xref: /openbmc/linux/kernel/time/timekeeping.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sysdev.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 
22 
23 /*
24  * This read-write spinlock protects us from races in SMP while
25  * playing with xtime and avenrun.
26  */
27 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
28 
29 
30 /*
31  * The current time
32  * wall_to_monotonic is what we need to add to xtime (or xtime corrected
33  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
34  * at zero at system boot time, so wall_to_monotonic will be negative,
35  * however, we will ALWAYS keep the tv_nsec part positive so we can use
36  * the usual normalization.
37  *
38  * wall_to_monotonic is moved after resume from suspend for the monotonic
39  * time not to jump. We need to add total_sleep_time to wall_to_monotonic
40  * to get the real boot based time offset.
41  *
42  * - wall_to_monotonic is no longer the boot time, getboottime must be
43  * used instead.
44  */
45 struct timespec xtime __attribute__ ((aligned (16)));
46 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
47 static unsigned long total_sleep_time;		/* seconds */
48 
49 static struct timespec xtime_cache __attribute__ ((aligned (16)));
50 static inline void update_xtime_cache(u64 nsec)
51 {
52 	xtime_cache = xtime;
53 	timespec_add_ns(&xtime_cache, nsec);
54 }
55 
56 static struct clocksource *clock; /* pointer to current clocksource */
57 
58 
59 #ifdef CONFIG_GENERIC_TIME
60 /**
61  * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
62  *
63  * private function, must hold xtime_lock lock when being
64  * called. Returns the number of nanoseconds since the
65  * last call to update_wall_time() (adjusted by NTP scaling)
66  */
67 static inline s64 __get_nsec_offset(void)
68 {
69 	cycle_t cycle_now, cycle_delta;
70 	s64 ns_offset;
71 
72 	/* read clocksource: */
73 	cycle_now = clocksource_read(clock);
74 
75 	/* calculate the delta since the last update_wall_time: */
76 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
77 
78 	/* convert to nanoseconds: */
79 	ns_offset = cyc2ns(clock, cycle_delta);
80 
81 	return ns_offset;
82 }
83 
84 /**
85  * __get_realtime_clock_ts - Returns the time of day in a timespec
86  * @ts:		pointer to the timespec to be set
87  *
88  * Returns the time of day in a timespec. Used by
89  * do_gettimeofday() and get_realtime_clock_ts().
90  */
91 static inline void __get_realtime_clock_ts(struct timespec *ts)
92 {
93 	unsigned long seq;
94 	s64 nsecs;
95 
96 	do {
97 		seq = read_seqbegin(&xtime_lock);
98 
99 		*ts = xtime;
100 		nsecs = __get_nsec_offset();
101 
102 	} while (read_seqretry(&xtime_lock, seq));
103 
104 	timespec_add_ns(ts, nsecs);
105 }
106 
107 /**
108  * getnstimeofday - Returns the time of day in a timespec
109  * @ts:		pointer to the timespec to be set
110  *
111  * Returns the time of day in a timespec.
112  */
113 void getnstimeofday(struct timespec *ts)
114 {
115 	__get_realtime_clock_ts(ts);
116 }
117 
118 EXPORT_SYMBOL(getnstimeofday);
119 
120 /**
121  * do_gettimeofday - Returns the time of day in a timeval
122  * @tv:		pointer to the timeval to be set
123  *
124  * NOTE: Users should be converted to using get_realtime_clock_ts()
125  */
126 void do_gettimeofday(struct timeval *tv)
127 {
128 	struct timespec now;
129 
130 	__get_realtime_clock_ts(&now);
131 	tv->tv_sec = now.tv_sec;
132 	tv->tv_usec = now.tv_nsec/1000;
133 }
134 
135 EXPORT_SYMBOL(do_gettimeofday);
136 /**
137  * do_settimeofday - Sets the time of day
138  * @tv:		pointer to the timespec variable containing the new time
139  *
140  * Sets the time of day to the new time and update NTP and notify hrtimers
141  */
142 int do_settimeofday(struct timespec *tv)
143 {
144 	unsigned long flags;
145 	time_t wtm_sec, sec = tv->tv_sec;
146 	long wtm_nsec, nsec = tv->tv_nsec;
147 
148 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
149 		return -EINVAL;
150 
151 	write_seqlock_irqsave(&xtime_lock, flags);
152 
153 	nsec -= __get_nsec_offset();
154 
155 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
156 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
157 
158 	set_normalized_timespec(&xtime, sec, nsec);
159 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
160 
161 	clock->error = 0;
162 	ntp_clear();
163 
164 	update_vsyscall(&xtime, clock);
165 
166 	write_sequnlock_irqrestore(&xtime_lock, flags);
167 
168 	/* signal hrtimers about time change */
169 	clock_was_set();
170 
171 	return 0;
172 }
173 
174 EXPORT_SYMBOL(do_settimeofday);
175 
176 /**
177  * change_clocksource - Swaps clocksources if a new one is available
178  *
179  * Accumulates current time interval and initializes new clocksource
180  */
181 static void change_clocksource(void)
182 {
183 	struct clocksource *new;
184 	cycle_t now;
185 	u64 nsec;
186 
187 	new = clocksource_get_next();
188 
189 	if (clock == new)
190 		return;
191 
192 	now = clocksource_read(new);
193 	nsec =  __get_nsec_offset();
194 	timespec_add_ns(&xtime, nsec);
195 
196 	clock = new;
197 	clock->cycle_last = now;
198 
199 	clock->error = 0;
200 	clock->xtime_nsec = 0;
201 	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
202 
203 	tick_clock_notify();
204 
205 	printk(KERN_INFO "Time: %s clocksource has been installed.\n",
206 	       clock->name);
207 }
208 #else
209 static inline void change_clocksource(void) { }
210 static inline s64 __get_nsec_offset(void) { return 0; }
211 #endif
212 
213 /**
214  * timekeeping_is_continuous - check to see if timekeeping is free running
215  */
216 int timekeeping_is_continuous(void)
217 {
218 	unsigned long seq;
219 	int ret;
220 
221 	do {
222 		seq = read_seqbegin(&xtime_lock);
223 
224 		ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
225 
226 	} while (read_seqretry(&xtime_lock, seq));
227 
228 	return ret;
229 }
230 
231 /**
232  * read_persistent_clock -  Return time in seconds from the persistent clock.
233  *
234  * Weak dummy function for arches that do not yet support it.
235  * Returns seconds from epoch using the battery backed persistent clock.
236  * Returns zero if unsupported.
237  *
238  *  XXX - Do be sure to remove it once all arches implement it.
239  */
240 unsigned long __attribute__((weak)) read_persistent_clock(void)
241 {
242 	return 0;
243 }
244 
245 /*
246  * timekeeping_init - Initializes the clocksource and common timekeeping values
247  */
248 void __init timekeeping_init(void)
249 {
250 	unsigned long flags;
251 	unsigned long sec = read_persistent_clock();
252 
253 	write_seqlock_irqsave(&xtime_lock, flags);
254 
255 	ntp_clear();
256 
257 	clock = clocksource_get_next();
258 	clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
259 	clock->cycle_last = clocksource_read(clock);
260 
261 	xtime.tv_sec = sec;
262 	xtime.tv_nsec = 0;
263 	set_normalized_timespec(&wall_to_monotonic,
264 		-xtime.tv_sec, -xtime.tv_nsec);
265 	total_sleep_time = 0;
266 
267 	write_sequnlock_irqrestore(&xtime_lock, flags);
268 }
269 
270 /* flag for if timekeeping is suspended */
271 static int timekeeping_suspended;
272 /* time in seconds when suspend began */
273 static unsigned long timekeeping_suspend_time;
274 /* xtime offset when we went into suspend */
275 static s64 timekeeping_suspend_nsecs;
276 
277 /**
278  * timekeeping_resume - Resumes the generic timekeeping subsystem.
279  * @dev:	unused
280  *
281  * This is for the generic clocksource timekeeping.
282  * xtime/wall_to_monotonic/jiffies/etc are
283  * still managed by arch specific suspend/resume code.
284  */
285 static int timekeeping_resume(struct sys_device *dev)
286 {
287 	unsigned long flags;
288 	unsigned long now = read_persistent_clock();
289 
290 	clocksource_resume();
291 
292 	write_seqlock_irqsave(&xtime_lock, flags);
293 
294 	if (now && (now > timekeeping_suspend_time)) {
295 		unsigned long sleep_length = now - timekeeping_suspend_time;
296 
297 		xtime.tv_sec += sleep_length;
298 		wall_to_monotonic.tv_sec -= sleep_length;
299 		total_sleep_time += sleep_length;
300 	}
301 	/* Make sure that we have the correct xtime reference */
302 	timespec_add_ns(&xtime, timekeeping_suspend_nsecs);
303 	/* re-base the last cycle value */
304 	clock->cycle_last = clocksource_read(clock);
305 	clock->error = 0;
306 	timekeeping_suspended = 0;
307 	write_sequnlock_irqrestore(&xtime_lock, flags);
308 
309 	touch_softlockup_watchdog();
310 
311 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
312 
313 	/* Resume hrtimers */
314 	hres_timers_resume();
315 
316 	return 0;
317 }
318 
319 static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
320 {
321 	unsigned long flags;
322 
323 	timekeeping_suspend_time = read_persistent_clock();
324 
325 	write_seqlock_irqsave(&xtime_lock, flags);
326 	/* Get the current xtime offset */
327 	timekeeping_suspend_nsecs = __get_nsec_offset();
328 	timekeeping_suspended = 1;
329 	write_sequnlock_irqrestore(&xtime_lock, flags);
330 
331 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
332 
333 	return 0;
334 }
335 
336 /* sysfs resume/suspend bits for timekeeping */
337 static struct sysdev_class timekeeping_sysclass = {
338 	.resume		= timekeeping_resume,
339 	.suspend	= timekeeping_suspend,
340 	set_kset_name("timekeeping"),
341 };
342 
343 static struct sys_device device_timer = {
344 	.id		= 0,
345 	.cls		= &timekeeping_sysclass,
346 };
347 
348 static int __init timekeeping_init_device(void)
349 {
350 	int error = sysdev_class_register(&timekeeping_sysclass);
351 	if (!error)
352 		error = sysdev_register(&device_timer);
353 	return error;
354 }
355 
356 device_initcall(timekeeping_init_device);
357 
358 /*
359  * If the error is already larger, we look ahead even further
360  * to compensate for late or lost adjustments.
361  */
362 static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
363 						 s64 *offset)
364 {
365 	s64 tick_error, i;
366 	u32 look_ahead, adj;
367 	s32 error2, mult;
368 
369 	/*
370 	 * Use the current error value to determine how much to look ahead.
371 	 * The larger the error the slower we adjust for it to avoid problems
372 	 * with losing too many ticks, otherwise we would overadjust and
373 	 * produce an even larger error.  The smaller the adjustment the
374 	 * faster we try to adjust for it, as lost ticks can do less harm
375 	 * here.  This is tuned so that an error of about 1 msec is adusted
376 	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
377 	 */
378 	error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
379 	error2 = abs(error2);
380 	for (look_ahead = 0; error2 > 0; look_ahead++)
381 		error2 >>= 2;
382 
383 	/*
384 	 * Now calculate the error in (1 << look_ahead) ticks, but first
385 	 * remove the single look ahead already included in the error.
386 	 */
387 	tick_error = current_tick_length() >>
388 		(TICK_LENGTH_SHIFT - clock->shift + 1);
389 	tick_error -= clock->xtime_interval >> 1;
390 	error = ((error - tick_error) >> look_ahead) + tick_error;
391 
392 	/* Finally calculate the adjustment shift value.  */
393 	i = *interval;
394 	mult = 1;
395 	if (error < 0) {
396 		error = -error;
397 		*interval = -*interval;
398 		*offset = -*offset;
399 		mult = -1;
400 	}
401 	for (adj = 0; error > i; adj++)
402 		error >>= 1;
403 
404 	*interval <<= adj;
405 	*offset <<= adj;
406 	return mult << adj;
407 }
408 
409 /*
410  * Adjust the multiplier to reduce the error value,
411  * this is optimized for the most common adjustments of -1,0,1,
412  * for other values we can do a bit more work.
413  */
414 static void clocksource_adjust(s64 offset)
415 {
416 	s64 error, interval = clock->cycle_interval;
417 	int adj;
418 
419 	error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
420 	if (error > interval) {
421 		error >>= 2;
422 		if (likely(error <= interval))
423 			adj = 1;
424 		else
425 			adj = clocksource_bigadjust(error, &interval, &offset);
426 	} else if (error < -interval) {
427 		error >>= 2;
428 		if (likely(error >= -interval)) {
429 			adj = -1;
430 			interval = -interval;
431 			offset = -offset;
432 		} else
433 			adj = clocksource_bigadjust(error, &interval, &offset);
434 	} else
435 		return;
436 
437 	clock->mult += adj;
438 	clock->xtime_interval += interval;
439 	clock->xtime_nsec -= offset;
440 	clock->error -= (interval - offset) <<
441 			(TICK_LENGTH_SHIFT - clock->shift);
442 }
443 
444 /**
445  * update_wall_time - Uses the current clocksource to increment the wall time
446  *
447  * Called from the timer interrupt, must hold a write on xtime_lock.
448  */
449 void update_wall_time(void)
450 {
451 	cycle_t offset;
452 
453 	/* Make sure we're fully resumed: */
454 	if (unlikely(timekeeping_suspended))
455 		return;
456 
457 #ifdef CONFIG_GENERIC_TIME
458 	offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
459 #else
460 	offset = clock->cycle_interval;
461 #endif
462 	clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
463 
464 	/* normally this loop will run just once, however in the
465 	 * case of lost or late ticks, it will accumulate correctly.
466 	 */
467 	while (offset >= clock->cycle_interval) {
468 		/* accumulate one interval */
469 		clock->xtime_nsec += clock->xtime_interval;
470 		clock->cycle_last += clock->cycle_interval;
471 		offset -= clock->cycle_interval;
472 
473 		if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
474 			clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
475 			xtime.tv_sec++;
476 			second_overflow();
477 		}
478 
479 		/* accumulate error between NTP and clock interval */
480 		clock->error += current_tick_length();
481 		clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
482 	}
483 
484 	/* correct the clock when NTP error is too big */
485 	clocksource_adjust(offset);
486 
487 	/* store full nanoseconds into xtime */
488 	xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
489 	clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
490 
491 	update_xtime_cache(cyc2ns(clock, offset));
492 
493 	/* check to see if there is a new clocksource to use */
494 	change_clocksource();
495 	update_vsyscall(&xtime, clock);
496 }
497 
498 /**
499  * getboottime - Return the real time of system boot.
500  * @ts:		pointer to the timespec to be set
501  *
502  * Returns the time of day in a timespec.
503  *
504  * This is based on the wall_to_monotonic offset and the total suspend
505  * time. Calls to settimeofday will affect the value returned (which
506  * basically means that however wrong your real time clock is at boot time,
507  * you get the right time here).
508  */
509 void getboottime(struct timespec *ts)
510 {
511 	set_normalized_timespec(ts,
512 		- (wall_to_monotonic.tv_sec + total_sleep_time),
513 		- wall_to_monotonic.tv_nsec);
514 }
515 
516 /**
517  * monotonic_to_bootbased - Convert the monotonic time to boot based.
518  * @ts:		pointer to the timespec to be converted
519  */
520 void monotonic_to_bootbased(struct timespec *ts)
521 {
522 	ts->tv_sec += total_sleep_time;
523 }
524 
525 unsigned long get_seconds(void)
526 {
527 	return xtime_cache.tv_sec;
528 }
529 EXPORT_SYMBOL(get_seconds);
530 
531 
532 struct timespec current_kernel_time(void)
533 {
534 	struct timespec now;
535 	unsigned long seq;
536 
537 	do {
538 		seq = read_seqbegin(&xtime_lock);
539 
540 		now = xtime_cache;
541 	} while (read_seqretry(&xtime_lock, seq));
542 
543 	return now;
544 }
545 EXPORT_SYMBOL(current_kernel_time);
546