1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 139 }; 140 141 #define migration_base migration_cpu_base.clock_base[0] 142 143 /* 144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 145 * means that all timers which are tied to this base via timer->base are 146 * locked, and the base itself is locked too. 147 * 148 * So __run_timers/migrate_timers can safely modify all timers which could 149 * be found on the lists/queues. 150 * 151 * When the timer's base is locked, and the timer removed from list, it is 152 * possible to set timer->base = &migration_base and drop the lock: the timer 153 * remains locked. 154 */ 155 static 156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 157 unsigned long *flags) 158 { 159 struct hrtimer_clock_base *base; 160 161 for (;;) { 162 base = timer->base; 163 if (likely(base != &migration_base)) { 164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 165 if (likely(base == timer->base)) 166 return base; 167 /* The timer has migrated to another CPU: */ 168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 169 } 170 cpu_relax(); 171 } 172 } 173 174 /* 175 * We do not migrate the timer when it is expiring before the next 176 * event on the target cpu. When high resolution is enabled, we cannot 177 * reprogram the target cpu hardware and we would cause it to fire 178 * late. To keep it simple, we handle the high resolution enabled and 179 * disabled case similar. 180 * 181 * Called with cpu_base->lock of target cpu held. 182 */ 183 static int 184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 185 { 186 ktime_t expires; 187 188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 189 return expires < new_base->cpu_base->expires_next; 190 } 191 192 static inline 193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 194 int pinned) 195 { 196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 197 if (static_branch_likely(&timers_migration_enabled) && !pinned) 198 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 199 #endif 200 return base; 201 } 202 203 /* 204 * We switch the timer base to a power-optimized selected CPU target, 205 * if: 206 * - NO_HZ_COMMON is enabled 207 * - timer migration is enabled 208 * - the timer callback is not running 209 * - the timer is not the first expiring timer on the new target 210 * 211 * If one of the above requirements is not fulfilled we move the timer 212 * to the current CPU or leave it on the previously assigned CPU if 213 * the timer callback is currently running. 214 */ 215 static inline struct hrtimer_clock_base * 216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 217 int pinned) 218 { 219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 220 struct hrtimer_clock_base *new_base; 221 int basenum = base->index; 222 223 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 224 new_cpu_base = get_target_base(this_cpu_base, pinned); 225 again: 226 new_base = &new_cpu_base->clock_base[basenum]; 227 228 if (base != new_base) { 229 /* 230 * We are trying to move timer to new_base. 231 * However we can't change timer's base while it is running, 232 * so we keep it on the same CPU. No hassle vs. reprogramming 233 * the event source in the high resolution case. The softirq 234 * code will take care of this when the timer function has 235 * completed. There is no conflict as we hold the lock until 236 * the timer is enqueued. 237 */ 238 if (unlikely(hrtimer_callback_running(timer))) 239 return base; 240 241 /* See the comment in lock_hrtimer_base() */ 242 timer->base = &migration_base; 243 raw_spin_unlock(&base->cpu_base->lock); 244 raw_spin_lock(&new_base->cpu_base->lock); 245 246 if (new_cpu_base != this_cpu_base && 247 hrtimer_check_target(timer, new_base)) { 248 raw_spin_unlock(&new_base->cpu_base->lock); 249 raw_spin_lock(&base->cpu_base->lock); 250 new_cpu_base = this_cpu_base; 251 timer->base = base; 252 goto again; 253 } 254 timer->base = new_base; 255 } else { 256 if (new_cpu_base != this_cpu_base && 257 hrtimer_check_target(timer, new_base)) { 258 new_cpu_base = this_cpu_base; 259 goto again; 260 } 261 } 262 return new_base; 263 } 264 265 #else /* CONFIG_SMP */ 266 267 static inline struct hrtimer_clock_base * 268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 269 { 270 struct hrtimer_clock_base *base = timer->base; 271 272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 273 274 return base; 275 } 276 277 # define switch_hrtimer_base(t, b, p) (b) 278 279 #endif /* !CONFIG_SMP */ 280 281 /* 282 * Functions for the union type storage format of ktime_t which are 283 * too large for inlining: 284 */ 285 #if BITS_PER_LONG < 64 286 /* 287 * Divide a ktime value by a nanosecond value 288 */ 289 s64 __ktime_divns(const ktime_t kt, s64 div) 290 { 291 int sft = 0; 292 s64 dclc; 293 u64 tmp; 294 295 dclc = ktime_to_ns(kt); 296 tmp = dclc < 0 ? -dclc : dclc; 297 298 /* Make sure the divisor is less than 2^32: */ 299 while (div >> 32) { 300 sft++; 301 div >>= 1; 302 } 303 tmp >>= sft; 304 do_div(tmp, (unsigned long) div); 305 return dclc < 0 ? -tmp : tmp; 306 } 307 EXPORT_SYMBOL_GPL(__ktime_divns); 308 #endif /* BITS_PER_LONG >= 64 */ 309 310 /* 311 * Add two ktime values and do a safety check for overflow: 312 */ 313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 314 { 315 ktime_t res = ktime_add_unsafe(lhs, rhs); 316 317 /* 318 * We use KTIME_SEC_MAX here, the maximum timeout which we can 319 * return to user space in a timespec: 320 */ 321 if (res < 0 || res < lhs || res < rhs) 322 res = ktime_set(KTIME_SEC_MAX, 0); 323 324 return res; 325 } 326 327 EXPORT_SYMBOL_GPL(ktime_add_safe); 328 329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 330 331 static struct debug_obj_descr hrtimer_debug_descr; 332 333 static void *hrtimer_debug_hint(void *addr) 334 { 335 return ((struct hrtimer *) addr)->function; 336 } 337 338 /* 339 * fixup_init is called when: 340 * - an active object is initialized 341 */ 342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 343 { 344 struct hrtimer *timer = addr; 345 346 switch (state) { 347 case ODEBUG_STATE_ACTIVE: 348 hrtimer_cancel(timer); 349 debug_object_init(timer, &hrtimer_debug_descr); 350 return true; 351 default: 352 return false; 353 } 354 } 355 356 /* 357 * fixup_activate is called when: 358 * - an active object is activated 359 * - an unknown non-static object is activated 360 */ 361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 362 { 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 WARN_ON(1); 366 /* fall through */ 367 default: 368 return false; 369 } 370 } 371 372 /* 373 * fixup_free is called when: 374 * - an active object is freed 375 */ 376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 377 { 378 struct hrtimer *timer = addr; 379 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 hrtimer_cancel(timer); 383 debug_object_free(timer, &hrtimer_debug_descr); 384 return true; 385 default: 386 return false; 387 } 388 } 389 390 static struct debug_obj_descr hrtimer_debug_descr = { 391 .name = "hrtimer", 392 .debug_hint = hrtimer_debug_hint, 393 .fixup_init = hrtimer_fixup_init, 394 .fixup_activate = hrtimer_fixup_activate, 395 .fixup_free = hrtimer_fixup_free, 396 }; 397 398 static inline void debug_hrtimer_init(struct hrtimer *timer) 399 { 400 debug_object_init(timer, &hrtimer_debug_descr); 401 } 402 403 static inline void debug_hrtimer_activate(struct hrtimer *timer, 404 enum hrtimer_mode mode) 405 { 406 debug_object_activate(timer, &hrtimer_debug_descr); 407 } 408 409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 410 { 411 debug_object_deactivate(timer, &hrtimer_debug_descr); 412 } 413 414 static inline void debug_hrtimer_free(struct hrtimer *timer) 415 { 416 debug_object_free(timer, &hrtimer_debug_descr); 417 } 418 419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 420 enum hrtimer_mode mode); 421 422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 423 enum hrtimer_mode mode) 424 { 425 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 426 __hrtimer_init(timer, clock_id, mode); 427 } 428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 429 430 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 431 clockid_t clock_id, enum hrtimer_mode mode); 432 433 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 434 clockid_t clock_id, enum hrtimer_mode mode) 435 { 436 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 437 __hrtimer_init_sleeper(sl, clock_id, mode); 438 } 439 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 440 441 void destroy_hrtimer_on_stack(struct hrtimer *timer) 442 { 443 debug_object_free(timer, &hrtimer_debug_descr); 444 } 445 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 446 447 #else 448 449 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 450 static inline void debug_hrtimer_activate(struct hrtimer *timer, 451 enum hrtimer_mode mode) { } 452 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 453 #endif 454 455 static inline void 456 debug_init(struct hrtimer *timer, clockid_t clockid, 457 enum hrtimer_mode mode) 458 { 459 debug_hrtimer_init(timer); 460 trace_hrtimer_init(timer, clockid, mode); 461 } 462 463 static inline void debug_activate(struct hrtimer *timer, 464 enum hrtimer_mode mode) 465 { 466 debug_hrtimer_activate(timer, mode); 467 trace_hrtimer_start(timer, mode); 468 } 469 470 static inline void debug_deactivate(struct hrtimer *timer) 471 { 472 debug_hrtimer_deactivate(timer); 473 trace_hrtimer_cancel(timer); 474 } 475 476 static struct hrtimer_clock_base * 477 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 478 { 479 unsigned int idx; 480 481 if (!*active) 482 return NULL; 483 484 idx = __ffs(*active); 485 *active &= ~(1U << idx); 486 487 return &cpu_base->clock_base[idx]; 488 } 489 490 #define for_each_active_base(base, cpu_base, active) \ 491 while ((base = __next_base((cpu_base), &(active)))) 492 493 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 494 const struct hrtimer *exclude, 495 unsigned int active, 496 ktime_t expires_next) 497 { 498 struct hrtimer_clock_base *base; 499 ktime_t expires; 500 501 for_each_active_base(base, cpu_base, active) { 502 struct timerqueue_node *next; 503 struct hrtimer *timer; 504 505 next = timerqueue_getnext(&base->active); 506 timer = container_of(next, struct hrtimer, node); 507 if (timer == exclude) { 508 /* Get to the next timer in the queue. */ 509 next = timerqueue_iterate_next(next); 510 if (!next) 511 continue; 512 513 timer = container_of(next, struct hrtimer, node); 514 } 515 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 516 if (expires < expires_next) { 517 expires_next = expires; 518 519 /* Skip cpu_base update if a timer is being excluded. */ 520 if (exclude) 521 continue; 522 523 if (timer->is_soft) 524 cpu_base->softirq_next_timer = timer; 525 else 526 cpu_base->next_timer = timer; 527 } 528 } 529 /* 530 * clock_was_set() might have changed base->offset of any of 531 * the clock bases so the result might be negative. Fix it up 532 * to prevent a false positive in clockevents_program_event(). 533 */ 534 if (expires_next < 0) 535 expires_next = 0; 536 return expires_next; 537 } 538 539 /* 540 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 541 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 542 * 543 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 544 * those timers will get run whenever the softirq gets handled, at the end of 545 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 546 * 547 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 548 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 549 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 550 * 551 * @active_mask must be one of: 552 * - HRTIMER_ACTIVE_ALL, 553 * - HRTIMER_ACTIVE_SOFT, or 554 * - HRTIMER_ACTIVE_HARD. 555 */ 556 static ktime_t 557 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 558 { 559 unsigned int active; 560 struct hrtimer *next_timer = NULL; 561 ktime_t expires_next = KTIME_MAX; 562 563 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 564 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 565 cpu_base->softirq_next_timer = NULL; 566 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 567 active, KTIME_MAX); 568 569 next_timer = cpu_base->softirq_next_timer; 570 } 571 572 if (active_mask & HRTIMER_ACTIVE_HARD) { 573 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 574 cpu_base->next_timer = next_timer; 575 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 576 expires_next); 577 } 578 579 return expires_next; 580 } 581 582 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 583 { 584 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 585 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 586 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 587 588 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 589 offs_real, offs_boot, offs_tai); 590 591 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 592 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 593 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 594 595 return now; 596 } 597 598 /* 599 * Is the high resolution mode active ? 600 */ 601 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 602 { 603 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 604 cpu_base->hres_active : 0; 605 } 606 607 static inline int hrtimer_hres_active(void) 608 { 609 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 610 } 611 612 /* 613 * Reprogram the event source with checking both queues for the 614 * next event 615 * Called with interrupts disabled and base->lock held 616 */ 617 static void 618 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 619 { 620 ktime_t expires_next; 621 622 /* 623 * Find the current next expiration time. 624 */ 625 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 626 627 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 628 /* 629 * When the softirq is activated, hrtimer has to be 630 * programmed with the first hard hrtimer because soft 631 * timer interrupt could occur too late. 632 */ 633 if (cpu_base->softirq_activated) 634 expires_next = __hrtimer_get_next_event(cpu_base, 635 HRTIMER_ACTIVE_HARD); 636 else 637 cpu_base->softirq_expires_next = expires_next; 638 } 639 640 if (skip_equal && expires_next == cpu_base->expires_next) 641 return; 642 643 cpu_base->expires_next = expires_next; 644 645 /* 646 * If hres is not active, hardware does not have to be 647 * reprogrammed yet. 648 * 649 * If a hang was detected in the last timer interrupt then we 650 * leave the hang delay active in the hardware. We want the 651 * system to make progress. That also prevents the following 652 * scenario: 653 * T1 expires 50ms from now 654 * T2 expires 5s from now 655 * 656 * T1 is removed, so this code is called and would reprogram 657 * the hardware to 5s from now. Any hrtimer_start after that 658 * will not reprogram the hardware due to hang_detected being 659 * set. So we'd effectivly block all timers until the T2 event 660 * fires. 661 */ 662 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 663 return; 664 665 tick_program_event(cpu_base->expires_next, 1); 666 } 667 668 /* High resolution timer related functions */ 669 #ifdef CONFIG_HIGH_RES_TIMERS 670 671 /* 672 * High resolution timer enabled ? 673 */ 674 static bool hrtimer_hres_enabled __read_mostly = true; 675 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 676 EXPORT_SYMBOL_GPL(hrtimer_resolution); 677 678 /* 679 * Enable / Disable high resolution mode 680 */ 681 static int __init setup_hrtimer_hres(char *str) 682 { 683 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 684 } 685 686 __setup("highres=", setup_hrtimer_hres); 687 688 /* 689 * hrtimer_high_res_enabled - query, if the highres mode is enabled 690 */ 691 static inline int hrtimer_is_hres_enabled(void) 692 { 693 return hrtimer_hres_enabled; 694 } 695 696 /* 697 * Retrigger next event is called after clock was set 698 * 699 * Called with interrupts disabled via on_each_cpu() 700 */ 701 static void retrigger_next_event(void *arg) 702 { 703 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 704 705 if (!__hrtimer_hres_active(base)) 706 return; 707 708 raw_spin_lock(&base->lock); 709 hrtimer_update_base(base); 710 hrtimer_force_reprogram(base, 0); 711 raw_spin_unlock(&base->lock); 712 } 713 714 /* 715 * Switch to high resolution mode 716 */ 717 static void hrtimer_switch_to_hres(void) 718 { 719 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 720 721 if (tick_init_highres()) { 722 pr_warn("Could not switch to high resolution mode on CPU %u\n", 723 base->cpu); 724 return; 725 } 726 base->hres_active = 1; 727 hrtimer_resolution = HIGH_RES_NSEC; 728 729 tick_setup_sched_timer(); 730 /* "Retrigger" the interrupt to get things going */ 731 retrigger_next_event(NULL); 732 } 733 734 static void clock_was_set_work(struct work_struct *work) 735 { 736 clock_was_set(); 737 } 738 739 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 740 741 /* 742 * Called from timekeeping and resume code to reprogram the hrtimer 743 * interrupt device on all cpus. 744 */ 745 void clock_was_set_delayed(void) 746 { 747 schedule_work(&hrtimer_work); 748 } 749 750 #else 751 752 static inline int hrtimer_is_hres_enabled(void) { return 0; } 753 static inline void hrtimer_switch_to_hres(void) { } 754 static inline void retrigger_next_event(void *arg) { } 755 756 #endif /* CONFIG_HIGH_RES_TIMERS */ 757 758 /* 759 * When a timer is enqueued and expires earlier than the already enqueued 760 * timers, we have to check, whether it expires earlier than the timer for 761 * which the clock event device was armed. 762 * 763 * Called with interrupts disabled and base->cpu_base.lock held 764 */ 765 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 766 { 767 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 768 struct hrtimer_clock_base *base = timer->base; 769 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 770 771 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 772 773 /* 774 * CLOCK_REALTIME timer might be requested with an absolute 775 * expiry time which is less than base->offset. Set it to 0. 776 */ 777 if (expires < 0) 778 expires = 0; 779 780 if (timer->is_soft) { 781 /* 782 * soft hrtimer could be started on a remote CPU. In this 783 * case softirq_expires_next needs to be updated on the 784 * remote CPU. The soft hrtimer will not expire before the 785 * first hard hrtimer on the remote CPU - 786 * hrtimer_check_target() prevents this case. 787 */ 788 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 789 790 if (timer_cpu_base->softirq_activated) 791 return; 792 793 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 794 return; 795 796 timer_cpu_base->softirq_next_timer = timer; 797 timer_cpu_base->softirq_expires_next = expires; 798 799 if (!ktime_before(expires, timer_cpu_base->expires_next) || 800 !reprogram) 801 return; 802 } 803 804 /* 805 * If the timer is not on the current cpu, we cannot reprogram 806 * the other cpus clock event device. 807 */ 808 if (base->cpu_base != cpu_base) 809 return; 810 811 /* 812 * If the hrtimer interrupt is running, then it will 813 * reevaluate the clock bases and reprogram the clock event 814 * device. The callbacks are always executed in hard interrupt 815 * context so we don't need an extra check for a running 816 * callback. 817 */ 818 if (cpu_base->in_hrtirq) 819 return; 820 821 if (expires >= cpu_base->expires_next) 822 return; 823 824 /* Update the pointer to the next expiring timer */ 825 cpu_base->next_timer = timer; 826 cpu_base->expires_next = expires; 827 828 /* 829 * If hres is not active, hardware does not have to be 830 * programmed yet. 831 * 832 * If a hang was detected in the last timer interrupt then we 833 * do not schedule a timer which is earlier than the expiry 834 * which we enforced in the hang detection. We want the system 835 * to make progress. 836 */ 837 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 838 return; 839 840 /* 841 * Program the timer hardware. We enforce the expiry for 842 * events which are already in the past. 843 */ 844 tick_program_event(expires, 1); 845 } 846 847 /* 848 * Clock realtime was set 849 * 850 * Change the offset of the realtime clock vs. the monotonic 851 * clock. 852 * 853 * We might have to reprogram the high resolution timer interrupt. On 854 * SMP we call the architecture specific code to retrigger _all_ high 855 * resolution timer interrupts. On UP we just disable interrupts and 856 * call the high resolution interrupt code. 857 */ 858 void clock_was_set(void) 859 { 860 #ifdef CONFIG_HIGH_RES_TIMERS 861 /* Retrigger the CPU local events everywhere */ 862 on_each_cpu(retrigger_next_event, NULL, 1); 863 #endif 864 timerfd_clock_was_set(); 865 } 866 867 /* 868 * During resume we might have to reprogram the high resolution timer 869 * interrupt on all online CPUs. However, all other CPUs will be 870 * stopped with IRQs interrupts disabled so the clock_was_set() call 871 * must be deferred. 872 */ 873 void hrtimers_resume(void) 874 { 875 lockdep_assert_irqs_disabled(); 876 /* Retrigger on the local CPU */ 877 retrigger_next_event(NULL); 878 /* And schedule a retrigger for all others */ 879 clock_was_set_delayed(); 880 } 881 882 /* 883 * Counterpart to lock_hrtimer_base above: 884 */ 885 static inline 886 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 887 { 888 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 889 } 890 891 /** 892 * hrtimer_forward - forward the timer expiry 893 * @timer: hrtimer to forward 894 * @now: forward past this time 895 * @interval: the interval to forward 896 * 897 * Forward the timer expiry so it will expire in the future. 898 * Returns the number of overruns. 899 * 900 * Can be safely called from the callback function of @timer. If 901 * called from other contexts @timer must neither be enqueued nor 902 * running the callback and the caller needs to take care of 903 * serialization. 904 * 905 * Note: This only updates the timer expiry value and does not requeue 906 * the timer. 907 */ 908 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 909 { 910 u64 orun = 1; 911 ktime_t delta; 912 913 delta = ktime_sub(now, hrtimer_get_expires(timer)); 914 915 if (delta < 0) 916 return 0; 917 918 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 919 return 0; 920 921 if (interval < hrtimer_resolution) 922 interval = hrtimer_resolution; 923 924 if (unlikely(delta >= interval)) { 925 s64 incr = ktime_to_ns(interval); 926 927 orun = ktime_divns(delta, incr); 928 hrtimer_add_expires_ns(timer, incr * orun); 929 if (hrtimer_get_expires_tv64(timer) > now) 930 return orun; 931 /* 932 * This (and the ktime_add() below) is the 933 * correction for exact: 934 */ 935 orun++; 936 } 937 hrtimer_add_expires(timer, interval); 938 939 return orun; 940 } 941 EXPORT_SYMBOL_GPL(hrtimer_forward); 942 943 /* 944 * enqueue_hrtimer - internal function to (re)start a timer 945 * 946 * The timer is inserted in expiry order. Insertion into the 947 * red black tree is O(log(n)). Must hold the base lock. 948 * 949 * Returns 1 when the new timer is the leftmost timer in the tree. 950 */ 951 static int enqueue_hrtimer(struct hrtimer *timer, 952 struct hrtimer_clock_base *base, 953 enum hrtimer_mode mode) 954 { 955 debug_activate(timer, mode); 956 957 base->cpu_base->active_bases |= 1 << base->index; 958 959 timer->state = HRTIMER_STATE_ENQUEUED; 960 961 return timerqueue_add(&base->active, &timer->node); 962 } 963 964 /* 965 * __remove_hrtimer - internal function to remove a timer 966 * 967 * Caller must hold the base lock. 968 * 969 * High resolution timer mode reprograms the clock event device when the 970 * timer is the one which expires next. The caller can disable this by setting 971 * reprogram to zero. This is useful, when the context does a reprogramming 972 * anyway (e.g. timer interrupt) 973 */ 974 static void __remove_hrtimer(struct hrtimer *timer, 975 struct hrtimer_clock_base *base, 976 u8 newstate, int reprogram) 977 { 978 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 979 u8 state = timer->state; 980 981 timer->state = newstate; 982 if (!(state & HRTIMER_STATE_ENQUEUED)) 983 return; 984 985 if (!timerqueue_del(&base->active, &timer->node)) 986 cpu_base->active_bases &= ~(1 << base->index); 987 988 /* 989 * Note: If reprogram is false we do not update 990 * cpu_base->next_timer. This happens when we remove the first 991 * timer on a remote cpu. No harm as we never dereference 992 * cpu_base->next_timer. So the worst thing what can happen is 993 * an superflous call to hrtimer_force_reprogram() on the 994 * remote cpu later on if the same timer gets enqueued again. 995 */ 996 if (reprogram && timer == cpu_base->next_timer) 997 hrtimer_force_reprogram(cpu_base, 1); 998 } 999 1000 /* 1001 * remove hrtimer, called with base lock held 1002 */ 1003 static inline int 1004 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 1005 { 1006 if (hrtimer_is_queued(timer)) { 1007 u8 state = timer->state; 1008 int reprogram; 1009 1010 /* 1011 * Remove the timer and force reprogramming when high 1012 * resolution mode is active and the timer is on the current 1013 * CPU. If we remove a timer on another CPU, reprogramming is 1014 * skipped. The interrupt event on this CPU is fired and 1015 * reprogramming happens in the interrupt handler. This is a 1016 * rare case and less expensive than a smp call. 1017 */ 1018 debug_deactivate(timer); 1019 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1020 1021 if (!restart) 1022 state = HRTIMER_STATE_INACTIVE; 1023 1024 __remove_hrtimer(timer, base, state, reprogram); 1025 return 1; 1026 } 1027 return 0; 1028 } 1029 1030 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1031 const enum hrtimer_mode mode) 1032 { 1033 #ifdef CONFIG_TIME_LOW_RES 1034 /* 1035 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1036 * granular time values. For relative timers we add hrtimer_resolution 1037 * (i.e. one jiffie) to prevent short timeouts. 1038 */ 1039 timer->is_rel = mode & HRTIMER_MODE_REL; 1040 if (timer->is_rel) 1041 tim = ktime_add_safe(tim, hrtimer_resolution); 1042 #endif 1043 return tim; 1044 } 1045 1046 static void 1047 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1048 { 1049 ktime_t expires; 1050 1051 /* 1052 * Find the next SOFT expiration. 1053 */ 1054 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1055 1056 /* 1057 * reprogramming needs to be triggered, even if the next soft 1058 * hrtimer expires at the same time than the next hard 1059 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1060 */ 1061 if (expires == KTIME_MAX) 1062 return; 1063 1064 /* 1065 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1066 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1067 */ 1068 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1069 } 1070 1071 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1072 u64 delta_ns, const enum hrtimer_mode mode, 1073 struct hrtimer_clock_base *base) 1074 { 1075 struct hrtimer_clock_base *new_base; 1076 1077 /* Remove an active timer from the queue: */ 1078 remove_hrtimer(timer, base, true); 1079 1080 if (mode & HRTIMER_MODE_REL) 1081 tim = ktime_add_safe(tim, base->get_time()); 1082 1083 tim = hrtimer_update_lowres(timer, tim, mode); 1084 1085 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1086 1087 /* Switch the timer base, if necessary: */ 1088 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1089 1090 return enqueue_hrtimer(timer, new_base, mode); 1091 } 1092 1093 /** 1094 * hrtimer_start_range_ns - (re)start an hrtimer 1095 * @timer: the timer to be added 1096 * @tim: expiry time 1097 * @delta_ns: "slack" range for the timer 1098 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1099 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1100 * softirq based mode is considered for debug purpose only! 1101 */ 1102 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1103 u64 delta_ns, const enum hrtimer_mode mode) 1104 { 1105 struct hrtimer_clock_base *base; 1106 unsigned long flags; 1107 1108 /* 1109 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1110 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1111 * expiry mode because unmarked timers are moved to softirq expiry. 1112 */ 1113 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1114 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1115 else 1116 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1117 1118 base = lock_hrtimer_base(timer, &flags); 1119 1120 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1121 hrtimer_reprogram(timer, true); 1122 1123 unlock_hrtimer_base(timer, &flags); 1124 } 1125 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1126 1127 /** 1128 * hrtimer_try_to_cancel - try to deactivate a timer 1129 * @timer: hrtimer to stop 1130 * 1131 * Returns: 1132 * 1133 * * 0 when the timer was not active 1134 * * 1 when the timer was active 1135 * * -1 when the timer is currently executing the callback function and 1136 * cannot be stopped 1137 */ 1138 int hrtimer_try_to_cancel(struct hrtimer *timer) 1139 { 1140 struct hrtimer_clock_base *base; 1141 unsigned long flags; 1142 int ret = -1; 1143 1144 /* 1145 * Check lockless first. If the timer is not active (neither 1146 * enqueued nor running the callback, nothing to do here. The 1147 * base lock does not serialize against a concurrent enqueue, 1148 * so we can avoid taking it. 1149 */ 1150 if (!hrtimer_active(timer)) 1151 return 0; 1152 1153 base = lock_hrtimer_base(timer, &flags); 1154 1155 if (!hrtimer_callback_running(timer)) 1156 ret = remove_hrtimer(timer, base, false); 1157 1158 unlock_hrtimer_base(timer, &flags); 1159 1160 return ret; 1161 1162 } 1163 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1164 1165 /** 1166 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1167 * @timer: the timer to be cancelled 1168 * 1169 * Returns: 1170 * 0 when the timer was not active 1171 * 1 when the timer was active 1172 */ 1173 int hrtimer_cancel(struct hrtimer *timer) 1174 { 1175 for (;;) { 1176 int ret = hrtimer_try_to_cancel(timer); 1177 1178 if (ret >= 0) 1179 return ret; 1180 cpu_relax(); 1181 } 1182 } 1183 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1184 1185 /** 1186 * hrtimer_get_remaining - get remaining time for the timer 1187 * @timer: the timer to read 1188 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1189 */ 1190 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1191 { 1192 unsigned long flags; 1193 ktime_t rem; 1194 1195 lock_hrtimer_base(timer, &flags); 1196 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1197 rem = hrtimer_expires_remaining_adjusted(timer); 1198 else 1199 rem = hrtimer_expires_remaining(timer); 1200 unlock_hrtimer_base(timer, &flags); 1201 1202 return rem; 1203 } 1204 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1205 1206 #ifdef CONFIG_NO_HZ_COMMON 1207 /** 1208 * hrtimer_get_next_event - get the time until next expiry event 1209 * 1210 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1211 */ 1212 u64 hrtimer_get_next_event(void) 1213 { 1214 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1215 u64 expires = KTIME_MAX; 1216 unsigned long flags; 1217 1218 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1219 1220 if (!__hrtimer_hres_active(cpu_base)) 1221 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1222 1223 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1224 1225 return expires; 1226 } 1227 1228 /** 1229 * hrtimer_next_event_without - time until next expiry event w/o one timer 1230 * @exclude: timer to exclude 1231 * 1232 * Returns the next expiry time over all timers except for the @exclude one or 1233 * KTIME_MAX if none of them is pending. 1234 */ 1235 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1236 { 1237 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1238 u64 expires = KTIME_MAX; 1239 unsigned long flags; 1240 1241 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1242 1243 if (__hrtimer_hres_active(cpu_base)) { 1244 unsigned int active; 1245 1246 if (!cpu_base->softirq_activated) { 1247 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1248 expires = __hrtimer_next_event_base(cpu_base, exclude, 1249 active, KTIME_MAX); 1250 } 1251 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1252 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1253 expires); 1254 } 1255 1256 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1257 1258 return expires; 1259 } 1260 #endif 1261 1262 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1263 { 1264 if (likely(clock_id < MAX_CLOCKS)) { 1265 int base = hrtimer_clock_to_base_table[clock_id]; 1266 1267 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1268 return base; 1269 } 1270 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1271 return HRTIMER_BASE_MONOTONIC; 1272 } 1273 1274 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1275 enum hrtimer_mode mode) 1276 { 1277 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1278 struct hrtimer_cpu_base *cpu_base; 1279 int base; 1280 1281 /* 1282 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1283 * marked for hard interrupt expiry mode are moved into soft 1284 * interrupt context for latency reasons and because the callbacks 1285 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1286 */ 1287 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1288 softtimer = true; 1289 1290 memset(timer, 0, sizeof(struct hrtimer)); 1291 1292 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1293 1294 /* 1295 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1296 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1297 * ensure POSIX compliance. 1298 */ 1299 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1300 clock_id = CLOCK_MONOTONIC; 1301 1302 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1303 base += hrtimer_clockid_to_base(clock_id); 1304 timer->is_soft = softtimer; 1305 timer->is_hard = !softtimer; 1306 timer->base = &cpu_base->clock_base[base]; 1307 timerqueue_init(&timer->node); 1308 } 1309 1310 /** 1311 * hrtimer_init - initialize a timer to the given clock 1312 * @timer: the timer to be initialized 1313 * @clock_id: the clock to be used 1314 * @mode: The modes which are relevant for intitialization: 1315 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1316 * HRTIMER_MODE_REL_SOFT 1317 * 1318 * The PINNED variants of the above can be handed in, 1319 * but the PINNED bit is ignored as pinning happens 1320 * when the hrtimer is started 1321 */ 1322 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1323 enum hrtimer_mode mode) 1324 { 1325 debug_init(timer, clock_id, mode); 1326 __hrtimer_init(timer, clock_id, mode); 1327 } 1328 EXPORT_SYMBOL_GPL(hrtimer_init); 1329 1330 /* 1331 * A timer is active, when it is enqueued into the rbtree or the 1332 * callback function is running or it's in the state of being migrated 1333 * to another cpu. 1334 * 1335 * It is important for this function to not return a false negative. 1336 */ 1337 bool hrtimer_active(const struct hrtimer *timer) 1338 { 1339 struct hrtimer_clock_base *base; 1340 unsigned int seq; 1341 1342 do { 1343 base = READ_ONCE(timer->base); 1344 seq = raw_read_seqcount_begin(&base->seq); 1345 1346 if (timer->state != HRTIMER_STATE_INACTIVE || 1347 base->running == timer) 1348 return true; 1349 1350 } while (read_seqcount_retry(&base->seq, seq) || 1351 base != READ_ONCE(timer->base)); 1352 1353 return false; 1354 } 1355 EXPORT_SYMBOL_GPL(hrtimer_active); 1356 1357 /* 1358 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1359 * distinct sections: 1360 * 1361 * - queued: the timer is queued 1362 * - callback: the timer is being ran 1363 * - post: the timer is inactive or (re)queued 1364 * 1365 * On the read side we ensure we observe timer->state and cpu_base->running 1366 * from the same section, if anything changed while we looked at it, we retry. 1367 * This includes timer->base changing because sequence numbers alone are 1368 * insufficient for that. 1369 * 1370 * The sequence numbers are required because otherwise we could still observe 1371 * a false negative if the read side got smeared over multiple consequtive 1372 * __run_hrtimer() invocations. 1373 */ 1374 1375 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1376 struct hrtimer_clock_base *base, 1377 struct hrtimer *timer, ktime_t *now, 1378 unsigned long flags) 1379 { 1380 enum hrtimer_restart (*fn)(struct hrtimer *); 1381 int restart; 1382 1383 lockdep_assert_held(&cpu_base->lock); 1384 1385 debug_deactivate(timer); 1386 base->running = timer; 1387 1388 /* 1389 * Separate the ->running assignment from the ->state assignment. 1390 * 1391 * As with a regular write barrier, this ensures the read side in 1392 * hrtimer_active() cannot observe base->running == NULL && 1393 * timer->state == INACTIVE. 1394 */ 1395 raw_write_seqcount_barrier(&base->seq); 1396 1397 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1398 fn = timer->function; 1399 1400 /* 1401 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1402 * timer is restarted with a period then it becomes an absolute 1403 * timer. If its not restarted it does not matter. 1404 */ 1405 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1406 timer->is_rel = false; 1407 1408 /* 1409 * The timer is marked as running in the CPU base, so it is 1410 * protected against migration to a different CPU even if the lock 1411 * is dropped. 1412 */ 1413 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1414 trace_hrtimer_expire_entry(timer, now); 1415 restart = fn(timer); 1416 trace_hrtimer_expire_exit(timer); 1417 raw_spin_lock_irq(&cpu_base->lock); 1418 1419 /* 1420 * Note: We clear the running state after enqueue_hrtimer and 1421 * we do not reprogram the event hardware. Happens either in 1422 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1423 * 1424 * Note: Because we dropped the cpu_base->lock above, 1425 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1426 * for us already. 1427 */ 1428 if (restart != HRTIMER_NORESTART && 1429 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1430 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1431 1432 /* 1433 * Separate the ->running assignment from the ->state assignment. 1434 * 1435 * As with a regular write barrier, this ensures the read side in 1436 * hrtimer_active() cannot observe base->running.timer == NULL && 1437 * timer->state == INACTIVE. 1438 */ 1439 raw_write_seqcount_barrier(&base->seq); 1440 1441 WARN_ON_ONCE(base->running != timer); 1442 base->running = NULL; 1443 } 1444 1445 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1446 unsigned long flags, unsigned int active_mask) 1447 { 1448 struct hrtimer_clock_base *base; 1449 unsigned int active = cpu_base->active_bases & active_mask; 1450 1451 for_each_active_base(base, cpu_base, active) { 1452 struct timerqueue_node *node; 1453 ktime_t basenow; 1454 1455 basenow = ktime_add(now, base->offset); 1456 1457 while ((node = timerqueue_getnext(&base->active))) { 1458 struct hrtimer *timer; 1459 1460 timer = container_of(node, struct hrtimer, node); 1461 1462 /* 1463 * The immediate goal for using the softexpires is 1464 * minimizing wakeups, not running timers at the 1465 * earliest interrupt after their soft expiration. 1466 * This allows us to avoid using a Priority Search 1467 * Tree, which can answer a stabbing querry for 1468 * overlapping intervals and instead use the simple 1469 * BST we already have. 1470 * We don't add extra wakeups by delaying timers that 1471 * are right-of a not yet expired timer, because that 1472 * timer will have to trigger a wakeup anyway. 1473 */ 1474 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1475 break; 1476 1477 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1478 } 1479 } 1480 } 1481 1482 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1483 { 1484 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1485 unsigned long flags; 1486 ktime_t now; 1487 1488 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1489 1490 now = hrtimer_update_base(cpu_base); 1491 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1492 1493 cpu_base->softirq_activated = 0; 1494 hrtimer_update_softirq_timer(cpu_base, true); 1495 1496 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1497 } 1498 1499 #ifdef CONFIG_HIGH_RES_TIMERS 1500 1501 /* 1502 * High resolution timer interrupt 1503 * Called with interrupts disabled 1504 */ 1505 void hrtimer_interrupt(struct clock_event_device *dev) 1506 { 1507 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1508 ktime_t expires_next, now, entry_time, delta; 1509 unsigned long flags; 1510 int retries = 0; 1511 1512 BUG_ON(!cpu_base->hres_active); 1513 cpu_base->nr_events++; 1514 dev->next_event = KTIME_MAX; 1515 1516 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1517 entry_time = now = hrtimer_update_base(cpu_base); 1518 retry: 1519 cpu_base->in_hrtirq = 1; 1520 /* 1521 * We set expires_next to KTIME_MAX here with cpu_base->lock 1522 * held to prevent that a timer is enqueued in our queue via 1523 * the migration code. This does not affect enqueueing of 1524 * timers which run their callback and need to be requeued on 1525 * this CPU. 1526 */ 1527 cpu_base->expires_next = KTIME_MAX; 1528 1529 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1530 cpu_base->softirq_expires_next = KTIME_MAX; 1531 cpu_base->softirq_activated = 1; 1532 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1533 } 1534 1535 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1536 1537 /* Reevaluate the clock bases for the next expiry */ 1538 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1539 /* 1540 * Store the new expiry value so the migration code can verify 1541 * against it. 1542 */ 1543 cpu_base->expires_next = expires_next; 1544 cpu_base->in_hrtirq = 0; 1545 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1546 1547 /* Reprogramming necessary ? */ 1548 if (!tick_program_event(expires_next, 0)) { 1549 cpu_base->hang_detected = 0; 1550 return; 1551 } 1552 1553 /* 1554 * The next timer was already expired due to: 1555 * - tracing 1556 * - long lasting callbacks 1557 * - being scheduled away when running in a VM 1558 * 1559 * We need to prevent that we loop forever in the hrtimer 1560 * interrupt routine. We give it 3 attempts to avoid 1561 * overreacting on some spurious event. 1562 * 1563 * Acquire base lock for updating the offsets and retrieving 1564 * the current time. 1565 */ 1566 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1567 now = hrtimer_update_base(cpu_base); 1568 cpu_base->nr_retries++; 1569 if (++retries < 3) 1570 goto retry; 1571 /* 1572 * Give the system a chance to do something else than looping 1573 * here. We stored the entry time, so we know exactly how long 1574 * we spent here. We schedule the next event this amount of 1575 * time away. 1576 */ 1577 cpu_base->nr_hangs++; 1578 cpu_base->hang_detected = 1; 1579 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1580 1581 delta = ktime_sub(now, entry_time); 1582 if ((unsigned int)delta > cpu_base->max_hang_time) 1583 cpu_base->max_hang_time = (unsigned int) delta; 1584 /* 1585 * Limit it to a sensible value as we enforce a longer 1586 * delay. Give the CPU at least 100ms to catch up. 1587 */ 1588 if (delta > 100 * NSEC_PER_MSEC) 1589 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1590 else 1591 expires_next = ktime_add(now, delta); 1592 tick_program_event(expires_next, 1); 1593 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1594 } 1595 1596 /* called with interrupts disabled */ 1597 static inline void __hrtimer_peek_ahead_timers(void) 1598 { 1599 struct tick_device *td; 1600 1601 if (!hrtimer_hres_active()) 1602 return; 1603 1604 td = this_cpu_ptr(&tick_cpu_device); 1605 if (td && td->evtdev) 1606 hrtimer_interrupt(td->evtdev); 1607 } 1608 1609 #else /* CONFIG_HIGH_RES_TIMERS */ 1610 1611 static inline void __hrtimer_peek_ahead_timers(void) { } 1612 1613 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1614 1615 /* 1616 * Called from run_local_timers in hardirq context every jiffy 1617 */ 1618 void hrtimer_run_queues(void) 1619 { 1620 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1621 unsigned long flags; 1622 ktime_t now; 1623 1624 if (__hrtimer_hres_active(cpu_base)) 1625 return; 1626 1627 /* 1628 * This _is_ ugly: We have to check periodically, whether we 1629 * can switch to highres and / or nohz mode. The clocksource 1630 * switch happens with xtime_lock held. Notification from 1631 * there only sets the check bit in the tick_oneshot code, 1632 * otherwise we might deadlock vs. xtime_lock. 1633 */ 1634 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1635 hrtimer_switch_to_hres(); 1636 return; 1637 } 1638 1639 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1640 now = hrtimer_update_base(cpu_base); 1641 1642 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1643 cpu_base->softirq_expires_next = KTIME_MAX; 1644 cpu_base->softirq_activated = 1; 1645 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1646 } 1647 1648 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1649 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1650 } 1651 1652 /* 1653 * Sleep related functions: 1654 */ 1655 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1656 { 1657 struct hrtimer_sleeper *t = 1658 container_of(timer, struct hrtimer_sleeper, timer); 1659 struct task_struct *task = t->task; 1660 1661 t->task = NULL; 1662 if (task) 1663 wake_up_process(task); 1664 1665 return HRTIMER_NORESTART; 1666 } 1667 1668 /** 1669 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1670 * @sl: sleeper to be started 1671 * @mode: timer mode abs/rel 1672 * 1673 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1674 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1675 */ 1676 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1677 enum hrtimer_mode mode) 1678 { 1679 hrtimer_start_expires(&sl->timer, mode); 1680 } 1681 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1682 1683 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1684 clockid_t clock_id, enum hrtimer_mode mode) 1685 { 1686 __hrtimer_init(&sl->timer, clock_id, mode); 1687 sl->timer.function = hrtimer_wakeup; 1688 sl->task = current; 1689 } 1690 1691 /** 1692 * hrtimer_init_sleeper - initialize sleeper to the given clock 1693 * @sl: sleeper to be initialized 1694 * @clock_id: the clock to be used 1695 * @mode: timer mode abs/rel 1696 */ 1697 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 1698 enum hrtimer_mode mode) 1699 { 1700 debug_init(&sl->timer, clock_id, mode); 1701 __hrtimer_init_sleeper(sl, clock_id, mode); 1702 1703 } 1704 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1705 1706 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1707 { 1708 switch(restart->nanosleep.type) { 1709 #ifdef CONFIG_COMPAT_32BIT_TIME 1710 case TT_COMPAT: 1711 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 1712 return -EFAULT; 1713 break; 1714 #endif 1715 case TT_NATIVE: 1716 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1717 return -EFAULT; 1718 break; 1719 default: 1720 BUG(); 1721 } 1722 return -ERESTART_RESTARTBLOCK; 1723 } 1724 1725 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1726 { 1727 struct restart_block *restart; 1728 1729 do { 1730 set_current_state(TASK_INTERRUPTIBLE); 1731 hrtimer_sleeper_start_expires(t, mode); 1732 1733 if (likely(t->task)) 1734 freezable_schedule(); 1735 1736 hrtimer_cancel(&t->timer); 1737 mode = HRTIMER_MODE_ABS; 1738 1739 } while (t->task && !signal_pending(current)); 1740 1741 __set_current_state(TASK_RUNNING); 1742 1743 if (!t->task) 1744 return 0; 1745 1746 restart = ¤t->restart_block; 1747 if (restart->nanosleep.type != TT_NONE) { 1748 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1749 struct timespec64 rmt; 1750 1751 if (rem <= 0) 1752 return 0; 1753 rmt = ktime_to_timespec64(rem); 1754 1755 return nanosleep_copyout(restart, &rmt); 1756 } 1757 return -ERESTART_RESTARTBLOCK; 1758 } 1759 1760 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1761 { 1762 struct hrtimer_sleeper t; 1763 int ret; 1764 1765 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 1766 HRTIMER_MODE_ABS); 1767 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1768 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1769 destroy_hrtimer_on_stack(&t.timer); 1770 return ret; 1771 } 1772 1773 long hrtimer_nanosleep(const struct timespec64 *rqtp, 1774 const enum hrtimer_mode mode, const clockid_t clockid) 1775 { 1776 struct restart_block *restart; 1777 struct hrtimer_sleeper t; 1778 int ret = 0; 1779 u64 slack; 1780 1781 slack = current->timer_slack_ns; 1782 if (dl_task(current) || rt_task(current)) 1783 slack = 0; 1784 1785 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 1786 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1787 ret = do_nanosleep(&t, mode); 1788 if (ret != -ERESTART_RESTARTBLOCK) 1789 goto out; 1790 1791 /* Absolute timers do not update the rmtp value and restart: */ 1792 if (mode == HRTIMER_MODE_ABS) { 1793 ret = -ERESTARTNOHAND; 1794 goto out; 1795 } 1796 1797 restart = ¤t->restart_block; 1798 restart->fn = hrtimer_nanosleep_restart; 1799 restart->nanosleep.clockid = t.timer.base->clockid; 1800 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1801 out: 1802 destroy_hrtimer_on_stack(&t.timer); 1803 return ret; 1804 } 1805 1806 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) 1807 1808 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 1809 struct __kernel_timespec __user *, rmtp) 1810 { 1811 struct timespec64 tu; 1812 1813 if (get_timespec64(&tu, rqtp)) 1814 return -EFAULT; 1815 1816 if (!timespec64_valid(&tu)) 1817 return -EINVAL; 1818 1819 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1820 current->restart_block.nanosleep.rmtp = rmtp; 1821 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1822 } 1823 1824 #endif 1825 1826 #ifdef CONFIG_COMPAT_32BIT_TIME 1827 1828 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 1829 struct old_timespec32 __user *, rmtp) 1830 { 1831 struct timespec64 tu; 1832 1833 if (get_old_timespec32(&tu, rqtp)) 1834 return -EFAULT; 1835 1836 if (!timespec64_valid(&tu)) 1837 return -EINVAL; 1838 1839 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1840 current->restart_block.nanosleep.compat_rmtp = rmtp; 1841 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1842 } 1843 #endif 1844 1845 /* 1846 * Functions related to boot-time initialization: 1847 */ 1848 int hrtimers_prepare_cpu(unsigned int cpu) 1849 { 1850 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1851 int i; 1852 1853 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1854 cpu_base->clock_base[i].cpu_base = cpu_base; 1855 timerqueue_init_head(&cpu_base->clock_base[i].active); 1856 } 1857 1858 cpu_base->cpu = cpu; 1859 cpu_base->active_bases = 0; 1860 cpu_base->hres_active = 0; 1861 cpu_base->hang_detected = 0; 1862 cpu_base->next_timer = NULL; 1863 cpu_base->softirq_next_timer = NULL; 1864 cpu_base->expires_next = KTIME_MAX; 1865 cpu_base->softirq_expires_next = KTIME_MAX; 1866 return 0; 1867 } 1868 1869 #ifdef CONFIG_HOTPLUG_CPU 1870 1871 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1872 struct hrtimer_clock_base *new_base) 1873 { 1874 struct hrtimer *timer; 1875 struct timerqueue_node *node; 1876 1877 while ((node = timerqueue_getnext(&old_base->active))) { 1878 timer = container_of(node, struct hrtimer, node); 1879 BUG_ON(hrtimer_callback_running(timer)); 1880 debug_deactivate(timer); 1881 1882 /* 1883 * Mark it as ENQUEUED not INACTIVE otherwise the 1884 * timer could be seen as !active and just vanish away 1885 * under us on another CPU 1886 */ 1887 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1888 timer->base = new_base; 1889 /* 1890 * Enqueue the timers on the new cpu. This does not 1891 * reprogram the event device in case the timer 1892 * expires before the earliest on this CPU, but we run 1893 * hrtimer_interrupt after we migrated everything to 1894 * sort out already expired timers and reprogram the 1895 * event device. 1896 */ 1897 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 1898 } 1899 } 1900 1901 int hrtimers_dead_cpu(unsigned int scpu) 1902 { 1903 struct hrtimer_cpu_base *old_base, *new_base; 1904 int i; 1905 1906 BUG_ON(cpu_online(scpu)); 1907 tick_cancel_sched_timer(scpu); 1908 1909 /* 1910 * this BH disable ensures that raise_softirq_irqoff() does 1911 * not wakeup ksoftirqd (and acquire the pi-lock) while 1912 * holding the cpu_base lock 1913 */ 1914 local_bh_disable(); 1915 local_irq_disable(); 1916 old_base = &per_cpu(hrtimer_bases, scpu); 1917 new_base = this_cpu_ptr(&hrtimer_bases); 1918 /* 1919 * The caller is globally serialized and nobody else 1920 * takes two locks at once, deadlock is not possible. 1921 */ 1922 raw_spin_lock(&new_base->lock); 1923 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1924 1925 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1926 migrate_hrtimer_list(&old_base->clock_base[i], 1927 &new_base->clock_base[i]); 1928 } 1929 1930 /* 1931 * The migration might have changed the first expiring softirq 1932 * timer on this CPU. Update it. 1933 */ 1934 hrtimer_update_softirq_timer(new_base, false); 1935 1936 raw_spin_unlock(&old_base->lock); 1937 raw_spin_unlock(&new_base->lock); 1938 1939 /* Check, if we got expired work to do */ 1940 __hrtimer_peek_ahead_timers(); 1941 local_irq_enable(); 1942 local_bh_enable(); 1943 return 0; 1944 } 1945 1946 #endif /* CONFIG_HOTPLUG_CPU */ 1947 1948 void __init hrtimers_init(void) 1949 { 1950 hrtimers_prepare_cpu(smp_processor_id()); 1951 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 1952 } 1953 1954 /** 1955 * schedule_hrtimeout_range_clock - sleep until timeout 1956 * @expires: timeout value (ktime_t) 1957 * @delta: slack in expires timeout (ktime_t) 1958 * @mode: timer mode 1959 * @clock_id: timer clock to be used 1960 */ 1961 int __sched 1962 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1963 const enum hrtimer_mode mode, clockid_t clock_id) 1964 { 1965 struct hrtimer_sleeper t; 1966 1967 /* 1968 * Optimize when a zero timeout value is given. It does not 1969 * matter whether this is an absolute or a relative time. 1970 */ 1971 if (expires && *expires == 0) { 1972 __set_current_state(TASK_RUNNING); 1973 return 0; 1974 } 1975 1976 /* 1977 * A NULL parameter means "infinite" 1978 */ 1979 if (!expires) { 1980 schedule(); 1981 return -EINTR; 1982 } 1983 1984 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 1985 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1986 hrtimer_sleeper_start_expires(&t, mode); 1987 1988 if (likely(t.task)) 1989 schedule(); 1990 1991 hrtimer_cancel(&t.timer); 1992 destroy_hrtimer_on_stack(&t.timer); 1993 1994 __set_current_state(TASK_RUNNING); 1995 1996 return !t.task ? 0 : -EINTR; 1997 } 1998 1999 /** 2000 * schedule_hrtimeout_range - sleep until timeout 2001 * @expires: timeout value (ktime_t) 2002 * @delta: slack in expires timeout (ktime_t) 2003 * @mode: timer mode 2004 * 2005 * Make the current task sleep until the given expiry time has 2006 * elapsed. The routine will return immediately unless 2007 * the current task state has been set (see set_current_state()). 2008 * 2009 * The @delta argument gives the kernel the freedom to schedule the 2010 * actual wakeup to a time that is both power and performance friendly. 2011 * The kernel give the normal best effort behavior for "@expires+@delta", 2012 * but may decide to fire the timer earlier, but no earlier than @expires. 2013 * 2014 * You can set the task state as follows - 2015 * 2016 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2017 * pass before the routine returns unless the current task is explicitly 2018 * woken up, (e.g. by wake_up_process()). 2019 * 2020 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2021 * delivered to the current task or the current task is explicitly woken 2022 * up. 2023 * 2024 * The current task state is guaranteed to be TASK_RUNNING when this 2025 * routine returns. 2026 * 2027 * Returns 0 when the timer has expired. If the task was woken before the 2028 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2029 * by an explicit wakeup, it returns -EINTR. 2030 */ 2031 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2032 const enum hrtimer_mode mode) 2033 { 2034 return schedule_hrtimeout_range_clock(expires, delta, mode, 2035 CLOCK_MONOTONIC); 2036 } 2037 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2038 2039 /** 2040 * schedule_hrtimeout - sleep until timeout 2041 * @expires: timeout value (ktime_t) 2042 * @mode: timer mode 2043 * 2044 * Make the current task sleep until the given expiry time has 2045 * elapsed. The routine will return immediately unless 2046 * the current task state has been set (see set_current_state()). 2047 * 2048 * You can set the task state as follows - 2049 * 2050 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2051 * pass before the routine returns unless the current task is explicitly 2052 * woken up, (e.g. by wake_up_process()). 2053 * 2054 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2055 * delivered to the current task or the current task is explicitly woken 2056 * up. 2057 * 2058 * The current task state is guaranteed to be TASK_RUNNING when this 2059 * routine returns. 2060 * 2061 * Returns 0 when the timer has expired. If the task was woken before the 2062 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2063 * by an explicit wakeup, it returns -EINTR. 2064 */ 2065 int __sched schedule_hrtimeout(ktime_t *expires, 2066 const enum hrtimer_mode mode) 2067 { 2068 return schedule_hrtimeout_range(expires, 0, mode); 2069 } 2070 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2071