xref: /openbmc/linux/kernel/time/timer.c (revision bb663f0f3c396c6d05f6c5eeeea96ced20ff112e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 #include <linux/sysctl.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/div64.h>
52 #include <asm/timex.h>
53 #include <asm/io.h>
54 
55 #include "tick-internal.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/timer.h>
59 
60 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
61 
62 EXPORT_SYMBOL(jiffies_64);
63 
64 /*
65  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
66  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
67  * level has a different granularity.
68  *
69  * The level granularity is:		LVL_CLK_DIV ^ lvl
70  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
71  *
72  * The array level of a newly armed timer depends on the relative expiry
73  * time. The farther the expiry time is away the higher the array level and
74  * therefor the granularity becomes.
75  *
76  * Contrary to the original timer wheel implementation, which aims for 'exact'
77  * expiry of the timers, this implementation removes the need for recascading
78  * the timers into the lower array levels. The previous 'classic' timer wheel
79  * implementation of the kernel already violated the 'exact' expiry by adding
80  * slack to the expiry time to provide batched expiration. The granularity
81  * levels provide implicit batching.
82  *
83  * This is an optimization of the original timer wheel implementation for the
84  * majority of the timer wheel use cases: timeouts. The vast majority of
85  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
86  * the timeout expires it indicates that normal operation is disturbed, so it
87  * does not matter much whether the timeout comes with a slight delay.
88  *
89  * The only exception to this are networking timers with a small expiry
90  * time. They rely on the granularity. Those fit into the first wheel level,
91  * which has HZ granularity.
92  *
93  * We don't have cascading anymore. timers with a expiry time above the
94  * capacity of the last wheel level are force expired at the maximum timeout
95  * value of the last wheel level. From data sampling we know that the maximum
96  * value observed is 5 days (network connection tracking), so this should not
97  * be an issue.
98  *
99  * The currently chosen array constants values are a good compromise between
100  * array size and granularity.
101  *
102  * This results in the following granularity and range levels:
103  *
104  * HZ 1000 steps
105  * Level Offset  Granularity            Range
106  *  0      0         1 ms                0 ms -         63 ms
107  *  1     64         8 ms               64 ms -        511 ms
108  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
109  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
110  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
111  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
112  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
113  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
114  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
115  *
116  * HZ  300
117  * Level Offset  Granularity            Range
118  *  0	   0         3 ms                0 ms -        210 ms
119  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
120  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
121  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
122  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
123  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
124  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
125  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
126  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
127  *
128  * HZ  250
129  * Level Offset  Granularity            Range
130  *  0	   0         4 ms                0 ms -        255 ms
131  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
132  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
133  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
134  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
135  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
136  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
137  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
138  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
139  *
140  * HZ  100
141  * Level Offset  Granularity            Range
142  *  0	   0         10 ms               0 ms -        630 ms
143  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
144  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
145  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
146  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
147  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
148  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
149  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
150  */
151 
152 /* Clock divisor for the next level */
153 #define LVL_CLK_SHIFT	3
154 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
155 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
156 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
157 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
158 
159 /*
160  * The time start value for each level to select the bucket at enqueue
161  * time. We start from the last possible delta of the previous level
162  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
163  */
164 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
165 
166 /* Size of each clock level */
167 #define LVL_BITS	6
168 #define LVL_SIZE	(1UL << LVL_BITS)
169 #define LVL_MASK	(LVL_SIZE - 1)
170 #define LVL_OFFS(n)	((n) * LVL_SIZE)
171 
172 /* Level depth */
173 #if HZ > 100
174 # define LVL_DEPTH	9
175 # else
176 # define LVL_DEPTH	8
177 #endif
178 
179 /* The cutoff (max. capacity of the wheel) */
180 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
181 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
182 
183 /*
184  * The resulting wheel size. If NOHZ is configured we allocate two
185  * wheels so we have a separate storage for the deferrable timers.
186  */
187 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
188 
189 #ifdef CONFIG_NO_HZ_COMMON
190 # define NR_BASES	2
191 # define BASE_STD	0
192 # define BASE_DEF	1
193 #else
194 # define NR_BASES	1
195 # define BASE_STD	0
196 # define BASE_DEF	0
197 #endif
198 
199 struct timer_base {
200 	raw_spinlock_t		lock;
201 	struct timer_list	*running_timer;
202 #ifdef CONFIG_PREEMPT_RT
203 	spinlock_t		expiry_lock;
204 	atomic_t		timer_waiters;
205 #endif
206 	unsigned long		clk;
207 	unsigned long		next_expiry;
208 	unsigned int		cpu;
209 	bool			next_expiry_recalc;
210 	bool			is_idle;
211 	bool			timers_pending;
212 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
213 	struct hlist_head	vectors[WHEEL_SIZE];
214 } ____cacheline_aligned;
215 
216 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
217 
218 #ifdef CONFIG_NO_HZ_COMMON
219 
220 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
221 static DEFINE_MUTEX(timer_keys_mutex);
222 
223 static void timer_update_keys(struct work_struct *work);
224 static DECLARE_WORK(timer_update_work, timer_update_keys);
225 
226 #ifdef CONFIG_SMP
227 static unsigned int sysctl_timer_migration = 1;
228 
229 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
230 
231 static void timers_update_migration(void)
232 {
233 	if (sysctl_timer_migration && tick_nohz_active)
234 		static_branch_enable(&timers_migration_enabled);
235 	else
236 		static_branch_disable(&timers_migration_enabled);
237 }
238 
239 #ifdef CONFIG_SYSCTL
240 static int timer_migration_handler(struct ctl_table *table, int write,
241 			    void *buffer, size_t *lenp, loff_t *ppos)
242 {
243 	int ret;
244 
245 	mutex_lock(&timer_keys_mutex);
246 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
247 	if (!ret && write)
248 		timers_update_migration();
249 	mutex_unlock(&timer_keys_mutex);
250 	return ret;
251 }
252 
253 static struct ctl_table timer_sysctl[] = {
254 	{
255 		.procname	= "timer_migration",
256 		.data		= &sysctl_timer_migration,
257 		.maxlen		= sizeof(unsigned int),
258 		.mode		= 0644,
259 		.proc_handler	= timer_migration_handler,
260 		.extra1		= SYSCTL_ZERO,
261 		.extra2		= SYSCTL_ONE,
262 	},
263 	{}
264 };
265 
266 static int __init timer_sysctl_init(void)
267 {
268 	register_sysctl("kernel", timer_sysctl);
269 	return 0;
270 }
271 device_initcall(timer_sysctl_init);
272 #endif /* CONFIG_SYSCTL */
273 #else /* CONFIG_SMP */
274 static inline void timers_update_migration(void) { }
275 #endif /* !CONFIG_SMP */
276 
277 static void timer_update_keys(struct work_struct *work)
278 {
279 	mutex_lock(&timer_keys_mutex);
280 	timers_update_migration();
281 	static_branch_enable(&timers_nohz_active);
282 	mutex_unlock(&timer_keys_mutex);
283 }
284 
285 void timers_update_nohz(void)
286 {
287 	schedule_work(&timer_update_work);
288 }
289 
290 static inline bool is_timers_nohz_active(void)
291 {
292 	return static_branch_unlikely(&timers_nohz_active);
293 }
294 #else
295 static inline bool is_timers_nohz_active(void) { return false; }
296 #endif /* NO_HZ_COMMON */
297 
298 static unsigned long round_jiffies_common(unsigned long j, int cpu,
299 		bool force_up)
300 {
301 	int rem;
302 	unsigned long original = j;
303 
304 	/*
305 	 * We don't want all cpus firing their timers at once hitting the
306 	 * same lock or cachelines, so we skew each extra cpu with an extra
307 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
308 	 * already did this.
309 	 * The skew is done by adding 3*cpunr, then round, then subtract this
310 	 * extra offset again.
311 	 */
312 	j += cpu * 3;
313 
314 	rem = j % HZ;
315 
316 	/*
317 	 * If the target jiffie is just after a whole second (which can happen
318 	 * due to delays of the timer irq, long irq off times etc etc) then
319 	 * we should round down to the whole second, not up. Use 1/4th second
320 	 * as cutoff for this rounding as an extreme upper bound for this.
321 	 * But never round down if @force_up is set.
322 	 */
323 	if (rem < HZ/4 && !force_up) /* round down */
324 		j = j - rem;
325 	else /* round up */
326 		j = j - rem + HZ;
327 
328 	/* now that we have rounded, subtract the extra skew again */
329 	j -= cpu * 3;
330 
331 	/*
332 	 * Make sure j is still in the future. Otherwise return the
333 	 * unmodified value.
334 	 */
335 	return time_is_after_jiffies(j) ? j : original;
336 }
337 
338 /**
339  * __round_jiffies - function to round jiffies to a full second
340  * @j: the time in (absolute) jiffies that should be rounded
341  * @cpu: the processor number on which the timeout will happen
342  *
343  * __round_jiffies() rounds an absolute time in the future (in jiffies)
344  * up or down to (approximately) full seconds. This is useful for timers
345  * for which the exact time they fire does not matter too much, as long as
346  * they fire approximately every X seconds.
347  *
348  * By rounding these timers to whole seconds, all such timers will fire
349  * at the same time, rather than at various times spread out. The goal
350  * of this is to have the CPU wake up less, which saves power.
351  *
352  * The exact rounding is skewed for each processor to avoid all
353  * processors firing at the exact same time, which could lead
354  * to lock contention or spurious cache line bouncing.
355  *
356  * The return value is the rounded version of the @j parameter.
357  */
358 unsigned long __round_jiffies(unsigned long j, int cpu)
359 {
360 	return round_jiffies_common(j, cpu, false);
361 }
362 EXPORT_SYMBOL_GPL(__round_jiffies);
363 
364 /**
365  * __round_jiffies_relative - function to round jiffies to a full second
366  * @j: the time in (relative) jiffies that should be rounded
367  * @cpu: the processor number on which the timeout will happen
368  *
369  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
370  * up or down to (approximately) full seconds. This is useful for timers
371  * for which the exact time they fire does not matter too much, as long as
372  * they fire approximately every X seconds.
373  *
374  * By rounding these timers to whole seconds, all such timers will fire
375  * at the same time, rather than at various times spread out. The goal
376  * of this is to have the CPU wake up less, which saves power.
377  *
378  * The exact rounding is skewed for each processor to avoid all
379  * processors firing at the exact same time, which could lead
380  * to lock contention or spurious cache line bouncing.
381  *
382  * The return value is the rounded version of the @j parameter.
383  */
384 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
385 {
386 	unsigned long j0 = jiffies;
387 
388 	/* Use j0 because jiffies might change while we run */
389 	return round_jiffies_common(j + j0, cpu, false) - j0;
390 }
391 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
392 
393 /**
394  * round_jiffies - function to round jiffies to a full second
395  * @j: the time in (absolute) jiffies that should be rounded
396  *
397  * round_jiffies() rounds an absolute time in the future (in jiffies)
398  * up or down to (approximately) full seconds. This is useful for timers
399  * for which the exact time they fire does not matter too much, as long as
400  * they fire approximately every X seconds.
401  *
402  * By rounding these timers to whole seconds, all such timers will fire
403  * at the same time, rather than at various times spread out. The goal
404  * of this is to have the CPU wake up less, which saves power.
405  *
406  * The return value is the rounded version of the @j parameter.
407  */
408 unsigned long round_jiffies(unsigned long j)
409 {
410 	return round_jiffies_common(j, raw_smp_processor_id(), false);
411 }
412 EXPORT_SYMBOL_GPL(round_jiffies);
413 
414 /**
415  * round_jiffies_relative - function to round jiffies to a full second
416  * @j: the time in (relative) jiffies that should be rounded
417  *
418  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
419  * up or down to (approximately) full seconds. This is useful for timers
420  * for which the exact time they fire does not matter too much, as long as
421  * they fire approximately every X seconds.
422  *
423  * By rounding these timers to whole seconds, all such timers will fire
424  * at the same time, rather than at various times spread out. The goal
425  * of this is to have the CPU wake up less, which saves power.
426  *
427  * The return value is the rounded version of the @j parameter.
428  */
429 unsigned long round_jiffies_relative(unsigned long j)
430 {
431 	return __round_jiffies_relative(j, raw_smp_processor_id());
432 }
433 EXPORT_SYMBOL_GPL(round_jiffies_relative);
434 
435 /**
436  * __round_jiffies_up - function to round jiffies up to a full second
437  * @j: the time in (absolute) jiffies that should be rounded
438  * @cpu: the processor number on which the timeout will happen
439  *
440  * This is the same as __round_jiffies() except that it will never
441  * round down.  This is useful for timeouts for which the exact time
442  * of firing does not matter too much, as long as they don't fire too
443  * early.
444  */
445 unsigned long __round_jiffies_up(unsigned long j, int cpu)
446 {
447 	return round_jiffies_common(j, cpu, true);
448 }
449 EXPORT_SYMBOL_GPL(__round_jiffies_up);
450 
451 /**
452  * __round_jiffies_up_relative - function to round jiffies up to a full second
453  * @j: the time in (relative) jiffies that should be rounded
454  * @cpu: the processor number on which the timeout will happen
455  *
456  * This is the same as __round_jiffies_relative() except that it will never
457  * round down.  This is useful for timeouts for which the exact time
458  * of firing does not matter too much, as long as they don't fire too
459  * early.
460  */
461 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
462 {
463 	unsigned long j0 = jiffies;
464 
465 	/* Use j0 because jiffies might change while we run */
466 	return round_jiffies_common(j + j0, cpu, true) - j0;
467 }
468 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
469 
470 /**
471  * round_jiffies_up - function to round jiffies up to a full second
472  * @j: the time in (absolute) jiffies that should be rounded
473  *
474  * This is the same as round_jiffies() except that it will never
475  * round down.  This is useful for timeouts for which the exact time
476  * of firing does not matter too much, as long as they don't fire too
477  * early.
478  */
479 unsigned long round_jiffies_up(unsigned long j)
480 {
481 	return round_jiffies_common(j, raw_smp_processor_id(), true);
482 }
483 EXPORT_SYMBOL_GPL(round_jiffies_up);
484 
485 /**
486  * round_jiffies_up_relative - function to round jiffies up to a full second
487  * @j: the time in (relative) jiffies that should be rounded
488  *
489  * This is the same as round_jiffies_relative() except that it will never
490  * round down.  This is useful for timeouts for which the exact time
491  * of firing does not matter too much, as long as they don't fire too
492  * early.
493  */
494 unsigned long round_jiffies_up_relative(unsigned long j)
495 {
496 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
497 }
498 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
499 
500 
501 static inline unsigned int timer_get_idx(struct timer_list *timer)
502 {
503 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
504 }
505 
506 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
507 {
508 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
509 			idx << TIMER_ARRAYSHIFT;
510 }
511 
512 /*
513  * Helper function to calculate the array index for a given expiry
514  * time.
515  */
516 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
517 				  unsigned long *bucket_expiry)
518 {
519 
520 	/*
521 	 * The timer wheel has to guarantee that a timer does not fire
522 	 * early. Early expiry can happen due to:
523 	 * - Timer is armed at the edge of a tick
524 	 * - Truncation of the expiry time in the outer wheel levels
525 	 *
526 	 * Round up with level granularity to prevent this.
527 	 */
528 	expires = (expires >> LVL_SHIFT(lvl)) + 1;
529 	*bucket_expiry = expires << LVL_SHIFT(lvl);
530 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
531 }
532 
533 static int calc_wheel_index(unsigned long expires, unsigned long clk,
534 			    unsigned long *bucket_expiry)
535 {
536 	unsigned long delta = expires - clk;
537 	unsigned int idx;
538 
539 	if (delta < LVL_START(1)) {
540 		idx = calc_index(expires, 0, bucket_expiry);
541 	} else if (delta < LVL_START(2)) {
542 		idx = calc_index(expires, 1, bucket_expiry);
543 	} else if (delta < LVL_START(3)) {
544 		idx = calc_index(expires, 2, bucket_expiry);
545 	} else if (delta < LVL_START(4)) {
546 		idx = calc_index(expires, 3, bucket_expiry);
547 	} else if (delta < LVL_START(5)) {
548 		idx = calc_index(expires, 4, bucket_expiry);
549 	} else if (delta < LVL_START(6)) {
550 		idx = calc_index(expires, 5, bucket_expiry);
551 	} else if (delta < LVL_START(7)) {
552 		idx = calc_index(expires, 6, bucket_expiry);
553 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
554 		idx = calc_index(expires, 7, bucket_expiry);
555 	} else if ((long) delta < 0) {
556 		idx = clk & LVL_MASK;
557 		*bucket_expiry = clk;
558 	} else {
559 		/*
560 		 * Force expire obscene large timeouts to expire at the
561 		 * capacity limit of the wheel.
562 		 */
563 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
564 			expires = clk + WHEEL_TIMEOUT_MAX;
565 
566 		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
567 	}
568 	return idx;
569 }
570 
571 static void
572 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
573 {
574 	if (!is_timers_nohz_active())
575 		return;
576 
577 	/*
578 	 * TODO: This wants some optimizing similar to the code below, but we
579 	 * will do that when we switch from push to pull for deferrable timers.
580 	 */
581 	if (timer->flags & TIMER_DEFERRABLE) {
582 		if (tick_nohz_full_cpu(base->cpu))
583 			wake_up_nohz_cpu(base->cpu);
584 		return;
585 	}
586 
587 	/*
588 	 * We might have to IPI the remote CPU if the base is idle and the
589 	 * timer is not deferrable. If the other CPU is on the way to idle
590 	 * then it can't set base->is_idle as we hold the base lock:
591 	 */
592 	if (base->is_idle)
593 		wake_up_nohz_cpu(base->cpu);
594 }
595 
596 /*
597  * Enqueue the timer into the hash bucket, mark it pending in
598  * the bitmap, store the index in the timer flags then wake up
599  * the target CPU if needed.
600  */
601 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
602 			  unsigned int idx, unsigned long bucket_expiry)
603 {
604 
605 	hlist_add_head(&timer->entry, base->vectors + idx);
606 	__set_bit(idx, base->pending_map);
607 	timer_set_idx(timer, idx);
608 
609 	trace_timer_start(timer, timer->expires, timer->flags);
610 
611 	/*
612 	 * Check whether this is the new first expiring timer. The
613 	 * effective expiry time of the timer is required here
614 	 * (bucket_expiry) instead of timer->expires.
615 	 */
616 	if (time_before(bucket_expiry, base->next_expiry)) {
617 		/*
618 		 * Set the next expiry time and kick the CPU so it
619 		 * can reevaluate the wheel:
620 		 */
621 		base->next_expiry = bucket_expiry;
622 		base->timers_pending = true;
623 		base->next_expiry_recalc = false;
624 		trigger_dyntick_cpu(base, timer);
625 	}
626 }
627 
628 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
629 {
630 	unsigned long bucket_expiry;
631 	unsigned int idx;
632 
633 	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
634 	enqueue_timer(base, timer, idx, bucket_expiry);
635 }
636 
637 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
638 
639 static const struct debug_obj_descr timer_debug_descr;
640 
641 struct timer_hint {
642 	void	(*function)(struct timer_list *t);
643 	long	offset;
644 };
645 
646 #define TIMER_HINT(fn, container, timr, hintfn)			\
647 	{							\
648 		.function = fn,					\
649 		.offset	  = offsetof(container, hintfn) -	\
650 			    offsetof(container, timr)		\
651 	}
652 
653 static const struct timer_hint timer_hints[] = {
654 	TIMER_HINT(delayed_work_timer_fn,
655 		   struct delayed_work, timer, work.func),
656 	TIMER_HINT(kthread_delayed_work_timer_fn,
657 		   struct kthread_delayed_work, timer, work.func),
658 };
659 
660 static void *timer_debug_hint(void *addr)
661 {
662 	struct timer_list *timer = addr;
663 	int i;
664 
665 	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
666 		if (timer_hints[i].function == timer->function) {
667 			void (**fn)(void) = addr + timer_hints[i].offset;
668 
669 			return *fn;
670 		}
671 	}
672 
673 	return timer->function;
674 }
675 
676 static bool timer_is_static_object(void *addr)
677 {
678 	struct timer_list *timer = addr;
679 
680 	return (timer->entry.pprev == NULL &&
681 		timer->entry.next == TIMER_ENTRY_STATIC);
682 }
683 
684 /*
685  * fixup_init is called when:
686  * - an active object is initialized
687  */
688 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
689 {
690 	struct timer_list *timer = addr;
691 
692 	switch (state) {
693 	case ODEBUG_STATE_ACTIVE:
694 		del_timer_sync(timer);
695 		debug_object_init(timer, &timer_debug_descr);
696 		return true;
697 	default:
698 		return false;
699 	}
700 }
701 
702 /* Stub timer callback for improperly used timers. */
703 static void stub_timer(struct timer_list *unused)
704 {
705 	WARN_ON(1);
706 }
707 
708 /*
709  * fixup_activate is called when:
710  * - an active object is activated
711  * - an unknown non-static object is activated
712  */
713 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
714 {
715 	struct timer_list *timer = addr;
716 
717 	switch (state) {
718 	case ODEBUG_STATE_NOTAVAILABLE:
719 		timer_setup(timer, stub_timer, 0);
720 		return true;
721 
722 	case ODEBUG_STATE_ACTIVE:
723 		WARN_ON(1);
724 		fallthrough;
725 	default:
726 		return false;
727 	}
728 }
729 
730 /*
731  * fixup_free is called when:
732  * - an active object is freed
733  */
734 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
735 {
736 	struct timer_list *timer = addr;
737 
738 	switch (state) {
739 	case ODEBUG_STATE_ACTIVE:
740 		del_timer_sync(timer);
741 		debug_object_free(timer, &timer_debug_descr);
742 		return true;
743 	default:
744 		return false;
745 	}
746 }
747 
748 /*
749  * fixup_assert_init is called when:
750  * - an untracked/uninit-ed object is found
751  */
752 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
753 {
754 	struct timer_list *timer = addr;
755 
756 	switch (state) {
757 	case ODEBUG_STATE_NOTAVAILABLE:
758 		timer_setup(timer, stub_timer, 0);
759 		return true;
760 	default:
761 		return false;
762 	}
763 }
764 
765 static const struct debug_obj_descr timer_debug_descr = {
766 	.name			= "timer_list",
767 	.debug_hint		= timer_debug_hint,
768 	.is_static_object	= timer_is_static_object,
769 	.fixup_init		= timer_fixup_init,
770 	.fixup_activate		= timer_fixup_activate,
771 	.fixup_free		= timer_fixup_free,
772 	.fixup_assert_init	= timer_fixup_assert_init,
773 };
774 
775 static inline void debug_timer_init(struct timer_list *timer)
776 {
777 	debug_object_init(timer, &timer_debug_descr);
778 }
779 
780 static inline void debug_timer_activate(struct timer_list *timer)
781 {
782 	debug_object_activate(timer, &timer_debug_descr);
783 }
784 
785 static inline void debug_timer_deactivate(struct timer_list *timer)
786 {
787 	debug_object_deactivate(timer, &timer_debug_descr);
788 }
789 
790 static inline void debug_timer_assert_init(struct timer_list *timer)
791 {
792 	debug_object_assert_init(timer, &timer_debug_descr);
793 }
794 
795 static void do_init_timer(struct timer_list *timer,
796 			  void (*func)(struct timer_list *),
797 			  unsigned int flags,
798 			  const char *name, struct lock_class_key *key);
799 
800 void init_timer_on_stack_key(struct timer_list *timer,
801 			     void (*func)(struct timer_list *),
802 			     unsigned int flags,
803 			     const char *name, struct lock_class_key *key)
804 {
805 	debug_object_init_on_stack(timer, &timer_debug_descr);
806 	do_init_timer(timer, func, flags, name, key);
807 }
808 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
809 
810 void destroy_timer_on_stack(struct timer_list *timer)
811 {
812 	debug_object_free(timer, &timer_debug_descr);
813 }
814 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
815 
816 #else
817 static inline void debug_timer_init(struct timer_list *timer) { }
818 static inline void debug_timer_activate(struct timer_list *timer) { }
819 static inline void debug_timer_deactivate(struct timer_list *timer) { }
820 static inline void debug_timer_assert_init(struct timer_list *timer) { }
821 #endif
822 
823 static inline void debug_init(struct timer_list *timer)
824 {
825 	debug_timer_init(timer);
826 	trace_timer_init(timer);
827 }
828 
829 static inline void debug_deactivate(struct timer_list *timer)
830 {
831 	debug_timer_deactivate(timer);
832 	trace_timer_cancel(timer);
833 }
834 
835 static inline void debug_assert_init(struct timer_list *timer)
836 {
837 	debug_timer_assert_init(timer);
838 }
839 
840 static void do_init_timer(struct timer_list *timer,
841 			  void (*func)(struct timer_list *),
842 			  unsigned int flags,
843 			  const char *name, struct lock_class_key *key)
844 {
845 	timer->entry.pprev = NULL;
846 	timer->function = func;
847 	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
848 		flags &= TIMER_INIT_FLAGS;
849 	timer->flags = flags | raw_smp_processor_id();
850 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
851 }
852 
853 /**
854  * init_timer_key - initialize a timer
855  * @timer: the timer to be initialized
856  * @func: timer callback function
857  * @flags: timer flags
858  * @name: name of the timer
859  * @key: lockdep class key of the fake lock used for tracking timer
860  *       sync lock dependencies
861  *
862  * init_timer_key() must be done to a timer prior calling *any* of the
863  * other timer functions.
864  */
865 void init_timer_key(struct timer_list *timer,
866 		    void (*func)(struct timer_list *), unsigned int flags,
867 		    const char *name, struct lock_class_key *key)
868 {
869 	debug_init(timer);
870 	do_init_timer(timer, func, flags, name, key);
871 }
872 EXPORT_SYMBOL(init_timer_key);
873 
874 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
875 {
876 	struct hlist_node *entry = &timer->entry;
877 
878 	debug_deactivate(timer);
879 
880 	__hlist_del(entry);
881 	if (clear_pending)
882 		entry->pprev = NULL;
883 	entry->next = LIST_POISON2;
884 }
885 
886 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
887 			     bool clear_pending)
888 {
889 	unsigned idx = timer_get_idx(timer);
890 
891 	if (!timer_pending(timer))
892 		return 0;
893 
894 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
895 		__clear_bit(idx, base->pending_map);
896 		base->next_expiry_recalc = true;
897 	}
898 
899 	detach_timer(timer, clear_pending);
900 	return 1;
901 }
902 
903 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
904 {
905 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
906 
907 	/*
908 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
909 	 * to use the deferrable base.
910 	 */
911 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
912 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
913 	return base;
914 }
915 
916 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
917 {
918 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
919 
920 	/*
921 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
922 	 * to use the deferrable base.
923 	 */
924 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
925 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
926 	return base;
927 }
928 
929 static inline struct timer_base *get_timer_base(u32 tflags)
930 {
931 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
932 }
933 
934 static inline struct timer_base *
935 get_target_base(struct timer_base *base, unsigned tflags)
936 {
937 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
938 	if (static_branch_likely(&timers_migration_enabled) &&
939 	    !(tflags & TIMER_PINNED))
940 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
941 #endif
942 	return get_timer_this_cpu_base(tflags);
943 }
944 
945 static inline void forward_timer_base(struct timer_base *base)
946 {
947 	unsigned long jnow = READ_ONCE(jiffies);
948 
949 	/*
950 	 * No need to forward if we are close enough below jiffies.
951 	 * Also while executing timers, base->clk is 1 offset ahead
952 	 * of jiffies to avoid endless requeuing to current jiffies.
953 	 */
954 	if ((long)(jnow - base->clk) < 1)
955 		return;
956 
957 	/*
958 	 * If the next expiry value is > jiffies, then we fast forward to
959 	 * jiffies otherwise we forward to the next expiry value.
960 	 */
961 	if (time_after(base->next_expiry, jnow)) {
962 		base->clk = jnow;
963 	} else {
964 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
965 			return;
966 		base->clk = base->next_expiry;
967 	}
968 }
969 
970 
971 /*
972  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
973  * that all timers which are tied to this base are locked, and the base itself
974  * is locked too.
975  *
976  * So __run_timers/migrate_timers can safely modify all timers which could
977  * be found in the base->vectors array.
978  *
979  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
980  * to wait until the migration is done.
981  */
982 static struct timer_base *lock_timer_base(struct timer_list *timer,
983 					  unsigned long *flags)
984 	__acquires(timer->base->lock)
985 {
986 	for (;;) {
987 		struct timer_base *base;
988 		u32 tf;
989 
990 		/*
991 		 * We need to use READ_ONCE() here, otherwise the compiler
992 		 * might re-read @tf between the check for TIMER_MIGRATING
993 		 * and spin_lock().
994 		 */
995 		tf = READ_ONCE(timer->flags);
996 
997 		if (!(tf & TIMER_MIGRATING)) {
998 			base = get_timer_base(tf);
999 			raw_spin_lock_irqsave(&base->lock, *flags);
1000 			if (timer->flags == tf)
1001 				return base;
1002 			raw_spin_unlock_irqrestore(&base->lock, *flags);
1003 		}
1004 		cpu_relax();
1005 	}
1006 }
1007 
1008 #define MOD_TIMER_PENDING_ONLY		0x01
1009 #define MOD_TIMER_REDUCE		0x02
1010 #define MOD_TIMER_NOTPENDING		0x04
1011 
1012 static inline int
1013 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1014 {
1015 	unsigned long clk = 0, flags, bucket_expiry;
1016 	struct timer_base *base, *new_base;
1017 	unsigned int idx = UINT_MAX;
1018 	int ret = 0;
1019 
1020 	BUG_ON(!timer->function);
1021 
1022 	/*
1023 	 * This is a common optimization triggered by the networking code - if
1024 	 * the timer is re-modified to have the same timeout or ends up in the
1025 	 * same array bucket then just return:
1026 	 */
1027 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1028 		/*
1029 		 * The downside of this optimization is that it can result in
1030 		 * larger granularity than you would get from adding a new
1031 		 * timer with this expiry.
1032 		 */
1033 		long diff = timer->expires - expires;
1034 
1035 		if (!diff)
1036 			return 1;
1037 		if (options & MOD_TIMER_REDUCE && diff <= 0)
1038 			return 1;
1039 
1040 		/*
1041 		 * We lock timer base and calculate the bucket index right
1042 		 * here. If the timer ends up in the same bucket, then we
1043 		 * just update the expiry time and avoid the whole
1044 		 * dequeue/enqueue dance.
1045 		 */
1046 		base = lock_timer_base(timer, &flags);
1047 		forward_timer_base(base);
1048 
1049 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1050 		    time_before_eq(timer->expires, expires)) {
1051 			ret = 1;
1052 			goto out_unlock;
1053 		}
1054 
1055 		clk = base->clk;
1056 		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1057 
1058 		/*
1059 		 * Retrieve and compare the array index of the pending
1060 		 * timer. If it matches set the expiry to the new value so a
1061 		 * subsequent call will exit in the expires check above.
1062 		 */
1063 		if (idx == timer_get_idx(timer)) {
1064 			if (!(options & MOD_TIMER_REDUCE))
1065 				timer->expires = expires;
1066 			else if (time_after(timer->expires, expires))
1067 				timer->expires = expires;
1068 			ret = 1;
1069 			goto out_unlock;
1070 		}
1071 	} else {
1072 		base = lock_timer_base(timer, &flags);
1073 		forward_timer_base(base);
1074 	}
1075 
1076 	ret = detach_if_pending(timer, base, false);
1077 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1078 		goto out_unlock;
1079 
1080 	new_base = get_target_base(base, timer->flags);
1081 
1082 	if (base != new_base) {
1083 		/*
1084 		 * We are trying to schedule the timer on the new base.
1085 		 * However we can't change timer's base while it is running,
1086 		 * otherwise timer_delete_sync() can't detect that the timer's
1087 		 * handler yet has not finished. This also guarantees that the
1088 		 * timer is serialized wrt itself.
1089 		 */
1090 		if (likely(base->running_timer != timer)) {
1091 			/* See the comment in lock_timer_base() */
1092 			timer->flags |= TIMER_MIGRATING;
1093 
1094 			raw_spin_unlock(&base->lock);
1095 			base = new_base;
1096 			raw_spin_lock(&base->lock);
1097 			WRITE_ONCE(timer->flags,
1098 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1099 			forward_timer_base(base);
1100 		}
1101 	}
1102 
1103 	debug_timer_activate(timer);
1104 
1105 	timer->expires = expires;
1106 	/*
1107 	 * If 'idx' was calculated above and the base time did not advance
1108 	 * between calculating 'idx' and possibly switching the base, only
1109 	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1110 	 * the wheel index via internal_add_timer().
1111 	 */
1112 	if (idx != UINT_MAX && clk == base->clk)
1113 		enqueue_timer(base, timer, idx, bucket_expiry);
1114 	else
1115 		internal_add_timer(base, timer);
1116 
1117 out_unlock:
1118 	raw_spin_unlock_irqrestore(&base->lock, flags);
1119 
1120 	return ret;
1121 }
1122 
1123 /**
1124  * mod_timer_pending - Modify a pending timer's timeout
1125  * @timer:	The pending timer to be modified
1126  * @expires:	New absolute timeout in jiffies
1127  *
1128  * mod_timer_pending() is the same for pending timers as mod_timer(), but
1129  * will not activate inactive timers.
1130  *
1131  * Return:
1132  * * %0 - The timer was inactive and not modified
1133  * * %1 - The timer was active and requeued to expire at @expires
1134  */
1135 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1136 {
1137 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1138 }
1139 EXPORT_SYMBOL(mod_timer_pending);
1140 
1141 /**
1142  * mod_timer - Modify a timer's timeout
1143  * @timer:	The timer to be modified
1144  * @expires:	New absolute timeout in jiffies
1145  *
1146  * mod_timer(timer, expires) is equivalent to:
1147  *
1148  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1149  *
1150  * mod_timer() is more efficient than the above open coded sequence. In
1151  * case that the timer is inactive, the del_timer() part is a NOP. The
1152  * timer is in any case activated with the new expiry time @expires.
1153  *
1154  * Note that if there are multiple unserialized concurrent users of the
1155  * same timer, then mod_timer() is the only safe way to modify the timeout,
1156  * since add_timer() cannot modify an already running timer.
1157  *
1158  * Return:
1159  * * %0 - The timer was inactive and started
1160  * * %1 - The timer was active and requeued to expire at @expires or
1161  *	  the timer was active and not modified because @expires did
1162  *	  not change the effective expiry time
1163  */
1164 int mod_timer(struct timer_list *timer, unsigned long expires)
1165 {
1166 	return __mod_timer(timer, expires, 0);
1167 }
1168 EXPORT_SYMBOL(mod_timer);
1169 
1170 /**
1171  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1172  * @timer:	The timer to be modified
1173  * @expires:	New absolute timeout in jiffies
1174  *
1175  * timer_reduce() is very similar to mod_timer(), except that it will only
1176  * modify an enqueued timer if that would reduce the expiration time. If
1177  * @timer is not enqueued it starts the timer.
1178  *
1179  * Return:
1180  * * %0 - The timer was inactive and started
1181  * * %1 - The timer was active and requeued to expire at @expires or
1182  *	  the timer was active and not modified because @expires
1183  *	  did not change the effective expiry time such that the
1184  *	  timer would expire earlier than already scheduled
1185  */
1186 int timer_reduce(struct timer_list *timer, unsigned long expires)
1187 {
1188 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1189 }
1190 EXPORT_SYMBOL(timer_reduce);
1191 
1192 /**
1193  * add_timer - Start a timer
1194  * @timer:	The timer to be started
1195  *
1196  * Start @timer to expire at @timer->expires in the future. @timer->expires
1197  * is the absolute expiry time measured in 'jiffies'. When the timer expires
1198  * timer->function(timer) will be invoked from soft interrupt context.
1199  *
1200  * The @timer->expires and @timer->function fields must be set prior
1201  * to calling this function.
1202  *
1203  * If @timer->expires is already in the past @timer will be queued to
1204  * expire at the next timer tick.
1205  *
1206  * This can only operate on an inactive timer. Attempts to invoke this on
1207  * an active timer are rejected with a warning.
1208  */
1209 void add_timer(struct timer_list *timer)
1210 {
1211 	if (WARN_ON_ONCE(timer_pending(timer)))
1212 		return;
1213 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1214 }
1215 EXPORT_SYMBOL(add_timer);
1216 
1217 /**
1218  * add_timer_on - Start a timer on a particular CPU
1219  * @timer:	The timer to be started
1220  * @cpu:	The CPU to start it on
1221  *
1222  * Same as add_timer() except that it starts the timer on the given CPU.
1223  *
1224  * See add_timer() for further details.
1225  */
1226 void add_timer_on(struct timer_list *timer, int cpu)
1227 {
1228 	struct timer_base *new_base, *base;
1229 	unsigned long flags;
1230 
1231 	if (WARN_ON_ONCE(timer_pending(timer) || !timer->function))
1232 		return;
1233 
1234 	new_base = get_timer_cpu_base(timer->flags, cpu);
1235 
1236 	/*
1237 	 * If @timer was on a different CPU, it should be migrated with the
1238 	 * old base locked to prevent other operations proceeding with the
1239 	 * wrong base locked.  See lock_timer_base().
1240 	 */
1241 	base = lock_timer_base(timer, &flags);
1242 	if (base != new_base) {
1243 		timer->flags |= TIMER_MIGRATING;
1244 
1245 		raw_spin_unlock(&base->lock);
1246 		base = new_base;
1247 		raw_spin_lock(&base->lock);
1248 		WRITE_ONCE(timer->flags,
1249 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1250 	}
1251 	forward_timer_base(base);
1252 
1253 	debug_timer_activate(timer);
1254 	internal_add_timer(base, timer);
1255 	raw_spin_unlock_irqrestore(&base->lock, flags);
1256 }
1257 EXPORT_SYMBOL_GPL(add_timer_on);
1258 
1259 /**
1260  * timer_delete - Deactivate a timer
1261  * @timer:	The timer to be deactivated
1262  *
1263  * The function only deactivates a pending timer, but contrary to
1264  * timer_delete_sync() it does not take into account whether the timer's
1265  * callback function is concurrently executed on a different CPU or not.
1266  * It neither prevents rearming of the timer. If @timer can be rearmed
1267  * concurrently then the return value of this function is meaningless.
1268  *
1269  * Return:
1270  * * %0 - The timer was not pending
1271  * * %1 - The timer was pending and deactivated
1272  */
1273 int timer_delete(struct timer_list *timer)
1274 {
1275 	struct timer_base *base;
1276 	unsigned long flags;
1277 	int ret = 0;
1278 
1279 	debug_assert_init(timer);
1280 
1281 	if (timer_pending(timer)) {
1282 		base = lock_timer_base(timer, &flags);
1283 		ret = detach_if_pending(timer, base, true);
1284 		raw_spin_unlock_irqrestore(&base->lock, flags);
1285 	}
1286 
1287 	return ret;
1288 }
1289 EXPORT_SYMBOL(timer_delete);
1290 
1291 /**
1292  * try_to_del_timer_sync - Try to deactivate a timer
1293  * @timer:	Timer to deactivate
1294  *
1295  * This function tries to deactivate a timer. On success the timer is not
1296  * queued and the timer callback function is not running on any CPU.
1297  *
1298  * This function does not guarantee that the timer cannot be rearmed right
1299  * after dropping the base lock. That needs to be prevented by the calling
1300  * code if necessary.
1301  *
1302  * Return:
1303  * * %0  - The timer was not pending
1304  * * %1  - The timer was pending and deactivated
1305  * * %-1 - The timer callback function is running on a different CPU
1306  */
1307 int try_to_del_timer_sync(struct timer_list *timer)
1308 {
1309 	struct timer_base *base;
1310 	unsigned long flags;
1311 	int ret = -1;
1312 
1313 	debug_assert_init(timer);
1314 
1315 	base = lock_timer_base(timer, &flags);
1316 
1317 	if (base->running_timer != timer)
1318 		ret = detach_if_pending(timer, base, true);
1319 
1320 	raw_spin_unlock_irqrestore(&base->lock, flags);
1321 
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL(try_to_del_timer_sync);
1325 
1326 #ifdef CONFIG_PREEMPT_RT
1327 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1328 {
1329 	spin_lock_init(&base->expiry_lock);
1330 }
1331 
1332 static inline void timer_base_lock_expiry(struct timer_base *base)
1333 {
1334 	spin_lock(&base->expiry_lock);
1335 }
1336 
1337 static inline void timer_base_unlock_expiry(struct timer_base *base)
1338 {
1339 	spin_unlock(&base->expiry_lock);
1340 }
1341 
1342 /*
1343  * The counterpart to del_timer_wait_running().
1344  *
1345  * If there is a waiter for base->expiry_lock, then it was waiting for the
1346  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1347  * the waiter to acquire the lock and make progress.
1348  */
1349 static void timer_sync_wait_running(struct timer_base *base)
1350 {
1351 	if (atomic_read(&base->timer_waiters)) {
1352 		raw_spin_unlock_irq(&base->lock);
1353 		spin_unlock(&base->expiry_lock);
1354 		spin_lock(&base->expiry_lock);
1355 		raw_spin_lock_irq(&base->lock);
1356 	}
1357 }
1358 
1359 /*
1360  * This function is called on PREEMPT_RT kernels when the fast path
1361  * deletion of a timer failed because the timer callback function was
1362  * running.
1363  *
1364  * This prevents priority inversion, if the softirq thread on a remote CPU
1365  * got preempted, and it prevents a life lock when the task which tries to
1366  * delete a timer preempted the softirq thread running the timer callback
1367  * function.
1368  */
1369 static void del_timer_wait_running(struct timer_list *timer)
1370 {
1371 	u32 tf;
1372 
1373 	tf = READ_ONCE(timer->flags);
1374 	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1375 		struct timer_base *base = get_timer_base(tf);
1376 
1377 		/*
1378 		 * Mark the base as contended and grab the expiry lock,
1379 		 * which is held by the softirq across the timer
1380 		 * callback. Drop the lock immediately so the softirq can
1381 		 * expire the next timer. In theory the timer could already
1382 		 * be running again, but that's more than unlikely and just
1383 		 * causes another wait loop.
1384 		 */
1385 		atomic_inc(&base->timer_waiters);
1386 		spin_lock_bh(&base->expiry_lock);
1387 		atomic_dec(&base->timer_waiters);
1388 		spin_unlock_bh(&base->expiry_lock);
1389 	}
1390 }
1391 #else
1392 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1393 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1394 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1395 static inline void timer_sync_wait_running(struct timer_base *base) { }
1396 static inline void del_timer_wait_running(struct timer_list *timer) { }
1397 #endif
1398 
1399 /**
1400  * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1401  * @timer:	The timer to be deactivated
1402  *
1403  * Synchronization rules: Callers must prevent restarting of the timer,
1404  * otherwise this function is meaningless. It must not be called from
1405  * interrupt contexts unless the timer is an irqsafe one. The caller must
1406  * not hold locks which would prevent completion of the timer's callback
1407  * function. The timer's handler must not call add_timer_on(). Upon exit
1408  * the timer is not queued and the handler is not running on any CPU.
1409  *
1410  * For !irqsafe timers, the caller must not hold locks that are held in
1411  * interrupt context. Even if the lock has nothing to do with the timer in
1412  * question.  Here's why::
1413  *
1414  *    CPU0                             CPU1
1415  *    ----                             ----
1416  *                                     <SOFTIRQ>
1417  *                                       call_timer_fn();
1418  *                                       base->running_timer = mytimer;
1419  *    spin_lock_irq(somelock);
1420  *                                     <IRQ>
1421  *                                        spin_lock(somelock);
1422  *    timer_delete_sync(mytimer);
1423  *    while (base->running_timer == mytimer);
1424  *
1425  * Now timer_delete_sync() will never return and never release somelock.
1426  * The interrupt on the other CPU is waiting to grab somelock but it has
1427  * interrupted the softirq that CPU0 is waiting to finish.
1428  *
1429  * This function cannot guarantee that the timer is not rearmed again by
1430  * some concurrent or preempting code, right after it dropped the base
1431  * lock. If there is the possibility of a concurrent rearm then the return
1432  * value of the function is meaningless.
1433  *
1434  * Return:
1435  * * %0	- The timer was not pending
1436  * * %1	- The timer was pending and deactivated
1437  */
1438 int timer_delete_sync(struct timer_list *timer)
1439 {
1440 	int ret;
1441 
1442 #ifdef CONFIG_LOCKDEP
1443 	unsigned long flags;
1444 
1445 	/*
1446 	 * If lockdep gives a backtrace here, please reference
1447 	 * the synchronization rules above.
1448 	 */
1449 	local_irq_save(flags);
1450 	lock_map_acquire(&timer->lockdep_map);
1451 	lock_map_release(&timer->lockdep_map);
1452 	local_irq_restore(flags);
1453 #endif
1454 	/*
1455 	 * don't use it in hardirq context, because it
1456 	 * could lead to deadlock.
1457 	 */
1458 	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1459 
1460 	/*
1461 	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1462 	 * del_timer_wait_running().
1463 	 */
1464 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1465 		lockdep_assert_preemption_enabled();
1466 
1467 	do {
1468 		ret = try_to_del_timer_sync(timer);
1469 
1470 		if (unlikely(ret < 0)) {
1471 			del_timer_wait_running(timer);
1472 			cpu_relax();
1473 		}
1474 	} while (ret < 0);
1475 
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL(timer_delete_sync);
1479 
1480 static void call_timer_fn(struct timer_list *timer,
1481 			  void (*fn)(struct timer_list *),
1482 			  unsigned long baseclk)
1483 {
1484 	int count = preempt_count();
1485 
1486 #ifdef CONFIG_LOCKDEP
1487 	/*
1488 	 * It is permissible to free the timer from inside the
1489 	 * function that is called from it, this we need to take into
1490 	 * account for lockdep too. To avoid bogus "held lock freed"
1491 	 * warnings as well as problems when looking into
1492 	 * timer->lockdep_map, make a copy and use that here.
1493 	 */
1494 	struct lockdep_map lockdep_map;
1495 
1496 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1497 #endif
1498 	/*
1499 	 * Couple the lock chain with the lock chain at
1500 	 * timer_delete_sync() by acquiring the lock_map around the fn()
1501 	 * call here and in timer_delete_sync().
1502 	 */
1503 	lock_map_acquire(&lockdep_map);
1504 
1505 	trace_timer_expire_entry(timer, baseclk);
1506 	fn(timer);
1507 	trace_timer_expire_exit(timer);
1508 
1509 	lock_map_release(&lockdep_map);
1510 
1511 	if (count != preempt_count()) {
1512 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1513 			  fn, count, preempt_count());
1514 		/*
1515 		 * Restore the preempt count. That gives us a decent
1516 		 * chance to survive and extract information. If the
1517 		 * callback kept a lock held, bad luck, but not worse
1518 		 * than the BUG() we had.
1519 		 */
1520 		preempt_count_set(count);
1521 	}
1522 }
1523 
1524 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1525 {
1526 	/*
1527 	 * This value is required only for tracing. base->clk was
1528 	 * incremented directly before expire_timers was called. But expiry
1529 	 * is related to the old base->clk value.
1530 	 */
1531 	unsigned long baseclk = base->clk - 1;
1532 
1533 	while (!hlist_empty(head)) {
1534 		struct timer_list *timer;
1535 		void (*fn)(struct timer_list *);
1536 
1537 		timer = hlist_entry(head->first, struct timer_list, entry);
1538 
1539 		base->running_timer = timer;
1540 		detach_timer(timer, true);
1541 
1542 		fn = timer->function;
1543 
1544 		if (timer->flags & TIMER_IRQSAFE) {
1545 			raw_spin_unlock(&base->lock);
1546 			call_timer_fn(timer, fn, baseclk);
1547 			raw_spin_lock(&base->lock);
1548 			base->running_timer = NULL;
1549 		} else {
1550 			raw_spin_unlock_irq(&base->lock);
1551 			call_timer_fn(timer, fn, baseclk);
1552 			raw_spin_lock_irq(&base->lock);
1553 			base->running_timer = NULL;
1554 			timer_sync_wait_running(base);
1555 		}
1556 	}
1557 }
1558 
1559 static int collect_expired_timers(struct timer_base *base,
1560 				  struct hlist_head *heads)
1561 {
1562 	unsigned long clk = base->clk = base->next_expiry;
1563 	struct hlist_head *vec;
1564 	int i, levels = 0;
1565 	unsigned int idx;
1566 
1567 	for (i = 0; i < LVL_DEPTH; i++) {
1568 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1569 
1570 		if (__test_and_clear_bit(idx, base->pending_map)) {
1571 			vec = base->vectors + idx;
1572 			hlist_move_list(vec, heads++);
1573 			levels++;
1574 		}
1575 		/* Is it time to look at the next level? */
1576 		if (clk & LVL_CLK_MASK)
1577 			break;
1578 		/* Shift clock for the next level granularity */
1579 		clk >>= LVL_CLK_SHIFT;
1580 	}
1581 	return levels;
1582 }
1583 
1584 /*
1585  * Find the next pending bucket of a level. Search from level start (@offset)
1586  * + @clk upwards and if nothing there, search from start of the level
1587  * (@offset) up to @offset + clk.
1588  */
1589 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1590 			       unsigned clk)
1591 {
1592 	unsigned pos, start = offset + clk;
1593 	unsigned end = offset + LVL_SIZE;
1594 
1595 	pos = find_next_bit(base->pending_map, end, start);
1596 	if (pos < end)
1597 		return pos - start;
1598 
1599 	pos = find_next_bit(base->pending_map, start, offset);
1600 	return pos < start ? pos + LVL_SIZE - start : -1;
1601 }
1602 
1603 /*
1604  * Search the first expiring timer in the various clock levels. Caller must
1605  * hold base->lock.
1606  */
1607 static unsigned long __next_timer_interrupt(struct timer_base *base)
1608 {
1609 	unsigned long clk, next, adj;
1610 	unsigned lvl, offset = 0;
1611 
1612 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1613 	clk = base->clk;
1614 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1615 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1616 		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1617 
1618 		if (pos >= 0) {
1619 			unsigned long tmp = clk + (unsigned long) pos;
1620 
1621 			tmp <<= LVL_SHIFT(lvl);
1622 			if (time_before(tmp, next))
1623 				next = tmp;
1624 
1625 			/*
1626 			 * If the next expiration happens before we reach
1627 			 * the next level, no need to check further.
1628 			 */
1629 			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1630 				break;
1631 		}
1632 		/*
1633 		 * Clock for the next level. If the current level clock lower
1634 		 * bits are zero, we look at the next level as is. If not we
1635 		 * need to advance it by one because that's going to be the
1636 		 * next expiring bucket in that level. base->clk is the next
1637 		 * expiring jiffie. So in case of:
1638 		 *
1639 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1640 		 *  0    0    0    0    0    0
1641 		 *
1642 		 * we have to look at all levels @index 0. With
1643 		 *
1644 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1645 		 *  0    0    0    0    0    2
1646 		 *
1647 		 * LVL0 has the next expiring bucket @index 2. The upper
1648 		 * levels have the next expiring bucket @index 1.
1649 		 *
1650 		 * In case that the propagation wraps the next level the same
1651 		 * rules apply:
1652 		 *
1653 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1654 		 *  0    0    0    0    F    2
1655 		 *
1656 		 * So after looking at LVL0 we get:
1657 		 *
1658 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1659 		 *  0    0    0    1    0
1660 		 *
1661 		 * So no propagation from LVL1 to LVL2 because that happened
1662 		 * with the add already, but then we need to propagate further
1663 		 * from LVL2 to LVL3.
1664 		 *
1665 		 * So the simple check whether the lower bits of the current
1666 		 * level are 0 or not is sufficient for all cases.
1667 		 */
1668 		adj = lvl_clk ? 1 : 0;
1669 		clk >>= LVL_CLK_SHIFT;
1670 		clk += adj;
1671 	}
1672 
1673 	base->next_expiry_recalc = false;
1674 	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1675 
1676 	return next;
1677 }
1678 
1679 #ifdef CONFIG_NO_HZ_COMMON
1680 /*
1681  * Check, if the next hrtimer event is before the next timer wheel
1682  * event:
1683  */
1684 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1685 {
1686 	u64 nextevt = hrtimer_get_next_event();
1687 
1688 	/*
1689 	 * If high resolution timers are enabled
1690 	 * hrtimer_get_next_event() returns KTIME_MAX.
1691 	 */
1692 	if (expires <= nextevt)
1693 		return expires;
1694 
1695 	/*
1696 	 * If the next timer is already expired, return the tick base
1697 	 * time so the tick is fired immediately.
1698 	 */
1699 	if (nextevt <= basem)
1700 		return basem;
1701 
1702 	/*
1703 	 * Round up to the next jiffie. High resolution timers are
1704 	 * off, so the hrtimers are expired in the tick and we need to
1705 	 * make sure that this tick really expires the timer to avoid
1706 	 * a ping pong of the nohz stop code.
1707 	 *
1708 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1709 	 */
1710 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1711 }
1712 
1713 /**
1714  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1715  * @basej:	base time jiffies
1716  * @basem:	base time clock monotonic
1717  *
1718  * Returns the tick aligned clock monotonic time of the next pending
1719  * timer or KTIME_MAX if no timer is pending.
1720  */
1721 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1722 {
1723 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1724 	u64 expires = KTIME_MAX;
1725 	unsigned long nextevt;
1726 
1727 	/*
1728 	 * Pretend that there is no timer pending if the cpu is offline.
1729 	 * Possible pending timers will be migrated later to an active cpu.
1730 	 */
1731 	if (cpu_is_offline(smp_processor_id()))
1732 		return expires;
1733 
1734 	raw_spin_lock(&base->lock);
1735 	if (base->next_expiry_recalc)
1736 		base->next_expiry = __next_timer_interrupt(base);
1737 	nextevt = base->next_expiry;
1738 
1739 	/*
1740 	 * We have a fresh next event. Check whether we can forward the
1741 	 * base. We can only do that when @basej is past base->clk
1742 	 * otherwise we might rewind base->clk.
1743 	 */
1744 	if (time_after(basej, base->clk)) {
1745 		if (time_after(nextevt, basej))
1746 			base->clk = basej;
1747 		else if (time_after(nextevt, base->clk))
1748 			base->clk = nextevt;
1749 	}
1750 
1751 	if (time_before_eq(nextevt, basej)) {
1752 		expires = basem;
1753 		base->is_idle = false;
1754 	} else {
1755 		if (base->timers_pending)
1756 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1757 		/*
1758 		 * If we expect to sleep more than a tick, mark the base idle.
1759 		 * Also the tick is stopped so any added timer must forward
1760 		 * the base clk itself to keep granularity small. This idle
1761 		 * logic is only maintained for the BASE_STD base, deferrable
1762 		 * timers may still see large granularity skew (by design).
1763 		 */
1764 		if ((expires - basem) > TICK_NSEC)
1765 			base->is_idle = true;
1766 	}
1767 	raw_spin_unlock(&base->lock);
1768 
1769 	return cmp_next_hrtimer_event(basem, expires);
1770 }
1771 
1772 /**
1773  * timer_clear_idle - Clear the idle state of the timer base
1774  *
1775  * Called with interrupts disabled
1776  */
1777 void timer_clear_idle(void)
1778 {
1779 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1780 
1781 	/*
1782 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1783 	 * a pointless IPI, but taking the lock would just make the window for
1784 	 * sending the IPI a few instructions smaller for the cost of taking
1785 	 * the lock in the exit from idle path.
1786 	 */
1787 	base->is_idle = false;
1788 }
1789 #endif
1790 
1791 /**
1792  * __run_timers - run all expired timers (if any) on this CPU.
1793  * @base: the timer vector to be processed.
1794  */
1795 static inline void __run_timers(struct timer_base *base)
1796 {
1797 	struct hlist_head heads[LVL_DEPTH];
1798 	int levels;
1799 
1800 	if (time_before(jiffies, base->next_expiry))
1801 		return;
1802 
1803 	timer_base_lock_expiry(base);
1804 	raw_spin_lock_irq(&base->lock);
1805 
1806 	while (time_after_eq(jiffies, base->clk) &&
1807 	       time_after_eq(jiffies, base->next_expiry)) {
1808 		levels = collect_expired_timers(base, heads);
1809 		/*
1810 		 * The two possible reasons for not finding any expired
1811 		 * timer at this clk are that all matching timers have been
1812 		 * dequeued or no timer has been queued since
1813 		 * base::next_expiry was set to base::clk +
1814 		 * NEXT_TIMER_MAX_DELTA.
1815 		 */
1816 		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
1817 			     && base->timers_pending);
1818 		base->clk++;
1819 		base->next_expiry = __next_timer_interrupt(base);
1820 
1821 		while (levels--)
1822 			expire_timers(base, heads + levels);
1823 	}
1824 	raw_spin_unlock_irq(&base->lock);
1825 	timer_base_unlock_expiry(base);
1826 }
1827 
1828 /*
1829  * This function runs timers and the timer-tq in bottom half context.
1830  */
1831 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1832 {
1833 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1834 
1835 	__run_timers(base);
1836 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1837 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1838 }
1839 
1840 /*
1841  * Called by the local, per-CPU timer interrupt on SMP.
1842  */
1843 static void run_local_timers(void)
1844 {
1845 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1846 
1847 	hrtimer_run_queues();
1848 	/* Raise the softirq only if required. */
1849 	if (time_before(jiffies, base->next_expiry)) {
1850 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1851 			return;
1852 		/* CPU is awake, so check the deferrable base. */
1853 		base++;
1854 		if (time_before(jiffies, base->next_expiry))
1855 			return;
1856 	}
1857 	raise_softirq(TIMER_SOFTIRQ);
1858 }
1859 
1860 /*
1861  * Called from the timer interrupt handler to charge one tick to the current
1862  * process.  user_tick is 1 if the tick is user time, 0 for system.
1863  */
1864 void update_process_times(int user_tick)
1865 {
1866 	struct task_struct *p = current;
1867 
1868 	/* Note: this timer irq context must be accounted for as well. */
1869 	account_process_tick(p, user_tick);
1870 	run_local_timers();
1871 	rcu_sched_clock_irq(user_tick);
1872 #ifdef CONFIG_IRQ_WORK
1873 	if (in_irq())
1874 		irq_work_tick();
1875 #endif
1876 	scheduler_tick();
1877 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1878 		run_posix_cpu_timers();
1879 }
1880 
1881 /*
1882  * Since schedule_timeout()'s timer is defined on the stack, it must store
1883  * the target task on the stack as well.
1884  */
1885 struct process_timer {
1886 	struct timer_list timer;
1887 	struct task_struct *task;
1888 };
1889 
1890 static void process_timeout(struct timer_list *t)
1891 {
1892 	struct process_timer *timeout = from_timer(timeout, t, timer);
1893 
1894 	wake_up_process(timeout->task);
1895 }
1896 
1897 /**
1898  * schedule_timeout - sleep until timeout
1899  * @timeout: timeout value in jiffies
1900  *
1901  * Make the current task sleep until @timeout jiffies have elapsed.
1902  * The function behavior depends on the current task state
1903  * (see also set_current_state() description):
1904  *
1905  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1906  * at all. That happens because sched_submit_work() does nothing for
1907  * tasks in %TASK_RUNNING state.
1908  *
1909  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1910  * pass before the routine returns unless the current task is explicitly
1911  * woken up, (e.g. by wake_up_process()).
1912  *
1913  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1914  * delivered to the current task or the current task is explicitly woken
1915  * up.
1916  *
1917  * The current task state is guaranteed to be %TASK_RUNNING when this
1918  * routine returns.
1919  *
1920  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1921  * the CPU away without a bound on the timeout. In this case the return
1922  * value will be %MAX_SCHEDULE_TIMEOUT.
1923  *
1924  * Returns 0 when the timer has expired otherwise the remaining time in
1925  * jiffies will be returned. In all cases the return value is guaranteed
1926  * to be non-negative.
1927  */
1928 signed long __sched schedule_timeout(signed long timeout)
1929 {
1930 	struct process_timer timer;
1931 	unsigned long expire;
1932 
1933 	switch (timeout)
1934 	{
1935 	case MAX_SCHEDULE_TIMEOUT:
1936 		/*
1937 		 * These two special cases are useful to be comfortable
1938 		 * in the caller. Nothing more. We could take
1939 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1940 		 * but I' d like to return a valid offset (>=0) to allow
1941 		 * the caller to do everything it want with the retval.
1942 		 */
1943 		schedule();
1944 		goto out;
1945 	default:
1946 		/*
1947 		 * Another bit of PARANOID. Note that the retval will be
1948 		 * 0 since no piece of kernel is supposed to do a check
1949 		 * for a negative retval of schedule_timeout() (since it
1950 		 * should never happens anyway). You just have the printk()
1951 		 * that will tell you if something is gone wrong and where.
1952 		 */
1953 		if (timeout < 0) {
1954 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1955 				"value %lx\n", timeout);
1956 			dump_stack();
1957 			__set_current_state(TASK_RUNNING);
1958 			goto out;
1959 		}
1960 	}
1961 
1962 	expire = timeout + jiffies;
1963 
1964 	timer.task = current;
1965 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1966 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1967 	schedule();
1968 	del_timer_sync(&timer.timer);
1969 
1970 	/* Remove the timer from the object tracker */
1971 	destroy_timer_on_stack(&timer.timer);
1972 
1973 	timeout = expire - jiffies;
1974 
1975  out:
1976 	return timeout < 0 ? 0 : timeout;
1977 }
1978 EXPORT_SYMBOL(schedule_timeout);
1979 
1980 /*
1981  * We can use __set_current_state() here because schedule_timeout() calls
1982  * schedule() unconditionally.
1983  */
1984 signed long __sched schedule_timeout_interruptible(signed long timeout)
1985 {
1986 	__set_current_state(TASK_INTERRUPTIBLE);
1987 	return schedule_timeout(timeout);
1988 }
1989 EXPORT_SYMBOL(schedule_timeout_interruptible);
1990 
1991 signed long __sched schedule_timeout_killable(signed long timeout)
1992 {
1993 	__set_current_state(TASK_KILLABLE);
1994 	return schedule_timeout(timeout);
1995 }
1996 EXPORT_SYMBOL(schedule_timeout_killable);
1997 
1998 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1999 {
2000 	__set_current_state(TASK_UNINTERRUPTIBLE);
2001 	return schedule_timeout(timeout);
2002 }
2003 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2004 
2005 /*
2006  * Like schedule_timeout_uninterruptible(), except this task will not contribute
2007  * to load average.
2008  */
2009 signed long __sched schedule_timeout_idle(signed long timeout)
2010 {
2011 	__set_current_state(TASK_IDLE);
2012 	return schedule_timeout(timeout);
2013 }
2014 EXPORT_SYMBOL(schedule_timeout_idle);
2015 
2016 #ifdef CONFIG_HOTPLUG_CPU
2017 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2018 {
2019 	struct timer_list *timer;
2020 	int cpu = new_base->cpu;
2021 
2022 	while (!hlist_empty(head)) {
2023 		timer = hlist_entry(head->first, struct timer_list, entry);
2024 		detach_timer(timer, false);
2025 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2026 		internal_add_timer(new_base, timer);
2027 	}
2028 }
2029 
2030 int timers_prepare_cpu(unsigned int cpu)
2031 {
2032 	struct timer_base *base;
2033 	int b;
2034 
2035 	for (b = 0; b < NR_BASES; b++) {
2036 		base = per_cpu_ptr(&timer_bases[b], cpu);
2037 		base->clk = jiffies;
2038 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2039 		base->next_expiry_recalc = false;
2040 		base->timers_pending = false;
2041 		base->is_idle = false;
2042 	}
2043 	return 0;
2044 }
2045 
2046 int timers_dead_cpu(unsigned int cpu)
2047 {
2048 	struct timer_base *old_base;
2049 	struct timer_base *new_base;
2050 	int b, i;
2051 
2052 	for (b = 0; b < NR_BASES; b++) {
2053 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2054 		new_base = get_cpu_ptr(&timer_bases[b]);
2055 		/*
2056 		 * The caller is globally serialized and nobody else
2057 		 * takes two locks at once, deadlock is not possible.
2058 		 */
2059 		raw_spin_lock_irq(&new_base->lock);
2060 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2061 
2062 		/*
2063 		 * The current CPUs base clock might be stale. Update it
2064 		 * before moving the timers over.
2065 		 */
2066 		forward_timer_base(new_base);
2067 
2068 		WARN_ON_ONCE(old_base->running_timer);
2069 		old_base->running_timer = NULL;
2070 
2071 		for (i = 0; i < WHEEL_SIZE; i++)
2072 			migrate_timer_list(new_base, old_base->vectors + i);
2073 
2074 		raw_spin_unlock(&old_base->lock);
2075 		raw_spin_unlock_irq(&new_base->lock);
2076 		put_cpu_ptr(&timer_bases);
2077 	}
2078 	return 0;
2079 }
2080 
2081 #endif /* CONFIG_HOTPLUG_CPU */
2082 
2083 static void __init init_timer_cpu(int cpu)
2084 {
2085 	struct timer_base *base;
2086 	int i;
2087 
2088 	for (i = 0; i < NR_BASES; i++) {
2089 		base = per_cpu_ptr(&timer_bases[i], cpu);
2090 		base->cpu = cpu;
2091 		raw_spin_lock_init(&base->lock);
2092 		base->clk = jiffies;
2093 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2094 		timer_base_init_expiry_lock(base);
2095 	}
2096 }
2097 
2098 static void __init init_timer_cpus(void)
2099 {
2100 	int cpu;
2101 
2102 	for_each_possible_cpu(cpu)
2103 		init_timer_cpu(cpu);
2104 }
2105 
2106 void __init init_timers(void)
2107 {
2108 	init_timer_cpus();
2109 	posix_cputimers_init_work();
2110 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2111 }
2112 
2113 /**
2114  * msleep - sleep safely even with waitqueue interruptions
2115  * @msecs: Time in milliseconds to sleep for
2116  */
2117 void msleep(unsigned int msecs)
2118 {
2119 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2120 
2121 	while (timeout)
2122 		timeout = schedule_timeout_uninterruptible(timeout);
2123 }
2124 
2125 EXPORT_SYMBOL(msleep);
2126 
2127 /**
2128  * msleep_interruptible - sleep waiting for signals
2129  * @msecs: Time in milliseconds to sleep for
2130  */
2131 unsigned long msleep_interruptible(unsigned int msecs)
2132 {
2133 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2134 
2135 	while (timeout && !signal_pending(current))
2136 		timeout = schedule_timeout_interruptible(timeout);
2137 	return jiffies_to_msecs(timeout);
2138 }
2139 
2140 EXPORT_SYMBOL(msleep_interruptible);
2141 
2142 /**
2143  * usleep_range_state - Sleep for an approximate time in a given state
2144  * @min:	Minimum time in usecs to sleep
2145  * @max:	Maximum time in usecs to sleep
2146  * @state:	State of the current task that will be while sleeping
2147  *
2148  * In non-atomic context where the exact wakeup time is flexible, use
2149  * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2150  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2151  * power usage by allowing hrtimers to take advantage of an already-
2152  * scheduled interrupt instead of scheduling a new one just for this sleep.
2153  */
2154 void __sched usleep_range_state(unsigned long min, unsigned long max,
2155 				unsigned int state)
2156 {
2157 	ktime_t exp = ktime_add_us(ktime_get(), min);
2158 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2159 
2160 	for (;;) {
2161 		__set_current_state(state);
2162 		/* Do not return before the requested sleep time has elapsed */
2163 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2164 			break;
2165 	}
2166 }
2167 EXPORT_SYMBOL(usleep_range_state);
2168