1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * No idle tick implementation for low and high resolution timers 8 * 9 * Started by: Thomas Gleixner and Ingo Molnar 10 */ 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/percpu.h> 17 #include <linux/nmi.h> 18 #include <linux/profile.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/clock.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/nohz.h> 23 #include <linux/module.h> 24 #include <linux/irq_work.h> 25 #include <linux/posix-timers.h> 26 #include <linux/context_tracking.h> 27 #include <linux/mm.h> 28 29 #include <asm/irq_regs.h> 30 31 #include "tick-internal.h" 32 33 #include <trace/events/timer.h> 34 35 /* 36 * Per-CPU nohz control structure 37 */ 38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); 39 40 struct tick_sched *tick_get_tick_sched(int cpu) 41 { 42 return &per_cpu(tick_cpu_sched, cpu); 43 } 44 45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 46 /* 47 * The time, when the last jiffy update happened. Protected by jiffies_lock. 48 */ 49 static ktime_t last_jiffies_update; 50 51 /* 52 * Must be called with interrupts disabled ! 53 */ 54 static void tick_do_update_jiffies64(ktime_t now) 55 { 56 unsigned long ticks = 0; 57 ktime_t delta; 58 59 /* 60 * Do a quick check without holding jiffies_lock: 61 */ 62 delta = ktime_sub(now, last_jiffies_update); 63 if (delta < tick_period) 64 return; 65 66 /* Reevaluate with jiffies_lock held */ 67 write_seqlock(&jiffies_lock); 68 69 delta = ktime_sub(now, last_jiffies_update); 70 if (delta >= tick_period) { 71 72 delta = ktime_sub(delta, tick_period); 73 last_jiffies_update = ktime_add(last_jiffies_update, 74 tick_period); 75 76 /* Slow path for long timeouts */ 77 if (unlikely(delta >= tick_period)) { 78 s64 incr = ktime_to_ns(tick_period); 79 80 ticks = ktime_divns(delta, incr); 81 82 last_jiffies_update = ktime_add_ns(last_jiffies_update, 83 incr * ticks); 84 } 85 do_timer(++ticks); 86 87 /* Keep the tick_next_period variable up to date */ 88 tick_next_period = ktime_add(last_jiffies_update, tick_period); 89 } else { 90 write_sequnlock(&jiffies_lock); 91 return; 92 } 93 write_sequnlock(&jiffies_lock); 94 update_wall_time(); 95 } 96 97 /* 98 * Initialize and return retrieve the jiffies update. 99 */ 100 static ktime_t tick_init_jiffy_update(void) 101 { 102 ktime_t period; 103 104 write_seqlock(&jiffies_lock); 105 /* Did we start the jiffies update yet ? */ 106 if (last_jiffies_update == 0) 107 last_jiffies_update = tick_next_period; 108 period = last_jiffies_update; 109 write_sequnlock(&jiffies_lock); 110 return period; 111 } 112 113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) 114 { 115 int cpu = smp_processor_id(); 116 117 #ifdef CONFIG_NO_HZ_COMMON 118 /* 119 * Check if the do_timer duty was dropped. We don't care about 120 * concurrency: This happens only when the CPU in charge went 121 * into a long sleep. If two CPUs happen to assign themselves to 122 * this duty, then the jiffies update is still serialized by 123 * jiffies_lock. 124 * 125 * If nohz_full is enabled, this should not happen because the 126 * tick_do_timer_cpu never relinquishes. 127 */ 128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { 129 #ifdef CONFIG_NO_HZ_FULL 130 WARN_ON(tick_nohz_full_running); 131 #endif 132 tick_do_timer_cpu = cpu; 133 } 134 #endif 135 136 /* Check, if the jiffies need an update */ 137 if (tick_do_timer_cpu == cpu) 138 tick_do_update_jiffies64(now); 139 140 if (ts->inidle) 141 ts->got_idle_tick = 1; 142 } 143 144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) 145 { 146 #ifdef CONFIG_NO_HZ_COMMON 147 /* 148 * When we are idle and the tick is stopped, we have to touch 149 * the watchdog as we might not schedule for a really long 150 * time. This happens on complete idle SMP systems while 151 * waiting on the login prompt. We also increment the "start of 152 * idle" jiffy stamp so the idle accounting adjustment we do 153 * when we go busy again does not account too much ticks. 154 */ 155 if (ts->tick_stopped) { 156 touch_softlockup_watchdog_sched(); 157 if (is_idle_task(current)) 158 ts->idle_jiffies++; 159 /* 160 * In case the current tick fired too early past its expected 161 * expiration, make sure we don't bypass the next clock reprogramming 162 * to the same deadline. 163 */ 164 ts->next_tick = 0; 165 } 166 #endif 167 update_process_times(user_mode(regs)); 168 profile_tick(CPU_PROFILING); 169 } 170 #endif 171 172 #ifdef CONFIG_NO_HZ_FULL 173 cpumask_var_t tick_nohz_full_mask; 174 bool tick_nohz_full_running; 175 static atomic_t tick_dep_mask; 176 177 static bool check_tick_dependency(atomic_t *dep) 178 { 179 int val = atomic_read(dep); 180 181 if (val & TICK_DEP_MASK_POSIX_TIMER) { 182 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); 183 return true; 184 } 185 186 if (val & TICK_DEP_MASK_PERF_EVENTS) { 187 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); 188 return true; 189 } 190 191 if (val & TICK_DEP_MASK_SCHED) { 192 trace_tick_stop(0, TICK_DEP_MASK_SCHED); 193 return true; 194 } 195 196 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { 197 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); 198 return true; 199 } 200 201 if (val & TICK_DEP_MASK_RCU) { 202 trace_tick_stop(0, TICK_DEP_MASK_RCU); 203 return true; 204 } 205 206 return false; 207 } 208 209 static bool can_stop_full_tick(int cpu, struct tick_sched *ts) 210 { 211 lockdep_assert_irqs_disabled(); 212 213 if (unlikely(!cpu_online(cpu))) 214 return false; 215 216 if (check_tick_dependency(&tick_dep_mask)) 217 return false; 218 219 if (check_tick_dependency(&ts->tick_dep_mask)) 220 return false; 221 222 if (check_tick_dependency(¤t->tick_dep_mask)) 223 return false; 224 225 if (check_tick_dependency(¤t->signal->tick_dep_mask)) 226 return false; 227 228 return true; 229 } 230 231 static void nohz_full_kick_func(struct irq_work *work) 232 { 233 /* Empty, the tick restart happens on tick_nohz_irq_exit() */ 234 } 235 236 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { 237 .func = nohz_full_kick_func, 238 }; 239 240 /* 241 * Kick this CPU if it's full dynticks in order to force it to 242 * re-evaluate its dependency on the tick and restart it if necessary. 243 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), 244 * is NMI safe. 245 */ 246 static void tick_nohz_full_kick(void) 247 { 248 if (!tick_nohz_full_cpu(smp_processor_id())) 249 return; 250 251 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); 252 } 253 254 /* 255 * Kick the CPU if it's full dynticks in order to force it to 256 * re-evaluate its dependency on the tick and restart it if necessary. 257 */ 258 void tick_nohz_full_kick_cpu(int cpu) 259 { 260 if (!tick_nohz_full_cpu(cpu)) 261 return; 262 263 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); 264 } 265 266 /* 267 * Kick all full dynticks CPUs in order to force these to re-evaluate 268 * their dependency on the tick and restart it if necessary. 269 */ 270 static void tick_nohz_full_kick_all(void) 271 { 272 int cpu; 273 274 if (!tick_nohz_full_running) 275 return; 276 277 preempt_disable(); 278 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) 279 tick_nohz_full_kick_cpu(cpu); 280 preempt_enable(); 281 } 282 283 static void tick_nohz_dep_set_all(atomic_t *dep, 284 enum tick_dep_bits bit) 285 { 286 int prev; 287 288 prev = atomic_fetch_or(BIT(bit), dep); 289 if (!prev) 290 tick_nohz_full_kick_all(); 291 } 292 293 /* 294 * Set a global tick dependency. Used by perf events that rely on freq and 295 * by unstable clock. 296 */ 297 void tick_nohz_dep_set(enum tick_dep_bits bit) 298 { 299 tick_nohz_dep_set_all(&tick_dep_mask, bit); 300 } 301 302 void tick_nohz_dep_clear(enum tick_dep_bits bit) 303 { 304 atomic_andnot(BIT(bit), &tick_dep_mask); 305 } 306 307 /* 308 * Set per-CPU tick dependency. Used by scheduler and perf events in order to 309 * manage events throttling. 310 */ 311 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) 312 { 313 int prev; 314 struct tick_sched *ts; 315 316 ts = per_cpu_ptr(&tick_cpu_sched, cpu); 317 318 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); 319 if (!prev) { 320 preempt_disable(); 321 /* Perf needs local kick that is NMI safe */ 322 if (cpu == smp_processor_id()) { 323 tick_nohz_full_kick(); 324 } else { 325 /* Remote irq work not NMI-safe */ 326 if (!WARN_ON_ONCE(in_nmi())) 327 tick_nohz_full_kick_cpu(cpu); 328 } 329 preempt_enable(); 330 } 331 } 332 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); 333 334 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) 335 { 336 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 337 338 atomic_andnot(BIT(bit), &ts->tick_dep_mask); 339 } 340 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); 341 342 /* 343 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse 344 * per task timers. 345 */ 346 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) 347 { 348 /* 349 * We could optimize this with just kicking the target running the task 350 * if that noise matters for nohz full users. 351 */ 352 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit); 353 } 354 355 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) 356 { 357 atomic_andnot(BIT(bit), &tsk->tick_dep_mask); 358 } 359 360 /* 361 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse 362 * per process timers. 363 */ 364 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) 365 { 366 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); 367 } 368 369 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) 370 { 371 atomic_andnot(BIT(bit), &sig->tick_dep_mask); 372 } 373 374 /* 375 * Re-evaluate the need for the tick as we switch the current task. 376 * It might need the tick due to per task/process properties: 377 * perf events, posix CPU timers, ... 378 */ 379 void __tick_nohz_task_switch(void) 380 { 381 unsigned long flags; 382 struct tick_sched *ts; 383 384 local_irq_save(flags); 385 386 if (!tick_nohz_full_cpu(smp_processor_id())) 387 goto out; 388 389 ts = this_cpu_ptr(&tick_cpu_sched); 390 391 if (ts->tick_stopped) { 392 if (atomic_read(¤t->tick_dep_mask) || 393 atomic_read(¤t->signal->tick_dep_mask)) 394 tick_nohz_full_kick(); 395 } 396 out: 397 local_irq_restore(flags); 398 } 399 400 /* Get the boot-time nohz CPU list from the kernel parameters. */ 401 void __init tick_nohz_full_setup(cpumask_var_t cpumask) 402 { 403 alloc_bootmem_cpumask_var(&tick_nohz_full_mask); 404 cpumask_copy(tick_nohz_full_mask, cpumask); 405 tick_nohz_full_running = true; 406 } 407 408 static int tick_nohz_cpu_down(unsigned int cpu) 409 { 410 /* 411 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound 412 * timers, workqueues, timekeeping, ...) on behalf of full dynticks 413 * CPUs. It must remain online when nohz full is enabled. 414 */ 415 if (tick_nohz_full_running && tick_do_timer_cpu == cpu) 416 return -EBUSY; 417 return 0; 418 } 419 420 void __init tick_nohz_init(void) 421 { 422 int cpu, ret; 423 424 if (!tick_nohz_full_running) 425 return; 426 427 /* 428 * Full dynticks uses irq work to drive the tick rescheduling on safe 429 * locking contexts. But then we need irq work to raise its own 430 * interrupts to avoid circular dependency on the tick 431 */ 432 if (!arch_irq_work_has_interrupt()) { 433 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); 434 cpumask_clear(tick_nohz_full_mask); 435 tick_nohz_full_running = false; 436 return; 437 } 438 439 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && 440 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { 441 cpu = smp_processor_id(); 442 443 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { 444 pr_warn("NO_HZ: Clearing %d from nohz_full range " 445 "for timekeeping\n", cpu); 446 cpumask_clear_cpu(cpu, tick_nohz_full_mask); 447 } 448 } 449 450 for_each_cpu(cpu, tick_nohz_full_mask) 451 context_tracking_cpu_set(cpu); 452 453 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 454 "kernel/nohz:predown", NULL, 455 tick_nohz_cpu_down); 456 WARN_ON(ret < 0); 457 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", 458 cpumask_pr_args(tick_nohz_full_mask)); 459 } 460 #endif 461 462 /* 463 * NOHZ - aka dynamic tick functionality 464 */ 465 #ifdef CONFIG_NO_HZ_COMMON 466 /* 467 * NO HZ enabled ? 468 */ 469 bool tick_nohz_enabled __read_mostly = true; 470 unsigned long tick_nohz_active __read_mostly; 471 /* 472 * Enable / Disable tickless mode 473 */ 474 static int __init setup_tick_nohz(char *str) 475 { 476 return (kstrtobool(str, &tick_nohz_enabled) == 0); 477 } 478 479 __setup("nohz=", setup_tick_nohz); 480 481 bool tick_nohz_tick_stopped(void) 482 { 483 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 484 485 return ts->tick_stopped; 486 } 487 488 bool tick_nohz_tick_stopped_cpu(int cpu) 489 { 490 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); 491 492 return ts->tick_stopped; 493 } 494 495 /** 496 * tick_nohz_update_jiffies - update jiffies when idle was interrupted 497 * 498 * Called from interrupt entry when the CPU was idle 499 * 500 * In case the sched_tick was stopped on this CPU, we have to check if jiffies 501 * must be updated. Otherwise an interrupt handler could use a stale jiffy 502 * value. We do this unconditionally on any CPU, as we don't know whether the 503 * CPU, which has the update task assigned is in a long sleep. 504 */ 505 static void tick_nohz_update_jiffies(ktime_t now) 506 { 507 unsigned long flags; 508 509 __this_cpu_write(tick_cpu_sched.idle_waketime, now); 510 511 local_irq_save(flags); 512 tick_do_update_jiffies64(now); 513 local_irq_restore(flags); 514 515 touch_softlockup_watchdog_sched(); 516 } 517 518 /* 519 * Updates the per-CPU time idle statistics counters 520 */ 521 static void 522 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) 523 { 524 ktime_t delta; 525 526 if (ts->idle_active) { 527 delta = ktime_sub(now, ts->idle_entrytime); 528 if (nr_iowait_cpu(cpu) > 0) 529 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); 530 else 531 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); 532 ts->idle_entrytime = now; 533 } 534 535 if (last_update_time) 536 *last_update_time = ktime_to_us(now); 537 538 } 539 540 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) 541 { 542 update_ts_time_stats(smp_processor_id(), ts, now, NULL); 543 ts->idle_active = 0; 544 545 sched_clock_idle_wakeup_event(); 546 } 547 548 static void tick_nohz_start_idle(struct tick_sched *ts) 549 { 550 ts->idle_entrytime = ktime_get(); 551 ts->idle_active = 1; 552 sched_clock_idle_sleep_event(); 553 } 554 555 /** 556 * get_cpu_idle_time_us - get the total idle time of a CPU 557 * @cpu: CPU number to query 558 * @last_update_time: variable to store update time in. Do not update 559 * counters if NULL. 560 * 561 * Return the cumulative idle time (since boot) for a given 562 * CPU, in microseconds. 563 * 564 * This time is measured via accounting rather than sampling, 565 * and is as accurate as ktime_get() is. 566 * 567 * This function returns -1 if NOHZ is not enabled. 568 */ 569 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) 570 { 571 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 572 ktime_t now, idle; 573 574 if (!tick_nohz_active) 575 return -1; 576 577 now = ktime_get(); 578 if (last_update_time) { 579 update_ts_time_stats(cpu, ts, now, last_update_time); 580 idle = ts->idle_sleeptime; 581 } else { 582 if (ts->idle_active && !nr_iowait_cpu(cpu)) { 583 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 584 585 idle = ktime_add(ts->idle_sleeptime, delta); 586 } else { 587 idle = ts->idle_sleeptime; 588 } 589 } 590 591 return ktime_to_us(idle); 592 593 } 594 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); 595 596 /** 597 * get_cpu_iowait_time_us - get the total iowait time of a CPU 598 * @cpu: CPU number to query 599 * @last_update_time: variable to store update time in. Do not update 600 * counters if NULL. 601 * 602 * Return the cumulative iowait time (since boot) for a given 603 * CPU, in microseconds. 604 * 605 * This time is measured via accounting rather than sampling, 606 * and is as accurate as ktime_get() is. 607 * 608 * This function returns -1 if NOHZ is not enabled. 609 */ 610 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) 611 { 612 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 613 ktime_t now, iowait; 614 615 if (!tick_nohz_active) 616 return -1; 617 618 now = ktime_get(); 619 if (last_update_time) { 620 update_ts_time_stats(cpu, ts, now, last_update_time); 621 iowait = ts->iowait_sleeptime; 622 } else { 623 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { 624 ktime_t delta = ktime_sub(now, ts->idle_entrytime); 625 626 iowait = ktime_add(ts->iowait_sleeptime, delta); 627 } else { 628 iowait = ts->iowait_sleeptime; 629 } 630 } 631 632 return ktime_to_us(iowait); 633 } 634 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); 635 636 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) 637 { 638 hrtimer_cancel(&ts->sched_timer); 639 hrtimer_set_expires(&ts->sched_timer, ts->last_tick); 640 641 /* Forward the time to expire in the future */ 642 hrtimer_forward(&ts->sched_timer, now, tick_period); 643 644 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 645 hrtimer_start_expires(&ts->sched_timer, 646 HRTIMER_MODE_ABS_PINNED_HARD); 647 } else { 648 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 649 } 650 651 /* 652 * Reset to make sure next tick stop doesn't get fooled by past 653 * cached clock deadline. 654 */ 655 ts->next_tick = 0; 656 } 657 658 static inline bool local_timer_softirq_pending(void) 659 { 660 return local_softirq_pending() & BIT(TIMER_SOFTIRQ); 661 } 662 663 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) 664 { 665 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; 666 unsigned long basejiff; 667 unsigned int seq; 668 669 /* Read jiffies and the time when jiffies were updated last */ 670 do { 671 seq = read_seqbegin(&jiffies_lock); 672 basemono = last_jiffies_update; 673 basejiff = jiffies; 674 } while (read_seqretry(&jiffies_lock, seq)); 675 ts->last_jiffies = basejiff; 676 ts->timer_expires_base = basemono; 677 678 /* 679 * Keep the periodic tick, when RCU, architecture or irq_work 680 * requests it. 681 * Aside of that check whether the local timer softirq is 682 * pending. If so its a bad idea to call get_next_timer_interrupt() 683 * because there is an already expired timer, so it will request 684 * immeditate expiry, which rearms the hardware timer with a 685 * minimal delta which brings us back to this place 686 * immediately. Lather, rinse and repeat... 687 */ 688 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || 689 irq_work_needs_cpu() || local_timer_softirq_pending()) { 690 next_tick = basemono + TICK_NSEC; 691 } else { 692 /* 693 * Get the next pending timer. If high resolution 694 * timers are enabled this only takes the timer wheel 695 * timers into account. If high resolution timers are 696 * disabled this also looks at the next expiring 697 * hrtimer. 698 */ 699 next_tmr = get_next_timer_interrupt(basejiff, basemono); 700 ts->next_timer = next_tmr; 701 /* Take the next rcu event into account */ 702 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; 703 } 704 705 /* 706 * If the tick is due in the next period, keep it ticking or 707 * force prod the timer. 708 */ 709 delta = next_tick - basemono; 710 if (delta <= (u64)TICK_NSEC) { 711 /* 712 * Tell the timer code that the base is not idle, i.e. undo 713 * the effect of get_next_timer_interrupt(): 714 */ 715 timer_clear_idle(); 716 /* 717 * We've not stopped the tick yet, and there's a timer in the 718 * next period, so no point in stopping it either, bail. 719 */ 720 if (!ts->tick_stopped) { 721 ts->timer_expires = 0; 722 goto out; 723 } 724 } 725 726 /* 727 * If this CPU is the one which had the do_timer() duty last, we limit 728 * the sleep time to the timekeeping max_deferment value. 729 * Otherwise we can sleep as long as we want. 730 */ 731 delta = timekeeping_max_deferment(); 732 if (cpu != tick_do_timer_cpu && 733 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) 734 delta = KTIME_MAX; 735 736 /* Calculate the next expiry time */ 737 if (delta < (KTIME_MAX - basemono)) 738 expires = basemono + delta; 739 else 740 expires = KTIME_MAX; 741 742 ts->timer_expires = min_t(u64, expires, next_tick); 743 744 out: 745 return ts->timer_expires; 746 } 747 748 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) 749 { 750 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 751 u64 basemono = ts->timer_expires_base; 752 u64 expires = ts->timer_expires; 753 ktime_t tick = expires; 754 755 /* Make sure we won't be trying to stop it twice in a row. */ 756 ts->timer_expires_base = 0; 757 758 /* 759 * If this CPU is the one which updates jiffies, then give up 760 * the assignment and let it be taken by the CPU which runs 761 * the tick timer next, which might be this CPU as well. If we 762 * don't drop this here the jiffies might be stale and 763 * do_timer() never invoked. Keep track of the fact that it 764 * was the one which had the do_timer() duty last. 765 */ 766 if (cpu == tick_do_timer_cpu) { 767 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 768 ts->do_timer_last = 1; 769 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { 770 ts->do_timer_last = 0; 771 } 772 773 /* Skip reprogram of event if its not changed */ 774 if (ts->tick_stopped && (expires == ts->next_tick)) { 775 /* Sanity check: make sure clockevent is actually programmed */ 776 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) 777 return; 778 779 WARN_ON_ONCE(1); 780 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", 781 basemono, ts->next_tick, dev->next_event, 782 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); 783 } 784 785 /* 786 * nohz_stop_sched_tick can be called several times before 787 * the nohz_restart_sched_tick is called. This happens when 788 * interrupts arrive which do not cause a reschedule. In the 789 * first call we save the current tick time, so we can restart 790 * the scheduler tick in nohz_restart_sched_tick. 791 */ 792 if (!ts->tick_stopped) { 793 calc_load_nohz_start(); 794 quiet_vmstat(); 795 796 ts->last_tick = hrtimer_get_expires(&ts->sched_timer); 797 ts->tick_stopped = 1; 798 trace_tick_stop(1, TICK_DEP_MASK_NONE); 799 } 800 801 ts->next_tick = tick; 802 803 /* 804 * If the expiration time == KTIME_MAX, then we simply stop 805 * the tick timer. 806 */ 807 if (unlikely(expires == KTIME_MAX)) { 808 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 809 hrtimer_cancel(&ts->sched_timer); 810 return; 811 } 812 813 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 814 hrtimer_start(&ts->sched_timer, tick, 815 HRTIMER_MODE_ABS_PINNED_HARD); 816 } else { 817 hrtimer_set_expires(&ts->sched_timer, tick); 818 tick_program_event(tick, 1); 819 } 820 } 821 822 static void tick_nohz_retain_tick(struct tick_sched *ts) 823 { 824 ts->timer_expires_base = 0; 825 } 826 827 #ifdef CONFIG_NO_HZ_FULL 828 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) 829 { 830 if (tick_nohz_next_event(ts, cpu)) 831 tick_nohz_stop_tick(ts, cpu); 832 else 833 tick_nohz_retain_tick(ts); 834 } 835 #endif /* CONFIG_NO_HZ_FULL */ 836 837 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) 838 { 839 /* Update jiffies first */ 840 tick_do_update_jiffies64(now); 841 842 /* 843 * Clear the timer idle flag, so we avoid IPIs on remote queueing and 844 * the clock forward checks in the enqueue path: 845 */ 846 timer_clear_idle(); 847 848 calc_load_nohz_stop(); 849 touch_softlockup_watchdog_sched(); 850 /* 851 * Cancel the scheduled timer and restore the tick 852 */ 853 ts->tick_stopped = 0; 854 ts->idle_exittime = now; 855 856 tick_nohz_restart(ts, now); 857 } 858 859 static void tick_nohz_full_update_tick(struct tick_sched *ts) 860 { 861 #ifdef CONFIG_NO_HZ_FULL 862 int cpu = smp_processor_id(); 863 864 if (!tick_nohz_full_cpu(cpu)) 865 return; 866 867 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) 868 return; 869 870 if (can_stop_full_tick(cpu, ts)) 871 tick_nohz_stop_sched_tick(ts, cpu); 872 else if (ts->tick_stopped) 873 tick_nohz_restart_sched_tick(ts, ktime_get()); 874 #endif 875 } 876 877 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) 878 { 879 /* 880 * If this CPU is offline and it is the one which updates 881 * jiffies, then give up the assignment and let it be taken by 882 * the CPU which runs the tick timer next. If we don't drop 883 * this here the jiffies might be stale and do_timer() never 884 * invoked. 885 */ 886 if (unlikely(!cpu_online(cpu))) { 887 if (cpu == tick_do_timer_cpu) 888 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 889 /* 890 * Make sure the CPU doesn't get fooled by obsolete tick 891 * deadline if it comes back online later. 892 */ 893 ts->next_tick = 0; 894 return false; 895 } 896 897 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) 898 return false; 899 900 if (need_resched()) 901 return false; 902 903 if (unlikely(local_softirq_pending())) { 904 static int ratelimit; 905 906 if (ratelimit < 10 && 907 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { 908 pr_warn("NOHZ: local_softirq_pending %02x\n", 909 (unsigned int) local_softirq_pending()); 910 ratelimit++; 911 } 912 return false; 913 } 914 915 if (tick_nohz_full_enabled()) { 916 /* 917 * Keep the tick alive to guarantee timekeeping progression 918 * if there are full dynticks CPUs around 919 */ 920 if (tick_do_timer_cpu == cpu) 921 return false; 922 /* 923 * Boot safety: make sure the timekeeping duty has been 924 * assigned before entering dyntick-idle mode, 925 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT 926 */ 927 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT)) 928 return false; 929 930 /* Should not happen for nohz-full */ 931 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) 932 return false; 933 } 934 935 return true; 936 } 937 938 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) 939 { 940 ktime_t expires; 941 int cpu = smp_processor_id(); 942 943 /* 944 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the 945 * tick timer expiration time is known already. 946 */ 947 if (ts->timer_expires_base) 948 expires = ts->timer_expires; 949 else if (can_stop_idle_tick(cpu, ts)) 950 expires = tick_nohz_next_event(ts, cpu); 951 else 952 return; 953 954 ts->idle_calls++; 955 956 if (expires > 0LL) { 957 int was_stopped = ts->tick_stopped; 958 959 tick_nohz_stop_tick(ts, cpu); 960 961 ts->idle_sleeps++; 962 ts->idle_expires = expires; 963 964 if (!was_stopped && ts->tick_stopped) { 965 ts->idle_jiffies = ts->last_jiffies; 966 nohz_balance_enter_idle(cpu); 967 } 968 } else { 969 tick_nohz_retain_tick(ts); 970 } 971 } 972 973 /** 974 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task 975 * 976 * When the next event is more than a tick into the future, stop the idle tick 977 */ 978 void tick_nohz_idle_stop_tick(void) 979 { 980 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); 981 } 982 983 void tick_nohz_idle_retain_tick(void) 984 { 985 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); 986 /* 987 * Undo the effect of get_next_timer_interrupt() called from 988 * tick_nohz_next_event(). 989 */ 990 timer_clear_idle(); 991 } 992 993 /** 994 * tick_nohz_idle_enter - prepare for entering idle on the current CPU 995 * 996 * Called when we start the idle loop. 997 */ 998 void tick_nohz_idle_enter(void) 999 { 1000 struct tick_sched *ts; 1001 1002 lockdep_assert_irqs_enabled(); 1003 1004 local_irq_disable(); 1005 1006 ts = this_cpu_ptr(&tick_cpu_sched); 1007 1008 WARN_ON_ONCE(ts->timer_expires_base); 1009 1010 ts->inidle = 1; 1011 tick_nohz_start_idle(ts); 1012 1013 local_irq_enable(); 1014 } 1015 1016 /** 1017 * tick_nohz_irq_exit - update next tick event from interrupt exit 1018 * 1019 * When an interrupt fires while we are idle and it doesn't cause 1020 * a reschedule, it may still add, modify or delete a timer, enqueue 1021 * an RCU callback, etc... 1022 * So we need to re-calculate and reprogram the next tick event. 1023 */ 1024 void tick_nohz_irq_exit(void) 1025 { 1026 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1027 1028 if (ts->inidle) 1029 tick_nohz_start_idle(ts); 1030 else 1031 tick_nohz_full_update_tick(ts); 1032 } 1033 1034 /** 1035 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run 1036 */ 1037 bool tick_nohz_idle_got_tick(void) 1038 { 1039 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1040 1041 if (ts->got_idle_tick) { 1042 ts->got_idle_tick = 0; 1043 return true; 1044 } 1045 return false; 1046 } 1047 1048 /** 1049 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer 1050 * or the tick, whatever that expires first. Note that, if the tick has been 1051 * stopped, it returns the next hrtimer. 1052 * 1053 * Called from power state control code with interrupts disabled 1054 */ 1055 ktime_t tick_nohz_get_next_hrtimer(void) 1056 { 1057 return __this_cpu_read(tick_cpu_device.evtdev)->next_event; 1058 } 1059 1060 /** 1061 * tick_nohz_get_sleep_length - return the expected length of the current sleep 1062 * @delta_next: duration until the next event if the tick cannot be stopped 1063 * 1064 * Called from power state control code with interrupts disabled 1065 */ 1066 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) 1067 { 1068 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 1069 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1070 int cpu = smp_processor_id(); 1071 /* 1072 * The idle entry time is expected to be a sufficient approximation of 1073 * the current time at this point. 1074 */ 1075 ktime_t now = ts->idle_entrytime; 1076 ktime_t next_event; 1077 1078 WARN_ON_ONCE(!ts->inidle); 1079 1080 *delta_next = ktime_sub(dev->next_event, now); 1081 1082 if (!can_stop_idle_tick(cpu, ts)) 1083 return *delta_next; 1084 1085 next_event = tick_nohz_next_event(ts, cpu); 1086 if (!next_event) 1087 return *delta_next; 1088 1089 /* 1090 * If the next highres timer to expire is earlier than next_event, the 1091 * idle governor needs to know that. 1092 */ 1093 next_event = min_t(u64, next_event, 1094 hrtimer_next_event_without(&ts->sched_timer)); 1095 1096 return ktime_sub(next_event, now); 1097 } 1098 1099 /** 1100 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value 1101 * for a particular CPU. 1102 * 1103 * Called from the schedutil frequency scaling governor in scheduler context. 1104 */ 1105 unsigned long tick_nohz_get_idle_calls_cpu(int cpu) 1106 { 1107 struct tick_sched *ts = tick_get_tick_sched(cpu); 1108 1109 return ts->idle_calls; 1110 } 1111 1112 /** 1113 * tick_nohz_get_idle_calls - return the current idle calls counter value 1114 * 1115 * Called from the schedutil frequency scaling governor in scheduler context. 1116 */ 1117 unsigned long tick_nohz_get_idle_calls(void) 1118 { 1119 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1120 1121 return ts->idle_calls; 1122 } 1123 1124 static void tick_nohz_account_idle_ticks(struct tick_sched *ts) 1125 { 1126 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1127 unsigned long ticks; 1128 1129 if (vtime_accounting_cpu_enabled()) 1130 return; 1131 /* 1132 * We stopped the tick in idle. Update process times would miss the 1133 * time we slept as update_process_times does only a 1 tick 1134 * accounting. Enforce that this is accounted to idle ! 1135 */ 1136 ticks = jiffies - ts->idle_jiffies; 1137 /* 1138 * We might be one off. Do not randomly account a huge number of ticks! 1139 */ 1140 if (ticks && ticks < LONG_MAX) 1141 account_idle_ticks(ticks); 1142 #endif 1143 } 1144 1145 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) 1146 { 1147 tick_nohz_restart_sched_tick(ts, now); 1148 tick_nohz_account_idle_ticks(ts); 1149 } 1150 1151 void tick_nohz_idle_restart_tick(void) 1152 { 1153 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1154 1155 if (ts->tick_stopped) 1156 __tick_nohz_idle_restart_tick(ts, ktime_get()); 1157 } 1158 1159 /** 1160 * tick_nohz_idle_exit - restart the idle tick from the idle task 1161 * 1162 * Restart the idle tick when the CPU is woken up from idle 1163 * This also exit the RCU extended quiescent state. The CPU 1164 * can use RCU again after this function is called. 1165 */ 1166 void tick_nohz_idle_exit(void) 1167 { 1168 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1169 bool idle_active, tick_stopped; 1170 ktime_t now; 1171 1172 local_irq_disable(); 1173 1174 WARN_ON_ONCE(!ts->inidle); 1175 WARN_ON_ONCE(ts->timer_expires_base); 1176 1177 ts->inidle = 0; 1178 idle_active = ts->idle_active; 1179 tick_stopped = ts->tick_stopped; 1180 1181 if (idle_active || tick_stopped) 1182 now = ktime_get(); 1183 1184 if (idle_active) 1185 tick_nohz_stop_idle(ts, now); 1186 1187 if (tick_stopped) 1188 __tick_nohz_idle_restart_tick(ts, now); 1189 1190 local_irq_enable(); 1191 } 1192 1193 /* 1194 * The nohz low res interrupt handler 1195 */ 1196 static void tick_nohz_handler(struct clock_event_device *dev) 1197 { 1198 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1199 struct pt_regs *regs = get_irq_regs(); 1200 ktime_t now = ktime_get(); 1201 1202 dev->next_event = KTIME_MAX; 1203 1204 tick_sched_do_timer(ts, now); 1205 tick_sched_handle(ts, regs); 1206 1207 /* No need to reprogram if we are running tickless */ 1208 if (unlikely(ts->tick_stopped)) 1209 return; 1210 1211 hrtimer_forward(&ts->sched_timer, now, tick_period); 1212 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1213 } 1214 1215 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) 1216 { 1217 if (!tick_nohz_enabled) 1218 return; 1219 ts->nohz_mode = mode; 1220 /* One update is enough */ 1221 if (!test_and_set_bit(0, &tick_nohz_active)) 1222 timers_update_nohz(); 1223 } 1224 1225 /** 1226 * tick_nohz_switch_to_nohz - switch to nohz mode 1227 */ 1228 static void tick_nohz_switch_to_nohz(void) 1229 { 1230 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1231 ktime_t next; 1232 1233 if (!tick_nohz_enabled) 1234 return; 1235 1236 if (tick_switch_to_oneshot(tick_nohz_handler)) 1237 return; 1238 1239 /* 1240 * Recycle the hrtimer in ts, so we can share the 1241 * hrtimer_forward with the highres code. 1242 */ 1243 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1244 /* Get the next period */ 1245 next = tick_init_jiffy_update(); 1246 1247 hrtimer_set_expires(&ts->sched_timer, next); 1248 hrtimer_forward_now(&ts->sched_timer, tick_period); 1249 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 1250 tick_nohz_activate(ts, NOHZ_MODE_LOWRES); 1251 } 1252 1253 static inline void tick_nohz_irq_enter(void) 1254 { 1255 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1256 ktime_t now; 1257 1258 if (!ts->idle_active && !ts->tick_stopped) 1259 return; 1260 now = ktime_get(); 1261 if (ts->idle_active) 1262 tick_nohz_stop_idle(ts, now); 1263 if (ts->tick_stopped) 1264 tick_nohz_update_jiffies(now); 1265 } 1266 1267 #else 1268 1269 static inline void tick_nohz_switch_to_nohz(void) { } 1270 static inline void tick_nohz_irq_enter(void) { } 1271 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } 1272 1273 #endif /* CONFIG_NO_HZ_COMMON */ 1274 1275 /* 1276 * Called from irq_enter to notify about the possible interruption of idle() 1277 */ 1278 void tick_irq_enter(void) 1279 { 1280 tick_check_oneshot_broadcast_this_cpu(); 1281 tick_nohz_irq_enter(); 1282 } 1283 1284 /* 1285 * High resolution timer specific code 1286 */ 1287 #ifdef CONFIG_HIGH_RES_TIMERS 1288 /* 1289 * We rearm the timer until we get disabled by the idle code. 1290 * Called with interrupts disabled. 1291 */ 1292 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) 1293 { 1294 struct tick_sched *ts = 1295 container_of(timer, struct tick_sched, sched_timer); 1296 struct pt_regs *regs = get_irq_regs(); 1297 ktime_t now = ktime_get(); 1298 1299 tick_sched_do_timer(ts, now); 1300 1301 /* 1302 * Do not call, when we are not in irq context and have 1303 * no valid regs pointer 1304 */ 1305 if (regs) 1306 tick_sched_handle(ts, regs); 1307 else 1308 ts->next_tick = 0; 1309 1310 /* No need to reprogram if we are in idle or full dynticks mode */ 1311 if (unlikely(ts->tick_stopped)) 1312 return HRTIMER_NORESTART; 1313 1314 hrtimer_forward(timer, now, tick_period); 1315 1316 return HRTIMER_RESTART; 1317 } 1318 1319 static int sched_skew_tick; 1320 1321 static int __init skew_tick(char *str) 1322 { 1323 get_option(&str, &sched_skew_tick); 1324 1325 return 0; 1326 } 1327 early_param("skew_tick", skew_tick); 1328 1329 /** 1330 * tick_setup_sched_timer - setup the tick emulation timer 1331 */ 1332 void tick_setup_sched_timer(void) 1333 { 1334 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1335 ktime_t now = ktime_get(); 1336 1337 /* 1338 * Emulate tick processing via per-CPU hrtimers: 1339 */ 1340 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1341 ts->sched_timer.function = tick_sched_timer; 1342 1343 /* Get the next period (per-CPU) */ 1344 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); 1345 1346 /* Offset the tick to avert jiffies_lock contention. */ 1347 if (sched_skew_tick) { 1348 u64 offset = ktime_to_ns(tick_period) >> 1; 1349 do_div(offset, num_possible_cpus()); 1350 offset *= smp_processor_id(); 1351 hrtimer_add_expires_ns(&ts->sched_timer, offset); 1352 } 1353 1354 hrtimer_forward(&ts->sched_timer, now, tick_period); 1355 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); 1356 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1357 } 1358 #endif /* HIGH_RES_TIMERS */ 1359 1360 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS 1361 void tick_cancel_sched_timer(int cpu) 1362 { 1363 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); 1364 1365 # ifdef CONFIG_HIGH_RES_TIMERS 1366 if (ts->sched_timer.base) 1367 hrtimer_cancel(&ts->sched_timer); 1368 # endif 1369 1370 memset(ts, 0, sizeof(*ts)); 1371 } 1372 #endif 1373 1374 /** 1375 * Async notification about clocksource changes 1376 */ 1377 void tick_clock_notify(void) 1378 { 1379 int cpu; 1380 1381 for_each_possible_cpu(cpu) 1382 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); 1383 } 1384 1385 /* 1386 * Async notification about clock event changes 1387 */ 1388 void tick_oneshot_notify(void) 1389 { 1390 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1391 1392 set_bit(0, &ts->check_clocks); 1393 } 1394 1395 /** 1396 * Check, if a change happened, which makes oneshot possible. 1397 * 1398 * Called cyclic from the hrtimer softirq (driven by the timer 1399 * softirq) allow_nohz signals, that we can switch into low-res nohz 1400 * mode, because high resolution timers are disabled (either compile 1401 * or runtime). Called with interrupts disabled. 1402 */ 1403 int tick_check_oneshot_change(int allow_nohz) 1404 { 1405 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); 1406 1407 if (!test_and_clear_bit(0, &ts->check_clocks)) 1408 return 0; 1409 1410 if (ts->nohz_mode != NOHZ_MODE_INACTIVE) 1411 return 0; 1412 1413 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) 1414 return 0; 1415 1416 if (!allow_nohz) 1417 return 1; 1418 1419 tick_nohz_switch_to_nohz(); 1420 return 0; 1421 } 1422