xref: /openbmc/linux/kernel/time/timekeeping.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65 
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68 
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72 		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 		tk->xtime_sec++;
74 	}
75 }
76 
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79 	struct timespec64 ts;
80 
81 	ts.tv_sec = tk->xtime_sec;
82 	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 	return ts;
84 }
85 
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88 	tk->xtime_sec = ts->tv_sec;
89 	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91 
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94 	tk->xtime_sec += ts->tv_sec;
95 	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96 	tk_normalize_xtime(tk);
97 }
98 
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101 	struct timespec64 tmp;
102 
103 	/*
104 	 * Verify consistency of: offset_real = -wall_to_monotonic
105 	 * before modifying anything
106 	 */
107 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108 					-tk->wall_to_monotonic.tv_nsec);
109 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110 	tk->wall_to_monotonic = wtm;
111 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 	tk->offs_real = timespec64_to_ktime(tmp);
113 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115 
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120 
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:		The target timekeeper to setup.
125  * @clock:		Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134 	cycle_t interval;
135 	u64 tmp, ntpinterval;
136 	struct clocksource *old_clock;
137 
138 	old_clock = tk->tkr.clock;
139 	tk->tkr.clock = clock;
140 	tk->tkr.read = clock->read;
141 	tk->tkr.mask = clock->mask;
142 	tk->tkr.cycle_last = tk->tkr.read(clock);
143 
144 	/* Do the ns -> cycle conversion first, using original mult */
145 	tmp = NTP_INTERVAL_LENGTH;
146 	tmp <<= clock->shift;
147 	ntpinterval = tmp;
148 	tmp += clock->mult/2;
149 	do_div(tmp, clock->mult);
150 	if (tmp == 0)
151 		tmp = 1;
152 
153 	interval = (cycle_t) tmp;
154 	tk->cycle_interval = interval;
155 
156 	/* Go back from cycles -> shifted ns */
157 	tk->xtime_interval = (u64) interval * clock->mult;
158 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159 	tk->raw_interval =
160 		((u64) interval * clock->mult) >> clock->shift;
161 
162 	 /* if changing clocks, convert xtime_nsec shift units */
163 	if (old_clock) {
164 		int shift_change = clock->shift - old_clock->shift;
165 		if (shift_change < 0)
166 			tk->tkr.xtime_nsec >>= -shift_change;
167 		else
168 			tk->tkr.xtime_nsec <<= shift_change;
169 	}
170 	tk->tkr.shift = clock->shift;
171 
172 	tk->ntp_error = 0;
173 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 
176 	/*
177 	 * The timekeeper keeps its own mult values for the currently
178 	 * active clocksource. These value will be adjusted via NTP
179 	 * to counteract clock drifting.
180 	 */
181 	tk->tkr.mult = clock->mult;
182 	tk->ntp_err_mult = 0;
183 }
184 
185 /* Timekeeper helper functions. */
186 
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193 
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196 	cycle_t cycle_now, delta;
197 	s64 nsec;
198 
199 	/* read clocksource: */
200 	cycle_now = tkr->read(tkr->clock);
201 
202 	/* calculate the delta since the last update_wall_time: */
203 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204 
205 	nsec = delta * tkr->mult + tkr->xtime_nsec;
206 	nsec >>= tkr->shift;
207 
208 	/* If arch requires, add in get_arch_timeoffset() */
209 	return nsec + arch_gettimeoffset();
210 }
211 
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214 	struct clocksource *clock = tk->tkr.clock;
215 	cycle_t cycle_now, delta;
216 	s64 nsec;
217 
218 	/* read clocksource: */
219 	cycle_now = tk->tkr.read(clock);
220 
221 	/* calculate the delta since the last update_wall_time: */
222 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223 
224 	/* convert delta to nanoseconds. */
225 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226 
227 	/* If arch requires, add in get_arch_timeoffset() */
228 	return nsec + arch_gettimeoffset();
229 }
230 
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tk:		The timekeeper from which we take the update
234  * @tkf:	The fast timekeeper to update
235  * @tbase:	The time base for the fast timekeeper (mono/raw)
236  *
237  * We want to use this from any context including NMI and tracing /
238  * instrumenting the timekeeping code itself.
239  *
240  * So we handle this differently than the other timekeeping accessor
241  * functions which retry when the sequence count has changed. The
242  * update side does:
243  *
244  * smp_wmb();	<- Ensure that the last base[1] update is visible
245  * tkf->seq++;
246  * smp_wmb();	<- Ensure that the seqcount update is visible
247  * update(tkf->base[0], tk);
248  * smp_wmb();	<- Ensure that the base[0] update is visible
249  * tkf->seq++;
250  * smp_wmb();	<- Ensure that the seqcount update is visible
251  * update(tkf->base[1], tk);
252  *
253  * The reader side does:
254  *
255  * do {
256  *	seq = tkf->seq;
257  *	smp_rmb();
258  *	idx = seq & 0x01;
259  *	now = now(tkf->base[idx]);
260  *	smp_rmb();
261  * } while (seq != tkf->seq)
262  *
263  * As long as we update base[0] readers are forced off to
264  * base[1]. Once base[0] is updated readers are redirected to base[0]
265  * and the base[1] update takes place.
266  *
267  * So if a NMI hits the update of base[0] then it will use base[1]
268  * which is still consistent. In the worst case this can result is a
269  * slightly wrong timestamp (a few nanoseconds). See
270  * @ktime_get_mono_fast_ns.
271  */
272 static void update_fast_timekeeper(struct timekeeper *tk)
273 {
274 	struct tk_read_base *base = tk_fast_mono.base;
275 
276 	/* Force readers off to base[1] */
277 	raw_write_seqcount_latch(&tk_fast_mono.seq);
278 
279 	/* Update base[0] */
280 	memcpy(base, &tk->tkr, sizeof(*base));
281 
282 	/* Force readers back to base[0] */
283 	raw_write_seqcount_latch(&tk_fast_mono.seq);
284 
285 	/* Update base[1] */
286 	memcpy(base + 1, base, sizeof(*base));
287 }
288 
289 /**
290  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291  *
292  * This timestamp is not guaranteed to be monotonic across an update.
293  * The timestamp is calculated by:
294  *
295  *	now = base_mono + clock_delta * slope
296  *
297  * So if the update lowers the slope, readers who are forced to the
298  * not yet updated second array are still using the old steeper slope.
299  *
300  * tmono
301  * ^
302  * |    o  n
303  * |   o n
304  * |  u
305  * | o
306  * |o
307  * |12345678---> reader order
308  *
309  * o = old slope
310  * u = update
311  * n = new slope
312  *
313  * So reader 6 will observe time going backwards versus reader 5.
314  *
315  * While other CPUs are likely to be able observe that, the only way
316  * for a CPU local observation is when an NMI hits in the middle of
317  * the update. Timestamps taken from that NMI context might be ahead
318  * of the following timestamps. Callers need to be aware of that and
319  * deal with it.
320  */
321 u64 notrace ktime_get_mono_fast_ns(void)
322 {
323 	struct tk_read_base *tkr;
324 	unsigned int seq;
325 	u64 now;
326 
327 	do {
328 		seq = raw_read_seqcount(&tk_fast_mono.seq);
329 		tkr = tk_fast_mono.base + (seq & 0x01);
330 		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331 
332 	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333 	return now;
334 }
335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336 
337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338 
339 static inline void update_vsyscall(struct timekeeper *tk)
340 {
341 	struct timespec xt, wm;
342 
343 	xt = timespec64_to_timespec(tk_xtime(tk));
344 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
345 	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346 			    tk->tkr.cycle_last);
347 }
348 
349 static inline void old_vsyscall_fixup(struct timekeeper *tk)
350 {
351 	s64 remainder;
352 
353 	/*
354 	* Store only full nanoseconds into xtime_nsec after rounding
355 	* it up and add the remainder to the error difference.
356 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
357 	* by truncating the remainder in vsyscalls. However, it causes
358 	* additional work to be done in timekeeping_adjust(). Once
359 	* the vsyscall implementations are converted to use xtime_nsec
360 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361 	* users are removed, this can be killed.
362 	*/
363 	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364 	tk->tkr.xtime_nsec -= remainder;
365 	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366 	tk->ntp_error += remainder << tk->ntp_error_shift;
367 	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 }
369 #else
370 #define old_vsyscall_fixup(tk)
371 #endif
372 
373 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374 
375 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376 {
377 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 }
379 
380 /**
381  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
382  */
383 int pvclock_gtod_register_notifier(struct notifier_block *nb)
384 {
385 	struct timekeeper *tk = &tk_core.timekeeper;
386 	unsigned long flags;
387 	int ret;
388 
389 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
390 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391 	update_pvclock_gtod(tk, true);
392 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393 
394 	return ret;
395 }
396 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397 
398 /**
399  * pvclock_gtod_unregister_notifier - unregister a pvclock
400  * timedata update listener
401  */
402 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403 {
404 	unsigned long flags;
405 	int ret;
406 
407 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
408 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410 
411 	return ret;
412 }
413 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414 
415 /*
416  * Update the ktime_t based scalar nsec members of the timekeeper
417  */
418 static inline void tk_update_ktime_data(struct timekeeper *tk)
419 {
420 	s64 nsec;
421 
422 	/*
423 	 * The xtime based monotonic readout is:
424 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
425 	 * The ktime based monotonic readout is:
426 	 *	nsec = base_mono + now();
427 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
428 	 */
429 	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
430 	nsec *= NSEC_PER_SEC;
431 	nsec += tk->wall_to_monotonic.tv_nsec;
432 	tk->tkr.base_mono = ns_to_ktime(nsec);
433 
434 	/* Update the monotonic raw base */
435 	tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 }
437 
438 /* must hold timekeeper_lock */
439 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
440 {
441 	if (action & TK_CLEAR_NTP) {
442 		tk->ntp_error = 0;
443 		ntp_clear();
444 	}
445 
446 	tk_update_ktime_data(tk);
447 
448 	update_vsyscall(tk);
449 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
450 
451 	if (action & TK_MIRROR)
452 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
453 		       sizeof(tk_core.timekeeper));
454 
455 	update_fast_timekeeper(tk);
456 }
457 
458 /**
459  * timekeeping_forward_now - update clock to the current time
460  *
461  * Forward the current clock to update its state since the last call to
462  * update_wall_time(). This is useful before significant clock changes,
463  * as it avoids having to deal with this time offset explicitly.
464  */
465 static void timekeeping_forward_now(struct timekeeper *tk)
466 {
467 	struct clocksource *clock = tk->tkr.clock;
468 	cycle_t cycle_now, delta;
469 	s64 nsec;
470 
471 	cycle_now = tk->tkr.read(clock);
472 	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
473 	tk->tkr.cycle_last = cycle_now;
474 
475 	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
476 
477 	/* If arch requires, add in get_arch_timeoffset() */
478 	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
479 
480 	tk_normalize_xtime(tk);
481 
482 	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
483 	timespec64_add_ns(&tk->raw_time, nsec);
484 }
485 
486 /**
487  * __getnstimeofday64 - Returns the time of day in a timespec64.
488  * @ts:		pointer to the timespec to be set
489  *
490  * Updates the time of day in the timespec.
491  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
492  */
493 int __getnstimeofday64(struct timespec64 *ts)
494 {
495 	struct timekeeper *tk = &tk_core.timekeeper;
496 	unsigned long seq;
497 	s64 nsecs = 0;
498 
499 	do {
500 		seq = read_seqcount_begin(&tk_core.seq);
501 
502 		ts->tv_sec = tk->xtime_sec;
503 		nsecs = timekeeping_get_ns(&tk->tkr);
504 
505 	} while (read_seqcount_retry(&tk_core.seq, seq));
506 
507 	ts->tv_nsec = 0;
508 	timespec64_add_ns(ts, nsecs);
509 
510 	/*
511 	 * Do not bail out early, in case there were callers still using
512 	 * the value, even in the face of the WARN_ON.
513 	 */
514 	if (unlikely(timekeeping_suspended))
515 		return -EAGAIN;
516 	return 0;
517 }
518 EXPORT_SYMBOL(__getnstimeofday64);
519 
520 /**
521  * getnstimeofday64 - Returns the time of day in a timespec64.
522  * @ts:		pointer to the timespec to be set
523  *
524  * Returns the time of day in a timespec (WARN if suspended).
525  */
526 void getnstimeofday64(struct timespec64 *ts)
527 {
528 	WARN_ON(__getnstimeofday64(ts));
529 }
530 EXPORT_SYMBOL(getnstimeofday64);
531 
532 ktime_t ktime_get(void)
533 {
534 	struct timekeeper *tk = &tk_core.timekeeper;
535 	unsigned int seq;
536 	ktime_t base;
537 	s64 nsecs;
538 
539 	WARN_ON(timekeeping_suspended);
540 
541 	do {
542 		seq = read_seqcount_begin(&tk_core.seq);
543 		base = tk->tkr.base_mono;
544 		nsecs = timekeeping_get_ns(&tk->tkr);
545 
546 	} while (read_seqcount_retry(&tk_core.seq, seq));
547 
548 	return ktime_add_ns(base, nsecs);
549 }
550 EXPORT_SYMBOL_GPL(ktime_get);
551 
552 static ktime_t *offsets[TK_OFFS_MAX] = {
553 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
554 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
555 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
556 };
557 
558 ktime_t ktime_get_with_offset(enum tk_offsets offs)
559 {
560 	struct timekeeper *tk = &tk_core.timekeeper;
561 	unsigned int seq;
562 	ktime_t base, *offset = offsets[offs];
563 	s64 nsecs;
564 
565 	WARN_ON(timekeeping_suspended);
566 
567 	do {
568 		seq = read_seqcount_begin(&tk_core.seq);
569 		base = ktime_add(tk->tkr.base_mono, *offset);
570 		nsecs = timekeeping_get_ns(&tk->tkr);
571 
572 	} while (read_seqcount_retry(&tk_core.seq, seq));
573 
574 	return ktime_add_ns(base, nsecs);
575 
576 }
577 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
578 
579 /**
580  * ktime_mono_to_any() - convert mononotic time to any other time
581  * @tmono:	time to convert.
582  * @offs:	which offset to use
583  */
584 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
585 {
586 	ktime_t *offset = offsets[offs];
587 	unsigned long seq;
588 	ktime_t tconv;
589 
590 	do {
591 		seq = read_seqcount_begin(&tk_core.seq);
592 		tconv = ktime_add(tmono, *offset);
593 	} while (read_seqcount_retry(&tk_core.seq, seq));
594 
595 	return tconv;
596 }
597 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
598 
599 /**
600  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
601  */
602 ktime_t ktime_get_raw(void)
603 {
604 	struct timekeeper *tk = &tk_core.timekeeper;
605 	unsigned int seq;
606 	ktime_t base;
607 	s64 nsecs;
608 
609 	do {
610 		seq = read_seqcount_begin(&tk_core.seq);
611 		base = tk->base_raw;
612 		nsecs = timekeeping_get_ns_raw(tk);
613 
614 	} while (read_seqcount_retry(&tk_core.seq, seq));
615 
616 	return ktime_add_ns(base, nsecs);
617 }
618 EXPORT_SYMBOL_GPL(ktime_get_raw);
619 
620 /**
621  * ktime_get_ts64 - get the monotonic clock in timespec64 format
622  * @ts:		pointer to timespec variable
623  *
624  * The function calculates the monotonic clock from the realtime
625  * clock and the wall_to_monotonic offset and stores the result
626  * in normalized timespec format in the variable pointed to by @ts.
627  */
628 void ktime_get_ts64(struct timespec64 *ts)
629 {
630 	struct timekeeper *tk = &tk_core.timekeeper;
631 	struct timespec64 tomono;
632 	s64 nsec;
633 	unsigned int seq;
634 
635 	WARN_ON(timekeeping_suspended);
636 
637 	do {
638 		seq = read_seqcount_begin(&tk_core.seq);
639 		ts->tv_sec = tk->xtime_sec;
640 		nsec = timekeeping_get_ns(&tk->tkr);
641 		tomono = tk->wall_to_monotonic;
642 
643 	} while (read_seqcount_retry(&tk_core.seq, seq));
644 
645 	ts->tv_sec += tomono.tv_sec;
646 	ts->tv_nsec = 0;
647 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
648 }
649 EXPORT_SYMBOL_GPL(ktime_get_ts64);
650 
651 #ifdef CONFIG_NTP_PPS
652 
653 /**
654  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
655  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
656  * @ts_real:	pointer to the timespec to be set to the time of day
657  *
658  * This function reads both the time of day and raw monotonic time at the
659  * same time atomically and stores the resulting timestamps in timespec
660  * format.
661  */
662 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
663 {
664 	struct timekeeper *tk = &tk_core.timekeeper;
665 	unsigned long seq;
666 	s64 nsecs_raw, nsecs_real;
667 
668 	WARN_ON_ONCE(timekeeping_suspended);
669 
670 	do {
671 		seq = read_seqcount_begin(&tk_core.seq);
672 
673 		*ts_raw = timespec64_to_timespec(tk->raw_time);
674 		ts_real->tv_sec = tk->xtime_sec;
675 		ts_real->tv_nsec = 0;
676 
677 		nsecs_raw = timekeeping_get_ns_raw(tk);
678 		nsecs_real = timekeeping_get_ns(&tk->tkr);
679 
680 	} while (read_seqcount_retry(&tk_core.seq, seq));
681 
682 	timespec_add_ns(ts_raw, nsecs_raw);
683 	timespec_add_ns(ts_real, nsecs_real);
684 }
685 EXPORT_SYMBOL(getnstime_raw_and_real);
686 
687 #endif /* CONFIG_NTP_PPS */
688 
689 /**
690  * do_gettimeofday - Returns the time of day in a timeval
691  * @tv:		pointer to the timeval to be set
692  *
693  * NOTE: Users should be converted to using getnstimeofday()
694  */
695 void do_gettimeofday(struct timeval *tv)
696 {
697 	struct timespec64 now;
698 
699 	getnstimeofday64(&now);
700 	tv->tv_sec = now.tv_sec;
701 	tv->tv_usec = now.tv_nsec/1000;
702 }
703 EXPORT_SYMBOL(do_gettimeofday);
704 
705 /**
706  * do_settimeofday - Sets the time of day
707  * @tv:		pointer to the timespec variable containing the new time
708  *
709  * Sets the time of day to the new time and update NTP and notify hrtimers
710  */
711 int do_settimeofday(const struct timespec *tv)
712 {
713 	struct timekeeper *tk = &tk_core.timekeeper;
714 	struct timespec64 ts_delta, xt, tmp;
715 	unsigned long flags;
716 
717 	if (!timespec_valid_strict(tv))
718 		return -EINVAL;
719 
720 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
721 	write_seqcount_begin(&tk_core.seq);
722 
723 	timekeeping_forward_now(tk);
724 
725 	xt = tk_xtime(tk);
726 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
727 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
728 
729 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
730 
731 	tmp = timespec_to_timespec64(*tv);
732 	tk_set_xtime(tk, &tmp);
733 
734 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
735 
736 	write_seqcount_end(&tk_core.seq);
737 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
738 
739 	/* signal hrtimers about time change */
740 	clock_was_set();
741 
742 	return 0;
743 }
744 EXPORT_SYMBOL(do_settimeofday);
745 
746 /**
747  * timekeeping_inject_offset - Adds or subtracts from the current time.
748  * @tv:		pointer to the timespec variable containing the offset
749  *
750  * Adds or subtracts an offset value from the current time.
751  */
752 int timekeeping_inject_offset(struct timespec *ts)
753 {
754 	struct timekeeper *tk = &tk_core.timekeeper;
755 	unsigned long flags;
756 	struct timespec64 ts64, tmp;
757 	int ret = 0;
758 
759 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
760 		return -EINVAL;
761 
762 	ts64 = timespec_to_timespec64(*ts);
763 
764 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
765 	write_seqcount_begin(&tk_core.seq);
766 
767 	timekeeping_forward_now(tk);
768 
769 	/* Make sure the proposed value is valid */
770 	tmp = timespec64_add(tk_xtime(tk),  ts64);
771 	if (!timespec64_valid_strict(&tmp)) {
772 		ret = -EINVAL;
773 		goto error;
774 	}
775 
776 	tk_xtime_add(tk, &ts64);
777 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
778 
779 error: /* even if we error out, we forwarded the time, so call update */
780 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
781 
782 	write_seqcount_end(&tk_core.seq);
783 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
784 
785 	/* signal hrtimers about time change */
786 	clock_was_set();
787 
788 	return ret;
789 }
790 EXPORT_SYMBOL(timekeeping_inject_offset);
791 
792 
793 /**
794  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
795  *
796  */
797 s32 timekeeping_get_tai_offset(void)
798 {
799 	struct timekeeper *tk = &tk_core.timekeeper;
800 	unsigned int seq;
801 	s32 ret;
802 
803 	do {
804 		seq = read_seqcount_begin(&tk_core.seq);
805 		ret = tk->tai_offset;
806 	} while (read_seqcount_retry(&tk_core.seq, seq));
807 
808 	return ret;
809 }
810 
811 /**
812  * __timekeeping_set_tai_offset - Lock free worker function
813  *
814  */
815 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
816 {
817 	tk->tai_offset = tai_offset;
818 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
819 }
820 
821 /**
822  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
823  *
824  */
825 void timekeeping_set_tai_offset(s32 tai_offset)
826 {
827 	struct timekeeper *tk = &tk_core.timekeeper;
828 	unsigned long flags;
829 
830 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
831 	write_seqcount_begin(&tk_core.seq);
832 	__timekeeping_set_tai_offset(tk, tai_offset);
833 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
834 	write_seqcount_end(&tk_core.seq);
835 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
836 	clock_was_set();
837 }
838 
839 /**
840  * change_clocksource - Swaps clocksources if a new one is available
841  *
842  * Accumulates current time interval and initializes new clocksource
843  */
844 static int change_clocksource(void *data)
845 {
846 	struct timekeeper *tk = &tk_core.timekeeper;
847 	struct clocksource *new, *old;
848 	unsigned long flags;
849 
850 	new = (struct clocksource *) data;
851 
852 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
853 	write_seqcount_begin(&tk_core.seq);
854 
855 	timekeeping_forward_now(tk);
856 	/*
857 	 * If the cs is in module, get a module reference. Succeeds
858 	 * for built-in code (owner == NULL) as well.
859 	 */
860 	if (try_module_get(new->owner)) {
861 		if (!new->enable || new->enable(new) == 0) {
862 			old = tk->tkr.clock;
863 			tk_setup_internals(tk, new);
864 			if (old->disable)
865 				old->disable(old);
866 			module_put(old->owner);
867 		} else {
868 			module_put(new->owner);
869 		}
870 	}
871 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
872 
873 	write_seqcount_end(&tk_core.seq);
874 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
875 
876 	return 0;
877 }
878 
879 /**
880  * timekeeping_notify - Install a new clock source
881  * @clock:		pointer to the clock source
882  *
883  * This function is called from clocksource.c after a new, better clock
884  * source has been registered. The caller holds the clocksource_mutex.
885  */
886 int timekeeping_notify(struct clocksource *clock)
887 {
888 	struct timekeeper *tk = &tk_core.timekeeper;
889 
890 	if (tk->tkr.clock == clock)
891 		return 0;
892 	stop_machine(change_clocksource, clock, NULL);
893 	tick_clock_notify();
894 	return tk->tkr.clock == clock ? 0 : -1;
895 }
896 
897 /**
898  * getrawmonotonic - Returns the raw monotonic time in a timespec
899  * @ts:		pointer to the timespec to be set
900  *
901  * Returns the raw monotonic time (completely un-modified by ntp)
902  */
903 void getrawmonotonic(struct timespec *ts)
904 {
905 	struct timekeeper *tk = &tk_core.timekeeper;
906 	struct timespec64 ts64;
907 	unsigned long seq;
908 	s64 nsecs;
909 
910 	do {
911 		seq = read_seqcount_begin(&tk_core.seq);
912 		nsecs = timekeeping_get_ns_raw(tk);
913 		ts64 = tk->raw_time;
914 
915 	} while (read_seqcount_retry(&tk_core.seq, seq));
916 
917 	timespec64_add_ns(&ts64, nsecs);
918 	*ts = timespec64_to_timespec(ts64);
919 }
920 EXPORT_SYMBOL(getrawmonotonic);
921 
922 /**
923  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
924  */
925 int timekeeping_valid_for_hres(void)
926 {
927 	struct timekeeper *tk = &tk_core.timekeeper;
928 	unsigned long seq;
929 	int ret;
930 
931 	do {
932 		seq = read_seqcount_begin(&tk_core.seq);
933 
934 		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
935 
936 	} while (read_seqcount_retry(&tk_core.seq, seq));
937 
938 	return ret;
939 }
940 
941 /**
942  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
943  */
944 u64 timekeeping_max_deferment(void)
945 {
946 	struct timekeeper *tk = &tk_core.timekeeper;
947 	unsigned long seq;
948 	u64 ret;
949 
950 	do {
951 		seq = read_seqcount_begin(&tk_core.seq);
952 
953 		ret = tk->tkr.clock->max_idle_ns;
954 
955 	} while (read_seqcount_retry(&tk_core.seq, seq));
956 
957 	return ret;
958 }
959 
960 /**
961  * read_persistent_clock -  Return time from the persistent clock.
962  *
963  * Weak dummy function for arches that do not yet support it.
964  * Reads the time from the battery backed persistent clock.
965  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
966  *
967  *  XXX - Do be sure to remove it once all arches implement it.
968  */
969 void __weak read_persistent_clock(struct timespec *ts)
970 {
971 	ts->tv_sec = 0;
972 	ts->tv_nsec = 0;
973 }
974 
975 /**
976  * read_boot_clock -  Return time of the system start.
977  *
978  * Weak dummy function for arches that do not yet support it.
979  * Function to read the exact time the system has been started.
980  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
981  *
982  *  XXX - Do be sure to remove it once all arches implement it.
983  */
984 void __weak read_boot_clock(struct timespec *ts)
985 {
986 	ts->tv_sec = 0;
987 	ts->tv_nsec = 0;
988 }
989 
990 /*
991  * timekeeping_init - Initializes the clocksource and common timekeeping values
992  */
993 void __init timekeeping_init(void)
994 {
995 	struct timekeeper *tk = &tk_core.timekeeper;
996 	struct clocksource *clock;
997 	unsigned long flags;
998 	struct timespec64 now, boot, tmp;
999 	struct timespec ts;
1000 
1001 	read_persistent_clock(&ts);
1002 	now = timespec_to_timespec64(ts);
1003 	if (!timespec64_valid_strict(&now)) {
1004 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1005 			"         Check your CMOS/BIOS settings.\n");
1006 		now.tv_sec = 0;
1007 		now.tv_nsec = 0;
1008 	} else if (now.tv_sec || now.tv_nsec)
1009 		persistent_clock_exist = true;
1010 
1011 	read_boot_clock(&ts);
1012 	boot = timespec_to_timespec64(ts);
1013 	if (!timespec64_valid_strict(&boot)) {
1014 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1015 			"         Check your CMOS/BIOS settings.\n");
1016 		boot.tv_sec = 0;
1017 		boot.tv_nsec = 0;
1018 	}
1019 
1020 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1021 	write_seqcount_begin(&tk_core.seq);
1022 	ntp_init();
1023 
1024 	clock = clocksource_default_clock();
1025 	if (clock->enable)
1026 		clock->enable(clock);
1027 	tk_setup_internals(tk, clock);
1028 
1029 	tk_set_xtime(tk, &now);
1030 	tk->raw_time.tv_sec = 0;
1031 	tk->raw_time.tv_nsec = 0;
1032 	tk->base_raw.tv64 = 0;
1033 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1034 		boot = tk_xtime(tk);
1035 
1036 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1037 	tk_set_wall_to_mono(tk, tmp);
1038 
1039 	timekeeping_update(tk, TK_MIRROR);
1040 
1041 	write_seqcount_end(&tk_core.seq);
1042 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1043 }
1044 
1045 /* time in seconds when suspend began */
1046 static struct timespec64 timekeeping_suspend_time;
1047 
1048 /**
1049  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1050  * @delta: pointer to a timespec delta value
1051  *
1052  * Takes a timespec offset measuring a suspend interval and properly
1053  * adds the sleep offset to the timekeeping variables.
1054  */
1055 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1056 					   struct timespec64 *delta)
1057 {
1058 	if (!timespec64_valid_strict(delta)) {
1059 		printk_deferred(KERN_WARNING
1060 				"__timekeeping_inject_sleeptime: Invalid "
1061 				"sleep delta value!\n");
1062 		return;
1063 	}
1064 	tk_xtime_add(tk, delta);
1065 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1066 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1067 	tk_debug_account_sleep_time(delta);
1068 }
1069 
1070 /**
1071  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1072  * @delta: pointer to a timespec delta value
1073  *
1074  * This hook is for architectures that cannot support read_persistent_clock
1075  * because their RTC/persistent clock is only accessible when irqs are enabled.
1076  *
1077  * This function should only be called by rtc_resume(), and allows
1078  * a suspend offset to be injected into the timekeeping values.
1079  */
1080 void timekeeping_inject_sleeptime(struct timespec *delta)
1081 {
1082 	struct timekeeper *tk = &tk_core.timekeeper;
1083 	struct timespec64 tmp;
1084 	unsigned long flags;
1085 
1086 	/*
1087 	 * Make sure we don't set the clock twice, as timekeeping_resume()
1088 	 * already did it
1089 	 */
1090 	if (has_persistent_clock())
1091 		return;
1092 
1093 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1094 	write_seqcount_begin(&tk_core.seq);
1095 
1096 	timekeeping_forward_now(tk);
1097 
1098 	tmp = timespec_to_timespec64(*delta);
1099 	__timekeeping_inject_sleeptime(tk, &tmp);
1100 
1101 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1102 
1103 	write_seqcount_end(&tk_core.seq);
1104 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1105 
1106 	/* signal hrtimers about time change */
1107 	clock_was_set();
1108 }
1109 
1110 /**
1111  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1112  *
1113  * This is for the generic clocksource timekeeping.
1114  * xtime/wall_to_monotonic/jiffies/etc are
1115  * still managed by arch specific suspend/resume code.
1116  */
1117 static void timekeeping_resume(void)
1118 {
1119 	struct timekeeper *tk = &tk_core.timekeeper;
1120 	struct clocksource *clock = tk->tkr.clock;
1121 	unsigned long flags;
1122 	struct timespec64 ts_new, ts_delta;
1123 	struct timespec tmp;
1124 	cycle_t cycle_now, cycle_delta;
1125 	bool suspendtime_found = false;
1126 
1127 	read_persistent_clock(&tmp);
1128 	ts_new = timespec_to_timespec64(tmp);
1129 
1130 	clockevents_resume();
1131 	clocksource_resume();
1132 
1133 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1134 	write_seqcount_begin(&tk_core.seq);
1135 
1136 	/*
1137 	 * After system resumes, we need to calculate the suspended time and
1138 	 * compensate it for the OS time. There are 3 sources that could be
1139 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1140 	 * device.
1141 	 *
1142 	 * One specific platform may have 1 or 2 or all of them, and the
1143 	 * preference will be:
1144 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1145 	 * The less preferred source will only be tried if there is no better
1146 	 * usable source. The rtc part is handled separately in rtc core code.
1147 	 */
1148 	cycle_now = tk->tkr.read(clock);
1149 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1150 		cycle_now > tk->tkr.cycle_last) {
1151 		u64 num, max = ULLONG_MAX;
1152 		u32 mult = clock->mult;
1153 		u32 shift = clock->shift;
1154 		s64 nsec = 0;
1155 
1156 		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1157 						tk->tkr.mask);
1158 
1159 		/*
1160 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1161 		 * suspended time is too long. In that case we need do the
1162 		 * 64 bits math carefully
1163 		 */
1164 		do_div(max, mult);
1165 		if (cycle_delta > max) {
1166 			num = div64_u64(cycle_delta, max);
1167 			nsec = (((u64) max * mult) >> shift) * num;
1168 			cycle_delta -= num * max;
1169 		}
1170 		nsec += ((u64) cycle_delta * mult) >> shift;
1171 
1172 		ts_delta = ns_to_timespec64(nsec);
1173 		suspendtime_found = true;
1174 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1175 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1176 		suspendtime_found = true;
1177 	}
1178 
1179 	if (suspendtime_found)
1180 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1181 
1182 	/* Re-base the last cycle value */
1183 	tk->tkr.cycle_last = cycle_now;
1184 	tk->ntp_error = 0;
1185 	timekeeping_suspended = 0;
1186 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1187 	write_seqcount_end(&tk_core.seq);
1188 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1189 
1190 	touch_softlockup_watchdog();
1191 
1192 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1193 
1194 	/* Resume hrtimers */
1195 	hrtimers_resume();
1196 }
1197 
1198 static int timekeeping_suspend(void)
1199 {
1200 	struct timekeeper *tk = &tk_core.timekeeper;
1201 	unsigned long flags;
1202 	struct timespec64		delta, delta_delta;
1203 	static struct timespec64	old_delta;
1204 	struct timespec tmp;
1205 
1206 	read_persistent_clock(&tmp);
1207 	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1208 
1209 	/*
1210 	 * On some systems the persistent_clock can not be detected at
1211 	 * timekeeping_init by its return value, so if we see a valid
1212 	 * value returned, update the persistent_clock_exists flag.
1213 	 */
1214 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1215 		persistent_clock_exist = true;
1216 
1217 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218 	write_seqcount_begin(&tk_core.seq);
1219 	timekeeping_forward_now(tk);
1220 	timekeeping_suspended = 1;
1221 
1222 	/*
1223 	 * To avoid drift caused by repeated suspend/resumes,
1224 	 * which each can add ~1 second drift error,
1225 	 * try to compensate so the difference in system time
1226 	 * and persistent_clock time stays close to constant.
1227 	 */
1228 	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1229 	delta_delta = timespec64_sub(delta, old_delta);
1230 	if (abs(delta_delta.tv_sec)  >= 2) {
1231 		/*
1232 		 * if delta_delta is too large, assume time correction
1233 		 * has occured and set old_delta to the current delta.
1234 		 */
1235 		old_delta = delta;
1236 	} else {
1237 		/* Otherwise try to adjust old_system to compensate */
1238 		timekeeping_suspend_time =
1239 			timespec64_add(timekeeping_suspend_time, delta_delta);
1240 	}
1241 
1242 	timekeeping_update(tk, TK_MIRROR);
1243 	write_seqcount_end(&tk_core.seq);
1244 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1245 
1246 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1247 	clocksource_suspend();
1248 	clockevents_suspend();
1249 
1250 	return 0;
1251 }
1252 
1253 /* sysfs resume/suspend bits for timekeeping */
1254 static struct syscore_ops timekeeping_syscore_ops = {
1255 	.resume		= timekeeping_resume,
1256 	.suspend	= timekeeping_suspend,
1257 };
1258 
1259 static int __init timekeeping_init_ops(void)
1260 {
1261 	register_syscore_ops(&timekeeping_syscore_ops);
1262 	return 0;
1263 }
1264 device_initcall(timekeeping_init_ops);
1265 
1266 /*
1267  * Apply a multiplier adjustment to the timekeeper
1268  */
1269 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1270 							 s64 offset,
1271 							 bool negative,
1272 							 int adj_scale)
1273 {
1274 	s64 interval = tk->cycle_interval;
1275 	s32 mult_adj = 1;
1276 
1277 	if (negative) {
1278 		mult_adj = -mult_adj;
1279 		interval = -interval;
1280 		offset  = -offset;
1281 	}
1282 	mult_adj <<= adj_scale;
1283 	interval <<= adj_scale;
1284 	offset <<= adj_scale;
1285 
1286 	/*
1287 	 * So the following can be confusing.
1288 	 *
1289 	 * To keep things simple, lets assume mult_adj == 1 for now.
1290 	 *
1291 	 * When mult_adj != 1, remember that the interval and offset values
1292 	 * have been appropriately scaled so the math is the same.
1293 	 *
1294 	 * The basic idea here is that we're increasing the multiplier
1295 	 * by one, this causes the xtime_interval to be incremented by
1296 	 * one cycle_interval. This is because:
1297 	 *	xtime_interval = cycle_interval * mult
1298 	 * So if mult is being incremented by one:
1299 	 *	xtime_interval = cycle_interval * (mult + 1)
1300 	 * Its the same as:
1301 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1302 	 * Which can be shortened to:
1303 	 *	xtime_interval += cycle_interval
1304 	 *
1305 	 * So offset stores the non-accumulated cycles. Thus the current
1306 	 * time (in shifted nanoseconds) is:
1307 	 *	now = (offset * adj) + xtime_nsec
1308 	 * Now, even though we're adjusting the clock frequency, we have
1309 	 * to keep time consistent. In other words, we can't jump back
1310 	 * in time, and we also want to avoid jumping forward in time.
1311 	 *
1312 	 * So given the same offset value, we need the time to be the same
1313 	 * both before and after the freq adjustment.
1314 	 *	now = (offset * adj_1) + xtime_nsec_1
1315 	 *	now = (offset * adj_2) + xtime_nsec_2
1316 	 * So:
1317 	 *	(offset * adj_1) + xtime_nsec_1 =
1318 	 *		(offset * adj_2) + xtime_nsec_2
1319 	 * And we know:
1320 	 *	adj_2 = adj_1 + 1
1321 	 * So:
1322 	 *	(offset * adj_1) + xtime_nsec_1 =
1323 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1324 	 *	(offset * adj_1) + xtime_nsec_1 =
1325 	 *		(offset * adj_1) + offset + xtime_nsec_2
1326 	 * Canceling the sides:
1327 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1328 	 * Which gives us:
1329 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1330 	 * Which simplfies to:
1331 	 *	xtime_nsec -= offset
1332 	 *
1333 	 * XXX - TODO: Doc ntp_error calculation.
1334 	 */
1335 	tk->tkr.mult += mult_adj;
1336 	tk->xtime_interval += interval;
1337 	tk->tkr.xtime_nsec -= offset;
1338 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1339 }
1340 
1341 /*
1342  * Calculate the multiplier adjustment needed to match the frequency
1343  * specified by NTP
1344  */
1345 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1346 							s64 offset)
1347 {
1348 	s64 interval = tk->cycle_interval;
1349 	s64 xinterval = tk->xtime_interval;
1350 	s64 tick_error;
1351 	bool negative;
1352 	u32 adj;
1353 
1354 	/* Remove any current error adj from freq calculation */
1355 	if (tk->ntp_err_mult)
1356 		xinterval -= tk->cycle_interval;
1357 
1358 	tk->ntp_tick = ntp_tick_length();
1359 
1360 	/* Calculate current error per tick */
1361 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1362 	tick_error -= (xinterval + tk->xtime_remainder);
1363 
1364 	/* Don't worry about correcting it if its small */
1365 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1366 		return;
1367 
1368 	/* preserve the direction of correction */
1369 	negative = (tick_error < 0);
1370 
1371 	/* Sort out the magnitude of the correction */
1372 	tick_error = abs(tick_error);
1373 	for (adj = 0; tick_error > interval; adj++)
1374 		tick_error >>= 1;
1375 
1376 	/* scale the corrections */
1377 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1378 }
1379 
1380 /*
1381  * Adjust the timekeeper's multiplier to the correct frequency
1382  * and also to reduce the accumulated error value.
1383  */
1384 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1385 {
1386 	/* Correct for the current frequency error */
1387 	timekeeping_freqadjust(tk, offset);
1388 
1389 	/* Next make a small adjustment to fix any cumulative error */
1390 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1391 		tk->ntp_err_mult = 1;
1392 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1393 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1394 		/* Undo any existing error adjustment */
1395 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1396 		tk->ntp_err_mult = 0;
1397 	}
1398 
1399 	if (unlikely(tk->tkr.clock->maxadj &&
1400 		(tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1401 		printk_once(KERN_WARNING
1402 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1403 			tk->tkr.clock->name, (long)tk->tkr.mult,
1404 			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1405 	}
1406 
1407 	/*
1408 	 * It may be possible that when we entered this function, xtime_nsec
1409 	 * was very small.  Further, if we're slightly speeding the clocksource
1410 	 * in the code above, its possible the required corrective factor to
1411 	 * xtime_nsec could cause it to underflow.
1412 	 *
1413 	 * Now, since we already accumulated the second, cannot simply roll
1414 	 * the accumulated second back, since the NTP subsystem has been
1415 	 * notified via second_overflow. So instead we push xtime_nsec forward
1416 	 * by the amount we underflowed, and add that amount into the error.
1417 	 *
1418 	 * We'll correct this error next time through this function, when
1419 	 * xtime_nsec is not as small.
1420 	 */
1421 	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1422 		s64 neg = -(s64)tk->tkr.xtime_nsec;
1423 		tk->tkr.xtime_nsec = 0;
1424 		tk->ntp_error += neg << tk->ntp_error_shift;
1425 	}
1426 }
1427 
1428 /**
1429  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1430  *
1431  * Helper function that accumulates a the nsecs greater then a second
1432  * from the xtime_nsec field to the xtime_secs field.
1433  * It also calls into the NTP code to handle leapsecond processing.
1434  *
1435  */
1436 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1437 {
1438 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1439 	unsigned int clock_set = 0;
1440 
1441 	while (tk->tkr.xtime_nsec >= nsecps) {
1442 		int leap;
1443 
1444 		tk->tkr.xtime_nsec -= nsecps;
1445 		tk->xtime_sec++;
1446 
1447 		/* Figure out if its a leap sec and apply if needed */
1448 		leap = second_overflow(tk->xtime_sec);
1449 		if (unlikely(leap)) {
1450 			struct timespec64 ts;
1451 
1452 			tk->xtime_sec += leap;
1453 
1454 			ts.tv_sec = leap;
1455 			ts.tv_nsec = 0;
1456 			tk_set_wall_to_mono(tk,
1457 				timespec64_sub(tk->wall_to_monotonic, ts));
1458 
1459 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1460 
1461 			clock_set = TK_CLOCK_WAS_SET;
1462 		}
1463 	}
1464 	return clock_set;
1465 }
1466 
1467 /**
1468  * logarithmic_accumulation - shifted accumulation of cycles
1469  *
1470  * This functions accumulates a shifted interval of cycles into
1471  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1472  * loop.
1473  *
1474  * Returns the unconsumed cycles.
1475  */
1476 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1477 						u32 shift,
1478 						unsigned int *clock_set)
1479 {
1480 	cycle_t interval = tk->cycle_interval << shift;
1481 	u64 raw_nsecs;
1482 
1483 	/* If the offset is smaller then a shifted interval, do nothing */
1484 	if (offset < interval)
1485 		return offset;
1486 
1487 	/* Accumulate one shifted interval */
1488 	offset -= interval;
1489 	tk->tkr.cycle_last += interval;
1490 
1491 	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1492 	*clock_set |= accumulate_nsecs_to_secs(tk);
1493 
1494 	/* Accumulate raw time */
1495 	raw_nsecs = (u64)tk->raw_interval << shift;
1496 	raw_nsecs += tk->raw_time.tv_nsec;
1497 	if (raw_nsecs >= NSEC_PER_SEC) {
1498 		u64 raw_secs = raw_nsecs;
1499 		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1500 		tk->raw_time.tv_sec += raw_secs;
1501 	}
1502 	tk->raw_time.tv_nsec = raw_nsecs;
1503 
1504 	/* Accumulate error between NTP and clock interval */
1505 	tk->ntp_error += tk->ntp_tick << shift;
1506 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1507 						(tk->ntp_error_shift + shift);
1508 
1509 	return offset;
1510 }
1511 
1512 /**
1513  * update_wall_time - Uses the current clocksource to increment the wall time
1514  *
1515  */
1516 void update_wall_time(void)
1517 {
1518 	struct timekeeper *real_tk = &tk_core.timekeeper;
1519 	struct timekeeper *tk = &shadow_timekeeper;
1520 	cycle_t offset;
1521 	int shift = 0, maxshift;
1522 	unsigned int clock_set = 0;
1523 	unsigned long flags;
1524 
1525 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1526 
1527 	/* Make sure we're fully resumed: */
1528 	if (unlikely(timekeeping_suspended))
1529 		goto out;
1530 
1531 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1532 	offset = real_tk->cycle_interval;
1533 #else
1534 	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1535 				   tk->tkr.cycle_last, tk->tkr.mask);
1536 #endif
1537 
1538 	/* Check if there's really nothing to do */
1539 	if (offset < real_tk->cycle_interval)
1540 		goto out;
1541 
1542 	/*
1543 	 * With NO_HZ we may have to accumulate many cycle_intervals
1544 	 * (think "ticks") worth of time at once. To do this efficiently,
1545 	 * we calculate the largest doubling multiple of cycle_intervals
1546 	 * that is smaller than the offset.  We then accumulate that
1547 	 * chunk in one go, and then try to consume the next smaller
1548 	 * doubled multiple.
1549 	 */
1550 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1551 	shift = max(0, shift);
1552 	/* Bound shift to one less than what overflows tick_length */
1553 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1554 	shift = min(shift, maxshift);
1555 	while (offset >= tk->cycle_interval) {
1556 		offset = logarithmic_accumulation(tk, offset, shift,
1557 							&clock_set);
1558 		if (offset < tk->cycle_interval<<shift)
1559 			shift--;
1560 	}
1561 
1562 	/* correct the clock when NTP error is too big */
1563 	timekeeping_adjust(tk, offset);
1564 
1565 	/*
1566 	 * XXX This can be killed once everyone converts
1567 	 * to the new update_vsyscall.
1568 	 */
1569 	old_vsyscall_fixup(tk);
1570 
1571 	/*
1572 	 * Finally, make sure that after the rounding
1573 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1574 	 */
1575 	clock_set |= accumulate_nsecs_to_secs(tk);
1576 
1577 	write_seqcount_begin(&tk_core.seq);
1578 	/*
1579 	 * Update the real timekeeper.
1580 	 *
1581 	 * We could avoid this memcpy by switching pointers, but that
1582 	 * requires changes to all other timekeeper usage sites as
1583 	 * well, i.e. move the timekeeper pointer getter into the
1584 	 * spinlocked/seqcount protected sections. And we trade this
1585 	 * memcpy under the tk_core.seq against one before we start
1586 	 * updating.
1587 	 */
1588 	memcpy(real_tk, tk, sizeof(*tk));
1589 	timekeeping_update(real_tk, clock_set);
1590 	write_seqcount_end(&tk_core.seq);
1591 out:
1592 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1593 	if (clock_set)
1594 		/* Have to call _delayed version, since in irq context*/
1595 		clock_was_set_delayed();
1596 }
1597 
1598 /**
1599  * getboottime - Return the real time of system boot.
1600  * @ts:		pointer to the timespec to be set
1601  *
1602  * Returns the wall-time of boot in a timespec.
1603  *
1604  * This is based on the wall_to_monotonic offset and the total suspend
1605  * time. Calls to settimeofday will affect the value returned (which
1606  * basically means that however wrong your real time clock is at boot time,
1607  * you get the right time here).
1608  */
1609 void getboottime(struct timespec *ts)
1610 {
1611 	struct timekeeper *tk = &tk_core.timekeeper;
1612 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1613 
1614 	*ts = ktime_to_timespec(t);
1615 }
1616 EXPORT_SYMBOL_GPL(getboottime);
1617 
1618 unsigned long get_seconds(void)
1619 {
1620 	struct timekeeper *tk = &tk_core.timekeeper;
1621 
1622 	return tk->xtime_sec;
1623 }
1624 EXPORT_SYMBOL(get_seconds);
1625 
1626 struct timespec __current_kernel_time(void)
1627 {
1628 	struct timekeeper *tk = &tk_core.timekeeper;
1629 
1630 	return timespec64_to_timespec(tk_xtime(tk));
1631 }
1632 
1633 struct timespec current_kernel_time(void)
1634 {
1635 	struct timekeeper *tk = &tk_core.timekeeper;
1636 	struct timespec64 now;
1637 	unsigned long seq;
1638 
1639 	do {
1640 		seq = read_seqcount_begin(&tk_core.seq);
1641 
1642 		now = tk_xtime(tk);
1643 	} while (read_seqcount_retry(&tk_core.seq, seq));
1644 
1645 	return timespec64_to_timespec(now);
1646 }
1647 EXPORT_SYMBOL(current_kernel_time);
1648 
1649 struct timespec get_monotonic_coarse(void)
1650 {
1651 	struct timekeeper *tk = &tk_core.timekeeper;
1652 	struct timespec64 now, mono;
1653 	unsigned long seq;
1654 
1655 	do {
1656 		seq = read_seqcount_begin(&tk_core.seq);
1657 
1658 		now = tk_xtime(tk);
1659 		mono = tk->wall_to_monotonic;
1660 	} while (read_seqcount_retry(&tk_core.seq, seq));
1661 
1662 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1663 				now.tv_nsec + mono.tv_nsec);
1664 
1665 	return timespec64_to_timespec(now);
1666 }
1667 
1668 /*
1669  * Must hold jiffies_lock
1670  */
1671 void do_timer(unsigned long ticks)
1672 {
1673 	jiffies_64 += ticks;
1674 	calc_global_load(ticks);
1675 }
1676 
1677 /**
1678  * ktime_get_update_offsets_tick - hrtimer helper
1679  * @offs_real:	pointer to storage for monotonic -> realtime offset
1680  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1681  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1682  *
1683  * Returns monotonic time at last tick and various offsets
1684  */
1685 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1686 							ktime_t *offs_tai)
1687 {
1688 	struct timekeeper *tk = &tk_core.timekeeper;
1689 	unsigned int seq;
1690 	ktime_t base;
1691 	u64 nsecs;
1692 
1693 	do {
1694 		seq = read_seqcount_begin(&tk_core.seq);
1695 
1696 		base = tk->tkr.base_mono;
1697 		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1698 
1699 		*offs_real = tk->offs_real;
1700 		*offs_boot = tk->offs_boot;
1701 		*offs_tai = tk->offs_tai;
1702 	} while (read_seqcount_retry(&tk_core.seq, seq));
1703 
1704 	return ktime_add_ns(base, nsecs);
1705 }
1706 
1707 #ifdef CONFIG_HIGH_RES_TIMERS
1708 /**
1709  * ktime_get_update_offsets_now - hrtimer helper
1710  * @offs_real:	pointer to storage for monotonic -> realtime offset
1711  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1712  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1713  *
1714  * Returns current monotonic time and updates the offsets
1715  * Called from hrtimer_interrupt() or retrigger_next_event()
1716  */
1717 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1718 							ktime_t *offs_tai)
1719 {
1720 	struct timekeeper *tk = &tk_core.timekeeper;
1721 	unsigned int seq;
1722 	ktime_t base;
1723 	u64 nsecs;
1724 
1725 	do {
1726 		seq = read_seqcount_begin(&tk_core.seq);
1727 
1728 		base = tk->tkr.base_mono;
1729 		nsecs = timekeeping_get_ns(&tk->tkr);
1730 
1731 		*offs_real = tk->offs_real;
1732 		*offs_boot = tk->offs_boot;
1733 		*offs_tai = tk->offs_tai;
1734 	} while (read_seqcount_retry(&tk_core.seq, seq));
1735 
1736 	return ktime_add_ns(base, nsecs);
1737 }
1738 #endif
1739 
1740 /**
1741  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1742  */
1743 int do_adjtimex(struct timex *txc)
1744 {
1745 	struct timekeeper *tk = &tk_core.timekeeper;
1746 	unsigned long flags;
1747 	struct timespec64 ts;
1748 	s32 orig_tai, tai;
1749 	int ret;
1750 
1751 	/* Validate the data before disabling interrupts */
1752 	ret = ntp_validate_timex(txc);
1753 	if (ret)
1754 		return ret;
1755 
1756 	if (txc->modes & ADJ_SETOFFSET) {
1757 		struct timespec delta;
1758 		delta.tv_sec  = txc->time.tv_sec;
1759 		delta.tv_nsec = txc->time.tv_usec;
1760 		if (!(txc->modes & ADJ_NANO))
1761 			delta.tv_nsec *= 1000;
1762 		ret = timekeeping_inject_offset(&delta);
1763 		if (ret)
1764 			return ret;
1765 	}
1766 
1767 	getnstimeofday64(&ts);
1768 
1769 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1770 	write_seqcount_begin(&tk_core.seq);
1771 
1772 	orig_tai = tai = tk->tai_offset;
1773 	ret = __do_adjtimex(txc, &ts, &tai);
1774 
1775 	if (tai != orig_tai) {
1776 		__timekeeping_set_tai_offset(tk, tai);
1777 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1778 	}
1779 	write_seqcount_end(&tk_core.seq);
1780 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1781 
1782 	if (tai != orig_tai)
1783 		clock_was_set();
1784 
1785 	ntp_notify_cmos_timer();
1786 
1787 	return ret;
1788 }
1789 
1790 #ifdef CONFIG_NTP_PPS
1791 /**
1792  * hardpps() - Accessor function to NTP __hardpps function
1793  */
1794 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1795 {
1796 	unsigned long flags;
1797 
1798 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1799 	write_seqcount_begin(&tk_core.seq);
1800 
1801 	__hardpps(phase_ts, raw_ts);
1802 
1803 	write_seqcount_end(&tk_core.seq);
1804 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1805 }
1806 EXPORT_SYMBOL(hardpps);
1807 #endif
1808 
1809 /**
1810  * xtime_update() - advances the timekeeping infrastructure
1811  * @ticks:	number of ticks, that have elapsed since the last call.
1812  *
1813  * Must be called with interrupts disabled.
1814  */
1815 void xtime_update(unsigned long ticks)
1816 {
1817 	write_seqlock(&jiffies_lock);
1818 	do_timer(ticks);
1819 	write_sequnlock(&jiffies_lock);
1820 	update_wall_time();
1821 }
1822