xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision f8381cba04ba8173fd5a2b8e5cd8b3290ee13a98)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 DEFINE_SPINLOCK(tick_broadcast_lock);
33 
34 /*
35  * Start the device in periodic mode
36  */
37 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
38 {
39 	if (bc && bc->mode == CLOCK_EVT_MODE_SHUTDOWN)
40 		tick_setup_periodic(bc, 1);
41 }
42 
43 /*
44  * Check, if the device can be utilized as broadcast device:
45  */
46 int tick_check_broadcast_device(struct clock_event_device *dev)
47 {
48 	if (tick_broadcast_device.evtdev ||
49 	    (dev->features & CLOCK_EVT_FEAT_C3STOP))
50 		return 0;
51 
52 	clockevents_exchange_device(NULL, dev);
53 	tick_broadcast_device.evtdev = dev;
54 	if (!cpus_empty(tick_broadcast_mask))
55 		tick_broadcast_start_periodic(dev);
56 	return 1;
57 }
58 
59 /*
60  * Check, if the device is the broadcast device
61  */
62 int tick_is_broadcast_device(struct clock_event_device *dev)
63 {
64 	return (dev && tick_broadcast_device.evtdev == dev);
65 }
66 
67 /*
68  * Check, if the device is disfunctional and a place holder, which
69  * needs to be handled by the broadcast device.
70  */
71 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
72 {
73 	unsigned long flags;
74 	int ret = 0;
75 
76 	spin_lock_irqsave(&tick_broadcast_lock, flags);
77 
78 	/*
79 	 * Devices might be registered with both periodic and oneshot
80 	 * mode disabled. This signals, that the device needs to be
81 	 * operated from the broadcast device and is a placeholder for
82 	 * the cpu local device.
83 	 */
84 	if (!tick_device_is_functional(dev)) {
85 		dev->event_handler = tick_handle_periodic;
86 		cpu_set(cpu, tick_broadcast_mask);
87 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
88 		ret = 1;
89 	}
90 
91 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
92 	return ret;
93 }
94 
95 /*
96  * Broadcast the event to the cpus, which are set in the mask
97  */
98 int tick_do_broadcast(cpumask_t mask)
99 {
100 	int ret = 0, cpu = smp_processor_id();
101 	struct tick_device *td;
102 
103 	/*
104 	 * Check, if the current cpu is in the mask
105 	 */
106 	if (cpu_isset(cpu, mask)) {
107 		cpu_clear(cpu, mask);
108 		td = &per_cpu(tick_cpu_device, cpu);
109 		td->evtdev->event_handler(td->evtdev);
110 		ret = 1;
111 	}
112 
113 	if (!cpus_empty(mask)) {
114 		/*
115 		 * It might be necessary to actually check whether the devices
116 		 * have different broadcast functions. For now, just use the
117 		 * one of the first device. This works as long as we have this
118 		 * misfeature only on x86 (lapic)
119 		 */
120 		cpu = first_cpu(mask);
121 		td = &per_cpu(tick_cpu_device, cpu);
122 		td->evtdev->broadcast(mask);
123 		ret = 1;
124 	}
125 	return ret;
126 }
127 
128 /*
129  * Periodic broadcast:
130  * - invoke the broadcast handlers
131  */
132 static void tick_do_periodic_broadcast(void)
133 {
134 	cpumask_t mask;
135 
136 	spin_lock(&tick_broadcast_lock);
137 
138 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
139 	tick_do_broadcast(mask);
140 
141 	spin_unlock(&tick_broadcast_lock);
142 }
143 
144 /*
145  * Event handler for periodic broadcast ticks
146  */
147 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
148 {
149 	dev->next_event.tv64 = KTIME_MAX;
150 
151 	tick_do_periodic_broadcast();
152 
153 	/*
154 	 * The device is in periodic mode. No reprogramming necessary:
155 	 */
156 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
157 		return;
158 
159 	/*
160 	 * Setup the next period for devices, which do not have
161 	 * periodic mode:
162 	 */
163 	for (;;) {
164 		ktime_t next = ktime_add(dev->next_event, tick_period);
165 
166 		if (!clockevents_program_event(dev, next, ktime_get()))
167 			return;
168 		tick_do_periodic_broadcast();
169 	}
170 }
171 
172 /*
173  * Powerstate information: The system enters/leaves a state, where
174  * affected devices might stop
175  */
176 static void tick_do_broadcast_on_off(void *why)
177 {
178 	struct clock_event_device *bc, *dev;
179 	struct tick_device *td;
180 	unsigned long flags, *reason = why;
181 	int cpu;
182 
183 	spin_lock_irqsave(&tick_broadcast_lock, flags);
184 
185 	cpu = smp_processor_id();
186 	td = &per_cpu(tick_cpu_device, cpu);
187 	dev = td->evtdev;
188 	bc = tick_broadcast_device.evtdev;
189 
190 	/*
191 	 * Is the device in broadcast mode forever or is it not
192 	 * affected by the powerstate ?
193 	 */
194 	if (!dev || !tick_device_is_functional(dev) ||
195 	    !(dev->features & CLOCK_EVT_FEAT_C3STOP))
196 		goto out;
197 
198 	if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) {
199 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
200 			cpu_set(cpu, tick_broadcast_mask);
201 			if (td->mode == TICKDEV_MODE_PERIODIC)
202 				clockevents_set_mode(dev,
203 						     CLOCK_EVT_MODE_SHUTDOWN);
204 		}
205 	} else {
206 		if (cpu_isset(cpu, tick_broadcast_mask)) {
207 			cpu_clear(cpu, tick_broadcast_mask);
208 			if (td->mode == TICKDEV_MODE_PERIODIC)
209 				tick_setup_periodic(dev, 0);
210 		}
211 	}
212 
213 	if (cpus_empty(tick_broadcast_mask))
214 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
215 	else {
216 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
217 			tick_broadcast_start_periodic(bc);
218 	}
219 out:
220 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
221 }
222 
223 /*
224  * Powerstate information: The system enters/leaves a state, where
225  * affected devices might stop.
226  */
227 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
228 {
229 	int cpu = get_cpu();
230 
231 	if (cpu == *oncpu)
232 		tick_do_broadcast_on_off(&reason);
233 	else
234 		smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
235 					 &reason, 1, 1);
236 	put_cpu();
237 }
238 
239 /*
240  * Set the periodic handler depending on broadcast on/off
241  */
242 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
243 {
244 	if (!broadcast)
245 		dev->event_handler = tick_handle_periodic;
246 	else
247 		dev->event_handler = tick_handle_periodic_broadcast;
248 }
249 
250 /*
251  * Remove a CPU from broadcasting
252  */
253 void tick_shutdown_broadcast(unsigned int *cpup)
254 {
255 	struct clock_event_device *bc;
256 	unsigned long flags;
257 	unsigned int cpu = *cpup;
258 
259 	spin_lock_irqsave(&tick_broadcast_lock, flags);
260 
261 	bc = tick_broadcast_device.evtdev;
262 	cpu_clear(cpu, tick_broadcast_mask);
263 
264 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
265 		if (bc && cpus_empty(tick_broadcast_mask))
266 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
267 	}
268 
269 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
270 }
271