arg4_type = ARG_ANYTHING,
1929 };
1930
1931 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1932 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1933 {
1934 switch (func_id) {
1935 case BPF_FUNC_perf_event_output:
1936 return &bpf_perf_event_output_proto_raw_tp;
1937 case BPF_FUNC_get_stackid:
1938 return &bpf_get_stackid_proto_raw_tp;
1939 case BPF_FUNC_get_stack:
1940 return &bpf_get_stack_proto_raw_tp;
1941 default:
1942 return bpf_tracing_func_proto(func_id, prog);
1943 }
1944 }
1945
1946 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1947 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1948 {
1949 const struct bpf_func_proto *fn;
1950
1951 switch (func_id) {
1952 #ifdef CONFIG_NET
1953 case BPF_FUNC_skb_output:
1954 return &bpf_skb_output_proto;
1955 case BPF_FUNC_xdp_output:
1956 return &bpf_xdp_output_proto;
1957 case BPF_FUNC_skc_to_tcp6_sock:
1958 return &bpf_skc_to_tcp6_sock_proto;
1959 case BPF_FUNC_skc_to_tcp_sock:
1960 return &bpf_skc_to_tcp_sock_proto;
1961 case BPF_FUNC_skc_to_tcp_timewait_sock:
1962 return &bpf_skc_to_tcp_timewait_sock_proto;
1963 case BPF_FUNC_skc_to_tcp_request_sock:
1964 return &bpf_skc_to_tcp_request_sock_proto;
1965 case BPF_FUNC_skc_to_udp6_sock:
1966 return &bpf_skc_to_udp6_sock_proto;
1967 case BPF_FUNC_skc_to_unix_sock:
1968 return &bpf_skc_to_unix_sock_proto;
1969 case BPF_FUNC_skc_to_mptcp_sock:
1970 return &bpf_skc_to_mptcp_sock_proto;
1971 case BPF_FUNC_sk_storage_get:
1972 return &bpf_sk_storage_get_tracing_proto;
1973 case BPF_FUNC_sk_storage_delete:
1974 return &bpf_sk_storage_delete_tracing_proto;
1975 case BPF_FUNC_sock_from_file:
1976 return &bpf_sock_from_file_proto;
1977 case BPF_FUNC_get_socket_cookie:
1978 return &bpf_get_socket_ptr_cookie_proto;
1979 case BPF_FUNC_xdp_get_buff_len:
1980 return &bpf_xdp_get_buff_len_trace_proto;
1981 #endif
1982 case BPF_FUNC_seq_printf:
1983 return prog->expected_attach_type == BPF_TRACE_ITER ?
1984 &bpf_seq_printf_proto :
1985 NULL;
1986 case BPF_FUNC_seq_write:
1987 return prog->expected_attach_type == BPF_TRACE_ITER ?
1988 &bpf_seq_write_proto :
1989 NULL;
1990 case BPF_FUNC_seq_printf_btf:
1991 return prog->expected_attach_type == BPF_TRACE_ITER ?
1992 &bpf_seq_printf_btf_proto :
1993 NULL;
1994 case BPF_FUNC_d_path:
1995 return &bpf_d_path_proto;
1996 case BPF_FUNC_get_func_arg:
1997 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1998 case BPF_FUNC_get_func_ret:
1999 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
2000 case BPF_FUNC_get_func_arg_cnt:
2001 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
2002 case BPF_FUNC_get_attach_cookie:
2003 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
2004 default:
2005 fn = raw_tp_prog_func_proto(func_id, prog);
2006 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
2007 fn = bpf_iter_get_func_proto(func_id, prog);
2008 return fn;
2009 }
2010 }
2011
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2012 static bool raw_tp_prog_is_valid_access(int off, int size,
2013 enum bpf_access_type type,
2014 const struct bpf_prog *prog,
2015 struct bpf_insn_access_aux *info)
2016 {
2017 return bpf_tracing_ctx_access(off, size, type);
2018 }
2019
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2020 static bool tracing_prog_is_valid_access(int off, int size,
2021 enum bpf_access_type type,
2022 const struct bpf_prog *prog,
2023 struct bpf_insn_access_aux *info)
2024 {
2025 return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
2026 }
2027
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2028 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
2029 const union bpf_attr *kattr,
2030 union bpf_attr __user *uattr)
2031 {
2032 return -ENOTSUPP;
2033 }
2034
2035 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2036 .get_func_proto = raw_tp_prog_func_proto,
2037 .is_valid_access = raw_tp_prog_is_valid_access,
2038 };
2039
2040 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2041 #ifdef CONFIG_NET
2042 .test_run = bpf_prog_test_run_raw_tp,
2043 #endif
2044 };
2045
2046 const struct bpf_verifier_ops tracing_verifier_ops = {
2047 .get_func_proto = tracing_prog_func_proto,
2048 .is_valid_access = tracing_prog_is_valid_access,
2049 };
2050
2051 const struct bpf_prog_ops tracing_prog_ops = {
2052 .test_run = bpf_prog_test_run_tracing,
2053 };
2054
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2055 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2056 enum bpf_access_type type,
2057 const struct bpf_prog *prog,
2058 struct bpf_insn_access_aux *info)
2059 {
2060 if (off == 0) {
2061 if (size != sizeof(u64) || type != BPF_READ)
2062 return false;
2063 info->reg_type = PTR_TO_TP_BUFFER;
2064 }
2065 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2066 }
2067
2068 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2069 .get_func_proto = raw_tp_prog_func_proto,
2070 .is_valid_access = raw_tp_writable_prog_is_valid_access,
2071 };
2072
2073 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2074 };
2075
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2076 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2077 const struct bpf_prog *prog,
2078 struct bpf_insn_access_aux *info)
2079 {
2080 const int size_u64 = sizeof(u64);
2081
2082 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2083 return false;
2084 if (type != BPF_READ)
2085 return false;
2086 if (off % size != 0) {
2087 if (sizeof(unsigned long) != 4)
2088 return false;
2089 if (size != 8)
2090 return false;
2091 if (off % size != 4)
2092 return false;
2093 }
2094
2095 switch (off) {
2096 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2097 bpf_ctx_record_field_size(info, size_u64);
2098 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2099 return false;
2100 break;
2101 case bpf_ctx_range(struct bpf_perf_event_data, addr):
2102 bpf_ctx_record_field_size(info, size_u64);
2103 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2104 return false;
2105 break;
2106 default:
2107 if (size != sizeof(long))
2108 return false;
2109 }
2110
2111 return true;
2112 }
2113
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2114 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2115 const struct bpf_insn *si,
2116 struct bpf_insn *insn_buf,
2117 struct bpf_prog *prog, u32 *target_size)
2118 {
2119 struct bpf_insn *insn = insn_buf;
2120
2121 switch (si->off) {
2122 case offsetof(struct bpf_perf_event_data, sample_period):
2123 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2124 data), si->dst_reg, si->src_reg,
2125 offsetof(struct bpf_perf_event_data_kern, data));
2126 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2127 bpf_target_off(struct perf_sample_data, period, 8,
2128 target_size));
2129 break;
2130 case offsetof(struct bpf_perf_event_data, addr):
2131 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2132 data), si->dst_reg, si->src_reg,
2133 offsetof(struct bpf_perf_event_data_kern, data));
2134 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2135 bpf_target_off(struct perf_sample_data, addr, 8,
2136 target_size));
2137 break;
2138 default:
2139 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2140 regs), si->dst_reg, si->src_reg,
2141 offsetof(struct bpf_perf_event_data_kern, regs));
2142 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2143 si->off);
2144 break;
2145 }
2146
2147 return insn - insn_buf;
2148 }
2149
2150 const struct bpf_verifier_ops perf_event_verifier_ops = {
2151 .get_func_proto = pe_prog_func_proto,
2152 .is_valid_access = pe_prog_is_valid_access,
2153 .convert_ctx_access = pe_prog_convert_ctx_access,
2154 };
2155
2156 const struct bpf_prog_ops perf_event_prog_ops = {
2157 };
2158
2159 static DEFINE_MUTEX(bpf_event_mutex);
2160
2161 #define BPF_TRACE_MAX_PROGS 64
2162
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)2163 int perf_event_attach_bpf_prog(struct perf_event *event,
2164 struct bpf_prog *prog,
2165 u64 bpf_cookie)
2166 {
2167 struct bpf_prog_array *old_array;
2168 struct bpf_prog_array *new_array;
2169 int ret = -EEXIST;
2170
2171 /*
2172 * Kprobe override only works if they are on the function entry,
2173 * and only if they are on the opt-in list.
2174 */
2175 if (prog->kprobe_override &&
2176 (!trace_kprobe_on_func_entry(event->tp_event) ||
2177 !trace_kprobe_error_injectable(event->tp_event)))
2178 return -EINVAL;
2179
2180 mutex_lock(&bpf_event_mutex);
2181
2182 if (event->prog)
2183 goto unlock;
2184
2185 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2186 if (old_array &&
2187 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2188 ret = -E2BIG;
2189 goto unlock;
2190 }
2191
2192 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2193 if (ret < 0)
2194 goto unlock;
2195
2196 /* set the new array to event->tp_event and set event->prog */
2197 event->prog = prog;
2198 event->bpf_cookie = bpf_cookie;
2199 rcu_assign_pointer(event->tp_event->prog_array, new_array);
2200 bpf_prog_array_free_sleepable(old_array);
2201
2202 unlock:
2203 mutex_unlock(&bpf_event_mutex);
2204 return ret;
2205 }
2206
perf_event_detach_bpf_prog(struct perf_event * event)2207 void perf_event_detach_bpf_prog(struct perf_event *event)
2208 {
2209 struct bpf_prog_array *old_array;
2210 struct bpf_prog_array *new_array;
2211 int ret;
2212
2213 mutex_lock(&bpf_event_mutex);
2214
2215 if (!event->prog)
2216 goto unlock;
2217
2218 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2219 if (!old_array)
2220 goto put;
2221
2222 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2223 if (ret < 0) {
2224 bpf_prog_array_delete_safe(old_array, event->prog);
2225 } else {
2226 rcu_assign_pointer(event->tp_event->prog_array, new_array);
2227 bpf_prog_array_free_sleepable(old_array);
2228 }
2229
2230 put:
2231 /*
2232 * It could be that the bpf_prog is not sleepable (and will be freed
2233 * via normal RCU), but is called from a point that supports sleepable
2234 * programs and uses tasks-trace-RCU.
2235 */
2236 synchronize_rcu_tasks_trace();
2237
2238 bpf_prog_put(event->prog);
2239 event->prog = NULL;
2240
2241 unlock:
2242 mutex_unlock(&bpf_event_mutex);
2243 }
2244
perf_event_query_prog_array(struct perf_event * event,void __user * info)2245 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2246 {
2247 struct perf_event_query_bpf __user *uquery = info;
2248 struct perf_event_query_bpf query = {};
2249 struct bpf_prog_array *progs;
2250 u32 *ids, prog_cnt, ids_len;
2251 int ret;
2252
2253 if (!perfmon_capable())
2254 return -EPERM;
2255 if (event->attr.type != PERF_TYPE_TRACEPOINT)
2256 return -EINVAL;
2257 if (copy_from_user(&query, uquery, sizeof(query)))
2258 return -EFAULT;
2259
2260 ids_len = query.ids_len;
2261 if (ids_len > BPF_TRACE_MAX_PROGS)
2262 return -E2BIG;
2263 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2264 if (!ids)
2265 return -ENOMEM;
2266 /*
2267 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2268 * is required when user only wants to check for uquery->prog_cnt.
2269 * There is no need to check for it since the case is handled
2270 * gracefully in bpf_prog_array_copy_info.
2271 */
2272
2273 mutex_lock(&bpf_event_mutex);
2274 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2275 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2276 mutex_unlock(&bpf_event_mutex);
2277
2278 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2279 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2280 ret = -EFAULT;
2281
2282 kfree(ids);
2283 return ret;
2284 }
2285
2286 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2287 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2288
bpf_get_raw_tracepoint(const char * name)2289 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2290 {
2291 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2292
2293 for (; btp < __stop__bpf_raw_tp; btp++) {
2294 if (!strcmp(btp->tp->name, name))
2295 return btp;
2296 }
2297
2298 return bpf_get_raw_tracepoint_module(name);
2299 }
2300
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)2301 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2302 {
2303 struct module *mod;
2304
2305 preempt_disable();
2306 mod = __module_address((unsigned long)btp);
2307 module_put(mod);
2308 preempt_enable();
2309 }
2310
2311 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)2312 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2313 {
2314 cant_sleep();
2315 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2316 bpf_prog_inc_misses_counter(prog);
2317 goto out;
2318 }
2319 rcu_read_lock();
2320 (void) bpf_prog_run(prog, args);
2321 rcu_read_unlock();
2322 out:
2323 this_cpu_dec(*(prog->active));
2324 }
2325
2326 #define UNPACK(...) __VA_ARGS__
2327 #define REPEAT_1(FN, DL, X, ...) FN(X)
2328 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2329 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2330 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2331 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2332 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2333 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2334 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2335 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2336 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2337 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2338 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2339 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
2340
2341 #define SARG(X) u64 arg##X
2342 #define COPY(X) args[X] = arg##X
2343
2344 #define __DL_COM (,)
2345 #define __DL_SEM (;)
2346
2347 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2348
2349 #define BPF_TRACE_DEFN_x(x) \
2350 void bpf_trace_run##x(struct bpf_prog *prog, \
2351 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
2352 { \
2353 u64 args[x]; \
2354 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
2355 __bpf_trace_run(prog, args); \
2356 } \
2357 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2358 BPF_TRACE_DEFN_x(1);
2359 BPF_TRACE_DEFN_x(2);
2360 BPF_TRACE_DEFN_x(3);
2361 BPF_TRACE_DEFN_x(4);
2362 BPF_TRACE_DEFN_x(5);
2363 BPF_TRACE_DEFN_x(6);
2364 BPF_TRACE_DEFN_x(7);
2365 BPF_TRACE_DEFN_x(8);
2366 BPF_TRACE_DEFN_x(9);
2367 BPF_TRACE_DEFN_x(10);
2368 BPF_TRACE_DEFN_x(11);
2369 BPF_TRACE_DEFN_x(12);
2370
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2371 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2372 {
2373 struct tracepoint *tp = btp->tp;
2374
2375 /*
2376 * check that program doesn't access arguments beyond what's
2377 * available in this tracepoint
2378 */
2379 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2380 return -EINVAL;
2381
2382 if (prog->aux->max_tp_access > btp->writable_size)
2383 return -EINVAL;
2384
2385 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2386 prog);
2387 }
2388
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2389 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2390 {
2391 return __bpf_probe_register(btp, prog);
2392 }
2393
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2394 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2395 {
2396 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2397 }
2398
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr,unsigned long * missed)2399 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2400 u32 *fd_type, const char **buf,
2401 u64 *probe_offset, u64 *probe_addr,
2402 unsigned long *missed)
2403 {
2404 bool is_tracepoint, is_syscall_tp;
2405 struct bpf_prog *prog;
2406 int flags, err = 0;
2407
2408 prog = event->prog;
2409 if (!prog)
2410 return -ENOENT;
2411
2412 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2413 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2414 return -EOPNOTSUPP;
2415
2416 *prog_id = prog->aux->id;
2417 flags = event->tp_event->flags;
2418 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2419 is_syscall_tp = is_syscall_trace_event(event->tp_event);
2420
2421 if (is_tracepoint || is_syscall_tp) {
2422 *buf = is_tracepoint ? event->tp_event->tp->name
2423 : event->tp_event->name;
2424 /* We allow NULL pointer for tracepoint */
2425 if (fd_type)
2426 *fd_type = BPF_FD_TYPE_TRACEPOINT;
2427 if (probe_offset)
2428 *probe_offset = 0x0;
2429 if (probe_addr)
2430 *probe_addr = 0x0;
2431 } else {
2432 /* kprobe/uprobe */
2433 err = -EOPNOTSUPP;
2434 #ifdef CONFIG_KPROBE_EVENTS
2435 if (flags & TRACE_EVENT_FL_KPROBE)
2436 err = bpf_get_kprobe_info(event, fd_type, buf,
2437 probe_offset, probe_addr, missed,
2438 event->attr.type == PERF_TYPE_TRACEPOINT);
2439 #endif
2440 #ifdef CONFIG_UPROBE_EVENTS
2441 if (flags & TRACE_EVENT_FL_UPROBE)
2442 err = bpf_get_uprobe_info(event, fd_type, buf,
2443 probe_offset, probe_addr,
2444 event->attr.type == PERF_TYPE_TRACEPOINT);
2445 #endif
2446 }
2447
2448 return err;
2449 }
2450
send_signal_irq_work_init(void)2451 static int __init send_signal_irq_work_init(void)
2452 {
2453 int cpu;
2454 struct send_signal_irq_work *work;
2455
2456 for_each_possible_cpu(cpu) {
2457 work = per_cpu_ptr(&send_signal_work, cpu);
2458 init_irq_work(&work->irq_work, do_bpf_send_signal);
2459 }
2460 return 0;
2461 }
2462
2463 subsys_initcall(send_signal_irq_work_init);
2464
2465 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2466 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2467 void *module)
2468 {
2469 struct bpf_trace_module *btm, *tmp;
2470 struct module *mod = module;
2471 int ret = 0;
2472
2473 if (mod->num_bpf_raw_events == 0 ||
2474 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2475 goto out;
2476
2477 mutex_lock(&bpf_module_mutex);
2478
2479 switch (op) {
2480 case MODULE_STATE_COMING:
2481 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2482 if (btm) {
2483 btm->module = module;
2484 list_add(&btm->list, &bpf_trace_modules);
2485 } else {
2486 ret = -ENOMEM;
2487 }
2488 break;
2489 case MODULE_STATE_GOING:
2490 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2491 if (btm->module == module) {
2492 list_del(&btm->list);
2493 kfree(btm);
2494 break;
2495 }
2496 }
2497 break;
2498 }
2499
2500 mutex_unlock(&bpf_module_mutex);
2501
2502 out:
2503 return notifier_from_errno(ret);
2504 }
2505
2506 static struct notifier_block bpf_module_nb = {
2507 .notifier_call = bpf_event_notify,
2508 };
2509
bpf_event_init(void)2510 static int __init bpf_event_init(void)
2511 {
2512 register_module_notifier(&bpf_module_nb);
2513 return 0;
2514 }
2515
2516 fs_initcall(bpf_event_init);
2517 #endif /* CONFIG_MODULES */
2518
2519 #ifdef CONFIG_FPROBE
2520 struct bpf_kprobe_multi_link {
2521 struct bpf_link link;
2522 struct fprobe fp;
2523 unsigned long *addrs;
2524 u64 *cookies;
2525 u32 cnt;
2526 u32 mods_cnt;
2527 struct module **mods;
2528 u32 flags;
2529 };
2530
2531 struct bpf_kprobe_multi_run_ctx {
2532 struct bpf_run_ctx run_ctx;
2533 struct bpf_kprobe_multi_link *link;
2534 unsigned long entry_ip;
2535 };
2536
2537 struct user_syms {
2538 const char **syms;
2539 char *buf;
2540 };
2541
copy_user_syms(struct user_syms * us,unsigned long __user * usyms,u32 cnt)2542 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2543 {
2544 unsigned long __user usymbol;
2545 const char **syms = NULL;
2546 char *buf = NULL, *p;
2547 int err = -ENOMEM;
2548 unsigned int i;
2549
2550 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2551 if (!syms)
2552 goto error;
2553
2554 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2555 if (!buf)
2556 goto error;
2557
2558 for (p = buf, i = 0; i < cnt; i++) {
2559 if (__get_user(usymbol, usyms + i)) {
2560 err = -EFAULT;
2561 goto error;
2562 }
2563 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2564 if (err == KSYM_NAME_LEN)
2565 err = -E2BIG;
2566 if (err < 0)
2567 goto error;
2568 syms[i] = p;
2569 p += err + 1;
2570 }
2571
2572 us->syms = syms;
2573 us->buf = buf;
2574 return 0;
2575
2576 error:
2577 if (err) {
2578 kvfree(syms);
2579 kvfree(buf);
2580 }
2581 return err;
2582 }
2583
kprobe_multi_put_modules(struct module ** mods,u32 cnt)2584 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2585 {
2586 u32 i;
2587
2588 for (i = 0; i < cnt; i++)
2589 module_put(mods[i]);
2590 }
2591
free_user_syms(struct user_syms * us)2592 static void free_user_syms(struct user_syms *us)
2593 {
2594 kvfree(us->syms);
2595 kvfree(us->buf);
2596 }
2597
bpf_kprobe_multi_link_release(struct bpf_link * link)2598 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2599 {
2600 struct bpf_kprobe_multi_link *kmulti_link;
2601
2602 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2603 unregister_fprobe(&kmulti_link->fp);
2604 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2605 }
2606
bpf_kprobe_multi_link_dealloc(struct bpf_link * link)2607 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2608 {
2609 struct bpf_kprobe_multi_link *kmulti_link;
2610
2611 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2612 kvfree(kmulti_link->addrs);
2613 kvfree(kmulti_link->cookies);
2614 kfree(kmulti_link->mods);
2615 kfree(kmulti_link);
2616 }
2617
bpf_kprobe_multi_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)2618 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2619 struct bpf_link_info *info)
2620 {
2621 u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2622 struct bpf_kprobe_multi_link *kmulti_link;
2623 u32 ucount = info->kprobe_multi.count;
2624 int err = 0, i;
2625
2626 if (!uaddrs ^ !ucount)
2627 return -EINVAL;
2628
2629 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2630 info->kprobe_multi.count = kmulti_link->cnt;
2631 info->kprobe_multi.flags = kmulti_link->flags;
2632
2633 if (!uaddrs)
2634 return 0;
2635 if (ucount < kmulti_link->cnt)
2636 err = -ENOSPC;
2637 else
2638 ucount = kmulti_link->cnt;
2639
2640 if (kallsyms_show_value(current_cred())) {
2641 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2642 return -EFAULT;
2643 } else {
2644 for (i = 0; i < ucount; i++) {
2645 if (put_user(0, uaddrs + i))
2646 return -EFAULT;
2647 }
2648 }
2649 return err;
2650 }
2651
2652 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2653 .release = bpf_kprobe_multi_link_release,
2654 .dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2655 .fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2656 };
2657
bpf_kprobe_multi_cookie_swap(void * a,void * b,int size,const void * priv)2658 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2659 {
2660 const struct bpf_kprobe_multi_link *link = priv;
2661 unsigned long *addr_a = a, *addr_b = b;
2662 u64 *cookie_a, *cookie_b;
2663
2664 cookie_a = link->cookies + (addr_a - link->addrs);
2665 cookie_b = link->cookies + (addr_b - link->addrs);
2666
2667 /* swap addr_a/addr_b and cookie_a/cookie_b values */
2668 swap(*addr_a, *addr_b);
2669 swap(*cookie_a, *cookie_b);
2670 }
2671
bpf_kprobe_multi_addrs_cmp(const void * a,const void * b)2672 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2673 {
2674 const unsigned long *addr_a = a, *addr_b = b;
2675
2676 if (*addr_a == *addr_b)
2677 return 0;
2678 return *addr_a < *addr_b ? -1 : 1;
2679 }
2680
bpf_kprobe_multi_cookie_cmp(const void * a,const void * b,const void * priv)2681 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2682 {
2683 return bpf_kprobe_multi_addrs_cmp(a, b);
2684 }
2685
bpf_kprobe_multi_cookie(struct bpf_run_ctx * ctx)2686 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2687 {
2688 struct bpf_kprobe_multi_run_ctx *run_ctx;
2689 struct bpf_kprobe_multi_link *link;
2690 u64 *cookie, entry_ip;
2691 unsigned long *addr;
2692
2693 if (WARN_ON_ONCE(!ctx))
2694 return 0;
2695 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2696 link = run_ctx->link;
2697 if (!link->cookies)
2698 return 0;
2699 entry_ip = run_ctx->entry_ip;
2700 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2701 bpf_kprobe_multi_addrs_cmp);
2702 if (!addr)
2703 return 0;
2704 cookie = link->cookies + (addr - link->addrs);
2705 return *cookie;
2706 }
2707
bpf_kprobe_multi_entry_ip(struct bpf_run_ctx * ctx)2708 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2709 {
2710 struct bpf_kprobe_multi_run_ctx *run_ctx;
2711
2712 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
2713 return run_ctx->entry_ip;
2714 }
2715
2716 static int
kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link * link,unsigned long entry_ip,struct pt_regs * regs)2717 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2718 unsigned long entry_ip, struct pt_regs *regs)
2719 {
2720 struct bpf_kprobe_multi_run_ctx run_ctx = {
2721 .link = link,
2722 .entry_ip = entry_ip,
2723 };
2724 struct bpf_run_ctx *old_run_ctx;
2725 int err;
2726
2727 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2728 err = 0;
2729 goto out;
2730 }
2731
2732 migrate_disable();
2733 rcu_read_lock();
2734 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2735 err = bpf_prog_run(link->link.prog, regs);
2736 bpf_reset_run_ctx(old_run_ctx);
2737 rcu_read_unlock();
2738 migrate_enable();
2739
2740 out:
2741 __this_cpu_dec(bpf_prog_active);
2742 return err;
2743 }
2744
2745 static int
kprobe_multi_link_handler(struct fprobe * fp,unsigned long fentry_ip,unsigned long ret_ip,struct pt_regs * regs,void * data)2746 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2747 unsigned long ret_ip, struct pt_regs *regs,
2748 void *data)
2749 {
2750 struct bpf_kprobe_multi_link *link;
2751
2752 link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2753 kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2754 return 0;
2755 }
2756
2757 static void
kprobe_multi_link_exit_handler(struct fprobe * fp,unsigned long fentry_ip,unsigned long ret_ip,struct pt_regs * regs,void * data)2758 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2759 unsigned long ret_ip, struct pt_regs *regs,
2760 void *data)
2761 {
2762 struct bpf_kprobe_multi_link *link;
2763
2764 link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2765 kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
2766 }
2767
symbols_cmp_r(const void * a,const void * b,const void * priv)2768 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2769 {
2770 const char **str_a = (const char **) a;
2771 const char **str_b = (const char **) b;
2772
2773 return strcmp(*str_a, *str_b);
2774 }
2775
2776 struct multi_symbols_sort {
2777 const char **funcs;
2778 u64 *cookies;
2779 };
2780
symbols_swap_r(void * a,void * b,int size,const void * priv)2781 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2782 {
2783 const struct multi_symbols_sort *data = priv;
2784 const char **name_a = a, **name_b = b;
2785
2786 swap(*name_a, *name_b);
2787
2788 /* If defined, swap also related cookies. */
2789 if (data->cookies) {
2790 u64 *cookie_a, *cookie_b;
2791
2792 cookie_a = data->cookies + (name_a - data->funcs);
2793 cookie_b = data->cookies + (name_b - data->funcs);
2794 swap(*cookie_a, *cookie_b);
2795 }
2796 }
2797
2798 struct modules_array {
2799 struct module **mods;
2800 int mods_cnt;
2801 int mods_cap;
2802 };
2803
add_module(struct modules_array * arr,struct module * mod)2804 static int add_module(struct modules_array *arr, struct module *mod)
2805 {
2806 struct module **mods;
2807
2808 if (arr->mods_cnt == arr->mods_cap) {
2809 arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2810 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2811 if (!mods)
2812 return -ENOMEM;
2813 arr->mods = mods;
2814 }
2815
2816 arr->mods[arr->mods_cnt] = mod;
2817 arr->mods_cnt++;
2818 return 0;
2819 }
2820
has_module(struct modules_array * arr,struct module * mod)2821 static bool has_module(struct modules_array *arr, struct module *mod)
2822 {
2823 int i;
2824
2825 for (i = arr->mods_cnt - 1; i >= 0; i--) {
2826 if (arr->mods[i] == mod)
2827 return true;
2828 }
2829 return false;
2830 }
2831
get_modules_for_addrs(struct module *** mods,unsigned long * addrs,u32 addrs_cnt)2832 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2833 {
2834 struct modules_array arr = {};
2835 u32 i, err = 0;
2836
2837 for (i = 0; i < addrs_cnt; i++) {
2838 struct module *mod;
2839
2840 preempt_disable();
2841 mod = __module_address(addrs[i]);
2842 /* Either no module or we it's already stored */
2843 if (!mod || has_module(&arr, mod)) {
2844 preempt_enable();
2845 continue;
2846 }
2847 if (!try_module_get(mod))
2848 err = -EINVAL;
2849 preempt_enable();
2850 if (err)
2851 break;
2852 err = add_module(&arr, mod);
2853 if (err) {
2854 module_put(mod);
2855 break;
2856 }
2857 }
2858
2859 /* We return either err < 0 in case of error, ... */
2860 if (err) {
2861 kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2862 kfree(arr.mods);
2863 return err;
2864 }
2865
2866 /* or number of modules found if everything is ok. */
2867 *mods = arr.mods;
2868 return arr.mods_cnt;
2869 }
2870
addrs_check_error_injection_list(unsigned long * addrs,u32 cnt)2871 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2872 {
2873 u32 i;
2874
2875 for (i = 0; i < cnt; i++) {
2876 if (!within_error_injection_list(addrs[i]))
2877 return -EINVAL;
2878 }
2879 return 0;
2880 }
2881
bpf_kprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)2882 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2883 {
2884 struct bpf_kprobe_multi_link *link = NULL;
2885 struct bpf_link_primer link_primer;
2886 void __user *ucookies;
2887 unsigned long *addrs;
2888 u32 flags, cnt, size;
2889 void __user *uaddrs;
2890 u64 *cookies = NULL;
2891 void __user *usyms;
2892 int err;
2893
2894 /* no support for 32bit archs yet */
2895 if (sizeof(u64) != sizeof(void *))
2896 return -EOPNOTSUPP;
2897
2898 if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
2899 return -EINVAL;
2900
2901 flags = attr->link_create.kprobe_multi.flags;
2902 if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2903 return -EINVAL;
2904
2905 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2906 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2907 if (!!uaddrs == !!usyms)
2908 return -EINVAL;
2909
2910 cnt = attr->link_create.kprobe_multi.cnt;
2911 if (!cnt)
2912 return -EINVAL;
2913 if (cnt > MAX_KPROBE_MULTI_CNT)
2914 return -E2BIG;
2915
2916 size = cnt * sizeof(*addrs);
2917 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2918 if (!addrs)
2919 return -ENOMEM;
2920
2921 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2922 if (ucookies) {
2923 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2924 if (!cookies) {
2925 err = -ENOMEM;
2926 goto error;
2927 }
2928 if (copy_from_user(cookies, ucookies, size)) {
2929 err = -EFAULT;
2930 goto error;
2931 }
2932 }
2933
2934 if (uaddrs) {
2935 if (copy_from_user(addrs, uaddrs, size)) {
2936 err = -EFAULT;
2937 goto error;
2938 }
2939 } else {
2940 struct multi_symbols_sort data = {
2941 .cookies = cookies,
2942 };
2943 struct user_syms us;
2944
2945 err = copy_user_syms(&us, usyms, cnt);
2946 if (err)
2947 goto error;
2948
2949 if (cookies)
2950 data.funcs = us.syms;
2951
2952 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2953 symbols_swap_r, &data);
2954
2955 err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2956 free_user_syms(&us);
2957 if (err)
2958 goto error;
2959 }
2960
2961 if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
2962 err = -EINVAL;
2963 goto error;
2964 }
2965
2966 link = kzalloc(sizeof(*link), GFP_KERNEL);
2967 if (!link) {
2968 err = -ENOMEM;
2969 goto error;
2970 }
2971
2972 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2973 &bpf_kprobe_multi_link_lops, prog);
2974
2975 err = bpf_link_prime(&link->link, &link_primer);
2976 if (err)
2977 goto error;
2978
2979 if (flags & BPF_F_KPROBE_MULTI_RETURN)
2980 link->fp.exit_handler = kprobe_multi_link_exit_handler;
2981 else
2982 link->fp.entry_handler = kprobe_multi_link_handler;
2983
2984 link->addrs = addrs;
2985 link->cookies = cookies;
2986 link->cnt = cnt;
2987 link->flags = flags;
2988
2989 if (cookies) {
2990 /*
2991 * Sorting addresses will trigger sorting cookies as well
2992 * (check bpf_kprobe_multi_cookie_swap). This way we can
2993 * find cookie based on the address in bpf_get_attach_cookie
2994 * helper.
2995 */
2996 sort_r(addrs, cnt, sizeof(*addrs),
2997 bpf_kprobe_multi_cookie_cmp,
2998 bpf_kprobe_multi_cookie_swap,
2999 link);
3000 }
3001
3002 err = get_modules_for_addrs(&link->mods, addrs, cnt);
3003 if (err < 0) {
3004 bpf_link_cleanup(&link_primer);
3005 return err;
3006 }
3007 link->mods_cnt = err;
3008
3009 err = register_fprobe_ips(&link->fp, addrs, cnt);
3010 if (err) {
3011 kprobe_multi_put_modules(link->mods, link->mods_cnt);
3012 bpf_link_cleanup(&link_primer);
3013 return err;
3014 }
3015
3016 return bpf_link_settle(&link_primer);
3017
3018 error:
3019 kfree(link);
3020 kvfree(addrs);
3021 kvfree(cookies);
3022 return err;
3023 }
3024 #else /* !CONFIG_FPROBE */
bpf_kprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3025 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3026 {
3027 return -EOPNOTSUPP;
3028 }
bpf_kprobe_multi_cookie(struct bpf_run_ctx * ctx)3029 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3030 {
3031 return 0;
3032 }
bpf_kprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3033 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3034 {
3035 return 0;
3036 }
3037 #endif
3038
3039 #ifdef CONFIG_UPROBES
3040 struct bpf_uprobe_multi_link;
3041
3042 struct bpf_uprobe {
3043 struct bpf_uprobe_multi_link *link;
3044 loff_t offset;
3045 unsigned long ref_ctr_offset;
3046 u64 cookie;
3047 struct uprobe_consumer consumer;
3048 };
3049
3050 struct bpf_uprobe_multi_link {
3051 struct path path;
3052 struct bpf_link link;
3053 u32 cnt;
3054 struct bpf_uprobe *uprobes;
3055 struct task_struct *task;
3056 };
3057
3058 struct bpf_uprobe_multi_run_ctx {
3059 struct bpf_run_ctx run_ctx;
3060 unsigned long entry_ip;
3061 struct bpf_uprobe *uprobe;
3062 };
3063
bpf_uprobe_unregister(struct path * path,struct bpf_uprobe * uprobes,u32 cnt)3064 static void bpf_uprobe_unregister(struct path *path, struct bpf_uprobe *uprobes,
3065 u32 cnt)
3066 {
3067 u32 i;
3068
3069 for (i = 0; i < cnt; i++) {
3070 uprobe_unregister(d_real_inode(path->dentry), uprobes[i].offset,
3071 &uprobes[i].consumer);
3072 }
3073 }
3074
bpf_uprobe_multi_link_release(struct bpf_link * link)3075 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3076 {
3077 struct bpf_uprobe_multi_link *umulti_link;
3078
3079 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3080 bpf_uprobe_unregister(&umulti_link->path, umulti_link->uprobes, umulti_link->cnt);
3081 if (umulti_link->task)
3082 put_task_struct(umulti_link->task);
3083 path_put(&umulti_link->path);
3084 }
3085
bpf_uprobe_multi_link_dealloc(struct bpf_link * link)3086 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3087 {
3088 struct bpf_uprobe_multi_link *umulti_link;
3089
3090 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3091 kvfree(umulti_link->uprobes);
3092 kfree(umulti_link);
3093 }
3094
3095 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3096 .release = bpf_uprobe_multi_link_release,
3097 .dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3098 };
3099
uprobe_prog_run(struct bpf_uprobe * uprobe,unsigned long entry_ip,struct pt_regs * regs)3100 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3101 unsigned long entry_ip,
3102 struct pt_regs *regs)
3103 {
3104 struct bpf_uprobe_multi_link *link = uprobe->link;
3105 struct bpf_uprobe_multi_run_ctx run_ctx = {
3106 .entry_ip = entry_ip,
3107 .uprobe = uprobe,
3108 };
3109 struct bpf_prog *prog = link->link.prog;
3110 bool sleepable = prog->aux->sleepable;
3111 struct bpf_run_ctx *old_run_ctx;
3112
3113 if (link->task && current->mm != link->task->mm)
3114 return 0;
3115
3116 if (sleepable)
3117 rcu_read_lock_trace();
3118 else
3119 rcu_read_lock();
3120
3121 migrate_disable();
3122
3123 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
3124 bpf_prog_run(link->link.prog, regs);
3125 bpf_reset_run_ctx(old_run_ctx);
3126
3127 migrate_enable();
3128
3129 if (sleepable)
3130 rcu_read_unlock_trace();
3131 else
3132 rcu_read_unlock();
3133 return 0;
3134 }
3135
3136 static bool
uprobe_multi_link_filter(struct uprobe_consumer * con,enum uprobe_filter_ctx ctx,struct mm_struct * mm)3137 uprobe_multi_link_filter(struct uprobe_consumer *con, enum uprobe_filter_ctx ctx,
3138 struct mm_struct *mm)
3139 {
3140 struct bpf_uprobe *uprobe;
3141
3142 uprobe = container_of(con, struct bpf_uprobe, consumer);
3143 return uprobe->link->task->mm == mm;
3144 }
3145
3146 static int
uprobe_multi_link_handler(struct uprobe_consumer * con,struct pt_regs * regs)3147 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs)
3148 {
3149 struct bpf_uprobe *uprobe;
3150
3151 uprobe = container_of(con, struct bpf_uprobe, consumer);
3152 return uprobe_prog_run(uprobe, instruction_pointer(regs), regs);
3153 }
3154
3155 static int
uprobe_multi_link_ret_handler(struct uprobe_consumer * con,unsigned long func,struct pt_regs * regs)3156 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs)
3157 {
3158 struct bpf_uprobe *uprobe;
3159
3160 uprobe = container_of(con, struct bpf_uprobe, consumer);
3161 return uprobe_prog_run(uprobe, func, regs);
3162 }
3163
bpf_uprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3164 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3165 {
3166 struct bpf_uprobe_multi_run_ctx *run_ctx;
3167
3168 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3169 return run_ctx->entry_ip;
3170 }
3171
bpf_uprobe_multi_cookie(struct bpf_run_ctx * ctx)3172 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3173 {
3174 struct bpf_uprobe_multi_run_ctx *run_ctx;
3175
3176 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3177 return run_ctx->uprobe->cookie;
3178 }
3179
bpf_uprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3180 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3181 {
3182 struct bpf_uprobe_multi_link *link = NULL;
3183 unsigned long __user *uref_ctr_offsets;
3184 struct bpf_link_primer link_primer;
3185 struct bpf_uprobe *uprobes = NULL;
3186 struct task_struct *task = NULL;
3187 unsigned long __user *uoffsets;
3188 u64 __user *ucookies;
3189 void __user *upath;
3190 u32 flags, cnt, i;
3191 struct path path;
3192 char *name;
3193 pid_t pid;
3194 int err;
3195
3196 /* no support for 32bit archs yet */
3197 if (sizeof(u64) != sizeof(void *))
3198 return -EOPNOTSUPP;
3199
3200 if (prog->expected_attach_type != BPF_TRACE_UPROBE_MULTI)
3201 return -EINVAL;
3202
3203 flags = attr->link_create.uprobe_multi.flags;
3204 if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3205 return -EINVAL;
3206
3207 /*
3208 * path, offsets and cnt are mandatory,
3209 * ref_ctr_offsets and cookies are optional
3210 */
3211 upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3212 uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3213 cnt = attr->link_create.uprobe_multi.cnt;
3214 pid = attr->link_create.uprobe_multi.pid;
3215
3216 if (!upath || !uoffsets || !cnt || pid < 0)
3217 return -EINVAL;
3218 if (cnt > MAX_UPROBE_MULTI_CNT)
3219 return -E2BIG;
3220
3221 uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3222 ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3223
3224 name = strndup_user(upath, PATH_MAX);
3225 if (IS_ERR(name)) {
3226 err = PTR_ERR(name);
3227 return err;
3228 }
3229
3230 err = kern_path(name, LOOKUP_FOLLOW, &path);
3231 kfree(name);
3232 if (err)
3233 return err;
3234
3235 if (!d_is_reg(path.dentry)) {
3236 err = -EBADF;
3237 goto error_path_put;
3238 }
3239
3240 if (pid) {
3241 rcu_read_lock();
3242 task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3243 rcu_read_unlock();
3244 if (!task) {
3245 err = -ESRCH;
3246 goto error_path_put;
3247 }
3248 }
3249
3250 err = -ENOMEM;
3251
3252 link = kzalloc(sizeof(*link), GFP_KERNEL);
3253 uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3254
3255 if (!uprobes || !link)
3256 goto error_free;
3257
3258 for (i = 0; i < cnt; i++) {
3259 if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3260 err = -EFAULT;
3261 goto error_free;
3262 }
3263 if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3264 err = -EFAULT;
3265 goto error_free;
3266 }
3267 if (__get_user(uprobes[i].offset, uoffsets + i)) {
3268 err = -EFAULT;
3269 goto error_free;
3270 }
3271
3272 uprobes[i].link = link;
3273
3274 if (flags & BPF_F_UPROBE_MULTI_RETURN)
3275 uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3276 else
3277 uprobes[i].consumer.handler = uprobe_multi_link_handler;
3278
3279 if (pid)
3280 uprobes[i].consumer.filter = uprobe_multi_link_filter;
3281 }
3282
3283 link->cnt = cnt;
3284 link->uprobes = uprobes;
3285 link->path = path;
3286 link->task = task;
3287
3288 bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3289 &bpf_uprobe_multi_link_lops, prog);
3290
3291 for (i = 0; i < cnt; i++) {
3292 err = uprobe_register_refctr(d_real_inode(link->path.dentry),
3293 uprobes[i].offset,
3294 uprobes[i].ref_ctr_offset,
3295 &uprobes[i].consumer);
3296 if (err) {
3297 link->cnt = i;
3298 goto error_unregister;
3299 }
3300 }
3301
3302 err = bpf_link_prime(&link->link, &link_primer);
3303 if (err)
3304 goto error_unregister;
3305
3306 return bpf_link_settle(&link_primer);
3307
3308 error_unregister:
3309 bpf_uprobe_unregister(&path, uprobes, link->cnt);
3310
3311 error_free:
3312 kvfree(uprobes);
3313 kfree(link);
3314 if (task)
3315 put_task_struct(task);
3316 error_path_put:
3317 path_put(&path);
3318 return err;
3319 }
3320 #else /* !CONFIG_UPROBES */
bpf_uprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3321 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3322 {
3323 return -EOPNOTSUPP;
3324 }
bpf_uprobe_multi_cookie(struct bpf_run_ctx * ctx)3325 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3326 {
3327 return 0;
3328 }
bpf_uprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3329 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3330 {
3331 return 0;
3332 }
3333 #endif /* CONFIG_UPROBES */
3334