xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
36 #else
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
38 #endif
39 
40 /*
41  * Debugging: see timer_list.c
42  */
43 struct tick_device *tick_get_broadcast_device(void)
44 {
45 	return &tick_broadcast_device;
46 }
47 
48 cpumask_t *tick_get_broadcast_mask(void)
49 {
50 	return &tick_broadcast_mask;
51 }
52 
53 /*
54  * Start the device in periodic mode
55  */
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
57 {
58 	if (bc)
59 		tick_setup_periodic(bc, 1);
60 }
61 
62 /*
63  * Check, if the device can be utilized as broadcast device:
64  */
65 int tick_check_broadcast_device(struct clock_event_device *dev)
66 {
67 	if ((tick_broadcast_device.evtdev &&
68 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
69 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
70 		return 0;
71 
72 	clockevents_exchange_device(NULL, dev);
73 	tick_broadcast_device.evtdev = dev;
74 	if (!cpus_empty(tick_broadcast_mask))
75 		tick_broadcast_start_periodic(dev);
76 	return 1;
77 }
78 
79 /*
80  * Check, if the device is the broadcast device
81  */
82 int tick_is_broadcast_device(struct clock_event_device *dev)
83 {
84 	return (dev && tick_broadcast_device.evtdev == dev);
85 }
86 
87 /*
88  * Check, if the device is disfunctional and a place holder, which
89  * needs to be handled by the broadcast device.
90  */
91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
92 {
93 	unsigned long flags;
94 	int ret = 0;
95 
96 	spin_lock_irqsave(&tick_broadcast_lock, flags);
97 
98 	/*
99 	 * Devices might be registered with both periodic and oneshot
100 	 * mode disabled. This signals, that the device needs to be
101 	 * operated from the broadcast device and is a placeholder for
102 	 * the cpu local device.
103 	 */
104 	if (!tick_device_is_functional(dev)) {
105 		dev->event_handler = tick_handle_periodic;
106 		cpu_set(cpu, tick_broadcast_mask);
107 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
108 		ret = 1;
109 	} else {
110 		/*
111 		 * When the new device is not affected by the stop
112 		 * feature and the cpu is marked in the broadcast mask
113 		 * then clear the broadcast bit.
114 		 */
115 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
116 			int cpu = smp_processor_id();
117 
118 			cpu_clear(cpu, tick_broadcast_mask);
119 			tick_broadcast_clear_oneshot(cpu);
120 		}
121 	}
122 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
123 	return ret;
124 }
125 
126 /*
127  * Broadcast the event to the cpus, which are set in the mask
128  */
129 int tick_do_broadcast(cpumask_t mask)
130 {
131 	int ret = 0, cpu = smp_processor_id();
132 	struct tick_device *td;
133 
134 	/*
135 	 * Check, if the current cpu is in the mask
136 	 */
137 	if (cpu_isset(cpu, mask)) {
138 		cpu_clear(cpu, mask);
139 		td = &per_cpu(tick_cpu_device, cpu);
140 		td->evtdev->event_handler(td->evtdev);
141 		ret = 1;
142 	}
143 
144 	if (!cpus_empty(mask)) {
145 		/*
146 		 * It might be necessary to actually check whether the devices
147 		 * have different broadcast functions. For now, just use the
148 		 * one of the first device. This works as long as we have this
149 		 * misfeature only on x86 (lapic)
150 		 */
151 		cpu = first_cpu(mask);
152 		td = &per_cpu(tick_cpu_device, cpu);
153 		td->evtdev->broadcast(mask);
154 		ret = 1;
155 	}
156 	return ret;
157 }
158 
159 /*
160  * Periodic broadcast:
161  * - invoke the broadcast handlers
162  */
163 static void tick_do_periodic_broadcast(void)
164 {
165 	cpumask_t mask;
166 
167 	spin_lock(&tick_broadcast_lock);
168 
169 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
170 	tick_do_broadcast(mask);
171 
172 	spin_unlock(&tick_broadcast_lock);
173 }
174 
175 /*
176  * Event handler for periodic broadcast ticks
177  */
178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
179 {
180 	tick_do_periodic_broadcast();
181 
182 	/*
183 	 * The device is in periodic mode. No reprogramming necessary:
184 	 */
185 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 		return;
187 
188 	/*
189 	 * Setup the next period for devices, which do not have
190 	 * periodic mode:
191 	 */
192 	for (;;) {
193 		ktime_t next = ktime_add(dev->next_event, tick_period);
194 
195 		if (!clockevents_program_event(dev, next, ktime_get()))
196 			return;
197 		tick_do_periodic_broadcast();
198 	}
199 }
200 
201 /*
202  * Powerstate information: The system enters/leaves a state, where
203  * affected devices might stop
204  */
205 static void tick_do_broadcast_on_off(void *why)
206 {
207 	struct clock_event_device *bc, *dev;
208 	struct tick_device *td;
209 	unsigned long flags, *reason = why;
210 	int cpu;
211 
212 	spin_lock_irqsave(&tick_broadcast_lock, flags);
213 
214 	cpu = smp_processor_id();
215 	td = &per_cpu(tick_cpu_device, cpu);
216 	dev = td->evtdev;
217 	bc = tick_broadcast_device.evtdev;
218 
219 	/*
220 	 * Is the device not affected by the powerstate ?
221 	 */
222 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
223 		goto out;
224 
225 	if (!tick_device_is_functional(dev))
226 		goto out;
227 
228 	switch (*reason) {
229 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
230 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
231 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
232 			cpu_set(cpu, tick_broadcast_mask);
233 			if (td->mode == TICKDEV_MODE_PERIODIC)
234 				clockevents_set_mode(dev,
235 						     CLOCK_EVT_MODE_SHUTDOWN);
236 		}
237 		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
238 			dev->features |= CLOCK_EVT_FEAT_DUMMY;
239 		break;
240 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
241 		if (cpu_isset(cpu, tick_broadcast_mask)) {
242 			cpu_clear(cpu, tick_broadcast_mask);
243 			if (td->mode == TICKDEV_MODE_PERIODIC)
244 				tick_setup_periodic(dev, 0);
245 		}
246 		break;
247 	}
248 
249 	if (cpus_empty(tick_broadcast_mask))
250 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
251 	else {
252 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
253 			tick_broadcast_start_periodic(bc);
254 		else
255 			tick_broadcast_setup_oneshot(bc);
256 	}
257 out:
258 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
259 }
260 
261 /*
262  * Powerstate information: The system enters/leaves a state, where
263  * affected devices might stop.
264  */
265 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
266 {
267 	if (!cpu_isset(*oncpu, cpu_online_map))
268 		printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
269 		       "offline CPU #%d\n", *oncpu);
270 	else
271 		smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
272 					 &reason, 1, 1);
273 }
274 
275 /*
276  * Set the periodic handler depending on broadcast on/off
277  */
278 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
279 {
280 	if (!broadcast)
281 		dev->event_handler = tick_handle_periodic;
282 	else
283 		dev->event_handler = tick_handle_periodic_broadcast;
284 }
285 
286 /*
287  * Remove a CPU from broadcasting
288  */
289 void tick_shutdown_broadcast(unsigned int *cpup)
290 {
291 	struct clock_event_device *bc;
292 	unsigned long flags;
293 	unsigned int cpu = *cpup;
294 
295 	spin_lock_irqsave(&tick_broadcast_lock, flags);
296 
297 	bc = tick_broadcast_device.evtdev;
298 	cpu_clear(cpu, tick_broadcast_mask);
299 
300 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
301 		if (bc && cpus_empty(tick_broadcast_mask))
302 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
303 	}
304 
305 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
306 }
307 
308 void tick_suspend_broadcast(void)
309 {
310 	struct clock_event_device *bc;
311 	unsigned long flags;
312 
313 	spin_lock_irqsave(&tick_broadcast_lock, flags);
314 
315 	bc = tick_broadcast_device.evtdev;
316 	if (bc)
317 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
318 
319 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
320 }
321 
322 int tick_resume_broadcast(void)
323 {
324 	struct clock_event_device *bc;
325 	unsigned long flags;
326 	int broadcast = 0;
327 
328 	spin_lock_irqsave(&tick_broadcast_lock, flags);
329 
330 	bc = tick_broadcast_device.evtdev;
331 
332 	if (bc) {
333 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
334 
335 		switch (tick_broadcast_device.mode) {
336 		case TICKDEV_MODE_PERIODIC:
337 			if(!cpus_empty(tick_broadcast_mask))
338 				tick_broadcast_start_periodic(bc);
339 			broadcast = cpu_isset(smp_processor_id(),
340 					      tick_broadcast_mask);
341 			break;
342 		case TICKDEV_MODE_ONESHOT:
343 			broadcast = tick_resume_broadcast_oneshot(bc);
344 			break;
345 		}
346 	}
347 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
348 
349 	return broadcast;
350 }
351 
352 
353 #ifdef CONFIG_TICK_ONESHOT
354 
355 static cpumask_t tick_broadcast_oneshot_mask;
356 
357 /*
358  * Debugging: see timer_list.c
359  */
360 cpumask_t *tick_get_broadcast_oneshot_mask(void)
361 {
362 	return &tick_broadcast_oneshot_mask;
363 }
364 
365 static int tick_broadcast_set_event(ktime_t expires, int force)
366 {
367 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
368 	ktime_t now = ktime_get();
369 	int res;
370 
371 	for(;;) {
372 		res = clockevents_program_event(bc, expires, now);
373 		if (!res || !force)
374 			return res;
375 		now = ktime_get();
376 		expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
377 	}
378 }
379 
380 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
381 {
382 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
383 	return 0;
384 }
385 
386 /*
387  * Reprogram the broadcast device:
388  *
389  * Called with tick_broadcast_lock held and interrupts disabled.
390  */
391 static int tick_broadcast_reprogram(void)
392 {
393 	ktime_t expires = { .tv64 = KTIME_MAX };
394 	struct tick_device *td;
395 	int cpu;
396 
397 	/*
398 	 * Find the event which expires next:
399 	 */
400 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
401 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
402 		td = &per_cpu(tick_cpu_device, cpu);
403 		if (td->evtdev->next_event.tv64 < expires.tv64)
404 			expires = td->evtdev->next_event;
405 	}
406 
407 	if (expires.tv64 == KTIME_MAX)
408 		return 0;
409 
410 	return tick_broadcast_set_event(expires, 0);
411 }
412 
413 /*
414  * Handle oneshot mode broadcasting
415  */
416 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
417 {
418 	struct tick_device *td;
419 	cpumask_t mask;
420 	ktime_t now;
421 	int cpu;
422 
423 	spin_lock(&tick_broadcast_lock);
424 again:
425 	dev->next_event.tv64 = KTIME_MAX;
426 	mask = CPU_MASK_NONE;
427 	now = ktime_get();
428 	/* Find all expired events */
429 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
430 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
431 		td = &per_cpu(tick_cpu_device, cpu);
432 		if (td->evtdev->next_event.tv64 <= now.tv64)
433 			cpu_set(cpu, mask);
434 	}
435 
436 	/*
437 	 * Wakeup the cpus which have an expired event. The broadcast
438 	 * device is reprogrammed in the return from idle code.
439 	 */
440 	if (!tick_do_broadcast(mask)) {
441 		/*
442 		 * The global event did not expire any CPU local
443 		 * events. This happens in dyntick mode, as the
444 		 * maximum PIT delta is quite small.
445 		 */
446 		if (tick_broadcast_reprogram())
447 			goto again;
448 	}
449 	spin_unlock(&tick_broadcast_lock);
450 }
451 
452 /*
453  * Powerstate information: The system enters/leaves a state, where
454  * affected devices might stop
455  */
456 void tick_broadcast_oneshot_control(unsigned long reason)
457 {
458 	struct clock_event_device *bc, *dev;
459 	struct tick_device *td;
460 	unsigned long flags;
461 	int cpu;
462 
463 	spin_lock_irqsave(&tick_broadcast_lock, flags);
464 
465 	/*
466 	 * Periodic mode does not care about the enter/exit of power
467 	 * states
468 	 */
469 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
470 		goto out;
471 
472 	bc = tick_broadcast_device.evtdev;
473 	cpu = smp_processor_id();
474 	td = &per_cpu(tick_cpu_device, cpu);
475 	dev = td->evtdev;
476 
477 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
478 		goto out;
479 
480 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
481 		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
482 			cpu_set(cpu, tick_broadcast_oneshot_mask);
483 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
484 			if (dev->next_event.tv64 < bc->next_event.tv64)
485 				tick_broadcast_set_event(dev->next_event, 1);
486 		}
487 	} else {
488 		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
489 			cpu_clear(cpu, tick_broadcast_oneshot_mask);
490 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
491 			if (dev->next_event.tv64 != KTIME_MAX)
492 				tick_program_event(dev->next_event, 1);
493 		}
494 	}
495 
496 out:
497 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
498 }
499 
500 /*
501  * Reset the one shot broadcast for a cpu
502  *
503  * Called with tick_broadcast_lock held
504  */
505 static void tick_broadcast_clear_oneshot(int cpu)
506 {
507 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
508 }
509 
510 /**
511  * tick_broadcast_setup_highres - setup the broadcast device for highres
512  */
513 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
514 {
515 	bc->event_handler = tick_handle_oneshot_broadcast;
516 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
517 	bc->next_event.tv64 = KTIME_MAX;
518 }
519 
520 /*
521  * Select oneshot operating mode for the broadcast device
522  */
523 void tick_broadcast_switch_to_oneshot(void)
524 {
525 	struct clock_event_device *bc;
526 	unsigned long flags;
527 
528 	spin_lock_irqsave(&tick_broadcast_lock, flags);
529 
530 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
531 	bc = tick_broadcast_device.evtdev;
532 	if (bc)
533 		tick_broadcast_setup_oneshot(bc);
534 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
535 }
536 
537 
538 /*
539  * Remove a dead CPU from broadcasting
540  */
541 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
542 {
543 	unsigned long flags;
544 	unsigned int cpu = *cpup;
545 
546 	spin_lock_irqsave(&tick_broadcast_lock, flags);
547 
548 	/*
549 	 * Clear the broadcast mask flag for the dead cpu, but do not
550 	 * stop the broadcast device!
551 	 */
552 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
553 
554 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
555 }
556 
557 #endif
558