xref: /openbmc/linux/kernel/time/hrtimer.c (revision f5c2f0215e36d76fbb9605283dd7535af09f5770)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140 
141 #define migration_base	migration_cpu_base.clock_base[0]
142 
143 /*
144  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145  * means that all timers which are tied to this base via timer->base are
146  * locked, and the base itself is locked too.
147  *
148  * So __run_timers/migrate_timers can safely modify all timers which could
149  * be found on the lists/queues.
150  *
151  * When the timer's base is locked, and the timer removed from list, it is
152  * possible to set timer->base = &migration_base and drop the lock: the timer
153  * remains locked.
154  */
155 static
156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 					     unsigned long *flags)
158 {
159 	struct hrtimer_clock_base *base;
160 
161 	for (;;) {
162 		base = timer->base;
163 		if (likely(base != &migration_base)) {
164 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
165 			if (likely(base == timer->base))
166 				return base;
167 			/* The timer has migrated to another CPU: */
168 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
169 		}
170 		cpu_relax();
171 	}
172 }
173 
174 /*
175  * We do not migrate the timer when it is expiring before the next
176  * event on the target cpu. When high resolution is enabled, we cannot
177  * reprogram the target cpu hardware and we would cause it to fire
178  * late. To keep it simple, we handle the high resolution enabled and
179  * disabled case similar.
180  *
181  * Called with cpu_base->lock of target cpu held.
182  */
183 static int
184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185 {
186 	ktime_t expires;
187 
188 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
189 	return expires < new_base->cpu_base->expires_next;
190 }
191 
192 static inline
193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 					 int pinned)
195 {
196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199 #endif
200 	return base;
201 }
202 
203 /*
204  * We switch the timer base to a power-optimized selected CPU target,
205  * if:
206  *	- NO_HZ_COMMON is enabled
207  *	- timer migration is enabled
208  *	- the timer callback is not running
209  *	- the timer is not the first expiring timer on the new target
210  *
211  * If one of the above requirements is not fulfilled we move the timer
212  * to the current CPU or leave it on the previously assigned CPU if
213  * the timer callback is currently running.
214  */
215 static inline struct hrtimer_clock_base *
216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 		    int pinned)
218 {
219 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
220 	struct hrtimer_clock_base *new_base;
221 	int basenum = base->index;
222 
223 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 	new_cpu_base = get_target_base(this_cpu_base, pinned);
225 again:
226 	new_base = &new_cpu_base->clock_base[basenum];
227 
228 	if (base != new_base) {
229 		/*
230 		 * We are trying to move timer to new_base.
231 		 * However we can't change timer's base while it is running,
232 		 * so we keep it on the same CPU. No hassle vs. reprogramming
233 		 * the event source in the high resolution case. The softirq
234 		 * code will take care of this when the timer function has
235 		 * completed. There is no conflict as we hold the lock until
236 		 * the timer is enqueued.
237 		 */
238 		if (unlikely(hrtimer_callback_running(timer)))
239 			return base;
240 
241 		/* See the comment in lock_hrtimer_base() */
242 		timer->base = &migration_base;
243 		raw_spin_unlock(&base->cpu_base->lock);
244 		raw_spin_lock(&new_base->cpu_base->lock);
245 
246 		if (new_cpu_base != this_cpu_base &&
247 		    hrtimer_check_target(timer, new_base)) {
248 			raw_spin_unlock(&new_base->cpu_base->lock);
249 			raw_spin_lock(&base->cpu_base->lock);
250 			new_cpu_base = this_cpu_base;
251 			timer->base = base;
252 			goto again;
253 		}
254 		timer->base = new_base;
255 	} else {
256 		if (new_cpu_base != this_cpu_base &&
257 		    hrtimer_check_target(timer, new_base)) {
258 			new_cpu_base = this_cpu_base;
259 			goto again;
260 		}
261 	}
262 	return new_base;
263 }
264 
265 #else /* CONFIG_SMP */
266 
267 static inline struct hrtimer_clock_base *
268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269 {
270 	struct hrtimer_clock_base *base = timer->base;
271 
272 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
273 
274 	return base;
275 }
276 
277 # define switch_hrtimer_base(t, b, p)	(b)
278 
279 #endif	/* !CONFIG_SMP */
280 
281 /*
282  * Functions for the union type storage format of ktime_t which are
283  * too large for inlining:
284  */
285 #if BITS_PER_LONG < 64
286 /*
287  * Divide a ktime value by a nanosecond value
288  */
289 s64 __ktime_divns(const ktime_t kt, s64 div)
290 {
291 	int sft = 0;
292 	s64 dclc;
293 	u64 tmp;
294 
295 	dclc = ktime_to_ns(kt);
296 	tmp = dclc < 0 ? -dclc : dclc;
297 
298 	/* Make sure the divisor is less than 2^32: */
299 	while (div >> 32) {
300 		sft++;
301 		div >>= 1;
302 	}
303 	tmp >>= sft;
304 	do_div(tmp, (unsigned long) div);
305 	return dclc < 0 ? -tmp : tmp;
306 }
307 EXPORT_SYMBOL_GPL(__ktime_divns);
308 #endif /* BITS_PER_LONG >= 64 */
309 
310 /*
311  * Add two ktime values and do a safety check for overflow:
312  */
313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314 {
315 	ktime_t res = ktime_add_unsafe(lhs, rhs);
316 
317 	/*
318 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 	 * return to user space in a timespec:
320 	 */
321 	if (res < 0 || res < lhs || res < rhs)
322 		res = ktime_set(KTIME_SEC_MAX, 0);
323 
324 	return res;
325 }
326 
327 EXPORT_SYMBOL_GPL(ktime_add_safe);
328 
329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330 
331 static struct debug_obj_descr hrtimer_debug_descr;
332 
333 static void *hrtimer_debug_hint(void *addr)
334 {
335 	return ((struct hrtimer *) addr)->function;
336 }
337 
338 /*
339  * fixup_init is called when:
340  * - an active object is initialized
341  */
342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 {
344 	struct hrtimer *timer = addr;
345 
346 	switch (state) {
347 	case ODEBUG_STATE_ACTIVE:
348 		hrtimer_cancel(timer);
349 		debug_object_init(timer, &hrtimer_debug_descr);
350 		return true;
351 	default:
352 		return false;
353 	}
354 }
355 
356 /*
357  * fixup_activate is called when:
358  * - an active object is activated
359  * - an unknown non-static object is activated
360  */
361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 {
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		WARN_ON(1);
366 		/* fall through */
367 	default:
368 		return false;
369 	}
370 }
371 
372 /*
373  * fixup_free is called when:
374  * - an active object is freed
375  */
376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 	struct hrtimer *timer = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		hrtimer_cancel(timer);
383 		debug_object_free(timer, &hrtimer_debug_descr);
384 		return true;
385 	default:
386 		return false;
387 	}
388 }
389 
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 	.name		= "hrtimer",
392 	.debug_hint	= hrtimer_debug_hint,
393 	.fixup_init	= hrtimer_fixup_init,
394 	.fixup_activate	= hrtimer_fixup_activate,
395 	.fixup_free	= hrtimer_fixup_free,
396 };
397 
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 	debug_object_init(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 					  enum hrtimer_mode mode)
405 {
406 	debug_object_activate(timer, &hrtimer_debug_descr);
407 }
408 
409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410 {
411 	debug_object_deactivate(timer, &hrtimer_debug_descr);
412 }
413 
414 static inline void debug_hrtimer_free(struct hrtimer *timer)
415 {
416 	debug_object_free(timer, &hrtimer_debug_descr);
417 }
418 
419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 			   enum hrtimer_mode mode);
421 
422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 			   enum hrtimer_mode mode)
424 {
425 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 	__hrtimer_init(timer, clock_id, mode);
427 }
428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
429 
430 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
431 				   clockid_t clock_id, enum hrtimer_mode mode);
432 
433 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
434 				   clockid_t clock_id, enum hrtimer_mode mode)
435 {
436 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
437 	__hrtimer_init_sleeper(sl, clock_id, mode);
438 }
439 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
440 
441 void destroy_hrtimer_on_stack(struct hrtimer *timer)
442 {
443 	debug_object_free(timer, &hrtimer_debug_descr);
444 }
445 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
446 
447 #else
448 
449 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
450 static inline void debug_hrtimer_activate(struct hrtimer *timer,
451 					  enum hrtimer_mode mode) { }
452 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
453 #endif
454 
455 static inline void
456 debug_init(struct hrtimer *timer, clockid_t clockid,
457 	   enum hrtimer_mode mode)
458 {
459 	debug_hrtimer_init(timer);
460 	trace_hrtimer_init(timer, clockid, mode);
461 }
462 
463 static inline void debug_activate(struct hrtimer *timer,
464 				  enum hrtimer_mode mode)
465 {
466 	debug_hrtimer_activate(timer, mode);
467 	trace_hrtimer_start(timer, mode);
468 }
469 
470 static inline void debug_deactivate(struct hrtimer *timer)
471 {
472 	debug_hrtimer_deactivate(timer);
473 	trace_hrtimer_cancel(timer);
474 }
475 
476 static struct hrtimer_clock_base *
477 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
478 {
479 	unsigned int idx;
480 
481 	if (!*active)
482 		return NULL;
483 
484 	idx = __ffs(*active);
485 	*active &= ~(1U << idx);
486 
487 	return &cpu_base->clock_base[idx];
488 }
489 
490 #define for_each_active_base(base, cpu_base, active)	\
491 	while ((base = __next_base((cpu_base), &(active))))
492 
493 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
494 					 const struct hrtimer *exclude,
495 					 unsigned int active,
496 					 ktime_t expires_next)
497 {
498 	struct hrtimer_clock_base *base;
499 	ktime_t expires;
500 
501 	for_each_active_base(base, cpu_base, active) {
502 		struct timerqueue_node *next;
503 		struct hrtimer *timer;
504 
505 		next = timerqueue_getnext(&base->active);
506 		timer = container_of(next, struct hrtimer, node);
507 		if (timer == exclude) {
508 			/* Get to the next timer in the queue. */
509 			next = timerqueue_iterate_next(next);
510 			if (!next)
511 				continue;
512 
513 			timer = container_of(next, struct hrtimer, node);
514 		}
515 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
516 		if (expires < expires_next) {
517 			expires_next = expires;
518 
519 			/* Skip cpu_base update if a timer is being excluded. */
520 			if (exclude)
521 				continue;
522 
523 			if (timer->is_soft)
524 				cpu_base->softirq_next_timer = timer;
525 			else
526 				cpu_base->next_timer = timer;
527 		}
528 	}
529 	/*
530 	 * clock_was_set() might have changed base->offset of any of
531 	 * the clock bases so the result might be negative. Fix it up
532 	 * to prevent a false positive in clockevents_program_event().
533 	 */
534 	if (expires_next < 0)
535 		expires_next = 0;
536 	return expires_next;
537 }
538 
539 /*
540  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
541  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
542  *
543  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
544  * those timers will get run whenever the softirq gets handled, at the end of
545  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
546  *
547  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
548  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
549  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
550  *
551  * @active_mask must be one of:
552  *  - HRTIMER_ACTIVE_ALL,
553  *  - HRTIMER_ACTIVE_SOFT, or
554  *  - HRTIMER_ACTIVE_HARD.
555  */
556 static ktime_t
557 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
558 {
559 	unsigned int active;
560 	struct hrtimer *next_timer = NULL;
561 	ktime_t expires_next = KTIME_MAX;
562 
563 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
564 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
565 		cpu_base->softirq_next_timer = NULL;
566 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
567 							 active, KTIME_MAX);
568 
569 		next_timer = cpu_base->softirq_next_timer;
570 	}
571 
572 	if (active_mask & HRTIMER_ACTIVE_HARD) {
573 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
574 		cpu_base->next_timer = next_timer;
575 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
576 							 expires_next);
577 	}
578 
579 	return expires_next;
580 }
581 
582 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
583 {
584 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
585 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
586 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
587 
588 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
589 					    offs_real, offs_boot, offs_tai);
590 
591 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
592 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
593 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
594 
595 	return now;
596 }
597 
598 /*
599  * Is the high resolution mode active ?
600  */
601 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
602 {
603 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
604 		cpu_base->hres_active : 0;
605 }
606 
607 static inline int hrtimer_hres_active(void)
608 {
609 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
610 }
611 
612 /*
613  * Reprogram the event source with checking both queues for the
614  * next event
615  * Called with interrupts disabled and base->lock held
616  */
617 static void
618 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
619 {
620 	ktime_t expires_next;
621 
622 	/*
623 	 * Find the current next expiration time.
624 	 */
625 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
626 
627 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
628 		/*
629 		 * When the softirq is activated, hrtimer has to be
630 		 * programmed with the first hard hrtimer because soft
631 		 * timer interrupt could occur too late.
632 		 */
633 		if (cpu_base->softirq_activated)
634 			expires_next = __hrtimer_get_next_event(cpu_base,
635 								HRTIMER_ACTIVE_HARD);
636 		else
637 			cpu_base->softirq_expires_next = expires_next;
638 	}
639 
640 	if (skip_equal && expires_next == cpu_base->expires_next)
641 		return;
642 
643 	cpu_base->expires_next = expires_next;
644 
645 	/*
646 	 * If hres is not active, hardware does not have to be
647 	 * reprogrammed yet.
648 	 *
649 	 * If a hang was detected in the last timer interrupt then we
650 	 * leave the hang delay active in the hardware. We want the
651 	 * system to make progress. That also prevents the following
652 	 * scenario:
653 	 * T1 expires 50ms from now
654 	 * T2 expires 5s from now
655 	 *
656 	 * T1 is removed, so this code is called and would reprogram
657 	 * the hardware to 5s from now. Any hrtimer_start after that
658 	 * will not reprogram the hardware due to hang_detected being
659 	 * set. So we'd effectivly block all timers until the T2 event
660 	 * fires.
661 	 */
662 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
663 		return;
664 
665 	tick_program_event(cpu_base->expires_next, 1);
666 }
667 
668 /* High resolution timer related functions */
669 #ifdef CONFIG_HIGH_RES_TIMERS
670 
671 /*
672  * High resolution timer enabled ?
673  */
674 static bool hrtimer_hres_enabled __read_mostly  = true;
675 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
676 EXPORT_SYMBOL_GPL(hrtimer_resolution);
677 
678 /*
679  * Enable / Disable high resolution mode
680  */
681 static int __init setup_hrtimer_hres(char *str)
682 {
683 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
684 }
685 
686 __setup("highres=", setup_hrtimer_hres);
687 
688 /*
689  * hrtimer_high_res_enabled - query, if the highres mode is enabled
690  */
691 static inline int hrtimer_is_hres_enabled(void)
692 {
693 	return hrtimer_hres_enabled;
694 }
695 
696 /*
697  * Retrigger next event is called after clock was set
698  *
699  * Called with interrupts disabled via on_each_cpu()
700  */
701 static void retrigger_next_event(void *arg)
702 {
703 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
704 
705 	if (!__hrtimer_hres_active(base))
706 		return;
707 
708 	raw_spin_lock(&base->lock);
709 	hrtimer_update_base(base);
710 	hrtimer_force_reprogram(base, 0);
711 	raw_spin_unlock(&base->lock);
712 }
713 
714 /*
715  * Switch to high resolution mode
716  */
717 static void hrtimer_switch_to_hres(void)
718 {
719 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
720 
721 	if (tick_init_highres()) {
722 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
723 			base->cpu);
724 		return;
725 	}
726 	base->hres_active = 1;
727 	hrtimer_resolution = HIGH_RES_NSEC;
728 
729 	tick_setup_sched_timer();
730 	/* "Retrigger" the interrupt to get things going */
731 	retrigger_next_event(NULL);
732 }
733 
734 static void clock_was_set_work(struct work_struct *work)
735 {
736 	clock_was_set();
737 }
738 
739 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
740 
741 /*
742  * Called from timekeeping and resume code to reprogram the hrtimer
743  * interrupt device on all cpus.
744  */
745 void clock_was_set_delayed(void)
746 {
747 	schedule_work(&hrtimer_work);
748 }
749 
750 #else
751 
752 static inline int hrtimer_is_hres_enabled(void) { return 0; }
753 static inline void hrtimer_switch_to_hres(void) { }
754 static inline void retrigger_next_event(void *arg) { }
755 
756 #endif /* CONFIG_HIGH_RES_TIMERS */
757 
758 /*
759  * When a timer is enqueued and expires earlier than the already enqueued
760  * timers, we have to check, whether it expires earlier than the timer for
761  * which the clock event device was armed.
762  *
763  * Called with interrupts disabled and base->cpu_base.lock held
764  */
765 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
766 {
767 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
768 	struct hrtimer_clock_base *base = timer->base;
769 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
770 
771 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
772 
773 	/*
774 	 * CLOCK_REALTIME timer might be requested with an absolute
775 	 * expiry time which is less than base->offset. Set it to 0.
776 	 */
777 	if (expires < 0)
778 		expires = 0;
779 
780 	if (timer->is_soft) {
781 		/*
782 		 * soft hrtimer could be started on a remote CPU. In this
783 		 * case softirq_expires_next needs to be updated on the
784 		 * remote CPU. The soft hrtimer will not expire before the
785 		 * first hard hrtimer on the remote CPU -
786 		 * hrtimer_check_target() prevents this case.
787 		 */
788 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
789 
790 		if (timer_cpu_base->softirq_activated)
791 			return;
792 
793 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
794 			return;
795 
796 		timer_cpu_base->softirq_next_timer = timer;
797 		timer_cpu_base->softirq_expires_next = expires;
798 
799 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
800 		    !reprogram)
801 			return;
802 	}
803 
804 	/*
805 	 * If the timer is not on the current cpu, we cannot reprogram
806 	 * the other cpus clock event device.
807 	 */
808 	if (base->cpu_base != cpu_base)
809 		return;
810 
811 	/*
812 	 * If the hrtimer interrupt is running, then it will
813 	 * reevaluate the clock bases and reprogram the clock event
814 	 * device. The callbacks are always executed in hard interrupt
815 	 * context so we don't need an extra check for a running
816 	 * callback.
817 	 */
818 	if (cpu_base->in_hrtirq)
819 		return;
820 
821 	if (expires >= cpu_base->expires_next)
822 		return;
823 
824 	/* Update the pointer to the next expiring timer */
825 	cpu_base->next_timer = timer;
826 	cpu_base->expires_next = expires;
827 
828 	/*
829 	 * If hres is not active, hardware does not have to be
830 	 * programmed yet.
831 	 *
832 	 * If a hang was detected in the last timer interrupt then we
833 	 * do not schedule a timer which is earlier than the expiry
834 	 * which we enforced in the hang detection. We want the system
835 	 * to make progress.
836 	 */
837 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
838 		return;
839 
840 	/*
841 	 * Program the timer hardware. We enforce the expiry for
842 	 * events which are already in the past.
843 	 */
844 	tick_program_event(expires, 1);
845 }
846 
847 /*
848  * Clock realtime was set
849  *
850  * Change the offset of the realtime clock vs. the monotonic
851  * clock.
852  *
853  * We might have to reprogram the high resolution timer interrupt. On
854  * SMP we call the architecture specific code to retrigger _all_ high
855  * resolution timer interrupts. On UP we just disable interrupts and
856  * call the high resolution interrupt code.
857  */
858 void clock_was_set(void)
859 {
860 #ifdef CONFIG_HIGH_RES_TIMERS
861 	/* Retrigger the CPU local events everywhere */
862 	on_each_cpu(retrigger_next_event, NULL, 1);
863 #endif
864 	timerfd_clock_was_set();
865 }
866 
867 /*
868  * During resume we might have to reprogram the high resolution timer
869  * interrupt on all online CPUs.  However, all other CPUs will be
870  * stopped with IRQs interrupts disabled so the clock_was_set() call
871  * must be deferred.
872  */
873 void hrtimers_resume(void)
874 {
875 	lockdep_assert_irqs_disabled();
876 	/* Retrigger on the local CPU */
877 	retrigger_next_event(NULL);
878 	/* And schedule a retrigger for all others */
879 	clock_was_set_delayed();
880 }
881 
882 /*
883  * Counterpart to lock_hrtimer_base above:
884  */
885 static inline
886 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
887 {
888 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
889 }
890 
891 /**
892  * hrtimer_forward - forward the timer expiry
893  * @timer:	hrtimer to forward
894  * @now:	forward past this time
895  * @interval:	the interval to forward
896  *
897  * Forward the timer expiry so it will expire in the future.
898  * Returns the number of overruns.
899  *
900  * Can be safely called from the callback function of @timer. If
901  * called from other contexts @timer must neither be enqueued nor
902  * running the callback and the caller needs to take care of
903  * serialization.
904  *
905  * Note: This only updates the timer expiry value and does not requeue
906  * the timer.
907  */
908 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
909 {
910 	u64 orun = 1;
911 	ktime_t delta;
912 
913 	delta = ktime_sub(now, hrtimer_get_expires(timer));
914 
915 	if (delta < 0)
916 		return 0;
917 
918 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
919 		return 0;
920 
921 	if (interval < hrtimer_resolution)
922 		interval = hrtimer_resolution;
923 
924 	if (unlikely(delta >= interval)) {
925 		s64 incr = ktime_to_ns(interval);
926 
927 		orun = ktime_divns(delta, incr);
928 		hrtimer_add_expires_ns(timer, incr * orun);
929 		if (hrtimer_get_expires_tv64(timer) > now)
930 			return orun;
931 		/*
932 		 * This (and the ktime_add() below) is the
933 		 * correction for exact:
934 		 */
935 		orun++;
936 	}
937 	hrtimer_add_expires(timer, interval);
938 
939 	return orun;
940 }
941 EXPORT_SYMBOL_GPL(hrtimer_forward);
942 
943 /*
944  * enqueue_hrtimer - internal function to (re)start a timer
945  *
946  * The timer is inserted in expiry order. Insertion into the
947  * red black tree is O(log(n)). Must hold the base lock.
948  *
949  * Returns 1 when the new timer is the leftmost timer in the tree.
950  */
951 static int enqueue_hrtimer(struct hrtimer *timer,
952 			   struct hrtimer_clock_base *base,
953 			   enum hrtimer_mode mode)
954 {
955 	debug_activate(timer, mode);
956 
957 	base->cpu_base->active_bases |= 1 << base->index;
958 
959 	timer->state = HRTIMER_STATE_ENQUEUED;
960 
961 	return timerqueue_add(&base->active, &timer->node);
962 }
963 
964 /*
965  * __remove_hrtimer - internal function to remove a timer
966  *
967  * Caller must hold the base lock.
968  *
969  * High resolution timer mode reprograms the clock event device when the
970  * timer is the one which expires next. The caller can disable this by setting
971  * reprogram to zero. This is useful, when the context does a reprogramming
972  * anyway (e.g. timer interrupt)
973  */
974 static void __remove_hrtimer(struct hrtimer *timer,
975 			     struct hrtimer_clock_base *base,
976 			     u8 newstate, int reprogram)
977 {
978 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
979 	u8 state = timer->state;
980 
981 	timer->state = newstate;
982 	if (!(state & HRTIMER_STATE_ENQUEUED))
983 		return;
984 
985 	if (!timerqueue_del(&base->active, &timer->node))
986 		cpu_base->active_bases &= ~(1 << base->index);
987 
988 	/*
989 	 * Note: If reprogram is false we do not update
990 	 * cpu_base->next_timer. This happens when we remove the first
991 	 * timer on a remote cpu. No harm as we never dereference
992 	 * cpu_base->next_timer. So the worst thing what can happen is
993 	 * an superflous call to hrtimer_force_reprogram() on the
994 	 * remote cpu later on if the same timer gets enqueued again.
995 	 */
996 	if (reprogram && timer == cpu_base->next_timer)
997 		hrtimer_force_reprogram(cpu_base, 1);
998 }
999 
1000 /*
1001  * remove hrtimer, called with base lock held
1002  */
1003 static inline int
1004 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1005 {
1006 	if (hrtimer_is_queued(timer)) {
1007 		u8 state = timer->state;
1008 		int reprogram;
1009 
1010 		/*
1011 		 * Remove the timer and force reprogramming when high
1012 		 * resolution mode is active and the timer is on the current
1013 		 * CPU. If we remove a timer on another CPU, reprogramming is
1014 		 * skipped. The interrupt event on this CPU is fired and
1015 		 * reprogramming happens in the interrupt handler. This is a
1016 		 * rare case and less expensive than a smp call.
1017 		 */
1018 		debug_deactivate(timer);
1019 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1020 
1021 		if (!restart)
1022 			state = HRTIMER_STATE_INACTIVE;
1023 
1024 		__remove_hrtimer(timer, base, state, reprogram);
1025 		return 1;
1026 	}
1027 	return 0;
1028 }
1029 
1030 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1031 					    const enum hrtimer_mode mode)
1032 {
1033 #ifdef CONFIG_TIME_LOW_RES
1034 	/*
1035 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1036 	 * granular time values. For relative timers we add hrtimer_resolution
1037 	 * (i.e. one jiffie) to prevent short timeouts.
1038 	 */
1039 	timer->is_rel = mode & HRTIMER_MODE_REL;
1040 	if (timer->is_rel)
1041 		tim = ktime_add_safe(tim, hrtimer_resolution);
1042 #endif
1043 	return tim;
1044 }
1045 
1046 static void
1047 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1048 {
1049 	ktime_t expires;
1050 
1051 	/*
1052 	 * Find the next SOFT expiration.
1053 	 */
1054 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1055 
1056 	/*
1057 	 * reprogramming needs to be triggered, even if the next soft
1058 	 * hrtimer expires at the same time than the next hard
1059 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1060 	 */
1061 	if (expires == KTIME_MAX)
1062 		return;
1063 
1064 	/*
1065 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1066 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1067 	 */
1068 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1069 }
1070 
1071 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1072 				    u64 delta_ns, const enum hrtimer_mode mode,
1073 				    struct hrtimer_clock_base *base)
1074 {
1075 	struct hrtimer_clock_base *new_base;
1076 
1077 	/* Remove an active timer from the queue: */
1078 	remove_hrtimer(timer, base, true);
1079 
1080 	if (mode & HRTIMER_MODE_REL)
1081 		tim = ktime_add_safe(tim, base->get_time());
1082 
1083 	tim = hrtimer_update_lowres(timer, tim, mode);
1084 
1085 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1086 
1087 	/* Switch the timer base, if necessary: */
1088 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1089 
1090 	return enqueue_hrtimer(timer, new_base, mode);
1091 }
1092 
1093 /**
1094  * hrtimer_start_range_ns - (re)start an hrtimer
1095  * @timer:	the timer to be added
1096  * @tim:	expiry time
1097  * @delta_ns:	"slack" range for the timer
1098  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1099  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1100  *		softirq based mode is considered for debug purpose only!
1101  */
1102 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1103 			    u64 delta_ns, const enum hrtimer_mode mode)
1104 {
1105 	struct hrtimer_clock_base *base;
1106 	unsigned long flags;
1107 
1108 	/*
1109 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1110 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1111 	 * expiry mode because unmarked timers are moved to softirq expiry.
1112 	 */
1113 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1114 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1115 	else
1116 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1117 
1118 	base = lock_hrtimer_base(timer, &flags);
1119 
1120 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1121 		hrtimer_reprogram(timer, true);
1122 
1123 	unlock_hrtimer_base(timer, &flags);
1124 }
1125 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1126 
1127 /**
1128  * hrtimer_try_to_cancel - try to deactivate a timer
1129  * @timer:	hrtimer to stop
1130  *
1131  * Returns:
1132  *
1133  *  *  0 when the timer was not active
1134  *  *  1 when the timer was active
1135  *  * -1 when the timer is currently executing the callback function and
1136  *    cannot be stopped
1137  */
1138 int hrtimer_try_to_cancel(struct hrtimer *timer)
1139 {
1140 	struct hrtimer_clock_base *base;
1141 	unsigned long flags;
1142 	int ret = -1;
1143 
1144 	/*
1145 	 * Check lockless first. If the timer is not active (neither
1146 	 * enqueued nor running the callback, nothing to do here.  The
1147 	 * base lock does not serialize against a concurrent enqueue,
1148 	 * so we can avoid taking it.
1149 	 */
1150 	if (!hrtimer_active(timer))
1151 		return 0;
1152 
1153 	base = lock_hrtimer_base(timer, &flags);
1154 
1155 	if (!hrtimer_callback_running(timer))
1156 		ret = remove_hrtimer(timer, base, false);
1157 
1158 	unlock_hrtimer_base(timer, &flags);
1159 
1160 	return ret;
1161 
1162 }
1163 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1164 
1165 /**
1166  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1167  * @timer:	the timer to be cancelled
1168  *
1169  * Returns:
1170  *  0 when the timer was not active
1171  *  1 when the timer was active
1172  */
1173 int hrtimer_cancel(struct hrtimer *timer)
1174 {
1175 	for (;;) {
1176 		int ret = hrtimer_try_to_cancel(timer);
1177 
1178 		if (ret >= 0)
1179 			return ret;
1180 		cpu_relax();
1181 	}
1182 }
1183 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1184 
1185 /**
1186  * hrtimer_get_remaining - get remaining time for the timer
1187  * @timer:	the timer to read
1188  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1189  */
1190 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1191 {
1192 	unsigned long flags;
1193 	ktime_t rem;
1194 
1195 	lock_hrtimer_base(timer, &flags);
1196 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1197 		rem = hrtimer_expires_remaining_adjusted(timer);
1198 	else
1199 		rem = hrtimer_expires_remaining(timer);
1200 	unlock_hrtimer_base(timer, &flags);
1201 
1202 	return rem;
1203 }
1204 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1205 
1206 #ifdef CONFIG_NO_HZ_COMMON
1207 /**
1208  * hrtimer_get_next_event - get the time until next expiry event
1209  *
1210  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1211  */
1212 u64 hrtimer_get_next_event(void)
1213 {
1214 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1215 	u64 expires = KTIME_MAX;
1216 	unsigned long flags;
1217 
1218 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1219 
1220 	if (!__hrtimer_hres_active(cpu_base))
1221 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1222 
1223 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1224 
1225 	return expires;
1226 }
1227 
1228 /**
1229  * hrtimer_next_event_without - time until next expiry event w/o one timer
1230  * @exclude:	timer to exclude
1231  *
1232  * Returns the next expiry time over all timers except for the @exclude one or
1233  * KTIME_MAX if none of them is pending.
1234  */
1235 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1236 {
1237 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1238 	u64 expires = KTIME_MAX;
1239 	unsigned long flags;
1240 
1241 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1242 
1243 	if (__hrtimer_hres_active(cpu_base)) {
1244 		unsigned int active;
1245 
1246 		if (!cpu_base->softirq_activated) {
1247 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1248 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1249 							    active, KTIME_MAX);
1250 		}
1251 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1252 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1253 						    expires);
1254 	}
1255 
1256 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1257 
1258 	return expires;
1259 }
1260 #endif
1261 
1262 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1263 {
1264 	if (likely(clock_id < MAX_CLOCKS)) {
1265 		int base = hrtimer_clock_to_base_table[clock_id];
1266 
1267 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1268 			return base;
1269 	}
1270 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1271 	return HRTIMER_BASE_MONOTONIC;
1272 }
1273 
1274 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1275 			   enum hrtimer_mode mode)
1276 {
1277 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1278 	struct hrtimer_cpu_base *cpu_base;
1279 	int base;
1280 
1281 	/*
1282 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1283 	 * marked for hard interrupt expiry mode are moved into soft
1284 	 * interrupt context for latency reasons and because the callbacks
1285 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1286 	 */
1287 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1288 		softtimer = true;
1289 
1290 	memset(timer, 0, sizeof(struct hrtimer));
1291 
1292 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1293 
1294 	/*
1295 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1296 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1297 	 * ensure POSIX compliance.
1298 	 */
1299 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1300 		clock_id = CLOCK_MONOTONIC;
1301 
1302 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1303 	base += hrtimer_clockid_to_base(clock_id);
1304 	timer->is_soft = softtimer;
1305 	timer->is_hard = !softtimer;
1306 	timer->base = &cpu_base->clock_base[base];
1307 	timerqueue_init(&timer->node);
1308 }
1309 
1310 /**
1311  * hrtimer_init - initialize a timer to the given clock
1312  * @timer:	the timer to be initialized
1313  * @clock_id:	the clock to be used
1314  * @mode:       The modes which are relevant for intitialization:
1315  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1316  *              HRTIMER_MODE_REL_SOFT
1317  *
1318  *              The PINNED variants of the above can be handed in,
1319  *              but the PINNED bit is ignored as pinning happens
1320  *              when the hrtimer is started
1321  */
1322 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1323 		  enum hrtimer_mode mode)
1324 {
1325 	debug_init(timer, clock_id, mode);
1326 	__hrtimer_init(timer, clock_id, mode);
1327 }
1328 EXPORT_SYMBOL_GPL(hrtimer_init);
1329 
1330 /*
1331  * A timer is active, when it is enqueued into the rbtree or the
1332  * callback function is running or it's in the state of being migrated
1333  * to another cpu.
1334  *
1335  * It is important for this function to not return a false negative.
1336  */
1337 bool hrtimer_active(const struct hrtimer *timer)
1338 {
1339 	struct hrtimer_clock_base *base;
1340 	unsigned int seq;
1341 
1342 	do {
1343 		base = READ_ONCE(timer->base);
1344 		seq = raw_read_seqcount_begin(&base->seq);
1345 
1346 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1347 		    base->running == timer)
1348 			return true;
1349 
1350 	} while (read_seqcount_retry(&base->seq, seq) ||
1351 		 base != READ_ONCE(timer->base));
1352 
1353 	return false;
1354 }
1355 EXPORT_SYMBOL_GPL(hrtimer_active);
1356 
1357 /*
1358  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1359  * distinct sections:
1360  *
1361  *  - queued:	the timer is queued
1362  *  - callback:	the timer is being ran
1363  *  - post:	the timer is inactive or (re)queued
1364  *
1365  * On the read side we ensure we observe timer->state and cpu_base->running
1366  * from the same section, if anything changed while we looked at it, we retry.
1367  * This includes timer->base changing because sequence numbers alone are
1368  * insufficient for that.
1369  *
1370  * The sequence numbers are required because otherwise we could still observe
1371  * a false negative if the read side got smeared over multiple consequtive
1372  * __run_hrtimer() invocations.
1373  */
1374 
1375 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1376 			  struct hrtimer_clock_base *base,
1377 			  struct hrtimer *timer, ktime_t *now,
1378 			  unsigned long flags)
1379 {
1380 	enum hrtimer_restart (*fn)(struct hrtimer *);
1381 	int restart;
1382 
1383 	lockdep_assert_held(&cpu_base->lock);
1384 
1385 	debug_deactivate(timer);
1386 	base->running = timer;
1387 
1388 	/*
1389 	 * Separate the ->running assignment from the ->state assignment.
1390 	 *
1391 	 * As with a regular write barrier, this ensures the read side in
1392 	 * hrtimer_active() cannot observe base->running == NULL &&
1393 	 * timer->state == INACTIVE.
1394 	 */
1395 	raw_write_seqcount_barrier(&base->seq);
1396 
1397 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1398 	fn = timer->function;
1399 
1400 	/*
1401 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1402 	 * timer is restarted with a period then it becomes an absolute
1403 	 * timer. If its not restarted it does not matter.
1404 	 */
1405 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1406 		timer->is_rel = false;
1407 
1408 	/*
1409 	 * The timer is marked as running in the CPU base, so it is
1410 	 * protected against migration to a different CPU even if the lock
1411 	 * is dropped.
1412 	 */
1413 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1414 	trace_hrtimer_expire_entry(timer, now);
1415 	restart = fn(timer);
1416 	trace_hrtimer_expire_exit(timer);
1417 	raw_spin_lock_irq(&cpu_base->lock);
1418 
1419 	/*
1420 	 * Note: We clear the running state after enqueue_hrtimer and
1421 	 * we do not reprogram the event hardware. Happens either in
1422 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1423 	 *
1424 	 * Note: Because we dropped the cpu_base->lock above,
1425 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1426 	 * for us already.
1427 	 */
1428 	if (restart != HRTIMER_NORESTART &&
1429 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1430 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1431 
1432 	/*
1433 	 * Separate the ->running assignment from the ->state assignment.
1434 	 *
1435 	 * As with a regular write barrier, this ensures the read side in
1436 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1437 	 * timer->state == INACTIVE.
1438 	 */
1439 	raw_write_seqcount_barrier(&base->seq);
1440 
1441 	WARN_ON_ONCE(base->running != timer);
1442 	base->running = NULL;
1443 }
1444 
1445 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1446 				 unsigned long flags, unsigned int active_mask)
1447 {
1448 	struct hrtimer_clock_base *base;
1449 	unsigned int active = cpu_base->active_bases & active_mask;
1450 
1451 	for_each_active_base(base, cpu_base, active) {
1452 		struct timerqueue_node *node;
1453 		ktime_t basenow;
1454 
1455 		basenow = ktime_add(now, base->offset);
1456 
1457 		while ((node = timerqueue_getnext(&base->active))) {
1458 			struct hrtimer *timer;
1459 
1460 			timer = container_of(node, struct hrtimer, node);
1461 
1462 			/*
1463 			 * The immediate goal for using the softexpires is
1464 			 * minimizing wakeups, not running timers at the
1465 			 * earliest interrupt after their soft expiration.
1466 			 * This allows us to avoid using a Priority Search
1467 			 * Tree, which can answer a stabbing querry for
1468 			 * overlapping intervals and instead use the simple
1469 			 * BST we already have.
1470 			 * We don't add extra wakeups by delaying timers that
1471 			 * are right-of a not yet expired timer, because that
1472 			 * timer will have to trigger a wakeup anyway.
1473 			 */
1474 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1475 				break;
1476 
1477 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1478 		}
1479 	}
1480 }
1481 
1482 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1483 {
1484 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1485 	unsigned long flags;
1486 	ktime_t now;
1487 
1488 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1489 
1490 	now = hrtimer_update_base(cpu_base);
1491 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1492 
1493 	cpu_base->softirq_activated = 0;
1494 	hrtimer_update_softirq_timer(cpu_base, true);
1495 
1496 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1497 }
1498 
1499 #ifdef CONFIG_HIGH_RES_TIMERS
1500 
1501 /*
1502  * High resolution timer interrupt
1503  * Called with interrupts disabled
1504  */
1505 void hrtimer_interrupt(struct clock_event_device *dev)
1506 {
1507 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1508 	ktime_t expires_next, now, entry_time, delta;
1509 	unsigned long flags;
1510 	int retries = 0;
1511 
1512 	BUG_ON(!cpu_base->hres_active);
1513 	cpu_base->nr_events++;
1514 	dev->next_event = KTIME_MAX;
1515 
1516 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1517 	entry_time = now = hrtimer_update_base(cpu_base);
1518 retry:
1519 	cpu_base->in_hrtirq = 1;
1520 	/*
1521 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1522 	 * held to prevent that a timer is enqueued in our queue via
1523 	 * the migration code. This does not affect enqueueing of
1524 	 * timers which run their callback and need to be requeued on
1525 	 * this CPU.
1526 	 */
1527 	cpu_base->expires_next = KTIME_MAX;
1528 
1529 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1530 		cpu_base->softirq_expires_next = KTIME_MAX;
1531 		cpu_base->softirq_activated = 1;
1532 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1533 	}
1534 
1535 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1536 
1537 	/* Reevaluate the clock bases for the next expiry */
1538 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1539 	/*
1540 	 * Store the new expiry value so the migration code can verify
1541 	 * against it.
1542 	 */
1543 	cpu_base->expires_next = expires_next;
1544 	cpu_base->in_hrtirq = 0;
1545 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1546 
1547 	/* Reprogramming necessary ? */
1548 	if (!tick_program_event(expires_next, 0)) {
1549 		cpu_base->hang_detected = 0;
1550 		return;
1551 	}
1552 
1553 	/*
1554 	 * The next timer was already expired due to:
1555 	 * - tracing
1556 	 * - long lasting callbacks
1557 	 * - being scheduled away when running in a VM
1558 	 *
1559 	 * We need to prevent that we loop forever in the hrtimer
1560 	 * interrupt routine. We give it 3 attempts to avoid
1561 	 * overreacting on some spurious event.
1562 	 *
1563 	 * Acquire base lock for updating the offsets and retrieving
1564 	 * the current time.
1565 	 */
1566 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1567 	now = hrtimer_update_base(cpu_base);
1568 	cpu_base->nr_retries++;
1569 	if (++retries < 3)
1570 		goto retry;
1571 	/*
1572 	 * Give the system a chance to do something else than looping
1573 	 * here. We stored the entry time, so we know exactly how long
1574 	 * we spent here. We schedule the next event this amount of
1575 	 * time away.
1576 	 */
1577 	cpu_base->nr_hangs++;
1578 	cpu_base->hang_detected = 1;
1579 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1580 
1581 	delta = ktime_sub(now, entry_time);
1582 	if ((unsigned int)delta > cpu_base->max_hang_time)
1583 		cpu_base->max_hang_time = (unsigned int) delta;
1584 	/*
1585 	 * Limit it to a sensible value as we enforce a longer
1586 	 * delay. Give the CPU at least 100ms to catch up.
1587 	 */
1588 	if (delta > 100 * NSEC_PER_MSEC)
1589 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1590 	else
1591 		expires_next = ktime_add(now, delta);
1592 	tick_program_event(expires_next, 1);
1593 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1594 }
1595 
1596 /* called with interrupts disabled */
1597 static inline void __hrtimer_peek_ahead_timers(void)
1598 {
1599 	struct tick_device *td;
1600 
1601 	if (!hrtimer_hres_active())
1602 		return;
1603 
1604 	td = this_cpu_ptr(&tick_cpu_device);
1605 	if (td && td->evtdev)
1606 		hrtimer_interrupt(td->evtdev);
1607 }
1608 
1609 #else /* CONFIG_HIGH_RES_TIMERS */
1610 
1611 static inline void __hrtimer_peek_ahead_timers(void) { }
1612 
1613 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1614 
1615 /*
1616  * Called from run_local_timers in hardirq context every jiffy
1617  */
1618 void hrtimer_run_queues(void)
1619 {
1620 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1621 	unsigned long flags;
1622 	ktime_t now;
1623 
1624 	if (__hrtimer_hres_active(cpu_base))
1625 		return;
1626 
1627 	/*
1628 	 * This _is_ ugly: We have to check periodically, whether we
1629 	 * can switch to highres and / or nohz mode. The clocksource
1630 	 * switch happens with xtime_lock held. Notification from
1631 	 * there only sets the check bit in the tick_oneshot code,
1632 	 * otherwise we might deadlock vs. xtime_lock.
1633 	 */
1634 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1635 		hrtimer_switch_to_hres();
1636 		return;
1637 	}
1638 
1639 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1640 	now = hrtimer_update_base(cpu_base);
1641 
1642 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1643 		cpu_base->softirq_expires_next = KTIME_MAX;
1644 		cpu_base->softirq_activated = 1;
1645 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1646 	}
1647 
1648 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1649 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1650 }
1651 
1652 /*
1653  * Sleep related functions:
1654  */
1655 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1656 {
1657 	struct hrtimer_sleeper *t =
1658 		container_of(timer, struct hrtimer_sleeper, timer);
1659 	struct task_struct *task = t->task;
1660 
1661 	t->task = NULL;
1662 	if (task)
1663 		wake_up_process(task);
1664 
1665 	return HRTIMER_NORESTART;
1666 }
1667 
1668 /**
1669  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1670  * @sl:		sleeper to be started
1671  * @mode:	timer mode abs/rel
1672  *
1673  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1674  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1675  */
1676 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1677 				   enum hrtimer_mode mode)
1678 {
1679 	hrtimer_start_expires(&sl->timer, mode);
1680 }
1681 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1682 
1683 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1684 				   clockid_t clock_id, enum hrtimer_mode mode)
1685 {
1686 	__hrtimer_init(&sl->timer, clock_id, mode);
1687 	sl->timer.function = hrtimer_wakeup;
1688 	sl->task = current;
1689 }
1690 
1691 /**
1692  * hrtimer_init_sleeper - initialize sleeper to the given clock
1693  * @sl:		sleeper to be initialized
1694  * @clock_id:	the clock to be used
1695  * @mode:	timer mode abs/rel
1696  */
1697 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1698 			  enum hrtimer_mode mode)
1699 {
1700 	debug_init(&sl->timer, clock_id, mode);
1701 	__hrtimer_init_sleeper(sl, clock_id, mode);
1702 
1703 }
1704 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1705 
1706 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1707 {
1708 	switch(restart->nanosleep.type) {
1709 #ifdef CONFIG_COMPAT_32BIT_TIME
1710 	case TT_COMPAT:
1711 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1712 			return -EFAULT;
1713 		break;
1714 #endif
1715 	case TT_NATIVE:
1716 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1717 			return -EFAULT;
1718 		break;
1719 	default:
1720 		BUG();
1721 	}
1722 	return -ERESTART_RESTARTBLOCK;
1723 }
1724 
1725 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1726 {
1727 	struct restart_block *restart;
1728 
1729 	do {
1730 		set_current_state(TASK_INTERRUPTIBLE);
1731 		hrtimer_sleeper_start_expires(t, mode);
1732 
1733 		if (likely(t->task))
1734 			freezable_schedule();
1735 
1736 		hrtimer_cancel(&t->timer);
1737 		mode = HRTIMER_MODE_ABS;
1738 
1739 	} while (t->task && !signal_pending(current));
1740 
1741 	__set_current_state(TASK_RUNNING);
1742 
1743 	if (!t->task)
1744 		return 0;
1745 
1746 	restart = &current->restart_block;
1747 	if (restart->nanosleep.type != TT_NONE) {
1748 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1749 		struct timespec64 rmt;
1750 
1751 		if (rem <= 0)
1752 			return 0;
1753 		rmt = ktime_to_timespec64(rem);
1754 
1755 		return nanosleep_copyout(restart, &rmt);
1756 	}
1757 	return -ERESTART_RESTARTBLOCK;
1758 }
1759 
1760 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1761 {
1762 	struct hrtimer_sleeper t;
1763 	int ret;
1764 
1765 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1766 				      HRTIMER_MODE_ABS);
1767 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1768 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1769 	destroy_hrtimer_on_stack(&t.timer);
1770 	return ret;
1771 }
1772 
1773 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1774 		       const enum hrtimer_mode mode, const clockid_t clockid)
1775 {
1776 	struct restart_block *restart;
1777 	struct hrtimer_sleeper t;
1778 	int ret = 0;
1779 	u64 slack;
1780 
1781 	slack = current->timer_slack_ns;
1782 	if (dl_task(current) || rt_task(current))
1783 		slack = 0;
1784 
1785 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1786 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1787 	ret = do_nanosleep(&t, mode);
1788 	if (ret != -ERESTART_RESTARTBLOCK)
1789 		goto out;
1790 
1791 	/* Absolute timers do not update the rmtp value and restart: */
1792 	if (mode == HRTIMER_MODE_ABS) {
1793 		ret = -ERESTARTNOHAND;
1794 		goto out;
1795 	}
1796 
1797 	restart = &current->restart_block;
1798 	restart->fn = hrtimer_nanosleep_restart;
1799 	restart->nanosleep.clockid = t.timer.base->clockid;
1800 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1801 out:
1802 	destroy_hrtimer_on_stack(&t.timer);
1803 	return ret;
1804 }
1805 
1806 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1807 
1808 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1809 		struct __kernel_timespec __user *, rmtp)
1810 {
1811 	struct timespec64 tu;
1812 
1813 	if (get_timespec64(&tu, rqtp))
1814 		return -EFAULT;
1815 
1816 	if (!timespec64_valid(&tu))
1817 		return -EINVAL;
1818 
1819 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1820 	current->restart_block.nanosleep.rmtp = rmtp;
1821 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1822 }
1823 
1824 #endif
1825 
1826 #ifdef CONFIG_COMPAT_32BIT_TIME
1827 
1828 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1829 		       struct old_timespec32 __user *, rmtp)
1830 {
1831 	struct timespec64 tu;
1832 
1833 	if (get_old_timespec32(&tu, rqtp))
1834 		return -EFAULT;
1835 
1836 	if (!timespec64_valid(&tu))
1837 		return -EINVAL;
1838 
1839 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1840 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1841 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1842 }
1843 #endif
1844 
1845 /*
1846  * Functions related to boot-time initialization:
1847  */
1848 int hrtimers_prepare_cpu(unsigned int cpu)
1849 {
1850 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1851 	int i;
1852 
1853 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1854 		cpu_base->clock_base[i].cpu_base = cpu_base;
1855 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1856 	}
1857 
1858 	cpu_base->cpu = cpu;
1859 	cpu_base->active_bases = 0;
1860 	cpu_base->hres_active = 0;
1861 	cpu_base->hang_detected = 0;
1862 	cpu_base->next_timer = NULL;
1863 	cpu_base->softirq_next_timer = NULL;
1864 	cpu_base->expires_next = KTIME_MAX;
1865 	cpu_base->softirq_expires_next = KTIME_MAX;
1866 	return 0;
1867 }
1868 
1869 #ifdef CONFIG_HOTPLUG_CPU
1870 
1871 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1872 				struct hrtimer_clock_base *new_base)
1873 {
1874 	struct hrtimer *timer;
1875 	struct timerqueue_node *node;
1876 
1877 	while ((node = timerqueue_getnext(&old_base->active))) {
1878 		timer = container_of(node, struct hrtimer, node);
1879 		BUG_ON(hrtimer_callback_running(timer));
1880 		debug_deactivate(timer);
1881 
1882 		/*
1883 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1884 		 * timer could be seen as !active and just vanish away
1885 		 * under us on another CPU
1886 		 */
1887 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1888 		timer->base = new_base;
1889 		/*
1890 		 * Enqueue the timers on the new cpu. This does not
1891 		 * reprogram the event device in case the timer
1892 		 * expires before the earliest on this CPU, but we run
1893 		 * hrtimer_interrupt after we migrated everything to
1894 		 * sort out already expired timers and reprogram the
1895 		 * event device.
1896 		 */
1897 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1898 	}
1899 }
1900 
1901 int hrtimers_dead_cpu(unsigned int scpu)
1902 {
1903 	struct hrtimer_cpu_base *old_base, *new_base;
1904 	int i;
1905 
1906 	BUG_ON(cpu_online(scpu));
1907 	tick_cancel_sched_timer(scpu);
1908 
1909 	/*
1910 	 * this BH disable ensures that raise_softirq_irqoff() does
1911 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1912 	 * holding the cpu_base lock
1913 	 */
1914 	local_bh_disable();
1915 	local_irq_disable();
1916 	old_base = &per_cpu(hrtimer_bases, scpu);
1917 	new_base = this_cpu_ptr(&hrtimer_bases);
1918 	/*
1919 	 * The caller is globally serialized and nobody else
1920 	 * takes two locks at once, deadlock is not possible.
1921 	 */
1922 	raw_spin_lock(&new_base->lock);
1923 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1924 
1925 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1926 		migrate_hrtimer_list(&old_base->clock_base[i],
1927 				     &new_base->clock_base[i]);
1928 	}
1929 
1930 	/*
1931 	 * The migration might have changed the first expiring softirq
1932 	 * timer on this CPU. Update it.
1933 	 */
1934 	hrtimer_update_softirq_timer(new_base, false);
1935 
1936 	raw_spin_unlock(&old_base->lock);
1937 	raw_spin_unlock(&new_base->lock);
1938 
1939 	/* Check, if we got expired work to do */
1940 	__hrtimer_peek_ahead_timers();
1941 	local_irq_enable();
1942 	local_bh_enable();
1943 	return 0;
1944 }
1945 
1946 #endif /* CONFIG_HOTPLUG_CPU */
1947 
1948 void __init hrtimers_init(void)
1949 {
1950 	hrtimers_prepare_cpu(smp_processor_id());
1951 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1952 }
1953 
1954 /**
1955  * schedule_hrtimeout_range_clock - sleep until timeout
1956  * @expires:	timeout value (ktime_t)
1957  * @delta:	slack in expires timeout (ktime_t)
1958  * @mode:	timer mode
1959  * @clock_id:	timer clock to be used
1960  */
1961 int __sched
1962 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1963 			       const enum hrtimer_mode mode, clockid_t clock_id)
1964 {
1965 	struct hrtimer_sleeper t;
1966 
1967 	/*
1968 	 * Optimize when a zero timeout value is given. It does not
1969 	 * matter whether this is an absolute or a relative time.
1970 	 */
1971 	if (expires && *expires == 0) {
1972 		__set_current_state(TASK_RUNNING);
1973 		return 0;
1974 	}
1975 
1976 	/*
1977 	 * A NULL parameter means "infinite"
1978 	 */
1979 	if (!expires) {
1980 		schedule();
1981 		return -EINTR;
1982 	}
1983 
1984 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
1985 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1986 	hrtimer_sleeper_start_expires(&t, mode);
1987 
1988 	if (likely(t.task))
1989 		schedule();
1990 
1991 	hrtimer_cancel(&t.timer);
1992 	destroy_hrtimer_on_stack(&t.timer);
1993 
1994 	__set_current_state(TASK_RUNNING);
1995 
1996 	return !t.task ? 0 : -EINTR;
1997 }
1998 
1999 /**
2000  * schedule_hrtimeout_range - sleep until timeout
2001  * @expires:	timeout value (ktime_t)
2002  * @delta:	slack in expires timeout (ktime_t)
2003  * @mode:	timer mode
2004  *
2005  * Make the current task sleep until the given expiry time has
2006  * elapsed. The routine will return immediately unless
2007  * the current task state has been set (see set_current_state()).
2008  *
2009  * The @delta argument gives the kernel the freedom to schedule the
2010  * actual wakeup to a time that is both power and performance friendly.
2011  * The kernel give the normal best effort behavior for "@expires+@delta",
2012  * but may decide to fire the timer earlier, but no earlier than @expires.
2013  *
2014  * You can set the task state as follows -
2015  *
2016  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2017  * pass before the routine returns unless the current task is explicitly
2018  * woken up, (e.g. by wake_up_process()).
2019  *
2020  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2021  * delivered to the current task or the current task is explicitly woken
2022  * up.
2023  *
2024  * The current task state is guaranteed to be TASK_RUNNING when this
2025  * routine returns.
2026  *
2027  * Returns 0 when the timer has expired. If the task was woken before the
2028  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2029  * by an explicit wakeup, it returns -EINTR.
2030  */
2031 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2032 				     const enum hrtimer_mode mode)
2033 {
2034 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2035 					      CLOCK_MONOTONIC);
2036 }
2037 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2038 
2039 /**
2040  * schedule_hrtimeout - sleep until timeout
2041  * @expires:	timeout value (ktime_t)
2042  * @mode:	timer mode
2043  *
2044  * Make the current task sleep until the given expiry time has
2045  * elapsed. The routine will return immediately unless
2046  * the current task state has been set (see set_current_state()).
2047  *
2048  * You can set the task state as follows -
2049  *
2050  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2051  * pass before the routine returns unless the current task is explicitly
2052  * woken up, (e.g. by wake_up_process()).
2053  *
2054  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2055  * delivered to the current task or the current task is explicitly woken
2056  * up.
2057  *
2058  * The current task state is guaranteed to be TASK_RUNNING when this
2059  * routine returns.
2060  *
2061  * Returns 0 when the timer has expired. If the task was woken before the
2062  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2063  * by an explicit wakeup, it returns -EINTR.
2064  */
2065 int __sched schedule_hrtimeout(ktime_t *expires,
2066 			       const enum hrtimer_mode mode)
2067 {
2068 	return schedule_hrtimeout_range(expires, 0, mode);
2069 }
2070 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2071